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of the material. Künnemann, Marvin, Daniel Moeller, Ramamohan Paturi, and Stefan

Schneider. “Subquadratic Algorithms for Succinct Stable Matching.” arXiv preprint

arXiv:1510.06452 (2016). [59] The dissertation author was the primary investigator and

author of this material.

viii



VITA

2010 Bachelor of Science, University of Notre Dame

2013 Master of Science, University of California, San Diego

2016 Doctor of Philosophy, University of California, San Diego

ix



ABSTRACT OF THE DISSERTATION

Exploiting Structure in the Stable Matching Problem

by

Daniel Paul Moeller

Doctor of Philosophy in Computer Science

University of California, San Diego, 2016

Professor Ramamohan Paturi, Chair

Stable matching is a widely studied problem in social choice theory. For the basic

centralized case, an optimal quadratic time algorithm is known. However, we present

several notions of structure and use them to provide tighter convergence bounds and

faster stable matching algorithms for structured instances.

First, we consider the decentralized case, where several natural randomized

algorithmic models for this setting have been proposed that have worst case exponential

time in expectation. We describe a novel structure associated with a stable matching on

a matching market. Using this structure, we are able to provide a finer analysis of the

x



complexity of a subclass of decentralized matching markets.

We then study the centralized stable matching problem when the preference

lists are not given explicitly but are represented in a succinct way. We ask whether

the problem becomes computationally easier and investigate other implications of this

structure. We give subquadratic algorithms for finding a stable matching in special cases

of natural succinct representations of the problem, the d-attribute, d-list, geometric, and

single-peaked models. We also present algorithms for verifying a stable matching in the

same models. We further show that for d = ω(logn) both finding and verifying a stable

matching in the d-attribute and d-dimensional geometric models requires quadratic time

assuming the Strong Exponential Time Hypothesis. These models are therefore as hard

as the general case for large enough values of d.
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Chapter 1

Introduction

Social Choice Theory is an important field at the intersection of a wide range of

areas, primarily Economics, Social Science, Mathematics, and Computer Science. Initial

research focused on voting theory, but it has subsequently expanded to include coalition

formation, matching, auctions and other applications.

Much of social choice revolves around resolving the preferences of different

individuals to achieve a desired social outcome. For instance, the goal in voting is to

aggregate the preferences into a consensus list. In coalition formation, we divide the

participants into groups that are acceptable to all involved. Much of the prior work

assumes that preferences can be arbitrary because this allows for maximal generality

and applicability to a wide range of settings. However, this assumption often leads to

impossibility results, as is the case with the well known Arrow’s Theorem in voting [8].

This theorem states that there is no voting system that satisfies several common-sense

criteria and is not a dictatorship.

To bypass some of these impossibility results, we may often assume there are

some restrictions on the preferences. Many of the restrictions are motivated by intuitive

or empirical observations. For instance, in voting theory it can be assumed that all

participants have single-peaked preferences, which means that each participant has one or

more ideal choices with the value of other options monotonically decreasing further away

1
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from the ideal [14]. Arrow’s impossibility result no longer holds when all preferences

are single-peaked.

In this dissertation, we focus on the stable matching problem, which is a rich

problem by itself. In this setting, the participants are divided into two groups, men and

women, and each participant has a preference list over the members of the opposite

group. The goal is to pair the men and women such that no two people would prefer to

be with each other than with their partners. Gale and Shapley [33] first presented the

stable matching problem in 1962 as a model for two-sided matching markets. They also

describe their deferred acceptance algorithm which efficiently finds a stable matching.

From the time of this seminal paper, stable matching has proved to be a fruitful

area of research for several reasons. First, stable matching has many applications ranging

from matching buyers to sellers in a market, students to public schools, and residents

to hospitals. Each of these are important social and economic problems and there are

many real-world examples of such markets. One is the National Resident Matching

Program (NRMP) [75], which assigns graduating medical students to residency positions

in hospitals. Another is the matching of college students to sororities [69]. Stable

matching algorithms are currently used to clear real world markets for these applications.

Moreover, stable matching is of interest from a purely theoretical perspective. On

the one hand, it is an approachable topic often used as an example in algorithms courses.

However, it also goes much deeper. In his book [56], Knuth presents the relationships

between stable matching and many other combinatorial problems. The computational

hardness of stable matching has also been investigated. In fact, stable matching is a

complete problem in the complexity class CC, which is the set of problems log-space

reducible to the comparator circuit value problem [67, 84].

Finally, stable matching has a very rich structure. Gusfield and Irving [38]

describe many aspects of this structure. This structure is of interest in various fields. For
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example, it can be used to determine how many stable matchings exist for a given problem

instance and which would be the most likely outcome, both questions economists ask.

From the computer science viewpoint, this structure also enables faster algorithms for

problems such as describing the set of stable matchings and the transformations from

one stable matching to another. Finally, from a mathematical perspective, the structure in

stable matching relates to many basic mathematical constructs such as lattices.

In this work, we consider cases where preferences have structure and use this

structure to bypass the current hardness results. We also investigate the limits of this

approach. We first discuss the decentralized stable matching setting, where there is no

central authority to enforce the participants to follow any stable matching protocol. This

applies in many real world settings such as most economic and job markets. Previous

work has shown that while distributed agents can converge to a stable matching through a

random process, this can take an exponential number of steps [79, 3]. This indicates that

we might not expect to find stable outcomes in many decentralized markets. However, we

define a notion of structure based on jealousy graphs that allows us to guarantee expected

polynomial time convergence when the preferences have certain structural properties.

We also demonstrate that markets are likely to have these properties when we make some

common assumptions on the preference profiles of the participants. Therefore, we can

expect decentralized markets to achieve stable matchings when the preferences allow for

better convergence guarantees.

We then consider the centralized setting when the preferences have one of several

succinct structures. While the classical Gale-Shapley deferred acceptance algorithm

provides the optimal quadratic running time [70, 81, 36], these lower bounds do not

necessarily hold when the preferences require subquadratic space to represent. We show

that in some cases when the preferences can be implicitly represented by attributes,

there are strongly subquadratic algorithms for finding a stable matching. Moreover
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there are strongly subquadratic algorithms for verifying if a given matching is stable,

which requires quadratic time with arbitrary preferences. We also present a subquadratic

algorithm for verifying a stable matching when the agents’ preferences are common lists

and when they are single-peaked. Finally, we demonstrate that there are limits to the

advantage this structure can give by showing that this problem requires quadratic time

once the number of attributes becomes superlogarithmic assuming the Strong Exponential

Time Hypothesis (SETH).



Chapter 2

Background

2.1 Basic Stable Matching Concepts

We start with the basic definitions of matching markets and stable matchings.

Definition 2.1. (S,P) is a matching market if S = M
⋃

W for some disjoint sets M,W,

|M|= |W | and P = {�s}s∈S where, for s ∈M, �s is a total order over W
⋃
{s}, and for

s ∈W, �s is a total order over M
⋃
{s}.

We say a matching market has size n if |M|= |W |= n.

Definition 2.2. A matching on the set S is a function µ : S → S such that ∀s ∈ S,

µ(µ(s)) = s, s ∈M⇒ µ(s) ∈W
⋃
{s} and s ∈W ⇒ µ(s) ∈M

⋃
{s}.

We say that a participant s ∈ S is unmatched by a matching µ if µ(s) = s. We

generally assume that all participants prefer to be matched to anyone than to be un-

matched, though this restriction can often be relaxed. Observe that µ can be thought of

as a collection of pairs (m,w) if we allow self loops (s,s) for unmatched participants.

Definition 2.3. A matching on the set S is a perfect matching if µ(s) 6= s for all s ∈ S.

Given a matching, a man and a woman who each preferred the other to their

partner would cause the matching to be unstable. Therefore any stable matching must

have no such pairs. We call such a pair a blocking pair, defined formally here:

5
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Definition 2.4. Let (S,P) be a matching market and µ be any matching on S. A blocking

pair for µ in (S,P) is a pair (m,w) such that m ∈M, w ∈W, µ(m) 6= w, w�m µ(m), and

m�w µ(w).

Definition 2.5. Let (S,P) be a matching market. A matching µ on S is a stable matching

for (S,P) if it has no blocking pairs in (S,P).

2.2 Related Work

2.2.1 The Deferred Acceptance Algorithm

Gale’s and Shapley’s deferred acceptance algorithm [33] works as follows. While

there is an unmatched man m, have m propose to his most preferred woman who has

not already rejected him. A woman accepts a proposal if she is unmatched or if she

prefers the proposing man to her current partner, leaving her current partner unmatched.

Otherwise, she rejects the proposal. This process finds a stable matching in time O(n2).

2.2.2 Complexity of Stable Matching

It turns out the running time of the deferred acceptance algorithm is optimal under

reasonable models of computation. This is to be expected since representing all partici-

pants’ preferences requires quadratic space. However, even if the preferences are already

in memory, finding a stable matching requires quadratic time as well. Additionally, the

verification problem of testing whether a given matching is stable or not and the stable

pair problems of checking whether a given pair is in any or all stable matchings also

require quadratic time [70, 81, 36].

Subramanian proves that the stable matching problem is actually a complete

problem in the complexity class CC [84]. This class is the set of problems equivalent to

the comparator circuit value problem, which asks whether a given comparator circuit is
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true or false on the given boolean inputs [67]. Thus, reducing stable matching to another

problem would imply that problem also had a quadratic lower bound. In fact the stable

pair problems are also CC-complete [84]. Le, Cook, and Ye further explore and develop

the stable matching problem’s relationship with CC [60].

2.2.3 Variations on Stable Matching

Since the seminal work by Gale and Shapley, many variants of this problem

have been studied. See [35, 38, 37, 48, 49, 52, 56, 78] for examples. One variation

also considered by Gale and Shapley, the many-one stable matching problem, is where

members on one side of the market can accept multiple partners [33]. It turns out that

the NRMP was already using a form of the deferred acceptance algorithm for their

hospital-doctor matchmaking, which is of the many-one type [75]. Many of the results

for the standard problem readily extend to this version [38].

Another variation allows for indifference in the preference lists. In the presence

of ties, there are three different stability notions. For super stability, a blocking pair

involves two participants who either prefer each other to their partners or are indifferent.

A blocking pair for strong stability is the same as for super stability except the preference

must be strict for at least one member of a blocking pair. Weak stability requires both

members of a blocking pair to strictly prefer each other to their partners. It is clear that

arbitrarily breaking the ties allows the deferred acceptance algorithm to find a weakly

stable matching. However, there is not always a strongly stable or super stable matching.

On the other hand, they can be found in polynomial time if they do exist [49, 54].

A third variation involves participants who may find certain partners unacceptable.

That is, they would rather be unmatched than matched with those potential partners. This

setting is called stable matching with incomplete lists since participants need not rank

every member of the other set [38]. Stable matchings always exist in this case, and
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the deferred acceptance algorithm can be modified slightly to handle incomplete lists.

However, some of the participants may be unmatched even if there are an equal number of

men and women. Nevertheless, with strict preferences, the set of unmatched participants

is the same for any stable matching on that market [35].

In the presence of both ties and incomplete lists, the stable matching problem

becomes somewhat more complex. Weakly stable matchings always exist, however, it is

no longer the case that all weakly stable matchings have the same size. Moreover, finding

the maximum weakly stable matching is NP-complete [62, 53, 63]. This issue does not

apply to strong stability and super stability, and if they exist, stable matchings can be

found using similar algorithms to the complete lists algorithms [54, 62].

The stable roommates problem is a generalization of the stable matching problem

that removes the bipartite restriction. Unlike with bipartite stable matching, there need not

always exist a stable roommate matching [33]. However Irving discovered an algorithm

that produces a stable matching or identifies that none exists in quadratic time [48].

Subramanian also presents an alternative method [84]. Since every stable matching

problem can be realized in the stable roommate setting, stable roommates is at least as

hard as stable matching and this is optimal [38]. While we focus on stable matching in

this thesis, some of the results immediately generalize to the stable roommates problem

as well.

Unless otherwise specified, we deal with the one to one matching case with strict,

complete preferences in this dissertation.

2.2.4 Strategic Behavior

Strategy is a key consideration in mechanism design. Ideally, we want to in-

centivize truthful behavior. In fact, preference misrepresentation is found in real world

matching markets that do not encourage truthfulness. (See [69] for an example.) However,
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it turns out that there is no strategy-proof mechanism that outputs a stable matching given

self-reported preferences [74]. Additionally, if a mechanism outputs the men-optimal

stable matching, then the optimal strategy for the women is to report truncated lists

which forces the women-optimal stable matching to be the only stable matching [75, 34].

Furthermore, if some women misrepresent their preferences, the partners of all women

can only improve whereas the partners of the men can only become worse [9]. The

women can actually benefit significantly by falsely reporting their preferences in large,

uniform markets [27]. On the other hand, truthfulness is a dominant strategy for the men

[74, 76], although they can form coalitions where some, but not all, men in the coalitions

can benefit by misrepresentation [43].

Despite these impossibility results, all is not lost. It turns out that under equi-

librium, the resulting outcome of the misrepresented preferences will still be stable

with regard to the true preferences [61]. Moreover, if the participants have incomplete

information about the other participants’ preferences, this hinders their ability to gain

through misrepresentation [77]. Likewise, if the men have short preference lists, then the

probability of the women successfully manipulating the mechanism goes down as the

size of the market increases [44, 58]. Also, if the women must rank all men, this limits

their ability to gain, but does not completely stop it [85]. Finally, there are also prac-

tical obstacles to preference misrepresentation. For instance, [57] and [66] investigate

the computational complexity of determining optimal cheating strategies under various

constraints.

2.2.5 Structure in Stable Matching

The stable matching problem also has rich structure which often enables efficient

algorithms. Most notable is the lattice structure of all stable matchings for a given problem

discovered by John Conway and presented in [56] and the accompanying rotation poset
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described by Irving and Leather [50]. It turns out that with the man-optimal stable

matching as the lower bound and the woman-optimal stable matching as the upper bound,

all intermediate stable matchings form points in a lattice structure, where the intermediate

stable matchings are preferred by the men to the women-optimal stable matching and by

the women to the man-optimal stable matching [56]. Rotations compactly describe the

transition from one stable matching to another that is more favorable for the women [50].

The complete rotation poset can be computed in quadratic time and catalyzes fast

algorithms for a variety of stable matching problems [37]. For instance, determining

if a given pair is a stable pair can be solved in quadratic time. Moreover, all stable

pairs can be enumerated in quadratic time [37]. One can also use rotations to efficiently

find stable matchings that are more socially optimal, by a variety of measures, than the

man-optimal or woman-optimal stable matching. Some examples are the minimum regret

stable matching, where the participant who does worst is as well off as possible [37],

and the matching with highest average partner ranking [51, 32]. Furthermore, all stable

matchings can be enumerated using only linear time per matching and quadratic total

space [37]. The utility of this structure is not limited to fast algorithms, as it also serves

to provide a #P lower bound for the problem of counting the number of stable matchings

[50].

Other notions of structure have been used to distinguish between simple and

complex instances of the problem. One commonly considered notion is correlated

preferences. In this case, all of the men share the same ranking of the women and vice

versa. If a matching market has correlated preferences it is trivial to find the unique stable

matching, without using the deferred acceptance algorithm. Of course, most markets will

not have perfectly correlated preferences, so several measures of the degree of correlation

in preferences have been proposed and exploited for various purposes. See [21],[16],

and [28] for examples. We expand further on correlated and the related intercorrelated
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preferences in Section 3.4.

In the chapters that follow, we explore other types of structure and demonstrate

how these also provide insight into stable matching problems. First we show how one

measure of preference structure can provide tighter convergence bounds for a randomized

decentralized process. Then we bypass the standard lower bounds for stable matching by

investigating instances that have succinctly represented preferences with some inherent

structural properties. This leads us to develop algorithms with improved performance as

well as several new lower bound results.



Chapter 3

Jealousy Graphs

Most prior stable matching work involves centralized algorithms where the entire

set of preferences is known to some central authority. In some cases the algorithms are not

totally centralized, but the participants are subject to strict protocols where only one side

of the market can make proposals. Nevertheless, many applications of stable matching

have no central authority or enforcement of protocols, such as college admissions and the

computer scientist job market. Therefore we investigate this problem in a decentralized

setting, where members of both sides of the market can make proposals.

One major open question in decentralized stable matching concerns whether

natural and efficient algorithms exist. To this end, Yariv argues that natural distributed

processes will find stable matchings and provides experimental support [31]. Roth and

Vande Vate propose a class of randomized algorithms to model the decentralized setting

and show that algorithms in this class converge to a stable matching with probability one

[79]. At each step these algorithms match two participants who form a blocking pair

(who prefer to be matched with each other over their partners) of the current matching.

However, they present no expected time complexity. Ackermann et al. investigate

one particular algorithm in this class, the better response algorithm (or random better

response dynamics). In each step of this algorithm, one blocking pair is chosen uniformly

at random. For this algorithm, they show worst case instances that take exponential time

12
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to reach a stable matching in expectation [3].

Since the better response algorithm is natural but takes exponential time in the

worst case, can we find a natural subclass of matching markets which do not require

exponential time? Ackermann et al. show that the better response algorithm only requires

polynomial time for one class of problem instances, those with correlated preferences

[3]. Here, correlated preferences require that a participant obtains the same benefit from

a partnership as its partner. This significantly limits the preference structures allowed

in the matching market. Therefore, we investigate other structural properties of stable

matching markets which facilitate faster convergence.

In this chapter we make progress toward answering the previous question by

expanding the subclass of markets with polynomial time convergence guarantees. For

this purpose we associate a directed graph, called the jealousy graph, with each stable

matching. It turns out that this structure is a key factor in determining the convergence

time of the better response algorithm. The jealousy graph is a directed graph where a

vertex v corresponds to a pair in the stable matching and an edge (u,v) is present if one

member of the pair v prefers a member of the pair u to its partner in the stable matching.

The strongly connected component graph of this jealousy graph provides a decomposition

for that stable matching. Our intent is to formalize a notion of structure using jealousy

graphs and the corresponding decompositions. In particular, we find that the strongly

connected components of this graph give insight into the complexity of that market.

Gusfield and Irving provide a structural property of stable matchings which describes

the set of stable matchings and the relation between them [38], whereas our structures

relate to individual stable matchings and the distributed process by which these stable

matchings are achieved.

With a decomposition, we associate a size and depth. Our main result, Theorem

3.2, states that for a matching market of size n with a decomposition of size c and
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depth d, the convergence time is O(cO(cd)nO(c+d)). Therefore, for constant size and

depth decompositions, we demonstrate that the better response algorithm requires only

polynomial time in expectation to converge for an expanded class of matching markets.

This indicates that the jealousy graph and decomposition structures partially answer the

convergence questions of the decentralized stable matching problem. As an application

of our work, we demonstrate how Theorem 3.2 provides theoretical justification for the

simulated results of Boudreau [16]. We also conjecture that these structures provide

a means of predicting which stable matchings are likely to be achieved when there

are multiple stable matchings, a question that others in the literature have investigated

[17, 18, 31, 71, 13].

3.1 Preliminaries

3.1.1 Better Response Algorithm

The class of algorithms introduced by Roth and Vande Vate [79] involve randomly

choosing a blocking pair of the current matching and creating a new matching by matching

the participants in the blocking pair with each other. This resolves the chosen blocking

pair.

Definition 3.1. A blocking pair (x,y) in a matching µ is resolved by forming a new

matching µ ′ where µ ′(x) = y, µ ′(µ(x)) = µ(x) if µ(x) 6= x, µ ′(µ(y)) = µ(y) if µ(y) 6= y,

and µ ′(s) = µ(s) for s /∈ {x,y,µ(x),µ(y)}.

This process is repeated until a stable matching is reached. The better response

algorithm defined in [3], is the algorithm in this class where the blocking pair is chosen

uniformly at random from all blocking pairs of the current matching. Note that this

algorithm results in a sequence of matchings. A valid sequence of matchings is any

sequence where each matching is formed by resolving one blocking pair in the previous
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matching.

We focus on the better response algorithm since the uniform distribution on

blocking pairs facilitates our analysis and we believe it provides insight into the more

general class of algorithms. This algorithm also serves as a model of a distributed stable

matching market. As such, it has been used in simulations of matching market dynamics

[16, 17] as well as in modeling locally stable matching dynamics [40, 41].

3.1.2 Jealousy Graph and Related Definitions

The following three concepts are useful since we deal with subsets of matching

markets in this chapter.

Definition 3.2. A balanced subset of a matching market (S,P), S = M
⋃

W, is a subset

S′ ⊆ S such that |S′
⋂

M|= |S′
⋂

W |.

Definition 3.3. A matching µ is locally perfect on a balanced subset S′⊆ S if µ(S′)⊆ (S′)

and µ �S′ is a perfect matching on S′.

Definition 3.4. Let µ be a stable matching on a matching market (S,P). A matching µ ′

is µ-stable on a balanced subset S′ ⊆ S if µ ′ �S′= µ �S′ .

In order to analyze matching markets, we represent the preference structure

as a directed graph. While we lose some of the preference information, we retain

critical relationships relative to the stable partners. In section 3 we provide bounds on

convergence based on this simpler structure. This graph has also been used to determine

reachability if participants enter the market one at a time [25] and is related to the notion

of envy graphs in the housing allocation problem [2].

Definition 3.5. The jealousy graph of a stable matching µ on a matching market (S,P)

is defined as the graph Jµ = (V,E) where, for each pair {x,µ(x)}, x ∈ S, there is a vertex

v{x,µ(x)} ∈V and E = {(u{x,y},v{x′,y′})|u{x,y},v{x′,y′} ∈V, and either x�y′ x′ or y�x′ y′}.
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The jealousy graph can provide insight into the complexity of stabilization. For

example, suppose the jealousy graph for a stable matching µ is one large clique. Even

when all but one pair of the participants are matched with their partner in µ , there are

still many blocking pairs. Therefore, the better response algorithm would be unlikely

to choose the blocking pair that would result in a stable matching. This greatly hinders

convergence to the stable matching.

On the other hand, suppose the jealousy graph for µ is a DAG. Then there is at

least one vertex with no incoming edges. This means each partner in the corresponding

pair is the other’s first preference. Consequently, this will remain a blocking pair until

it is resolved, so we would expect such a pair to be resolved in O(n2) time under the

better response dynamics. Moreover, once resolved, the match will remain unbroken

since neither partner will ever be involved in any blocking pairs. Ignoring this pair will

result in at least one other source vertex of the graph. Inductively, these pairs will be

resolved in O(n2) expected time. This results in an expected convergence time of O(n3)

for the matching market. It should be noted that the class of correlated markets, for which

Ackermann et al. prove the better response algorithm requires only polynomial time, falls

into this special case.

When it is a DAG, the jealousy graph provides an order in which the pairs will

likely be resolved to reach µ , namely, a topological sorted order. However, a matching

market might not fall into this extreme case as there could be cycles in the jealousy graph.

Therefore, we define a decomposition which is a DAG obtained from the jealousy graph.

Definition 3.6. Let Jµ be the jealousy graph of a stable matching µ for a matching

market (S,P). A µ-decomposition, ρµ is a graph of components of Jµ such that if u,v

are in the same strongly connected component of Jµ then they are in the same component

in ρµ and if edge (A,B) is in ρµ then there is a path from a vertex in A to a vertex in B in

Jµ .
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We call the strongly connected components of Jµ stable components. Observe

that ρµ is a directed acyclic graph. Therefore it induces a partial order on the stable

components. Sometimes it is simpler to refer to the decomposition as ρµ = (Π,�) where

Π is a partition of S into sets corresponding to the stable components of ρµ and � is the

induced partial order on those components. As a slight abuse of notation, we use the term

stable component to refer to both the connected component in the decomposition and the

set of participants corresponding to this component.

In dealing with partial orders we use the concept of a downset. A downset of

a partially ordered set Π with partial order � is any set such that for A,B ∈ Π, if A

is in the set and B � A, then B is in the set. The downset of an element A ∈ Π is

Down(A) = {B|B� A}. When the elements of Π are sets themselves, as in the case of

decompositions, we denote the union of sets in Down(A) as D(A) =
⋃

B∈Down(A)B.

For our complexity results we need the following two notions:

Definition 3.7. The depth of a stable component A of a µ-decomposition, ρµ , is the

length of the longest path in ρµ from any source vertex to vA. The depth of ρµ is defined

as maxA∈ρµ
depth(A).

We say that a stable component A is on level j if depth(A) = j. Minimal stable

components are on level 0. Intuitively, we would expect components on lower levels to

converge to the stable matching sooner than those on higher levels.

Definition 3.8. The size of a µ-decomposition, ρµ , is defined as maxA∈ρµ
size(A).

Intuitively, components with smaller sizes can have less internal thrashing so they

will converge to the stable matching more quickly than larger components.
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3.2 Structural Results

3.2.1 Any Digraph can be a Jealousy Graph

These structural notions would not be very enlightening if all matching markets

had similar jealousy graphs and decompositions. However, the following result shows

that any directed graph is the jealousy graph associated with a stable matching for some

matching market.

Theorem 3.1. Given any directed graph G with n vertices, there is a set S = {mi,wi|i =

1,2, . . . ,n} and preferences P = {�mi,�wi |1 ≤ i ≤ n} such that (S,P) is a matching

market with a stable matching µ where µ(mi) = wi and Jµ = G.

Proof. Let G = (V,E) and S = {mi,wi|i = 1,2, . . . ,n}. Arbitrarily index the vertices in

V as v1,v2, . . . ,vn. We design our preferences such that if µ(mi) = wi for i = 1,2, . . . ,n,

µ is a stable matching and vi is the vertex corresponding to {mi,wi}. Now define

P = {�mi,�wi |1≤ i≤ n} as follows. First, for every woman wi, define �wi such that

mi �wi m j for j 6= i. The remaining ordering can be arbitrary. For every man, define �mi

such that w j �mi wi⇔ (v j,vi) ∈ E. The ordering among elements within {w j|w j �mi wi}

and {w j|wi �mi w j} can be arbitrary.

To see that µ is indeed a stable matching, observe that under µ all women are

matched with their top choice. Therefore, no woman has incentive to deviate, so there

can be no blocking pairs and µ is a stable matching on S,P.

All that remains is to show Jµ = G. Now in Jµ = (V ′,E ′) let the vertices be

denoted V ′ = v′1,v
′
2, . . . ,v

′
n. We let v′i correspond to {mi,wi} for i = 1,2, . . . ,n. Since

all women are matched with their top preference by µ , the women are not responsible

for any edges in Jµ . Therefore, (v′i,v
′
j) ∈ E ′⇔ wi �m j w j⇔ (vi,v j) ∈ E by the way we

defined �m j for all i, j. Thus if we let vi = v′i we have equivalent graphs.
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3.2.2 Properties of Decompositions

In this section we prove several structural properties of the jealousy graphs and

decompositions essential to our main convergence result. The first property says that if

there is a path from one vertex to another in the jealousy graph, then the first vertex must

be in the downset of any component containing the second vertex.

Lemma 3.1. Given a matching market (S,P) with a stable matching µ , let Jµ be the

jealousy graph associated with µ . Let v{m,w} and v{m′,w′} be vertices in Jµ . Suppose

v{m′,w′} ∈ A for a stable component A of a µ-decomposition ρµ = (Π,�). If there is a

path from v{m,w} to v{m′,w′}, then m,w ∈ D(A).

Proof. Let v1,v2, . . . ,vk be the vertices along the path such that v1 = v{m,w} and vk =

v{m′,w′}. Let Ai be the stable component containing vi. Then since the partial order is

induced by the edges between components of Jµ , either Ai =Ai+1 or Ai�Ai+1. Therefore,

by transitivity A1 � Ak = A. Thus m,w ∈ D(A) because v{m,w} ∈ A1.

Using this lemma, we prove that no member of a stable component can prefer

anyone outside of the downset of that component to his stable partner.

Lemma 3.2. Given a matching market (S,P) with a stable matching µ , let ρµ = (Π,�)

be a µ-decomposition. For A ∈Π, a ∈ A, s ∈ S−D(A), µ(a)�a s.

Proof. Let A ∈ Π and a ∈ A. Suppose there is some s ∈ S−D(A) such that s �a µ(a).

Then since s /∈ A, there are distinct vertices in Jµ , va,vs corresponding to the pair with a

and the pair with s, respectively. Edge (vs,va) must also be in Jµ since s�a µ(a). Thus

there is a path in Jµ from vs to va, so by Lemma 3.1, s∈D(A). This is a contradiction.

A further property is that if there are two stable matchings with distinct decompo-

sitions, the intersection of the downsets of stable components must be mapped to itself in

both stable matchings.
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Lemma 3.3. Given a matching market (S,P) with stable matchings µ,µ ′, let ρµ and ρµ ′

be respective decompositions. Let A be D(X) for some stable component X of ρµ and B

be D(Y ) for some stable component Y of ρµ ′ . Then µ(A
⋂

B) = µ ′(A
⋂

B) = A
⋂

B.

Proof. Suppose there is x ∈ A
⋂

B but µ(x) ∈ A−B. By Lemma 3.2, µ ′(x) �x µ(x).

In that case, µ ′(x) ∈ A
⋂

B, also by Lemma 3.2. Now since x prefers µ ′(x) to µ(x),

µ(µ ′(x))�µ ′(x) x or else (x,µ ′(x)) forms a blocking pair for µ . Again by Lemma 3.2,

µ(µ ′(x)) ∈ A
⋂

B. Continuing in this manner gives an infinite sequence of participants

x,µ ′(x),µ(µ ′(x)),µ ′(µ(µ ′(x))), · · · ∈ A
⋂

B. These are all distinct since µ(x) 6= µ ′(x)

and both µ and µ ′ are bijective, which is a contradiction since A
⋂

B is finite. Therefore

µ(A
⋂

B) = µ ′(A
⋂

B) = A
⋂

B.

Our final result shows that forming a stable matching on the downset of a stable

component cannot increase the size or depth of the decomposition of another stable

matching.

Lemma 3.4. Given a matching market (S,P) with stable matchings µ,µ ′, let ρµ and ρµ ′

be respective decompositions. Suppose the size of ρµ is c and the depth is d. Let A be

a stable component of ρµ ′ . Then there is a stable matching µ ′′ such that µ ′′ �D
µ ′(A)

=

µ ′ �D
µ ′(A)

and µ ′′ �S−D
µ ′(A)

= µ �S−D
µ ′(A)

. There is also a µ ′′-decomposition on S−

Dµ ′(A) of size at most c and depth at most d.

Proof. Let µ ′′ be such that µ ′′ �D(A)= µ ′ �D(A) and µ ′′ �S−D(A)= µ �S−D(A). Clearly there

are no blocking pairs involving two members of D(A) or else µ ′ would not be stable and

there are no blocking pairs between two members of S−D(A) or else µ would not be

stable. Finally, by Lemma 3.2 no member of D(A) can prefer any member of S−D(A)

to his partner in µ ′. Therefore there can be no blocking pairs between a member of D(A)

and a member of S−D(A) so µ ′′ is indeed a stable matching.
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By Lemma 3.3, for each stable component B of ρµ , µ(B−D(A)) = B−D(A).

The set {B−D(A)|B ∈ ρµ} forms a partition of S−D(A) and, paired with the same

partial order as ρµ , forms a decomposition. Clearly the size has not increased since the

sets in the partition are no larger and the depth has not increased since the decomposition

has the same partial order as ρµ .

3.3 Convergence

In this section we prove our convergence result. The proof uses two main ideas.

First, in the following sequence of lemmas, we show that a stable component will

converge to a locally perfect matching in time that is only polynomially dependent on the

size of the entire market. Then the proof of Theorem 3.2 uses this to bound the time it

takes for all components of the decomposition to reach a stable matching.

For this section we assume (S,P) is a matching market of size n, µ is a stable

matching on S, and (Π,�) be a µ-decomposition.

The following lemma says that if a matching is not locally perfect on a stable

component of a µ-decomposition, then there is a blocking pair which is in µ between

two members of that component.

Lemma 3.5. Let A ∈ Π and X = D(A)−A. Let µ ′ be the current matching. If µ ′ has

no matches between members of X and members of A and µ ′ is not locally perfect on A,

then there is a blocking pair (x,y) for µ ′ such that x,y ∈ A and µ(x) = y.

Proof. Since µ ′ is not a locally perfect matching on A there must be some x0 ∈ A such

that µ ′(x0) = x0 or µ ′(x0)∈ S−X−A. Let y0 = µ(x0). Now since µ is a stable matching,

y0 �x0 µ ′(x0). If x0 �y0 µ ′(y0) then (x0,y0) is a blocking pair of µ ′ and µ(x0) = y0.

Otherwise µ ′(y0) �y0 x0, so µ ′(y0) ∈ D(A). In fact, µ ′ ∈ A since µ ′ has no

matches between members of A and X . Let x1 = µ ′(y0) and y1 = µ(x1). Since µ is a
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stable matching, y1 �x1 y0 or else (x1,y0) would form a blocking pair for µ . Now if

x1 �y1 µ ′(y1), (x1,y1) is a blocking pair of µ ′ and µ(x1) = y1 so we have our result.

Otherwise we repeat in the same manner to form a sequence of pairs {(xi,yi)} such that

xi,yi ∈ A, µ(xi) = yi, µ ′(yi) = xi+1, yi �xi µ ′(xi), and xi+1 �yi xi for all i. But this cannot

cycle since no participant is repeated. This is because at each step we add a new pair

xi,yi where µ(xi) = yi and either µ ′(x0) = x0 or µ ′(x0) /∈ A, so x0 cannot be repeated.

Furthermore, it cannot go forever since A is finite. Therefore the sequence must terminate

at some index k and (xk,yk) is a blocking pair for µ ′.

Next we place a lower bound on the probability that we make some progress

toward the µ-stable matching when a stable component of the decomposition is not in a

locally perfect matching.

Lemma 3.6. Let A ∈Π be a stable component of size at most c and X = D(A)−A. Let

µ ′ be any matching on S that is not a locally perfect matching on A. Then starting from

µ ′, if no matches are formed between a member of A and a member of X, the probability

that the first blocking pair resolved between two members of A is a pair in µ is at least

1
c2 .

Proof. Lemma 3.5 shows there will be one blocking pair which is in µ until the matching

becomes locally perfect on A. In order for the matching to become locally perfect on A, a

blocking pair must be resolved between two members of A. Therefore since there will be

at most c2 blocking pairs involving two members of A and at least one of them is in µ ,

there is a 1
c2 probability that the first blocking pair resolved between members of A is in

µ .

Using this lemma, we bound the probability that a component of the decomposi-

tion will make some progress toward the µ-stable matching each time the matching is

not locally perfect on it.
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Lemma 3.7. Let A ∈Π be a stable component of size at most c and X = D(A)−A. Let

µ0 be any matching on S such that µ0 �A contains m of the pairs in µ where 0≤ m < c.

Let µ0,µ1, . . . ,µt be any valid sequence of matchings under the better response dynamics

starting from µ0 such that

1. µt is locally perfect on A

2. µi is not locally perfect on A for some i,0≤ i < t

3. µk does not have any matches between a member of A and a member of X for some

k,0≤ k ≤ t

Then the probability that ∃ j,0 < j ≤ t,µ j �A contains at least m+1 of the pairs in µ is

at least 1
c4 .

Proof. Assume µ0,µ1, . . . ,µt is such a sequence, and i is the first index such that µi is

not locally perfect. Without loss of generality assume k = t is the first index k > i such

that µk is locally perfect on A. This assumption is valid because, if there is at least a

probability p of some event occurring in a subsequence, then there is clearly at least a

probability p of that event occurring in the entire sequence.

There are two cases: either µ0 is locally perfect on A or not.

case i: Assume µ0 is not locally perfect, so i = 0. Then in order to reach µt there

must be at least one match formed between two members of A. Let j > 0 be the first

index in the sequence such that µ j was formed by resolving a blocking pair between two

members of A. Since no one in A prefers anyone in S−D(A) to his partner in µ , µ j−1 �A

has m pairs in µ . By lemma 3.6 there is at least 1
c2 probability that the first blocking pair

resolved between two members of A is in µ . This will result in µ j �A having m+1 pairs

in µ .

case ii: If µ0 is locally perfect, so i > 0. There are two ways to transition from

µi−1 to µi. One is for a blocking pair of µi−1 between a member of A and a member
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of S−X −A to be resolved. Since this cannot involve a member of A who is with his

partner in µ according to µ ′, µi �A has m pairs that are in µ . Therefore this case reduces

to the first case where the initial matching is not perfect.

The other way to transition from µi−1 to µi is for a blocking pair between two

members of A to be resolved, leaving two unmatched members of A, say x,y. The

blocking pair cannot involve two pairs of µ or else it would be a blocking pair for µ . If it

involves no pairs of µ then again this case reduces to the first case.

In the last case, µi �A has m−1 pairs that are in µ . We cannot reach µt without

resolving a blocking pair between two members of A. Let l > i be the first index after i in

the sequence such that µl was formed by resolving a blocking pair between two members

of A. Then µl−1 �A must have m−1 pairs that are in µ . By lemma 3.6 there is at least 1
c2

probability that µl �A has m pairs that are in µ . If this occurs, the blocking pair resolved

to transition to µl cannot involve both x and y because they are not partners in µ . Thus,

at least one of x or y is still not matched to someone in A. Therefore, µl is not a locally

perfect matching on A. Then by the first case, we have at least 1
c2 probability that for

some j, l < j ≤ t, µ j �A has m+1 pairs that are in µ . This gives us a total probability of

at least 1
c4 that µ j �A has m+1 pairs that are in µ for some j, 0 < j ≤ t.

We now bound the expected number of times each stable component will have to

become not locally perfect before it becomes µ-stable.

Lemma 3.8. Let A ∈Π be a stable component of size at most c and X = D(A)−A. Let

µ ′ be any matching on S. Then starting from µ ′, if no matches are formed between a

member of A and a member of X, the expected number of distinct times the matching

needs to transition from a locally perfect matching on A to a matching that is not locally

perfect on A before it reaches a µ-stable matching on A is at most c4(c+1).

Proof. Consider a Markov chain with states {0,1, . . . ,c} where state i represents a
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matching whose restriction to A has i pairs in µ . Let ti be the expected number of times,

starting from state i, that the matching transitions from a locally perfect matching on

A to a matching that is not locally perfect on A before it reaches a µ-stable matching

on A. Then tc = 0 since state c represents a µ-stable matching. For all other states, by

lemma 3.7, we have at least a 1
c4 probability of reaching state i+ 1 from state i after

one or fewer transitions from a locally perfect matching on A to a matching that is not

locally perfect on A. In the worst case, we will move to state 0 after one such transition

with the remaining probability. This leads to the formula ti ≤ c4−1
c4 t0 + 1

c4 ti+1 + 1 for

i = 0,1, . . . ,n.

We need to upper bound t0 since 0 is the farthest state from c. Now t0 ≤ t1 + c4.

Furthermore if t0 ≤ ti +∑
i
j=1 c4 j, then

t0 ≤
c4−1

c4 t0 +
1
c4 ti+1 +1+

i

∑
j=1

c4 j

so
1
c4 t0 ≤

1
c4 ti+1 +

i

∑
j=1

c4 j +1

and

t0 ≤ ti+1 + c4

(
i

∑
j=1

c4 j +1

)
= ti+1 +

i+1

∑
j=1

c4 j

Therefore t0 ≤ tc +∑
i
j=1 c4 j = ∑

i
j=1 c4 j < c4(c+1).

The final lemma we need shows that when the matching is not locally perfect on

a stable component of the decomposition, it will reach a perfect matching in time that

depends only linearly in n in expectation, provided there is no interference from members

of lower stable components.

Lemma 3.9. Let A ∈Π be a stable component of size at most c and X = D(A)−A. Let
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µ ′ be any matching on S which is not locally perfect on A. Then starting from µ ′, if no

matches are formed between a member of A and a member of X, the expected time reach

a matching which is locally perfect on A is at most cn2c.

Proof. Lemma 3.5 implies that for any given matching, either the matching is locally

perfect on A or there is a blocking pair between two members of A which is a pair in

µ . Since the size of A is at most c, there are at most c such pairs. Therefore if all of

them are resolved in c consecutive steps, the resulting matching will be locally perfect

on A. Alternatively if after fewer than c steps of resolving blocking pairs that are in µ

we reach a matching with no such blocking pairs, then the matching must already be

locally perfect on A. For any given matching there are at most n2 total blocking pairs so

the probability of resolving a blocking pair between two members of A that is a pair in µ

is at least 1
n2 . But then the probability of resolving up to c of them and reaching a locally

perfect matching in c or fewer steps is at least 1
n2c .

Therefore, in expectation we will have to repeat the process of making c steps at

most n2c times before reaching a locally perfect matching on A. This leads to at most

cn2c steps in expectation.

Finally we show that the expected convergence time for the better response

dynamics is linear in the total number of participants but possibly exponential in the size

of the largest stable component and depth of the decomposition. The special case where

the size of the decomposition is 1 includes the correlated preferences of Ackermann et al.

Theorem 3.2 (Convergence). Suppose µ is a stable matching. Suppose the depth of

(Π,�) is d and the size of the largest stable component of Π is no more than c. Then the

expected time to converge to a stable matching is O(cO(cd)nO(c+d)). If c = 1, then the

expected time is O(n3).



27

Proof. Suppose µ ′ is another stable matching. First, suppose that for any stable compo-

nent A′ of a µ ′-decomposition, a µ ′-stable matching is never reached on Dµ ′(A′).

Consider the µ-decomposition graph for (Π,�). Recall that a stable component

A is on level j if depth(A) = j. For convenience, let level d+1 be an empty dummy level

at the top. Since the depth is d, there are exactly d +1 levels. We proceed by bounding

the expected time for one level to reach a µ stable matching, and then recurse on the

higher levels.

Let T (l) denote the expected time for the participants in stable components on

levels l and above to reach a stable matching without resolving blocking pairs involving

any members of stable components on lower levels. Let nl be the number of stable

components on level l. Note that since there are at most n stable components of D ,

n1 + · · ·+nd ≤ n. We show that T (0) = O(cO(cd)nO(c+d)).

First observe that T (d + 1) = 0 since there are no stable components at level

d +1.

Now consider T (l) for l < d +1.

When one of the nl stable components A on level l is not in a locally perfect

matching. Then by Lemma 3.9, we know it will take cn2c steps in expectation to reach a

locally perfect matching on A. Also, by lemma 3.7 we know it has at least 1
c2 probability

of reaching a matching whose restriction to A has a greater number of pairs that are in µ

than the current matching, before it reaches a locally perfect matching.

On the other hand, when all nl stable components are in locally perfect matchings,

then there are two cases:

If there is a blocking pair between two members of stable components on level l

it will remain there until the matching becomes not locally perfect on at least one stable

component on level l. Since there are at most n2 blocking pairs, it will take at most n2

steps in expectation for the matching to become not locally perfect on at least one stable
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component on level l.

If there are no such blocking pairs, it might be required for the higher levels

to reach a stable matching before exposing a blocking pair involving a participant on

level l. If no matches are formed involving any members of components on level l or

lower, the expected time for the remaining stable components to reach a stable matching

is given by T (l +1). Once the higher levels have reached a stable matching, the only

blocking pairs not involving members of levels below l are between a member of a stable

component on level l and a member of a stable component on a higher level. Unless

all stable components on level l and above are in a stable matching, at least one such

blocking pair must exist. Therefore it will only take 1 more step to reach a matching

which is not locally perfect on one stable component on level l.

Consequently, it will take at most n2 +T (l + 1)+ 1 steps to reach a matching

that is not locally perfect on one stable component on level l. Again, by Lemma 3.9,

we know it will take cn2c steps in expectation to reach a locally perfect matching on A.

By Lemma 3.8, we know in expectation, for each stable component on level l, it will

take at most c4(c+1) transitions from a locally perfect matching to a matching which is

not locally perfect on that stable component it reaches a µ-stable matching. This means

that in expectation it will take at most nlc4(c+1) of these transitions total before all stable

components on level l reach a µ-stable matching.

Therefore, in the worst case, it will take (n2 +T (l +1)+1) steps to transition

from a locally perfect matching to a matching that is not locally perfect on one of the

stable components on level l. Then it will take at most cn2c steps to reach a matching

which is locally perfect on that stable component. Furthermore, this process needs to be

repeated no more than nlc4(c+1) times in expectation in order for all stable components

on level l to reach a µ-stable matching.

Once all stable components on level l have reached a µ-stable matching, all that
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remains is for the higher levels to reach a stable matching, which takes T (l +1) time in

expectation.

This yields the following formula:

T (l)≤ nlc4(c+1)(cn2c +n2 +T (l +1)+1)+T (l +1)≤ 2nlc4(c+1)(cn2c +T (l +1))

Solving this recursion for T (0), we obtain

T (0) ≤ 2n0c4(c+1)(cn2c +T (1))

T (0) ≤ (cn2c)
d+1

∑
i=1

(2c4(c+1))i
i−1

∏
j=0

n j

so since ni +1≤ O(n) for all i, T (0) = O(cO(cd)nO(c+d)).

This is the expected time to reach the stable matching µ . Now suppose for some

stable component A′ of a µ ′-decomposition for some other stable matching µ ′, a µ ′-stable

matching is reached on Dµ ′(A′). By Lemma 3.4, this will not increase the size or depth

of the remaining decomposition. Therefore, if this happens before µ is reached, it will

only decrease the convergence time.

Finally, as a special case assume c = 1. In this case a locally perfect matching on

a stable component is a µ-stable matching. By lemma 3.9 it will take at most n2 steps for

a stable component on level l to reach a µ-stable matching. Since there are nl components

on level l, T (l)≤ nln2 +T (l +1)≤ ∑
d−l
i=1 nin2 so T (0) =≤ ∑

d
i=1 nin2 = n3.

3.4 Correlated and Intercorrelated Preferences

We have shown bounds on convergence time but this is only relevant if there is

variation in the jealousy graph structures of real markets. While randomly generated
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preferences tend to have decompositions that are close to the trivial decomposition, which

is the entire set, real-world markets tend to have some structure. Here we show that

two classes of preferences found in real world markets, correlated and intercorrelated

preferences, exhibit decompositions with small size components. Partially correlated

preferences are often used by modelers [16, 23] and are natural in many matching

markets (e.g. mate selection) where preferences are based on a mixture of universally

desirable features (e.g. intelligence) and idiosyncratic tastes (e.g. shared hobbies). Note

that the correlated preferences discussed here differ from the correlated preferences

of Ackermann et al. Intercorrelation exists when the preferences of the men relate to

the preferences of the women. See [19] for examples of markets with intercorrelation.

Boudreau showed that more correlation and intercorrelation lead to faster convergence of

the better response algorithm [16]. We provide similar plots in Figures 3.1b and 3.1d.

Theorem 3.2 provides theoretical justification for these simulated results.

As described in [21, 23], correlated preferences are generated using scores of the

form:

Smw = ηmw +UIw

where Smw is the score man m gives woman w composed of his individual score ηmw and

a correlation factor U ∈ [0,∞) multiplied by the consensus score of w, Iw. ηmw and Iw

are chosen uniformly at random from [0,1]. The men then rank the women in order from

lowest score to highest. Women’s preferences are generated analogously. For various

values of U we generate 100 preferences with correlation factor U . For each set of

preferences we find the decomposition with smallest size and report the average of these

sizes. We also compute the average minimal depth in the same manner. The results are

shown in figure 3.1a. At U = 0, the average size is close to n and the depth is close to

1. As U goes to ∞, the average size approaches 1 and the depth approaches n. These
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Figure 3.1. Jealousy Graphs vs. Correlation and Intercorrelation: (a) The jealousy
graph parameters change as preferences become more correlated. (b) Convergence time
decreases as preferences become more correlated. (c) The jealousy graph parameters
change as preferences become more intercorrelated. (d) Convergence time decreases as
preferences become more intercorrelated.

are the parameters of perfectly correlated preferences. This shows that as the amount of

correlation varies, so do the size and depth of the decompositions. Figure 3.1b shows

the log of the average convergence time over 100 trials for each of the 100 correlated

preferences generated.

As in [19], intercorrelated preferences can be generated using scores of the form:

Smiw j = ηmiw j +V ∗ |i− j|n

where Smiw j is the score man mi gives woman w j. As with correlated preferences,

ηmiw j is his individual score. Here V is the intercorrelation factor and |i− j|n = min(|i−

j|,n−|i− j|)/(n
2) represents the “distance” man mi is from woman w j. 3.1c and 3.1d
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are generated in the same manner as 3.1a and 3.1b, respectively. These plots show that

as preferences become more intercorrelated, the size and depth of the decompositions

decrease. As Theorem 3.2 explains, this decreases the convergence time of the better

response algorithm as intercorrelation increases.

3.5 Conclusion and Open Problems

We have introduced a new way of viewing stable matching problems in terms

of their jealousy graphs and µ-decompositions. We demonstrate that these concepts are

useful in analyzing the convergence time of the better response algorithm and guarantee

polynomial convergence on a subclass of matching markets. Furthermore, these theo-

retical results apply to a broad range of markets since they provide a notion of structure

which extends beyond the well-studied notions of correlation and intercorrelation.

One open question involves the exponential dependency on the depth of the

decomposition. While we know that the exponential dependency on size cannot be

removed, it remains an open question whether we can improve this bound in terms of

the depth. Another open problem concerns which matching is most likely to be reached.

Since our result provides a method of classifying the expected convergence time of the

better response algorithms in terms of the decompositions of the stable matchings, we

conjecture that matchings with decompositions that have small size and depth are more

likely to be reached than ones with large size and depth. Finally, we could explore the

decentralized strategic implications, as in [80], when restricting the preferences to have

jealousy graphs and decompositions with small size and depth.
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Chapter 4

Succinct Preference Models

For arbitrary preferences, the deferred acceptance algorithm of Gale and Shapley

is optimal and even verifying that a given matching is stable requires quadratic time

[70, 81, 36]. However, in many applications the preferences are not arbitrary and can

have more structure. For example, top doctors are likely to be universally desired by

residency programs and students typically seek highly ranked schools. In these cases

participants can represent their preferences succinctly. It is natural to ask whether the

same quadratic time bounds apply with compact and structured preference models that

have subquadratic representations. This will provide a more nuanced understanding of

where the complexity lies: Is stable matching inherently complex, or is the complexity

merely a result of the large variety of possible preferences? To this end, we examine

several restricted preference models with a particular focus on two originally proposed by

Bhatnagar et al. [12], the d-attribute and d-list models. Using a wide range of techniques

we provide algorithms and conditional hardness results for several settings of these

models.

In the d-attribute model, we assume that there are d different attributes (e.g. in-

come, height, sense of humor, etc.) with a fixed, possibly objective, ranking of the

men for each attribute. Each woman’s preference list is based on a linear combination

of the attributes of the men, where each woman can have different weights for each

34
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attribute. Some women may care more about, say, height whereas others care more about

sense of humor. Men’s preferences are defined analogously. This model is applicable

in large settings, such as online dating systems, where participants lack the resources to

form an opinion of every other participant. Instead the system can rank the members

of each gender according to the d attributes and each participant simply needs to pro-

vide personalized weights for the attributes. The combination of attribute values and

weights implicitly represents the entire preference matrix. Bogomolnaia and Laslier [15]

show that representing all possible n×n preference matrices requires n−1 attributes.

Therefore it is reasonable to expect that when d� n−1, we could beat the worst case

quadratic lower bounds for the general stable matching problem.

In the d-list model, we assume that there are d different rankings of the men.

Each women selects one of the d lists as her preference list. Similarly, each man chooses

one of d lists of women as his preference list. This model captures the setting where

members of one group (i.e. student athletes, sorority members, engineering majors) may

all have identical preference lists. Mathematically, this model is actually a special case

of the d-attribute model where each participant places a positive weight on exactly one

attribute. However, its motivation is distinct and we can achieve improved results for this

model.

Chebolu et al. prove that approximately counting stable matchings in the d-

attribute model for d ≥ 3 is as hard as the general case [24]. Bhatnagar et al. showed

that sampling stable matchings using random walks can take exponential time even for a

small number of attributes or lists but left it as an open question whether subquadratic

algorithms exist for these models [12].

We show that faster algorithms exist for finding a stable matching in some special

cases of these models. In particular, we provide subquadratic algorithms for the d-

attribute model, where all values and weights are from a small set, and the one-sided
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d-attribute model, where one side of the market has only one attribute. These results show

we can achieve meaningful improvement over the general setting for some restricted

preferences.

While we only provide subquadratic algorithms to find stable matchings in special

cases of the attribute model, we have stronger results concerning verification of stable

matchings. We demonstrate optimal subquadratic stability testing algorithms for the

d-list and boolean d-attribute settings as well as a subquadratic algorithm for the general

d-attribute model with constant d. These algorithms provide a clear distinction between

the attribute model and the general setting. Moreover, these results raise the question

of whether verifying and finding a stable matching are equally hard problems for these

restricted models, as both require quadratic time in the general case.

Additionally, we show that the stable matching problem in the d-attribute model

for d =ω(logn) cannot be solved in subquadratic time under the Strong Exponential Time

Hypothesis (SETH) [45, 47]. We show SETH-hardness for both finding and verifying a

stable matching and for checking if a given pair is in any or all stable matchings, even

when the weights and attributes are boolean. This adds the stable matching problem to

a growing list of SETH-hard problems, including Fréchet distance [20], edit distance

[10], string matching [1], k-dominating set [72], orthogonal vectors [86], and vector

domination [46]. Thus the quadratic time hardness of the stable matching problem in the

general case extends to the more restricted and succinct d-attribute model. This limits

the space of models where we can hope to find subquadratic algorithms.

We further present several results in related succinct preference areas. Single-

peaked preferences are commonly used to model preferences in social choice theory

because of their simplicity and because they often approximate reality. Essentially,

single-peaked preferences require that everyone agree on a common spectrum along

which all alternatives can be ranked. However, each individual may have a different ideal
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choice and prefers the “closest” alternatives. A typical example is the political spectrum

where candidates fall somewhere between liberal and conservative. In this setting, voters

tend to prefer the candidates that are closer to their own ideals. As explained below,

these preferences can be succinctly represented. Bartholdi and Trick [11] present a

subquadratic time algorithm for stable roommates (and stable matching) with narcissistic,

single-peaked preferences. In the narcissistic case, the participants are located at their

own ideals. This makes sense in some applications but is not always realistic. We

provide a subquadratic algorithm to verify if a given matching is stable in the general

single-peaked preference model. Chung uses a slightly different model of single-peaked

preferences where a stable roommate matching always exists [26]. In this model the

participants would rather be unmatched than matched with someone further away from

their ideal than they are themselves, leading to incomplete preference lists.

We extend our algorithms and lower bounds for the attribute model to the geomet-

ric model where preference orders are formed according to euclidean distances among a

set of points in multi-dimensional space. Arkin et al. [7] derive a subquadratic algorithm

for stable roommates with narcissistic geometric preferences in constant dimensions. Our

algorithms do not require the preferences to be narcissistic.

It is worth noting that all of our verification and hardness results apply to the

stable roommates problem as well. Since finding a stable roommate matching is strictly

harder than finding a stable matching, this is also optimal. Likewise, verification is

equally hard for both stable roommates and stable matching, as we can simply duplicate

every participant and treat the roommate matching as bipartite. Therefore, our results

show that verification can be done more efficiently for the stable roommates problem

when the preferences are succinct.

Finally, we address the issue of strategic behavior in these restricted models. It is

often preferable for a market-clearing mechanism to incentivize truthful behavior from
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the participants so that the outcome faithfully captures the optimal solution. Particularly

in matching markets, this objective complements the desire for a stable matching where

participants have incentives to cooperate with the outcome. Roth [74] showed that there is

no strategy proof mechanism to find a stable matching in the general preferences setting.

Additionally, if a mechanism outputs the man-optimal stable matching, the women can

manipulate it to obtain the woman-optimal solution by truncating their preference lists

[74, 34]. Even if the women are required to rank all men, they can still achieve more

preferable outcomes in some instances [85, 57]. However, in the d-attribute, d-list,

single-peaked, and geometric preference models, there are considerably fewer degrees of

freedom for preference misrepresentation. Nevertheless, we show that there is still no

strategy proof mechanism to find a stable matching for any of these models with d ≥ 2

and non-narcissistic preferences.

Dabney and Dean [28] study an alternative succinct preference representation

where there is a canonical preference list for each side and individual deviations from

this list are specified separately. They provide an adaptive O(n+ k) time algorithm for

the special one-sided case, where k is the number of deviations.

4.1 Preliminaries

A matching market (S,P) in the d-attribute model consists of n men and n

women as before. A participant s ∈ S has attributes Ai(s) for 1 ≤ i ≤ d and weights

αi(s) for 1 ≤ i ≤ d. For a man m ∈M and woman w ∈W , m’s value of w is given by

valm(w) = 〈α(m),A(w)〉 = ∑
d
i=1 αi(m)Ai(w). m ranks the women in decreasing order

of value. Symmetrically, w’s value of m is valw(m) = ∑
d
i=1 αi(w)Ai(m). Note that

representing a matching market in the d-attribute model requires size O(dn). Unless

otherwise specified, both attributes and weights can be positive or negative.

A matching market in the d-list model is a matching market where both sides
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have at most d distinct preference lists. Describing a matching market in this model

requires O(dn) numbers.

Throughout this chapter, we use Õ to suppress polylogarithmic factors in the time

complexity.

4.2 Finding Stable Matchings

4.2.1 Small Set of Attributes and Weights

We first present a stable matching algorithm for the d-attribute model when the

attribute and weight values are limited to a set of constant size. In particular, we assume

that the number of possible values for each attribute and weight for all participants is

bounded by a constant C.

Algorithm 4.1: Small Constant Attributes and Weights
Group the women into sets Si with a set for each of the C′ = O(C2d) types of
women. (O(Cd) possible attribute values and O(Cd) possible weight
vectors.)

Associate an empty min-heap hi with each set Si.
for each man m do

Create m’s preference list of sets Si.
index(m)← 1

while there is a man m who is not in any heap do
Let Si be the index(m) set on m’s list.
if |hi|< |Si| then

hi. insert(m)

else
if valSi(m)> valSi(hi.min) then

hi.delete min()
hi. insert(m)

index(m)← index(m)+1
for i = 1 to C′ do

µ ← µ
⋃

Arbitrarily pair women in Si with men in hi.
return µ
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Theorem 4.1. There is an algorithm to find a stable matching in the d-attribute model

with at most a constant C distinct attribute and weight values in time O(C2dn(d+ logn)).

Proof. Consider Algorithm 4.1. First observe that each man is indifferent between the

women in a given set Si because each woman has identical attribute values. Moreover,

the women in a set Si share the same ranking of the men, since they have identical weight

vectors. Therefore, since we are looking for a stable matching, we can treat each set of

women Si as an individual entity in a many to one matching where the capacity for each

Si is the number of women it contains.

With these observations, the stability follows directly from the stability of the

standard deferred acceptance algorithm for many-one stable matching. Indeed, each man

proposes to the sets of women in the order of his preferences and each set of women

tentatively accepts the best proposals, holding onto no more than the available capacity.

The grouping of the women requires O(C2d +dn) time to initialize the groups

and place each woman in the appropriate group. Creating the men’s preference lists

requires O(dC2dn) time to evaluate and sort the groups of women for every man. The

while loop requires O(C2dn(d + logn)) time since each man will propose to at most C2d

sets of women and each proposal requires O(d + logn) time to evaluate and update the

heap. This results in an overall running time of O(C2dn(d + logn)).

As long as d < 1
2logC logn, the time complexity in Theorem 4.1 will be sub-

quadratic. It is worth noting that the algorithm and proof actually do not rely on any

restriction of the men’s attribute and weight values. Thus, this result holds whenever one

side’s attributes and weight values come from a set of constant size.

4.2.2 One-Sided Real Attributes

In this section we consider a one-sided attribute model with real attributes and

weights. In this model, women have d attributes and men have d weights, and the
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preference list of a man is given by the weighted sum of the women’s attributes as in the

two-sided attribute model. On the other hand there is only one attribute for the men. The

women’s preferences are thus determined by whether they have a positive or negative

weight on this attribute. For simplicity, we first assume that all women have a positive

weight on the men’s attribute and show a subquadratic algorithm for this case. Then we

extend it to allow for negative weights.

To find a stable matching when the women have a global preference list over the

men, we use a greedy approach: process the men from the most preferred to the least

preferred and match each man with the highest unmatched woman in his preference

list. This general technique is not specific to the attribute model but actually works for

any market where one side has a single global preference list. (e.g. [28] uses a similar

approach for their algorithm.) The complexity lies in repeatedly finding which of the

available women is most preferred by the current top man.

This leads us to the following algorithm: for every woman w consider a point

with A(w) as its coordinates and organize the set of points into a data structure. Then,

for the men in order of preference, query the set of points against a direction vector

consisting of the man’s weight and find the point with the largest distance along this

direction. Remove that point and repeat.

The problem of finding a maximal point along a direction is typically considered

in its dual setting, where it is called the ray shooting problem. In the ray shooting problem

we are given n hyperplanes and must maintain a data structure to answer queries. Each

query consists of a vertical ray and the data structure returns the first hyperplane hit by

that ray.

The relevant results are in Lemma 4.1 which follows from several papers for

different values of d. For an overview of the ray shooting problem and related range

query problems, see [5].
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Lemma 4.1 ([39, 30, 4, 65]). Given an n point set in Rd for d≥ 2, there is a data structure

for ray shooting queries with preprocessing time Õ(n) and query time Õ(n1−1/bd/2c).

The structure supports deletions with amortized update time Õ(1).

For d = 1, queries can trivially be answered in constant time. We use this data

structure to provide an algorithm when there is a global list for one side of the market.

Lemma 4.2. For d ≥ 2 there is an algorithm to find a stable matching in the one-sided

d-attribute model with real-valued attributes and weights in time Õ(n2−1/bd/2c) when

there is a single preference list for the other side of the market.

Proof. For a man m, let dim(m) denote the index of the last non-zero weight, that is

αdim(m)+1(m) = · · ·= αd(m) = 0. We assume dim(m)> 0, as otherwise m is indifferent

among all women and we can pick any woman as µ(m). We assume without loss

of generality αdim(m)(m) ∈ {−1,1}. For each d′ such that 1 ≤ d′ ≤ d we build a data

structure consisting of n hyperplanes in Rd′ . For each woman w, consider the hyperplanes

Hd′(w) =

{
xd′ =

d′−1

∑
i=1

Ai(w)xi−Ad′(w)

}
(4.1)

and for each d′ preprocess the set of all hyperplanes according to Lemma 4.1. Note that

Hd′(w) is the dual of the point (A1(w), . . . ,Ad′(w)).

For a man m we can find his most preferred partner by querying the dim(m)-

dimensional data structure. Let s = αdim(m)(m). Consider a ray r(m) ∈ Rdim(m) originat-

ing at

(−α1(m)

s
, . . . ,−

αdim(m)−1(m)

s
,−s ·∞) (4.2)

in the direction (0, . . . ,0,s). If αdim(m) = 1 we find the lowest hyperplane intersecting the

ray, and if αdim(m)=−1 we find the highest hyperplane. We claim that the first hyperplane
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r(m) hits corresponds to m’s most preferred woman. Let woman w be preferred over

woman w′, i.e. valm(w) = ∑
dim(m)
i=1 Ai(w)αi(m)≥ ∑

dim(m)
i=1 Ai(w′)αi(m) = valm(w′). Since

the ray r(m) is vertical in coordinate xd′ , it is sufficient to evaluate the right-hand side of

the definition in equation 4.1. Indeed we have valm(w)≥ valm(w′) if and only if

dim(m)−1

∑
i=1

−Ai(w)
αi(m)

s
−Adim(m)(w)≤

dim(m)−1

∑
i=1

−Ai(w′)
αi(m)

s
−Adim(m)(w

′) (4.3)

when s = 1 and

dim(m)−1

∑
i=1

−Ai(w)
αi(m)

s
−Adim(m)(w)≥

dim(m)−1

∑
i=1

−Ai(w′)
αi(m)

s
−Adim(m)(w

′) (4.4)

when s =−1.

Note that the query ray is dual to the set of hyperplanes with normal vector

(α1(m), . . . ,αd(m)).

Now we pick the highest man m in the (global) preference list, consider the ray

as above and find the first hyperplane Hdim(m)(w) hit by the ray. We then match the pair

(m,w), remove H(w) from all data structures and repeat. Correctness follows from the

correctness of the greedy approach when all women share the same preference list and

the properties of the halfspaces proved above.

The algorithm preprocesses d data structures, then makes n queries and dn

deletions. The time is dominated by the n ray queries each requiring time Õ(n1−1/bd/2c).

Thus the total time complexity is bounded by Õ(n2−1/bd/2c), as claimed.

Note that for d = 1 there is a trivial linear time algorithm for the problem.

We use the following lemma to extend the above algorithm to account for positive

and negative weights for the women. It deals with settings where the women choose one

of two lists (σ1,σ2) as their preference lists over the men while the men’s preferences
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Algorithm 4.2: One-Sided Stable Matching
// For points in P ∈ Rd we use the notation (x1, . . . ,xd) to refer to its

coordinates.
Input: matching µ

for d′ = 1 to d do
for each woman w do

H(w)←{xd = ∑
d−1
i=1 Ai(w)xi−Ad′(w)}

Hd′ ← Hd′ ∪H(w)
Hd′ .preprocess()

for each man m in order of preference do
s← αdim(m)(m)

r(m)← (−α1(m)
s , . . . ,−αdim(m)−1(m)

s ,∞ · s)+ t · (0, . . . ,0,−s)
H(w)← Query(Hdim(m),r(m))
µ ← µ ∪ (m,w)
for d′ = 1 to d do

Hd′ ← Hd′−Hd′(w)

return µ

can be arbitrary.

Lemma 4.3. Suppose there are k women who use σ1. If the top k men in σ1 are in the

bottom k places in σ2, then the women using σ1 will only match with those men and the

n− k women using σ2 will only match with the other n− k men in the woman-optimal

stable matching.

Proof. Consider the operation of the woman-proposing deferred acceptance algorithm

for finding the woman-optimal stable matching. Suppose the lemma is false so that at

some point a woman using σ1 proposed to one of the last n− k men in σ1. Let w be the

first such woman. w must have been rejected by all of the top k, so at least one of those

men received a proposal from a woman, w′, using σ2. However, since the top k men in

σ1 are the bottom k men in σ2, w′ must have been rejected by all of the top n− k men

in σ2. But there are only n− k women using σ2, so one of the top n− k men in σ2 must

have already received a proposal from a woman using σ1. This is a contradiction because



45

Table 4.1. Two-list preferences where no participant receives their top choice in the
stable matching

σ1 σ2 π1 π2
m1 m3 w1 w3
m2 m5 w2 w5
m3 m1 w3 w1
m4 m4 w4 w4
m5 m2 w5 w2

Man List Woman List
m1 π1 w1 σ2
m2 π1 w2 σ2
m3 π2 w3 σ1
m4 π1 w4 σ2
m5 π2 w5 σ1

w was the first woman using σ1 to propose to one of the bottom n− k men in σ1 (which

are the top n− k men in σ2).

We can now prove the following theorem where negative values are allowed for

the women’s weights.

Theorem 4.2. For d ≥ 2 there is an algorithm to find a stable matching in the one-sided

d-attribute model with real-valued attributes and weights in time Õ(n2−1/bd/2c).

Proof. Suppose there are k women who have a positive weight on the men’s attribute.

Since the remaining n− k women’s preference list is the reverse, we can use Lemma

4.3 to split the problem into two subproblems. Namely, in the woman-optimal stable

matching the k women with a positive weight will match with the top k men, and the

n− k women with a negative weight will match with the bottom n− k men. Now the

women in each of these subproblems all have the same list. Therefore we can use Lemma

4.2 to solve each subproblem. Splitting the problem into subproblems can be done in

time O(n) so the running time follows immediately from Lemma 4.2.

As a remark, this “greedy” approach where we select a man, find his most

preferred available woman, and permanently match him to her will not work in gen-

eral. Table 4.1 describes a simple 2-list example where the unique stable matching
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Table 4.2. Two-list preferences where a greedy approach will not work

σ1 σ2 π1 π2
m1 m2 w1 w3
m2 m1 w2 w2
m3 m3 w3 w1

Man List Woman List
m1 π2 w1 σ1
m2 π1 w2 σ2
m3 π1 w3 σ2

is {(m1,w2),(m2,w3),(m3,w5),(m4,w4),(m5,w1)}. In this instance, no participant is

matched with their top choice. Therefore, the above approach cannot work for this

instance. This illustrates to some extent why the general case seems more difficult than

the one-sided case.

An alternative model of a greedy approach that is based on work by Davis and

Impagliazzo in [29] also will not work. In this model, an algorithm can view each of

the lists and the preferences of the women. It can then (adaptively) choose an order

in which to process the men. When processing a man, he must be assigned a partner

(not necessarily his favorite available woman) once and for all, based only on his choice

of preference list and the preferences of the previously processed men. This model is

similar to online stable matching [55] except that it allows the algorithm to choose the

processing order of the men. Using the preferences in Table 4.2 and minor modifications

to them, we can show that no greedy algorithm of this type can successfully produce a

stable matching. Indeed, the unique stable matching of the preference scheme below is

µ = {(m1,w3),(m2,w1),(m3,w2)}. However, changing the preference list for whichever

of m1 or m2 is processed later will form a blocking pair with the stable partner of the

other. If m1 uses π1, (m1,w1) blocks µ and if m2 uses π2, (m2,w3) blocks µ . Therefore,

no algorithm can succeed in assigning stable partners to these men without first knowing

the preference list choice of all three.
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4.2.3 Strategic Behavior

As mentioned earlier, strategic behavior in the general preference setting allows

for participants to truncate or rearrange their lists. However, in the d-attribute and d-list

models, we assume that the attributes or lists are fixed, so that the only manipulation the

participants are allowed is to misrepresent their weight vectors or which list they choose.

Despite this limitation, there is still no strategy proof mechanism for finding a stable

matching when d ≥ 2.

Theorem 4.3. For d ≥ 2 there is no strategy proof algorithm to find a stable matching in

the d-list model.

Proof. Table 4.3 describes true preferences that can be manipulated by the women.

Observe that there are two stable matchings: {(m1,w1),(m2,w2),(m3,w3),(m4,w4)}, the

man-optimal matching, and {(m1,w2),(m2,w3),(m3,w1),(m4,w4)}, the woman-optimal

matching. However, if w2 used list σ2 instead of σ1, then there is a unique stable matching

which is {(m1,w2),(m2,w3),(m3,w1),(m4,w4)}, the woman-optimal stable matching

from the original preferences. Therefore, any mechanism that does not always output the

woman optimal stable matching can be manipulated by the women to their advantage.

By symmetry, any mechanism that does not always output the man-optimal matching

could be manipulated by the men. Thus there is no strategy-proof mechanism for the

d-list setting with d ≥ 2.

Since the d-list model is a special case of the d-attribute model, we immediately

have the following result from Theorem 4.3.

Corollary 4.1. For d ≥ 2 there is no strategy proof algorithm to find a stable matching

in the d-attribute model.
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Table 4.3. Two-list preferences that can be manipulated

σ1 σ2 π1 π2
m1 m3 w1 w3
m2 m1 w2 w1
m3 m4 w3 w2
m4 m2 w4 w4

Man List Woman List
m1 π1 w1 σ2
m2 π1 w2 σ1
m3 π2 w3 σ1
m4 π2 w4 σ1

Of course in the 1-list setting there is a trivial unique stable matching. Moreover,

in the one-sided d-attribute model our algorithm is strategy proof since the women are

receiving the woman-optimal matching and each man receives his best available woman,

so misrepresentation would only give him a worse partner.

4.3 Verification

We now turn to the problem of verifying whether a given matching is stable.

While this is as hard as finding a stable matching in the general setting, the verification

algorithms we present here are more efficient than our algorithms for finding stable

matchings in the attribute model.

4.3.1 Real Attributes and Weights

In this section we adapt the geometric approach for finding a stable matching

in the one-sided d-attribute model to the problem of verifying a stable matching in the

(two-sided) d-attribute model. We express the verification problem as a simplex range

searching problem in R2d , which is the dual of the ray shooting problem. In simplex

range searching we are given n points and answer queries that ask for the number of

points inside a simplex. In our case we only need degenerate simplices consisting of the

intersection of two halfspaces. Simplex range searching queries can be done in sublinear

time for constant d.
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Lemma 4.4 ([64]). Given a set of n points in Rd , one can process it for simplex range

searching in time O(n logn), and then answer queries in time Õ(n1− 1
d ).

For 1≤ d′ ≤ d we use the notation (x1, . . . ,xd,y1, . . . ,yd′−1,z) for points in Rd+d′ .

We again let dim(w) be the index of w’s last non-zero weight, assume without loss of

generality αdim(w) ∈ {−1,1}, and let sgn(w) = sgn(αdim(w)). We partition the set of

women into 2d sets Wd′,s for 1≤ d′ ≤ d and s ∈ {−1,1} based on dim(w) and sgn(w).

Note that if dim(w) = 0, then w is indifferent among all men and can therefore not be

part of a blocking pair. We can ignore such women.

For a woman w, consider the point

P(w) = (A1(w), . . . ,Ad(w),α1(w), . . . ,αdim(w)−1(w),valw(m)) (4.5)

where m = µ(w) is the partner of w in the input matching µ . For a set Wd′,s we let Pd′,s

be the set of points P(w) for w ∈Wd′,s. The basic idea is to construct a simplex for every

man and query it against all sets Pd′,s.

Given d′,s, and a man m, let H1(m) be the halfspace
{

∑
d
i=1 αi(m)xi > valm(w)

}
where w= µ(m). For w′ ∈Wd′,s we have P(w′)∈H1(m) if and only if m strictly prefers w′

to w. Further let H2(m) be the halfspace
{

∑
d′−1
i=1 Ai(m)yi +Ad′(m)s > z

}
. For w′ ∈Wd′,s

we have P(w′) ∈ H2(m) if and only if w′ strictly prefers m to µ(w′). Hence (m,w′) is a

blocking pair if and only if P(w′) ∈ H1(m)∩H2(m).

Using Lemma 4.4 we immediately have an algorithm to verify a stable matching.

Theorem 4.4. There is an algorithm to verify a stable matching in the d-attribute model

with real-valued attributes and weights in time Õ(n2−1/2d)

Proof. Partition the set of women into sets Wd′,s for 1 ≤ d′ ≤ d and s ∈ {−1,1} and

for w ∈Wd′,s construct P(w) ∈ Rd+d′ as above. Then preprocess the sets according to
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Lemma 4.4. For each man m query H1(m)∩H2(m) against the points in all sets. By the

definitions of H1(m) and H2(m), there is a blocking pair if and only if for some man m

there is a point P(w) ∈ H1(m)∩H2(m) in one of the sets Pd′,s.

The time to preprocess is O(n logn). There are 2dn queries of time Õ(n1−1/2d).

Hence the whole process requires time Õ(n2−1/2d) as claimed.

Algorithm 4.3: Verify Stable Matching with Reals

// For points in P ∈ Rd+d′ we use the notation (x1, . . . ,xd,y1, . . . ,yd′−1,z) to
refer to its coordinates.

Input: matching µ

for each woman w do
m← µ(w)
P(w)← (A1(w), . . . ,Ad(w),α1(w), . . . ,αd(w),valw(m))
Pdim(w),sgn(w)←Wdim(w),sgn(w)∪P(w)

for d′ = 1 to d and s ∈ {−1,1} do
Pd′,s.preprocess()
for each man m do

w← µ(m)
H1(m)←

{
∑

d
i=1 αi(m)xi > valm(w)

}
H2(m)←

{
∑

d′−1
i=1 Ai(m)yi +Ad′(m) · s > z

}
if Query(Pd′,s,H1(m)∩H2(m))> 0 then

return µ is not stable

return µ is stable

4.3.2 Lists

When there are d preference orders for each side, and each participant uses one of

the d lists, we provide a more efficient algorithm. Here, assume µ is the given matching

between M and W . Let {πi}d
i=1 be the set of d permutations on the women and {σi}d

i=1

be the set of d permutations on the men. Define rank(w, i) to be the position of w in

permutation πi. This can be determined in constant time after O(dn) preprocessing of

the permutations. Let head(πi, j) be the first woman in πi who uses permutation σ j and
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next(w, i) be the next highest ranked woman after w in permutation πi who uses the same

permutation as w or⊥ if no such woman exists. These can also be determined in constant

time after O(dn) preprocessing by splitting the lists into sublists, with one sublist for the

women using each permutation of men. The functions rank, head, and next are defined

analogously for the men.

Algorithm 4.4: Verify d-List Stable Matching
for i = 1 to d do

for j = 1 to d do
w← head(πi, j).
m← head(σ j, i).
while m 6=⊥ and w 6=⊥ do

if rank(w, i)> rank(µ(m), i) then
m← next(m, j).

else
if rank(m, j)> rank(µ(w), j) then

w← next(w, i).
else

return (m,w) is a blocking pair.

return µ is stable.

Theorem 4.5. There is an algorithm to verify a stable matching in the d-list model in

O(dn) time.

Proof. We claim that algorithm 4.4 satisfies the theorem. Indeed, if the algorithm returns

a pair (m,w) where m uses πi and w uses σ j, then (m,w) is a blocking pair because w

appears earlier in πi than µ(m) and m appears earlier in σ j than µ(w).

On the other hand, suppose the algorithm returns that µ is stable but there

is a blocking pair, (m,w), where m uses πi and w uses σ j. The algorithm considers

permutations πi and σ j since it does not terminate early. Clearly if the algorithm evaluates

m and w simultaneously when considering permutations πi and σ j, it will detect that
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(m,w) is a blocking pair. Therefore, the algorithm either moves from m to next(m, j)

before considering w or it moves from w to next(w, i) before considering m. In the former

case, rank(µ(m), i) < rank(w′, i) for some w′ that comes before w in πi. Therefore m

prefers µ(m) to w. Similarly, in the latter case, rank(µ(w), j)< rank(m′, i) for some m′

that comes before m in σ j so w prefers µ(w) to m. Thus (m,w) is not a blocking pair and

we have a contradiction.

The for and while loops proceed through all men and women once for each of

the d lists in which they appear. Since at each step we are either proceeding to the next

man or the next woman unless we find a blocking pair, the algorithm requires time O(dn).

This is optimal since the input size is dn.

4.3.3 Boolean Attributes and Weights

In this section we consider the problem of verifying a stable matching when the

d attributes and weights are restricted to boolean values and d = c logn. The algorithm

closely follows an algorithm for the maximum inner product problem by Alman and

Williams [6]. The idea is to express the existence of a blocking pair as a probabilistic

polynomial with a bounded number of monomials and use fast rectangular matrix multi-

plication to evaluate it. A probabilistic polynomial for a function f is a polynomial p

such that for every input x

Pr[ f (x) 6= p(x)]≤ 1
3

(4.6)

We use the following tools in our algorithm. THRd is the threshold function that

outputs 1 if at least d of its inputs are 1.

Lemma 4.5 ([6]). There is a probabilistic polynomial for THRd on n variables and error

ε with degree O(
√

n log(1/ε)).
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Lemma 4.6 ([73, 83]). There is a probabilistic polynomial for the disjunction of n

variables and error ε with degree O(log(1/ε))

Lemma 4.7 ([87]). Given a polynomial P(x1, . . . ,xm,y1, . . .ym) with at most n0.17 mono-

mials and two sets X ,Y ⊆ {0,1}m with |X | = |Y | = n, we can evaluate P on all pairs

(x,y) ∈ X×Y in time Õ(n2 +m ·n1.17).

We construct a probabilistic polynomial that outputs 1 if there is a blocking pair.

To minimize the degree of the polynomial, we pick a parameter s and divide the men

and women into sets of size at most s. The polynomial takes the description of s men

m1, . . . ,ms and s women w1, . . . ,ws along with their respective partners as input, and

outputs 1 if and only if there is a blocking pair (mi,w j) among the s2 pairs of nodes with

high probability.

Lemma 4.8. Let u be a large constant and s = n1/uc log2 c. There is a probabilistic

polynomial with the following inputs:

• The attributes and weights of s men: A(m1), . . . ,A(ms),α(m1), . . . ,α(ms)

• The attributes of the s women matched with these men: A(µ(m1)), . . . ,A(µ(ms))

• The attributes and weights of s women: A(w1), . . . ,A(ws),α(w1), . . . ,α(ws)

• The attributes of the s men matched with these women: A(µ(w1)), . . . ,A(µ(ws))

The output of the polynomial is 1 if and only if there is a blocking pair with respect to the

matching µ among the s2 pairs in the input. The number of monomials is at most n0.17

and the polynomial can be constructed efficiently.

Proof. (mi,w j) is a blocking pair if and only if 〈α(mi),A(µ(mi))〉< 〈α(mi),A(w j)〉 and
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〈α(w j),A(µ(w j))〉< 〈α(w j),A(mi)〉. Rewriting

F(x,y,a,b) := 〈x,y〉< 〈a,b〉= THRd+1 (¬(x1∧ y1), . . . ,¬(xd ∧ yd),a1∧b1, . . . ,ad ∧bd)

(4.7)

we have a blocking pair if and only if

∨
i∈[1,s]
j∈[1,s]

(
F(α(mi),A(µ(mi)),α(mi),A(w j))∧F(α(w j),A(µ(w j)),α(w j),A(mi))

)
(4.8)

Note that we can easily adapt this algorithm to finding strongly blocking pairs by

defining F(x,y,a,b) as 〈x,y〉 ≤ 〈a,b〉.

Using Lemma 4.5 with ε = 1
s3 and Lemma 4.6 with ε = 1/4 we get a probabilistic

polynomial of degree a
√

d logs for some constant a and error 1/4+ 1/s < 1/3. Fur-

thermore, since we are only interested in boolean inputs we can assume the polynomial

to be multilinear. For large enough u we have 2d > a
√

d log(s) (i.e. the degree is at

most half of the number of variables) and the number of monomials is then bounded by

O
((

s2( 4d
a
√

d log(s)

))2
)

.

Simplifying the binomial coefficient we have

(
4d

a
√

d logs

)
=

( 4c logn

a
√

(log2 n)/u log2 c

)
=

(
4c logn

a logn/
√

u logc

)

Setting δ = a/(
√

u log(c)) we can upper bound this using Stirling’s inequality by

(
4c logn
δ logn

)
≤
(
(4c logn) · e

δ

)δ logn

= nδ log(4ce/δ )

By choosing u to be a large enough constant, we can make δ and the exponent

arbitrarily small. The factor of s2 only contributes a trivial constant to the exponent.
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Therefore we can bound the number of monomials by n0.17.

Theorem 4.6. In the d-attribute model with n men and women, and d = c logn boolean

attributes and weights, there is a randomized algorithm to decide if a given matching is

stable in time Õ(n2−1/O(c log2(c))) with error probability at most 1/3.

Proof. We again choose s = n1/uc log2 c and construct the probabilistic polynomial as in

Lemma 4.8. We then divide the men and women into dn
s e groups of size at most s.

For a group of men m1, . . . ,ms we let the corresponding input vector be

A(m1), . . . ,A(ms),α(m1), . . . ,α(ms),A(µ(m1)), . . . ,A(µ(ms))

We set X as the set of all input vectors for the dn
s e groups. We define the set Y symmetri-

cally for the input vectors corresponding to the dn
s e groups of women.

Using Lemma 4.7 we evaluate the polynomial on all pairs x ∈ X , y ∈ Y in time

Õ
((n

s

)2
+O(sd)

(n
s

)1.17
)
= Õ

((n
s

)2
)
= Õ(n2−1/O(c log2(c))) (4.9)

The probability that the output is wrong for any fixed input pair is at most 1/3. We repeat

this process O(logn) times and take the threshold output for every pair of inputs, such

that the error probability is at most O
(

1
n2

)
for any fixed pair of inputs. Using a union

bound we can make the probability of error at most 1/3 on any input.

4.4 Conditional Hardness

4.4.1 Background

The Strong Exponential Time Hypothesis has proved useful in arguing conditional

hardness for a large number of problems. We show SETH-hardness for both verifying
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and finding a stable matching in the d-attribute model, even if the weights and attributes

are boolean. The main step of the proof is a reduction from the maximum inner product

problem to the stable matching problem. The maximum inner product problem is

known to be SETH-hard. We give the fine-grained reduction from CNFSAT to the vector

orthogonality problem and from the vector orthogonality problem to the maximum inner

product problem for the sake of completeness.

Definition 4.1 ([45, 47]). The Strong Exponential Time Hypothesis (SETH) stipulates

that for each ε > 0 there is a k such that k-SAT requires time Ω(2(1−ε)n).

Definition 4.2. For any d, the vector orthogonality problem is to decide if two input sets

U,V ⊆ Rd with |U |= |V |= n have a pair u ∈U, v ∈V such that 〈u,v〉= 0.

The boolean vector orthogonality problem is the variant where U,V ⊆ {0,1}d .

Definition 4.3. For any d and input l, the maximum inner product problem is to decide if

two input sets U,V ⊆Rd with |U |= |V |= n have a pair u ∈U, v ∈V such that 〈u,v〉 ≥ l.

The boolean maximum inner product problem is the variant where U,V ⊆ {0,1}d .

Lemma 4.9 ([47, 86, 6]). Assuming SETH, for any ε > 0, there is a c such that solving

the boolean maximum inner product problem on d = c logn dimensions requires time

Ω(n2−ε).

Proof. The proof is a series of reductions from k-SAT to boolean inner product. By

the Sparsification Lemma [47] we can reduce k-SAT to a subexponential number of

k-SAT instances with at most d = ckn clauses, where ck does not depend on n. Hence,

assuming SETH, for any ε > 0, there is a c such that CNFSAT with cn clauses requires

time Ω(2(1−ε)n).

We reduce CNFSAT to the boolean vector orthogonality problem using a technique

called Split and List. Divide the variable set into two sets S,T of size n
2 and for each set
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consider all N = 2n/2 assignments to the variables. For every assignment we construct a

d-dimensional vector where the ith position is 1 if and only if the assignment does not

satisfy the ith clause of the CNF formula. Let U be the set of vectors corresponding to

the assignments to S and let V be the set of vectors corresponding to T . A pair u ∈U ,

v ∈V is orthogonal if and only if the corresponding assignment satisfies all clauses. An

algorithm for boolean vector orthogonality in dimension d = cn = 2c logN and time

O(N2−ε) = O(2(1−ε/2)n) would contradict SETH. Hence assuming SETH, for every

ε > 0 there is a c such that the boolean vector orthogonality problem with d = c logN

requires time Ω(N2−ε).

Finally, we reduce the boolean vector orthogonality problem to the boolean

maximum inner product problem by partitioning the set U into sets Ui for 0 ≤ i ≤ d

where Ui contains all vectors with Hamming weight i. Observe that a vector v ∈ V is

orthogonal to a vector u ∈Ui if and only if 〈u,¬v〉 = i, where ¬v is the element-wise

complement of v. Thus U and V have an orthogonal pair, if and only if there is an i

such that Ui and ¬V = {¬v | v ∈V} have a pair with inner product at least i. Therefore,

for any ε > 0 there is a c such that the maximum inner product problem on d = c logN

dimensions requires time Ω(N2−ε) assuming SETH.

4.4.2 Finding Stable Matchings

In this subsection we give a fine-grained reduction from the maximum inner

product problem to the problem of finding a stable matching in the boolean d-attribute

model. This shows that the stable matching problem in the d-attribute model is SETH-

hard, even if we restrict the attributes and weights to booleans.

Theorem 4.7. Assuming SETH, for any ε > 0, there is a c such that finding a stable

matching in the boolean d-attribute model with d = c logn dimensions requires time

Ω(n2−ε).
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Proof. The proof is a reduction from maximum inner product to finding a stable matching.

Given an instance of the maximum inner product problem with sets U,V ⊆ {0,1}d where

|U |= |V |= n and threshold l, we construct a matching market with n men and n women.

For every u∈U we have a man mu with A(mu) = u and α(mu) = u. Similarly, for vectors

v ∈ V we have women wv with A(wv) = v and α(wv) = v. This matching market is

symmetric in the sense that for mu and wv, valmu(wv) = valwv(mu) = 〈u,v〉.

We claim that any stable matching contains a pair (mu,wv) such that the inner

product 〈u,v〉 is maximized. Indeed, suppose there are vectors u∈U , v∈V with 〈u,v〉 ≥ l

but there exists a stable matching µ with 〈u′,v′〉 < l for all pairs (mu′,wv′) ∈ µ . Then

(mu,wv) is clearly a blocking pair for µ which is a contradiction.

4.4.3 Verifying Stable Matchings

In this section we give a reduction from the maximum inner product problem to

the problem of verifying a stable matching, showing that this problem is also SETH-hard.

Theorem 4.8. Assuming SETH, for any ε > 0, there is a c such that verifying a stable

matching in the boolean d-attribute model with d = c logn dimensions requires time

Ω(n2−ε).

Proof. We give a reduction from maximum inner product with sets U,V ⊆ {0,1}d where

|U |= |V |= n and threshold l. We construct a matching market with 2n men and women

in the d′-attribute model with d′ = d +2(l−1). Since d′ < 3d the theorem then follows

immediately from the SETH-hardness of maximum inner product.

For u ∈U , let mu be a man in the matching market with attributes and weights

A(mu) = α(mu) = u◦1l−1 ◦0l−1 where we use ◦ for concatenation. Similarly, for v ∈V

we have a woman wv with A(wv) = α(wv) = v◦0l−1 ◦1l−1. We further introduce dummy

women w′u for u ∈U with A(w′u) = α(w′u) = 0d ◦ 1l−1 ◦ 0l−1 and dummy men m′v for

v ∈V with A(m′v) = α(m′v) = 0d ◦0l−1 ◦1l−1.
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mu1

mu2

mu3

w′u1

w′u2

w′u3

wv1

wv2

wv3

u1 ◦1l−1 ◦0l−1

u2 ◦1l−1 ◦0l−1

u3 ◦1l−1 ◦0l−1

v1 ◦0l−1 ◦1l−1

v2 ◦0l−1 ◦1l−1

v3 ◦0l−1 ◦1l−1

0d ◦1l−1 ◦0l−1

0d ◦1l−1 ◦0l−1

0d ◦1l−1 ◦0l−1

m′v1

m′v2

m′v3

0d ◦0l−1 ◦1l−1

0d ◦0l−1 ◦1l−1

0d ◦0l−1 ◦1l−1

Figure 4.1. A representation of the reduction from maximum inner product to verifying
a stable matching

We claim that the matching consisting of pairs (mu,w′u) for all u ∈U and (m′v,wv)

for all v ∈ V is stable if and only if there is no pair u ∈U , v ∈ V with 〈u,v〉 ≥ l. For

u,u′ ∈U we have valmu(w
′
u′) = valw′

u′
(mu) = l−1, and for v,v′ ∈V we have valwv(m

′
v′) =

valm′
v′
(wv) = l−1. In particular, any pair in µ has (symmetric) value l−1. Hence there

is a blocking pair with respect to µ if and only if there is a pair with value at least

l. For u 6= u′ and v 6= v′ the pairs (mu,w′u′) and (wv,m′v′) can never be blocking pairs

as their value is l− 1. Furthermore for any pair of dummy nodes w′u and m′v we have

valm′v(w
′
u) = valw′u(m

′
v) = 0, thus no such pair can be a blocking pair either. This leaves

pairs of real nodes as the only candidates for blocking pairs. For non-dummy nodes mu

and wv we have valmu(wv) = valwv(mu) = 〈u,v〉 so (mu,wv) is a blocking pair if and only

if 〈u,v〉 ≥ l.
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4.4.4 Checking a Stable Pair

In this section we give a reduction from the maximum inner product problem

to the problem of checking whether a given pair is part of any or all stable matchings,

showing that these questions are SETH-hard when d = c logn for some constant c. For

general preferences, both questions can be solved in time O(n2) [50, 37] and are known

to require quadratic time [36].

Theorem 4.9. Assuming SETH, for any ε > 0, there is a c such that determining whether

a given pair is part of any or all stable matchings in the boolean d-attribute model with

d = c logn dimensions requires time Ω(n2−ε).

Proof. We again give a reduction from maximum inner product with sets U,V ⊆ {0,1}d

where |U | = |V | = n and threshold l. We construct a matching market with 2n men

and women in the d′-attribute model with d′ = 7d +7(l−1)+18. Since d′ < 15d the

theorem then follows immediately from the SETH-hardness of maximum inner product.

For simplicity, we will first describe the preference scheme, then provide weight

and attribute vectors that result in those preferences. For u ∈U , let mu be a man in the

matching market and for v ∈V we have a woman wv. We also have n−1 dummy men

mi : i = 1 . . .n−1 and n−1 dummy women w j : j = 1 . . .n−1. Finally, we have a special

man m∗ and special woman w∗. This special pair is the one we will test for stability. Let

the preferences be
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mu :{wv : 〈u,v〉 ≥ l} � {w j}n−1
j=1 � w∗ � {wv : 〈u,v〉< l} ∀u ∈U

mi :{wv} � {w j}n−1
j=1 � w∗ ∀i ∈ {1 . . .n−1}

m∗ :w∗ � {wv} � {w j}n−1
j=1

wv :{mu : 〈u,v〉 ≥ l} � {mi}n−1
i=1 � m∗ � {mu : 〈u,v〉< l} ∀v ∈V

w j :{mu} � {mi}n−1
i=1 � m∗ ∀ j ∈ {1 . . .n−1}

w∗ :{mi}n−1
i=1 � {mu} � m∗

so that, for example, man mu corresponding to u ∈U will most prefer women

wv for some v ∈V with 〈u,v〉 ≥ l (in decreasing order of 〈u,v〉), then all of the dummy

women (equally), then the special woman w∗, and finally the remaining women wv (in

decreasing order of 〈u,v〉).

First suppose for some û ∈U and v̂ ∈ V we have 〈û, v̂〉 ≥ l and let this be the

pair with largest inner product. Now consider the deferred acceptance algorithm for

finding the woman-optimal stable matching. First, wv̂ will propose to mû and will be

accepted. The dummy women will propose to the remaining men corresponding to U .

Then any other woman wv will be accepted by either a dummy man or a man mu, causing

the dummy woman matched with him to move to a dummy man. In any case, all men

besides m∗ are matched to a woman they prefer over w∗, so when she proposes to them,

they will reject her. Thus w∗ will match with m∗. Since w∗ receives her least preferred

choice in the woman optimal stable matching, (m∗,w∗) is a pair in every stable matching.

Now suppose 〈u,v〉< l for every u ∈U ,v ∈V . Consider the deferred acceptance

algorithm for finding the man-optimal stable matching. First, the dummy men will

propose to the women corresponding to V and will be accepted. Then every man mu will
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propose to the dummy women, but only n−1 of them can be accepted. The remaining

one will propose to w∗. When m∗ proposes to w∗, she rejects him, causing him to

eventually be accepted by the available woman wv. Thus m∗ will not match with w∗ in

any stable matching since she is his most preferred choice but he is not matched with

her in the man-optimal stable matching, so (m∗,w∗) is not a pair in any stable matching.

Figure 4.2 demonstrates each of these cases.

Since the stable pair questions for whether (m∗,w∗) are a stable pair in any or all

stable matchings are equivalent with these preferences, this reduction works for both.

Finally, we claim the following vectors realize the preferences above for the

attribute model. We leave it to the reader to verify this. As in our other hardness

reductions, the weight and attribute vectors are identical for each participant.

mu :u7 ◦17l−1 ◦07l−1 ◦16 ◦06 ◦06

mi :07d ◦17l−1 ◦17l−1 ◦06 ◦16 ◦06

m∗ :07d ◦17l−1 ◦17l−1 ◦06 ◦06 ◦16

wv :v7 ◦07l−1 ◦17l−1 ◦06 ◦16 ◦1 ·05

w j :07d ◦17l−1 ◦07l−1 ◦16 ◦15 ◦0◦06

w∗ :07d ◦17l−1 ◦07l−1 ◦13 ◦03 ◦14 ◦02 ◦12 ◦04

This reduction also has consequences on the existence of nondeterministic algo-

rithms for the stable pair problem assuming the Nondeterministic Strong Exponential

Time Hypothesis (NSETH).
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{mu}

{mi}

m∗

{wv}

{w j}

w∗

(a) A representative stable matching when
there is a pair (u,v) with 〈u,v〉 ≥ l

{mu}

{mi}

m∗

{wv}

{w j}

w∗

(b) A representative stable matching when
〈u,v〉< l for every pair (u,v)

Figure 4.2. A representation of the reduction from maximum inner product to checking
a stable pair

Definition 4.4 ([22]). The Nondeterministic Strong Exponential Time Hypothesis stipu-

lates that for each ε > 0 there is a k such that k-SAT requires co-nondeterministic time

Ω(2(1−ε)n).

In other words, the Nondeterministic Strong Exponential Time Hypothesis stipu-

lates that for CNFSAT there is no proof of unsatisfiability that can be checked determinis-

tically in time Ω(2(1−ε)n).

Assuming NSETH, any problem that is SETH-hard at time T (n) under determin-

istic reductions either require T (n) time nondeterministically or co-nondeterministically,

i.e. either there is no proof that an instance is true or there is no proof that an instance is

false that can be checked in time faster than T (n). Note that all reductions in this chapter

are deterministic. In particular, the maximum inner product problem does not have a

O(N2−ε) co-nondeterministic time algorithm for any ε > 0 assuming NSETH, since it
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has a simple linear time nondeterministic algorithm.

Since the reduction of Theorem 4.9 is a simple reduction that maps a true instance

of maximum inner product to a true instance of the stable pair problem, we can conclude

that the stable pair problem is also hard co-nondeterministically.

Corollary 4.2. Assuming NSETH, for any ε > 0, there is a c such that determining

whether a given pair is part of any or all stable matchings in the boolean d-attribute

model with d = c logn dimensions requires co-nondeterministic time Ω(n2−ε).

We also have a reduction so that the given pair is stable in any or all stable

matchings if and only if there is not a pair of vectors with large inner product. This shows

that the stable pair problem is also hard nondeterministically.

Theorem 4.10. Assuming NSETH, for any ε > 0, there is a c such that determining

whether a given pair is part of any or all stable matchings in the boolean d-attribute

model with d = c logn dimensions requires nondeterministic time Ω(n2−ε).

Proof. This reduction uses the same setup as the one in Theorem 4.9 except that we now

have n dummy men and women instead of n−1 and we slightly change the preferences

as follows:

mu :{wv : 〈u,v〉 ≥ l} � {w j}n
j=1 � w∗ � {wv : 〈u,v〉< l} ∀u ∈U

mi :{wv} � w∗ � {wj}n
j=1 ∀i ∈ {1 . . .n}

m∗ :w∗ � {wv} � {w j}n
j=1

wv :{mu : 〈u,v〉 ≥ l} � {mi}n
i=1 � m∗ � {mu : 〈u,v〉< l} ∀v ∈V

w j :{mu} � {mi}n
i=1 � m∗ ∀ j ∈ {1 . . .n}

w∗ :{mi}n
i=1 � {mu} � m∗
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First suppose for some û ∈U and v̂ ∈V we have 〈û, v̂〉 ≥ l and let this be the pair

with largest inner product. Consider the deferred acceptance algorithm for finding the

man-optimal stable matching. First, some of the men corresponding to U will propose to

the women corresponding to V and at least mû will be accepted by wv̂. The remaining

men corresponding to U will be accepted by dummy women. The dummy men will

propose to the women corresponding to V but not all can be accepted. These rejected

dummy men will propose to w∗ who will accept one. Then when m∗ proposes to w∗ she

will reject him, as will the women corresponding to V , so he will be matched with a

dummy woman. Since m∗ and w∗ are not matched in the man optimal stable matching,

(m∗,w∗) is not a pair in any stable matching.

Now suppose 〈u,v〉< l for every u∈U ,v∈V and consider the deferred acceptance

algorithm for finding the woman-optimal stable matching. First, the dummy women will

propose to the men corresponding to U and will be accepted. Then every woman wv will

propose to the dummy men and be accepted. Since every man besides m∗ is matched

with a woman he prefers to w∗, when she proposes to them, she will be rejected, so she

will pair with m∗. Since w∗ receives her least preferred choice in the woman optimal

stable matching, (m∗,w∗) is a pair in every stable matching. Figure 4.3 demonstrates

each of these cases.

We can amend the vectors from Theorem 4.9 as follows so that they realize the

changed preferences with the attribute model.
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mu :u7 ◦17l−1 ◦07l−1 ◦16 ◦06 ◦06

mi :07d ◦17l−1 ◦17l−1 ◦06 ◦16 ◦06

m∗ :07d ◦17l−1 ◦17l−1 ◦06 ◦06 ◦16

wv :v7 ◦07l−1 ◦17l−1 ◦06 ◦16 ◦1 ·05

w j :07d ◦17l−1 ◦07l−1 ◦16 ◦13 ◦03 ◦06

w∗ :07d ◦17l−1 ◦07l−1 ◦13 ◦03 ◦14 ◦02 ◦12 ◦04

We would like to point out that the results on the hardness for nondeterministic

and co-nondeterministic algorithms do not apply to Merlin-Arthur (MA) algorithms, i.e.

algorithms with access to both nondeterministic bits and randomness. Williams [88]

gives fast MA algorithms for a number of SETH-hard problems, and the same techniques

also yield a O(dn) time MA algorithm for the verification of a stable matching in the

boolean attribute model with d attributes. We can obtain MA algorithms with time O(dn)

for finding stable matchings and certifying that a pair is in at least one stable matching

by first nondeterministically guessing a stable matching.

4.5 Other Succinct Preference Models

In this section, we provide subquadratic algorithms for other succinct preference

models, single-peaked and geometric, which are motivated by economics.
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(a) A representative stable matching when
there is a pair (u,v) with 〈u,v〉 ≥ l
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m∗

{wv}
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(b) A representative stable matching when
〈u,v〉< l for every pair (u,v)

Figure 4.3. A representation of the reduction from maximum inner product to checking
a stable pair such that a true maximum inner product instance maps to a false stable pair
instance
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4.5.1 One Dimensional Single-Peaked Preferences

Formally, we say the men’s preferences over the women in a matching market

are single-peaked if the women can be ordered as points along a line (p(w1)< p(w2)<

· · ·< p(wn)) and for each man m there is a point q(m) and a binary preference relation

�m such that if p(wi)≤ q(m) then p(wi)�m p(w j) for j < i and if p(wi)≥ q(m) then

p(wi)�m p(w j) for j > i. Essentially, each man prefers the women that are “closest” to

his ideal point q(m). One example of a preference relation for m would be the distance

from q(m). If the women’s preferences are also single-peaked then we say the matching

market has single peaked preferences. Since these preferences only consist of the p and q

values and the preference relations for the participants, they can be represented succinctly

as long as the relations require subquadratic space.

Verifying a Stable Matching for Single-Peaked Preferences

Here we demonstrate a subquadratic algorithm for verifying if a given matching

is stable when the preferences of the matching market are single-peaked. We assume that

the preference relations can be computed in constant time.

Theorem 4.11. There is an algorithm to verify a stable matching in the single-peaked

preference model in O(n logn) time.

Proof. Let p(mi) be the point associated with man mi, q(mi) be mi’s preference point,

and �mi be mi’s preference relation. The women’s points are denoted analogously. We

assume that p(mi)< p(m j) if and only if i < j and the same for the women. Let µ be

the given matching we are to check for stability.

First, for each man m, we compute the intervals along the line of women which

includes all women m strictly prefers to µ(m). If this interval is empty, m is with his most

preferred woman and cannot be involved in any blocking pairs so we can ignore him. For
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all nonempty intervals each endpoint is p(w) for some woman w. We also compute these

intervals for the women. Note that for any man m and woman w, (m,w) is a blocking

pair for µ if and only if m is in w’s interval and w is in m’s interval.

We will process each of the women in order from w1 to wn maintaining a balanced

binary search tree of the men who prefer that woman to their partners. This will allow

us to easily check if she prefers any of them by seeing if any elements in the tree are

between the endpoints of her interval. Initially this tree is empty. When processing a

woman w, we first add any man m whose interval begins with w to the search tree. Then

we check to see if w prefers any men in the tree. If so, we know the matching is not

stable. Otherwise, we remove any man m from the tree whose interval ends with w and

proceed to the next woman. Algorithm 4.5 provides pseudocode for this algorithm.

Computing the intervals requires O(n logn). Since we only insert each man into

the tree at most once, maintaining the tree requires O(n logn). The queries also require

O(logn) for each woman so the total time is O(n logn).

Remarks on Finding a Stable Matching for Single-Peaked Preferences

The algorithm in [11] relies on the observation that there will always be a pair or

participants who are each other’s first choice with narcissistic single-peaked preferences.

Thus a greedy approach where one such pair is selected and then removed works well.

However, this is not the case when we remove the narcissistic assumption. In fact, as

with the two-list case, Table 4.4 presents an example where no participant is matched

with their top choice in the unique stable matching. Note that the preferences for the men

and women are symmetric. The reader can verify that these preferences can be realized

in the single-peaked preference model using the orderings p(m1)< p(m2)< p(m3)<

p(m4) and p(w1) < p(w2) < p(w3) < p(w4) and that the unique stable matching is

{(m1,w4),(m2,w2),(m3,w3),(m4,w1)} where no participant receives their first choice.
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Algorithm 4.5: Verify Single-Peaked Stable Matching
for each woman w do

Create two empty lists w.begin and w.end.
Use binary search to find the leftmost man m and rightmost man m′ that
w prefers to µ(w) if any. (Otherwise remove w.)

Let w.s = p(m) and w.t = p(m′).
for each man m do

Use binary search to find the leftmost woman w and rightmost woman w′

that m prefers to µ(m) if any. (Otherwise ignore m.)
Add m to w.begin and w′.end.

Initialize an empty balanced binary search tree T .
for i = 1 to n do

for m ∈ wi.begin do
T. insert(p(m))

if there are any points p(m) in T between wi.s and wi.t then
return (m,wi) is a blocking pair.

for m ∈ wi.end do
T.delete(p(m))

return µ is stable.

Table 4.4. Single-peaked preferences where no participant receives their top choice in
the stable matching

Man Preference List
m1 w3 � w2 � w4 � w1
m2 w3 � w2 � w4 � w1
m3 w4 � w3 � w2 � w1
m4 w2 � w1 � w3 � w4

Woman Preference List
w1 m3 � m2 � m4 � m1
w2 m3 � m2 � m4 � m1
w3 m4 � m3 � m2 � m1
w4 m2 � m1 � m3 � m4
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Also no greedy algorithm following the model inspired by [29] will succeed

for single-peak preferences because the preferences in Table 4.2 can be realized in

the single-peaked preference model using the orderings p(m1) < p(m2) < p(m3) and

p(w1)< p(w2)< p(w3).

4.5.2 Geometric Preferences

We say the men’s preferences over the women in a matching market are geometric

in d dimensions if each women w is defined by a location p(w) and for each man m there

is an ideal q(m) such that m prefers woman w1 to w2 if and only if ‖p(m)−q(w1)‖2
2 <

‖p(m)−q(w2)‖2
2, i.e. p(w1) has smaller euclidean distance from the man’s ideal than

p(w2). If the women’s preferences are also geometric we call the matching market

geometric. We further call the preferences narcissistic if p(x) = q(x) for every participant

x. Our results for the attribute model extend to geometric preferences.

Note that one-dimensional geometric preferences are a special case of single-

peaked preferences. As such, geometric preferences might be used to model preferences

over political candidates who are given a score on several (linear) policy areas, e.g.

protectionist vs. free trade and hawkish vs. dovish foreign policy.

Arkin et al. [7] also consider geometric preferences, but restrict themselves to the

narcissistic case. Our algorithms do not require the preferences to be narcissistic, hence

our model is more general. On the other hand, our lower bounds for large dimensions

also apply to the narcissistic special case. While Arkin et al. take special care of different

notions of stability in the presence of ties, we concentrate on weakly stable matchings.

Although we restrict ourselves to the stable matching problem for the sake of presentation,

all lower bounds and verification algorithms naturally extend to the stable roommate

problem. Since all proofs in this section are closely related those for the attribute model,

we restrict ourselves to proof sketches highlighting the main differences.
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Theorem 4.1 extends immediately to the geometric case without any changes in

the proof.

Corollary 4.3 (Geometric version of Theorem 4.1). There is an algorithm to find a stable

matching in the d-dimensional geometric model with at most a constant C distinct values

in time O(C2dn(d + logn)).

For the verification of a stable matching with real-valued vectors we use a standard

lifting argument.

Corollary 4.4 (Geometric version of Theorem 4.4). There is an algorithm to verify a

stable matching in the d-dimensional geometric model with real-valued locations and

ideals in time Õ(n2−1/2(d+1))

Proof. Let q ∈ Rd be an ideal and let a,b ∈ Rd be two locations. Define q′,a′,b′ ∈ Rd+1

as q′ = (q1, . . . ,qd,−1/2), a′ = (a1, . . . ,ad,∑
d
i=1 a2

i ) and b′ = (b1, . . . ,bd,∑
d
i=1 b2

i ).

We have 〈a′,q〉= 1/2∑
d
i=1 qi−1/2‖q−a‖2

2. Hence we get ‖q−a‖2
2 < ‖q−b‖2

2

if and only if 〈q′,a′〉 > 〈q′,b′〉, so we can reduce the stable matching problem in the

d-dimensional geometric model to the d +1-attribute model.

For the boolean case, we can adjust the proof of Theorem 4.6 by using a threshold

of parities instead of a threshold of conjunctions. The degree of the resulting polynomial

remains the same.

Corollary 4.5 (Geometric version of Theorem 4.6). In the geometric model with n men

and women, with locations and ideals in {0,1}d with d = c logn, there is a randomized

algorithm to decide if a given matching is stable in time Õ(n2−1/O(c log2(c))) with error

probability at most 1/3.

For lower bounds we reduce from the minimum Hamming distance problem

which is SETH-hard with the same parameters as the maximum inner product problem
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[6]. The Hamming distance of two boolean vectors is exactly their squared euclidean

distance, hence a matching market where the preferences are defined by Hamming

distances is geometric.

Definition 4.5. For any d and input l, the minimum Hamming distance problem is to

decide if two input sets U,V ⊆ {0,1}d with |U |= |V |= n have a pair u ∈U, v ∈V such

that ‖u− v‖2
2 < l.

Lemma 4.10 ([6]). Assuming SETH, for any ε > 0, there is a c such that solving the

minimum Hamming distance problem on d = c logn dimensions requires time Ω(n2−ε).

For the hardness of finding a stable matching, the construction from Theorem 4.7

works without adjustments.

Corollary 4.6 (Geometric version of Theorem 4.7). Assuming SETH, for any ε > 0,

there is a c such that finding a stable matching in the (boolean) d-dimensional geometric

model with d = c logn dimensions requires time Ω(n2−ε).

For the hardness of verifying a stable matching, the construction is as follows.

Corollary 4.7 (Geometric version of Theorem 4.8). Assuming SETH, for any ε > 0, there

is a c such that verifying a stable matching in the (boolean) d-dimensional geometric

model with d = c logn dimensions requires time Ω(n2−ε).

Proof. Let U,V ⊆ {0,1}d be the inputs to the minimum Hamming distance problem and

let l be the threshold.

For every u ∈U , define a real man mu with both ideal and location as u◦0l and a

dummy woman w′u with ideal and location u◦1l . Symmetrically for v ∈V define wv with

v◦0l and m′v with v◦1l . The matching (mu,w′u) for all u ∈U and (wv,m′v) for all v ∈V

is stable if and only if there is there is no pair u,v with Hamming distance less than l.
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The hardness results for checking a stable pair also translate to the geometric

model. In particular, since both variants of the proof extend to the geometric model we

have the same consequences for nondeterministic algorithms.

Corollary 4.8 (Geometric version of Theorem 4.9). Assuming SETH, for any ε > 0,

there is a c such that determining whether a given pair is part of any or all stable

matchings in the (boolean) d-dimensional geometric model with d = c logn dimensions

requires time Ω(n2−ε).

Proof. We again reduce from the minimum Hamming distance problem. We assume

without loss of generality that d is even and the threshold l is exactly d/2+1, i.e. the

instance is true if and only if there are vectors u,v with Hamming distance at most d/2.

We can reduce to this case from any other threshold by padding the vectors.

We use the same preference orders as in the d-attribute model. The following

narcissistic instance realizes the preference order from Theorem 4.9. For a vector

u ∈ {0,1}d , u denotes its component-wise complement.

mu :(u◦u◦u◦u)3◦000000000

mi :012d ◦100000000

m∗ :012d ◦001111111

wv :(v◦ v◦ v◦ v)3 ◦000000000

w j :(02d ◦12d)3 ◦010000000

w∗ :(02d ◦12d)3 ◦101110000

Likewise the preference orders for Theorem 4.10 are achieved by the following



75

vectors.

mu :(u◦u◦u◦u)3◦00000000000

mi :012d ◦10000000000

m∗ :012d ◦00111111100

wv :(v◦ v◦ v◦ v)3 ◦00000000000

w j :(02d ◦12d)3 ◦01000000011

w∗ :(02d ◦12d)3 ◦10111000000

4.5.3 Strategic Behavior

With geometric and single-peaked preferences, we assume that the participants

are not allowed to misrepresent their location points. Rather they may only misrepresent

their preference ideal. As such, the results of this section do not apply when preferences

are narcissistic.

Theorem 4.12. There is no strategy proof algorithm to find a stable matching in the

geometric preference model.

Proof. We consider one-dimensional geometric preferences. Let the preference points

and ideals be as given in Table 4.5 which yield the depicted preference lists. As in

the proof for 4.3, there are two stable matchings: {(m1,w3),(m2,w1),(m3,w2)}, the

man-optimal matching, and {(m1,w3),(m2,w2),(m3,w1)}, the woman-optimal matching.

However, if w2 changes her ideal to 5/3 then her preference list is m2 � m1 � m3. Now
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Table 4.5. Geometric preferences that can be manipulated

Man Location (p) Ideal (q)
m1 1 7/3
m2 2 1
m3 3 5/3

Woman Location (p) Ideal (q)
w1 1 3
w2 2 7/3
w3 3 3

Man Preference List
m1 w2 � w3 � w1
m2 w1 � w2 � w3
m3 w2 � w1 � w3

Woman Preference List
w1 m3 � m2 � m1
w2 m2 � m3 � m1
w3 m3 � m2 � m1

there is a unique stable matching which is {(m1,w3),(m2,w2),(m3,w1)}, the woman-

optimal stable matching from the original preferences. Therefore, any mechanism that

does not always output the woman optimal stable matching can be manipulated by the

women to their advantage. Similarly, any mechanism that does not always output the

man-optimal matching could be manipulated by the men in some instances. Thus there is

no strategy-proof mechanism for geometric preferences.

Since one-dimensional geometric preferences are a special case of single-peaked

preferences the following corollary results directly from Theorem 4.12.

Corollary 4.9. There is no strategy proof algorithm to find a stable matching in the

single-peaked preference model.

4.6 Conclusion and Open Problems

We give subquadratic algorithms for finding and verifying stable matchings in the

d-attribute model and d-list model. We also show that, assuming SETH, one can only

hope to find such algorithms if the number of attributes d is bounded by O(logn).

For a number of cases there is a gap between the conditional lower bound and the

upper bound. Our algorithms with real attributes and weights are only subquadratic if the
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dimension is constant. Even for small constants our algorithm to find a stable matching is

not tight, as it is not subquadratic for any d = O(logn). The techniques we use when the

attributes and weights are small constants do not readily apply to the more general case.

There is also a gap between the time complexity of our algorithms for finding a

stable matching and verifying a stable matching. It would be interesting to either close or

explain this gap. On the one hand, subquadratic algorithms for finding a stable matching

would demonstrate that the attribute and list models are computationally simpler than

the general preference model. On the other hand, proving that there are no subquadratic

algorithms would show a distinction between the problems of finding and verifying a

stable matching in these settings which does not exist for the general preference model.

Currently, we do not have a subquadratic algorithm for finding a stable matching even in

the 2-list case, while we have an optimal algorithm for verifying a stable matching for d

lists. This 2-list case seems to be a good starting place for further research.

Additionally it is worth considering succinct preference models for other com-

putational problems that involve preferences to see if we can also develop improved

algorithms for these problems. For example, the Top Trading Cycles algorithm [82] can

be made to run in subquadratic time for d-attribute preferences (when d is constant) using

the ray shooting techniques applied in this chapter to find participants’ top choices.
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of the material. Künnemann, Marvin, Daniel Moeller, Ramamohan Paturi, and Stefan

Schneider. “Subquadratic Algorithms for Succinct Stable Matching.” arXiv preprint

arXiv:1510.06452 (2016). [59] The dissertation author was the primary investigator and

author of this material.



Bibliography

[1] Amir Abboud, Arturs Backurs, and Virginia Vassilevska Williams. Quadratic-
time hardness of LCS and other sequence similarity measures. In Foundations of
Computer Science (FOCS), 2015 IEEE 56th Annual Symposium on. IEEE, 2015.

[2] David J Abraham, Katarı́na Cechlárová, David F Manlove, and Kurt Mehlhorn.
Pareto optimality in house allocation problems. In International Symposium on
Algorithms and Computation, pages 1163–1175. Springer, 2005.

[3] Heiner Ackermann, Paul W. Goldberg, Vahab S. Mirrokni, Heiko Röglin, and
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[65] Jiřı́ Matoušek and Otfried Schwarzkopf. Linear optimization queries. In Proceed-
ings of the eighth annual symposium on Computational geometry, pages 16–25.
ACM, 1992.

[66] Tomomi Matsui. Algorithmic aspects of equilibria of stable marriage model with
complete preference lists. In Operations Research Proceedings 2010, pages 47–52.
Springer, 2011.

[67] Ernst W Mayr and Ashok Subramanian. The complexity of circuit value and network
stability. In Structure in Complexity Theory Conference, 1989. Proceedings., Fourth
Annual, pages 114–123. IEEE, 1989.

[68] Daniel Moeller, Ramamohan Paturi, and Stefan Schneider. Subquadratic algorithms
for succinct stable matching. In International Computer Science Symposium in
Russia, pages 294–308. Springer, 2016.

[69] Susan Mongell and Alvin E Roth. Sorority rush as a two-sided matching mechanism.
The American Economic Review, pages 441–464, 1991.

[70] Cheng Ng and Daniel S. Hirschberg. Lower bounds for the stable marriage problem
and its variants. SIAM Journal on Computing, 19(1):71–77, 1990.

[71] Joana Pais, Agnes Pinter, and Robert F Veszteg. Decentralized matching markets: a
laboratory experiment. Economics Working Papers, 2012.

[72] Mihai Patrascu and Ryan Williams. On the possibility of faster SAT algorithms.
In Proceedings of the Twenty-First Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2010, Austin, Texas, USA, January 17-19, 2010, pages 1065–
1075, 2010.

[73] Alexander A. Razborov. Lower bounds on the size of bounded depth circuits over a
complete basis with logical addition. Mathematical Notes, 41(4):333–338, 1987.

[74] Alvin E. Roth. The economics of matching: Stability and incentives. Mathematics
of operations research, 7(4):617–628, 1982.

[75] Alvin E Roth. The evolution of the labor market for medical interns and residents:
a case study in game theory. The Journal of Political Economy, pages 991–1016,
1984.



85

[76] Alvin E Roth. Two-sided matching with incomplete information about others’
preferences. Games and Economic Behavior, 1(2):191–209, 1989.

[77] Alvin E Roth and Uriel G Rothblum. Truncation strategies in matching marketsin
search of advice for participants. Econometrica, 67(1):21–43, 1999.

[78] Alvin E. Roth and Marilda A. Oliveira Sotomayor. Two-sided Matching: A Study
in Game - Theoretic Modeling and Analysis. Econometric Society Monographs.
Cambridge University, 1990.

[79] Alvin E. Roth and John H. Vande Vate. Random paths to stability in two-sided
matching. Econometrica, 58(6):1475–1480, nov 1990.

[80] Alvin E Roth and John H Vande Vate. Incentives in two-sided matching with
random stable mechanisms. Economic theory, 1(1):31–44, 1991.

[81] Ilya Segal. The communication requirements of social choice rules and supporting
budget sets. Journal of Economic Theory, 136(1):341–378, 2007.

[82] Lloyd Shapley and Herbert Scarf. On cores and indivisibility. Journal of mathemat-
ical economics, 1(1):23–37, 1974.

[83] Roman Smolensky. Algebraic methods in the theory of lower bounds for boolean
circuit complexity. In Proceedings of the nineteenth annual ACM symposium on
Theory of computing, pages 77–82. ACM, 1987.

[84] Ashok Subramanian. A new approach to stable matching problems. SIAM Journal
on Computing, 23(4):671–700, 1994.

[85] Chung-Piaw Teo, Jay Sethuraman, and Wee-Peng Tan. Gale-shapley stable mar-
riage problem revisited: Strategic issues and applications. Management Science,
47(9):1252–1267, 2001.

[86] Ryan Williams. A new algorithm for optimal constraint satisfaction and its impli-
cations. In Automata, Languages and Programming, pages 1227–1237. Springer,
2004.

[87] Ryan Williams. Faster all-pairs shortest paths via circuit complexity. In Proceedings
of the 46th Annual ACM Symposium on Theory of Computing, pages 664–673. ACM,
2014.

[88] Ryan Williams. Strong ETH breaks with merlin and arthur: Short non-interactive
proofs of batch evaluation. In 31st Conference on Computational Complexity, CCC
2016, May 29 to June 1, 2016, Tokyo, Japan, pages 2:1–2:17, 2016.


	Signature Page
	Table of Contents
	List of Figures
	List of Tables
	Acknowledgements
	Vita
	Abstract of the Dissertation
	Introduction
	Background
	Basic Stable Matching Concepts
	Related Work
	The Deferred Acceptance Algorithm
	Complexity of Stable Matching
	Variations on Stable Matching
	Strategic Behavior
	Structure in Stable Matching


	Jealousy Graphs
	Preliminaries
	Better Response Algorithm
	Jealousy Graph and Related Definitions

	Structural Results
	Any Digraph can be a Jealousy Graph
	Properties of Decompositions

	Convergence
	Correlated and Intercorrelated Preferences
	Conclusion and Open Problems
	Acknowledgements

	Succinct Preference Models
	Preliminaries
	Finding Stable Matchings
	Small Set of Attributes and Weights
	One-Sided Real Attributes
	Strategic Behavior

	Verification
	Real Attributes and Weights
	Lists
	Boolean Attributes and Weights

	Conditional Hardness
	Background
	Finding Stable Matchings
	Verifying Stable Matchings
	Checking a Stable Pair

	Other Succinct Preference Models
	One Dimensional Single-Peaked Preferences
	Geometric Preferences
	Strategic Behavior

	Conclusion and Open Problems
	Acknowledgements

	Bibliography



