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ABSTRACT OF THE DISSERTATION

Revealing Cell Type Specific Circadian Regulations in the Skin with Single Cell RNA
Sequencing and a Circadian Time Predictor Pipeline

By

Junyan Duan

Doctor of Philosophy in Mathematical, Computational, and Systems Biology

University of California, Irvine, 2024

Professor Bogi Andersen, Chair

The circadian clock, a transcription-translation feedback loop responsible for generating

robust rhythms that are roughly synchronized to the external 24-hour light-dark cycle, is

present in almost all cells in the body. The clock regulates fundamental biological processes,

and circadian disruption is associated with the onset and progression of various diseases

including diabetes and cancer. Circadian medicine aims to target the circadian clock and

optimally time treatment administrations. However, it remains challenging to determine

the circadian time of the patient or the tissue of interest. Here, we developed tauFisher, a

computational pipeline that can accurately predict the circadian time for a single sample

of transcriptomic data. We highlight tauFisher´s performance on datasets collected from

various tissues using different assay methods including microarray, bulk RNAseq, and single

cell RNAseq, demonstrating that tauFisher is an accessible tool for adapting the existing

timestamp-less datasets for circadian studies.

The circadian clock is robust in the skin, an organism’s first line of defense against environ-

mental fluctuations and insults. The clock’s proper function is essential for maintaining skin

homeostasis and optimizing skin’s response to stressors. Studying the circadian clock in the

skin provides insights into disease development and management. We collected time series of

xi



single cell RNAseq data from mouse skin and discovered different circadian clock properties

and differential rhythmic processes in dermal fibroblasts and dermal immune cells. Incorpo-

rating tauFisher with bootstrapping, we hypothesize that circadian phase heterogeneity may

contribute to the dampened amplitude of the collective core clock in dermal immune cells

when compared to dermal fibroblasts. We also found that the clock regulates metabolism

and immune responses in the dermal fibroblasts and dermal immune cells respectively. Taken

together, our data show that within a single tissue, the circadian clock regulates a highly

divergent set of genes in different cell types.
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Chapter 1

The circadian clock and diseases of the

skin

J, Duan, E. N. Greenberg, S. S. Karri, and B. Andersen. The circadian clock and diseases

of the skin. FEBS Letters, 595(19):2413–2436, Sept. 2021

1.1 Abstract

Organisms have an evolutionarily conserved internal rhythm that helps them anticipate and

adapt to daily changes in the environment. Synchronized to the light-dark cycle with a period

of around 24 hours, the timing of the circadian clock is set by light-triggering signals sent

from the retina to the suprachiasmatic nucleus. Other inputs, including food intake, exercise,

and temperature, also affect clocks in peripheral tissues, including skin. Here, we review the

intricate interplay between the core clock network and fundamental physiological processes

in skin such as homeostasis, regeneration, immune and stress responses. We illustrate the

effect of feeding time on the skin circadian clock and skin function, a previously overlooked
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area of research. We then discuss works that relate the circadian clock and its disruption to

skin diseases, including skin cancer, sunburn, hair loss, aging, infections, inflammatory skin

diseases, and wound healing. Finally, we highlight the promise of circadian medicine for skin

disease prevention and management (Figure 1.1).

1.2 Background

As the largest organ of the body, skin provides primary defense against the environment,

including toxins, microorganisms, and radiation [204, 223]. It is also a critical part of organ-

ismal homeostasis through fat storage and the production of hormones, including vitamin

D. Due to its interactions with external stimuli, the skin must be equipped to adapt to its

environment.

The circadian clock, an intrinsic autonomous clock that controls the body’s divergent func-

tions during day and night, affects the expression of multiple genes that mediate skin stem

cell metabolism and proliferation, DNA repair, stimulus response, and immunity. Circadian

clock research has elucidated fundamental regulatory mechanisms that contribute to skin

cancer, aging, inflammatory and other skin diseases. Emerging clinical research has begun

to employ these findings to refine treatment based on the principles of circadian medicine

(Figure 1.1). While circadian dermatology is a nascent field, studies conducted on the circa-

dian clock continue to unravel the mysteries of the skin and its complex system of regulation.

Understanding the role of the circadian clock in the skin may provide new insights into the

pathogenesis of skin diseases and their treatment. To this end, we review the role of the

circadian clock in skin, emphasizing the most recent findings in the field, and discuss the

role of circadian clock disruption in skin diseases.
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1.3 The circadian clock

From bacteria to plants and animals, all living organisms have intrinsic rhythms that are

synchronized with the light-dark cycle with a period of around 24 hours. Controlled by

internal biochemical oscillators, the circadian clock is autonomous and maintained at both

organismal and cellular levels in the absence of outside stimuli [29, 38]. In this section, we

provide a brief overview of the mammalian circadian clock at the organismal and molecular

level.

1.3.1 The SCN synchronizes peripheral clocks

In mammals, the circadian clock machinery is present in almost all cells. The suprachiasmatic

nucleus (SCN), a small region in the hypothalamus of the brain, acts as the central pacemaker

that synchronizes the circadian clocks in peripheral tissues through neuronal and hormonal

signals [38, 79].

The primary entrainment signal for the SCN is light. Upon light reception, intrinsically

photosensitive retinal ganglion cells (ipRGCs), pivotal components of the retinohypothala-

mic tract, send signals to set the circadian time in the SCN. In the SCN, a subpopulation

of cells produces neurotransmitters such as vasoactive intestinal peptide (VIP) and arginine

vasopressin (AVP) to synchronize and stabilize the cellular circadian clocks within the SCN

[38, 79, 166]. While the neurons in the SCN are traditionally believed to be the main con-

tributor to circadian rhythm establishment, SCN astrocytes also have the ability to control

the circadian rhythm in the SCN [38, 79]. As the robustly autonomous SCN sends signals

to peripheral tissues, peripheral clocks are synchronized with respect to the SCN and thus

the ambient light-dark cycle (Figure 1.2).

The SCN clock can synchronize peripheral clocks, but it is not necessary for circadian rhythm

3



maintenance in peripheral organs [104, 169]. Although ablation of the SCN in mice disturbs

the circadian rhythms in peripheral tissues, the obliteration of BMAL1 in all tissues except

the liver does not completely obliterate circadian rhythms in the liver, irrespective of whether

light signals are available [104, 169]. In addition, other signals such as food intake and

temperature can set the clock in peripheral tissues independent of the SCN, causing phase

shifts in the peripheral clocks relative to the central clock (Figure 1.2) [31].

1.3.2 The molecular clock is a transcription-translation feedback

loop

In each cell, the circadian clock is a biochemical oscillator formed with interlocked transcription-

translation feedback loops [181]. The primary feedback loop, which is commonly referred to

as the core clock gene network, consists of a positive and a negative arm. In the positive

arm, transcription factors Brain and Muscle ARNT-Like 1 (BMAL1) and Circadian Loco-

motor Output Cycles Kaput (CLOCK) form heterodimers, which bind to the enhancer box

(E-box) to activate transcription of Period 1, 2, and 3 (Per) and Cryptochrome 1 and 2

(Cry). PER and CRY drive the negative arm, inhibiting the expression of BMAL1-CLOCK

and thus impeding their own transcription. With the levels of PER and CRY decreasing, the

BMAL1-CLOCK dimer regains activation until PER and CRY accumulate and deactivate

BMAL1-CLOCK again, completing the loop with a period of around 24 hours (Figure 1.3)

[181, 150, 39].

In addition to the core clock gene network, a secondary feedback loop reinforces the 24-hour

oscillation for Bmal1 expression. BMAL1-CLOCK activates transcriptions of not only Per

and Cry but also other clock-controlled genes, including RAR-related Orphan Receptors

(RORs) and REV-ERBs. While RORs bind to ROR/REV-ERB-response elements (RORE)

to activate transcription of Bmal1, REV-ERBs bind to the same sites to inhibit Bmal1
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transcription. With the level of BMAL1 decreasing, transcription of REV-ERBs stalls until

transcription of Bmal1 is reestablished (Figure 1.3) [181, 150, 39].

As simple as the network is, the core clock gene network directly or indirectly modulates the

expression of multiple genes and biological processes in all organs, making those processes

rhythmic as well. In mice, for example, around 16%, 13%, 12%, and 7% of protein coding

genes are rhythmic in the liver, kidney, lung and skin, respectively [220, 72]. While the same

clock gene network is omnipresent in cells and the SCN acts as a synchronizer for the entire

body, the set of genes that are circadian varies greatly between organs. This is because the

circadian machinery regulates different biological processes in different organs to modulate

their functions. In addition, there is variability in the amplitudes and the peak times of clock

gene expressions between organs, as external signals such as temperature and food intake

can selectively entrain peripheral clocks (Fig. 1) [31].

1.4 The circadian clock in the skin

Acting as a protective barrier against toxins and other external stressors, skin is a multi-layer

organ harboring various cell types organized into several compartments to fulfill a range of

tasks such as water loss prevention, sensation, and hormone synthesis [204, 223]. In humans

and mice, the skin comprises three main layers: the epidermis, the dermis, and the hypo-

dermis; each layer has active circadian clocks. With the outside world changing throughout

the 24-hour day, a mechanism has evolved to allow the skin to anticipate the environmental

shifts and adjust accordingly. Indeed, diurnal rhythms are observed in multiple cell types

across all layers of the skin [139].

As in other organs, the SCN synchronizes circadian clocks throughout the skin. This is

supported by SCN ablation studies that abolished skin circadian rhythms [183]. More recent
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studies have brought to light that epidermal circadian clocks and time-setting mechanisms

are independent of the SCN. Selective expression of Bmal1 only in the epidermis does not

disturb the skin diurnal rhythm as long as the mice experience regular light-dark cycles [198],

indicating that the epidermal clock does not require the SCN clock or clocks in other tissues.

Possible contributors to the maintenance of such diurnality are light sensitive opsin proteins

present in various skin cell types (such as melanocytes, keratinocytes, fibroblasts and hair

follicle cells) that may be able to entrain the skin circadian clock [174, 30].

1.4.1 The skin is a multi-layer organ with diurnal rhythms in every

layer

The outermost layer of the skin is the epidermis (Figure 1.4A). Hosting Merkel cells, melanocytes,

T-cells, and Langerhans cells, the epidermis itself is organized into four layers (five on the

palm and sole) consisting of keratinocytes at different differentiation stages: stratum basale,

stratum spinosum, stratum granulosum, stratum lucidum (palm and sole specific) and stratum

corneum (Figure 1.4B) [204]. The journey of the keratinocytes in the epidermis starts in the

stratum basale, where the intrinsic circadian clock is required for the diurnal rhythms in pro-

liferation [72] as well as the coordination between cell division and intermediary metabolism

[173] in epidermal stem cells. The keratinocyte progeny of stem cells is continuously pushed

upwards until arriving in the stratum corneum at the top, where the dead keratin-filled cells

slough off [204].

Just below the epidermis, separated from it by a basement membrane, is the dermis (Figure

1.4A). The dermis primarily consists of extracellular matrix with collagen fibers synthesized

by fibroblasts. It is much thicker than the epidermis and contributes strength and elasticity

to the skin [204]. The diverse cellular populations in the dermis include fibroblasts, multiple

immune cells such as T cells, mast cells, macrophages, and dendritic cells [204], as well
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as dermal white adipocytes (Figure 1.4A). All of these cell types participate in immune

responses and wound healing [163]. Despite their spatial proximity, the dermis and the

epidermis have distinct circadian behaviors. Computational analysis of data collected from

skin biopsies from human forearm, buttock, and cheek revealed that oscillation of clock genes

is more robust in the epidermis than in the dermis across all three sites [207]. This may be

because the cell types in the dermis are more diverse than in the epidermis, leading to less

uniform circadian gene expressions in the dermis.

The hypodermis is the layer just below the dermis (Figure 1.4A); it mainly consists of

adipocytes that form the subcutaneous fat, but also contains fibroblasts and macrophages

[204, 163]. As an energy reservoir, the adipose tissue has long been studied for its role

in metabolic diseases, which are intertwined with the whole-body circadian network. The

relationship between the adipose tissue and the circadian clock is reviewed in detail in recent

articles [67, 110, 172].

1.4.2 The circadian clock in hair follicles

The hair, one of the defining characteristics of mammals, works together with the epidermis

to sense and protect the body from environmental changes. Hair shafts are rooted in hair

follicles, which are miniature organs consisting of concentric layers of keratinocytes. They

are embedded in the skin, penetrating into the dermis (Figure 1.4A). The infundibulum and

isthmus are the two most superficial compartments of hair follicles. They are continuous with

the epidermis and their circadian activities are similar to that of the epidermis (Figure 1.4C,

D) [139, 162]. The remaining lower compartments of hair follicles, including the anagen-

specific bulb, the stem cell-containing bulge, and the mesenchymal-derived dermal papilla,

are more dynamic (Figure 1.4C, D). In particular, the dermal papilla and the anagen-specific

bulb undergo structural changes as the hair follicles move through the three main stages of
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the hair cycle: the growth stage anagen (Figure 1.4C), the regression stage catagen, and

the relatively quiescent stage telogen (Figure 1.4D) [139, 162]. Diurnal genes in telogen

and anagen skin only partially overlap [72], suggesting that the circadian clock differentially

regulates hair follicles at those two stages.

Anagen marks the beginning of hair renewal. During anagen, quiescent bulge stem cells

migrate out of the bulge to become proliferating matrix keratinocytes within the anagen

bulb. The dermal papilla directs the differentiation of those matrix keratinocytes to form

the inner layers of the hair follicle and the hair shaft (Figure 1.4C) [162, 125]. In both the

bulge and the anagen bulb of mouse hair follicles, the circadian clock is robustly rhythmic and

gates mitotic rhythms by synchronizing the G2/M checkpoint. Due to this synchronization

of mitosis, the extension of the hair shafts shows a diurnal pattern, with more growth in

the morning than in the evening [140]. In vivo studies of the human hair cycle are difficult,

but studies indicate that circadian genes are expressed rhythmically in human hair follicles

as well [197, 5]. Furthermore, ex vivo studies suggest that the circadian clock regulates the

human hair cycle, as silencing BMAL1, CLOCK and PER1 extends anagen [5]. In addition

to hair growth, the circadian clock also controls the pigmentation of the hair during anagen,

as melanin production by melanocytes in the human anagen hair matrix increases when the

core clock genes BMAL1 and PER1 are silenced [78].

Hair follicles cease to grow during catagen and eventually enter the resting stage telogen.

During telogen, the hair follicles prepare for the next anagen by forming the secondary hair

germ just above the dermal papilla (Figure 1.4D) [125, 8]. Interestingly, in mice, while the

hair is not growing during this stage, the amplitude of clock gene expression is significantly

higher than during anagen, with the strongest expression in the hair germ. This robust

circadian clock in the hair germ regulates stem cell activation as well as anagen initiation

[113]. Consistent with this finding, germline Bmal1 mutation in mice leads to a delay in

anagen initiations. Knocking out Bmal1 specifically in keratinocytes, however, does not
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significantly delay anagen initiation [72, 113]. This suggests that Bmal1 regulates anagen

initiation through the central SCN clock or other non-epidermal cell types. In nature, hair

cycles for most mammals are seasonal. Given the role of the clock in seasonal cycles, it is

tempting to speculate that the circadian clock has a role in seasonal hair growth [71].

Among the bulge stem cells, circadian rhythms are heterogeneous during telogen, with cells

expressing higher levels of Bmal1 being more prone to activation signals. As anagen begins,

circadian heterogeneity gradually decreases with most of the stem cells expressing high levels

of Bmal1 [139, 92]. Consistently, overexpression of Bmal1 by knocking out its repressors

Per1 and Per2 stimulates proliferation and reduces the number of dormant bulge stem cells

[92]. These findings are consistent with a regulatory role of the circadian machinery in

the hair cycle and indicate that robust clock output correlates with hair follicle stem cell

activation and anagen initiation.

1.4.3 The skin immune system is circadian clock-regulated

In order to fulfill its infection control function, the skin harbors resident innate immune

cells distributed throughout the epidermis and dermis (Figure 1.4A) as well as in organized

tertiary lymphoid structures [135, 159, 130, 1]. The circadian clock modulates the activation

of these cells, possibly to match the likelihood of infections and insults throughout the 24-

hour day. By regulating the skin immune response in this way, the circadian clock may

decrease the tendency for autoinflammatory and autoimmune skin diseases [75, 11, 108].

Epidermal-resident immune cells include specialized dendritic cells called Langerhans cells,

as well as specialized T cells referred to as γ/δ+ T cells. γ/δ+ T cells are under clock

regulation in that the CLOCK protein directly binds to the promoter of the interleukin 23

receptor (IL-23R) in γ/δ+ T cells, thereby playing a regulatory role in the development the

inflammatory skin disease psoriasis [11]. Langerhans cells appear to be regulated by the
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circadian clock as well. For example, when exposed to a viral mimic, imiquimod (IMQ),

Langerhans cells highly upregulate anti-viral genes, the expression of which is affected by

Bmal1 deletion [75].

Other immune cells such as macrophages, mast cells, T cells, and dendritic cells reside in

the dermis (Figure 1.4A). Macrophages constantly monitor the skin microenvironment and

innately respond to pattern-associated molecular patterns and damage-associated molecular

patterns produced through infections and inflammation. Other key functions of macrophages,

including cytokine production and phagocytosis, are diurnally gated [106, 157]. Mast cells

cause allergic responses by releasing histamine, which activates other immune cells to cause

allergy-like symptoms such as itching, erythema, and edema. Clock deletion in murine mast

cells specifically ablates temporal variations in IgE -mediated degranulation and thus pas-

sive cutaneous anaphylactic reactions [16, 128], indicating direct regulation by the circadian

clock.

Apart from its resident immune cells, the skin recruits adaptive immune cells through

chemokine and cytokine release during infections and inflammation. Circadian expression of

chemoattractants, and the subsequent rhythmic infiltration of neutrophils and macrophages

into the skin, results in diurnal severity of parasitic infection in murine footpad models [101].

Moreover, all rhythms in infection are abolished in clock-deficient macrophages and mice

lacking the circadian clock in immune cells [101]. Additionally, the diurnal pattern of T cell

recruitment and function parallels nocturnal itching and exaggeration in atopic dermatitis

(AD) [210].

1.4.4 Skin microbiome

A diverse community of microorganisms, termed the microbiome, colonizes the human body.

Appropriate microbial composition and function is essential for proper host immune and
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metabolic activities [112, 192]. Most human studies regarding potential diurnal rhythms

in the microbiome have been conducted in the oral cavity [153] or the gut [112, 192, 221,

218], showing that rhythms in the microbiome are primarily driven by food intake. On

the skin, taxa abundance, mainly of the phylum Actinobacteria, and especially the families

Propionibacteriaceae, Micrococcaceae, Gordoniaceae and Dermacoccaceae) varies diurnally.

This pattern primarily correlates with human activity [201].

1.5 The effect of feeding on the skin circadian clock and

skin functions

Although light entrains the SCN clock, additional inputs such as temperature, exercise, and

food intake affect the clocks in peripheral tissues [31]. The effects of food intake on circadian

clocks in metabolic organs such as liver and fat are extensively studied. In these organs,

food intake has major roles in timing of the clock, which is unsurprising given the divergent

types of whole-body metabolism required during the day (food intake and activity) and

night (fast and rest). In contrast to extensive studies focusing on the liver, the connection

between feeding and circadian rhythms in the skin remained unexplored until recently. Below

we review some of the findings showing that feeding regulates the skin circadian clock and

biology of the skin.

1.5.1 Feeding-induced gene expression changes in skin

In experiments with multiple time-restricted feeding schedules, it is possible to rearrange the

transcriptome data into feeding time series covering the beginning of feeding to 8 hours after

the beginning of feeding. This allows the study of the effect of feeding on skin independent

of time of day. In total, the expression of around 2000 genes changes in response to food
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intake, indicating powerful effects of feeding on gene expression in the skin (Figure 1.5,

left). The feeding-affected upregulated genes are involved in lipid biosynthesis and protein

synthesis, whereas the downregulated genes are involved in response to starvation, autophagy,

negative regulation of cell proliferation, and response to oxidative stress. This suggests that

the metabolism and cell cycle regulators in the skin respond to feeding. Additionally, the

fact that half of the feeding-affected transcripts are diurnal in at least one of the feeding

schedules suggests that feeding is a regulator of diurnal gene expression in the skin [195].

1.5.2 Daytime restricted feeding shifts the phase of the circadian

clock in the skin

Daytime restricted feeding, as opposed to normal nighttime feeding schedules for mice, shifts

the phase and amplitude of the circadian clock in skin (Figure 1.5, middle) [195]. Compared

to nighttime feeding groups, daytime-restricted feeding shifts the phase of the core circadian

machinery in skin as indicated by Per2, Dbp and Per1 mRNA expression patterns. The

magnitude and the direction of the shifts depend on the exact feeding time during the day.

Additionally, the amplitude of Per2 mRNA expression decreases with daytime restricted

feeding [195]. These changes in the skin circadian clock are different from the changes in the

liver, where the phase of the clock is tightly coupled with feeding time, with phase advance-

ments in all daytime-restricted feeding groups. Also, daytime-restricted feeding does not

affect the amplitude of the liver clock [195]. These findings demonstrate a strong regulatory

effect of feeding time over the skin circadian clock that is different from the effect on the

liver clock.

The mechanisms whereby time of feeding shifts the phase and amplitude of the skin circa-

dian clock are unknown. Since feeding regulates the expression of many systemic hormones

including insulin, these hormones are potential mediators of the clock phase-shifting effects.
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Indeed, application of insulin to mouse whisker hair follicles induces activation of Per2, lead-

ing to circadian synchronization of hair follicles [40]. Interestingly, application of insulin

before the peak of PER2 expression leads to phase advances, while application of insulin af-

ter the peak does not [40]. Similar patterns are observed in cultured human hair follicles [94],

suggesting that the timing of insulin shifts; therefore, food intake, may disturb the circadian

rhythm in human hair follicles. While insulin may be one mediator, the exact mechanisms

connecting feeding time to circadian rhythms in the skin remain to be investigated.

1.5.3 Transcriptomic changes in skin are specific to the altered feed-

ing schedules

RNA-seq of the exons, introns, and antisense RNA from the skin of mice under three dif-

ferent restricted feeding schedules shows that while around 2500 to 3000 exons oscillate in

each of the schedules, only 147 transcripts are shared in all three groups, including several

members of the core clock gene network [195]. Despite the transcriptomic diversity, gene

ontology analysis of the diurnal genes indicates cell death, redox regulation, and circadian

clock as enriched biological processes for all feeding groups. Significant correlations between

the peak expression time of a gene’s intron and exon indicated that transcriptional regulation

is responsible for the circadian phase shifts induced by restricted feeding. Some cytokinesis

genes appear to be the exception to this rule and are regulated post-transcriptionally. Addi-

tionally, exons altered by food intake, regardless of the feeding schedule, are mostly related

to metabolism, an indicator that feeding plays a role in skin metabolism status [195].
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1.5.4 Time-restricted feeding does not affect diurnal rhythms in

epidermal stem cell division but influences the sensitivity to

UVB-induced DNA damage

Overall, daytime restricted feeding does not alter the structure of the skin with the exception

that the dermis is thinner for the daytime-restricted feeding groups compared to the control

[195]. Interestingly, although the cell cycle in epidermal stem cells shows a diurnal rhythm

that depends on Bmal1, the phase of the circadian clock in skin does not control the cell

cycle phase: the peak of S phase does not shift in the restricted feeding groups despite the

shift in the phase of the clock (Figure 1.5, middle). These experiments suggest that daytime

restricted feeding desynchronizes intermediary metabolism and cell division in epidermal

stem cells [195].

On the other hand, skin’s sensitivity to ultraviolet B (UVB) radiation-induced DNA damage

is affected by daytime restricted feeding (Figure 1.5, middle) [195]. More damage is caused

by UVB applied during the night than during the day in the skin from the nighttime-feeding

group, while more damage is caused during the day for the daytime-restricted feeding group.

Furthermore, oscillation of xeroderma pigmentosum group A (Xpa), a gene responsible for

UVB-induced DNA repair, is dampened and less robust in the restricted feeding groups, sug-

gesting that feeding time affects the diurnal rhythms of genes responsible for UVB protection

and DNA damage repair in skin [195].

1.5.5 Time-restricted feeding influences the skin immune response

Expression of interferon-sensitive genes in the skin is also shifted by time-restricted feeding

(Figure 1.5, middle) [195], suggesting that feeding time influences the skin immune response.

Consistent with this idea, the expression pattern of interferon-sensitive genes in response to
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IMQ in the daytime-restricted feeding group is different from the one in the nighttime feeding

group. In the daytime-restricted feeding group, interferon-sensitive genes are expressed at

higher levels after IMQ application during the night than during the day, which is the

opposite of the pattern shown in the nighttime feeding group (Figure 1.5, middle). These

findings suggest that time restricted feeding-induced circadian clock alterations affect the

skin immune response [75].

1.5.6 The effect of calorie intake on diurnal gene expression and

skin function

Besides food intake as such and time of feeding, the amount of calorie intake affects gene

expression and function of the skin. Calorie restriction changes the structure of mouse

skin by inducing faster hair regrowth after shaving, thicker epidermis, less dermal white

adipose tissue, and greater vascular network [65]. Consistently, calorie-restricted mice have

more interfollicular and bulge hair follicle stem cells that contribute to epidermal and hair

growth. Additionally, calorie restriction alters the metabolism in mouse skin by decreasing

oxidative metabolism in the epidermis but increasing it in the dermis [65]. Interestingly,

calorie restriction can impede the aging-related reprogramming of clock-controlled genes,

suggesting the connections between calorie restriction, circadian controlled genes and skin

function (Figure 1.5, right) [171].

On the other hand, high fat diet induces hair thinning and dermal adipose tissue expansion

without significantly affecting epidermal thickness [126]. A closer look at the hair follicles

in mice taking high fat diet reveals a decrease in hair follicle stem cells in the bulge as well

as a fate shift of these stem cells from hair shaft to upper hair follicle components such

as sebaceous gland and the epidermis-hair follicle junction zone [126]. On a transcriptomic

level, high fat diet induces the expression of around 3000 rhythmic genes enriched for gene
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ontology terms such as fatty acid oxidation, responses to oxidative stress and mitochondrion

organization [171]. This finding suggests a rewiring of the rhythmic genes to adjust skin

metabolism in response to high fat diet (Figure 1.5, right).

Taken together, food intake itself, the time of food intake, and the amount of calorie intake

affect the expression of rhythmic genes in the skin, as well as the cellular composition and

function of the skin. These findings suggest that feeding has powerful effects on the skin, in

part through modulation of the rhythmic transcriptome (Figure 1.5).

1.6 Circadian rhythms and skin diseases

Since the circadian machinery modulates many skin processes, including immunity, cell pro-

liferation, metabolism, and DNA damage repair, it is plausible that circadian dysregulation

can contribute to the development and progression of skin diseases.

The connection between circadian dysfunction and skin diseases is being studied both in

the laboratory and in clinical settings. In the laboratory, chronic jet lag, prolonged light

exposure, and flashlight treatment at night have successfully induced circadian disruption in

mice. Additionally, mutation of core clock genes in mice and cultured tissues and cells provide

insights into the role of the clock in disease. Human studies mostly focus on epidemiological

data collected from shift workers, aiming to delineate the association between shift work-

induced circadian disruption and diseases.

In this context, we focus on the role of the circadian clock in various skin diseases, including

skin cancer, sunburn, aging, hair loss, inflammatory diseases, infections, and wound healing.
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1.6.1 Skin cancer

The two main forms of skin cancers are carcinoma and melanoma. Carcinomas, such as

squamous cell and basal cell carcinomas, are derived from keratinocytes. Melanomas, on the

other hand, are derived from melanocytes [168]. Although carcinomas are more frequent,

melanomas are more deadly by metastasizing through blood [117].

Ultraviolet (UV) radiation, either from the sun or tanning beds, is the major cause of

melanomas and carcinomas. UV radiation from the sun can be classified into three types

based on wavelength: UVA, UVB, and UVC. UVC is the most damaging of the three, but

fortunately the majority of it is absorbed by the ozone layer. On the other hand, most of

UVA and a small percentage of UVB still reach the earth. Those two wavelengths are ab-

sorbed by skin cells and cause DNA mutations through different mechanisms. UVB directly

causes nucleotide changes while UVA raises the level of reactive oxygen species (ROS) that

can lead to DNA damage. Additionally, while UVB is a thousand times more carcinogenic

than UVA, UVA can penetrate deeper to cause DNA mutations [41, 131].

Epidemiological studies linking work-related circadian disruption to cancer risk have high-

lighted the role of the circadian clock in several types of cancer, including melanoma [212].

The skin’s susceptibility to UV radiation-induced DNA damage is diurnal

Circadian rhythms are robustly present in the skin, an organ that directly experiences vari-

ations in UV radiation throughout the day. Indeed, the susceptibility of the skin to UV

radiation-induced DNA damage is time-of-day dependent, and this diurnality is controlled

by the circadian clock. There are at least two possible mechanisms contributing to the di-

urnal pattern of DNA damage. The first one relates to the susceptibility of the S phase of

the cell cycle to UV-induced DNA damage [72] and the other one to the diurnality in DNA
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repair [68, 149].

Exposing the dorsal skin of mice to UVB radiation at different times throughout the day

revealed that more DNA damage occurs when the exposure takes place at ZT20 than at

ZT8 [72]. Nucleotide excision repair (NER) is ordinarily capable of resolving UV damage,

but rate-limiting subunits of the process such as XPA proteins are expressed in a rhythmic

pattern due to circadian clock regulation. Because of this rhythmicity, mice that are exposed

to UV radiation during dark hours experienced more severe and abundant squamous cell

carcinomas compared to mice exposed to UV radiation during light hours [68]. Such time-

dependent variation in DNA damage is replaced with a constant high level in Bmal1 (−⁄−)

mice, suggesting that the susceptibility to UVB radiation is controlled by the clock [72]. The

cell cycle is also diurnal in mouse epidermal cells and controlled by the clock. More cells are

in the S phase at night (ZT21) than during the day (ZT9). Similar to the DNA damage, the

diurnal variation in the proportion of S phase cells disappeared in single knockout Bmal1 (−⁄−)

mice and double knockout Cry1−⁄−Cry2−⁄− mice [72, 158]. It is noteworthy that the S phase

is more prone to DNA damage, which may contribute to increased susceptibility to UVB

radiation at night (ZT20) compared to the day (ZT8) [72].

XPA protein is expressed at high levels during the day and is at low levels at night [68, 149].

P53 protein also accumulates to a higher level in mouse skin exposed to UV radiation at

night (ZT21) than at during the day (ZT9). This variation could be explained by changes

in the level of MDM2 protein, which stimulates the degradation of P53 protein and shows a

diurnal expression pattern. During the night, the levels of both MDM2 and P53 proteins are

low, resulting in less degradation of P53. Thus, when mouse skin is exposed to UV radiation

at night, the P53 levels rise to a high level with minimum degradation, leading to more

P53-dependent responses such as apoptosis. On the other hand, since the expression level of

both P53 and MDM2 proteins are already high during the day, UV radiation does not cause

much increase in the P53 level because the level of MDM2 is high enough to degrade most
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of the P53 proteins. Hence, the P53-dependent responses in mouse skin are less prominent

when the radiation occurs during the day instead of at night [69].

The skin is protected from UV radiation by the pigment melanin produced by melanocytes

[154]. The core clock component BMAL1 influences melanin production by associating with

microphthalmia-associated transcription factor (MITF), the master regulator of melanogene-

sis. MITF has rhythmic expression levels alongside BMAL1. By overexpressing BMAL1, the

resultant melanin from the melanogenesis pathway was correspondingly higher, conferring

greater protection against UV radiation for skin cells [155].

For non-UV radiation induced carcinoma, which accounts for about 10% of carcinomas,

the loss of Bmal1 results in decreased development of squamous tumors in mice with an

oncogenic background [92]. Compared to the control, mice with Bmal1 knockout have lower

percentages of tumor-initiating cells and increased expressions of tumor suppressors, thus

decreasing the severity and abundance of carcinomas.

In sum, the clock affects UV-induced skin cancer initiation by regulating the cell cycle and

DNA repair mechanisms in keratinocytes and through regulation of UV-protectant pigment

from melanocytes.

The circadian clock regulates skin cancer progression

In addition to controlling susceptibility to UV-induced DNA damage and cancer initiation,

the clock is involved in skin cancer progression in at least two ways. On the one hand,

cancerous cells possess aberrantly expressed clock genes, resulting in impaired clock function

[119]. On the other hand, mutations of core clock genes are associated with melanoma

progression [76]. As a result, recent studies have targeted components of the circadian clock

to restore tumor cell circadian rhythms in cancer treatment [119].
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The clock network is dampened in cancer cells, demonstrating that an oncogenic land-

scape facilitates clock dysfunction [119]. A comparison of gene expression data from human

melanoma and healthy skin samples reveals downregulation of clock genes in melanoma [46].

The upregulation of oncogenes such as Ras extends the period of the clock, demonstrating

mechanisms in cancer progression that disturb the circadian machinery [144]. Consistently,

mice injected with B16-F10 melanoma cells possess severely impaired clock gene regulation

within and around the tumor site [47]. Core clock components can be indirectly regulated

by proteins of the Melanoma Antigen (MAGE) family that bind to RORs or modify ubiqui-

tination of clock proteins [196, 34]. Similarly, circadian machinery is disrupted in oncogenic

keratinocytes; ablation of the tumor suppressor gene Pten increases BMAL1 in hair follicle

stem cells, highlighting the regulatory influence of tumor suppressors on core clock compo-

nents [217].

In addition to disrupted circadian clock function in melanoma cells, circadian disruption con-

tributes to other oncogenic mechanisms. Myeloid-specific Bmal1 knockouts lead to metabolic

dysregulation in macrophages, thus promoting immune suppression and melanoma tumor

burden [7]. In addition, chronically shifting light schedules alters the immune microenvi-

ronment in melanomas by inverting the ratio of M1 and M2 macrophages [3]. Thus, clock

dysfunction can lead to tumor-promoting changes in the melanoma microenvironment.

Circadian disruption also promotes cell cycle transitions by upregulating cell cycle genes

such as Ccna2 [3]. Clock proteins like PER can couple with nuclear proteins involved in the

cell cycle, enabling circadian control of cell cycle checkpoint genes [105]. Normally, specific

components of the clock, such as neuronal PAS domain 2 (NPAS2), also directly limit cellular

proliferation by gatekeeping portions of the cell cycle, but mutations in these genes promote

cell cycle transitions [66]. Overall, since clock proteins act as critical regulators of cell

cycle checkpoint control, disruption of the clock leads to unregulated division and tumor

proliferation [97].
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Given that clock dysfunction enables tumor proliferation, targeting the clock to improve its

function could facilitate cancer management. Inducing circadian rhythmicity in tumor cells

by dexamethasone decreases in vivo melanoma growth in mice [100]. This response is clock-

dependent, as knocking down Bmal1 in tumors prevents the growth-dampening effect from

dexamethasone. Pharmacological studies also targeted components of the circadian clock,

nuclear hormone receptors NR1D1 and NR1D2, to stimulate apoptosis in malignant cancer

cells [177]. By applying agonists of these receptors, senescent cells like those in melanocytic

nevi would undergo cell death, demonstrating that treatments targeting core clock machinery

impair melanoma proliferation. In addition to targeting the circadian clock machinery, cur-

rent cancer treatments can utilize the clock by modulating the time of treatment application.

The toxicity of the chemotherapeutic cisplatin towards melanoma cells varies throughout the

day, indicating that melanoma treatment is more beneficial in the morning (ZT0) for patients

[43].

In sum, the circadian clock plays a role in the initiation and progression of skin cancer. The

rhythmicity of the clock regulates DNA-damage repair, thus modulating the susceptibility

to UV-induced DNA damage and cancer initiation. Carcinomas and melanomas often pos-

sess diminished clock function, promoting cell cycle transitions and cell proliferation. Also,

dysregulation of the clock can alter the tumor microenvironment to make it more immuno-

suppressive. Targeting core clock genes therapeutically to restore clock function may be a

promising approach to cancer treatment.

1.6.2 Sunburn

Short-term exposure to excessive UV radiation leads to sunburn. UV radiation-induced DNA

damage leads to an inflammatory response characterized by skin redness, swelling, and pain

[48]. Consistent with the diurnality in UV-induced DNA damage, the severity of sunburn
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symptoms also exhibits a diurnal pattern. While erythema severity saturates at high levels

of UV exposure on the dorsal skin of mice, moderate levels of radiation applied during the

night (ZT21) caused higher levels of inflammatory cytokines, apoptosis, and worse erythema

than during the day (ZT9) [69].

Due to the opposite chronotypes of humans and mice, the diurnal pattern found in mice is

speculated to be reversed in humans [72, 41, 69]. Indeed, radiation in the evening (between

7pm to 9pm) caused more serious erythema than in the morning (between 7am to 9am) on

human skin, indicating that the human skin is more sensitive to radiation in the evening

[132]. Interestingly, P53 protein accumulated more in skin samples collected 24 hours after

morning irradiation, which is the same pattern in mice [132]. This could be explained by

previous findings wherein UVB-induced accumulation of P53 is not correlated with severity

of erythema in human skin [81].

In summary, UV-induced DNA damage directly links to skin carcinogenesis as well as acute

inflammatory responses. Furthermore, the effect of UV radiation on skin is time-of-day

dependent due to the diurnality of cell cycle and DNA damage repair.

1.6.3 Hair loss

Hair loss, also known as alopecia, is one of the most common skin concerns. While it usually

occurs on the scalp, hair loss can affect any hair bearing part of the body. The most common

form of alopecia is androgenetic alopecia, which affects both males and females, albeit with

a different pattern of hair loss. There is also an aging-associated hair loss that may be

independent of androgenetic alopecia. Telogen effluvium is another hair loss disease; it may

be triggered by a number of stimuli, including stress, hormones, medications, and illness

[73]. In this condition, hair follicles enter the shedding phase in a synchronized manner

[189] whereas normally human hair follicles have desynchronized hair cycle stages. Anagen
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effluvium on the other hand is caused by cell death in the matrix of growing hair follicles in

response to genotoxic stimuli such as ionizing radiation and chemotherapy [143]. Alopecia

areata is an autoimmune disease characterized by hair loss. Finally, scarring alopecias are

inflammatory conditions that lead to destruction of the hair follicle bulge stem cells and

permanent loss of hair follicles [189].

Given the regulatory role of the circadian clock in hair follicles, it stands to reason that

clock disruptions could contribute to hair loss, especially aging-related hair loss. Evidence

for this, however, is missing from epidemiological studies. The clearest evidence for a role of

the circadian clock in hair loss comes from mouse studies showing that the clock gates cell

division in growing hair follicles. Thus, γ radiation causes more hair loss when applied to

anagen hair follicles at the mitosis peak in the morning than in the evening when mitosis

levels drop [140]. Based on this finding in mice, we speculate that radiation in the evening

would causes more hair loss than radiation in the morning in humans. Hence, arranging

radiotherapy in the morning may be better for managing hair follicle damage during the

treatment.

1.6.4 Aging

At an organismal level, aging correlates with circadian rhythm alterations as indicated by

features including advanced sleep pattern, flattened body temperature fluctuation, and de-

creased activity levels during the wake period [84]. Additionally, aged mice cannot adapt

to light-dark schedule alterations as well as young adult mice [32]. One explanation for this

is related to the impaired functions of retinal cells and the SCN. Since aging reduces the

number of ipRGCs, the amount of SCN neurons expressing VIP, and neuron coupling, the

circadian rhythm in aged individuals is not as robust as in young adults at the organismal

level [18]. While the SCN function is compromised at a tissue level, the clock machinery
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evaluated by Per2 expression in the SCN is as robust as in young adult mice [32]. Similar

to the case in the SCN, the molecular clock in mouse peripheral tissues such as kidney, liver,

submandibular gland, and epidermis is robust despite the decrease in locomotor activity

[179, 171].

In the skin, features of aging include wrinkles and lines, dryness, a thin epidermis, hair loss,

loss of elasticity, skin fragility with easy breaking, and slow wound healing. The causes of

skin aging are on the one hand intrinsic, strongly correlated with chronological age, and

on the other hand extrinsic. Intrinsic aging mechanisms include oxidative damage to DNA

and proteins from metabolism-generated ROS, accumulating genetic mutations, stem cell

dysfunction, and alterations in hormones. Extrinsic skin aging mechanisms involve primarily

UV radiation, but also other insults such as cigarette smoking, and pollution [23].

While the exact mechanism is unknown, clock disruption contributes to intrinsic skin aging

as mutations of the core clock genes Bmal1 and Clock in mice lead to premature aging in

multiple organs, including the skin [102, 58]. CConversely, aging influences the circadian

function, as aging rewires rhythmic genes in the skin [171]. While the circadian machinery

is robust in aged epidermal stem cells, other rhythmic genes in the young and aged groups

are quite distinct [171]. Thousands of genes are diurnal in young and aged mouse epidermal

stem cells, but only 750 genes overlap the two ages, including some genes from the core

clock machinery. Additionally, the rhythmic genes present only in the young adult group are

mainly related to homeostasis maintenance, while the genes that oscillate only in the aged

group are enriched for stress response. This suggests a reprogramming of rhythmic genes

in mouse epidermal stem cells as they age while maintaining the core circadian function

[171]. Despite premature aging in core clock gene knockout mice [102, 58], the failure to

reproduce the transcriptional traits found in physiologically aged epidermal stem cells in

Bmal1 knockout and Per1/Per2 double knockout mice suggests that the reprogramming of

rhythmic genes is due to aging instead of loss of circadian function [171].
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A similar observation was made in rat abdominal skin explants. There is no significant

overall change in the average value of phase, amplitude and period lengths in rat skin ex-

plants as they age, although the phases are significantly more variable in the aged group

[151]. However, when looking at the circadian rhythm in fibroblasts derived from these ex-

plants collected at different ages, Per1 expression amplitude attenuates uniformly as the

age increases [151]. Along the same line, a microRNA miR-31 that is upregulated in aged

mouse hair follicle stem cells targets at the core clock gene Clock, suggesting the potential

effects of aging on the clocks in hair follicle stem cells [214]. While the differences in results

could be caused by different experimental methods, the question about whether aging affects

circadian clocks differently in different cell types warrants further investigation.

As discussed before, the rhythms in the skin regulate cell proliferation in a way to avoid

exposing possible genotoxic and radiation stress to the vulnerable S phase [72, 173]. Intrigu-

ingly, without affecting the core clock gene network, aging affects the cell cycle timing in

mouse epidermal stem cells, which could be an explanation for the transcriptional enrich-

ment of stress response and DNA damage repair in aged cells. While the S phase takes place

mostly during the night in young adult epidermal stem cells [72, 171, 173], the peak DNA

replication time is shifted to the day for the cells from the aged group [171]. Despite this

delay, mitosis is rhythmic and still takes place at ZT20 in the aged group, which is the same

as in the young adult group. Such delay may lead to the possible exposure of unwound DNA

to oxidative stresses and increase the possibility of cells entering the mitosis with DNA dam-

age [171]. This observation is consistent with some of the skin aging symptoms, as oxidative

stress is one of the contributors to interfollicular epidermis stem cell senescence, which could

lead to skin wound healing delay, thinning of the epidermis in aged skin, and age-related

hair loss [139].

One way to lessen the effect of aging in mouse epidermal stem cells is through calorie restric-

tion. For mice under calorie restriction (70% of the amount taken by the control group), both
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physiological and transcriptional traits found in young mice are maintained with rhythmic

expressions preserved in genes related to homeostasis maintenance and lower level of oxidized

DNA. Also, S phase peaks at ZT12, which is closer to the peaking time in young adult epi-

dermis. Despite a 4-hour phase advancement for the calorie restriction group due to feeding

anticipation, other circadian features such as the amplitude and the period length of some

of the core clock genes are conserved in the calorie restriction group [171].

Since circadian rhythms in the skin may protect cells from UV-induced DNA damage by

regulating cell proliferation [72], circadian reprogramming and cell cycle shifts caused by

intrinsic aging may contribute to extrinsic skin aging. Furthermore, clock-related hormone

function impairment caused by intrinsic aging can affect skin function and promote extrinsic

skin aging. Melatonin is one of the hormones that regulates peripheral clocks and its receptor

is present in the skin [170]. Interestingly, melatonin receptor MT1 plays a key role in DNA

repair as it activates the P53-dependent DNA damage response [152]. In human skin, MT1

levels drop as we age, leading to increased sensitivity to UV radiation [53]. The receptor

MT1 level is drastically lower in cultured dermal fibroblasts from a 67-year old donor when

compared with cells from a 19-year donor. Furthermore, after UV radiation, the amount of

UV-induced DNA damage and ROS generation is much higher in MT-1 knockdown human

fibroblasts, suggesting that aged human dermal fibroblast are more susceptible to UV damage

[53].

Much of the connections between skin aging and circadian rhythms remain to be explored.

Questions such as whether aging affects the circadian rhythm differently in different cell

types, what mechanisms cause the shifts in cell cycle while not affecting the core circadian

clock in epidermal stem cells, and what kind of mechanisms contribute to the rescuing effect

of calorie restriction on epidermal stem cell aging remain to be answered.
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1.6.5 Skin infection

As a first line of protection against outside insults, the skin harbors various defensive

strategies, including a physical barrier formed by corneocytes (terminally differentiated ker-

atinocytes), resident innate immune cells, and antimicrobial peptides (AMPs), which are

secreted to induce direct antimicrobial effects [159, 130, 51]. The immune system is circa-

dian regulated, possibly to anticipate and prepare for outside insults when they are most

likely to occur [139, 160]. The circadian clock regulates immune responses to infections in

the respiratory system [178, 164], the liver [37], the digestive system [17], and other body

sites [222]. Consistent with these findings, a growing body of animal research supports the

hypothesis that immune responses and clinical outcomes of skin infections are influenced by

the host’s circadian rhythms and time of infection [139, 72, 21, 101].

Bacterial and parasite skin infections

The survival of bacteria on the skin depends on the time of infection. Staphylococcus aureus

shows maximum survival on mouse skin when applied at ZT22 and minimum survival when

applied at ZT16. This may be due to the diurnal expression of certain AMPs in the skin.

The expression levels of Rarres2 (chemerin), Camp (cathelicidin CRAMP), and Defb1 (β-

defensins) are diurnal, with the highest expression during the early night when mice are

under 12:12 light-dark cycle. However, the rhythms for those genes in mouse skin are lost in

constant darkness, although they are maintained in the liver. In contrast, Defb3 and Defb14

(β-defensins) aare circadian under both 12:12 light-dark cycles and in constant darkness,

with expression peaking during the day [21].

The severity of parasite infections in skin is diurnal as well [101]. Leishmania parasites

are transmitted through sandfly bites and use neutrophils and macrophages as host cells.

Injection of Leishmania major parasite into mice at different times of the day revealed
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that inflammation is the mildest when the injection takes place at ZT3, with minimum

macrophage recruitment six hours after injection. In vitro experiments confirm that the

attachment of the parasite to mouse macrophages is circadian and dependent on the circadian

machinery, which also regulates the time-dependent release of chemokines and cytokines

[101].

Viral skin infections

Skin also has the important task of defending against many viruses, which are biological

entities that can only thrive and multiply in a living cell. While there are few studies on

circadian regulation of defenses against viral infections of the skin, studies in other organs

suggest a role for the circadian clock in regulating this activity. Mice intranasally infected

with herpes or influenza viruses during the daytime have greater infection loads and mor-

tality than mice infected at nighttime. This time-of-day dependent difference may be clock

controlled as deletion of Bmal1 exacerbates the infection [61]. In addition, disruption of

circadian rhythms by Bmal1 deletion or altered sleep/wake patterns enhanced acute viral

bronchiolitis after Sendai virus and influenza A viral infections [62].

Topical application of the viral mimic IMQ during the day results in greater expression

of anti-viral defense response genes compared to application at night. Absence of Bmal1

results in heightened levels of those same genes [75]. This result suggests that the diurnal

gating of sensitivity to viral infection is modulated by circadian clock control of anti-viral

factors expressed in the skin. These results have implications for anti-cancer defenses as

anti-viral mechanisms limit cancers as well. For example, IMQ is prescribed as an anti-

tumor treatment for basal cell carcinomas, as it activates the immune system through type

I interferon secretion.
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1.6.6 Inflammatory skin diseases

Skin inflammation, which includes redness, heat, itching, sensitivity, and swelling serves to

defend against invading pathogens and microbes. While controlled skin inflammation is nec-

essary to regain homeostasis after infection, there are cases in which skin inflammation is

triggered by self-peptides or persists following an infection, leading to skin diseases. Inflam-

matory responses are linked to circadian rhythms [75] and circadian disruption can lead to

inflammatory diseases. In mice, for example, chronic jet lag induces ulcerative dermatitis

[96]. For humans, psoriasis and AD are two of the most common autoimmune skin diseases.

Both of these diseases, which can significantly impair patients’ life quality, are linked to

circadian rhythms.

Psoriasis is caused in part by the immune system attacking healthy skin cells, resulting in

intense inflammation. In humans, disruption of the circadian clock through night shift work

is associated with psoriasis [116, 111]. The symptoms of psoriasis also show a diurnal pattern,

with more than 70% of patients reporting more severe itch occurring in the evening or at

night [64]. With most of the itch occurring at night, AD and psoriasis symptoms compromise

sleep quality [184], which in turn disrupts circadian rhythms and increases severity of the

disease. This circadian disruption also contributes to the development of metabolic diseases

such as obesity [147], which may be causally linked to psoriasis [133].

At a mechanistic level, the inflammatory response in psoriasis is controlled by the circadian

machinery [75, 11]. Mutation of Clock relieves the induced psoriasis-like symptoms signifi-

cantly by controlling the transcription of IL-23R in γ/δ+ T cells while mutation of Per2, the

inhibitor of Clock, promotes IMQ-induced symptoms [11]. Additionally, deletion of Bmal1

promotes IMQ-induced psoriasis [75]. Conversely, psoriasis inflammation disturbs the circa-

dian clock locally in the skin lesions. In IMQ-induced psoriasis mouse model, the rhythmicity

of keratinocyte proliferation is lost, and the expression of core clock genes is dampened [75].
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Similar to the case in mice, bulk RNAseq studies using human patients skin samples show

that circadian genes such as CRY2, PER3, NR1D1 and RORC are downregulated in the

psoriasis lesion as well as the adjacent normal skin when compared to skin from non-psoriatic

individuals [75, 215]. These findings support the intricate connection between psoriasis and

the circadian machinery and suggest that the circadian clock is a potential target in psoriasis

treatment.

AD is another common inflammatory skin disease characterized by impaired barrier function,

eczematous dermatitis, and chronic itching. The causes of AD are not fully understood,

but may relate to barrier impairment, dysregulated immune system, and/or dysregulated

commensal microbiota. AD symptoms tend to be greater at night and impair sleep quality

[211, 35]. There are several mouse models of AD. These typically apply an inflammatory

insult (a chemical or hapten) to the skin to activate macrophage cytokine secretion, which

in turn provokes release of histamines by mast cells that causes itch; the insult is then

re-applied later to induce an adaptive immune response driven by T cells. Disruption in

circadian rhythms by forcing mice to run during the day and rest during the night causes loss

of rhythmicity in circadian gene expressions and more severe AD symptoms with increased

expression of histamine and cytokines, including TNF-α and interleukins (IL-4, IL-10, IL-

13). Additionally, more dendritic cells, mast cells and T helper cells are recruited to the skin

in mice with the reversed chronotype [82]. Also, hapten induces more inflammation in the

skin of mice living in constant light than in the skin of mice living in regular 12:12 light-dark

cycle [123]. Implicating the circadian clock on the molecular level, deletion of Clock causes

more severe delayed-type skin allergic reactions [182]. As the circadian clock regulates the

immune responses that contribute to AD symptoms, studying the relationship between the

circadian rhythm and AD will yield insights into symptom management.
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1.6.7 Wound healing

Skin injuries invoke complex repair mechanisms that require regulation and coordination

among cell types throughout the skin. These mechanisms go awry in chronic wounds, a

major health problem sometimes caused by metabolic diseases like diabetes and obesity

[118]. Several elements of skin wound healing have diurnal features and interact with the

core clock machinery.

Wound healing progresses through five steps: hemostasis, inflammation, growth, re-epithelialization,

and remodeling. Hemostasis stops the bleeding by forming a hemostatic plug at the injury

site [148]. This very first step of wound healing displays diurnal rhythms in humans, with

hemostasis being upregulated in the morning and fibrinolysis activation peaking in the af-

ternoon [28]. As discussed earlier, elements of the inflammation step are under circadian

control.

The growth stage of skin wound healing displays circadian rhythms. The actin polymeric

state, as measured by the ratio of F:G actin produced by fibroblasts, is rhythmic and such

rhythm is dependent on the cells’ internal circadian machinery [85]. Additionally, the cir-

cadian clock affects senescence of myofibroblasts through NONO, a binding partner of PER

that regulates cell cycle inhibitors [105]. These findings support the idea that the circadian

clock regulates both proliferation and migration of fibroblasts, key functions required for

wound healing.

The time-of-day of wounding may affect the length of recovery [85]. Synchronized murine

skin fibroblast monolayers scratch-wounded at the peak time of PER2 expression healed

almost completely after 60 hours while those wounded at the PER2 trough time were far

from closing. This can be explained by the significantly faster initial migration, stronger

initial cell adhesion, and greater wound-oriented polarization of the most motile fibroblasts

in monolayers wounded at the peak time of PER2 expression. Ex vivo wounding experiments
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done on 5-day-old murine skin explants harvested during the active phase and the resting

phase show similar results, with twice as many fibroblasts invading the wound in the explants

collected during the active phase when compared with the sample collected during the resting

phase. This observation is reproduced in in vivo wounding experiments on adult mouse back

skin, suggesting that the invasion of fibroblasts into the wounded area, and thus possibly

the recovery of the wound, are dependent on the wounding time in mice [85].

A post hoc analysis of the datasets from the Burn Injury Database reveals that burns hap-

pening at night took around 60% more time to heal than the burns that took place during

the day [85]. While wounds incurred during the active phase of humans and mice take less

time to heal [85], the opposite pattern is true in nocturnal hamsters [33]. According to the

wound sizes recorded daily, wounds incurred at ZT18 (night) take longer to recover by 50%

than wounds incurred at ZT3 (day), even though wounds incurred at both times take the

same number of days to heal completely [33].

Re-epithelization may also display circadian rhythms. While there is no ex vivo or in vivo

wounding experiments done so far on human skin, scratch-wounds incurred on human ker-

atinocyte monolayers at the peak time of fibroblast motility healed faster than the monolayers

scratch-wounded at the trough time [85]. On the other hand, while the proliferation of mouse

epidermal keratinocytes is circadian, with more cells at the S phase at night than during the

day [72], the proliferation elevates and loses its rhythmicity when there is inflammation [75].

Circadian disruption delays skin wound healing. Cutaneous wounds in disruptive light-

treated hamsters took longer to heal compared to hamsters with normal circadian rhythm,

no matter the time of wound occurrence [33]. Similarly, dim light exposure to mice during

dark hours before wounding slows down the healing process significantly [193].

Manipulation of the circadian machinery does not always impede wound healing. Partial or

complete knock out of Npas2, whose protein is a paralog of CLOCK, significantly shortens
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the duration of dorsal skin wound healing in mice in vivo. In vitro experiments using the

fibroblasts isolated from Npas2−/−, Npas2+/− and wild type mice uncovered accelerated pro-

liferation of Npas2−/−, Npas2+/− fibroblasts without alternation in the rhythmic expression

of most of the core clock genes except Per2. Additionally, Npas2−/− fibroblasts contract

faster than wildtype and Npas2+/− fibroblasts. Intriguingly, the expression level of Acta2

and Actb, along with other integrin genes do not differ among the genotypes. Some collagen

genes (Col12a1 and Col14a1 ) are upregulated in cultured Npas2−/− and Npas2+/− fibrob-

lasts, in agreement with promoted collagen fiber formation observed in those knockout cells

[156].

While more extensive studies are necessary to delineate the connection between the circadian

clock and skin wound healing, current findings indicate that the time of wounding has an

effect on the healing duration [85, 33] and that the circadian machinery plays a role in many

wound healing processes [33, 193, 156]. The field remains to be explored, especially the

possibility of promoting wound healing via circadian clock manipulation [156].

1.7 The future of circadian medicine for skin health

Circadian medicine and chronotherapy are receiving increasing attention as important com-

ponents of preventive medicine and patient care [91, 176, 50]. At its core, circadian medicine

considers circadian rhythms in pre-clinical research and when developing disease management

plans to improve clinical outcomes while minimizing side effects. For example, vaccination

in the morning results in greater trained immunity and antibody responses than vaccination

in the evening in humans [49, 114, 219]. Additionally, perioperative myocardial injury is

more common after on-pump cardiac surgeries in the morning than in the afternoon [124].

In mice, non-steroidal anti-inflammatory drugs better manage pain and promote recovery

with less adverse effects on healing after tibia fracture surgery when taken during the active
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phase than during the resting phase [6]. Such diurnal variation in treatment efficiency is also

observed in other tissues and diseases [91, 176, 50], including cancer [175, 13].

Circadian medicine uses three main approaches: lifestyle adjustments to regulate the internal

clock, drugs targeting the clock machinery at a molecular level, and administration of drugs

at the time of day that maximizes effectiveness and minimizes side effects (chronotherapy)

[158, 176]. Although the skin harbors a robust circadian clock, circadian medicine for skin

diseases is a fledging field. Here, we discuss how circadian medicine can benefit skin health.

1.7.1 Managing the internal clock via lifestyle adjustment

Research in model animals and cultured human cells shows how disruptions of circadian

rhythms via clock gene manipulations can contribute to the development and progression

of various kinds of skin diseases including cancer, sunburns, radiation-induced hair loss,

aging, infections, inflammatory diseases, and wounds. Consistent with these experimental

studies, epidemiological studies on shift workers show that circadian disruption is associated

with increased incidence of metabolic disease [98], cancer [212], and several skin diseases

[116, 111, 158]. Therefore, it stands to reason that a healthy lifestyle aimed at maintaining

normal circadian rhythms may improve skin health.

Currently, shift work, social jet lag, sleep disorder and excessive light exposure at night are

common causes of circadian rhythm disruption in modern society. Shift work is extensively

studied as it leads to disruption of the core clock machinery, including the skin [24, 80].

Compared to normal daytime workers, shift workers possess altered circadian rhythms in the

skin as indicated by significantly attenuated peak expression level of Per1 [24] ] and altered

expression patterns and levels of Per3, Nr1d1 and Nr1d2 [80] in hair follicles. Shift workers

are more prone to skin diseases, including psoriasis, dry skin, itching, dandruff/seborrheic

dermatitis, acne, and melanoma [158, 116, 111, 212].
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Conversely, skin diseases such as psoriasis and AD can affect the patients’ organismal circa-

dian rhythm by disturbing sleep [35, 184, 213], which then adversely feeds back to disease

progression. Besides being predisposed to greater disease risk, shift workers may experience

worse side effects. In mice, circadian disruption via jet lag or clock gene mutations leads to

more severe radiation-induced dermatitis [42]. Because of this, maintaining a normal sleep-

ing pattern and avoiding shift work would be beneficial for minimizing the risk and severity

of skin diseases.

As feeding can influence skin circadian rhythms in mice, and thus the immune response,

adjusting feeding behavior in terms of both of the feeding time and the caloric intake may

be a way to support circadian function in the skin [50, 25]. In mice, time of feeding affects

the skin immune response [75]. Additionally, calorie restriction delays the age-associated

reprogramming of circadian controlled genes from homeostasis maintenance to stress response

[171]. In contrast, high fat diet induces hair loss [126] and rewires the expression of rhythmic

genes to favor oxidative metabolism [171]. While well-controlled experimental research in

humans on the effect of feeding on skin health is lacking, a recent clinical study focusing on

psoriasis patients before and after Ramadan fasting, which happens during daylight time for

an entire month, showed alleviation of psoriasis after the fasting [44, 26].

1.7.2 Targeting the clock machinery at a molecular level

Circadian rhythms are often disrupted in diseased tissues. Most often, this takes the form of

dampened rhythms due to a loss of synchronization or suppressed circadian gene expression

[100, 45, 75, 175]. For example, expression of Bmal1 is dampened in the skin of IMQ-treated

mice [75]. Therefore, it is possible that restoring or enhancing the circadian rhythm can

control disease progression. Dexamethasone, for example, activates the circadian clock in

B16 melanoma tumors, which decreases cell proliferation and tumor growth [100]. Indeed,
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the circadian machinery is a reservoir that may host promising targets for developing skin

disease treatments.

For example, without harming normal cells, REV-ERBs agonists SR9009 and SR9011 ad-

versely affect cancer cells derived from tumors, including melanoma [177]. In mice, mutation

of Clock relieves psoriasis-like symptoms [11] and mutation of CLOCK protein paralog short-

ens wound healing duration [156]. Additionally, topical application of ROR inverse agonist

SR1001 quenches inflammatory response in AD mouse models. For humans, melatonin sup-

plement alleviates AD symptoms [36]. Future studies should explore drugs that target the

circadian machinery in skin diseases, including inflammatory and hyperproliferative skin

diseases.

1.7.3 Chronotherapy

Circadian rhythms regulate many metabolic enzymes that participate in drug metabolism

in the skin [72]. Hence, more clinical studies should be conducted to assess how time of

application impacts treatment efficacy and side effects. Experiments done in mice show that

maxacalcitol, a vitamin D3 analogue for psoriasis symptom relief, is more effective when

applied during the early to middle active phase of mice than during the early to middle

resting phase [210]. For AD, application of topical treatment in the evening is proposed to

improve symptoms [190].

For cancer, studies from the 1990’s describe more effective melanoma tumor shrinkage in

mice when interferon was infused during the day as opposed to night [103]. Additionally,

radiation chronotherapy in the morning for cancer treatment reduces its damaging effect on

skin [167].

It may also be important to consider the time of diagnostic measures. For example, the
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time of diagnostic measures is critical for accurate diagnosis in endocrinology, as a number

of hormones oscillate in a time-of-day dependent manner [70]. Similarly, it is possible that

the time of measurement is important in dermatology, since features such as mitosis [72, 140]

trans-epidermal water loss [121], and immune components display diurnal rhythms [195, 75,

21].

1.7.4 Challenges

As promising as circadian medicine is, we face challenges. Most studies are done in vitro or

in vivo using model organisms such as mice, rats and hamsters. Those animals are nocturnal

while humans are diurnal, which can lead to difficulty in translating from mice to humans.

Also, most pre-clinical intervention studies in mice are carried out during the day, the resting

phase of mice. One possible step to reduce the gap between human and model nocturnal

animals is to use inverted-light housing, so researchers can still make the measurements

during the day while it will be the night for the nocturnal model animals.

Additionally, since circadian medicine works the best when it is correlated with the patient’s

internal circadian rhythm, health professionals need a feasible method to accurately deter-

mine each patient’s circadian rhythm before establishing a treatment plan [138]. The most

traditional and established way of measuring circadian phase of a patient includes a tedious

process of collecting multiple saliva samples throughout the day in a dim room for the dim-

light melatonin-onset assay [95, 208, 203]. For clinical applications, several approaches have

been proposed to determine a patient’s clock phase [120], including body temperature [146],

transcript biomarkers in blood [203, 107, 27], cortisol concentration in sweat [188], as well

as volatile organic compounds and nitric oxide fraction in breath [202]. The accessibility of

skin makes this organ a source to measure rhythms: indeed, transcripts from hair follicles

[4], skin biopsies [208] and tape-stripped epidermis [205] can potentially be used for circa-
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dian time estimation [138]. However, the question as to which method is the best in terms

of accuracy and accessibility remains unanswered. Another challenge to utilizing circadian

medicine for skin diseases lies in the complexity of skin. The circadian rhythm in skin may

not be as uniform as in other organs [139]. Additionally, two other clocks, hair cycle and

natural aging, influence the circadian controlled gene expression, raising questions about

whether these variables need to be considered [139, 171].
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Figure 1.1: The circadian clock is essential for skin homeostasis. The mammalian
SCN receives time-setting light signals and coordinates the circadian clock in peripheral tis-
sues, including the skin. Other inputs such as feeding and light can directly influence the
skin circadian clock, which is essential for proper skin homeostasis. Circadian disruption
contributes to skin diseases, which may be managed by circadian medicine via clock restora-
tion in the skin.
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Figure 1.2: The SCN synchronizes peripheral clocks. Light sends signals through the
retina to set the clock in the SCN, which synchronizes peripheral clocks via neuronal and
hormonal signals. As indicated, the phase of peripheral clocks is delayed by a few hours
compared to the SCN clock. The SCN, however, is not required for the maintenance of
peripheral clocks. It is also possible that light-dark cycles directly regulate clocks in the
skin. Additionally, other external inputs such as feeding and temperature entrain peripheral
clocks, including in the skin.
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ERBS forms a secondary feedback loop to reinforce the oscillatory expression of Bmal1. The
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Figure 1.4: The skin is a multi-layer, compartmentalized organ. (A) There are three
main layers in the skin: epidermis, dermis and hypodermis. Each layer contains multiple cell
types. (B) The interfollicular epidermis contains mostly keratinocytes organized into four
layers based on differentiation status. The epidermal stem cells reside in the stratum basale.
(C) The anagen hair follicle. The matrix contains proliferating keratinocytes derived from
the secondary hair germ, giving rise to the hair shaft. (D) The telogen hair follicle. The hair
follicle bulge contains the slow cycling stem cells. The hair germ contains the progenitor
cells for the hair. The dermal papilla is a mesenchymal structure that signals to the hair
germ and stem cells.
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Figure 1.5: Food intake regulates skin functions. Left: Food intake immediately changes
the expression of more than 2000 genes in the skin. Heat maps show gene expression before,
four hours, and eight hours after food intake. Middle: Time of feeding does not affect the
diurnal pattern of cell proliferation in the skin. However, daytime feeding shifts and dampens
the expression of circadian genes. Daytime feeding also changes the diurnal variation in
sensitivity to UVB-induced DNA damage and the IMQ-induced interferon response. Right:
Calorie restriction and high fat diet affect metabolism and expression of rhythmic genes, hair
follicle stem cell function, and skin aging. IMQ, imiquimod.
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Chapter 2

tauFisher predicts circadian time from a

single sample of bulk and single-cell

pseudobulk transcriptomic data

J. Duan, M. N. Ngo, S. S. Karri, L. C. Tsoi, J. E. Gudjonsson, B. Shahbaba, J. Lowengrub,

and B. Andersen. taufisher predicts circadian time from a single sample of bulk and single-cell

pseudobulk transcriptomic data. Nature Communications, 15(1), May 2024

2.1 Introduction

Organisms have evolved intrinsic circadian clocks that help them anticipate and adjust to

environmental changes caused by the 24-hour rotation of the Earth [15, 38]. The mammalian

circadian clock is a biochemical oscillator powered by transcription-translation loops consist-

ing of a positive arm and a negative arm [15, 38, 180]. In the positive arm, BMAL1 and

CLOCK promote the expression of clock-controlled genes, including the negative arm factors
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PER and CRY. PER and CRY inhibit the activating effect of BMAL1-CLOCK, leading to

24-hour oscillations.

In mammals, the suprachiasmatic nucleus (SCN) of the hypothalamus is the central pace-

maker that coordinates and synchronizes circadian rhythms in peripheral tissues through

neuronal and hormonal signals [31]. Besides signals from the SCN, environmental signals

such as temperature [31], feeding [134, 195], and direct light [30] can selectively set periph-

eral clocks, sometimes causing asynchrony between the central and peripheral clocks. Epi-

demiological studies of shift workers and chronically jet-lagged individuals show correlations

between circadian disruption and cardiovascular diseases [127], mental health disorders [194],

metabolic diseases [99, 142, 191], as well as cancer in various organs [119, 165], including

skin [76, 212], breast [161, 77], and prostate [52, 200].

The goal of the nascent field of circadian medicine is to consider circadian rhythm and its

disruption in patient care. As the rhythm of a patient or diseased tissue is not necessarily

synchronized with the external light-dark cycle, an important challenge in circadian medicine

is to determine the internal circadian time of the patient or the tissue of focus. Such infor-

mation can determine optimal time of treatment and identify conditions that might benefit

from restoring circadian functions [177, 55]. Current methods of circadian time determi-

nation for a patient include the dim-light melatonin-onset assay [95], as well as circadian

rhythm inference from body temperature [146], or cortisol levels in biofluids [188].

Additionally, determining the circadian time of a sample is important for research. With

the explosion of bulk and single-cell transcriptomics datasets, there is growing effort to inte-

grate and compare such datasets. As about 10% of the transcriptome has diurnal expression

patterns, analyzing such datasets without their timestamps may lead to inconsistent ob-

servations that are dependent on the time of sample collection. Hence, there is a need to

develop method that can determine the circadian time of such datasets.
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Several groups have developed methods to infer circadian time of a sample (organism, organ,

or tissue) based on transcriptomic data. CYCLOPS [9, 208] uses an autoencoder neural

network to infer circadian phases by ordering the data collected from the entire periodic cycle.

ZeitZeiger [89] identifies useful features (genes) for prediction, scales the feature expression

over time, applies sparse principal component analysis, and predicts according to maximum

likelihood estimation. BIO_CLOCK [2] uses supervised deep neural networks with coupled

sine and cosine output units. TimeSignatR [27] applies within-subject renormalization and

an elastic net predictor, making it generalizable between transcriptomic data from different

assay platforms. More recently, a Bayesian variational inference approach called Tempo

[14] was designed to predict circadian phase in single cell transcriptomics and it quantifies

estimation uncertainty.

Among the methods mentioned above, CYCLOPS, ZeitZeiger, BIO_CLOCK and TimeS-

ignatR can infer circadian time from bulk transcriptomic data and are generalizable for

different tissues. But, they have limitations. CYCLOPS outputs the relative ordering, in-

stead of timestamps, of samples, and requires reconstruction to incorporate every new sample

as it does not require prior training data. ZeitZeiger frequently runs into linear dependency

issues, needs to be retrained before each prediction, and is not generalizable between tran-

scriptomic platforms. BIO_CLOCK does not require re-training for each prediction but is

not time-efficient. TimeSignatR performs well if there are two test samples and it achieves

its best performance when the two samples are 12 hours apart.

Here, we present tauFisher, a pipeline that can accurately predict circadian time from a

single transcriptomic data irrespective of the assay platform. tauFisher improves on previous

methods in several ways: (1) it does not require the training data to be a complete time series;

(2) the within-sample normalization step allows tauFisher to give an accurate prediction from

just one sample; (3) since tauFisher only needs a few features to make accurate predictions,

training and testing are computationally efficient; (4) tauFisher is platform agnostic and users
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only need to train the predictor once and can use the same predictor to make predictions for

external datasets of the same tissue, regardless of the platform; and (5) tauFisher trained

on bulk sequencing data is able to accurately predict the circadian time of single-cell RNA

sequencing (scRNAseq) pseudobulk data, and it can be used to investigate circadian phase

heterogeneity in different cell types.

2.2 Results

2.2.1 Overview of tauFisher

tauFisher is an assay platform-agnostic method that predicts circadian time from a single

transcriptomic sample. The training part of the pipeline, which requires a time series of

transcriptomic data, consists of five main steps: (1) identifying diurnal genes with a period

length of 24 hours, (2) curve fitting using functional data analysis to fill in the missing

time points and to decrease noise in the training data, (3) within-sample normalization by

calculating and scaling the difference in expression for each pair of predictor genes, (4) linearly

transforming the scaled differences using principal component analysis, and (5) fitting a

multinomial regression on the first two principal components (Figure 2.1, Methods).

For testing, a transcriptomic sample without a time label is trimmed to include only the

predictor genes identified in the training data. After the within-sample normalization step,

the test sample is projected to the principal component space and multinomial regression is

performed to predict time of the test sample (Figure 2.1, Methods).
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2.2.2 tauFisher achieves high accuracy when trained and tested on

bulk-level transcriptomic data.

To assess the robustness and accuracy of tauFisher in predicting circadian time from a single

sample of transcriptomic data, we applied tauFisher to a diverse set of data collected from

different species, tissues and assay platforms (Table 2.1).

For each benchmark dataset, we generated 100 random train and test partitions (without

replacement) of the samples. In each partition, we used 80% of the samples for training and

20% for testing. We compared tauFisher to the current state-of-the-art methods: ZeitZeiger

[89] and TimeSignatR. [27].

We define a prediction within two hours of the true time to be correct. Using other time

ranges to define correctness minimally change the benchmark outcome (Table 2.2).

For eleven out of the twelve benchmarking datasets, tauFisher achieved higher accuracy when

using predictor genes found by JTK_Cycle [88] instead of Lomb-Scargle [74]. For six out

of the ten transcriptomic datasets collected from mice, tauFisher achieved equal or higher

2-hour accuracy using one test sample than TimeSignatR using two test samples that are

12 hours apart. tauFisher achieved lower but comparable accuracy (difference < 10%) when

compared to TimeSignatR in two of the remaining four mouse datasets. For the two human

blood datasets, TimeSignatR using two test samples outperformed ZeitZeiger and tauFisher,

highlighting the importance and effectiveness of using two test samples to address human

variability in circadian phase predictions (Figure 2.2, Table 2.3). ZeitZeiger could not predict

the time for several iterations due to linearly dependent basis vectors. Interestingly, whether

ZeitZeiger ran into linear dependency issues appeared to be depended on the assay methods,

as it ran successfully for most of the microarray data but failed to predict the time for all

100 iterations in the bulk RNAseq datasets collected from mouse kidney, liver, brainstem,

and cerebellum (Figure 2.2, Table 2.1).
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2.2.3 tauFisher accurately predicts circadian time for cross-platform

bulk transcriptomic data.

Since tauFisher gives accurate circadian time prediction for bulk transcriptomic data col-

lected from various platforms, we examined its performance when trained and tested on

datasets generated from different platforms. We used rhythmic genes identified by JTK_Cycle

in the tauFisher pipeline, since they gave more accurate predictions in the within-platform

benchmark.

We trained tauFisher on GSE38622 [72], a microarray dataset collected from mouse dorsal

skin every four hours for 48 hours under regular 12:12 light-dark cycle (zeitgeber time [ZT] 2,

6, 10, ...). The test dataset is from GSE83855 [195], a bulk RNAseq dataset collected every

four hours for 28 hours under 12:12 light-dark cycle (ZT0, 4, 8, ...) from mouse dorsal skin

in a time-restricted feeding study. Since time of feeding influences tissue’s circadian clock

[195, 55], we only selected the ad libidum control condition for this testing so that the time

labels best represent the internal time.

Eighteen genes were selected to be predictor features. Though the training and test datasets

are not on the same scale and were collected at different time points, their overall rhythmic

patterns agree with each other (Figure 2.3a). For six of the eight tests, tauFisher predicted a

circadian time that is within the 2-hour range from the actual time label, giving an accuracy

of 0.75 and a RMSE of 4.704 (Figure 2.3b, 2.5b). This example demonstrates tauFisher’s

ability to predict circadian time across bulk transcriptomics platforms.

After validating tauFisher’s performance on cross-platform, bulk-level, transcriptomic datasets

collected from healthy/control mouse skin, we also tested it in disturbed systems. In the

test groups of the time-restricted feeding study, food was only available to mice from ZT5

to ZT9 or ZT0 to ZT4, whereas mice usually feed during early nights (ZT12-ZT16) [195].

Skin collected from these two time-restricted feeding schedules showed disturbed circadian
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patterns with greatly attenuated amplitude and altered peaking times that are not directly

correlated with the feeding times [195]. As the system is disturbed, the sample collection

time no longer represents the internal circadian time of the tissue as it does in healthy tissue

(training data). Consistent with the biological observations, tauFisher trained on control

skin microarray data predicted time labels that are away from the test sample collection

time, reflecting a disturbed system, and the predictions are not coupled with time-restricted

feeding schedules (Figure 2.4a). tauFisher’s prediction when trained on control/healthy sam-

ples, however, can only tell whether the test system is disturbed or not, and does not provide

a measurement of how much the system is disturbed.

We also trained the tested tauFisher within the disturbed systems. Within each of the two

time-restricted feeding schedules, we performed leave-one-out cross validation by reserving

each sample for testing and using the remaining samples for training. tauFisher produced

high accuracy (feeding ZT5-ZT9: accuracy = 0.875; feeding ZT0-ZT4: accuracy = 1) and

low RMSE (feeding ZT5-ZT9: RMSE = 2.236; feeding ZT0-ZT4: RMSE = 1.061) for both

disturbed systems (Figure 2.4b). The fact that tauFisher trained on samples collected from

a disturbed system can add time labels to samples from the same disturbed system suggests

that robust correlations between diurnal genes still exist in the disturbed system, and such

relationships are different from the ones in the control/healthy individuals.

2.2.4 tauFisher trained on bulk RNAseq data accurately predicts

circadian time of scRNAseq samples.

tauFisher’s ability to predict circadian time is not limited to cross-platform bulk-level tran-

scriptomic datasets. It can add circadian timestamps to scRNAseq samples as well. In

particular, tauFisher only needs to be trained on a time series of bulk-level transcriptomic

data, which is more abundant and cheaper to collect than a scRNAseq data time series.
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Since most published scRNAseq datasets do not have time labels, the selection of datasets for

testing was limited. Here we tested tauFisher on scRNAseq data collected from the mouse

SCN [199].

GSE117295 [199] includes twelve single-cell SCN samples collected from circadian time (CT)

14 to 58 every four hours (CT14, 18, 22, ...) under constant darkness, and one light-

stimulated SCN sample. Since light immediately induces differential expression of rhythmic

genes [199], only the samples from the control experiment were used for the benchmark. For

each of the twelve samples, a pseudobulk dataset was generated for testing (Methods). For

training, we chose GSE157077 [187], a time series of bulk RNAseq data collected from the

mouse SCN every four hours under regular 12:12 light-dark cycle starting at ZT0. Since

each time point in the training dataset contains three replicates, instead of averaging them,

we concatenated the replicates so that the input training data spans 72 hours.

Twenty genes from the training data passed the feature selection criteria. These genes display

robust rhythms in both the training data and the test pseudobulk data (Figure 2.3c). The

raw input test data appeared to be noisier as it was not normalized by the total number of

reads in each sample. tauFisher does not require the data to be preprocessed before input

into the pipeline, as within-sample normalization is an intermediary step.

In ten out of the twelve tests, tauFisher predicted a time that is within 2-hour of the labeled

time, resulting a high accuracy of 0.833 and a low RMSE of 1.936 (Figure 2.3d, 2.5a). Al-

though neither TimeSignatR nor ZeitZeiger claims to be able to add time labels to scRNAseq

data, we still tested their performance. tauFisher outperformed TimeSignatR and ZeitZeiger

in both accuracy and RMSE (Figure 2.3d,e).

In sum, we have demonstrated that tauFisher trained on bulk-level transcriptomic data-

can accurately predict circadian time for scRNAseq data, making it particularly useful for

expanding the current scRNAseq database for circadian studies by adding time labels to

50



existing scRNAseq data.

2.3 Discussion

In this study, we developed tauFisher, a computational pipeline that accurately predicts

circadian time from a single transcriptomic dataset and is applicable to within-platform and

cross-platform training-testing scenarios. Particularly, tauFisher trained on bulk transcrip-

tomic data accurately add circadian timestamps for scRNAseq samples. This method allows

investigators to place circadian timestamps on transcriptomic datasets and facilitates the

determination of circadian time in the context of circadian medicine.

Most transcriptomic datasets in public genomics repositories lack circadian time labels, which

complicates integration with or comparison to other datasets. Adding time labels for exist-

ing transcriptomic datasets is important, as the clock modulates the expression of many

protein-coding genes; it is necessary to know whether a significant gene is truly differentially

regulated by a condition or the expression appears to be different because the samples were

collected at different times. Also, computationally adding circadian timestamps to existing

transcriptomic datasets collected from various platforms, including from scRNAseq, opens

up new possibilities for circadian research and allows investigators to take the full advantage

of the shared resource in an efficient and inexpensive way.

Circadian time determination is also a key step in the implementation of circadian medicine.

To maximize effectiveness while minimizing side effects of treatments, it is necessary to take

into consideration the patient’s and relevant tissue’s actual circadian time. For example,

on-pump cardiac surgeries in the afternoon are less likely to cause perioperative myocardial

injury than when conducted in the morning [124] and cancer radiation therapy in the morning

causes less skin damage than in the afternoon [167].
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There have been several predictors of circadian time based on transcriptomic data [27, 89,

2], but to ensure wide applicability of this approach, an assay platform-agnostic method

requiring low number of test samples is desired. tauFisher is preferable as it can accurately

determine circadian time from a single sample of transcriptomic data collected from various

assay methods including scRNAseq.

Once trained, tauFisher requires a single transcriptomic sample to predict the circadian time.

We examined tauFisher’s ability to predict circadian time when the training and test data

are from the same study, and we benchmarked it against state-of-the-art methods ZeitZeiger

[89] and TimeSignatR [27]. tauFisher using one test sample achieved similar accuracy and

RMSE for most of the datasets when compared to TimeSignatR that required two test

samples that are 12 hours apart. ZeitZeiger failed to run for several of the datasets due

to linear dependency issues, and its success was dependent on assay platform (Figure 2.2,

Table 2.3). When it did run, ZeitZeiger achieved similar accuracy and RMSE as tauFisher,

possibly because both predictors build on principal component analysis, suggesting that

the molecular clock is well captured and represented by orthogonal linear combinations of

predictor genes.

One of the most powerful features of tauFisher is its ability to accurately predict circadian

time when trained and tested on datasets collected from different assay platforms under

different experimental settings. tauFisher achieves high accuracy and low RMSE in not only

bulk-to-bulk cross-platform predictions, but also bulk-to-scRNAseq predictions. While it

is usually assumed that bulk RNAseq data are consistent with pseudobulk data calculated

from scRNAseq data, it is necessary to verify this assumption in circadian studies. The

experimental settings for bulk and single cell RNA extraction are different in terms of diges-

tion duration and temperature, a factor that can alter the clock [31]. tauFisher’s successful

bulk-to-pseudobulk predictions assure such consistency. tauFisher outperformed ZeitZeiger

and the two-sample TimeSignatR method, and the robustness in performance despite dras-

52



tically different assay methods and experimental setups suggests that tauFisher captures

and extracts the underlying biological correlations in gene expressions while minimizing the

effects of the noise and variability introduced by subjects and technology.

Two key steps in tauFisher help achieve this: functional data analysis for training data and

within-sample normalization for both training and test data. Functional data analysis for the

training data enables tauFisher to remove minor noise, smooth the time expression curves,

and generate the expression data between the sampled time points. The within-sample

normalization step for both training and test data calculates the difference between each

pair of predictor genes at a given time point so that the feature matrix is expanded while

some baseline noise is removed. The differences between the genes are then re-scaled to be

between 0 and 1 so that the data become unit-less. Doing so in parallel on the training and

test datasets brings them individually to the same scale, instead of batch-correcting the train

to the scale of the test or the opposite. This allows testing of independent datasets without

re-training. We note that this within-sample normalization is different from the within-

subject normalization in TimeSignatR[27], which is based on mean expression calculated

from multiple samples collected from more than one time point over the circadian cycle.

Despite its unique circadian time prediction ability, tauFisher can be improved in several

ways. While tauFisher performs well in terms of both accuracy and RMSE in almost all

mouse benchmark datasets, its performance on human blood samples is subpar. Such

performance can be attributed to greater human variability in expression patterns of the

clock caused by hormones, stress, living style and diet. A recently proposed pipeline called

TimeMachine attempted to infer circadian phase from a single human blood sample and re-

ported 2-hour accuracy of 40∼55% [87]. On the other hand, TimeSignatR using two human

blood samples 12 hours apart achieved ∼ 73% 2-hour accuracy (Figure 2), emphasizing the

necessity to address individual variability when predicting circadian phases for human sam-

ples and the effectiveness of the two-sample within-subject normalization step. One assump-
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tion of tauFisher’s within-sample normalization step is that the differences between predictor

genes are solely dependent on circadian time, and this step only removes uniform elevation or

depression in expression values of clock genes. To further improve tauFisher’s flexibility and

performance on human data, it is worthwhile to incorporate a within-sample data centering

step to address the differences caused by individual variability, while making sure that only

one test sample is needed to make a prediction. Additionally, using tauFisher trained on

healthy/control data to predict a time for data collected from a circadian-disturbed system

only maps the disturbed test onto the timescale of the healthy samples. If one prefers to

project a test data onto the timescale of the diseased samples, a time series of transcriptomic

data from diseased individuals is required. However, the circadian pattern is dampened in

many diseases including cancer [209, 175, 45, 100, 86, 90], making the expression data similar

overtime and thus more difficult to distinguish the time points. Although tauFisher showed

promise in feeding-disturbed systems in skin (Figure 2.4b), it would be valuable to further

validate tauFisher on such datasets as they become available in future studies. Additionally,

since uncertainty quantification may be particularly important when testing in disturbed

systems, tauFisher can be improved to output confidence scores. Finally, while tauFisher

accurately adds timestamps to unlabeled scRNAseq data and can predict circadian time for

pseudobulk data generated from a group of cells in scRNAseq data, it cannot overcome the

high sequencing dropout rate in scRNAseq and thus cannot predict circadian time at a single

cell level. Future work could focus on incorporating an imputation step into tauFisher to

infer expression values of predictor genes. This step may not sacrifice computation and time

efficiency greatly, as tauFisher only need around 15 genes to make predictions.

In summary, tauFisher’s consistent and robust performance in accurately predicting circadian

time from a single transcriptomic data makes it a useful addition to the toolbox of circadian

medicine and research.
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2.4 Methods

2.4.1 tauFisher

tauFisher is a platform-agnostic method that predicts circadian time from a single transcrip-

tomic sample. The method consists of three main steps: (1) identifying a subset of diurnal

genes with a period length of 24 hours, (2) calculating and scaling the difference in expression

for each pair of predictor genes, and (3) linearly transforming the scaled differences using

principal component analysis and fitting a multinomial logistic regression on the first two

principal components.

Preprocessing the expression matrix

The first step in tauFisher is to average transcript measurements by genes such that the

resulting matrix consists of unique genes. The subsequent training data consist of a gene

expression matrix X ∈ RN×P with N unique genes and P samples, and a vector τ ∈ RP of

the corresponding time for each sample.

Identification of periodic genes

tauFisher specifies either the Lomb-Scargle [74] or JTK_Cycle [88] method in the meta2d

function from the R package MetaCycle [206] to determine the periodic genes. It then

selects the top ten statistically significant genes with a 24-hour period length. Using different

numbers of diurnal genes does affect the prediction outcome. Although choosing the top ten

does not guarantee the best performance, it is a safe and reasonable choice across different

datasets (Figure 2.5c). These diurnal genes are then combined with the core clock genes

that also have a period length of 24 hours to create the set of predictor genes M . The core
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clock genes for consideration in tauFisher are: Bmal1, Dbp, Nr1d1, Nr1d2, Per1, Per2, Per3,

Cry1, and Cry2.

Data transfromation

Subsetting the averaged expression matrix X on the set of predictor genes M yields averaged

gene expression matrix X ′ ∈ RM×P with M periodic genes and P samples with known time

(τ ). The matrix X ′ is then log-transformed element-wise: X ′ = log2(X
′ + 1).

Functional data analysis

Since experiments have different sampling intervals throughout a circadian cycle, tauFisher

uses functional data analysis to represent the discrete time points as continuous functions.

This allows tauFisher to evaluate and predict the circadian time of the new samples at any

time point and reduces the noise from the training samples.

Briefly, each gene m has a log-transformed measurement at discrete time points t1, ..., tP ∈ τ

that may or may not be equally spaced. These discrete values are converted to a function

Zm with values Zm(t) for any time t using a Fourier basis expansion:

Zm(t) ≈
K∑
k=1

cmkϕk(t) (2.1)

where ϕk(t) is the k-th basis function for k = 1, ..., K, and ∀t ∈ τ . cmk is the corresponding

coefficient. The Fourier basis is defined by ϕ0(t) = 1, ϕ2r−1(t) = sin(rωt), and ϕ2r(t) =

cos(rωt) with the parameter ω determining the period 2π/ω. Since the log-transformed data

matrix X ′ is non-negative, a positive constraint is imposed such that the positive smoothing

function is defined as the exponential of an unconstrained function: Ym(t) = eZm(t). The

smoothing function also contains a roughness penalty to prevent overfitting. In practice,
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tauFisher sets the number of basis functions to K = 5, as it produces curves that are the

most sinusoidal. Users can specify a different number of basis functions.

Although functional data analysis represents the discrete time points as continuous functions

for each gene, tauFisher predicts circadian time at a user-defined time interval. By default,

the time intervals are set to be one hour. The fitted functions Ym(t) are evaluated at the

user-defined time interval to create the smoothed expression matrix Y ∈ RM×T , where T

is the number of evaluated time points, and τ F ∈ RT is the new set of time points. If the

time course of the samples spans less than 24 hours, then the fitted curves are evaluated

hourly from [0, 23] such that T = 24 to ensure all 24 hours are evaluated. If the time course

duration of the samples spans greater than 24 hours, then fitted curves are evaluated from

[min(τ ),max(τ )] such that T = max(τ )− min(τ ) + 1.

Calculating and scaling of the differences between each pair of genes

For each time point, tauFisher generates all possible pairings of the selected predictor genes.

It then calculates the differences between the two genes’ functional data analysis-smoothed

expression (stored in matrix Y ). The resulting matrix retains differences between Gene

A and Gene B (Gene A - Gene B) as well as between Gene B and Gene A (Gene B -

Gene A). Then within each time point, the differences calculated from the gene pairs are

scaled to be between 0 and 1 using the rescale function in R package scales. This way,

0 represents the minimum difference value and 1 represents the maximum. The formula is

(value - min)/(max-min). As examples, we provided the resulting matrices for the training

data (Supplementary Data 5) and the test data (Supplementary Data 6) when tauFisher

was trained on GSE38622 and tested on GSE83855.
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The multinomial regression model

The differences matrix is projected onto a lower dimensional space via principal component

analysis, and the first two principal components become covariates xi1 and xi2 for observation

i in the multinomial regressor:

log

[
P (τ Fi = t|xi1, xi2)

P (τ Fi = 0|xi1, xi2)

]
= βt0 + βt1xi1 + βt2xi2 (2.2)

All time points t1, ..., tT ∈ τ F are converted to be [0, 23], since time 0 is equal to time

24. Time zero, τ F = 0, is set as the reference level in the model. The fitted multinomial

regression model is then used to predict the circadian time of the new samples. We note that

since time can be ordinal (accounting for the order) or continuous between [0, 24), we also

tried other models such as an ordinal regression. However, these models were not as robust

as the multinomial regression model and failed to run on the entire set of time points.

2.4.2 Calculating prediction error

To evaluate the performance of tauFisher, we need to calculate how close the predicted time

is to the true time. Since the outcome is cyclic and ranges from [0, 23], we applied the

following conversion to calculate the true difference D from the difference d between the

predicted time and true time:

D =


d− 24, if d > 12

d+ 24, if d < −12

(2.3)
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2.4.3 Datasets and analysis

Preprocessing for benchmark

For GSE56931, we filtered out the time points related to the 38-hour continuous wakefulness

and subsequent recovery sleep from the dataset provided in the TimeSignatR [27] package,

to only include the 24-hour normal baseline time points. For GSE38622, expression matrix

was normalized as described [72]. For GSE157077, we used the transcriptomes of the mice

who were fed normal chow through an entire circadian cycle (24 hours). We concatenated

the three replicates of 24 hours to create one set of samples over 72 hours. For GSE54650,

the raw CEL files for the kidney and liver were imported using the function read.celfiles

in R package oligo. Each raw data matrix was then normalized with Robust Multiarray Av-

erage (RMA) using the function rma. To map the GPL6246 platform ID_REF to Ensembl

transcript IDs, we used the transcript cluster ID and gene assignments listed in the ta-

ble provided at https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GPL6246. For each

transcript cluster ID, we removed all gene assignments unless they were Ensembl transcript

IDs or started with Gm. If a transcript cluster ID was mapped to more than one gene, then

we replicated that row by the number of genes (e.g., transcript reference ID 10344614 is as-

signed to three Ensembl transcript IDs so that row in the normalized dataset was replicated

three times). The expression for each transcript cluster ID was then divided by the number

of genes assigned (e.g., since transcript reference ID 10344614 has three gene assignments,

the values for all three rows in the normalized dataset were divided by three). Transcript

cluster IDs that were not assigned to any genes were removed from the normalized dataset.

To convert the Ensembl transcript IDs to gene names, we use R package biomaRt [59, 60].

If biomaRt did not find a gene name, then we kept the original Ensembl transcript ID. For

GSE54651, we converted the Ensembl gene IDs to gene names using R package biomaRt

[59, 60]. If biomaRt did not find a gene name, then we kept the original Ensembl gene ID.
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For each time point in GSE117295 , we summed the counts of each gene in all the cells

without any pre-processing to create a pseudobulk dataset. In the case where the same

gene occurs multiple times in the data, we took the mean of those entries. The resulting

pseudobulk data at each time point is a single row vector in which each entry represents

the expression value of a unique gene. The light-stimulated group is not considered in this

paper.

2.5 Data Availability

All published datasets used in this paper can be accessed through their respective GEO

accession codes. The time series of microarray data collected from mouse kidney, liver,

brainstem and cerebellum are available under GSE54650 [220]. The time series of bulk

RNAseq data collected from mouse kidney, liver, brainstem and cerebellum are available

under GSE54651 [220]. The time series of microarray data collected from mouse skin are

available under GSE38622 [72]. The time series of bulk RNAseq data from mouse SCN

are available under GSE157077 [187]. The time series of scRNAseq data from mouse SCN

are available under GSE117295 [199]. The bulk RNAseq data collected from mouse skin in

control and time-restricted feeding conditions are available under GSE83855 [195]. Although

the datasets in [12] and [27] are both accessible through their GEO accession codes GSE56931

and GSE113883 respectively, this paper used the versions provided in the TimeSignatR

package [27]: https://github.com/braunr/TimeSignatR.

2.6 Code Availability

tauFisher is available as an R package at https://github.com/micnngo/tauFisher [129]. The

two methods we compared tauFisher against are also available as R packages: TimeSig-
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natR at https://github.com/braunr/TimeSignatR and ZeitZeiger at https://github.

com/hugheylab/zeitzeiger.
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Data Year GEO Species Tissue Platform Sampling
Frequency

Time Course
Duration

Zhang R et al. [220] 2014 GSE54650 Mus musculus Kidney Affymetrix Mouse Gene 1.0 ST Array 2h 48h
Zhang R et al. [220] 2014 GSE54650 Mus musculus Liver Affymetrix Mouse Gene 1.0 ST Array 2h 48h
Zhang R et al. [220] 2014 GSE54650 Mus musculus Brainstem Affymetrix Mouse Gene 1.0 ST Array 2h 48h
Zhang R et al. [220] 2014 GSE54650 Mus musculus Cerebellum Affymetrix Mouse Gene 1.0 ST Array 2h 48h
Zhang R et al. [220] 2014 GSE54651 Mus musculus Kidney Illumina HiSeq 2000 6h 48h
Zhang R et al. [220] 2014 GSE54651 Mus musculus Liver Illumina HiSeq 2000 6h 48h
Zhang R et al. [220] 2014 GSE54651 Mus musculus Brainstem Illumina HiSeq 2000 6h 48h
Zhang R et al. [220] 2014 GSE54651 Mus musculus Cerebellum Illumina HiSeq 2000 6h 48h
Arnardottir ES et al. [12] 2014 GSE56931 Homo sapiens Blood Custom Affymetrix Microarray 4h 72h
Braun R et al. [27] 2018 GSE113883 Homo sapiens Blood Illumina NextSeq 500 2h 28h
Geyfman M et al. [72] 2012 GSE38622 Mus musculus Skin Affymetrix Mouse Gene 1.0 ST Array 4h 48h
Tognini P et al. [187] 2020 GSE157077 Mus musculus SCN Illumina HiSeq 4000 4h 24h

Table 2.1: Datasets from different species, tissues and assay platforms were used to bench-
mark tauFisher’s ability to predict circadian time.
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Data Metric ZeitZeiger
TimeSignatR tauFisher
w/ 2-sample w/ Lomb-Scargle w/ JTK_Cycle

[220]2,4
Accuracy (within 3 hr) 0.996 ± 0.028 1.000 ± 0.000 0.996 ± 0.028 1.000 ± 0.000
Accuracy (within 2 hr) 0.986 ± 0.051 1.000 ± 0.000 0.966 ± 0.086 1.000 ± 0.000
Accuracy (within 1 hr) 0.728 ± 0.179 0.904 ± 0.154 0.880 ± 0.158 0.916 ± 0.128
Accuracy (exact) 0.004 ± 0.028 0.000 ± 0.000 0.370 ± 0.219 0.358 ± 0.209

[220]1,2,5
Accuracy (within 3 hr) NA 0.875 ± 0.279 0.720 ± 0.416 0.945 ± 0.200
Accuracy (within 2 hr) NA 0.620 ± 0.409 0.695 ± 0.414 0.945 ± 0.200
Accuracy (within 1 hr) NA 0.195 ± 0.333 0.565 ± 0.453 0.815 ± 0.346
Accuracy (exact) NA 0.000 ± 0.000 0.250 ± 0.314 0.375 ± 0.344

[220]3,4
Accuracy (within 3 hr) 0.964 ± 0.100 1.000 ± 0.000 0.936 ± 0.133 0.986 ± 0.059
Accuracy (within 2 hr) 0.868 ± 0.156 0.988 ± 0.048 0.880 ± 0.161 0.932 ± 0.103
Accuracy (within 1 hr) 0.626 ± 0.225 0.844 ± 0.172 0.764 ± 0.196 0.850 ± 0.162
Accuracy (exact) 0.002 ± 0.020 0.000 ± 0.000 0.312 ± 0.189 0.308 ± 0.219

[220]1,3,5
Accuracy (within 3 hr) NA 0.840 ± 0.340 0.840 ± 0.332 0.970 ± 0.171
Accuracy (within 2 hr) NA 0.565 ± 0.406 0.765 ± 0.344 0.910 ± 0.269
Accuracy (within 1 hr) NA 0.275 ± 0.385 0.585 ± 0.427 0.735 ± 0.313
Accuracy (exact) NA 0.000 ± 0.000 0.155 ± 0.263 0.335 ± 0.326

[220]6,4
Accuracy (within 3 hr) 0.984 ± 0.061 1.000 ± 0.000 0.834 ± 0.166 0.922 ± 0.130
Accuracy (within 2 hr) 0.924 ± 0.130 0.998 ± 0.020 0.790 ± 0.183 0.896 ± 0.141
Accuracy (within 1 hr) 0.558 ± 0.219 0.872 ± 0.152 0.612 ± 0.218 0.682 ± 0.211
Accuracy (exact) 0.002 ± 0.020 0.000 ± 0.000 0.240 ± 0.203 0.242 ± 0.191

[220]5,6
Accuracy (within 3 hr) NA 0.525 ± 0.457 0.420 ± 0.323 0.595 ± 0.360
Accuracy (within 2 hr) NA 0.280 ± 0.410 0.365 ± 0.347 0.565 ± 0.353
Accuracy (within 1 hr) NA 0.140 ± 0.257 0.300 ± 0.284 0.410 ± 0.358
Accuracy (exact) NA 0.000 ± 0.000 0.110 ± 0.208 0.115 ± 0.211

[220]4,7
Accuracy (within 3 hr) 0.932 ± 0.121 1.000 ± 0.000 0.824 ± 0.183 0.904 ± 0.146
Accuracy (within 2 hr) 0.786 ± 0.200 0.990 ± 0.044 0.760 ± 0.201 0.842 ± 0.166
Accuracy (within 1 hr) 0.504 ± 0.226 0.794 ± 0.192 0.566 ± 0.222 0.608 ± 0.224
Accuracy (exact) 0.004 ± 0.028 0.000 ± 0.000 0.266 ± 0.182 0.246 ± 0.203

[220]5,7
Accuracy (within 3 hr) NA 0.570 ± 0.444 0.360 ± 0.302 0.810 ± 0.316
Accuracy (within 2 hr) NA 0.305 ± 0.340 0.300 ± 0.293 0.660 ± 0.382
Accuracy (within 1 hr) NA 0.185 ± 0.272 0.185 ± 0.243 0.430 ± 0.302
Accuracy (exact) NA 0.000 ± 0.000 0.03 ± 0.119 0.15 ± 0.241

[12]4
Accuracy (within 3 hr) 0.548 ± 0.105 0.869 ± 0.095 0.567 ± 0.132 0.563 ± 0.117
Accuracy (within 2 hr) 0.400 ± 0.108 0.720 ± 0.135 0.414 ± 0.123 0.471 ± 0.126
Accuracy (within 1 hr) 0.218 ± 0.097 0.428 ± 0.142 0.254 ± 0.108 0.299 ± 0.103
Accuracy (exact) 0.006 ± 0.023 0.000 ± 0.000 0.086 ± 0.087 0.103 ± 0.067

[27]5
Accuracy (within 3 hr) 0.601 ± 0.105 0.914 ± 0.061 0.407 ± 0.083 0.462 ± 0.114
Accuracy (within 2 hr) 0.446 ± 0.111 0.750 ± 0.095 0.306 ± 0.074 0.370 ± 0.104
Accuracy (within 1 hr) 0.213 ± 0.091 0.452 ± 0.089 0.197 ± 0.072 0.235 ± 0.082
Accuracy (exact) 0.000 ± 0.000 0.000 ± 0.000 0.063 ± 0.033 0.078 ± 0.045

[72]4
Accuracy (within 3 hr) 0.563 ± 0.350 0.867 ± 0.171 0.783 ± 0.248 0.750 ± 0.286
Accuracy (within 2 hr) 0.460 ± 0.344 0.690 ± 0.269 0.740 ± 0.258 0.670 ± 0.330
Accuracy (within 1 hr) 0.307 ± 0.275 0.427 ± 0.289 0.590 ± 0.280 0.543 ± 0.295
Accuracy (exact) 0.010 ± 0.057 0.000 ± 0.000 0.257 ± 0.263 0.227 ± 0.241

[187]5
Accuracy (within 3 hr) 0.108 ± 0.298 0.932 ± 0.181 0.610 ± 0.237 0.705 ± 0.237
Accuracy (within 2 hr) 0.075 ± 0.218 0.818 ± 0.251 0.545 ± 0.239 0.635 ± 0.237
Accuracy (within 1 hr) 0.040 ± 0.150 0.542 ± 0.256 0.412 ± 0.257 0.468 ± 0.253
Accuracy (exact) 0.000 ± 0.000 0.000 ± 0.000 0.190 ± 0.195 0.182 ± 0.181
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Table 2.2: tauFisher performs well when different definitions of accuracy is used.
Benchmark results (mean ± standard deviation) when we used 80% of the data set for train-
ing and the remaining 20% for testing. Accuracy was calculated when different definitions
of correctness were used. When a pipeline failed to predict for part of the 100 iterations,
accuracy for the failed iteration is set to 0. 1 If ZeitZeiger [89] was unable to do a 3-fold
cross validation, we ran ZeitZeiger without any cross validation and set sumabsv = 1 and
nSpc = 3; 2 kidney; 3 liver; 4 microarray; 5 bulk RNAseq; 6 brainstem; 7 cerebellum.
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Table 2.3: tauFisher accurately adds time stamps to bulk transcriptomic data
collected from various organs. Benchmark results (mean ± standard deviation) when
we use 80% of the data set for training and the remaining 20% for testing. When a pipeline
failed to predict for part of the 100 iterations, accuracy and RMSE for the failed iteration
are set to 0 and 12 respectively. 1 If ZeitZeiger [89] was unable to do a 3-fold cross validation,
we ran ZeitZeiger without any cross validation and set sumabsv = 1 and nSpc = 3; 2 kidney;
3 liver; 4 microarray; 5 bulk RNAseq; 6 brainstem; 7 cerebellum.

Data Metric ZeitZeiger
TimeSignatR tauFisher
w/ 2-sample w/ Lomb-Scargle w/ JTK_Cycle

[220]2,4
Accuracy 0.986 ± 0.051 1.000 ± 0.000 0.966 ± 0.086 1.000 ± 0.000
RMSE 0.849 ± 0.244 0.568 ± 0.195 1.021 ± 0.406 0.911 ± 0.256
# NA 0 0 0 0

[220]1,2,5
Accuracy NA 0.620 ± 0.409 0.695 ± 0.414 0.945 ± 0.200
RMSE NA 2.035 ± 1.766 2.965 ± 3.117 1.076 ± 0.981
# NA 100 0 0 0

[220]3,4
Accuracy 0.868 ± 0.156 0.988 ± 0.048 0.880 ± 0.161 0.932 ± 0.103
RMSE 1.391 ± 1.124 0.689 ± 0.240 1.797 ± 1.479 1.182 ± 0.451
# NA 0 0 0 0

[220]1,3,5
Accuracy NA 0.565 ± 0.406 0.765 ± 0.344 0.910 ± 0.269
RMSE NA 2.262 ± 1.836 2.269 ± 2.356 1.203 ± 0.825
# NA 100 0 0 0

[220]4,6
Accuracy 0.924 ± 0.130 0.998 ± 0.020 0.790 ± 0.183 0.896 ± 0.141
RMSE 1.148 ± 0.450 0.633 ± 0.248 2.603 ± 1.540 1.709 ± 0.994
# NA 0 0 0 0

[220]5,6
Accuracy NA 0.280 ± 0.410 0.365 ± 0.347 0.565 ± 0.353
RMSE NA 3.586 ± 2.588 5.763 ± 2.645 3.468 ± 1.882
# NA 100 0 0 0

[220]4,7
Accuracy 0.786 ± 0.200 0.990 ± 0.044 0.760 ± 0.201 0.842 ± 0.166
RMSE 1.526 ± 0.653 0.751 ± 0.253 2.683 ± 1.623 2.063 ± 1.262
# NA 0 0 0 0

[220]5,7
Accuracy NA 0.305 ± 0.340 0.300 ± 0.293 0.660 ± 0.382
RMSE NA 3.255 ± 1.913 5.921 ± 2.656 2.386 ± 1.405
# NA 100 0 0 0

[12]4
Accuracy 0.400 ± 0.108 0.720 ± 0.135 0.414 ± 0.123 0.471 ± 0.126
RMSE 4.609 ± 0.802 2.598 ± 1.220 4.998 ± 0.848 5.087 ± 0.845
# NA 0 0 0 0

[27]5
Accuracy 0.446 ± 0.111 0.750 ± 0.095 0.306 ± 0.074 0.370 ± 0.104
RMSE 4.095 ± 0.806 1.806 ± 0.367 5.959 ± 0.547 5.481 ± 0.660
# NA 0 0 1 1

[72]4
Accuracy 0.46 ± 0.344 0.690 ± 0.269 0.74 ± 0.258 0.67 ± 0.330
RMSE 4.558 ± 3.640 1.822 ± 0.820 2.488 ± 1.662 2.707 ± 1.976
# NA 15 0 0 0

[187]5
Accuracy 0.075 ± 0.218 0.818 ± 0.251 0.545 ± 0.239 0.635 ± 0.237
RMSE 10.784 ± 3.317 1.439 ± 1.101 3.722 ± 1.880 2.969 ± 1.477
# NA 88 0 0 0
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Figure 2.1: The tauFisher pipeline involves multiple steps. Key steps of the tauFisher
pipeline include identification of rhythmic genes using MetaCycle, functional data analysis,
within-sample normalization, linear transformation, and multinomial regression.

66



Number of seeds: 100
Zhang et al. (2014) - Liver (RNAseq)

A
cc

ur
ac

y
R

M
S

E

Number of seeds: 100
Zhang et al. (2014) - Liver (Microarray) Zhang et al. (2014) - Kidney (RNAseq)

Number of seeds: 100
Zhang et al. (2014) - Kidney (Microarray)

TimeSignatR
w/ 2 test samples

12 hours apart

ZeitZeiger tauFisher
w/ LS w/ JTK_Cycle

w/ 1 test sample

****

***

***

1

0.5

0

****

10

5

0

****
****

****

*

****
****

****

*

1

0.5

0

TimeSignatR
w/ 2 test samples

12 hours apart

ZeitZeiger tauFisher
w/ LS w/ JTK_Cycle

w/ 1 test sample

10

5

0

****

****

****

TimeSignatR
w/ 2 test samples

12 hours apart

ZeitZeiger tauFisher
w/ LS w/ JTK_Cycle

w/ 1 test sample

1

0.5

0

10

5

0

***
*

***
*

1

0.5

0

****

****

****

**

TimeSignatR
w/ 2 test samples

12 hours apart

ZeitZeiger tauFisher
w/ LS w/ JTK_Cycle

w/ 1 test sample

10

5

0

Number of seeds: 100
Zhang et al. (2014) - Brainstem (RNAseq)

Number of seeds: 100
Zhang et al. (2014) - Brainstem (Microarray)

Number of seeds: 100
Zhang et al. (2014) - Cerebellum (RNAseq)

Number of seeds: 100
Zhang et al. (2014) - Cerebellum (Microarray)

A
cc

ur
ac

y
R

M
S

E

****

***

1

0.5

0

TimeSignatR
w/ 2 test samples

12 hours apart

ZeitZeiger tauFisher
w/ LS w/ JTK_Cycle

w/ 1 test sample

****

10

5

0

****
****

****

****
****

1

0.5

0

TimeSignatR
w/ 2 test samples

12 hours apart

ZeitZeiger tauFisher
w/ LS w/ JTK_Cycle

w/ 1 test sample

****
****

****

****
****

****

10

5

0

****

****

1

0.5

0

TimeSignatR
w/ 2 test samples

12 hours apart

ZeitZeiger tauFisher
w/ LS w/ JTK_Cycle

w/ 1 test sample

****

****
10

5

0

****
****

****

*

TimeSignatR
w/ 2 test samples

12 hours apart

ZeitZeiger tauFisher
w/ LS w/ JTK_Cycle

w/ 1 test sample

****
****

****

*
****

10

5

0

1

0.5

0

Number of seeds: 100
Arnardottir et al. (2014) - Blood (Microarray) 

Number of seeds: 100
Braun et al. (2018) - Blood (RNA-seq) 

Number of seeds: 100
Geyfman et al. (2012) - Skin (Microarray)

Number of seeds: 100
Tognini et al. (2020) - SCN (RNA-seq)

A
cc

ur
ac

y
R

M
S

E

**

*

****

TimeSignatR
w/ 2 test samples

12 hours apart

ZeitZeiger tauFisher
w/ LS w/ JTK_Cycle

w/ 1 test sample

*

****

****
****

****

*
***

TimeSignatR
w/ 2 test samples

12 hours apart

ZeitZeiger tauFisher
w/ LS w/ JTK_Cycle

w/ 1 test sample

****
****

****

**
**

****
****

****

****
****

****

TimeSignatR
w/ 2 test samples

12 hours apart

ZeitZeiger tauFisher
w/ LS w/ JTK_Cycle

w/ 1 test sample

****
****

****

****
****

****

****
****

*

*

TimeSignatR
w/ 2 test samples

12 hours apart

ZeitZeiger tauFisher
w/ LS w/ JTK_Cycle

w/ 1 test sample

****
****

*
**

1

0.5

0

10

5

0

1

0.5

0

10

5

0

1

0.5

0

10

5

0

1

0.5

0

10

5

0

Number of seeds: 100

Figure 2.2: Legend on the next page.
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Figure 2.2: tauFisher requires only one test sample and performs well in both
accuracy and RMSE for transcriptomic data collected from various organs and
assay platforms. Blue line inside each box indicates the median. Bounds of box represent
the first and third quartiles. The upper and lower whiskers extend to the largest and smallest
value within 1.5 times the inter-quartile range respectively. NAs excluded from the plot.
RMSE: root mean square error. ∗: p-value ≤ 0.05, p-value ≤ 0.01, ∗ ∗ ∗: p-value ≤ 0.001,
∗∗∗∗: p-value ≤ 0.0001. P -values are determined using Wilcoxon rank-sum test and adjusted
using Bonferroni correction. For each dataset, n = 100 randomly generated training-testing
partitions.
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Figure 2.3: tauFisher accurately predicts circadian time when the training and test
data are from different assay methods. a-b tauFisher trained on mouse skin microarray
data can predict circadian time for skin bulk RNAseq data. a Overlay of the predictor
gene expression in GSE38622 (training) and GSE83855 (test). b Prediction outcomes from
tauFisher. c-d tauFisher trained on mouse SCN bulk RNAseq data can predict circadian
time of pseudobulk data generated from mouse SCN scRNAseq data. c Overlay of the
predictor gene expression in GSE157077 (training) and GSE117295 (test). d Prediction
outcomes from tauFisher. e Prediction outcomes from TimeSignatR and ZeitZeiger when
trained on mouse SCN bulk RNAseq and tested on mouse SCN scRNAseq pseudobulk. b,
d, e The dashed lines mark where predictions equal truth. RMSE: root mean square error.
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Figure 2.4: tauFisher’s performance in systems with disturbed circadian rhythms.
a tauFisher trained on a control/healthy diurnal system predicts time labels that are away
from the sample collection time of the tested disturbed systems. tauFisher was trained
on skin microarray data collected from control/healthy mice (GSE38622) and tested on skin
bulk RNAseq (GSE83855) collected from mice experienced time-restricted feeding schedules.
Food was available between ZT5-ZT9 or ZT0-ZT4, while mice usually feed during early night
(ZT12-ZT16). Grey dashed lines mark where predicted time labels equal sample collection
time. Yellow dashed lines mark where predictions equal the internal circadian time if the
internal circadian time is phase-shifted according to the feeding schedule, which is not true
[195]. b tauFisher trained on data collected from a disturbed system can predict time labels of
samples collected from the same system. Using skin bulk RNAseq (GSE83855) collected from
mice experienced the two time-restricted feeding schedules mentioned above, we performed
leave-one-out cross validation. Each sample in each of the two feeding schedules was reserved
for testing while tauFisher trained on the remaining samples. Grey dashed lines mark where
predicted time labels equal sample collection time.

70



a.

0

2

4

6

8

10

12

14

16

18

20

22

24

0 4 8 12 16 20 24 28 32 36 40 44 48 52
Sample time

P
re

di
ct

ed
 ti

m
e 

la
be

l

tauFisher
(skin microarray     skin microarray, to calculate RMSE and accuracy on the training data)

> 2 hours

< 2 hours

Absolute error

Absolute error (h)

0 3 6 9 12

Accuracy: 0.85
RMSE: 1.901 

Number of Additional Genes

0.00

0.25

0.50

0.75

1.00

0

2

4

0 5 10 15 20

A
cc

ur
ac

y

R
M

S
E

Accuracy and RMSE vs. Number of Genes
Train on skin microarray, test on skin bulk RNAseq 

Accuracy

RMSE

Number of Additional Genes

0.00

0.25

0.50

0.75

1.00

0

2

4

6

0 5 10 15 20

Ac
cu

ra
cy R

M
SE

Accuracy and RMSE vs. Number of Genes
Train on SCN bulk RNAseq, test on SCN pseudobulk 

Accuracy

RMSE

0

2

4

6

8

10

12

14

16

18

20

22

24

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68
Sample time

P
re

di
ct

ed
 ti

m
e 

la
be

l
tauFisher
(SCN bulk RNAseq     SCN bulk RNAseq, to calculate RMSE and accuracy on the training data)

> 2 hours

< 2 hours

Absolute error

Absolute error (h)

0 3 6 9 12

Accuracy: 1
RMSE: 1.155 

b.

c.

Figure 2.5: tauFisher’s performance within the training data and its sensitivity
to the number of genes used in the pipeline. a Prediction results when tauFisher was
trained on mouse SCN bulk RNAseq (GSE157077) and tested on the same data. b Prediction
results when tauFisher was trained on mouse skin microarray (GSE38622) and tested on the
same data. a-b Grey dashed lines mark where predictions equal sample collection time.
c tauFisher’s performance is sensitive to the number of additional predictor genes used in
the pipeline. We performed a sensitivity analysis and calculated accuracy and RMSE when
we chose different numbers of diurnal genes in addition to the core clock genes with 24-
hour period length. Although including 10 additional genes does not guarantee the best
performance, it is a reasonable choice across different datasets.

71



Chapter 3

Uncovering cell type specific circadian

regulations in mouse dermis with single

cell RNAseq

J. Duan, M. N. Ngo, S. S. Karri, L. C. Tsoi, J. E. Gudjonsson, B. Shahbaba, J. Lowengrub,

and B. Andersen. taufisher predicts circadian time from a single sample of bulk and single-cell

pseudobulk transcriptomic data. Nature Communications, 15(1), May 2024

3.1 Introduction

Located just beneath the epidermis and above the hypodermis, the dermis provides strength

and elasticity to the skin. Skin organelles such as hair follicles, sweat glands, and sebaceous

glands are embedded in the dermis, all of which require proper interaction with the dermis

for their functions. The dermis itself contains a diverse population of cells, with the most

abundant being the fibroblasts, which produce collagen and other connective fibers. In
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addition to fibroblasts, the dermis also contains immune cells such as macrophages, T cells,

mast cells, and dendritic cells, which play active roles in immune responses [145, 204].

The circadian clock is robustly present in all three layers of the skin. In the dermis specifically,

the circadian clock regulates the infiltration of dendritic cells [83] as well as the prolifera-

tion, migration, and actin production of dermal fibroblasts [156, 105]. Due such circadian

regulations, wounds incurred on mice at different times of the day heal at different rates and

circadian disruptions result alternations in the wound healing [105, 156, 216].

To study the circadian clock in the dermis, we we performed scRNAseq on adult wild type

C57BL/6J mouse dorsal dermis every four hours for 72 hours under 12:12 light-dark cycle.

We found that most of the rhythmic processes are metabolism-related in dermal fibroblasts,

whereas almost all rhythmic processes are related to immune responses in dermal immune

cells. Additionally, we found that the amplitude of the collective rhythm is dampened

in dermal immune cells compared to dermal fibroblasts. Incorporating bootstrapping and

tauFisher, a computational pipeline that predicts circadian time labels for transcriptomics

datasets, revealed that circadian phase heterogeneity contributes to the dampened collective

rhythm as well as fewer rhythmic genes found in dermal immune cells.

3.2 Results

3.2.1 tauFisher trained on microarray data accurately predicts cir-

cadian time of scRNAseq samples.

We first tested tauFisher’s performance on the collected scRNAseq data to validate its per-

formance for peripheral tissues. The pseudobulk matrices for the 18 samples were computed

directly from the unprocessed data. We trained tauFisher on GSE38622 [72], a time series
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of skin microarray data. Because two of the rhythmic genes, A630005I04Rik and Ivl, are

not present in the pseudobulk data, only 16 features were selected in the tauFisher pipeline

in this test (Figure 3.1a).

Although the input test data, the unnormalized pseudobulk data, appears to be noisy, tau-

Fisher successfully predicts circadian times for the 18 samples thanks to the within-sample

normalization step in the tauFisher pipeline. In 14 out of the 18 tests, tauFisher predicted

circadian time within 2 hours of the labeled time, giving a high accuracy of 0.778 and a low

RMSE of 2.198 (Figure 3.1b).

We have demonstrated that tauFisher trained on microarray data, can accurately predict

circadian time for scRNAseq data as well.

3.2.2 Collective circadian rhythms are dampened in dermal im-

mune cells compared to dermal fibroblasts.

Due to the frequency of sequencing dropouts of clock genes in scRNAseq data, investigating

the circadian clock within each cell is not yet achievable. To overcome this limitation,

previous studies have used pseudobulk approaches to investigate the clock in scRNAseq data

[199].

To validate the pseudobulk approach for studying the circadian clock in mouse dermis, we

normalized the pseudobulk scRNAseq data, and compared it with the published microarray

data GSE38622 from mouse whole skin [72]. Overlay of the expression of nine core clock

genes, Arntl, Dbp, Per1, Per2, Per3, Nr1d1, Nr1d2, Cry1 and Cry2, reveals perfect con-

sistency between the microarray data and the scRNAseq pseudobulk data (Figure 3.2a),

indicating that circadian clock gene expression in the dermis is captured in the pseudobulk

data generated from scRNAseq data.
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To study the circadian clock at a cell-type level in the skin, we integrated all samples and

performed scRNAseq analysis to identify cell types. In total, 16,866 cells passed the quality

control, with around 950 cells per sample and around 2,800 cells per ZT. Four major cell

types, fibroblasts (N = 12,649), immune cells (N = 3,353), muscle cells (N = 722) and

endothelial cells (N = 142) were identified using canonical marker genes (Figure 3.2b). Due

to low cell counts for muscle and endothelial cells (N<20) in some samples, we could not

generate a reliable time series of pseudobulk data for these two cell types. Thus, we focus

on the circadian clock in dermal fibroblasts and immune cells in this study.

In general at the single cell level, the expression ranges of the core clock genes are similar in

the two cell types, and the measurements of the clock genes in fibroblasts are more variable

(Figure 3.3). To compare the core clock in fibroblasts and immune cells, we computed

and normalized the pseudobulk data for each of the two cell types in each sample. Both

fibroblasts and immune cells possess robust circadian clock at the pseudobulk level. While

the overall rhythms in the two cells types are consistent with each other, with core clock gene

expressions peaking and troughing around the same time, the amplitudes of the oscillations

are reduced in the immune cells compared to fibroblasts, indicating a dampened collective

clock in immune cells (Figure 3.2c). Whether this observation indicates less synchronous

clocks in immune cells than in fibroblasts, or weaker clock function in each individual immune

cell, is not known.

3.2.3 Dermal fibroblasts and immune cells harbor different rhyth-

mic pathways and processes.

To study diurnal genes and pathways in dermal fibroblasts and immune cells, we used

JTK_Cycle to identify rhythmic genes from the normalized pseudobulk data. We iden-

tified 1,946 and 432 rhythmic genes in fibroblasts and immune cells, respectively (Figure
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3.4a). The fewer rhythmic genes in immune cells is not caused by the lower cell count of

immune cells, as randomly down-sampling the fibroblasts to the number of immune cells

produced similar results. Only 79 genes were rhythmic in both cell types, with most of them

related to the core clock network and metabolism.

Gene Ontology analysis revealed that rhythmic processes in fibroblasts and immune cells

are different. Shared terms reflect basic cell integrity maintenance and function, including

nucleocytoplasmic transport, regulations of cellular amide metabolic process, regulation of

protein stability, and rhythmic process (Figure 3.4b). For fibroblasts, additional metabolism

processes and migration are significantly enriched in the rhythmic genes (Figure 3.4b, red).

For immune cells, the rhythmic genes enrich for immune responses including defense response

to virus, regulation of T-helper 2 cell differentiation, and response to interferon-beta (Figure

3.4b, blue).

We selected some of the rhythmic genes in fibroblasts (Figure 3.4c) and immune cells (Figure

3.4d) and compared their expression patterns in the two cell types. For fibroblasts, we high-

light genes related to glucose metabolism (Pkm), glycosylation (Gal3st4, Plpp3 ), oxidative

phosphorylation (Ndufs8 ), collagen regulations (Loxl2, Tgfb1 ), amino acid metabolism (Ivd),

sterol synthesis (Scp2, Por), and cell adhesion and migration (Elmo2, Antxr1 ), suggesting

circadian regulation of the above processes at a molecular level (Figure 3.4c). Interestingly,

while some genes are only significantly rhythmic in fibroblasts because they are not expressed

in immune cells (e.g. Loxl2 ), some are expressed at similar or higher levels in immune cells,

but are not significantly rhythmic in the latter (e.g. Ndufs8, Scp2 ), indicating cell-type

specific circadian regulations.

In the immune cells, genes related to inflammatory and immune response (Cdk19, Cd84 ),

post-translational modification (Sumo1 ), extracellular matrix regulation (Mmp9 ), transcrip-

tion regulation (Med16 ), electrochemical gradient maintenance (Atp1b1 ), and intercellular

communication (Stxbp6 ) are rhythmic (Figure 3.4d). We note that Sumo1 is rhythmic in
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both fibroblasts and immune cells, but the expression peaks 4-hour later in immune cells

than in fibroblasts.

Interestingly, the expression of Il18r1 is significantly rhythmic with a high amplitude in

fibroblasts (p-value = 2.21 × 10−7), but not in immune cells (p-value = 0.7104) (Figure

3.4c). The level of IL18, the ligand that binds to IL18R1, was found to be rhythmic in

mouse peripheral blood [109]. Here, Il18, is significantly rhythmic in neither fibroblasts (p-

value = 0.3097) nor immune cells (p-value = 0.0925) (Figure 3.4d). But, it is possible that

the insignificance of the p-value for immune cells is caused by noise introduced by summing

the expression of all types of immune cells while it is mostly expressed in the myeloid cells.

To further explore the rhythmic pathways in dermal fibroblasts and immune cells, we divided

the list of rhythmic genes into four groups based on their peaking time (Methods): day (ZT3

- ZT9), evening (ZT9 - ZT15), night (ZT15 - ZT21), and morning (ZT21 - ZT3 of the next

day). The rhythmic genes are roughly evenly split: in fibroblasts, 426 peak during the day,

554 peak in the evening, 545 peak at night, and 421 peak in the morning; in immune cells,

129 peak during the day, 111 peak in the evening, 87 peak at night, and 105 peak in the

morning. We then performed Gene Ontology analysis on the quarter-day rhythmic gene lists

to identify the biological processes that are upregulated at different times of the day. We

highlight some of the terms related to metabolism, signaling, cell proliferation and apoptosis,

gene regulation, and immune regulation (Figure 3.4e).

During evening and night, when mice wake up, start feeding, and become active, processes

such as generation of precursor metabolites and energy, cellular respiration, mitochondrial

respiratory chain complex I assembly are upregulated in fibroblasts (Figure 3.4e). Meanwhile,

glycolytic processes are upregulated in fibroblasts, which is consistent with the finding that

glycolysis is preferred at night in epidermal stem cells [173]. Additionally, similar to epider-

mal stem cells, more dermal fibroblasts may be in the S-phase of the cell cycle during the

evening and night, as DNA biosynthetic process is enriched during this time. Various signal-

77



ing pathways are also enriched during this time, including prostaglandin metabolic process

and regulation of apoptotic signaling pathway. Gene-regulatory mechanisms such as histone

modification and mRNA splicing are upregulated during the evening and night in fibrob-

lasts. Fibroblast migration peaks at night, which is consistent with previous findings that

mouse wounds heal fastest during the active phase [85]. Immune regulation is also circadian

regulated in fibroblasts, as terms including regulation of inflammatory response are enriched

during this time. Compared to dermal fibroblasts during the evening and night, fewer terms

related to metabolism, signaling, and gene regulation are enriched in dermal immune cells

(Figure 3.4e). But, almost all immune regulation terms such as defense response to virus

and interferon-beta production are upregulated in dermal immune cells during the evening

and night, potentially contributing to shorter healing duration for wounds occurring during

mice’s active phase as well [85]. Additionally, such findings in mice imply that circadian reg-

ulation of immune response may be related to the more severe symptoms of inflammatory

skin diseases, such as psoriasis, in the evening and at night [63, 55].

In the morning and during the day, mice sleep and have lower food intake. Consistently,

rhythmic genes peaking during this time in fibroblasts enrich for lipid catabolic process, glu-

cose metabolic process, lipid storage, and response to starvation. Interestingly, extracellular

matrix organization and cell-matrix adhesion peak during the day, possibly preparing for

fibroblast migration, which peaks in the evening (Figure 3.4e). For immune cells, rhythmic

genes peaking during the morning and day generate fewer terms than the ones peaking during

the evening and night, especially in the immune regulation category (Figure 3.4e). Interest-

ingly, rhythmic genes the mouse dermal fibroblasts significantly enrich for genes linked to

SNPs associated with systemic sclerosis [115], an inflammatory disease with increased colla-

gen production by fibroblasts. Rhythmic genes in mouse dermal immune cells significantly

enrich for SNPs associated with not only systemic sclerosis, but also vitiligo [93], a disease

characterized by immune-mediated depigmentation of the skin (Figure 3.4f).
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In sum, we found that more genes are collectively rhythmic in fibroblasts than in immune

cells, while only a few rhythmic genes are shared. Additionally, more metabolism processes

are diurnally regulated in fibroblasts, with respiration peaking during the evening and night,

and response to starvation and lipid storage peaking during the morning and day. On the

other hand, immune regulation is almost exclusively upregulated by rhythmic genes that

peak during the evening and night in immune cells. Importantly, rhythmic genes found in

both fibroblasts and immune cells significantly enrich for Genomewide Association Stud-

ies (GWAS) SNPs associated with human skin immune-mediated conditions, pointing to a

potential link between the skin circadian clock and autoimmune diseases of the skin.

3.2.4 tauFisher determines that circadian phases are more hetero-

geneous in dermal immune cells than in fibroblasts.

Analysis of the pseudobulk data from dermal fibroblasts and immune cells reveals damp-

ened amplitudes of the core clock genes (Figure 3.2c) in the immune cells and finds fewer

rhythmic genes in immune cells than in fibroblasts (Figure 3.4a). This observation could

mean that each individual immune cell harbors weaker circadian clock, and/or the immune

cells have more heterogeneous phases, so collectively they display a dampened clock. Note

that variations of mean expression in single cells (vertical shifts of expression curves) do not

cause dampened amplitudes at the pseudobulk level (Figure 3.5c, d), so this scenario is not

considered in the following analysis.

To investigate the cause behind the dampened clock in dermal immune cells, we executed

a bootstrapping approach that incorporates tauFisher for its ability to predict circadian

time for transcriptomic data at different scales (Figure 3.6a). Since the heterogeneity of a

set of heterogeneous clocks should be captured at any given time point, we performed the

analysis within each time point. The workflow involves the following steps: (1) trimming the
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scRNAseq data so that the expression matrix only includes the predictor genes identified in

the training data and the cells labeled to be the interested cell types; (2) randomly sampling

the same number of cells for each cell type to remove potential bias caused by different cell

numbers, and summing the transcript counts in the pulled cells for each gene to create a

pseudobulk dataset; (3) repeating the random sampling process (step 2) with replacement

many times to create pseudobulk replicates for each cell type; and (4) predicting circadian

time labels for the pseudobulk replicates using tauFisher. The idea is that if the cells

harbor synchronous clocks, the pseudobulk replicates calculated from different rounds of

sampling will be similar. In this case, the distribution of predicted time labels will be more

concentrated. On the other hand, if the cells harbor heterogeneous clocks, the pseudobulk

replicates calculated from the cells in different rounds of sampling will differ depending on

which cells are pulled. The distribution of the prediction outcome in this case will be wider.

Since the prediction outcomes are circular data, we then perform Rao’s Tests for Homogeneity

and Wallraff Test of Angular Distances to compare the mean and the dispersion around the

mean.

To ensure that the pipeline works as expected, we generated simulated single-cell circadian

gene expression datasets to represent a group of synchronized but dampened clocks (Figure

3.5a), and a group of out-of-phase but robust clocks (Figure 3.5b). As expected, the pre-

diction outcome for the out-of-phase clocks has a significantly greater dispersion around the

mean, indicating a more heterogeneous mixture of phases (Figure 3.5e, f).

We then applied the pipeline to the collected scRNA-seq data, focusing on the fibroblasts

and immune cells. At each time point, we randomly selected n cells for each cell type, with

n equal to 20% of the cell count of the cell type with the smaller population (immune cells in

this dataset). Then, we used the exact same procedure to generate 500 pseudobulk replicates

for the two cell types at each time point. tauFisher then predicts the circadian time for each

pseudobulk replicate, yielding 500 predicted timestamps for each of the two cell types. We
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compared the distribution of the 500 predicted time labels of the two cell types at each time

point.

In general, the prediction means are centered at different times for fibroblasts and immune

cells (Figure 3.6b), but around the predicted time for the whole-sample pseudobulk data

(Figure 3.1g). Whether one cell type’s circadian clock is ahead of the other is inconclusive

(Figure 3.6c). Additionally, the distributions of the prediction outcome for immune cells are

mostly multimodal and not as centered as the prediction distribution for fibroblasts (Figure

3.6b). Indeed, the standard deviation of the prediction distribution is significantly greater

for immune cells for five out of the six ZTs (Figure 3.6c). This means that the bootstrapping

pulled from a more heterogeneous population when sampling the immune cells, and thus

implying that the clock phases are more heterogeneous in immune cells than in fibroblasts.

In sum, we were able to use tauFisher to obtain insights into the circadian heterogeneity for

different cell types by predicting the circadian time for random samples from each of the cell

types. We hypothesize that the circadian clock is more heterogeneous in dermal immune cells

than in dermal fibroblasts, and such heterogeneity may be the reason behind the dampened

core clock and fewer rhythmic genes we found in immune cells based on collective, cell-type

level, gene expression data. Such a result is not unexpected, as the fibroblasts (Figure 3.7a, b)

may be more homogeneous in their biological function than the immune cells, which contain

dendritic cells as well as different types of macrophages and lymphocytes (Figure 3.7d, e) that

serve different immune functions. Unfortunately, we did not capture enough cells for each

specific fibroblast and immune cell types in the scRNAseq experiment to generate reliable

pseudobulk data that is required for further circadian analysis (Figure 3.7c, f).
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3.3 Discussion

In addition to testing tauFisher on published datasets, we also collected a time series of

scRNAseq from mouse dermis. Consistent with previous findings [141, 55], the circadian

rhythm is robustly present in the dermis and the oscillatory patterns of the core clock

genes agree with published data [72]. Comparing the rhythmic genes in fibroblasts and

immune cells, we found that only a few rhythmic genes are shared by the two cell types

and many pathways and processes are rhythmically regulated in a cell type-specific manner.

Shared diurnally regulated terms includes basic cellular functions and the rhythmic genes

in fibroblasts have greater enrichment for metabolism related terms, whereas the rhythmic

genes in immune cells have greater enrichment for immune responses.

Combining tauFisher with other methods can guide the application of circadian medicine by

providing additional insights and explanation of clinically observed circadian dysfunction.

Dampened clock gene expression has been observed in psoriasis-affected skin [75, 215], as well

as in various types of cancer [209, 175, 45, 100, 86, 90]. There is also evidence that restoring

dampened circadian oscillations in diseased tissues can be effective in reducing cancer cell

proliferation and tumor growth [100, 90].

There are two possible behind-the-scene causes of dampened circadian rhythms at a bulk

level: first, the circadian rhythm is dampened in every cell, but the cells are synchronous

to each other (Figure 3.5a); second, the clock is normally functioning in every cell, but

the cells are out of phase relative to each other (Figure 3.5b). Understanding which of the

two scenarios is responsible for a dampened bulk-level clock gene expression is particularly

important because in one case, it would be optimal to stimulate the clock to restore the

circadian clock in the diseased tissue, while in the other case, synchronizing the clock is

more suitable.

Here, we observed that the collective circadian rhythm in dermal immune cells is dampened
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compared to fibroblasts. We incorporated tauFisher with bootstrapping to investigate the

cause behind the dampened collective circadian rhythm in dermal immune cells. tauFisher’s

prediction outcome suggests that the circadian phases in dermal immune cells are more

heterogeneous than those in dermal fibroblasts, and this heterogeneity may contribute to

the dampened rhythm in immune cells at a collective level. Due to technological constrains,

our claim on differences in phase heterogeneity between dermal fibroblasts and immune cells

relies on the computational analysis of the mouse skin scRNAseq and the simulated single-cell

data.

The advantages tauFisher brings goes beyond accurately adding timestamps when incorpo-

rated with other methods. For example, combining tauFisher with a batch-effect correction

method may facilitate a cleaner integration and help minimize the effect of the circadian

clock in transcriptomic data analysis. This approach harbors great potential as many efforts

are going into integrating datasets from different studies to create meta databases such as

in the Human Cell Atlas.

3.4 Methods

3.4.1 scRNAseq experiments

Mouse strains and husbandry

The experiment is approved by the Institutional Animal Care and Use Committee (IACUC)

at University of California, Irvine under AUP-22-003. Wild type male C57BL/6 mice were

housed under 12:12 light-dark cycle for two weeks prior to and during the time of experiment.

To collect telogen skin, mice were about 54 days old by the time of sample collection.
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Sample collection and sequencing

Immediately after sacrificing a mouse with CO2, hair on dorsal skin was removed with

an electric razor and Nair Hair Removal cream. After the dorsal skin was isolated from

the body, fat and remaining blood vessels were scrapped away with a scalpel blade. A

circular piece of skin was obtained with a 12mm biopsy punch, and minced into tiny pieces.

The minced skin was then digested with 2mL of a solution consisting of 0.27% Collagenase

IV (Sigma, C5138), 10mM HEPES (Fisher Scientific, BP310-100), 1mM Sodium Pyruvate

(Fisher Scientific, BP356-100), and 5U/mL DNase I (Thermo Scientific, EN0521) at 37 °C

for 1.5 hours. The suspension was then filtered with a 70µm and a 40µm cell strainers to

obtain single cells. SYTOX blue viability dye (1:1000; Invitrogen, S34857) was added to the

cell suspension and live cells were sorted out using FACS at the UCI Stem Cell Research

Center.

Samples were collected every four hours for three days to generate in total 18 samples,

providing three biological replicates per circadian time point. The Chromium Single Cell 3’

v3 (10x Genomics) libraries were prepared and sequenced by University of California Irvine

Genomic High Throughput Facility with Illumina NovaSeq6000.

Statistics and reproducibility

No statistical method was used to predetermine sample size. We chose to collect three

biological replicates per circadian time point because previous circadian gene expression

experiments showed that n = 3 allowed robust detection of circadian genes [72, 195, 199, 220].

A random mouse was selected to sacrifice for each sample collection. No dataset was excluded

from the analyses. During the collection and analysis of the scRNAseq data collected from

mouse dermal skin, the investigators were not blinded to the time labels.
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3.4.2 Datasets and analysis

For each time point in GSE223109 (collected in this study), we summed the counts of each

gene in all the cells without any pre-processing to create a pseudobulk dataset. In the case

where the same gene occurs multiple times in the data, we took the mean of those entries.

The resulting pseudobulk data at each time point is a single row vector in which each entry

represents the expression value of a unique gene. The light-stimulated group is not considered

in this paper.

scRNAseq data analysis for dermal skin

We used CellRanger version 3.1.0 with MM10 reference to process the raw sequencing output.

The downstream analysis was done in Seurat V3 according to the vignette.

Cells with 850-7800 features and less than 13% of mitochondrial genes were kept. The

SCTransform function was performed on each sample and 3250 integration features were

selected using SelectIntegrationFeatures for each sample. Principal component analysis was

then done on the integrated dataset and the Louvian algorithm was used to generate the

clusters. Cluster identities were then determined in combination of marker genes found in

the current clustering outcome and feature plots of canonical marker genes.

Pseudobulk data analysis for dermal skin

Pseudobulk data was calculated by summing the number of reads for each gene from all

cells in a group. Normalized pseudobulk was calculated as transcript counts divided by

total number of reads times 10,000. meta2d from the MetaCycle package was used on the

pseudobulk data generated from the scRNAseq data collected from dermal skin to identify

rhythmic genes. Genes with JTK_pvalue<0.05 were determined to be significantly rhythmic.
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We used the meta2d_phase column to split the rhythmic genes into four groups based on

their peaking time.

Gene Ontology analysis was performed using clusterProfiler in R with p-value < 0.05 as the

significance cutoff.

3.4.3 Enrichment for GWAS SNPs

For rhythmic genes with JTK_pvalue<0.01 in the dermal fibroblasts or immune cells, we

used the hypergeometric test to assess their enrichment among genes that are within 200kb

of the GWAS signals of different skin immune-mediated conditions [137, 136, 122, 115, 93, 20,

19]. We used the transcripts expressed in the cells as the background gene list in the enrich-

ment analysis. Significance cutoffs are false discovery rate≤0.05 and observed-to-expected

ratio≥2.

3.4.4 scRNAseq circadian gene expression simulations

In Results, we demonstrated that tauFisher can be used to investigate circadian phase het-

erogeneity using simulated scRNAseq circadian gene expression data. We simulated three

groups of data to represent three scenarios: (1) a group of synchronized but dampened clock

genes, (2) a group of normal (robust) but asynchronous clock genes, and (3) a group of

synchronized clock genes with normal amplitudes but variations in mean expression. For

the three groups, the expressions of 9 representative diurnal genes over a time course of 24

hours are simulated using the following sine function:

y = A sin (B(x+ C)) +D (3.1)
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where A is the amplitude, C is the phase shift, D is the vertical shift, the period is 2π/B,

and x is a sequence of integers from 0 to 23. We set B to be 24, such that the period is

2π/24, and D to be a value big enough to ensure possitive gene expression values. We used

D = 25.

We used JTK_Cycle [88] to identify periodic genes, and its output contains inferred am-

plitudes and phase shifts for each gene. As inputs for our simulated datasets, we select the

inferred amplitude and phase shift values for core clock genes Bmal1, Dbp, Nr1d1, Nr1d2,

Per1, Per2, Per3, Cry1, and Cry2 from [187]. Then, for each dataset in Group 1, we simulate

the expression of gene i as follows:

yi = (Ai ×Ri) sin (B(x+ Ci)) +D (3.2)

where Ri is one draw from a Beta(1, 2) distribution and all other parameters are as previously

stated. Similarly, for each dataset in Group 2, we simulate the expression of gene i as follows:

yi = Ai sin (B(x+ Ci +Ri)) +D (3.3)

where Ri is one draw from a Normal(0, 12) distribution and all other parameters are as

previously stated. For each dataset in Group 3, we simulate the expression of gene i as

follows:

yi = Ai sin (B(x+ Ci)) +D +Ri (3.4)

where Ri is one draw from a Normal(0, 1) distribution and all other parameters are as

previously stated. We generated 100 datasets for each group, which can be thought of as

the simulated expression of 9 genes for 100 single cells over 24 hours. According to the

simulations, only Group 1 and Group 2 scenarios can lead to dampened amplitudes at the
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pseudobulk level. Group 3 scenario is not considered as a possible cause of the dampened

pseudobulk expression (Figure 3.5c, d).

We randomly select 6 time points without replacement over the course of the 24 hours

to investigate circadian phase heterogeneity in the simulated data. At each time point,

we randomly select 20% of the simulated single cells without replacement and sum their

expression to obtain a pseudobulk dataset. We repeat this procedure 500 times for each

of Group 1 and Group 2, generating 500 pseudobulk datasets per group. Then we used

tauFisher to predict circadian time labels for the resulting pseudobulk datasets.

3.4.5 Statistics for circular data

The circular R package was used to perform statistical calculations and tests, including

calculation of the mean and standard deviation, as well as the Rao’s Tests for Homogeneity

and the Wallraff Test of Angular Distances, for the circadian time prediction output in the

Results section.

3.5 Data Availability

The time series of scRNAseq data from mouse dermal skin collected in this study are available

in the GEO database under GSE223109.

3.6 Code Availability

tauFisher is available as an R package at https://github.com/micnngo/tauFisher [129].
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Figure 3.2: The circadian clock is present in mouse dermal fibroblasts and immune
cells. a The normalized pseudobulk expression of the core clock genes generated from
scRNAseq data (pink, n = 3 biologically independent samples per circadian time point) is
consistent with their expression in the published microarray data (blue, n = 2 biologically
independent samples per circadian time point, except that n = 3 at ZT2). Data are presented
as mean values +/- SD. b Four major cell types, fibroblasts (red), immune cells (blue),
muscle cells (green) and endothelial cells (yellow) were identified using canonical marker
genes. Feature plots of the representative marker genes are shown (orange: high expression;
grey: low expression); Col1a1 for fibroblasts, Acta1 for muscle cells, Fabp4 for endothelial
cells, Cd52 and Cd74 for immune cells. c At the pseudobulk-level, expression pattern of the
core clock genes are similar in fibroblasts (red) and immune cells (blue), while the amplitudes
of the oscillations are dampened in immune cells for most of the core clock genes. n = 3
biologically independent samples per circadian time point. Data are presented as mean
values +/- SD.
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Figure 3.4: Legend on the next page.
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Figure 3.4: Different rhythmic processes are present in mouse dermal fibroblasts
and immune cells. a JTK_Cycle identified 1946 rhythmic genes in dermal fibroblasts (red)
and 432 rhythmic genes in dermal immune cells (blue). Only 79 rhythmic genes are shared
by the two cell types. b Gene Ontology analysis performed on rhythmic genes in fibroblasts
(red) and immune cells (blue) reveals divergent biological processes being diurnally regulated
in the two cell types. Dot size represents enrichment score. The vertical dashed line marks
adjusted p-value = 0.05. P -values are determined using hypergeometric test and adjusted
using Benjamini-Hochberg procedure. c, d Expression of some of the rhythmic genes found
in fibroblasts (c), and immune cells (d). n = 3 biologically independent samples per circadian
time point. Data are presented as mean values +/- SD. e A heatmap showing p-values for
some of the biological processes enriched by rhythmic genes peaking during each quarter-
day time range. Color represents p-value. Blue: insignificant; yellow to red: significant with
red representing lower p-value. P -values are determined using hypergeometric test. x-axis
represents time, with white being day and black being night. f Rhythmic genes in mouse
dermal fibroblast and immune cells significantly enrich for genes within 200kb of the GWAS
signals of immune-mediated skin conditions. Blue: insignificant; yellow to orange: significant
with orange representing lower FDR; FDR: false discovery rate.
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Figure 3.5: Legend on the next page.
95



Figure 3.5: tauFisher can determine circadian phase heterogeneity in simulated
data. a Simulated expression of nine diurnal genes in 100 single cells that have synchronous
circadian clocks with dampened amplitudes. b Simulated expression of nine diurnal genes in
100 single cells that have asynchronous circadian clocks but regular amplitudes. c Simulated
expression of nine diurnal genes in 100 single cells that have synchronous circadian clocks with
normal amplitudes but different mean expression level over time (vertical shifts). Because
we needed to increase ranges of y-axis to plot all the curves, some curves may appear to
be dampened (i.g. Gene 8). a-c Each line represents gene expression in a cell over time.
d At the bulk level, scenarios in a and b generate similar patterns, which are oscillations
with dampened amplitudes but similar peaking time when compared to a normal bulk-level
clock. Scenario in c does not produce dampened amplitudes at the pseudobulk level. e We
combined tauFisher with bootstrapping and randomly selected six time points to do the
comparison. We generated 500 time labels predictions and plotted the distributions for the
cells in a (pink) and b(blue). f Bar plots showing the differences between the prediction
mean (left) and standard deviation (right) at each time point (cells in b - cells in a). ns:
p-value > 0.05, ∗: p-value ≤ 0.05, ∗ ∗ ∗∗: p-value ≤ 0.0001.
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