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ABSTRACT: Surface and groundwater contamination with fecal pathogens is a public health concern especially in low-income
settings where these sources are used untreated. We modeled observed Cryptosporidium and Giardia contamination in
community ponds (n = 94; 79% contaminated), deep tubewells (DTWs) (n = 107; 17%), and shallow tubewells (STWs) (n =
96; 19%) during the 2012 and 2013 monsoon seasons (June−August) in 60 villages in Puri District, India to understand sources
and processes of contamination. Detection of Cryptosporidium and/or Giardia in a tubewell was positively associated with
damage to the well pad for DTWs, the amount of human loading into pour-flush latrine pits nearby (≤15 m) for STWs, and the
village literacy rate (for Giardia in STWs). Pond concentration levels were positively associated with the number of people
practicing open defecation within 50 m and the sheep population for Cryptosporidium, and with the village illiteracy rate for
Giardia. Recent rainfall increased the risk of Cryptosporidium in STWs (an extreme event) and ponds (any), while increasing
seasonal rainfall decreased the risk of Giardia in STWs and ponds. Full latrine coverage in this setting is expected to marginally
reduce pond Cryptosporidium contamination (16%) while increasing local groundwater protozoal contamination (87−306%),
with the largest increases predicted for Cryptosporidium in STWs.

■ INTRODUCTION

In much of rural India, local surface water is used for personal
and domestic hygiene and local groundwater is used for
drinking and cooking, with over half of rural households getting
their drinking water from tubewells.1 When contaminated with
fecal pathogens, these water sources can be a transmission route
for diarrheal disease. Among fecal pathogens, the protozoa
Cryptosporidium and Giardia are responsible for the majority of
detected waterborne disease outbreaks worldwide,2 and
Cryptosporidium has been identified as a leading cause of
moderate-to-severe diarrhea in Indian children <2 years old.3

To reduce diarrhea and other disease burdens, the Govern-
ment of India has made significant investments to improve rural
sanitation through widespread promotion and construction of
household pour-flush latrines.4 Under India’s Total Sanitation
Campaign (2000−2012), an estimated 95 million rural
household latrines were installed with government support;
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millions more are planned under its Total Sanitation for All
Campaign (2012−2022).4 Leachate from pour-flush latrines
and other on-site sanitation, however, can contaminate local
groundwater. Evidence exists for bacterial and viral transport
laterally up to 25 and 50 m, respectively, from latrines.5 Public
health guidelines for the distance between latrines and water
points vary by country, with India recommending 3−10 m and
others a distance equal to 25 days travel time for leachate, but
these guidelines can be difficult to enforce in rural areas.6−8

To our knowledge, no published studies have examined the
impact of pit latrines on groundwater contamination for
Cryptosporidium and Giardia as indicated by a recent systematic
review.5 One explanation for the gap is an assumption that their
larger size (4−18 μm), compared to bacteria (typically <5 μm)
and viruses (typically <1 μm), precludes Cryptosporidium and
Giardia from being transported in groundwater over distances
required to reach wells.8 Although experimental column studies
of groundwater transport indicate a high rate of short-term
removal of Cryptosporidium in the first few meters of saturated
sandy soils,9,10 they also show long-term, low-level transport of
Cryptosporidium at longer distances, attributed to remobiliza-
tion mechanisms that reverse initial filtration/straining.10

Because both Cryptosporidium and Giardia can persist for
extended periods of time in soil and water (>3 months)11 and
both pathogens can cause infection at very low dose,12 the
public health threat from long-term, low-level subsurface
transport of Cryptosporidium and Giardia from latrines to
wells requires further examination in general, and particularly in
the rural Indian context of rapid latrine expansion.
Identifying the causes and implications of environmental

contamination for Cryptosporidium and Giardia requires
consideration of additional contamination sources and
processes beyond groundwater contamination from latrines.
Cryptosporidium and Giardia can be shed by livestock and
domestic animals species,13 making it essential to account for
animal host sources and their proximity to water sources.
Human open defecation which remains widespread in rural
India,1 and postdefecation anal cleansing in surface water
bodies, present other nonpoint human sources and mechanisms
of surface and groundwater contamination. Additionally,
environmental processes, involving climate, hydrogeology,
vegetation and soil for example, mediate Cryptosporidium and
Giardia transport and distribution in the environment,14 while
the type, quality, and condition of the water point (e.g., private
and public, damaged vs intact) can have important impacts on
water source quality.15 Prior studies have examined some of
these processes, most often in isolation and using fecal
indicators or tracers, for either surface or groundwater
contamination, but rarely for both at the same time within
the same setting.15−18 Joint evaluation of local sources and
processes of fecal protozoa pathogen contamination for surface
and groundwater together, accounting for both animal and
human fecal pollution, multiple transport pathways, and
environmental and other mediators, has not been undertaken.
Such integrated study designs are needed to fully assess the
public health implications of protozoal contamination and
contributions of latrines as both a source and sink.
In this study, we investigate potential causes of previously

reported Cryptosporidium and Giardia contamination observed
concurrently in community surface and groundwater sources
during two monsoon seasons in 60 villages in Puri District,
Odisha, India.19 These villages were part of a large-scale cluster
randomized controlled trial (the Odisha Sanitation Trial) of

health impacts of improved household sanitation under a Total
Sanitation Campaign intervention conducted in the district
during 2011.20 We develop a conceptual hierarchical model of
local factors and processes causing protozoal contamination for
Cryptosporidium and Giardia in surface and groundwater
sources, and apply it to guide multivariable modeling to test
relationships between protozoal contamination in a tested
water source and water source characteristics, meteorological
conditions prior to sampling, the density of nonpoint sources of
human and animal fecal loading around each water source,
including potential subsurface leaching from household pour-
flush latrine pits, and village-level socio-economic (SES)
characteristics as proxies for other mediating factors.

■ MATERIALS AND METHODS
Study Site. Puri District is in a coastal region of India in

Odisha state. Much of the groundwater is held in shallow
unconfined and deeper semiconfined and confined aquifers,
both primarily composed of unconsolidated gravel and
sands.21,22 Borehole surveys indicate confining layers are
composed of clay.22 Unconfined aquifer depth is variable, but
can reach 135 m below ground (blg), whereas confined aquifers
can reach 602 m blg.23 Other significant formations include
porous laterites and jointed/faulted formations susceptible to
weathering at depths of 20 m.21 The climate is tropical and
characterized by wet summers (June to September) and dry
winters (October to May), with much of the region
experiencing annual flooding during the southwest monsoon
from June to September.
Data and water samples for the 60 villages analyzed in this

study were collected as part of the Odisha Sanitation Trial.
Details of the Trial design, village selection, population
characteristics, sanitation intervention and pour-flush pit latrine
design and construction can be found elsewhere.6,24 Briefly,
Trial villages had similar size, infrastructure, geography, and
SES characteristics. Most households (62%) lived below the
Indian poverty line and owned livestock (59%), with cattle an
important host of zoonotic protozoa and the predominant
species owned (56%). Access to improved drinking water
sources in the form of government-installed (deep) or private
(shallow) tubewells was high (82%). Deep tubewells (DTWs)
were fitted with India Mark II style handpumps (maximum lift:
50 m), shallow tubewells (STWs) had No. 6 style handpumps
(maximum lift: 7 m) and both were expected to be fully
cased.25 Public ponds were used for daily hygiene activities by
more than 50% of households. Household functional latrine
coverage across study villages in February 2013 was 24%.
Government subsidized pour-flush latrines had a single circular
leach pit of ∼1m diameter, installed at ground level, extending
∼1 m deep.6 Self-financed pour-flush latrines were similar,
except with deeper pits (1−2 m), or two in series. During the
monsoon season in some areas of Puri District, pits may come
in contact with the water table.21 See Supporting Information
(SI), Figure S1, map of villages.

Protozoal Contamination of Community Water
Sources. We previously reported results of testing six water
sources in each village on a single day for Cryptosporidium and
Giardia, comprising two public ponds, and two each of DTWs
and STWs (when present), and protozoal shedding rates
among humans, livestock and domestic animals in the region.19

Each source was sampled once in either 2012 or 2013 between
June and August. Samples were collected during the morning
(8 am to 11 am) and GPS location and site observations
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recorded. Cryptosporidium was detected in 37%, 14%, and 5%,
respectively, of ponds (n = 94), DTWs (n = 110), and STWs (n
= 96) and Giardia was detected in 74%, 12%, and 17% of
sources, respectively.19 See SI, section S1, for water processing
details and SI, Table S1 for pathogen concentrations.
Conceptual Model of Local Sources and Mechanisms

of Protozoal Contamination. We developed a conceptual
model of multilevel factors involved in Cryptosporidium and
Giardia contamination of community ponds and tubewells
(Figure 1) to aid investigation. Levels represent different time-
scales of effects. Factors are categorized as meteorological,
loading from local human and animal sources of fecal protozoa,
water source-specific characteristics, or village-level SES
characteristics. The top-level outlines factors that remain
essentially constant within each sampling season (i.e., 2012 or
2013), such as village SES characteristics, annual climatic
pattern, and village-level population of host animals, open
defecators, latrines and latrine users. Factors in the second level
are those that vary during the sampling season and affect day-
to-day pollution levels, such as seasonal cumulative rainfall,
recent rain, or an extreme event. The lowest level represents
factors that can vary hour-to-hour and affect pollution levels at
the time of sample collection, such as number of people using
the site. Using the conceptual model we identified predictor
variables from data sets collected as part of the Odisha
Sanitation Trial and available meteorological data.
Cryptosporidium and Giardia from humans and from host

species of domestic livestock in each village were considered,
accounting for the most common livestock host species in Puri
District (cattle, buffalo, goat, and sheep).19 Two local processes
by which protozoal pathogens shed in human feces can
contaminate a pond are overland flow from nearby open
defecation fields and directly by people anal cleansing and
bathing in ponds after defecation. People using the pond at the

time of sampling could also stir up settled microorganisms.
Processes by which local human feces can contaminate tubewell
groundwater are through leaching and groundwater transport
from nearby latrine pits and from direct infiltration of above-
ground contaminated water at the tubewell head via a damaged
well pad (platform) or inadequate seal. Similar to human fecal
inputs, unmanaged livestock feces can reach ponds via overland
flow and directly if animals enter them and can reach tubewell
groundwater via direct surface infiltration at the well head if
improperly sealed or damaged. Weather conditions and events
are presumed to mediate the impacts of human and livestock
fecal pollution sources on pond and tubewell contamination,
through mechanisms such as flushing or dilution from rainfall
or removal by ultraviolet decay. SES factors can also influence
and mediate impacts of human and livestock sources as SES
groups may differ in their health status, affecting pathogen
shedding rates, or levels of access to improved sanitation and
private water sources, affecting practices at ponds and public
tubewells, for example.

Meteorological Factors. We obtained rainfall data (mm
day−1) from four weather stations in Puri District beginning
June 1 (historical start of monsoon in Odisha is June 10th) for
2012 and 2013. To estimate rainfall in each village, we used the
Thiessen polygon method as implemented in ArcGIS, version
10.2 (ESRI). The following rainfall variables were compiled and
considered in analyses: cumulative seasonal rainfall from June 1
until the day prior to sampling; occurrence of any rainfall and of
an extreme daily precipitation event during the 1, 2, and 3 days
prior to sampling. An extreme daily event was defined as rainfall
exceeding the 90th percentile of daily totals between June and
August in 2012 and 2013 (i.e., > 4 cm day−1). Variables were
also developed for other meteorological factors from daily data
from a regional station (see SI, Tables S2−4).

Figure 1. Conceptual model of multilevel factors involved in Cryptosporidium and Giardia contamination of community water sources. The three
large boxes group factors hierarchically based of their time scale or temporal stability. Smaller boxes indicate factors involved at each time scale.
Arrows indicate direct and indirect associations/causality between factors at different time scales and the outcome (e.g., level of open defecators in a
village has an effect on the local uses of ponds, which in turn has an effect on the direct observations of human uses at a pond).
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Human and Animal Fecal Loading Factors. A village-
wide census and mapping of the location of each household and
the sludge pit of each pour-flush latrine was conducted between
December 2012 and February 2013 as previously described.20

During the census the following were collected: number of
members of each household, whether the household had a
cattleshed at/near the house, whether they owned a functional
latrine, the household members using the latrine, and the age of
the latrine. Because latrine use by those with household access
in the region is suboptimal,26 to account for potentially large
differences in loading rates of each census latrine in a village, we
used reported number of users and age of each household
latrine at the time of the census relative to the village’s water
sampling date to calculate the number of person-years of latrine
use as an estimate for fecal loading at the time of water source
sampling for each latrine pit (details in SI, section S3).
Using ArcGIS, version 10.2 (ESRI), the numbers of

households, cattlesheds, and latrines pits around each tested
water source, within a series of increasing buffer distances from
the source, were counted (SI, Figure S4). Calculations were
made at 5 m intervals from 0−50 and 50 m intervals from 50−
200 m, followed by a single buffer at 500 m. Using extracted
data at each buffer distance combined with village census data,
the number of open defecators (associated with each household
location), and person-years of latrine use (associated with each
latrine pit location) were calculated (see SI, sections S3 and 4).
Using baseline data on animal ownership from a

representative sample of households in each Trial village,24

we estimated village livestock populations from the average
number of animals owned by species per baseline household
and the total number of census households.
Socio-Economic Factors. Trial baseline data was also used

to estimate the following village SES characteristics: (1)
illiteracy rate among household heads, (2) fraction of
households belonging to a scheduled caste, and (3) fraction
of households self-reporting ownership of a poverty ration card
(i.e., living below the Indian poverty line) as indicators of
health status and behavioral factors.
Water Source Characteristics. Characteristics and ob-

servations recorded when sampling each water source and
considered in the analysis were number of people (by age
category and gender) and of livestock (by species) at the site,
types of uses of the water source, condition of the tubewell pad
(intact, cracked, or missing), and color of the water (clear and
not clear).

Statistical Modeling Approach. We developed separate
multivariable models of protozoa contamination for Crypto-
sporidium and Giardia in each water source type to account for
different transport characteristics, sources, shedding rates, and
survival of each microorganism, and different pathways involved
in contamination of each water source type. To build our
statistical models, we started with univariable analysis (i.e., one
predictor variable) (see lists of predictors, SI, Tables S2−16).
Initial multivariable models were constructed by including
predictor variables with a P-value ≤0.2 from univariable results.
When greater than one predictor variable representing the same
factor qualified for inclusion, the one with the smallest P-value
was chosen, except for fecal loading spatial variables, where
both a near (<100m) and far (≥100 m) distance were included.
We then used a backward selection approach27 and sequentially
dropped each predictor variable with a P-value > 0.2, starting
with the variable with the largest P-value, to produce a final
multivariable model with all variable P-values ≤ 0.2. We
accounted for village clustering in final models using general
estimating equations (GEE).28 Statistical analyses were
performed using SAS software, version 9.4 (SAS Institute Inc.).

Models of Pond Contamination. Prevalence of protozoa
contamination of ponds was high and oocyst/cyst concen-
trations varied by up to 5 orders of magnitude, thus pond
contamination was modeled as concentration level in
univariable and multivariable modeling using GEE for propor-
tional odds cumulative logit regression (also known as ordered
logistic regression).29 Cryptosporidium and Giardia concen-
trations (oocysts/cysts 20 L−1) were converted to log10 levels
(i.e., <1 parasite = 0; 1−10 = 1; 11−100 = 2; so on to 4).
Nondetect samples were assigned a level of zero. Adjusted odds
ratios (OR) were calculated to estimate the marginal likelihood
of one log-level higher concentration from a defined change in
each predictor variable.

Models of Tubewell Contamination. Cryptosporidium
and Giardia in DTWs and STWs were modeled as binary
(presence/absence) outcomes due to their much lower
prevalence and low concentrations and because tubewells are
used for drinking. GEE for logistic regression was used.
Adjusted OR from the final model indicate the marginal
likelihood of tubewell protozoa contamination for a defined
change in each predictor variable.

Predicted Effects of Full Latrine Coverage. We
projected future densities of person-years of latrine loading
(for the 2013 population density) at critical distances around

Table 2. Multivariable Proportional Odds Cumulative Logistic GEE Regression Odds Ratiosa for Predictor Variables of
Cryptosporidium and Giardia Oocyst/Cyst Log10 Concentration (20 L−1) Level in Public Ponds (N = 94) of Rural Villages of
Puri District from the Final Model of Retained Variables Significant at P ≤ 0.20

Cryptosporidium Giardia

variable (increment for OR) Nb μc OR (95% CI) P value OR (95% CI) P value

sampling year in 2012 (Yes) 35 2.91 (1.20−7.05) 0.018d

open defecators living within 50 m of pond (6 people) 43 28 people in 50 m 1.13 (1.02−1.26) 0.026d

buffalo population in village (three animals) 12 16 animals per village 0.84 (0.70−1.01) 0.064
sheep population in village (three animals) 45 22 animals per village 1.06 (1.01−1.12) 0.020d

cattle observed at site while sampling (yes) 3 5.33 (0.65−43.50) 0.118
percent households in village with illiterate head (5%) 83 23% 1.22 (1.06−1.42) 0.006d

cattlesheds within 200 m of pond (5 sheds) 85 31 cattlesheds in 200 m 1.06 (0.99−1.13) 0.087
rain occurrence within 2 days prior to sampling (yes) 74 5.38 (1.25−23.21) 0.024d

cumulative seasonal precipitation prior to sampling (25 cm) 94 40.9 cm 0.97 (0.92−1.01) 0.111
aControlled for village-level clustering, see Materials and Methods section. bNumber of ponds with predictor variable value greater than zero. cMean
value of predictor variable from subset of records with a value greater than zero. dSignificant at the P ≤ 0.05 level.
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each sampled surface and groundwater source in study
communities and used these with final multivariable models
to estimate the impacts on water source protozoa contami-
nation of 100% pour-flush latrine usage in each study
community by 2017 (the Government of India’s target) and
at the end of the Total Sanitation for All Campaign (2022). All
other variables were held constant (see details, SI, section S6).

■ RESULTS

Predictors of Cryptosporidium and Giardia contamination and
their adjusted OR and P-values in the final GEE regression
models for DTWs and STWs are shown in Table 1 and for
public ponds in Table 2.
Factors Associated with Protozoa in Groundwater

from Shallow and Deep Tubewells. Increased risk of
protozoa detection in STWs was significantly correlated with
human loading into nearby latrine pits: 10 more person-years of
latrine loading within 15 m of a STW increased the odds of
detecting Cryptosporidium by 21% (95% OR: 1.06−1.38) and,
when occurring within 10 m, increased the odds of detecting
Giardia by 44% (95% OR: 1.12−1.85). Weaker evidence for
latrine leaching effects on DTWs was also found. Each 10
person-years more of latrine loading within 500 m increased the
odds of Cryptosporidium detection in a DTW by 1% (P =
0.139), while the same increase within 150 m increased the
odds of Giardia detection by 1% (P = 0.050). Only Giardia
detection in STWs was associated with any village-level SES
characteristics. A 5-percentage point increase in the proportion
of illiterate household heads decreased the odds of detecting
Giardia by 8% (95% OR: 0.89−0.97).
Some limited evidence of livestock sources of protozoa

contamination of tubewells was found. Specifically, Cryptospori-
dium in STWs was positively associated with the goat
population (OR = 1.09, 95% OR: 1.03−1.14, per three
additional goats). No other associations were found between
protozoa in shallow or deep tubewells and livestock animal
loading variables.
Both protozoa were significantly more likely to be detected

in groundwater from a DTW with a damaged well pad, at 7.10
times (95% OR: 1.92−20.57) for Cryptosporidium and 5.91
times (95% OR: 1.18−29.60) for Giardia, than from one with
an intact pad. We did not find statistically greater odds of

detecting protozoal pathogens in a damaged STW, however,
STWs with a damaged pad had higher detection frequencies of
both protozoa (SI, Table S19). STWs which were being used
immediately prior to sampling had significantly lower odds of
detecting Giardia (0.26, 95%OR: 0.07−1.00).
In STWs Cryptosporidium was significantly more likely to be

detected within 2 days after an extreme rain event (OR = 12.91,
95% OR: 3.26−51.10), while Giardia was significantly less
likely to be detected as seasonal rainfall increased (OR = 0.20,
95% OR: 0.11−0.39, each 25 cm of seasonal rainfall prior to
sampling). No rainfall variables were associated with DTW
contamination, however, both protozoa were detected in
DTWs significantly more often in 2012 than in 2013
(Cryptosporidium OR = 5.24, 95% OR: 1.34−20.57; Giardia
OR = 36.14, 95% OR: 3.52−371). Protozoa detection in STWs
was unassociated with year. We found no other meteorological
associations.

Factors Associated with Protozoa in Community
Ponds. Protozoa concentration levels in ponds were positively
associated with the number of people practicing open
defecation living within 50 m of the pond but not at distances
beyond that, and with village illiteracy rates, recent use by
cattle, populations of specific species of livestock, sampling year,
and antecedent rainfall patterns. Each six additional people
(average household size) practicing open defecation and living
within 50 m significantly increased the odds of a pond having
one log (10 times) more Cryptosporidium oocysts (20 L−1) by
1.13 (95% OR: 1.02−1.26) while each additional 5% of
households with an illiterate head significantly increased the
odds of one log more Giardia concentration by 1.22 (95% OR:
1.06−1.42). Neither signs of regular or recent human use (e.g.,
paths) nor human use observed at a pond prior to sampling
were associated with increased protozoa levels.
When cattle were observed at a pond prior to sampling, we

found some evidence that the Cryptosporidium concentration
was likely to be 10 times higher than when cattle were absent
(OR = 5.33, 95% OR: 0.65−43.50) and when there were more
cattlesheds within 200 m of a pond, the Giardia concentration
was likely to be higher (OR = 1.06, 95% OR: 0.99−1.13, each
five additional cattlesheds). We also observed associations
between a village’s sheep and buffalo populations and pond
parasite levels. Three additional sheep significantly increased

Table 3. Predicted Impactsa of Full Latrine Coverage on Protozoa Contamination of Ponds and Tubewells in Study
Communities by 2017 and 2022, Compared to 2012-2013 Observed Rates

TWs: person-years of latrine use
Ponds: people open defecating prevalence

fecal protozoa in water
source

critical
distance

2013
observed

2017
projected

2022
projected

2013
observed

2017
predicted

2022
predicted

ratio
2022/2013

Cryptosporidium in STWs <15m 17.8 43.3 105.4 5% 9% 20% 4.1
Giardia in STWs <10m 11.2 23.9 51.2 17% 23% 32% 1.9
protozoa in STWs (either)b 19% 29% 46% 2.4
Cryptosporidium in DTWs <500m 594 1493 3972 12% 17% 35% 2.9
Giardia in DTWs <150m 266 736 2103 12% 17% 37% 3.1
protozoa in DTWs (either)b 17% 31% 59% 3.5
Cryptosporidium in Ponds
• (any) <50m 13 0 0 37% 31% 31% 0.84
• (>100 20 L−1) 15% 11% 11% 0.73
aCalculated using predicted probabilities from multivariable models in Tables 1 and 2 for projected full latrine use (for tubewells) and elimination of
open defecation rates (for ponds) at critical distances around each sampled water source in study communities, by 2017, and at end of Total
Sanitation for All Campaign (2022). bPredicted probability of either Cryptosporidium or Giardia contamination estimated by summing the predicted
detection probability of each protozoa at a given water source.
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the likelihood of a higher Cryptosporidium level (OR = 1.06,
95% OR: 1.01−1.12), while three additional buffalo (mean
number per buffalo-owning household) had a nearly significant
protective effect on Giardia concentrations (OR = 0.84, 95%
OR: 0.70−1.01).
Conceptually, rainfall could either flush oocysts/cysts into

ponds through overland flow or dilute concentrations by
flooding or filling ponds; our analyses showed evidence of the
effects of overland flow/flushing on Cryptosporidium concen-
trations and of dilution on Giardia concentrations in ponds,
consistent with the results for STWs. When rainfall occurred
anytime during the 2 days prior to sampling, a pond’s
Cryptosporidium concentration was 5.38 times (95% OR:
1.25−23.21) more likely to be an order of magnitude higher
than when it had been dry, while each additional 25 cm of
seasonal rainfall increased the probability of a pond’s Giardia
concentration being a log10 level lower by 3% (95% OR: 0.92−
1.01). Lastly, as found for Cryptosporidium in DTWs, ponds in
2012 were significantly more likely to have higher Cryptospori-
dium concentration levels than those sampled in 2013 (OR =
2.91, 95% OR: 1.20−7.05) all other effects constant. No other
associations with meteorological factors were detected.
Predicted Protozoa Contamination under Full Latrine

Coverage. Model-derived predictions of local surface and
groundwater source contamination rates for each protozoa
during the monsoon season are shown in Table 3 for projected
latrine loading densities under 100% latrine coverage by 2017
and through 2022. Under projected full coverage, small
predicted reductions occur in the pond contamination rate
for Cryptosporidium (16%) concurrently with large predicted
increases in shallow and deep tubewell groundwater contam-
ination for each protozoa (1.9−4.1 times by 2022) over
baseline 2012−13 rates, with the greatest increases expected for
Cryptosporidium contamination in STWs.

■ DISCUSSION
We investigated multiple sources and mechanisms for
Cryptosporidium and Giardia contamination of community
tubewells and ponds across 60 villages in a coastal district in
rural India including pour-flush household latrines as a
potential protozoa source (or sink, via reduced open
defecation). Multivariable modeling showed that protozoa
contamination of local groundwater used for drinking was
positively correlated with the density of human fecal loading
into latrine pits, literacy rates, livestock populations, damaged
tubewells, antecedent rainfall patterns and annual variability.
Levels of contamination of local ponds used daily for bathing
and hygiene were positively correlated with the number of
residents practicing open defecation nearby, illiteracy rates,
livestock populations, antecedent rainfall patterns and annual
variability.
Latrine Effects. Previous observational and experimental

studies have identified bacteria and virus groundwater
contamination from latrines up to 25 and 50 m away,
respectively.5 This is the first study to examine latrines
simultaneously as a source and sink of environmental protozoa
contamination. We found strong evidence of protozoa
contamination of shallow groundwater from pour-flush latrines
within 15 m and some limited evidence for deeper groundwater
contamination from pour-flush latrines up to 500 m away.
Shallow tubewells in the study area draw water from <7 m bgl
and during the monsoon period the water table can rise as high
as 0−2 m bgl,21 making a hydraulic connection between latrine

pits (∼1 m bgl) and shallow groundwater likely. Intermittent
hydraulic connection between latrines pits and groundwater,
persistence of protozoa in water and soil, and potential for
long-term protozoal transport support our finding of nearby
latrine loading as an important risk for shallow groundwater
protozoal contamination in this setting.
Pathogen transport in deeper groundwater at distances >100

m from a pollution source, as detected in our study, is less often
examined.5,30 Waterborne outbreaks of cryptosporidiosis and
giardiasis in North America linked to use of groundwater for
drinking, however, provide evidence of deep groundwater
protozoal contamination.31 Further evidence for the plausibility
of deep groundwater contamination at distance >100 m comes
from a study of artificial groundwater recharge using treated
wastewater in which both Cryptosporidium and Giardia were
detected in groundwater at 320 and 500 m, respectively, from
recharge zones in fractured limestone.32 The mostly porous
gravels and sand aquifers in our study area21 may provide
sufficient pore space for protozoal transport, supporting the
limited evidence (0.05 < P < 0.14) we also found for local
latrines as a source of deeper groundwater protozoal
contamination.
Research on overland transport of protozoa shows a clear

connection between animal fecal loading on land and
contamination of nearby surface water, with factors such as
slope, soil type, and vegetation density affecting transport.33,34

While human fecal loading on land also poses risks for protozoa
contamination of nearby surface water, the circumstances and
magnitude of benefits on surface water protozoa contamination
from ending open defecation in countries where the practice
remains prevalent have not been examined. We observed a
significant relationship between the number of people living
nearby a pond who practiced open defecation (within 50 m,
not beyond) and the pond Cryptosporidium concentration level.
Genotyping of contaminated pond samples in this and another
similar rural setting in Bangladesh identified Cryptosporidium
hominis (human-specific genotype) but not other geno-
types.19,35 Together, these findings suggest that promoting
latrine use by people living nearby, and protective buffers
around local water bodies, could reduce human host-specific
Cryptosporidium pond contamination in this setting. Reduced
Cryptosporidium contamination of ponds from increased latrine
uptake predicted in this setting is, however, overshadowed by
the large expected negative effects of increased uptake on
protozoal contamination of local groundwater drinking sources
(Table 3).

Livestock. Village sheep, goats, and cattle appear to be
important local animal host contributors of Cryptosporidium
contamination detected in community water sources in this
setting, while cattle in particular appear to contribute to Giardia
contamination. Unexpectedly, we observed a trend where
villages with more buffalo had lower levels of pond Giardia
contamination. We know of no biological explanation for the
association, which may be confounded. Among livestock and
domestic animal populations in India and globally, cattle are
frequently infected with Cryptosporidium and Giardia.36−39

However, evidence from a systematic review and other studies
of zoonotic disease transmission from livestock and cattle to
humans in this and similar settings is mixed.40−42 Overall, the
public health significance of exposure to protozoa shed by
livestock and domestic animals is case-specific since these
animals can shed zoonotic protozoa, infectious to humans, as
well as host-specific genotypes.13
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Rainfall and Other Meteorological Factors. Rainfall
effects on protozoal surface water contamination have been
studied,43,44 but few have considered human and nonhuman
protozoa sources and examined impacts on surface and
groundwater contamination. Over short time scales (i.e., within
the monsoon season) our results indicate that rainfall is an
important mediator of local environmental sources of human
and animal fecal protozoal loading on contamination of ponds
and shallow groundwater. Positive associations between rainfall
events (i.e., > 90th and >80th percentile of monthly rainfall)
and waterborne disease outbreaks and fecal contamination,
have been previously reported.18,45,46 In our modeling of STW
and pond contamination, rainfall variables associated with
Cryptosporidium contamination were different from those
associated with Giardia contamination, implying different
physical processes of importance. Cryptosporidium in STWs
and higher concentrations in ponds were more likely after a
recent event (within 2 days) suggesting short-term cyclical
processes of environmental loading and accumulation followed
by contaminant flushing and transport pulses. On the other
hand, Giardia detection in STWs and concentration levels in
ponds were negatively associated with increasing cumulative
rainfall (monsoon season), suggesting dilution of widespread
background contamination. These hypothesized contrasting
environmental processes are consistent with finding Giardia to
be much more ubiquitous (higher endemic infection rates and
orders of magnitude more parasites shed per host) than
Cryptosporidium in this setting and a similar environment.19,35

After controlling for within-season shorter time-scale
meteorological effects, sampling year (2012 vs. 2013), a
potential proxy for longer time-scale variability, remained
associated with significant differences in Cryptosporidium and
Giardia contamination in DTWs, but not STWs, and
Cryptosporidium in ponds. Characteristics and population-level
patterns of infection for each protozoa,47−49 as well as larger
scale climatic and hydrogeological conditions for which we
were unable to account, may have played a role.
Village Socio-Economic Factors. Village illiteracy rates

were the strongest predictor of increased Giardia contami-
nation levels in ponds, while at the same time were associated
with lower Giardia risk in STWs. Livestock ownership in our
study population at baseline was nearly equal among illiterate
and literate households (57% vs 60%), however, latrine
ownership was greater among literate households (∼13%)
compared to illiterate households (∼3%) and more illiterate
households bathed at ponds (72%) compared to literate
households (55%). Given similar animal ownership but lower
latrine use (i.e., higher open defecation) and higher pond
bathing rates among illiterate vs. literate households, the link
between illiteracy and increased pond Giardia contamination
would seem to point to a human source behind elevated
Giardia levels in ponds, that is, from higher overall rates of
open defecation and of anal cleansing and bathing in ponds in
villages with higher illiteracy rates. The protective effect of
illiteracy on STW contamination may arise similarly from the
lower overall village-wide latrine uptake rate and its associated
loading into shallow groundwater, or may be confounded.
Water Source Characteristics. Wellhead protection is

critical for preserving groundwater quality,50 and poor well
condition has previously been linked to well water fecal
bacterial contamination.15,17,46,51,52 Our finding that DTWs
with damaged pads (cracked or missing) were significantly
associated with detectable levels of Cryptosporidium and

Giardia, extends this link to larger protozoal organisms in
low-income settings. Interestingly, we did not find a significant
increased risk of contamination in STWs with well pad damage,
possibly because private household STWs are used less
intensely than public DTWs.
STWs used immediately prior to sampling were significantly

less likely to have detectable levels of Giardia than those that
had been idle. The sample collected from such STWs may have
included a larger volume of more distant and deeper cleaner
groundwater, which may have diluted the impact from nearby
latrine leaching. We did not observe an effect on Cryptospori-
dium, possibly because the subsample of Cryptosporidium-
positive STWs was too small to detect an effect.

Limitations. Future studies examining water body con-
tamination and fecal pollution sources in similar settings should
consider the potential effects of fecal sources located outside
defined study boundaries. Mapping in this analysis was limited
to the point locations of local pollution sources in Odisha
Sanitation Trial villages. We were thus unable to account for
the possibility of unmapped villages having open defecator
households, latrine pits or cattlesheds within the largest buffer
distance (500 m) considered around community water sources.
This limitation is likely to mainly affect our analyses of ponds,
which were often located on the outskirts, rather than of
tubewells, located within the village. We also relied on self-
report, which is subject to recall bias,53 for estimating usage
rates and ages of latrines. Repeated sampling of each water
source would have provided greater accuracy on protozoal
prevalence and concentration levels in each source and allowed
for more fully characterizing spatial and temporal variations in
water source contamination than was possible in our staggered
cross-sectional study design. However, because site visits for
this study were randomized spatially across a relatively
homogeneous geographic study area and temporally within
the first 2−3 months of each monsoon season, and because
study villages were similar in terms of size, types of water and
sanitation infrastructure, SES characteristics, and economic
activity, and all samples were collected in the morning hours,
we do not foresee significant bias stemming from our single
point sample design when used to estimate area-level
associations within the context of monsoon season contami-
nation patterns, as we have done here.
Better information on soils, weather, and hydrogeology, such

as groundwater recharge zones and detailed lithology, would
have allowed for better characterization of protozoal transport
into each tubewell or pond, but was not available and beyond
the scope of data collection for the Odisha Sanitation Trial.
However, all study villages were within ∼50 km of each other,
and the geology of the study region is defined primarily as a
delta plane with predominant alluvium geological forma-
tion,21,22 reducing potential bias from these limitations. We
cannot preclude the possibility that Cryptosporidium and
Giardia detected in a tubewell sample could have come from
a contaminated spout/mouth, however, we flushed each
tubewell prior to sample collection for ∼30 s and then rinsed
each 2 L sample bottle with tubewell water 3 times prior to
filling to minimize this possibility. Our village-level SES
variables are imprecise and subject to residual confounding
from measurement error or miss-specification of a category. For
example, beyond literacy status of the household head,
educational attainment level may have improved the association
between education status and water contamination. Finally,
although our conceptual model represents causal relationships
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grounded in scientific literature, cross-sectional data and
empirical modeling can only identify correlations and our
sample size may be under-powered to detect some postulated
associations. These limitations must be kept in mind when
interpreting the associations we found between outcomes and
predictor variables.
Policy and Public Health Implications. Further research

and better guidelines are needed to ensure the protection of
critical water sources used for drinking and to ensure household
access to microbiologically safe protozoa-free drinking water in
rural India. Based on our findings, guidelines would include
repairing damaged deep tubewells to protect public ground-
water drinking sources and placing pour-flush latrine pits in
India at distances >15 m from shallow tubewells used for
drinking. However, these recommendations may be ineffective
in areas like this where water tables can rise within 2 m of
ground-level and given the marginal evidence for and
plausibility of deeper groundwater contamination from latrine
leaching densities at greater distances. Alternatively, changing
the below-ground design of wet latrines may be needed to
reduce or prevent leaching rates and associated pathogen loads,
but these increase sanitation costs. In view of already
widespread contamination of local water sources, anticipated
rapid growth in latrine coverage, and difficulties achieving high
compliance and effective use of household water treatment,54,55

centrally treated and reliable piped water supplies with house
connections may be a better solution for ensuring safe drinking
water in this setting.
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