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ScienceDirect
Comprehension of underlying mechanisms of probiotic action

will support rationale selection of probiotic strains and targeted

clinical study design with a higher likelihood of success. This

will consequently contribute to better substantiation of health

claims. Here, we aim to provide a perspective from a microbiology

point of view that such comprehensive understanding is not

straightforward. We show examples of well-documented

probiotic effector molecules in Lactobacillus and Bifidobacterium

strains, including surface-located molecules such as specific pili,

S-layer proteins, exopolysaccharides, muropeptides, as well as

more widely produced metabolites such as tryptophan-related

and histamine-related metabolites, CpG-rich DNA, and various

enzymes such as lactase and bile salt hydrolases. We also

present recent advances in genetic tool development,

microbiome analyses and model systems, as well as perspectives

on how the field could further progress. This opinion is based on a

discussion group organized at the annual meeting of the

International Scientific Association on Probiotics and Prebiotics

(ISAPP) in June 2017.
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Introduction
Recently, the International Scientific Association on Pro-

biotics and Prebiotics (ISAPP) reinforced the FAO/WHO

definition of probiotics, with minor changes: ‘live micro-

organisms that, when administered in adequate amounts,

confer a health benefit on the host’ [1]. Documentation of

health benefits is essential, but not a trivial task, because

the monitoring of targeted health benefits of the applied

probiotics is difficult to establish. Moreover, a plethora of

modes of action has been postulated behind these health

benefits from a host perspective (Box 1). Furthermore,

because of the limited knowledge of the underlying

mechanisms by which probiotics elicit their effects, repro-

ducibility and rational strain selection is challenging.

Here, we aim to provide a microbiological perspective

that comprehensive understanding of probiotic mecha-

nisms is not yet in our grasp, because the path there

requires rigorous and laborious scientific investigation.

We can however show examples of well-documented

probiotic molecules of action — also termed probiotic

effector molecules — in Lactobacillus and Bifidobacterium
strains. We also highlight recent advances in the genetic

tool development, microbiome analyses and model sys-

tems to unravel the molecular mechanisms that drive

probiotic effects. These examples are also relevant for

the increasing exploration of next-generation probiotics

based on the recent advances in gut microbiome

research [2].

Selected examples show that impactful
probiotic effector molecules have been
identified
Probiotic bacteria exert a variety of beneficial effects,

such as alteration of the microbiota composition, regula-

tion of the epithelial barrier function, modulation of

immune responses or interaction with the gut-brain bar-

rier (Box 1). Lactobacillus rhamnosus GG is one of the best

clinically documented and most commercialized probi-

otic micro-organisms, with documented health benefits

ranging from gastro-intestinal health [3] towards immune

modulatory effects such as prevention of upper respira-

tory tract diseases [4] and atopic eczema in children [5].

The knowledge on its mode of action has long been

lagging behind because genome editing technologies

were not readily available in this organism [6]. We now

know that transformation of this bacterium is difficult at

least partially due to the presence of long pili structures at
Current Opinion in Biotechnology 2018, 49:217–223
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Box 1 Probiotic mechanisms of action from a host perspective.

While the major part of the manuscript is focused on probiotic

mechanisms of action from a microbiological perspective, possible

molecular mechanisms of action of probiotics from a host perspec-

tive can be broadly divided into the following categories:

(1) Modulation of the composition and activity of the indigenous

microbiota — at least temporarily

Most probiotics applied to day are lactic acid bacteria, which all

have a broad antimicrobial activity, for example, against Sal-
monella through production of lactic acid [28]. More specific

microbiota-targeting mechanisms include pathogen inhibition by

bacteriocin production (e.g. [27]), competition for nutrients such

as between the probiotic E. coli Nissle 1917 and the pathogen

Salmonella [52] and alteration of the intestinal metabolome (e.g.

[53]). Also effects on digestive capacity (e.g. lactose digestion),

stool consistency and frequency could be classified here

because:

(2) Enhancement of epithelial barrier function

These mechanisms include decreasing permeability by promot-

ing tight junction functionality such as shown by [49], and

improving cell proliferation/inhibiting apoptosis of the epithelial

cells [14].

(3) Modulation of the immune system

All probiotics interact with pattern recognition receptors of the

immune system such as Toll-like receptors. They have effects on

cells of the innate and adaptive arm of the immune system,

mainly through interactions with monocytes, macrophages and

dendritic cells, which further modulate the balance of T-helper

and T-regulatory cells or antibody production by B-cells. How-

ever, the exact immunological outcome of each specific probiotic

strain applied is different because the sum of the interactions is

strain-specific (such as reviewed in [54]).

(4) Modulation of systemic metabolic responses

In addition to direct metabolic responses in the gut, systemic

metabolic responses can also be induced by probiotics, for

example, by bile salt hydrolase activity, impacting on satiety

hormones (e.g. [55]) and endocrine modulations (e.g. [56]). These

effects can be quite general, such as the bile salt hydrolase [57]

or more strain-specific.

(5) Signaling via the central nervous system

Various direct and indirect mechanisms of probiotic signaling

with the central nervous system have also been shown during the

past years, such as via tryptophan-derived products, g-amino-

butyric acid (GABA) [58], oxytocin production [59�]. Also antino-

ciceptive effects such as by L. reuteri DSM 17938 through the

TRPV1 channel [60] could be classified here. Effects on gut

motility could also be classified here.
its surface [7]. These SpaCBA pili were identified

through comparative genome analysis [7] and can best

be observed when the outer layer of surface exopolysac-

charides is removed [8]. Comparative analysis of isolated

pili (subunits) and L. rhamnosus GG wild-type and iso-

genic pili mutants have subsequently shown that SpaCBA

pili are key for adhesion to human mucus and intestinal

epithelium, modulate immunoregulatory interactions

with monocytes and dendritic cells [9,10], and even

promote pathogen exclusion such as of pilliated Entero-
coccus faecium [11]. In a human fetal ileal organ culture

model, L. rhamnosus GG also attenuated inflammatory

cytokine production in response to Salmonella, at least

partially through the SpaC subunit of the pili [12].
Current Opinion in Biotechnology 2018, 49:217–223 
Moreover, by comparison of wild-type and a SpaCBA

pilus mutant in mice, the pili were also demonstrated to

be involved in specific signaling mechanisms promoting

cell proliferation in intestinal crypts, as well as protection

against radiological insults [13]. Pili in LGG thus serve as

an example of the complexity of mechanisms of action

mediated by a single structure. Besides pili, various other

effector molecules have been identified and confirmed to

play a key role in some mechanisms of L. rhamnosus GG

supporting health, such as the major secreted proteins p40

and p75 (enzymes degrading peptidoglycan) that prevent

cytokine-induced apoptosis and colitis and protect against

TNF-induced epithelial damage [14], lipoteichoic acid

that negatively modulates colitis [15,16], CpG-rich DNA

that suppresses allergen-specific IgE [17] and exopoly-

saccharides that alleviate adipogenesis in high-fat-diet

fed mice [18].

The L. acidophilus species encompasses several strains

that are commercially employed as probiotics, with L.
acidophilus NCFM being the model probiotic strain. One

of the most prominent cell surface features of L. acidophi-
lus NCFM are its surface (S)-layer proteins. The S-layer

of L. acidophilus NCFM is encoded by three Slp-encoding

genes: slpA (LBA0169), slpB (LBA0175), and slpX
(LBA0512). For this species, a versatile genetic and

biochemical toolbox has been developed over the years.

This was employed to identify diverse functional roles for

Slps (and other surface molecules) of L. acidophilus
NCFM, including cell shape determinants, molecular

sieves, protective layers against viral infection, anchoring

sites for surface-associated enzymes, and facilitators of

cellular adhesion through immune receptors [19].

Recently, by comparing a purified SlpA subunit and a

mutant only expressing the major SlpA, SlpA was shown

to be a probiotic factor able to bind to the C-type lectin,

host immune receptor SIGNR3. This modulated regula-

tory signals, which resulted in mitigation of colitis, main-

tenance of healthy gastrointestinal microbiota, and pro-

tection of gut mucosal barrier function in mice [20��].
Similarly, a mutant deficient in lipoteichoic acid of L.
acidophilus NCFM was also able to mitigate colitis

through a mechanism that involved interleukin-10 and

CD4(+)FoxP3(+) T regulatory cells to dampen exagger-

ated mucosal inflammation [21].

Lactobacillus plantarum WCFS1 is another well-documen-

ted model strain of which the genome sequence was the

first published whole genome sequence of Lactobacillus
[22]. By host transcriptomics studies, L. plantarum
WCFS1 was shown to modulate various NF-kB-depen-
dent pathways in duodenal biopsy samples from healthy

human volunteers only when stationary phase-harvested

cells were employed [23]. These expression patterns were

distinct from the transcriptome responses observed in

humans that consumed other probiotics such as L. rham-
nosus GG and another — but related strain of L.
www.sciencedirect.com
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acidophilus than mentioned above [24]. Yet, also the

human transcriptomic responses were highly individual.

Comparing the transcriptome signatures induced by the

consumption of different probiotic strains and drugs

further revealed clues towards the optimal field of appli-

cation of specific probiotic products, although this is not

so easy to pinpoint. The growth phase-dependent capabil-

ity of L. plantarum to modulate NF-kB associated path-

ways in the mucosa of healthy human volunteers was

further explored by adding trypsin-treated L. plantarum
surface samples to a dedicated Caco-2 intestinal epithelial

cell line NF-kB reporter. A subsequent proteomics analy-

sis revealed that one of the surface proteins that was found

to be up-regulated in the late stationary phase was StsP, a

very large, serine/threonine rich, sortase-dependent pro-

tein that was previously shown to be induced in the

intestinal tract of mice and humans [25]. Increased StsP

expression was achieved by genome editing and was

shown to elicit strong NF-kB attenuation in the NF-kB
reporter assay, whereas this effect was completely abol-

ished in a StsP-negative derivative strain [26]. These

experiments provide evidence for the role of this cell

surface protein in host cell signaling. However, trypsina-

tion of the proteome did not lead to reduced attenuation

capacity, suggesting that specific peptides within StsP are

also sufficient to exert the NF-kB attenuation which might

enable a more pharmaceutical approach employing syn-

thesized peptides rather than probiotic cells, although acid

and bile resistance of these peptides will be an issue.

Probiotic effectors molecules have also been identified in

other strains. For example, using knock-out mutants of

Lactobacillus salivarius UCC118 unable to express the

bacteriocin Abp118, as well as genetically modified Lis-
teria mutants expressing the bacteriocin immunity genes,

Hill and colleagues demonstrated that Abp118 limited

Listeria monocytogenes infection in mice [27]. In this semi-

nal paper, the key mechanism of action was shown to be

direct antagonism and not immunomodulation or com-

petitive exclusion, at least not in this case of this patho-

gen. Of note, the same probiotic L. salivarius UCC118 was

also able to protect against Salmonella, but this effect was

independent of the Abp118 bacteriocin, and thus might

be a more generic mechanism such as immunomodula-

tion, competitive exclusion or lactic acid, to which Sal-
monella is quite sensitive in vitro [28]. In another L.
salivarius strain, Ls33, it was shown that the measurable

anti-inflammation potential of the strain was correlated

with a local IL-10 production and was abolished in Nod2-

deficient mice. The muropeptide fraction of peptidogly-

can, M-tri-Lys, whether purified from Ls33 or synthe-

sized, could rescue mice from colitis in an IL-10-depen-

dent manner and favored the development of CD103+

DCs and CD4+Foxp3+ regulatory T cells [29].

Many probiotic mechanisms have been linked to metab-

olites. For example, L. reuteri strains have been shown to
www.sciencedirect.com 
reduce inflammation via tryptophan-derived indole deri-

vatives that activate the aryl-hydrocarbon receptor and

induce regulatory T-cells [30��] or histamine-related

metabolites [31��]. Moreover, L. reuteri 6475 was recently

demonstrated to produce a soluble bacterial enzyme

known as diacylglycerol kinase (Dgk) that suppressed

intestinal type 1 histamine receptor-mediated proinflam-

matory responses, via diminished protein kinase C phos-

phorylation-mediated mammalian cell signaling. This

elegant study using a dgk mutant showed that this probi-

otic could act as a ‘microbial antihistamine’ [31��].

Compared to most lactobacilli, bifidobacteria are more

refractory to genetic engineering, but also major advances

have been made in the past decade [32]. Using these

methods, in the model probiotic strain Bifidobacterium
breve UCC2003, specific type IVb tight adherence

(Tad) pili were identified to be only expressed in
vivo. Moreover, these Tad pili promote colonization of

the gut [33]. In Bifidobacterium longum 35624, the surface

associated exopolysaccharides were shown to play an

essential role in dampening host pro-inflammatory

responses and in repressing local helper Th17 responses

[34�]. Other factors of bifidobacteria have also been

postulated in probiotic effects, such as serine protease

inhibitor (or serpins) of B. longum [35].

Recent advances in tools and model systems
enable further mechanistic research
Genetic engineering and genome editing

The Molecular Koch’s postulates encompass a paradigm

whereby the products of individual genes are confirmed

to be pivotal for establishing molecular cause-effect rela-

tionships of microorganisms to human health. Although

classically applied to identify virulence factors, this same

approach can be applied to identify health-benefiting

effector molecules made by probiotic bacteria and is

exemplified for the different probiotic model organisms

described above. Such molecular studies are of course

elegant to pinpoint active molecules of probiotics. This is

especially relevant in the context of live microorganisms,

because — ideally — a gene deletion mutant contains

still all other active molecules, except for the single

gene/molecule knocked out. However, such genome

editing strategies are extremely challenging and time-

consuming for non-model organisms, even for strains

within the same species. A major contributing factor to

the limited applicability of developed genome editing

tools is the extraordinary genetic diversity of the genus

Lactobacillus, a genus that is more diverse than a family

[36��]. Nevertheless, recent developments of genome

editing tools that can generate subtle genome edits with-

out the need for antibiotic selection, including single

stranded DNA recombineering and CRISPR-Cas

genome editing, show great promise [37,38]. These tech-

niques not only enable a better understanding of probiotic

gene-function relationships, but they can also be applied
Current Opinion in Biotechnology 2018, 49:217–223
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to promote the rational selection and even the develop-

ment of tailored probiotics with increased stress toler-

ance, or enhanced metabolic activity, for example, to

enhance probiotic function. Of note, these emerging

genome editing tools can be used to make user-defined

single-base changes and could therefore be considered as

non-GMO, although this is still under debate [39].

In vivo models and new insights in microbial ecology

The development of the human gut microbiota com-

mences at birth, with bifidobacteria being among the first

colonizers of the sterile newborn gastrointestinal tract.

Bifidobacteria have thus also a large potential as probio-

tics, especially in children [40]. Lactobacillus strains form

the largest part of commercial probiotic products on the

market, but some authors have questioned in the past

whether these microbes are ideal probiotics, because they

are often s allochthonous members or transient passen-

gers of the gut microbiota [41]. Yet, recent microbiome

studies underscore that lactobacilli form a pivotal part of

the human microbiota, in the gut up to 1–5% [42] and

more dominant in the vaginal microbiota up to 99%

relative abundance based on 16S rDNA amplicon

sequencing [43]. In addition, lactobacilli are dominant

members of the fermented foods we consume [44].

Moreover, colonization is not a requirement for a probi-

otic and several modes of action such as immune stimu-

lation might actually be promoted by more allochthonous

strains.

Niche-adaptation, niche-flexibility and biogeography of

lactobacilli [41] and bifidobacteria [45��], are receiving

renewed interest, stimulated by the recent advances in

comparative genomics approaches (e.g. [36��]) and

improved detection in human microbiomes, for example,

with tools such as DADA2 exemplified for Lactobacillus
crispatus detection in vaginal samples [46��]. In addition

to DNA-based high-throughput approaches, RNA, pro-

tein and metabolic approaches reveal many new insights.

Metabolically, lactobacilli and bifidobacteria probably

play a larger role than one could estimate based on

relative abundance data. For example, as yet mentioned,

L. reuteri was recently shown to be among the microbiota

members that produce tryptophan-derived ligands induc-

ing regulatory T-cells, and thus balancing mucosal reac-

tivity [30��]. Although this study, like many other mecha-

nistic microbiome and immunological studies, was carried

out in murine animal models, the metabolic activity of

lactobacilli, in this case L. plantarum WCFS1 colonic

transcriptomes, is rather well conserved between humans

and mice [25]. Recently, the L. plantarum transcriptome

in the ileum of rhesus macaques, who are more closely

related to humans than mice, was also explored [47�].
Genes required for tolerating oxidative stress, modifying

cell surface composition, and consumption of host glycans

were clearly expressed in the small intestine of these

macaques, again pointing to similar adaptation
Current Opinion in Biotechnology 2018, 49:217–223 
mechanisms and metabolic pathways active in the different

mammalian gut ecosystems. Moreover, in SIV-infected

macaques, L. plantarum was also shown to prevent gut

epithelium damage [48], in agreement with previous in vitro
and human clinical trials showing that L. plantarum can have

a positive effect on epithelial barrier function [49]. Thus,

macaques might form a non-human primate, alternative

animal model for mechanistic probiotic studies and might

be used to validate cause-effect relationships in studies that

cannot be carried out in humans.

Conclusions
In this review, we focused on the few established micro-

bial-produced effector molecules, responsible for specific

probiotic effects and emerging methods and findings in

microbial genetics and ecology that are being used to

accelerate our interpretation of probiotic mechanisms.

However, these advances are balanced by caveats that

are well-recognized in the probiotic field. One caveat is

that molecular mechanisms of action might be strain-

specific or they might be shared among most members

of a larger taxonomic group [1]. Several of the molecules

described above are not merely strain-specific, but also

have homologs in other strains and species or even

beyond, such as the Tad pili which appear to be a

genus-wide property of Bifidobacterium [33]. Secondly,

the presence or absence of a specific mechanism in a

probiotic might not be able to predict the translation of

that mechanism into a net health benefit. e Each probiotic

has a complex cell wall, DNA/RNA, proteins, amino

acids, sugar precursors, primary and secondary metabo-

lites, and produces enzymes such as lactase and bile salt

hydrolases (Figure 1). Totaled together, all these mole-

cules will result in the overall health benefit expressed.

The expression of those cell products also depends on the

environmental context to which probiotics are exposed in

prior to [50] or after [51] application. Nevertheless, this

complexity of live microorganisms with their hundreds or

thousands of probably bioactive molecules could be

embraced to elucidate multi-factorial interactions

between probiotics and their hosts. Probiotic efficacy

could be viewed as a continuum of complexity, with

some examples being quite complex, requiring the inter-

action of many different aspects of the probiotic, but

others being simpler, such as lactase expression to pro-

mote lactose digestion in the large intestine [1]. Such

complexity is already appreciated on a macroscale for the

gut microbiome and its enormous taxonomic and func-

tional diversity.

Presently, in most cases it is thus not yet confirmed

whether the known probiotic effector molecules are

the actual drivers of the clinical effects observed in

human trials. Hereto, properly designed clinical trials

with dedicated isogenic knock-out or knock-in mutants

of the probiotic microorganisms or with proper formulated

isolated bio-active compounds in human subjects are
www.sciencedirect.com
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Figure 1

PROB IOT ICS
Model probiotic  Lactobacillus

rhamnosus GG
Various intracellular effector molecules

Various surface effector
molecules

DNA
CpG

Enzymes
lactase, bile salt  hydrolases

Metabol ites
Lactate/SC FAs, tr yptophan , hista mine,  GABA,  bact eriocins

Spa CBA pili

EPS
Ser/Thr-rich
proteins

Tad piliS-layer
proteins

peptidoglycan

Lipoteich oic
acid
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Embrace the complexity of probiotics as live microorganisms applied in adequate amounts to confer a health benefit to the host. Although it is a

paradigm in molecular microbiology that key microbial effector molecules can be elegantly identified based on phenotypic comparisons of wild-

type and knock-out micro-organisms lacking a specific effector molecule or comparisons with the isolated microbial molecules, it is crucial for

probiotic applications that whole microbial cells, their cellular content and cell surface are taken into account when exploring modes of action.

This picture represents a progressive zooming in on probiotic structures. The left panel shows a dense culture of the model probiotic L.

rhamnosus GG — as visualized by scanning electron microscopy (SEM). The thin structures between the bacterial cell are the pili, key for mucus

adhesion and some immunomodulatory interactions, but they are not the only factors involved. In the middle panel, we aim to highlight that all

metabolites, enzymes, DNA/RNA and cell wall molecules could impact on host physiology and indigenous microbiome (Box 1). The last panel is a

more detailed overview of the cell wall architecture of typical Gram-positive probiotic bacteria, because many of the key probiotic effector

molecules so far are cell surface associated molecules.
needed. Such trials are very complex to perform, for a

variety of reasons, ethically, regulatory, technically, finan-

cially, logistically, among others. To succeed, evidently

the potency of the probiotic strain itself matters, but also

dose, viability, formulation, targeted pathogen, targeted

host response, targeted host site, prevention or treatment

set-up, difficulties of measuring certain biomarkers, com-

bination effects, time frames for the probiotic activities

(seconds, minutes, hours, weeks), are all aspects that need

to be taken into account, especially if more than one

effector molecule is involved.

Although detailed mechanistic trials could ultimately

extend the field from food to pharma, the benefits of

this reductionist approach provides a way to address

lingering questions such as predicting which probiotic

microorganism to administer and explaining inter-indi-

vidual variation in responses to probiotics. Just because

such identification of mechanisms is highly complex does

not mean that we should not try. Remember the famous

phrase of John F. Kennedy. ‘We choose to go to the Moon

in this decade and do the other things, not because they

are easy, but because they are hard’. This is the

‘moonshot’ for the probiotics field.
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