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Nitrogenous Compound Utilization and Production of Volatile
Organic Compounds among Commercial Wine Yeasts Highlight
Strain-Specific Metabolic Diversity

William T. Scott, Jr,a,b Oscar van Mastrigt,b David E. Block,a,c Richard A. Notebaart,b Eddy J. Smidb

aDepartment of Chemical Engineering, University of California, Davis, California, USA
bFood Microbiology, Wageningen University & Research, Wageningen, The Netherlands
cDepartment of Viticulture and Enology, University of California, Davis, California, USA

ABSTRACT Genetic background and environmental conditions affect the produc-
tion of sensory impact compounds by Saccharomyces cerevisiae. The relative impor-
tance of the strain-specific metabolic capabilities for the production of volatile or-
ganic compounds (VOCs) remains unclear. We investigated which amino acids
contribute to VOC production and whether amino acid-VOC relations are conserved
among yeast strains. Amino acid consumption and production of VOCs during grape
juice fermentation was investigated using four commercial wine yeast strains: Elixir,
Opale, R2, and Uvaferm. Principal component analysis of the VOC data demonstrated
that Uvaferm correlated with ethyl acetate and ethyl hexanoate production, R2 nega-
tively correlated with the acetate esters, and Opale positively correlated with fusel
alcohols. Biomass formation was similar for all strains, pointing to metabolic differen-
ces in the utilization of nutrients to form VOCs. Partial least-squares linear regression
showed that total aroma production is a function of nitrogen utilization (R2 = 0.87).
We found that glycine, tyrosine, leucine, and lysine utilization were positively corre-
lated with fusel alcohols and acetate esters. Mechanistic modeling of the yeast meta-
bolic network via parsimonious flux balance analysis and flux enrichment analysis
revealed enzymes with crucial roles, such as transaminases and decarboxylases. Our
work provides insights in VOC production in wine yeasts.

IMPORTANCE Saccharomyces cerevisiae is widely used in grape juice fermentation to
produce wines. Along with the genetic background, the nitrogen in the environment
in which S. cerevisiae grows impacts its regulation of metabolism. Also, commercial
S. cerevisiae strains exhibit immense diversity in their formation of aromas, and a de-
sirable aroma bouquet is an essential characteristic for wines. Since nitrogen affects
aroma formation in wines, it is essential to know the extent of this connection and
how it leads to strain-dependent aroma profiles in wines. We evaluated the differen-
ces in the production of key aroma compounds among four commercial wine strains.
Moreover, we analyzed the role of nitrogen utilization on the formation of various
aroma compounds. This work illustrates the unique aroma-producing differences
among industrial yeast strains and suggests more intricate, nitrogen-associated
routes influencing those aroma-producing differences.

KEYWORDS volatile organic compounds, HS-SPME/GC-MS, Saccharomyces cerevisiae,
fermentation, wine, metabolic modeling

It has been widely recognized that yeast cell growth and overall wine fermentation
performance are regulated by initial nitrogen levels within the grape must.

Consequently, nitrogen limitation can induce sluggish or stuck fermentations (1–4).
Ammonium and amino acids are the primary nitrogen sources used by yeast for
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general biosynthetic purposes by transferring the amine functional group (5, 6). Not
only are yeast cell growth and fermentation completion influenced by the quality and
amount of ammonia and amino acids in the grape must, the production of many cru-
cial volatile organic compounds (VOCs) that are associated with desirable wine bou-
quet are also impacted (7–11). More specifically, these desirable VOCs are higher alco-
hols and their associated esters and fatty acids. The higher alcohols are products of the
Ehrlich pathway, which uses branched-chain and aromatic amino acids as the sub-
strates (12).

It has been shown that an inverse correlation exists between initial nitrogen levels
(excluding at low initial nitrogen levels) and fusel alcohol concentrations (8, 13–16).
Furthermore, it has been demonstrated in wine fermentations using S. cerevisiae that
amino acids are directly involved in the formation of higher alcohols, esters, and fatty
acids, and that these volatile organic compounds subsequently influence aroma attrib-
utes of wines (12, 17). Nonvolatile compounds, including glycerol, malic acid, and suc-
cinic acid, have also been shown to fluctuate depending on nitrogen concentration
and source (18–20). Although VOC precursors produced via the Ehrlich pathway have
been confirmed, various other amino acids such as alanine, lysine, glycine, histidine,
and glutamine could potentially act as precursors or regulators of numerous metabolic
pathways linked to aroma compound production. Moreover, surprisingly little is known
about the relationship between the dynamics and timing of amino acid utilization and
VOC production throughout grape must fermentation. Modulating desirable VOC yield
in production strains will allow for valuable process advances in improving wine aroma
bouquet, as well as increased flexibility in the production of specific aroma compounds
for targeted types of wines. In addition, broader insights into aroma development
could potentially lead to the introduction of these qualities into production strains
with other desirable characteristics. Acetate esters and medium-chain fatty acid
(MCFA) esters exhibit a more intricate relationship with initial nitrogen levels because
of their biosynthetic routes of production. However, previous work has shown ethyl ac-
etate is positively correlated with medium nitrogen levels (7, 8, 15, 21, 22). A commonly
used practice in winemaking is to add nitrogenous compounds to avoid problem fer-
mentations empirically. Although this heuristic method is moderately successful, its
benefits are inconsistent, since the sole addition of inorganic nitrogen as well as
improper supplementation of nitrogen have been revealed to negatively impact fer-
mentation performance and aroma compound formation (10, 23). More precisely, low
yeast assimilable nitrogen concentrations (YAN) can cause stuck fermentations and
lead to higher H2S levels, while high YAN concentrations may cause greater turbidity,
stimulate microbial instability, and facilitate the formation of unpleasant aromas
(24–26). Thus, it would be most advantageous to be able to predetermine nitrogen lev-
els and the timing of additions to a wine medium to achieve proper aroma character
and wine styles, though this is not yet possible with current knowledge of the system,
especially across a range of commercial yeast strains.

The numerous S. cerevisiae strains that are selected for winemaking differ
immensely in their aroma production profiles (27–29). For example, a study that used
two strains demonstrated the strain with the higher nitrogen requirement formed the
higher ester concentration during fermentation of a Chardonnay must (30). Strain-de-
pendent VOC production profiles could be due to variations in how yeast cells metabo-
lize and utilize nitrogenous compounds. Another study, in which three yeast strains
were examined in chemically defined media with different nitrogen compositions, indi-
cated measurable differences in volatile and nonvolatile compounds, especially for the
total amount of esters (31). Moreover, Miller et al. (29) showed strain-specific differen-
ces in the production of volatile esters in Chardonnay grape juice with various initial
nitrogen levels. Although these studies were groundbreaking in illustrating strain-de-
pendent behavior for several yeast strains under various environmental conditions,
they lacked insight regarding the roles specific nitrogenous compounds play in the
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formation of VOCs during fermentation, as well as the impact of the complex meta-
bolic background of strains.

Previous studies (29, 31, 32) have examined the dynamics of the relationship
between nitrogen utilization of commercial S. cerevisiae strains and the production of
VOCs, e.g., fusel alcohols and acetate esters. However, earlier studies may be incom-
plete, as it has been suggested that other nitrogen sources or nitrogen-involved meta-
bolic pathways play a role in VOC formation in alcoholic fermentations such as beer
(32, 33). Here, four industrial S. cerevisiae strains, Elixir, Opale, R2, and Uvaferm, were
chosen for study because they were reported to possess a range of fermentation and
aroma-producing capabilities. We then measured strain-specific behavior correlated
with the production of key wine-associated VOCs. In order to further understand the
role of nitrogen utilization in the various aroma-producing attributes among these
strains, we applied partial least squares (PLS) regression. Moreover, since mechanistic
understanding of the relation between amino acid consumption and VOCs production
is currently lacking (34), we applied genome-scale metabolic modeling techniques.

RESULTS
Fermentations. Fermentations were carried out for each of the S. cerevisiae strains

in triplicate to evaluate nutrient utilization, i.e., ammonia, amino acids, and sugar con-
sumption, as well as VOC (aroma) production capabilities across strains growing in the
same enological medium. All fermentations were conducted under atmospheric condi-
tions at a temperature of 20°C and were performed until completion (t=404 h).
Throughout the fermentation, cell biomass (estimated from optical density at 600 nm
[OD600] measurements) and degrees Brix (°Bx) levels were monitored at 11 time points.
Biomass growth, sugar utilization, and ethanol formation curves are shown (Fig. 1A).

All strains reached maximum biomass at approximately 120 h. Furthermore, all
strains did not significantly differ in biomass concentrations (one-way ANOVA,
P=0.974). All cultures were fermented to completion (less than 4 g/liter residual sugar)
(35). More specifically, fermentations performed with Uvaferm, R2, Opale, and Elixir
strains resulted in total final sugar concentrations of 1.6 g/liter, 0.9 g/liter, 1.3 g/liter,
and 0.3 g/liter, respectively. All the strains reached similar final ethanol concentrations
ranging between 90 and 100 g/liter. The glycerol, malic acid, acetic acid, lactic acid,
succinic acid, and 1,2 propanediol production were measured, as these compounds
are vital to the sensory characteristics and stability of wines. Glycerol concentrations
found in the cultures ranged from 6.3 g/liter for R2 to 7.5 g/liter for Uvaferm (Fig. 1B).
These values are consistent with those found in wine (36). For all strains, malic acid lev-
els were relatively constant throughout the fermentation at approximately 3 g/liter
(Fig. 1B). Acetic acid production levels varied between the strains, with all of the final
concentrations in the range of 350mg/liter for Opale to 550mg/liter for R2 (Fig. 1B).
Succinic acid concentrations reached by the strains ranged from 0.8 g/liter for R2 to 1.3
g/liter for Opale (Fig. 1B). Final concentrations of 1,2 propanediol were relatively similar
among the strains, ranging from 109mg/liter for Elixir to 160mg/liter for Uvaferm
(Fig. 1B). One-way ANOVA revealed (95% confidence interval) that the production of
acetic acid, malic acid, and succinic acid was significantly different among all of the
strains (P, 0.05). In contrast, concentrations of the other six major metabolites
(Fig. 1B) did not differ significantly among the strains (P. 0.05).

Nitrogenous compound utilization and VOC production profiles during
fermentation. The concentrations of ammonia and amino acids were measured over
the course of the fermentations (Fig. 2). Amino acid and ammonia consumption pro-
files deviated between all of the strains, illustrating strain-dependent behavior for
some compounds such as alanine, glycine, asparagine, leucine, and phenylalanine.
Moreover, concentrations of other amino acids such as serine, valine, lysine, methio-
nine, and threonine, differed significantly across two or three strains. Overall, the level
of consumption for 15 out of 20 amino acids studied differed significantly (ANOVA,
P, 0.05). However, these and most variations in amino acid concentrations were
observed at 20 and 28 h. As noticed (Fig. 2), it is evident that ammonia is consumed
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most rapidly, even before amino acids in the synthetic must. All of the amino acids
were consumed during the fermentations except proline, which was not taken up and
remained in the medium until the end of fermentation (data not shown).

Many amino acids were mainly consumed during the exponential cell growth stage
of fermentation. Only some small amounts of Ala, Asn, Gly, and Met remained in the
medium after 100 h, though all were utilized shortly after that. The consumption data
reveal preferences of yeast for particular amino acids during utilization over the expo-
nential growth phase. The consumption of the nitrogenous compounds can be sepa-
rated into four groups based on the time at which 95% utilization occurs from the
compound. Group I consists of the earliest-consumed compounds, where strain-de-
pendent consumption of NH3, Asn, Lys, Met, Ile (Uvaferm only), and Thr (Uvaferm only)
occurs, with 95% of their concentrations being drastically depleted by 28 h. Group II
contains the subsequently preferred compounds, where 95% of the compound was
consumed by 44 elapsed hours. These group II compounds are Arg, Gln, Ile, Leu, Phe,
Ser, Thr, His, Asp, and Val. Group III consists of compounds such as Ala, Trp, and Tyr,
which all show steady consumption until 95% of their concentrations were utilized by
72 h. A remaining group, group IV, was taken up after some initial delay (not consumed
within the first 20 h) and did not have 95% utilization until after 96 h. This sole amino
acid was Gly.

To study the relationship between amino acid consumption and VOC formation
during grape juice fermentation, 10 VOCs (aromas) were measured using headspace
solid-phase microextraction gas chromatography mass spectrometry (HS SPME GC-MS)
from various compound classes pertaining to different aroma properties throughout
the fermentation process (Fig. 3). The compounds consisted of four fusel alcohols (iso-
butanol, isoamyl alcohol, 2-phenyl ethanol, and methionol), four acetate esters (ethyl
acetate, isobutyl acetate, isoamyl acetate, and 2-phenyl ethyl acetate), and two ethyl
esters (ethyl butanoate and ethyl hexanoate). The kinetics of the measured formation
of VOCs were dependent on the yeast strain. In addition, the maximum and final con-
centration of VOCs varied significantly among the strains (ANOVA, P, 0.05). At 168 h

FIG 1 Growth, nutrient consumption, and metabolite production kinetics of the four yeast strains in MMM medium depicting dry cell weight (biomass) (A)
and major metabolites (B) over the course of the fermentations. Error bars represent standard deviations (n= 3).
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of fermentation, the VOC concentrations among the strains were significantly different
for eight VOCs, while two were the same. These compounds that did not differ signifi-
cantly at the end of fermentation were 2-methyl-1-propanol and 2-methyl-1-propyl
acetate.

All VOCs begin to form early in the fermentation process. Some compounds, such
as 3-methyl 1-butanol and methionol, were even generated before 20 h, though nearly
all VOC formation characteristically corresponds with yeast growth. Moreover, the max-
imum production rate of fusel alcohols and acetate esters occurred from 28h to 96 h.
Fusel alcohols were produced at the highest concentrations, with isoamyl alcohol, iso-
butanol, and 1-propanol showing the most rapid production earliest during fermenta-
tion. The acetate ester production rate began to decline for all of the strains after 96 h
and became relatively stagnant after 168 h. Profiles for ethyl esters were similar to
those observed for acetate esters. However, initial ethyl ester formation proceeded at a
lower rate than acetate esters, and the maximum concentrations were much less than
acetate esters. Overall, most VOCs showed stagnated production after 96 h, which indi-
cates growth-dependent behavior. Some VOCs, in particular 2-methyl-1-propyl acetate,
showed a decrease in concentration toward the end of fermentation, most likely due
to volatilization. All final VOCs concentrations were found within the typical range
found in wines (28).

In order to compare the results of volatile production by the strains, a principal-
component analysis (PCA) of the VOCs was performed. From the PCA, 76.26% of the
variance was explained by the first two principal components (PC) (PC1= 51.25% and
PC2= 24.98%). As depicted, separation of the samples was achieved according to the
yeast strains (Fig. 4). PC1 separated R2 from the other three strains, while PC2 sepa-
rated Elixir, Opale, and Uvaferm strains. Although Lallemand (Lallemand, Montreal,
Quebec) characterizes Uvaferm as a neutral aroma-imbuing strain, loadings for ethyl
hexanoate and ethyl acetate were correlated with the Uvaferm strain, indicating rela-
tively higher production for Uvaferm. Opale and R2 are described as conveying citrus,
fruity, and floral aromas to wines from enhanced ester production and low H2S and
SO2 formation. Nevertheless, higher loadings for fusel alcohols were correlated with

FIG 2 Amino acid and ammonia consumption of the four yeast strains in MMM medium showing the change in amino acid concentrations during
fermentation. Error bars represent standard deviations (n= 3).
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FIG 3 VOC (aroma) production of the four yeast strains in MMM medium showing the change in VOC
concentrations over the course of the fermentations. Standard deviations are represented (n= 3).
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the Opale strain along PC2, whereas loadings for the acetate esters were negatively
correlated with the R2 strain, indicating relatively low acetate ester formation. The
manufacturer claims that Elixir produces a wide array of beneficial fatty acid esters
while limiting formation of acetate esters. As depicted, it appears Elixir has a correla-
tion with ethyl butanoate and ethyl acetate (Fig. 4).

Correlations of nitrogenous compound utilization with VOC formation. One of
the main hypotheses of this study asserted that utilization of ammonia and amino
acids during fermentation contributed to the characteristic difference in the formation
of VOCs among the yeast strains. First, ammonia and amino acids serve as an essential
nitrogen source promoting good growth of the S. cerevisiae culture. Therefore, enhanc-
ing growth of yeast cultures leads to the overall increase of production of VOCs and
VOC precursors. Second, it is known that specific amino acids are utilized and
degraded which contribute to the synthesis, via the Ehrlich pathway, of fusel alcohols
and subsequently to the production of acetate esters. However, other pathways
related to lysine and glycine degradation, which have been shown to play a role in
VOC formation in other types of fermentations, may be essential to enological fermen-
tations as well. To evaluate this hypothesis and understand the causes of strain-de-
pendent variation, the ammonia and amino acid utilization for all four yeast strains
were measured and correlated with biomass formation and VOC production for 11 dif-
ferent aroma compounds during the exponential growth phase (Table 1).

In order to gain metabolic insight into how nitrogen utilization impacts characteris-
tic VOC formation among the strains, the degree of the correlation between nitrogen
consumption and VOC formation was evaluated using multivariate statistics. Since the
data sets are high dimensional, partial least squared (PLS) linear regression was

FIG 4 PCA scores and loadings plot of PC1 and PC2 derived from the volatile compounds produced by the yeast strains at t= 168 h.
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employed to correlate the contributions of ammonia and individual amino acid utiliza-
tion to the production of biomass and VOCs by the yeast strains during fermentation.
Statistical determination of the nitrogenous variables that contribute most to the varia-
tion in the fermentation kinetic data regarding VOCs was performed using interval-par-
tial least squared (iPLS) regression analysis. iPLS was done using the ammonia and
amino acid utilization of all four S. cerevisiae strains during the initial five time points
covering the near complete uptake of the nitrogen during the first 96 h of fermenta-
tion. The biomass dry cell weight concentration, individual VOC concentration, each
VOC class (i.e., fusel alcohol concentration, acetate ester concentration, and fatty acid
ethyl ester concentration), and total VOC concentration were the response variables
that comprised the Y-block in 16 different PLS regressions. The response variables con-
tained concentration measurements corresponding to the same time points as the pre-
dictor variables. From the initial duration of the fermentation until 96 h, the ammonia
and amino acid utilization data were input as the predictor variables used to develop
the X-block in each of the 16 PLS regressions. Subsequently, the PLS regression analysis
determined which variables in both the Y-block and the X-block contributed most to
the variation in the data. Lastly, the PLS regression analysis indicated how the variables
were correlated and then lumped the variables into a new latent variable (LV). Our
summarized results show that nitrogen utilization is strongly correlated with biomass
formation and production of each of the aroma compounds, except methionol, for
which only moderate correlation was found (Table 1). The reason could be due to
methionol production being controlled by sulfur uptake.

PLS regression was first conducted to determine how nitrogen utilization contrib-
uted to yeast growth (biomass formation) during the exponential growth phase in the
fermentation. Table 1 summarizes the results from this analysis, where it lists that this
model generated 10 LVs encompassing 100% of the variation in the nitrogen utiliza-
tion data and 95.5 in the biomass concentration data. The PLS regression analysis
yielded a correlation coefficient of R2 = 0.96, which signified a robust linear relationship
between the measured biomass dry cell concentration versus the predicted biomass
dry cell concentration according to the nutrient utilization of these yeast strains (Fig.
S1 in the supplemental material). Cross-validation (CV) was performed in order to pre-
vent the model from overfitting the data (i.e., model being applicable for the test
observations and not being applicable for new observations) and to evaluate how the
model would operate using a new set of data. CV correlation coefficients (Q2) were
generated to illustrate the predictive strength of the model (37). The root mean
squared error of correlation (RMSEC) for the biomass concentration as a function of

TABLE 1 Summary of results from partial least-squares regression analysis

Response variable (predictor variablea)
No. of latent
variables RMSECb RMSECVb R2 Q2

% Variance
captured X-block

% Variance
captured Y-block

Biomass concn. (nitrogen util.) 10 0.24 0.30 0.96 0.93 100.00 95.52
Fusel alcohol concn. (nitrogen util.) 5 47.25 53.11 0.87 0.83 100.00 87.02
1-Propanol concn. (nitrogen util.) 9 5.35 6.92 0.92 0.87 100.00 92.02
3 Methyl-1-butanol concn. (nitrogen util.) 7 35.56 40.57 0.82 0.77 100.00 82.32
2 Methyl-1-propanol concn. (nitrogen util.) 8 7.69 9.44 0.80 0.71 99.79 80.17
2 Phenylethanol concn. (nitrogen util.) 4 7.09 7.68 0.85 0.82 100.00 84.82
Methionol concn. (nitrogen util.) 8 0.64 0.73 0.61 0.50 100.00 61.01
Acetate ester concn. (nitrogen util.) 12 12.83 16.69 0.84 0.74 99.95 84.16
Ethyl acetate concn. (nitrogen util.) 11 11.10 14.85 0.85 0.73 99.97 84.48
3 Methyl-1-butyl acetate concn. (nitrogen util.) 12 1.51 2.06 0.85 0.74 99.91 85.43
2 Methyl-1-propyl acetate concn. (nitrogen util.) 14 0.01 0.01 0.85 0.74 100.00 85.42
2 Phenylethyl acetate concn. (nitrogen util.) 12 0.10 0.13 0.82 0.72 99.97 82.30
Fatty acid ethyl ester concn. (nitrogen util.) 4 0.73 0.81 0.77 0.72 100.00 77.19
Ethyl butanoate concn. (nitrogen util.) 11 0.12 0.16 0.86 0.75 99.98 86.09
Ethyl hexanoate concn. (nitrogen util.) 5 0.67 0.70 0.77 0.71 100.00 77.31
Total aroma concn. (nitrogen util.) 5 58.62 65.73 0.87 0.84 100.00 87.08
a“nitrogen util.” indicates ammonia and amino acid utilization.
bRMSEC, root mean squared error of correlation; RMSECV, root mean squared error in cross-validation.
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nitrogen utilization was 0.24 g (dry weight) per liter of biomass, the root mean squared
error in cross-validation (RMSECV) was 0.30 g (dry weight) per liter of biomass, and the
Q2 value for this model was 0.93, which highlights that nitrogen utilization was an
excellent predictor of the biomass concentration reached by these strains (Fig. S1).

A separate series of PLS regression analyses were performed subsequently for each
of the VOCs, as well as classes of compounds, to investigate a correlation between the
production of VOCs during the fermentations and nitrogen utilization of the yeast
strains. Each of the models captured at least 99.5% of the variation in the nitrogen utili-
zation data and at least 77% of the variation in the aroma concentration data were
captured by each of the models except methionol (Table 1). In addition, the RMSEC
and RMSECV for the individual aroma compounds and aroma compound classes as a
function of ammonia and amino acid utilization are summarized in Table 1. The R2

value for each model for VOCs achieved an R2 value greater than 0.77, indicating nitro-
gen utilization was correlated with the production of each VOC. The only aroma com-
pound that the PLS regression analysis showed to have a more modest correlation
with nitrogen utilization was methionol. Partial least-squares regression modeling
yielded eight LVs and generated a coefficient of determination (R2) of 0.61. The model
cross-validation results indicate a Q2 of 0.5 and RMSEC and RMSECV values of 0.64mg/
liter and 0.73mg/liter of methionol, respectively. Overall, these data point to a modest
correlation between the methionol concentration and nitrogen utilization during fer-
mentation. As a result, it is suggested that not only nitrogen utilization determines the
production of methionol during fermentation and that there may be other processes
that play a role in methionol production, such as sulfur utilization.

Specific nitrogenous compounds associated with the formation of VOCs. One of
the core goals of this work was to improve understanding of the impacts of nitrogen
utilization on VOC profile differences among four commercial wine yeast strains. By
applying PLS to the data sets mentioned above, information about how specific nitro-
gen utilization variables correlate with each of the 16 response variable sets was
obtained. This facilitated understanding of which nitrogenous compounds are respon-
sible for aroma production and might offer clues about metabolic variations among
the strains. The PLS models were able to explain the biomass formation and the pro-
duction of each of the aroma compounds, excluding methionol, which was moderately
predicted. Regression vector plots were created to assess the statistical weights of the
original nitrogen predictor variables on the PLS models. In other words, regression vec-
tor plots were used to determine the degree to which the 18 original nitrogen varia-
bles were positively or negatively correlated with the response variable. These regres-
sion vector plots for PLS models predicting individual aroma compounds and classes
of aroma compounds are provided in the supplemental material (Fig. S2), while a sum-
mary is provided in Table 2. In general, iPLS selection yielded more variables for ester
models than for fusel alcohol models. All models shared many similar nitrogenous vari-
ables; however, most nitrogenous variable combinations were unique to each model
for VOC predictions (Table 2).

The regression vector plots for all the yeast strains illustrate the degree to which
the 18 original nitrogen predictor variables are correlated with the response variables
(VOC and biomass concentrations) (Fig. S2). Furthermore, it is worth noting that the
magnitude of the correlation coefficients for each nitrogen predictor variable was dif-
ferent across the PLS regression models (Fig. S2). The model for biomass growth indi-
cated that asparagine, serine, glycine, lysine, isoleucine, and tryptophan were all posi-
tively correlated with biomass concentration, whereas, histidine, threonine, and valine
are negatively correlated with biomass concentration (Table 2). Ammonia was shown
to have a very slight negative correlation with biomass growth, with a correlation coef-
ficient less than 0.1, but this contribution could be ascribed to measurement artifacts
because more than one type of assay was needed to determine ammonia concentra-
tions. The model for fusel alcohols indicated that Gly, Lys, Tyr, and Leu were positively
correlated with fusel alcohol concentration, while Glu was negatively correlated with
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fusel alcohol concentration (Table 2). Ala, Asp, Ile, Ser, and Trp were also found to be
positively correlated with acetate ester concentration, while Val, Arg, Gln, and Phe
were negatively correlated with acetate ester concentration. Lastly, the ethyl esters
model indicated that Glu, Ile, and Tyr were positively correlated with ethyl ester con-
centration, whereas Lys was negatively correlated with ethyl ester concentration.

A summary of the results from all the regression vector plots highlights correlative
behavior of the nitrogen variables for predicting individual VOC production (Table 2).
The regression vector plots revealed some patterned behavior regarding correlation
found for particular nitrogenous compounds. Ammonia, methionine, and glutamic
acid were only negatively correlated with the prediction of aroma compound produc-
tion. Furthermore, arginine and glutamine negatively correlated with the prediction of
most fusel alcohols and acetate esters, except 2-methyl propyl acetate, which was posi-
tively correlated. Conversely, some nitrogen variables were only positively correlated
with aroma production, meaning that a higher consumption of these nitrogen com-
pounds leads to higher aroma concentrations. These nitrogen variables were aspara-
gine, isoleucine, and tyrosine. Glycine positively correlated with all aroma compounds
except 1-propanol and ethyl hexanoate, and aspartic acid positively correlated with all
acetate esters except 2-phenylethyl acetate. Nitrogen variables that were positively
correlated with the total aroma model were glycine, leucine, lysine, and tyrosine.
Lysine positively correlated with many fusel alcohols and acetate esters. The results for
the remaining nitrogen variables were mixed concerning the prediction of aroma
compound.

Parsimonious flux balance analysis and flux enrichment analysis. To test which
metabolic pathways are crucial in VOC production, we applied parsimonious flux bal-
ance analysis (pFBA) and flux enrichment analysis (FEA) with fermentation data used as
constraints. The pFBA analysis revealed many essential genes/reactions for nutrient
uptake and turnover, including amino acids, and VOC production (Table 3). After
excluding transport reactions and nonenzyme-associated reactions, there are 1,047
essential reactions and 259 essential reactions are associated with amino acid degrada-
tion pathways, representing 24.7% of the essential reactions. Besides essential reac-
tions, nonessential pFBA optimal (the most efficient routes to produce the observed
metabolites even though others might be possible) and less efficient metabolic reac-
tions (ELE and MLE reactions, i.e., ones that require more enzymatic steps than the min-
imum or lower growth rate than the maximum, respectively), are related to amino acid
degradation and VOC-forming pathways (Fig. 5). The activity of less-efficient reactions
may point to a trade-off between growth and VOC production, i.e., when VOCs are pro-
duced, less efficient reactions must also occur in context of growth.

TABLE 2 Summary of results from partial least-squares regression analysis vector plots of the predictor variablesa

Model/variable NH3 Ala Arg/Gln Asn Asp Glu Gly His Ile Leu Lys Met Phe Ser Thr Trp Tyr Val
Propan-1-ol 0 1 2 0 0 2 0 2 1 0 2 2 0 0 1 0 1 0
3 Methyl-1-butanol 0 0 2 0 2 2 1 0 0 1 1 0 0 0 0 0 1 0
2-Methylpropan-1-ol 2 2 0 0 0 2 1 2 0 0 1 2 1 1 2 2 0 0
2-Phenylethan-1-ol 0 0 2 0 2 0 1 0 0 0 0 0 0 0 0 0 1 0
Methionol 0 0 2 0 0 0 1 1 0 0 0 2 1 1 0 1 0 2
Ethyl acetate 0 0 2 1 1 2 1 2 1 2 1 2 2 0 0 0 1 2
3-Methylbutyl acetate 2 0 0 1 1 2 1 1 0 0 0 2 2 2 1 2 1 1
2-Methylpropyl acetate 0 0 1 1 1 2 1 2 0 2 1 0 2 1 2 1 1 1
2-Phenylethyl acetate 0 0 2 1 0 2 1 0 1 1 1 0 2 2 2 1 1 2
Ethyl butanoate 0 2 0 1 1 2 1 0 0 0 1 0 2 1 2 0 1 1
Ethyl hexanoate 0 0 0 0 0 0 0 0 1 2 2 2 0 0 0 0 1 0
Fusel alcohols 0 0 0 0 0 2 1 0 0 1 1 0 0 0 0 0 1 0
Acetate esters 0 1 2 1 0 1 1 0 1 0 1 0 2 1 2 1 1 2
Ethyl esters 0 0 0 0 0 1 0 0 1 0 2 0 0 0 0 0 1 0
Total aroma 0 0 0 0 0 2 1 0 0 1 1 0 0 0 0 0 1 0
Biomass 2 0 0 1 0 0 1 0 1 0 1 0 0 1 0 1 0 2
a0, indicates variable not used;1, indicates positive correlation;2, indicates negative correlation. Note that the contribution magnitude of each nitrogen predictor variable
to the respective PLS regression models is found in the supplemental material (Fig. S2) in the PLS vector plot.
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In order to test whether the essential genes are part of particular metabolic path-
ways (or subsystems) by chance, we employed flux enrichment analysis (FEA) to iden-
tify statistically significantly enriched subsystems with essential reactions (38). FEA
highlights tyrosine, glycine, lysine, and leucine metabolism and complex alcohol me-
tabolism (fusel alcohols) as the most significant parts of metabolism, i.e., enriched with
essential genes (Table 3). Thus, FEA supported the results from our PLS regression anal-
ysis. The above pFBA and FEA outcomes are based on the experimental data of strain
Uvaferm and it should be noted that the outcomes are independent of the strain and
thus illustrate a fundamental systems-level property of yeast metabolism (see Table S3
for an essential reaction list). We also found that sterol (lipid metabolism), arginine,
and methionine (sulfur) metabolism play significant roles (P, 1 E210). This result
could indicate substantial influence coming from lipid metabolism and sulfur metabo-
lism. Despite potential influence from other parts of metabolism on VOC formation,
our statistical and metabolic modeling results firmly indicated that amino acid utiliza-
tion routes such as leucine, glycine, lysine, and tyrosine induce VOC production (Fig. 5).
We also observed within these amino acid utilization routes the essential reactions and
less efficient routes (MLE and ELE), including an example VOC (2-phenylethyl acetate)
(Fig. 5). Interestingly, it was observed that transaminase- (e.g., TYRTAi) and decarboxyl-
ase-associated reactions (e.g., OMCDC) were essential, indicating that Ehrlich or amino
acid degradation pathways are involved in VOC formation. Nevertheless, other reac-
tions were also found to be essential, such as reactions associated with acetate (e.g.,
FUMAC), suggesting to other routes influence VOC formation as well.

DISCUSSION

Fermentations were performed with four commercial S. cerevisiae strains with
diverse aroma bouquet-producing potential and growth characteristics under identical
experimental conditions to analyze the nitrogenous compounds that correlated with
yeast cell growth and aroma production. In agreement with previous studies (10, 29,
38, 39), these experimental results illustrate significant differences in volatile and non-
volatile production depending on the applied yeast strain. In most cases, the fermenta-
tions performed with the Opale strain had the highest maximum and final nonvolatile
and volatile concentrations. In contrast, the fermentations conducted using the R2
strains had the lowest maximum and final nonvolatile and volatile concentrations.
However, normalizing the nonvolatile and volatile concentrations to the biomass

TABLE 3 Summary of the essential reactions and the flux enrichment analysis results of yeast model subsystems

GSMMmetabolism groupa No. of essential reactions Enriched set size P value
Sterol metabolism 36 49 4.80E231
Tyrosine tryptophan and phenylalanine metabolism 32 44 1.23E226
Complex alcohol metabolism 33 41 3.13E224
Arginine and proline metabolism 23 33 1.79E218
Methionine metabolism 16 20 1.40E210
Glycine and serine metabolism 18 19 4.96E210
Threonine and lysine metabolism 14 19 4.96E210
Valine leucine and isoleucine metabolism 17 19 4.96E210
Glycolysis and gluconeogenesis 19 22 1.06E209
Pyruvate metabolism 17 20 1.40E209
Glutamate metabolism 12 17 5.94E209
Other amino acid metabolism 5 13 7.13E207
Glycerolipid metabolism 9 12 2.28E206
Cysteine metabolism 10 10 2.24E205
Histidine metabolism 10 11 5.89E205
Alanine and aspartate metabolism 8 9 6.88E205
Phospholipid metabolism 7 8 0.00021
Fructose and mannose metabolism 5 6 0.00186
Citric acid cycle 10 10 0.00198
Glutamine metabolism 4 4 0.01578
aGSMM, genome-scale metabolic model.
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FIG 5 Key S. cerevisiae metabolic pathways illustrating reaction classes from applying parsimonious
flux balance analysis. All reactions and metabolites shown in the figure contain Biochemical Genetic
and Genomic (BiGG) database identifiers (http://bigg.ucsd.edu/).
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formed caused the differences among the strains to be less evident (data not shown).
Furthermore, when examining the product specifications from Lallemand (Lallemand,
Montreal, Quebec), it was presumed that the Uvaferm strain, which is a neutral aroma
producer, would generate the least volatile compounds under the same medium con-
ditions relative to the other strains. Our results suggested, as shown in previous stud-
ies, that R2, which, compared with Opale, produces less fusel alcohols and isoacids
throughout the fermentation, might more effectively regulate carbon flux (less efficient
usage of nitrogen) over time. Moreover, this aspect could be related to nitrogen caus-
ing less excretion of excess carbon from core carbon cellular pathways (39).

Contrary to VOC product formation, nutrient consumption behavior of nitrogen
and sugar compounds was similar among the strains. It was observed that nitrogenous
compound uptake began before the onset of growth in which ammonium was con-
sumed first, similar to what was found in a previous study (40). Following ammonia
consumption, there was a preference for specific amino acids (41). These preferred
amino acids were Asp, His, Glu, Met, and Lys, all consumed within 44 h. These were
also previously seen as the first-consumed amino acids in media with the same YAN
conditions (42, 43). This preference in utilization of particular amino acids is thought to
be linked to nitrogen catabolite repression (NCR) of amino acid transport permeases
(24, 44). Many of the amino acids were consumed during the first 96 h of fermentation.
However, some showed interesting kinetic behavior. Ala, Asn, and Glu showed a slight
uptick in concentration during the stationary growth phase, which could be attributed
to excretion before autolysis, as has been seen previously (45), though there are some
differences regarding the type of amino acids.

The results from PLS linear regression modeling indicated that the production of
VOCs is a function of nitrogen utilization. Previous studies have demonstrated that hav-
ing adequate YAN levels at the beginning of fermentation is essential in determining
yeast cell growth and producing desirable levels of VOCs (8, 27, 46). The production of
VOCs such as fusel alcohols and their associated acetate esters stems from the catabo-
lism of branched-chain and aromatic amino acids via the Ehrlich pathway (47, 48).
Furthermore, the availability of specific nitrogenous compounds early on during fermen-
tation alters the transcriptional regulation of genes involved with higher alcohol produc-
tion and the formation of esters in yeast (49, 50). Naturally, upon reaching the stationary
growth phase, the rate of production of VOCs by S. cerevisiae begins to decline (29). It is
understood that esters play a role in the survival of yeast in the esterification of toxic
MCFAs, thus facilitating their diffusion through the plasma membrane (51).

By comparing the correlations of concentrations of all other VOCs with nitrogen utili-
zation (R2 $ 0.77) on the one hand, and methionol concentration with nitrogen utiliza-
tion (R2 = 0.61) on the other hand, it appears likely that nitrogen utilization is not the
only significant factor influencing methionol production. The relatively low correlation
for methionol formation could be due to the absence of causal relationships between
the metabolic pathways of methionol biosynthesis and nitrogen metabolism. Methionol
biosynthesis is also intricately linked to the sulfate reduction pathway and, thus, the rela-
tionship of sulfur uptake during fermentation (52). Hence, this could explain the variation
in PLS model predictions with other fusel alcohols. Previous works have confirmed that
the role of central carbon metabolism in the synthesis of higher alcohols is significantly
akin to the contribution of amino acids (53). However, it is assumed there is a balance
between the amount of a-ketoacids supplied by central carbon metabolism and the
amount of a-ketoacids converted into amino acids for protein biosynthesis. Thus, over
the course of nitrogen utilization, the corresponding flux of a-ketoacids related to the
nitrogen utilization over time would be negligible compared to the flux originating from
the central carbon metabolism (54). The a-ketoacid pool available would then remain
unchanged and not affect the production of fusel alcohols.

The regression vector plots from both PLS regression models indicated numerous ni-
trogenous compounds in common among the models and the degree to which the
nitrogen sources had influenced the models. The PLS models for total aroma production
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and biomass concentration indicated shared some nitrogenous compounds that are
positively correlated with the formation of biomass and VOCs. These amino acids were
glycine and lysine. Furthermore, for total aroma it was determined that the most signifi-
cant positively correlated amino acids were glycine, lysine, leucine, and tyrosine. These
findings corroborate what has been shown in a previous study, albeit with beer yeasts
(32). This correlation is likely caused by the direct connection to the formation of some
of the most significant fusel alcohols (isobutanol, isoamylol, and propanol) and their sub-
sequent acetate esters (isobutyl acetate, isoamyl acetate, and propyl acetate) (55, 56).

pFBA was performed to determine the essential and metabolically feasible distribu-
tion of fluxes throughout the yeast metabolic network. By employing pFBA and FEA,
the significance among essential reactions was observed for nitrogenous utilization
pathways, as well as sterol, pyruvate, and glycerolipid metabolism. A similar approach
has been taken previously with Escherichia coli to understand network effects of iron
metabolism in triggering oxidative stress in Caenorhabditis elegans (57). For instance,
our analysis illustrates the link lysine plays in the formation of VOCs. In particular, this
link is implied from the modeled essentiality among fluxes through amino acid perme-
ases, mainly LYP1-regulated permeases which have been suggested to steer higher
alcohol and acetate ester formation during beer fermentations (33). The pFBA revealed
many essential reactions in leucine utilization pathways through the use of permeases,
transaminases, and decarboxylases, alluding to the Ehrlich pathway to produce VOCs
(48). This result suggests, as shown by Yoshimoto and coworkers (58), that overex-
pressing genes such LEU and BAT within leucine metabolism can increase isoamyl alco-
hol and isoamyl acetate secretion.

MATERIALS ANDMETHODS
Yeast strains. All four yeast strains, Uvaferm 43 (Uvaferm), Lalvin R2 (R2), Lalvin ICV Opale (Opale), and

Vitilevure Elixir Yseo (Elixir), used in this study are Lallemand (Lallemand, Montreal, Quebec) commercial yeast
strains. Uvaferm and R2 are Saccharomyces bayanus, which is a hybrid of Saccharomyces cerevisiae,
Saccharomyces eubayanus, and Saccharomyces uvarum, while Opale and Elixir are S. cerevisiae var. cerevisiae.
All yeast strains were obtained from the UC Davis Enology Culture Collection. Additionally, yeast strains were
chosen to have different fermentation and aroma-producing characteristics under the conditions selected.
For instance, R2 and Elixir are reported to be wine yeast strains that produce relatively large amounts of
esters. In contrast, Uvaferm is reported to be more of an aroma-neutral strain and Opale is reported to impart
an enhanced, complex character to wines (Lallemand, Montreal, Quebec). The strains were stored at 280°C
in a 25% (vol/vol) glycerol solution according to the method of Amberg et al. (59). The strains were streaked
for single colony isolation on yeast extract peptone dextrose (YEPD) agar plates, incubated at 25°C for 24 to
48 h until sufficient colonies formed, and stored at 4°C for no longer than 30days.

Growth, fermentation media, and culture conditions. MMM synthetic grape juice medium (220 g
sugar/liter; 22.0 °Bx), with a 1:1 mixture of glucose (110 g/liter) and fructose (110 g/liter), 123mg/liter of YAN,
and 11mg/liter of ammonium, was prepared according to the method of Giudici and Kunkee (60). MMMme-
dium was used within 24h of preparation. Fermentations were carried out in 500-ml Erlenmeyer flasks sealed
with a rubber stopper and air lock with a working volume of 400ml, similar to that described in Henderson
et al. (61). In addition, the fermentations were inoculated according to the method stated in Henderson et al.
(61) and likewise a volume of the inoculum to give an initial OD600 of ;0.1 (;15 ml) was added to 400ml of
MMM medium. The pH of the MMM medium was 3.25 and the fermentation temperature was maintained at
20°C. Cultures were stagnantly cultivated at 20°C for 17days. Initial cell concentration (OD600) and °Bx meas-
urements were performed at the beginning of fermentation and subsequently 10 more times over the course
of the fermentation until °Bx fell below one or remained constant between two consecutive measurements.
°Bx measurements were performed with a refractometer and OD600 measurements were performed with a
spectrophotometer. Samples (10ml) were taken at regular intervals and transferred to a 15-ml Greiner tube,
sealed, and frozen at220°C until analysis. Experiments were performed as biological triplicates.

Cell dry weight determination. The total cell dry weight (biomass) of the samples was determined
by taking a sample directly from the culture medium and passing through dried and preweighed mem-
brane filters with a pore size of 0.2mm (Pall Corporation, Ann Arbor, MI, USA) by a vacuum filtration unit,
as described by van Mastrigt and coworkers (62). Total biomass concentration at every sample time
point was determined by transforming results from the OD600 measurements using a calibration curve
for each yeast strain. Total cell dry weights were determined in triplicates.

High-performance liquid chromatography analysis. After taking a sample from the Erlenmeyer
flask, cells were immediately removed by centrifugation (13,000� g for 10min at 4°C), and the supernatant
was stored at220°C until analysis. Supernatants were deproteinated by adding 0.25ml Carrez A (0.1 M po-
tassium ferrocyanide trihydrate) and 0.25ml Carrez B (0.2 M zinc sulfate heptahydrate) to a 0.5-ml sample
followed by centrifugation for 10min at 13,000� g. Glucose, fructose, lactate, acetate, malate, citrate, etha-
nol, 1-propanol, and 1,2-propanediol were quantified by high-performance liquid chromatography (HPLC)
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on an Ultimate 3000 (Dionex, Idstein, Germany) equipped with an Aminex HPX-87H column (300� 7.8mm)
with precolumn (Bio-Rad), as described by van Mastrigt and coworkers (62). As the mobile phase, 5mM sul-
furic acid was used at 0.6ml min21, and the column was maintained at 40°C. The injection volume was
10ml. Compounds were identified by a refractive index detector (RefractoMax 520) for quantification and
UV measurements at 220, 250, and 280nm for identification. All analysis was performed in duplicate.

Ultraperformance liquid chromatography amino acid analysis. An aliquot of 40ml of 5-fold-
diluted samples was mixed with 50ml of 0.1 M HCl solution containing 250mM norvaline as the internal
standard. Then, 10ml of chilled 30% sulfosalicylic acid (SSA) was added, and the solution was mixed and
centrifuged (13,000� g) for 10min. at 4°C. Amino acids were derivatized using the AccQ-Tag Ultra
Derivatization kit (Waters), for which 20ml of the deproteinated sample solution supernatant or standard
amino acids mixture was mixed with 60ml of a modified AccQ-Tag Ultra Borate buffer (for deproteinated
samples, 150ml of 4 M NaOH was added to 5ml borate buffer). Next, 20ml of an AccQ-Tag reagent previ-
ously dissolved in 2.0ml AccQ-Tag Ultra reagent diluent was added and vortexed for 10 s. Then, the sam-
ple solution was capped and warmed at 55°C in a heatblock for 10min. Amino acids and ammonium
were quantified by ultraperformance liquid chromatography (UPLC) on an Ultimate 3000 (Dionex,
Idstein, Germany) equipped with an AccQ-Tag Ultra BEH C18 column (150mm � 2.1mm, 1.7mm)
(Waters, Milford, MA, USA) with a BEH C18 guard column (5mm � 2.1mm, 1.7mm) (Waters, Milford, MA,
USA). The column temperature was set at 55°C, and the mobile phase flow rate was maintained at
0.7ml/min. Eluent A was 5% AccQ-Tag Ultra concentrate solvent A and Eluent B was 100% AccQ-Tag
Ultra solvent B. The separation gradient was 0 to 0.04min 99.9% A; 5.24min 90.9% A; 7.24min 78.8% A;
8.54min 57.8% A; 8.55 to 10.14min 10% A; and 10.23 to 17min 99.9% A. One microliter of sample was
injected for analysis. Compounds were detected by UV measurement at 260 nm.

The ammonium concentration was further determined and confirmed with an ammonia assay kit
(Megazyme, Bray, Ireland) according to the manufacturer’s procedures. The ammonia levels were veri-
fied to exhaust after 28 h of fermentation. This method was also used to correct quantification of ammo-
nium detected from the UPLC. Norvaline was used as an internal standard (IS) for the UPLC amino acid
analysis. All analysis was performed with a single replicate.

Volatile organic compounds analysis. To determine the volatile organic compounds (VOCs), 2ml of
sample was transferred to a 5-ml gas chromatography (GC) vial. Samples were stored frozen (220°C) until
analysis by headspace solid-phase microextraction gas chromatography mass spectrometry (HS SPME
GC-MS) (63). Samples were thawed and incubated for 5min at 60°C with agitation. Subsequently, VOCs were
extracted from the samples for 20min at 60°C using a solid-phase microextraction fiber (50mm Bonded Gray
Hub [DVB/CAR/PDMS] Supelco, USA). The compounds were desorbed from the fiber for 10min on a
Stabilwax-DA Crossband-Carbowax-polyethylene glycol column (30 m length, 0.25 mmID, 0.5mm df). The
settings on the gas chromatograph were PTV Split-less mode 5min at 250°C. Helium was used as carrier gas
at a constant flow of 1.5ml/min. The temperature of the GC oven was initially at 40°C. After 2min, the tem-
perature was raised to 240°C at a rate of 10°C/min and kept at 240°C for 5min. Mass spectral data were col-
lected over a range ofm/z 33 to 250 in full scan mode with 3.0030 scans/second. VOC profiles were analyzed
with Chromeleon 7.3 software. The ICIS algorithm was used for peak integration and the NIST main library
was used for identification by matching mass spectral profiles with the profiles in NIST. One quantifying peak
(in general the highest m/z peak per compound) was used per compound for quantification, while one or
two confirming peaks were used for confirmation.

The 11 aroma-associated compounds studied were propan-1-ol, 3-methylbutan-1-ol (isoamylol), 2-
methylpropan-1-ol (isobutanol), 2-phenylethan-1-ol, methionol, ethyl ethanoate (ethyl acetate), ethyl
butanoate, ethyl hexanoate, 3-methylbutyl acetate (isoamyl acetate), 2-methylpropyl ethanoate (isobutyl
acetate), and 2-phenylethyl acetate (Table 4). All of the purchased analytes had a purity of at least 98%
and were purchased from Sigma-Aldrich (Sigma-Aldrich, Germany). Higher alcohols and esters were
quantified using standard solutions in unfermented synthetic grape juice as similarly described in the lit-
erature (29, 64). The model solutions were spiked with various amounts of the 10 aroma compounds
(higher alcohols and esters) to yield concentrations within the range of the concentrations typically
found in unwooded and unaged wines (Table 4). The headspace was sampled by SPME GC-MS in the
same manner as used for the model wine samples. Standard curves of each studied aroma compound
were created by plotting each aroma compound's peak area against the standard concentration from
the standard solutions. All samples were analyzed in duplicate.

Multivariate data and statistical analyses. The yeast strain-specific impact on the kinetics of amino
acid consumption and aroma compound formation for the 11 volatile aromas was determined by plot-
ting the compound concentrations throughout the fermentation. Furthermore, several performance
metrics were accessed from the dynamic consumption and production profiles, such as the final concen-
tration of volatile aroma compounds and utilization of nitrogenous compounds. In this study, nitrogen
(ammonia/amino acids) utilization was determined as the difference in the ammonia/amino acid con-
centration from beginning to sample time point of interest throughout the fermentation (29). The final
volatile aroma concentration was determined at 404 h, when all of the fermentations were finished.
Principal-component analysis (PCA) was performed using R (version 3.6.2, R Core Team, 2020).

One-way analysis of variance (ANOVA) (significance level of P, 0.05) was performed in R (version
3.6.2) using the statistics package applying post hoc Tukey’s honest significant difference (HSD) test (sig-
nificance level of P, 0.05), as well as in SPSS (IBM SPSS Statistics 27, IBM Corp., Armonk, NY).

A multivariate statistical method known as partial least-squares (PLS) regression was employed to deter-
mine a relationship between biomass and VOC production data (Y-Block) and nitrogen (ammonia and amino
acid) utilization data (X-Block). The utilization was calculated as the difference in concentration at the begin-
ning of the fermentation to concentration at the sampled time point. These two data blocks were imported
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into MATLAB (version MATLAB [2017b], MathWorks, Natick, MA) for PLS regression analysis and interval-PLS
(iPLS) variable selection using the PLS Toolbox (version 8.9; Eigenvector Research, Inc., Manson, WA).
Parameters for iPLS were selected according to the method of Wise et al. (65) and Anderson and Bro (66) and
adapted from the technique of Henderson et al. (61). Reverse-analysis-mode iPLS selection was conducted
with an interval size of one variable with a maximum of 18 latent variables (LVs). The step size, which is the
space between interval centers, and number of variables chosen were automatically decided based on when
there was no improvement in the root mean squared error in cross-validation (RMSECV).

Subsequently, once iPLS was completed, the selected variables were added to PLS Toolbox for struc-
tured equation modeling. The approach used was adapted based on an approach by Henderson et al.
(61) using the SIMPLS algorithm (67) at a confidence limit of 0.95. Auto-scaling followed by mean center-
ing was applied to the preprocessing of the X- and Y-blocks. The PLS model was cross-validated using

TABLE 4 Summary of major of VOCs found in wines along with their chemical attributes

Compound Chemical structure (2D) Compound class

Concn range
in wine
(mg/liter)a,b

Organoleptic (aroma)
associationa,b

Propan-1-ol Fusel alcohol 9–68,000 Solvent, chemical

3-Methylbutan-1-ol (isoamylol) Fusel alcohol 90,000–292,000 Solvent, sweet

2-Methylpropan-1-ol (isobutanol) Fusel alcohol 9,000–175,000 Solvent, chemical, sweet

2-Phenylethan-1-ol (2- phenylethanol) Fusel alcohol 4,000–200,000 Roses, honey, sweet

3-(Methylthio)-1-propanol (methionol) Fusel alcohol 140–5,000 Cabbage, herbal

Ethyl acetate Acetate ester 2–150 Solvent, fruity, nail polish

3-Methylbutyl acetate (isoamyl acetate) Acetate ester 115–7,400 Banana, tropical fruit

2-Methylpropyl acetate (isobutyl acetate) Acetate ester 40–1,600 Banana, tropical fruit

2-Phenylethyl acetate Acetate ester 0.5–750 Pear, flowery, honey

Ethyl butanoate Fatty acid ethyl ester 70–2,200 Floral, fruity

Ethyl hexanoate Fatty acid ethyl ester 150–2,800 Green apple, unripe fruit

aRibéreau-Gayon et al. (39).
bSwiegers and Pretorius (28).
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Venetian Blinds with 24 data splits and a maximum of 18 LVs. The quality and predictive capability of
the PLS model were evaluated from the correlation coefficient (R2), cross-validated correlation coefficient
(Q2), root mean squared error of correlation (RSMEC), and RMSECV. The impact of selected nutrient utili-
zation variables on the PLS model was assessed using scores, loadings, and regression vector plots.
Overall, the PLS model was used to determine the nutrient utilization (ammonia and amino acids) which
contribute to the biomass formation and VOCs production during fermentation.

Metabolic modeling. For model analysis, we used the latest genome-scale metabolic model (GSMM) of
S. cerevisiae, Yeast 8.4.2 (https://github.com/SysBioChalmers/yeast-GEM) (68). To adequately model an anaero-
bic fermentation, we proceeded as suggested by Heavner et al. (69), constraining vO2 to zero (LB = UB=0
[mmol/g dry weight per h]), allowing unrestricted uptake of ergosterol (r_1757), lanosterol (r_1915), zymos-
terol (r_2106), 14-demethyllanosterol (r_2134), and ergosta-5,7,22,24(28)-tetraen-3beta-ol (r_2137) and oleate
(r_2189). In addition, pathways, including the oxaloacetate-malate shuttle and glycerol dehydrogenase reac-
tion, were unrestricted as described by Sanchez et al. (70, 71) (in the model this was achieved by blocking
reactions r_0713, r_0714, and r_0487). Heme A was also removed from the biomass equation, as it is not
used under anaerobic conditions. Expanded coverage of the Ehrlich pathway and accompanying reactions
and metabolites related to sulfur reduction and ester synthesis were added to Yeast 8 (72). Experimentally
derived net uptake and production fluxes, which were taken from measured data from the four yeast strains
during exponential growth phase time points 10h, 24h, and 36h, (see Fig. S3 in the supplemental material),
were used to constrain the model in the form of exchange reactions (LB = UB) for the sugars, amino acids, or-
ganic acids, VOCs, and other by-products.

We applied parsimonious flux balance analysis (pFBA) to evaluate which reactions and pathways are
essential under the given system conditions and eliminate blocked reactions (i.e., reactions that cannot
carry a flux under any condition). It uses a bilevel optimization in which the growth rate (biomass) is
optimized using FBA, followed by the minimization of total flux through all gene-associated reactions at
the maximum growth rate calculated. The underlying assumption is that, under growth pressure, there
is a selection for strains that can reach the highest growth yield while using the minimum amount of
enzyme. Then, genes/reactions are classified into six categories based on Lewis et al. (73), i.e., (i) essential
genes, metabolic genes necessary for growth in the given media; (ii) pFBA optima, nonessential genes
contributing to the optimal growth rate and minimum gene-associated flux; (iii) enzymatically less effi-
cient (ELE), genes requiring more flux through enzymatic steps than alternative pathways that meet the
same predicted growth rate; (iv) metabolically less efficient (MLE), genes requiring a growth rate reduc-
tion if used; (v) pFBA no-flux, genes that are unable to carry flux in the experimental conditions; and (vi)
blocked, genes that are only associated with the reactions that cannot carry a flux under any condition
(“blocked” reactions). Flux enrichment analysis (FEA) was applied to test whether subsystems/metabolic
pathways have significantly more essential genes, hence enriched, than expected by chance. The statisti-
cal significance for the pathways or reaction subsystems to be enriched contained P, 0.01. All reactions,
metabolites, and subsystems are defined according to the Biochemical Genetic and Genomic (BiGG)
database convention (74). Results on pFBA and FEA as reported in the results section are derived from
the experimental data of strain Uvaferm at time point 24 h and it must be noted that the results are in-
dependent of the strain (see the supplemental material text file for the entire essential reaction list).

All metabolic modeling was performed in MATLAB (version MATLAB [2017b], MathWorks, Natick, MA)
using the Cobra Toolbox 3.0 (75). For instance, the specific functions used for pFBA and FEA are documented
in the following tutorial links: https://opencobra.github.io/cobratoolbox/stable/tutorials/tutorialPFBA.html
and https://opencobra.github.io/cobratoolbox/stable/modules/analysis/fluxEnrichmentAnalysis/index.html.

Data availability. All data generated or analyzed during this study are included in this published ar-
ticle and its supplemental material.

SUPPLEMENTAL MATERIAL

Supplemental material is available online only.
SUPPLEMENTAL FILE 1, DOCX file, 0.8 MB.
SUPPLEMENTAL FILE 2, TXT file, 0.01 MB.
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