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ABSTRACT OF THE THESIS 
 

Markov State Analyses of influenza Neuraminidase 

 

by 

 

Simon Park 

 

Master of Science in Chemistry 

University of California San Diego, 2022 

Professor Rommie Amaro, Chair 
 

 Influenza, despite recently being pushed off to the wayside in the scope of public 

attention, has placed itself front and center as a recurring potential epidemic. Influenza kills a 

significant amount of people yearly, and in certain historic cases caused a worldwide 

epidemic. 

  Previous studies of influenza in the Amaro lab brought light to the function of 

neuraminidase especially in certain binding sites such as the 450 and 150-loops. The full scale 

molecular dynamic simulations of mesoscale viral models provided an enormous amount of 

data that could be exploited to analyze the biological and structural properties of influenza 
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glycoproteins, namely neuraminidase and hemagglutinin.  The multiple copies of 

neuraminidase contained within these whole-virion models allowed for the application of 

Markov state models to study the dynamics of the neuraminidase 150 and 430-loops. 

Moreover, our results show that small changes in glycosylation lead to significant differences 

in the kinetics and morphology of the open and closed conformation of the neuraminidase 

150-loop. However, the number of states between the models did not change, which 

consolidated our current understanding of the 150 – loop dynamics having a clear binary 

open-closed state. 

In this thesis, Chapter 1 provides background information about influenza and presents 

the principles of Markov state model theory. Chapter 2 focuses on the workflow pertinent to 

Markov State Model building,  detailing the process that led to choosing, tweaking and 

assessing the optimal MSM parameters and settings.  Chapter 3 is comprised of the results of 

the MSM analysis of the neuraminidase 150-loop dynamics. Chapter 4 is an in-depth 

discussion of the results including future goals and directions.



1 

 

 Chapter 1 

Introduction: Influenza and Neuraminidase 

1.1 Influenza 

 Influenza remains one of the most threatening viruses present to this day. Despite the 

advent of the SARS-CoV-2 pandemic as the prototypical dangerous virus to plague the world 

population, influenza has continued to cause great amounts of deaths every year. Influenza 

peaked with particularly virulent HINI strains in the 1918, 1957, 1968, and 2009 pandemics, 

which resulted in millions of deaths worldwide, with the 1918 flu pandemic taking an estimated 

50 million people worldwide.1 Influenza is estimated by the WHO to cause 290,000-650,000 

deaths every year due to respiratory complications alone.2 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1: Influenza structure. Image from Jung H.E. et al., Viruses 2020,12(5), 504.3 
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 Influenza has three distinct major types, A, B, and C, which can be differentiated both 

structurally and based on their biological capabilities. Influenza A can be transmitted from 

animals to humans and can cause pandemics, whereas influenza B is transmitted exclusively 

from human to human. Type A influenza has HA, NA, and M2 as the membrane proteins, M1 

Matrix protein situated beneath the membrane, a ribonucleoprotein core, and the NEP/NS2 

protein. Focusing mostly on the external proteins, type B influenza has HA, NA, NB, and BM2 

as membrane proteins. Type C has a largely different structure and is not the cause of major 

epidemics like type A and B.4 Type A is of great interest due to the fact that its zoonotic behavior 

and propensity to cause major pandemics. Zoonosis essentially highlights the viral ability to 

infect multiple different species of animals, and this biological ability increases the potency of 

the virus in several manners. Being able to be spread by animals increases simple infectivity as it 

can move through more vectors in a general area. It also means that vaccines have less efficacy 

in the grand scheme of things, because depending on the possible host animals, vaccinating host 

organisms can be extremely difficult logistically or downright impossible. On top of this, genetic 

shift is expedited by concurrent infections in carrier organisms, greatly enhancing the potency of 

viral evolution.  

1.2 Neuraminidase 

 Of the influenza membrane proteins listed above, my research was focused primarily on 

the neuraminidase glycoprotein. Neuraminidase is particularly involved during the final state of 

the viral cycle, modulating release of the virus from the infected cell by cleaving the terminal 

sialic acid moieties presented by host cell-linked glycan. Tamiflu, or Oseltamivir, is one of the 

only non-vaccine treatments for influenza and their mechanism of action involves targeting a 

catalytic pocket present in the neuraminidase head and lined by the 150-loop and the 430-loop.6 
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Being able to understand the dynamics of neuraminidase 150-loop in particular can lead to more 

solutions to inhibit influenza activity without having to participate in the ongoing arms race of 

viral forecasting, although  key mutations do occur within neuraminidase, the overall function 

and behavior remain somewhat conserved, as will be demonstrated throughout this thesis. 

 

 

 

Figure 1.2: Influenza and neuraminidase activity in viral function. Image from Giurgea L.T. et 

al., Vaccines 2020, 8(3),409.7 
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 In this thesis, we focused on the A/swine/Shandong /N1/2009(H1N1) strain and on the 

more recently emerged A/45/Michigan/2015(H1N1) strain. Key mutations at certain sites within 

the neuraminidase head set these two strains apart. Of note, a mutation appears on residue 432, 

where lysine in the 2009 strain becomes glutamic acid. This reverses a positive charge into 

negative within the 430-loop, one of the two major functional loops lining the active site in the 

neuramindase head. In addition, for the 2009 influenza strain, analyzed trajectories were based 

both on the glycosylated and unglycosylated whole virion models.8 

1.3 150 and 430-loops 

 Neuraminidase has two loops associated with infectivity that have been the focus of 

many studies in order to generate treatments. Since the current approach to flu vaccines has been 

to use predictive algorithms in order to assess what future strains may look like, understanding 

the kinetics and functions of these loops of interest offer much in the realm of progress in 

combating influenza pandemics.9 The 150-loop spans from residues 147 to 152 whereas the 430-

loop spans residues 430 to 433. The 430-loop has been shown to be involved in intermittent salt 

bridge formation with the 150-loop. Both loops line the active site pocket cavity and therefore 

are implicated in the binding process of sialic acid substrate and drug inhibitors.10 These two 

loops can be very close to each other, defining a closed conformation, or move far away from 

each other, leading to an open conformation. This makes the data sets simpler to process with 

two states to analyze. That being said, it is important to check for other states to any system to 

build the best model. Understanding the dynamics of these loops is crucial to understanding how 

to combat influenza. 
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1.4 Data Set 

 The data set of the system is based on mesoscale molecular dynamics(MD) simulations 

of the whole influenza viral envelope, including 30 neuraminidase tetramers, 236 hemagglutinin 

trimers, and 11 M2 proton channels. The first data set is based on ~120 ns of MD simulations of 

the unglycosylated 2009 strain performed by Durrant et al.11 The second and third data sets are 

based on ~442 ns MD simulations of the glycosylated 2009 strain and ~425 ns MD simulation of 

the glycosylated 2015 strain respectively.12 Considering the 30 neuraminidase tetramers present 

in the full-scale virion modes, an aggregate monomeric sampling of 14.4 µs, 53.0 µs, and 51.0 µs 

is attained for the three data sets listed above respectively.13 The accuracy of the atomic detailed 

whole-virion models and the amount of simulation time are promising in regards to how faithful 

the simulations are to a real-world scenario. Having a long simulation is importance on 

validating a system because it offers more data points to analyze. One of the challenges that 

arose because of the system, however, was due to the fact that in the process of glycosylating the 

system, protein folding caused a challenge where the N146 site was glycosylated in some 

monomers and not in others. Because of this discrepancy, a comparison between monomers with 

N146 glycosylated and monomers without N146 glycosylated was performed for the 2009 and 

2015 glycosylated models, leading to two further subsets for each system. Another challenge that 

arose from creating the subsets was that the data sets of having the glycosylation at the N146 site 

were much smaller in size, resulting in lesser validation because of the limited simulation time. 

The N146 data set for the Shandong 2009 model had 16 monomers with no-N146 glycosylation 

had the 104. The Michigan 2015 N146 data set had a population of 18 monomers with the no-

N146 glycosylated data set had 102 monomers. Though some degree of validation was reached, 

this itself showed the importance of having sufficient sampling for the MSM analysis to work 
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optimally. It becomes quite apparent that a smaller data set results in poor validation of the 

MSM. The trajectories of the glycosylated models were generated with 0.06 ns steps whereas the 

trajectory of the unglycosylated model was generated with 0.02 ns in between each step. 
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Chapter 2 

 

Markov State Models 

2.1 Markov Models 

 Markov state models(MSMs) are one of the most powerful tools to analyze long 

timescale dynamics of systems with distinct states. A classic MSM is a model made by 

characterizing a system into different states and generating a probability matrix to assess the 

dynamics of transitions of each state. Unlike a Bayesian model, MSMs assume each state is 

independent from its “past” in terms of states.14 All MSMs and subsequent computation analyses 

were run with Pyemma.5 By running the data set trajectories with different Markov models, a lot 

of information could be gathered from kinetics as well as structure. 

 Traditional MSMs were not the only model I attempted to build. To get a higher quality 

fit with data, multiple Markov models were built with differing results. Regardless of which of 

the models was best for each strain of virus, what was important was that the parameters, such as 

the lag time or number of states. The type of MSM models I decided to use were consistent 

across all the whole-virion models for the most logical comparisons. Some of the MSMs I built 

include hidden Markov models(HMM), Bayesian hidden Markov models(BHMM), and regular 

Markov state models(MSMs) as well as Bayesian Markov models(BMM). 

 Unlike MSM, HMM introduce several key factors that give distinct nature to building the 

model. As stated before, MSMs function by building a model by determining the kinetics of 

transitions between different observed states. However, HMM assumes there are hidden 

theoretical states that may be unobserved, so the model itself builds upon creating these 

theoretical states and testing the models for its Markovian nature. The process of building a 
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hidden Markov model involves testing theoretical states to see if hidden intermediates would 

work well with the system in making a set of transition probabilities.16 

 Creating a BMM entails having a prior understanding of the probability matrix. It creates 

a model based on causative probabilities. Because Bayesians assume previous knowledge of the 

probability matrix, building the BHMM and BMM involves extrapolating parameters drawn 

from creating a model prior.17 

2.2 Feature Selection 

 In order to build an MSM, it is necessary to select a feature that informs on the dynamic 

behavior of the studied biological system. Previous work done on the influenza neuraminidase 

with Markov state models showed that using the distance between residues 149 and 431 of 

neuraminidase head informed on the dynamics of the 150-loop. When selecting for a single 

feature, it simplifies the Markov model greatly because the transition matrix has only one 

dimension. Once the data set has been generated, further analysis can be done with all the 

limitations of having only one dimension.18 

2.3 Implied Timescales 

  

 

 

 

 

 

Figure 2.1: Timescale plot for the 2009 glycosylated model 
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 The implied timescales plot greatly facilitates deciding parameters for building a rigorous 

MSM. The implied timescale plot is used to determine the relaxation timescale of the dynamics 

of the investigated process. This implied timescale plot effectively informs when the dynamics in 

question is affected by other states in the system, and from this plot, a proper lag time can be 

deduced to create additional Markov models. This chosen lag time must not be too small or too 

large. Extremely small lag times will increase the error of the approximations for the transition 

matrix probabilities, but extremely large timescales will cause numerical errors in estimations as 

well. An ideal lag time would be a point where the implied 

timescale(ITS) curve first tapers out and becomes flat. The 

timescale plot is defined by: where ti is the estimation is the timescale, 𝜏 is the lag time, and 𝜏i 

is the eigenvector of the Markov transition matrix.19 

 Based on the implied timescale plot presented above in figure 2.1,  a lag time of 500 steps 

was chosen as a start for the 2009 and 2015 glycosylated models, but a lag time of 1500 steps 

was used for the unglycosylated 2009 system. This is because for the glycosylated models, the 

trajectories were generated with a timestep of 0.06 ns while the unglycosylated models were 

generated with a timestep of 0.02 ns, which means we had to triple the steps to have equivalent 

lag time. I decided to run iterations of the models from lag time 250 to 750 with increments of 50 

in the unglycosylated models just to improve potential quality of the results given that much of 

the process was qualitative judgements. In the end, running different MSMs led me to stick with 

my initial judgement of using 500 for the glycosylated models, as they were better validated as 

shown in later steps. 

 With this lag time, I built a traditional Markov state model for further data analysis. 

Building a traditional Markov model is necessary to make estimates on the states of other 
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Markov models, and given that we were running multiple models, it was important to run the 

different Markov models using the same parameters for the sake of consistency. Though feature 

selection was not selected upon previous work due to previous work being done on the 

neuraminidase 150-loop, it was still a crucial decision to run this analysis on all the influenza 

models to make sure the glycosylation, as well as the number of states were not affected by the 

differences in strain. That being said, even if differences were found, further analysis would be 

needed before adjusting for the number of states in the final calculations to see if the visualized 

states offer any pertinent insight into neuraminidase 150-loop behavior. 

2.4 Timescale Separation Plot and Bayesian Markov Model 

 

 

  

 

 

 

 

Figure 2.2: Timescale separation plot for 2009 glycosylated data set 

 Plotting the timescale separation allows assessment of how many stable states there are 

for further analysis. This is important because more accurate estimations can be produced after 

determining the amount of statistically significant stable states that comprise the data set. This 

parameter, called “nstates”, is used as an input in building further Markov models such as the 

BMMs that need further input to start. Each point in this figure denotes a relaxation timescale. 

Therefore,  based on the number of peaks we can infer the number of metastable states. We 
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wanted to keep the metastable states set to two ultimately because of what is known about 

neuraminidase 150-loop, but it was still helpful to run iterations with multiple metastable states 

to see if there was significant behavioral changes regarding the dynamics of the protein. Though 

individual timescale separation plots did raise the question of additional nstates, upon running 

the Markov state models with these states, it was clear that those states did not have much 

structural significance, and further analysis shows that those states also had very little metastable 

densities. All in all, the two state model seemed the most logical when analyzing the 150-loop. 

Running different timescale separation plots was also helpful in determining whether the Markov 

models that were being built were comparable across influenza strains to see if perhaps the 

differences themselves played a role in affected the number of states. Next, I generated the 

HMM, BMM, BHMM using the lag time (500 steps) for the glycosylated models and 1500 for 

unglycosylated system to see which Markov model validated the best. As shown below, the 

BMM had consistently good validation, so we opted to keep using the BMM to analyze all the 

three data sets.  

2.5 Chapman-Kologromov Test 

 

 

  

 

 

 

 

Figure 2.3: Chapman-Kologromov test for 2009 glycosylated Bayesian Markov Model 
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 The Chapman-Kolmogorov, or CK equation is defined by:   

where Pij is the probability of the system moving from state i to j. Good validation would mean 

that the value of the CK equation would match that of the transition matrix.20 We determined that 

a good CK test validation has the CK equation and transition matrix match up for around triple 

the lag time of the MSM being validated. This is the metric by which a Markov model is 

assessed to have Markovian behavior. That is to say when the graphs denote that the CK tests 

match the estimated result given by the calculated transition matrix, we can conclude that the 

parameters by which the Markov state model were made would give accurate results on the 

dynamics of the system. 

2.6 Protein Rendering 

 The next steps would be to visually inspect the representative 150-loop conformation for 

each state extracted from the MSM analysis to see if the structures matched with the expected 

conformation. If the resulting structures clearly show the expected clear open and closed 

conformations, we went forward to calculate the metastable distributions and mean first passage 

times for the transition of the states. Visualizing the protein in order to assess the conformation 

was also necessary to understand the morphological and geometrical properties of the open and 

closed conformations of the 150-loop. Given that the system clustered around two main states 

given my input of nstates, I set a very high cutoff probability of 0.99 for all the Markov models 

to generate structures that were most likely to be the visual representatives of the metastable 

states to a very high degree of certainty. 
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2.7 Stationary Distributions and Mean First Passage Times 

 Next, we calculated the mean first passage time which is the average timespan required 

for the system to first go to a certain state to another for the first time. We also calculated the 

standard deviations for the mean first passage times to get a sense of the statistical error of the 

mean. We also generated the stationary distribution data, which shows us how much of each 

state is populated. A high population would mean that it is more probable for the system to be in 

that state at any given time. All this was done using computational scripts built into Pyemma. 
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Chapter 3 

Results 

3.1 CK Test Comparisons 

 In order to assess the reliability of the results, the first step was to see whether the 

parameters were sufficient in generating reproducibly Markovian models. As stated before, the 

way to do this was the run the various CK tests in order to find whether the transition matrices 

match the estimated model. To preserve simplicity, parameters were chosen such that all the data 

sets could be run with the same parameters with good results in validation. The pertinent number 

was two states with a lag time of 500 steps for all glycosylated models and 1500 steps for the 

unglycosylated model. 

Figure 3.1: CK tests results. (a) 2009 unglycosylated. (b) 2009 glycosylated. (c) 2015 

glycosylated. (d) N146 2009. (e) No-N146 2009. (f) N146 2015. (g) No-N146 2015.    

 

 

 

 The results as shown in figure 3.1 demonstrate that the MSMs built for all three datasets 

validated relatively well in Markovian fashion. The estimates and transition matrices matched 
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well into a lag time of 1500 or more steps as desired for the three models. However, given that 

the N146 data pools were much smaller, there was some error involved. To address this, further 

iterations of the Markov models were done with different lag times, but the lag time of 500 steps 

was kept for the glycosylated models since only the limited size of the data was the source of the 

issues of validation for the N146 subset. Changing the lag time did little to alleviate such error of 

the CK test for the N146 subset, and only affected the validation of the other data sets negatively. 

3.2 Rendering Protein Results and Results for Statistical Analyses 

 Using the high cutoff probability, I was able to extract representative conformation of the 

open and closed states for all the data sets. Even in the case of poor validation for the 146 

subsets, the molecular representations show a net difference between the open-closed 

conformations. All image renderings done with VMD.21 Surface representations were used to 

detail the shape of the neuraminidase active site, highlighting how the cavity becomes larger in 

the case of an open 150-loop. The distance between residue 149 and 431 was also highlighted to 

show the differences between the two states. 
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Figure 3.2: Rendered macrostates for the 2009 unglycosylated data set. Cyan denotes 150-loop, 

whereas yellow denotes 430-loop. (a) closed conformation. (b) open conformation. (c) Surface 

representation of closed conformation. (d) Surface representation of open conformation. 
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Figure 3.3: Rendered macrostates for the 2009 glycosylated data set. Cyan denotes 150-loop, 

whereas yellow denotes 430-loop.  (a) open conformation. (b) closed conformation. (c) Surface 

representation of open conformation. (d) Surface representation of closed conformation. 
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Figure 3.4: Rendered macrostates for the 2015 glycosylated data set. Cyan denotes 150-loop, 

whereas yellow denotes 430-loop.  (a) closed conformation. (b) open conformation. (c) Surface 

representation of closed conformation. (d) Surface representation of open conformation. 
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Figure 3.5: Rendered macrostates for the 2009 N146 data set. Cyan denotes 150-loop, whereas 

yellow denotes 430-loop. The crimson portion within the loop denote the 149 and 431 residues 

(a) open conformation. (b) closed conformation. 

 

 Despite having relatively poor validation in the CK test, the molecular representation 

shows that the chosen feature was able to discretize the data set properly. Moreover the 

noticeable differences between the two conformations, as also shown by the highlighted distance 

between residue between 431 and 149, pinpoints that the Markov state model analysis was able 

to characterize two relevant states from the 150-loop dynamics. This suggests that the adopted 

workflow was successful in studying the 150-loop dynamics. 
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Figure 3.6: Rendered macrostates for the 2009 No-N146 data set. Cyan denotes 150-loop yellow 

is 430-loop while the crimson portion within the loop denote the 149 and 431 residues (a) open 

conformation. (b) closed conformation. 

Figure 3.7: Rendered macrostates for the 2015 N146 data set. Cyan denotes 150-loop yellow is 

430-loop while the crimson portion within the loop denote the 149 and 431 residues (a) closed 

conformation. (b) open conformation. 
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Figure 3.8: Rendered macrostates for the 2015 No-N146 data set. Cyan denotes 150-loop yellow 

is 430-loop while the crimson portion within the loop denote the 149 and 431 residues (a) closed 

conformation. (b) open conformation. 

 

Table 3.1: All mean first passage times, distance between 149 and 431 residues, as well as 

stationary distributions. The distances were measured based off the rendered neuraminidases, 

and the mean first passage times and metastable distributions were calculated using statistical 

analyses using Pyemma.22 
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Chapter 4 

Analysis 

4.1 Effect of Glycosylation on the 150-loop dynamics 

 Comparing the 2009 unglycosylated model to the 2009 glycosylated model gave a clear 

view of the differences of the impact that Glycosylation had on the 150-loop dynamics. As seen 

from figures 3.2 to 3.4, as well as table 3.1, all of the models exhibit the clear open and closed 

conformation. In the case of the open state, the presence of glycans in the glycosylated 2009 and 

2015 systems led to an increased distance between the 150 and 430-loop, as evidenced by the 

measured distance between 149 and the 150-loop and residue 431 located on the 430-loop(see 

table 3.1). In particular, the closed conformation in the unglycosylated 2009 model had a 

distance of 8.9 Å whereas the open had a distance of 14.7 Å. For the glycosylated 2009 model, 

the closed distance was 6.7 Å and the open was 18.9 Å. A larger distance (26.2 Å) between the 

two loops in the case of the open state was also observed for the 2015 model, confirming the 

trend observed for the 2009 glycosylated model. 

 Interestingly, the glycosylated 2009 model also showed a greater net difference between 

the 150 and 430-loop distance observed in the closed state and the open state, owing to the 

closed state being more closed than in the unglycosylated2009 model and the open state being 

more open. Another interesting note to be had was the metastable distributions. The 

unglycosylated model had a larger population for the open conformation whereas the 

glycosylated model had a larger population for the closed conformation, highlighting a shift of 

the predominant state towards the closed conformation in the case of the 2009 glycosylated 

system. The mean first passage times were also greatly affected by the Glycosylation. The 

glycosylated model had a whopping 34,800 ns closed-to-open and a shorter 4980 ns open-to-
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closed mean first passage time whereas the unglycosylated model had an 8,100 ns closed-to-open 

and 7,400 ns open-to-closed mean first passage times. However, mean first passage times may 

not be the best assessment of the system. When I generated multiple MSM types in order to 

assess which of them had the best consistent validation, I also formed mean first passage times 

for all types of Markov Models. Of these depending on the type of MSM the mean first passage 

times would be very different, though the metastable distributions would remain more or less the 

same throughout iterations as long as the Markov state models validated correctly. The shapes 

from the renders and metastable distributions were much more useful for this comparison, and 

make more logical sense. Of note, since the 2015 and 2009 glycosylated data sets are comprised 

of the N146 and no-N146 subsets, the expectation is that the mean first passage times and 

metastable distributions would reflect that tendency. However, for some reason, this turned out 

not to be the case for mean first passage times. The metastable distributions, however, were very 

near the expected amount where the metastable distribution of the main population was 

somewhere in vicinity of the subpopulations. 

4.2 Effect of Strain 

 Because of the mutations that caused differences between the 2009 and 2015 influenza 

strains, especially the K432E mutation right within the 430-loops, I expected some differences in 

the dynamics of the 150-loop between the 2009 and 2015 strain. This was indeed the case. 

Between the 2009 and 2015 glycosylated strains, the 2009 had the 150 loop-430-loop distances 

in the closed and open state of 6.7 Å and 18.9 Å respectively, whereas in the 2015 strain the 

distances were 7.1 Å and 26.2 Å. The mean first passage times were also greatly affected, as the 

2009 had a MFPT of 34,800 ns closed-to-open and a 4,980 ns open-to-closed transition. The 

2015 had a MFPT of 7,570 ns for the closed-to-open transition, and a 5,130 ns MFPT for the 
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open-to-closed transition. The stationary distribution trends were also reversed, with the 2009 

having a 21%/79% distribution in favor of the closed conformation whereas the 2015 exhibited a 

distribution of 63%/37% in favor of the open conformation.  

 It is plausible that the mutations occurred within the 2015 strain might have had an 

impact on the 150-loop dynamics. Since both strains were involved in functional influenza, the 

change in neuraminidase 150-loop dynamics did not affect the capacity of the virus to infect on 

the whole, though it could be true that the dynamics could change the virulence and speed in 

which the virus operates. It is very plausible this is the case, though it would be hard to prove 

just looking at the historical spread of a virus given the multitude of factors involved. 

Nevertheless, creating these Markov state models and assessing the kinetics of the system could 

give a strong hypothesis as to how effective these components are with infectivity. 

4.3 Effect of N146 Glycosylation 

 Compared to the no-N146 subsets for both groups, the N146 subsets had consistently less 

population in the closed conformation. It appears that having an N-linked glycan linked to N146 

site skews the neuraminidase 150-loop towards being in the open state. For the 2009 strain, the 

population of open conformation goes from 32% to 37% in the case of the presence of glycan at 

the N146. For the 2015 strain, the open conformation population goes from 54% to 76% in the 

case of the presence of the glycan at the N146. The fact that the difference in effect of the 

Glycosylation is greater in the 2015 is peculiar, albeit the trends are the same. The behavior of 

the 150-430-loop distances given by the feature is also very interesting. The lack of the N146 

glycan in the no-N146 subset increased the range of the distance for the 2015 influenza and the 

2009 strain. For the 2009 N146 subset, the open-closed distances were 19.3 Å and 9.8 Å 

respectively. The no-N146 set for the 2009 yielded open-closed distances of 18.7 Å and 7.4 Å 
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respectively. Looking at the distances, that is a range of 9.5 Å in the N146 and an 11.3 Å range 

in the no-N146. For the 2015, no-N146 gives us open-closed distances of 24.9 Å and 5.1 Å 

respectively, while the N146 gives us an open-closed distance of 16.2 Å and 7.4 Å respectively. 

This yields a range of 8.8 Å for the N146 for the 2015, and a range of 19.8 Å for no-N146. It 

seems based on these two strains of influenza, the Glycosylation at the 146 residue of 

neuramindase causes both an increase in the open conformation as well as a decrease in the 

extent by which the neuraminidase opens and closes. 

4.4 Further Research Goals 

 Running Markov State models and doing analysis to get an idea on the kinetics is a start 

to a plethora of potentially epidemically and pharmaceutically significant findings. Given that 

neuraminidase is such a biologically relevant actor in infectiousness, it would be potentially 

groundbreaking to study more viral strains on the grounds of infectivity and virulence on the 

basis of neuraminidase behavior. Controlling for other factors, if there could, for example, be a 

link between the metastable states skewing towards a certain conformation, the variances or 

sheer distances of the open-close conformations, it could offer great insight into viral forecasting 

and preparing for future outbreaks of influenza, not to mention given the power of Markov state 

analyses, it could also be applied to other systems analyses involving drug binding to 

neuraminidase since it is the hot spot for many antivirals. In fact, Giugea et al proposes that 

adding neuraminidase into a vaccine cocktail would be beneficial and cites how effective anti-

neuraminidase antibodies are in controlling the disease in the body.23 Using MSM analysis 

allows us to not only study neuraminidase but also study the interactions with antibodies could 

also give insight on the exact mechanism of actions certain natural defenses against disease, 

which can provide insights on drug discoveries to mimic these natural defenses. 



26 

 

REFERENCES 
 

 

(1) Gutenberg JK, Morens DM. 1918 Influenza: the mother of all pandemics. Emerg Infect 

Dis. 2006 Jan;12(1):15-22. doi: 10.3201/eid1201.050979. PMID: 16494711; PMCID: 

PMC3291398. 

 

(2) World Health Organization. (2018, November 6). "Influenza (Seasonal)." 

 

(3) Jung HE, Lee HK. Host Protective Immune Responses against Influenza A Virus 

Infection. Viruses. 2020; 12(5):504. 

 

(4) Bouvier, Nicole M, and Peter Palese. “The biology of influenza viruses.” Vaccine vol. 26 

Suppl 4,Suppl 4 (2008): D49-53. doi:10.1016/j.vaccine.2008.07.039 

 

(5) Mcauley, Julie & Gilbertson, Brad & Trifkovic, Sanja & Brown, Lorena & McKimm-

Breschkin, Jennifer. (2019). “Influenza Virus Neuraminidase Structure and Functions.” Frontiers 

in Microbiology. 10. 10.3389/fmicb.2019.00039. 

 

(6) Tao J, Wang H, Wang W, Mi N, Zhang W, Wen Q, Ouyang J, Liang X, Chen M, Guo W, 

Li G, Liu J, Zhao H, Wang X, Li X, Feng S, Liu X, He Z, Zhao z. (2022) Binding mechanism of 

oseltamivir and influenza neuraminidase suggests perspectives for the design of new anti-

influenza drugs. PLOS Computational Biology 18(7): e1010343. 

 

(7) Giurgea LT, Morens DM, Taubenberger JK, Memoli MJ. Influenza Neuraminidase: A 

Neglected Protein and Its Potential for a Better Influenza Vaccine. Vaccines (Basel). 2020 Jul 

23;8(3):409. 

 

(8) Durrant JD, Kochanek SE, Casalino C, Leong PU,  Dommer AC, and Amaro RE. 

Mesoscale All-Atom Influenza Virus Simulations Suggest New Substrate Binding Mechanism. 

ACS Central Science 2020 6 (2), 189-196 

 

(9) Lu, J., & Meyer, S. (2020). Forecasting Flu Activity in the United States: Benchmarking 

an Endemic-Epidemic Beta Model. International journal of environmental research and public 

health, 17(4), 1381.  

 

(10) Amaro, R. E., Swift, R. V., Votapka, L., Li, W. W., Walker, R. C., & Bush, R. M. (2011). 

Mechanism of 150-cavity formation in influenza neuraminidase. Nature communications, 2, 

388.  

 

(11) Durrant JD, Kochanek SE, Casalino C, Leong PU,  Dommer AC, and Amaro RE. ACS 

Central Science 2020 6 (2), 189-196 

 

(12)  Casalino L, Seitz C, Lederhofer J, Tsybovsky Y, Wilson I, Kanekiyo M, Rommie 

A. Breathing and tilting: Mesoscale simulations illuminate influenza glycoprotein vulnerabilities. 



27 

 

bioRxiv. Cold Spring Harbor Laboratory; 2022 

https://www.biorxiv.org/content/10.1101/2022.08.02.502576v2  

 

(13)  Ibid 

 

(14) Brooke E. Husic and Vijay S. Pande. Markov State Models: From an Art to a 

Science.Journal of the American Chemical Society 2018 140 (7), 2386-2396 

 

(15) Scherer MK, Trendelkamp-Schroer B, Paul F, Pérez-Hernández G, Hoffmann M, Plattner 

N, Wehmeyer C,  Prinz JK, and Noé F. PyEMMA 2: A Software Package for Estimation, 

Validation, and Analysis of Markov Models.Journal of Chemical Theory and 

Computation 2015 11 (11), 5525-5542. DOI: 10.1021/acs.jctc.5b00743 

(16) Yoon B. J. (2009). Hidden Markov Models and their Applications in Biological Sequence 

Analysis. Current genomics, 10(6), 402–415. 

 

(17) Siebert, M., & Söding, J. (2016). Bayesian Markov models consistently outperform 

PWMs at predicting motifs in nucleotide sequences. Nucleic acids research, 44(13), 6055–6069.  

  

(18) Konovalov, K. A., Unarta, I. C., Cao, S., Goonetilleke, E. C., & Huang, X. (2021). 

Markov State Models to Study the Functional Dynamics of Proteins in the Wake of Machine 

Learning. JACS Au, 1(9), 1330–1341. 

 

(19) Swope, W. C., Pitera, J. W., Suits, F., Pitman, M. and Eleftheriou, M.: Describing protein 

folding kinetics by molecular dynamics simulations: 2. Example applications to alanine dipeptide 

and beta-hairpin peptide. Journal of Physical Chemistry B 108, 6582-6594 (2004). 

 

(20) Miroshin, R.. (2016). Special solutions of the Chapman–Kolmogorov equation for 

multidimensional-state Markov processes with continuous time. Vestnik St. Petersburg 

University: Mathematics. 49. 

 

(21) Humphrey, W., Dalke, A. and Schulten, K., "VMD - Visual Molecular Dynamics", J. 

Molec. Graphics, 1996, vol. 14, pp. 33-38. 

 

(22) Scherer MK, Trendelkamp-Schroer B, Paul F, Pérez-Hernández G, Hoffmann M, Plattner 

N, Wehmeyer C, Prinz JK, and Noé F. 2015 11 (11), 5525-5542. 

 

(23) Giurgea LT, Morens DM, Taubenberger JK, Memoli MJ. Vaccines (Basel). 2020 Jul 


	DEDICATION
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	LIST OF ABBREVIATIONS
	ACKNOWLEDGEMENTS
	ABSTRACT OF THE THESIS
	REFERENCES



