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ABSTRACT OF THE DISSERTATION 
 

 

Neurocognitive Determinants of Memory Enhancement 

 

by 

 

Niccolo Reggente 

Doctor of Philosophy in Psychology 

University of California, Los Angeles, 2018 

Professor Jesse A. Rissman, Chair 

 

The identification of neurocognitive correlates supporting enhanced memory has far 

reaching implications, from improving education and productivity to mitigating ailments 

caused by memory disorders. The work presented within this dissertation leverages 

behavioral paradigms, Virtual reality (VR), and neuroimaging tools to unveil the neural 

processes responsible for enhanced memory. The methodological tools used 

throughout this dissertation were drafted in an attempt to create an ecologically valid 

medium with theoretical extensions into education and rehabilitation. Of particular focus 

is how the parallel recruitment of reward and/or spatial processing systems during the 

encoding of information can serve to upregulate mnemonic processing and enhance 
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memory. Specifically, Chapter 1 examines how memory-retrieval can be modulated by 

reward and whether individual differences in anatomical connectivity within reward 

processing and elaborative semantic encoding circuits, as measured with diffusion 

tensor imaging (DTI), are associated with value-induced modulation of memory.  

The remaining chapters focus on the use of VR to implement the Method of Loci (MoL), 

the world’s most ancient and effective mnemonic. Behavioral and neuroimaging 

analyses were designed to test a hypothesized mechanism of action behind the MoL’s 

efficacy: explicit binding of information to the spatial scaffolding of an environment 

recruits neural systems supporting the encoding of space, which bolsters recall breadth 

and strength. To test this hypothesis, the dissertation first reviews the literature and 

presents VR as a way to increase the ecological validity of fMRI memory research 

(Chapter 2). Chapter 3 then investigates how the MoL can be implemented within VR 

and reveals which facets of the technique are most responsible for its potent impact on 

human memory. Chapter 4 extends the work in Chapter 3 by evaluating virtual 

strategies for reusing the same environment when encoding multiple lists of 

information—a necessity when considering the time consuming nature of creating 

memorable virtual environments. Chapter 5 demonstrates how mental representations 

of virtual environments can be decoded using functional magnetic resonance imaging 

(fMRI), setting the stage for an investigation into whether virtual encoding environments 

can be decoded during recall (the work conducted in Chapter 6). 
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General Introduction 
 

The late physicist Stephen Hawking suggested that humans are on the brink of a new 

phase of evolutionary progress: “self-designed evolution”, where technological progress 

has outpaced the effects of genetic modifications that could confer adaptive advantage. 

This notion suggests that the seemingly eternal battle against entropy, which was 

historically waged at the molecular level, is now in the hands of consciousness. At such 

a horizon, the understanding of one’s self is paramount; it is only through elucidation of 

the cause-effect chain of cognition that one can gain confidence in reducing uncertainty 

and instantiating order amidst the universe’s gravitation to the contrary. In this light, 

nature’s greatest accomplishment is that of memory; no other tool has so fundamentally 

altered one’s ability to predict the future than the one used to model the past. By 

understanding memory, we afford ourselves with a toolkit to alter our own 

consciousness in a way that robustly prepares it for future events-- increasing the 

likelihood of preserving our existence and, as a result, satisfying the intent of evolution. 

As such, research towards understanding memory and identifying the scenarios that 

permit it to be enhanced is imperative.  

The work presented throughout this dissertation examines memory encoding 

phenomena that result in reliable alterations in memory strength during recall. Two such 

scenarios are investigated: 1) preferential recall of information that is associated with 

behavioral salience; 2) enhanced mnemonic capacity when information is encoded 

within the scaffolding of spatial environments. Investigations into both scenarios are 



2 

framed by their evolutionary significance and reveal insights important for both brain-

mapping and technological development. 

In regards to the first scenario: A need for preferential recall presents itself quit 

regularly; daily life bombards us with an insurmountable amount of information, only 

some of which may be important to remember. By understanding the mechanisms 

supporting the selective filtering of what we remember, we stand to increase / decrease 

its breadth for our conscious benefit. Chapter 1 of this dissertation investigates how 

reward can modulate one’s prioritization of to-be-remembered information. Specifically, 

in a value-directed-remembering task where series of words were presented alongside 

a point value, participants were asked to maximize their point score when later recalling 

the information. Diffusion tensor imaging (DTI) analyses were conducted to unveil which 

anatomical pathways in the brain correlated with the individual differences observed in 

a) the number of high-value words recalled and b) the degree to which a participant was 

sensitive to point-value—as quantified by their preferential recall of words associated 

with a high value. 

The second scenario, where spatially augmented information yields enhanced retrieval, 

is most prominently seen in the popular mnemonic technique known as Method of Loci 

(MoL). In order to implement the MoL, one is typically instructed to conjure up a familiar 

structure (e.g., a childhood home) that will serve as their “memory palace”. While 

mentally navigating through this environment, one can imagine “placing” a series of to-

be-remembered items in different locations. When later attempting to retrieve this list of 

items, one can mentally reconstruct the environment and “observe” each of the objects 

along the route. If characterized and operationalized, the contributing factors to the 



3 

MoL’s historical and empirically validated enhancement of memory could be distilled 

and leveraged to augment and enhance memory throughout nearly every aspect of 

daily life. Pre-existing evidence of our affinity to augment space with our cognition is all 

around us: calendars organize our time in a spatial format, fretboards and piano keys 

bring clarity to music theory using spatial arrangements, professionals litter their desks 

with stickie-notes, infants count on their fingers, and Italians talk with their hands. 

Indeed, evidence is appearing which demonstrates that the neural mechanisms 

supporting spatial processing are also recruited for accomplishing other impressive 

feats of human cognition: grid cells fire in response to appropriate transversions through 

abstract, conceptual spaces (Constantinescu et al., 2016) and the same regions 

supporting navigation are leveraged when one navigates their digital file system (Benn 

et al., 2015). The neural systems supporting space and navigation seem to reflect 

something profound about the nature of reality; artificial agents naturally emerge grid 

cells in their computation code as they learn to move about space in a goal-directed 

manner (Banino et al., 2018). 

This dissertation seeks to confirm the critical contribution of spatial encoding 

mechanisms to the success of the MoL from both a behavioral and neuroscientific 

standpoint. The narrative throughout this dissertation rests on the assumption that if 

space is emboldening the encoding processes, then a distinct neural signature 

indicative of such a process should be evident during recall. That is, a contextual 

reinstatement of encoding environment should be present when a participant is 

engaged in recalling information that was learned in that environment. To accomplish 

this feat, the work in this dissertation relies on Virtual reality (VR) to provide an 
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investigational medium that permits a collection of quantifiable spatial metrics—a 

method whose ecological validity, specific to fMRI investigations of memory, is argued 

in Chapter 2. In Chapter 3, VR is utilized to create a virtual rendition of the MoL. 

Traditionally implemented within the confines of one’s mental imagery (an inherently 

elusive medium), the translation of the MoL into a virtual realm permits for a novel ability 

to selectively permit , isolate, and record actions. Specifically, Chapter 3 investigates 

whether a removal of features which allow information to be explicitly bound to the 

spatial context affects the efficacy of the MoL. Chapter 4 makes important extensions to 

the VR-MoL developed in Chapter 3 by evaluating strategies for reusing virtual 

environments for the encoding of multiple lists of information. In order to ascertain the 

ability to test a hypothesis of contextual reinstatement underlying the MoL’s 

effectiveness, the work in Chapter 5 was conducted to confirm that the decoding of 

environmental context within one’s mental imagery using fMRI is feasible. Finally, 

Chapter 6 leveraged the same VR-MoL technology developed in Chapter 3 and 

searched for evidence during recall, conducted during an fMRI scan, that was 

informative of which environment the participant encoded the information in—a direct 

test of this dissertation’s contextual reinstatement hypothesis. 

In summary, the work contained within this dissertation seeks the elucidate the 

neurocognitive determinants underlying enhanced memory with specific attention paid 

to value-directed-remembering and spatially-augmented-learning. Through the use of 

VR, neuroimaging, and machine learning, this dissertation presents novel findings that 

contribute meaningfully to the discussion of ecologically valid memory enhancement. 
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Background 

Neuroimaging Methods 

 

Often referred to as brain imaging, neuroimaging is broadly defined as the use of 

various techniques to either directly or indirectly image the structure and function of the 

nervous system. This dissertation and its associated publications will reference 

neuroimaging data collected from magnetic resonance (MR) machines. MR machines 

elegantly utilize strong magnetic fields to align Hydrogen protons within the to-be-

measured body part of interest, radio frequency pulses to offset that alignment, and 

radio receivers to measure the emittance of electromagnetic energy given off by the 

Hydrogen protons as they realign (Bloembergen et al., 1948). The relative amounts of 

energy given off varies as a function of tissue type and such differences can be plotted 

so as to produce inferential “images”. By way of intersecting planes of magnetic field 

gradients, these images have a 3D resolution whose smallest unit is known as a “voxel”. 

Depending on the imaging modality used, voxels contain pertinent information as to 

either the static structure or temporally dynamic function of the matter. The proceeding 

sections will illustrate two such MRI modalities, Diffusion Weighted Imaging (DWI) and 

functional Magnetic Resonance Imaging (fMRI) that will be used in this dissertation. 

Diffusion Weighted Imaging (DWI)  

 

The spread of a fluid across a space is known as diffusion. Particles suspended in a 

fluid will diffuse randomly when agitated with any amount of thermal energy-- resulting 

from an ensemble of collisions amongst atoms, molecules, and other particles. Known 
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as Brownian motion, this random state can be used as a diffusivity baseline against 

which deviations can permit contrast inferences (Pierpaoli et al., 1996).  

Imagine a glass cube of water. The movement of water in that cube is completely 

random, limited only by the boundaries of the cube. If a researcher were to look at the 

water in the center of the cube from any angle, it would exhibit a Gaussian diffusion 

from whichever angle researcher was looking from (Hagmann et al., 2006). A sampling 

of all points along a sphere focused on the center of the cube should result in random 

mean diffusion (i.e. zero, Brownian). However, diffusion of water along the outer border 

of the cube is subject to micrometric hindrance with the cube’s surface. Deviations from 

the random ground state of Brownian motion would only be seen at the limits made by 

the cube; the water is not free to keep moving through the walls of the cube and thus it 

must move elsewhere—a non-random event. Additionally, when diffused along 

directions parallel to one of the cube’s borders water will move faster than in directions 

perpendicular to the cube’s borders. This hindrance phenomenon is what allows for 

researchers to compare relative rates of water diffusion at different regions of space. 

A combination of magnetic gradient and radio frequency pulses used in MR machines 

can perturb hydrogen protons in water so as to influence the phase of their spins – a 

calculable phenomenon since spins in the presence of a heterogeneous magnetic field 

lead to a decrease in signal intensity (Torrey, 1956). With MR gradients, water in the 

brain can be exposed to different magnetic field strengths depending on its position 

along the gradient axis – providing a spatial contrast (Hagmann et al., 2006). Thus, if a 

hydrogen proton in the water changes its phase in non-Brownian way, that would 

suggest the present of physical deviations such as the aforementioned cube’s 
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boundaries. A region of space (i.e. a voxel) that has random brownian motion is said to 

be “isotropic”. If a voxel has non-random motion, it has a scalar value between zero and 

one that describes the degree of anisotropy of the diffusion process, birthing the 

common DWI term fractional anisotropy (FA). 

Such an observation allows for the inference that water molecules are being restricted 

by the presence of molecular barrier (e.g. cell membranes, myelin, etc.) within a 

particular voxel of tissue (Pierpaoli et al., 1996). Since DWI can be measured from 

multiple angles, a 360 degree sampling of the same section of space (i.e. a voxel) can 

reveal the preferred directionality of diffusion and, subsequently, the directionality of the 

barrier (Bammer, 2003). Thereby, DWI measures the preferred directionality of water 

diffusion within a voxel and allows researchers to make inferences regarding the 

underlying structural makeup of that voxel. The method of combining many such DWI 

sampling angles of the same section of space is known as Diffusion Tensor Imaging 

(Mori et al., 1999). 

By examining the inter-voxel relationships of preferred directionality, one can assess 

each voxel’s structural connectivity with every other voxel in the brain – a procedure 

known as tractography (Ciccarelli et al., 2003). That is, by determining the preferred 

diffusion direction within one voxel, one can identify whether or not that direction 

continues into neighboring voxels, allowing for the inference to be made that the same 

barrier is spanning across multiple voxels. This ability affords researchers with the 

potential ability to inferentially trace axonal fiber bundles, which would span many 

thousands of voxels.  
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The abundance of myelin on axonal fibers can have a significant impact on the 

magnitude of the preferred directionality of water’s diffusion (Hodaie et al., 2012). As 

such, researchers have been able to insinuate that regions that are more readily linked 

by tractography algorithms are actually more structurally connected. Probabilistic 

tractography methods, and, as a proxy, DWI itself, was validated in vitro with invasive 

tracers (Dyrby et al., 2007). 

Functional Magnetic Resonance Imaging (fMRI) 

 

The same MR principles discussed above, whereby an image of the brain can be 

created by measuring the emittance of electromagnetic energy given off by the 

realignment of Hydrogen protons within a magnetic field, can be used to track 

fluctuations in the brain across time. Such a feat is possible given the serendipitous 

nature of neural activity and it’s downstream electromagnetic influence. The metabolic 

requirements to support neuronal firing create a neurochemical signaling cascade that 

locally recruits oxygen. Oxygen is transported throughout the bloodstream by 

hemoglobin. Hemoglobin, when oxygen is attached to it, is a diamagnetic substance, 

meaning it will tend to take a position at right angles to the lines of the magnetic force— 

a property that diminishes the MR signal, which is relying on the alignment of all protons 

with the magnetic field induced by the machine (Poldrack et al., 2011).  

However, neurons and neuroglia will pull the oxygen off of the hemoglobin for use in 

cellular respiration. This “deoxygenated Hemoglobin” is paramagnetic, meaning it will 

take a position parallel and proportional to the intensity of the magnetizing field. Thus, 

the MR signal will be more detectable, and thereby stronger, where there is a 

concentration of deoxygenated hemoglobin. This paramagnetic property of 
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deoxygenated hemoglobin becomes a naturally occurring contrast agent for MRI that is 

known as the blood oxygen level dependent (BOLD) signal (Ogawa et al., 1990). 

Essentially, researchers are deducing that if there is a great deal of deoxygenated 

hemoglobin (as detected by an increase in BOLD signal) isolated in a particular area, 

then a population of neurons must have needed respiration in that region. 

If a researcher were to time-lock perceptual inputs and/or cognitive processing to such 

BOLD-response contrast images, they could spatially specify which regions of the brain 

support that particular task/event. Belliveau et al. (1991) successfully showed that one 

could accomplish such a feat by demonstrating a functional mapping of the human 

visual cortex in response to visual stimuli. In modern fMRI experiments, a BOLD 

contrast image is collected once every one or two seconds. By comparing images 

collected at different time points, researchers can examine, at the voxel level, how 

different regions are recruiting blood as a function of task.  

Since researchers leveraging MRIs are able to collect a sampling north of a million 

voxel at each timepoint, it makes it possible to also examine the degree of temporal 

synchrony across multiple voxels. Functional connectivity measures the correlation of 

any two voxels’ (or groups of voxels, known as a region of interest [ROI]) BOLD signal 

across time (Biswal et al., 1995). Such a measurement allows researcher to infer which 

disparate regions of the brain are working in unison to process the many facets of 

conscious experience. 
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Machine Learning 
 

Machine learning is broadly defined as a set of statistical procedures and basic learning 

axioms that gives “computers the ability to learn without being explicitly programmed” 

(Munoz, 2014). Regardless of the underlying content, machine learning algorithms can 

examine the features of something, compare it to the features of another thing and 

classify the two as either the same or different. For the analyses mentioned in this 

dissertation, the machine learning algorithms used will be confined to the domain of 

supervised learning – a branch that deals with attempting to find patterns in sets of data 

by informing the algorithm of different classes that break up the data. Essentially, 

supervised machine learning involves finding exemplars with a category of objects, 

quantifying them into some set of features, and informing the algorithm that those 

examples are all the “same” in that they represent the category.  

For example, a researcher could create a “feature set” that is made up of RGB pixel 

intensities (e.g. a digital photo) and “teach” the algorithm that some of photos are of 

houses and that others are of faces. The algorithm will plot the features of each photo 

(i.e. which pixels at which RGB intensities) in a higher dimensional feature space that 

has as many dimensions as features such that each “example” will become a single 

point in that space. By labeling these points with which category they fit in (e.g. houses 

and faces), a pattern should emerge whereby the cluster of points that represent 

pictures of faces emerges is unique and distinguishable from the cluster of points that 

represent pictures of houses. The algorithm can then draw a “decision boundary” that 

most efficiently separates the two cluster sets. With such a decision boundary, one 

could project new points into that feature space and “guess”, depending on which side 
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of the decision boundary it lies, whether or not the features that created that point 

belong to a picture of a face or a human. Whether or not the algorithm is able to 

correctly label the point is known as classification accuracy. 

Just as with RGB values from pixels in a digital photo, a feature set can be made up of 

BOLD values from different voxels. Instead of labels reflecting the content of a digital 

picture, they can also associate BOLD voxel values with what an individual is seeing or 

thinking while that BOLD “picture” was taken. The work contained within this 

dissertation will utilize voxel-specific BOLD images (or second order derivatives of those 

images) as features and cognitive states as categorical labels of those features. A 

cross-validation methodology has been employed with all analyses throughout this 

dissertation. Cross-validation, as it pertains to the domain of fMRI, is a procedure where 

a researcher will index n BOLD images that they know were taken while the subject was 

looking at a picture of, say, a face and n more taken when the subject was looking at a 

house. They will then train their machine learning algorithm on (n-l)*k images, where l is 

a number greater than the number of class labels (k). The algorithm can then create a 

set of points that positions each exemplar’s feature set in an n-voxel feature space. 

After demarcating a decision boundary, the algorithm will guess the category of the l 

left-out BOLD images (i.e. answering the question: was this BOLD image collected 

when someone was looking at houses or faces?). The number of correct guesses the 

classifier makes will be recorded and the process will be repeated again where a 

different l BOLD images are “left out”, until each of n BOLD images are left out at least 

once. The average accuracy of each iteration (named a fold) of the cross-validation is 

taken to be the algorithm’s overall accuracy.  
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Naturally, feature sets that contain some information pertaining to the classification at 

hand will yield a greater classification accuracy. Much in the same way that the name of 

the first person to buy a house doesn’t tell you much about its sale price, the BOLD 

activity in someone’s skull shouldn’t tell you anything about whether or not they were 

looking at a house or a face at any given time (i.e. its classification accuracy would be at 

random-chance). This insight is what has driven the field of information-based functional 

brain mapping. The analyses mentioned in this dissertation will make particular use of 

the searchlight-brain-mapping technique developed by Kriegeskorte and colleagues 

(2006). This approach involves creating a sphere around a voxel and using that voxel, 

along with those captured in the surrounding spherical geometry, to be the feature set 

for a classification. The accuracy outcome from using that feature set across a cross-

validation is then assigned to the voxel upon which the spherical ROI was centered. 

Repeating this process for each voxel in the brain results in an image where each voxel 

is representative of how informative the multivariate patterns of BOLD activity in those 

voxels are in regards to the classification at hand. Regions with higher classification 

accuracy are reasonably thought to be more involved with the detailed processing 

surrounding the cognitive activity at hand. For example, if a region can contribute 

information towards a successful classification of faces and houses, it could be 

interpreted that that region cares about houses, faces, or both especially when 

compared to other non-informative brain regions. 

A slimmed-down approach that looks at the correlation across multiple voxels across 

different examples of the same stimulus category as opposed to across examples of a 

different stimulus category is known as representational similarity analysis (Kriegeskorte 
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et al., 2008). The assumption is that ensembles of voxels (whether spatially disparate or 

contiguous) that exhibit similar, consistent, and coherent patterns of responses to one 

cognitive task and different patterns to others are more involved in that cognitive task 

that other ensembles of voxels that do not exhibit as much within-category vs. across-

category dissimilarity. If the response was different each time, one could insinuate that 

there is no predictable response in those areas of the brain to that particular stimulus 

and, thus, perhaps has little involvement as to the processing of that task. This RSA 

approach can also be utilized within a searchlight brain mapping procedure.   

Virtual Reality (VR) 

 

Virtual reality, in the loosest sense, is the use of computers to render virtual 

environments in which human users can control and navigate an “avatar” or use virtual 

machinery. Today, many users leverage headsets, capable of tracking head motion, 

body gestures, and spatial displacement (e.g. HTC Vive, Oculus Rift) in order to achieve 

an immersive virtual reality experience that intentionally mirrors reality. VR has been 

posited as a method that stands to increase the ecological validity of memory 

experiments leveraging fMRI (Chapter 2; Reggente et al., 2018). The experiments 

mentioned in this prospectus will use a combination of large open source virtual reality 

software and custom coding that renders a virtual environment onto a 2D computer 

monitor whereby a user can interact with the environment and presented material using 

their mouse and keyboard. 
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Chapter 1: Memory recall for high reward value items correlates with individual 

differences in white matter pathways associated with reward processing and 

fronto-temporal communication 

 

Abstract 

 

When given a long list of items to remember, people typically prioritize the memorization 

of the most valuable items. Prior neuroimaging studies have found that cues denoting 

the presence of high value items can lead to increased activation of the mesolimbic 

dopamingeric reward circuit, including the nucleus accumbens (NAcc) and ventral 

tegmental area (VTA), which in turn results in up-regulation of medial temporal lobe 

encoding processes and better memory for the high value items. Value cues may also 

trigger the use of elaborative semantic encoding strategies which depend on 

interactions between frontal and temporal lobe structures. We used diffusion tensor 

imaging (DTI) to examine whether individual differences in anatomical connectivity 

within these circuits are associated with value-induced modulation of memory. DTI data 

were collected from 19 adults who also participated in an fMRI study involving a value-

directed memory task. In this task, subjects encoded words with arbitrarily assigned 

point values and completed free recall tests after each list, showing improved recall 

performance for high value items. Motivated by our prior fMRI finding of increased 

recruitment of left-lateralized semantic network regions during the encoding of high 

value words (Cohen et al., 2014), we predicted that the robustness of the white matter 

pathways connecting the ventrolateral prefrontal cortex with the temporal lobe might be 

a determinant of recall performance for high value items. We found that the mean 

fractional anisotropy of each subject’s left uncinate fasciculus, a fronto-temporal fiber 

bundle thought to play a critical role in semantic processing, correlated with the mean 
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number of high value, but not low value, words that subjects recalled. Given prior 

findings on reward-induced modulation of memory, we also used probabilistic 

tractography to examine the white matter pathway that links the NAcc to the VTA. We 

found that the number of fibers projecting from left NAcc to VTA was reliably correlated 

with subjects’ selectivity index, a behavioral measure reflecting the degree to which 

recall performance was impacted by item value. Together, these findings help to 

elucidate the neuroanatomical pathways that support verbal memory encoding and its 

modulation by value. 

Introduction 

As we go about our day-to-day lives, we often find ourselves bombarded with new 

information, only some of which may be important to remember. A growing body of 

research has begun to characterize the cognitive and neural mechanisms that support 

our ability to prioritize the encoding of those items that we believe will be most valuable 

to later recall (for reviews, see Castel, 2008; Shohamy and Adcock, 2010; 

Miendlarzewska et al., 2016). In an experimental setting, the relative importance of 

individual items is typically conveyed to participants by cues indicating the point value or 

reward magnitude that could be earned if that item is correctly remembered on an 

ensuing test. Functional magnetic resonance imaging (fMRI) studies have found that 

cues denoting the presence of high reward value items can lead to increased activation 

of the mesolimbic reward circuit, including the nucleus accumbens (NAcc) region of the 

ventral striatum and the ventral tegmental area (VTA) of the midbrain (Adcock et al., 

2006; Cohen et al., 2014). The NAcc, which receives inputs from the ventromedial 

prefrontal cortex conveying information about motivational salience, is thought to 



20 

represent the magnitude of anticipated reward (Delgado et al., 2000; Knutson et al., 

2001). Its projections to dopamine-producing neurons of the VTA can trigger the release 

of dopamine into the hippocampus, promoting synaptic plasticity via long-term 

potentiation, which serves to strengthen one’s memory for information encountered in 

close temporal proximity to the value cue (Lisman and Grace, 2005). While the 

engagement of these mechanisms may be automatically triggered in response to value 

cues, such cues may also serve to promote memory encoding by encouraging the 

individual to allocate increased attention to high value information and employ cognitive 

strategies to process that information in a more effective manner (Cohen et al., 2017; 

Middlebrooks et al., 2017). One particularly effective strategy is the engagement of 

elaborative encoding processes, in which an item’s semantic attributes are processed in 

a deep manner (Craik and Tulving, 1975; Castel, 2008). This often entails the effortful 

generation of visual images, associations, or stories in an effort to make the item’s 

representation more memorable. Recent evidence from fMRI studies indicates that 

engagement of the brain’s so-called “semantic network” (Binder and Desai, 2011) which 

includes regions of the left ventrolateral prefrontal cortex (VLPFC) and lateral temporal 

cortex, is markedly increased during the encoding of high value items (Cohen et al., 

2014; 2016). Although functional neuroimaging studies like these have contributed to 

our understanding of these two putative mechanisms of reward value-induced memory 

enhancement—one tied to the brain’s dopaminergic reward circuitry and one tied to 

strategic engagement of the semantic network—these studies have also highlighted 

substantial individual differences in the degree to which people engage these 

mechanisms (Adcock et al., 2006; Cohen et al., 2014; 2016).  



21 

In the present study, we sought to examine whether individual differences in the degree 

to which item reward value impacts memory encoding might be at least partially 

explained by individual differences in the structural integrity of key anatomical pathways 

within the brain’s reward system and semantic control system. To accomplish this, we 

used diffusion tensor imaging (DTI) data to measure the structural characteristics of 

several white matter pathways that we hypothesized might have relevance to reward 

value-incentivized remembering. One such pathway of interest was the uncinate 

fasciculus (UF), a fiber tract that connects portions of the inferior prefrontal cortex (PFC) 

with the anterior temporal lobe (Schmahmann et al., 2007; Von Der Heide et al., 2013; 

Leng et al., 2016; Hau et al., 2017). Prior DTI studies have strongly implicated the UF in 

both semantic processing (Matsuo et al., 2008; McDonald et al., 2008; Acosta-

Cabronero et al., 2011; de Zubicaray et al., 2011; Galantucci et al., 2011; Agosta et al., 

2012) and aspects of episodic memory (Diehl et al., 2008; Lockhart et al., 2012; 

Thomas et al., 2015; Wendelken et al., 2015; Alm et al., 2016). 

Although our primary candidate for a white matter pathway involved in controlled 

semantic processing and verbal memory was the UF, we also examined the putative 

role of another major pathway—the inferior frontal occipital fasciculus (IFOF). This 

pathway connects ventrolateral PFC regions with more posterior areas of the temporal 

cortex, as well as with some occipital regions (Catani and Thiebaut de Schotten, 2008). 

Individual differences in the integrity of this pathway have also been linked to behavioral 

performance on tests of semantic memory (de Zubicaray et al., 2011) and semantic 

control (Nugiel et al., 2016), and damage to this pathway can lead to semantic 

paraphasias (Mandonnet et al., 2007). 
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Finally, with respect to the brain’s reward circuitry, our analysis focused on examining 

whether the robustness of the connection between the NAcc and VTA (Morales and 

Margolis, 2017) would be predictive of individual differences in reward value-based 

modulation of memory. Prior DTI work has associated increased NAcc-VTA connectivity 

with better reward learning performance (Samanez-Larkin et al., 2012). Furthermore, 

fMRI-based measurements of functional connectivity have reported strong coupling 

between NAcc and VTA during the intrinsic resting state (Kahn and Shohamy, 2013), as 

well as heightened coupling between these regions during novelty-induced reward 

anticipation (Krebs et al., 2011).  

For each of these candidate pathways we derived metrics of white matter integrity from 

the DTI data of individual participants, who also performed a value-directed 

remembering task (Cohen et al., 2014). The task was designed to incentivize selective 

encoding of valuable information (Castel, 2008). Specifically, on each trial, participants 

were presented with a high or low value cue that preceded the display of a unique word 

and indicated the number of points they would earn if they subsequently recalled that 

word. Given the relatively large number of words on each list, participants were unlikely 

to remember them all, and thus it was advantageous for them to prioritize the 

memorization of words associated with a high value in their attempt to maximize their 

point total. It is important to note that although the points accumulated by participants in 

this task had no tangible reward value (i.e., they could not be converted to a monetary 

payout), the motivational salience of these point values was reflected in both 

participants’ memory behavior and in the value-modulated engagement of reward-

related regions in the midbrain and ventral striatum (Cohen et al., 2014). We quantified 



23 

a participant’s success on this value-directed remembering task using three metrics: the 

average number of high and low value words recalled per list (Mean High Recall and 

Mean Low Recall) and “Selectivity Index,” a putative trait variable that indexes the 

degree to which each participant prioritized the memorization of high value items over 

low value items (Castel et al., 2002). To the extent that successful recall of high value 

words depends on the engagement of deep semantic processing during encoding 

(Cohen et al., 2014; Cohen et al., 2017), we hypothesized that participants’ ability to 

remember high value items would correlate with individual differences in the structural 

integrity of the UF and/or IFOF pathways that have been implicated in semantic control, 

and potentially also with the NAcc-VTA pathway associated with reward processing. We 

furthermore hypothesized that individual differences in the robustness of the NAcc-VTA 

pathway might correlate with variability in reward-related modulation of learning, as 

captured by their Selectivity Index measure.  

Methods 
 

Participants 

Twenty-two adults were enrolled in this study. Data from three participants were 

excluded from analysis: one for being a non-native English speaker and two for whom 

we were unable to acquire diffusion-weighted MRI data (one participant’s scanning 

session was discontinued due to discomfort and the other due to time constraints). The 

remaining 19 participants (10 female; mean age = 21.8 ± 3.7 years) were all right-

handed, native English speakers who reported no current psychoactive medications or 

severe psychiatric or neurological disorders. All participants either had normal or 

corrected-to-normal vision. Participants were recruited via flyers placed around the 



24 

UCLA campus and were remunerated for their participation. Written informed consent 

was obtained from each participant, and all procedures were approved by UCLA’s 

Medical Institutional Review Board (IRB #11-002443).  

Behavioral procedure 

A value-directed memory task, adapted from an experimental paradigm developed by 

Castel and colleagues (2002; Castel, 2008), was administered in the MRI scanner as 

participants underwent functional imaging. Extensive details about the protocol have 

been previously reported (Cohen et al., 2014; 2016), and key elements are summarized 

below. Participants performed five study-test cycles, each consisting of the study of a 

list of 24 unique words followed by a free recall test; in addition, two study-test cycles 

were completed as practice prior to the scanning session. The words were 4-8 letter 

concrete nouns, and each was assigned a point value indicating how many points could 

be earned if that word was later recalled. Half of the words were arbitrarily assigned a 

high value (10, 11, or 12 points) and the other half were assigned a low value (1, 2, or 3 

points); value assignment was counterbalanced across participants. During each study 

list, the presentation of 12 high value and 12 low value words was intermixed in a 

pseudorandomized fashion. Each trial began with a numeric value cue presented inside 

of a gold coin symbol (2 s), followed by a fixation cross (3 – 6.75 s). Then, the to-be-

remembered word was presented (3.5 s) followed by another fixation (1.5 s). During the 

inter-trial interval (3.75-8.75 s), participants performed a simple vowel/consonant 

judgment task designed to prevent continued rehearsal of the words. Upon the 

conclusion of each 24-word list, fMRI scanning momentarily ceased and participants 

were given 90 s to recall as many words as possible from the preceding list, with an 
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emphasis to maximize their total point score. Immediately after recall was complete, 

participants were given feedback on the points earned for that list.  

In order to index the degree to which each participant selectively prioritized the 

memorization of high value items, while taking into account the overall memory ability of 

that participant, we computed a measure known as Selectivity Index (Castel et al., 

2002) using the formula: (actual score – chance score) / (ideal score – chance score), 

where “actual score” indicates the total number of points earned, “chance score” 

indicates the point total that the participant would have earned had the point values 

been randomly assigned (i.e., mean point value multiplied by number of words recalled), 

and “ideal score” indicates the point total that would have been earned if the N words 

that the participant recalled were only those with the highest N point values. As an 

illustrative example, if a participant recalled only four words on a given list, and the 

points associated with these words were 12, 10, 11, and 12, then the participant’s 

Selectivity Index would be very high. The ideal score for four words would be 48 (since 

there are four 12-point words on each list); the participant’s actual score would be 45; 

the chance score would be 26, since the average point value across all list items was 

6.5 points; thus, the Selectivity Index in this case would be: (45 – 26)/(48 – 26) = 0.86. 

In this way, we calculated the Selectivity Index for each list, and then averaged across 

lists to yield a single score.  

MRI scanning procedure 

MRI data were acquired on a 3.0T Siemens Tim Trio Scanner at the UCLA Staglin 

IMHRO Center for Cognitive Neuroscience equipped with a 12-channel receive-only 

phased array head coil. A high-resolution T1-weighted anatomical image was obtained 
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using a 3D MPRAGE sequence (TR = 1900 ms, TE = 3.26 ms, flip angle = 9°, FoV = 

250 mm, voxel size = 0.98 x 0.98 x 1.0 mm). Diffusion weighted imaging data were 

obtained using a multi-directional diffusion weighting (MDDW) spin-echo echoplanar 

imaging (EPI) sequence (64 non-collinear directions, b-value = 1000 s/mm2, TR = 9000 

ms, TE = 93 ms, echo spacing = 0.69 ms, 60 axial slices, FoV = 190 mm, voxel size = 

2.0 x 2.0 x 2.0 mm) with a non-diffusion weighted reference volume (b=0 s/mm2). Prior 

to the acquisition of these structural scans, functional EPI data were obtained as 

participants performed the value-directed memory task; results from analysis of those 

data have been previously reported (Cohen et al., 2014). Stimuli were presented using 

E-Prime 2.0 software (Psychology Software Tools, Pittsburgh, PA), and images were 

shown via either a custom-built MR-compatible rear projection system, or via MR-

compatible goggles (Resonance Technology, Inc.).  

Diffusion tensor imaging data processing  

Diffusion MR data were preprocessed using the FMRIB’s Diffusion Toolbox (FMRIB 

Software Library, FSL version 5.0.6; http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSL). All diffusion-

weighted images were corrected for eddy currents and aligned to the b0 reference 

volume. A brain-tissue-only mask was created for each subject using Brain Extraction 

Tool (BET) and applied to all images. Tensor models were fit to the diffusion data from 

each voxel using DTIFIT to produce whole-brain fractional anisotropy (FA) maps for 

each subject.  

All analyses were conducted in subject-specific diffusion space in an effort to minimize 

resampling of the diffusion data. Because our principal analyses involved several 

regions-of-interest (ROIs) that were defined in standard Montreal Neurological Institute 
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(MNI) template space, these ROIs were reverse normalized to the space of each 

subject’s diffusion data according to the following workflow:  Each subject’s anatomical 

image (MPRAGE) was normalized to a standard T1-weighted template in MNI space 

using a symmetric diffeomorphic image registration procedure implemented in the 

Advanced Normalization Tools (ANTS) Toolbox (Avants et al., 2008). The inverse of this 

transformation was then applied to all standard space ROIs, bringing each ROI into 

subject-specific MPRAGE space.  Next, each subject’s non-diffusion-weighted b0 

reference volume was aligned to their MPRAGE using 12-parameter linear-affine 

registration using FMRIB’s Linear Image Registration Tool (FLIRT), and the inverse 

transform of this registration was applied to the ROIs, bringing each ROI into subject-

specific diffusion space. 

ROI masks for tracts of interest were defined based on the Johns Hopkins University 

(JHU) white matter tractography atlas (Mori et al., 2005; http://cmrm.med.jhmi.edu). For 

each fiber tract, we calculated mean FA values for each individual within separate left 

hemisphere and right hemisphere ROIs.  Our primary fronto-temporal tract of interest 

were the left and right UF (Figure 1A), following previous work demonstrating the 

relationship between UF integrity and semantic control (Harvey et al., 2013). We also 

examined the mean FA of each subject’s left and right IFOF (Figure 1B), as studies 

have linked this pathway to semantic processing/control (de Zubicaray et al., 2011; 

Nugiel et al., 2016). As a control analysis, designed to rule out the possibility that 

generalized differences in white matter tract integrity would correlate with our behavioral 

measures, we extracted the mean FA of each subject’s left and right corticospinal 

tract—a tract with no prior association with either reward or memory that has been used 
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as a control pathway in prior studies examining DTI correlations with memory behavior 

(Winston et al., 2013; Schlichting and Preston, 2016). For all JHU-defined masks, we 

applied a 10% probability threshold to ensure sufficient coverage of the entire pathway, 

while avoiding excessive sparsity/shrinkage (that would result if higher thresholds were 

applied). Since the IFOF and UF masks had considerable anatomical overlap in the 

JHU atlas, with the UF essentially existing as a subset of the IFOF, we conducted 

additional analyses in which we excluded all UF voxels from the IFOF mask and only 

examined the portions of the IFOF that did not show any anatomical overlap with the 

UF. 

For our analysis of anatomical connectivity between the NAcc and VTA, we 

implemented a probabilistic tractography approach, as no pre-defined atlas was 

available for this pathway. A left and right NAcc ROI were anatomically defined for each 

subject using their MPRAGE scan (Figure 1C); this was accomplished using 

FreeSurfer’s automatic subcortical segmentation routine 

(http://freesurfer.net/fswiki/SubcorticalSegmentation). Given the challenge of 

demarcating the anatomical boundaries of the VTA in T1-weighted MR images of 

individual subjects, we defined a VTA ROI using a probabilistic atlas of human VTA 

(Murty et al., 2014; http://web.duke.edu/adcocklab) with a 50% probability threshold 

(Figure 1D).  

Using FSL’s PROBTRACKX, in conjunction with BEDPOSTX (Bayesian Estimation of 

Diffusion Parameters Obtained using Sampling Techniques), each subject’s diffusion 

image underwent a Bayesian estimation of diffusion parameters at each voxel using a 

Markov-chain Monte Carlo sampling techniques while modeling and accounting for 
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crossing fibers (Behrens et al., 2003; Behrens et al., 2007). Using 5000 samples of the 

distribution of diffusion parameters, 5000 streamlines from each seed voxel were 

created and this distribution of streamlines was used to create a likely tract location. By 

taking many such samples, the probabilistic tractography algorithms build up a posterior 

distribution on the streamline location or the connectivity distribution of each seed ROI 

to each target ROI.  

Our primary measure of interest was the total number of samples from the seed ROI 

that reached the target mask. To normalize the results and ensure our results would not 

be driven by variance in the seed ROI size, we divided the total streamline count by the 

total number of samples sent out from the seed mask (i.e., 5000 * number of voxels in 

the seed ROI) (Johansen-Berg et al., 2005). This tract strength value was then 

correlated with our behavioral measures of interest. To ensure that our results were not 

being driven by the size of the target ROI, we computed a partial correlation controlling 

for the size of the target ROI (note that although the same VTA ROI was used as the 

target ROI for all subjects, its size varied across participants based on the 

transformations needed to reverse normalize this ROI from MNI space to the native 

anatomical space of each subject). Tract strength measures, as indexed by DTI 

tractography, have been shown to correlate strongly with actual neuroanatomical 

connectivity as revealed by retrograde tracer injections (Donahue et al., 2016). Because 

we had a priori reason to believe that higher FA values (which reflect increased 

directional structure of white matter tissue) and higher tract strength values would be an 

indicator of more robust anatomical connectivity and thus associated with improved task 

performance, we assessed the significance of the brain-behavior correlations using one-
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tailed tests. We controlled our false discovery rate (FDR; i.e., Type I error rate) by 

correcting the observed p-values in accordance with the expected proportion of false 

discoveries amongst the rejected hypotheses for all brain-behavior correlations 

(Benjamini and Hochberg, 1995). As such, all reported brain-behavior p-values have 

been FDR-corrected, and results that achieve p < 0.05 (corrected) are reported as 

significant. Direct comparisons of a given region’s correlation with two behavioral 

measures (e.g., high value recall vs. low value recall) were assessed using a two-tailed 

test for the difference between two dependent correlations with one variable in common 

(Steiger, 1980) using an online utility (http://quantpsy.org/corrtest/corrtest2.htm; Lee, 

2013). 

Results 
 

Behavioral performance 

Our analyses focused on three behavioral measures of interest: (1) High Value Recall 

(the mean number of high value words recalled per list, averaged across the 5 lists), (2) 

Low Value Recall (the mean number of low value words recalled per list, averaged 

across the 5 lists), and (3) Selectivity Index. Across participants, the average High 

Value Recall score was 8.65 (SD = 1.87), which was significantly greater than the 

average Low Value recall score of 3.18 (SD = 2.72), t18 = 9.27, p = 2.84 x 10-8. The 

average Selectivity Index score was 0.605, which was significantly greater than zero 

(i.e., value-insensitive recall), t18 = 11.48, p = 1.03 x 10-9.  

 

 



31 

Brain-behavior correlations:  fractional anisotropy (FA) 

We first examined whether individual differences in the mean FA of our primary fronto-

temporal pathway of interest, the uncinate fasciculus (UF), were correlated with each of 

our three behavioral measures (Figure 2). For the left UF, we found that mean FA 

showed a strong positive correlation with High Value Recall (r = 0.746, p = 0.0025) but 

not with Low Value Recall (r = 0.219, p > 0.2), and this difference in correlation 

magnitude was significant (z = 2.606, p = 0.0046). For the right UF, we found that mean 

FA also showed a positive correlation with High Value Recall (r = 0.551, p = 0.0378) but 

not with Low Value Recall (r = 0.177, p > 0.3). However, this difference in correlation 

magnitude only trended towards significance (z = 1.582, p = 0.057). A direct comparison 

between the effects in left and right UF revealed a significantly stronger relationship with 

High Value Recall performance in the left hemisphere (z = 2.099, p = 0.018). When 

correlating mean FA with Selectivity Index, we did not observe a significant effect in 

either left UF (r = 0.177, p > 0.3) or right UF (r = 0.123, p > 0.3). 

Mean FA along the inferior frontal occipital fasciculus (IFOF) pathway also showed a 

positive correlation with High Value Recall for both the left (r = 0.631, p = 0.015) and 

right (r = 0.624, p =0.015) hemisphere ROIs. There was no difference in correlation 

magnitude as a function of hemisphere (z = 0.047, p > 0.9). Mean FA in the IFOF did 

not significantly correlate with Low Value Recall on the left (r = 0.308, p > 0.2) or right (r 

= 0.336, p > 0.1) hemisphere. Despite the finding of significant correlations with High 

Value Recall and non-significant correlations with Low Value Recall, a direct test of the 

difference in correlation coefficients failed to yield significant effects in either the left 

IFOF (z = 1.47, p = 0.142) or right IFOF (z = 1.309, p = 0.191). Selectivity Index also 
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showed no relationship with FA in left IFOF (r = -0.050, p > 0.4) or right IFOF (r = 0.047, 

p > 0.3). 

Given the strength of our UF findings and the spatial overlap of our atlas-defined UF 

and IFOF ROIs, we next assessed whether the significant relationship between High 

Value Recall and FA along the IFOF could potentially be driven by the FA values that 

were also included in our analyses of the UF. In order to test this hypothesis, we 

conducted a follow-up analysis where only portions of the left and right IFOF masks that 

were non-overlapping with the left and right UF masks were analyzed (we refer to 

resulting ROI as IFOFexclusive). We found that mean FA did not significantly correlate with 

High Value Recall in the left IFOFexclusive (r = 0.363, p > 0.1) nor Low Value Recall (r = 

0.177, p > 0.2). A similar observation was seen for the right IFOFexclusive; mean FA did 

not significantly correlate with High Value Recall (r = 0.417, p > 0.1) nor Low Value 

Recall (r = 0.070, p > 0.4). When correlating mean FA with Selectivity Index, we did not 

observe a significant effect in either left IFOFexclusive (r = -0.030, p > 0.4) or right 

IFOFexclusive (r = 0.170, p > 0.2). These results suggest that the value effects 

documented above for the entire IFOF ROIs were actually driven heavily by FA levels 

within the anterior portion of these ROIs that overlapped with the UF. 

As a control analysis to rule out generic effects of white matter health/integrity and task 

performance, we examined the mean FA of the corticospinal tract. Mean FA within the 

left corticospinal tract did not correlate with High Value Recall, Low Value Recall, or 

Selectivity Index (all r’s < 0.238, all p’s > 0.1). The same was the case for the right 

corticospinal tract (all r’s < 0.289, all p’s > 0.1). 

Brain-behavior correlations:  tract strength 
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Our primary reward circuit pathway of interest was the connection between the NAcc 

and VTA. Given that our probabilistic VTA ROI was bilateral by nature, we elected to 

combine the left and right NAcc ROI into a single bilateral NAcc ROI, and we then 

assessed the relationship between the mean tract strength of the NAcc-VTA pathway 

and each of our three behavioral performance measures. This was done using partial 

correlations that controlled for the size of the VTA target ROI, and thus the associated 

scatterplots (Figure 3) depict the standardized residuals of each variable rather than the 

raw values. Individual differences in the tract strength of the NAcc-VTA pathway 

correlated significantly with High Value Recall (r = 0.509, p = 0.0455) but not with Low 

Value Recall (r = -0.167, p > 0.3), and this difference in correlation magnitude was 

significant (z = 2.780, p = 0.0054). Furthermore, this pathway’s tract strength correlated 

significantly with individual differences in Selectivity Index (r = 0.533, p = 0.0394). 

Discussion 

In this study, we used diffusion weighted imaging to assess the relationship between 

microstructural integrity of white matter pathways and individual differences in value-

directed remembering. Our analyses revealed a significant positive correlation between 

participants’ ability to recall high reward value words and the structural integrity of two 

white matter pathways of interest:  the UF and the tract connecting the NAcc and the 

VTA. No such correlation was found between these pathways and participants’ ability to 

recall low reward value words. Furthermore, the strength of the NAcc→VTA connection 

was strongly correlated with individual differences in Selectivity Index, suggesting that 

this mesolimbic pathway may constitute one key determinant of reward-driven 

modulation of memory encoding behavior.                                    
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Prior research using the value-directed remembering paradigm has yielded evidence 

that participants preferentially engage in deep semantic encoding of high reward value 

items relative to low reward value items (Castel, 2008; Cohen et al., 2017), and that this 

is associated with value-related differences in neural activity within lateral prefrontal and 

temporal lobe regions thought to be key components of the brain’s semantic network 

(Cohen et al., 2014). Cohen et al. (2016) also found a positive correlation between 

Selectivity Index and activity in these brain regions during encoding of high reward 

value items, with no such effect apparent during encoding of low reward value items, 

suggesting that selectivity in young adults is driven primarily by enhanced semantic 

encoding of high reward value words.   

Motivated by these findings, our DTI analyses focused heavily on exploring whether 

individual differences in the anatomical robustness of the UF pathway, which connects 

the ventral PFC with the anterior temporal lobe, might be one factor that predicts 

memory for high value items. As is common in the DTI literature, we indexed the 

microstructural integrity of white matter pathways by measuring their mean FA. This 

measure denotes the degree of restriction that water molecules encounter when 

diffusing within a given voxel, and as such is increased whenever that voxel’s 

underlying tissue is rich with coherently oriented myelinated axons. Our finding that the 

mean FA of participants’ UF predicted their ability to recall high value words, but not low 

value words, suggests that having a robust UF may be conducive to deploying effective 

semantic encoding strategies to ensure retention of valuable information. Although this 

correlation with high value recall was observed in both hemispheres, only in the left UF 

was the correlation significantly greater with high value recall than low value recall, 
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suggesting that the key behavioral phenomenon in our task—enhanced memory for 

high value words—may be more strongly associated with fronto-temporal connections 

within the left hemisphere. This is consistent with our interpretation of this effect as 

being attributable to the prioritized engagement of semantic processing. We also 

examined the putative contributions of another major white matter pathway connecting 

ventrolateral PFC regions with posterior sensory cortices—the IFOF—but found that 

after excluding the anterior portion of this pathway that overlapped with the UF, its mean 

FA was uncorrelated with behavioral performance on our task. 

In our task paradigm, participants’ ability to remember high value words (i.e., their Mean 

High Recall score) likely reflects the efficacy with which they can engage in encoding 

strategies to promote the retention of information they hope to be able to later 

remember. Early “depth of processing” research demonstrated that elaborative 

encoding, the process of associating meaning with to-be-remembered information, 

results in greater retention relative to encoding the information at a superficial level via 

rote rehearsal (Woodward et al., 1973; Craik and Tulving, 1975; Bradshaw and 

Anderson, 1982). When tasked with encoding words, those who employ an elaborative 

encoding strategy are effectively linking the meaning of a word with related concepts – 

binding its representation into a broader semantic network and creating more potential 

retrieval routes that could later facilitate successful recall. In this experiment, because 

some words are deemed to be more valuable to remember than others in regards to the 

task at hand, it is likely that engagement of elaborative semantic encoding is roughly 

proportional to the point value assigned each word.  
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A number of prior studies have linked the UF pathway to aspects of semantic and/or 

associative encoding. Although our study examines structure-function relationships by 

capitalizing on individual differences in white matter integrity and behavioral 

performance in cognitive healthy adults, many valuable insights have been derived from 

studies of clinical populations or older adults. For instance, in a study of aphasic 

patients with varying degrees of comprehension deficits, Harvey and colleagues (2013) 

found that individual differences in the structural integrity of the left UF were predictive 

of patients’ performance on tasks requiring semantic control. Specifically, patients with 

lower UF integrity as indexed by mean FA, showed a diminished ability to ignore 

semantically related distractors and identify associative relationships when 

understanding a word. These findings were taken as evidence that the UF plays an 

important role in semantic control, by virtue of its ability to connect cognitive control 

regions of the anterior ventrolateral PFC with anterior temporal lobe regions thought to 

be critical for storing word meanings (Visser et al., 2010). Abnormal FA values in the UF 

have also been correlated with deficits in confrontational naming and semantic memory 

in patients with temporal lobe epilepsy (McDonald et al., 2008). In further support of the 

role of UF in semantic processing, studies of semantic dementia patients have 

frequently reported decreases in FA (or decreases of a related measure known as radial 

diffusivity) in the UF, particularly in the left hemisphere but occasionally bilaterally 

(Matsuo et al., 2008; Acosta-Cabronero et al., 2011; Galantucci et al., 2011; Agosta et 

al., 2012). Individual differences in left UF integrity also correlate with performance on 

tests of semantic memory in healthy older adults (de Zubicaray et al., 2011). The left UF 

has also been associated with performance on episodic memory tasks, including the 
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learning of paired associations between visual images (Thomas et al., 2015; Alm et al., 

2016) and a task requiring mnemonic control to prioritize the encoding of relative 

images and ignore distractors (Wendelken et al., 2015). Damage to this pathway is 

correlated with deficits in immediate and delayed verbal memory (Diehl et al., 2008; 

McDonald et al., 2008) and visual associative memory (Lockhart et al., 2012).  

It is worth noting that not all studies that have examined structural correlates of 

semantic control have found a reliable correlation with UF integrity. For instance, Nugiel 

and colleagues (2016) conducted a verb generation study in which subjects were 

presented with a noun and asked to generate a related verb. The authors assessed the 

semantic relatedness between the noun and the provided verb using latent semantic 

analysis (LSA) and found that individual differences in LSA score (their proxy for 

semantic control) were not related to FA in the UF, but rather correlated with FA in the 

left IFOF, and also showed an unanticipated correlation with FA in the inferior 

longitudinal fasciculus (ILF), a pathway typically associated with high-level vision. While 

their findings diverge from those of the present study, there were several major 

methodological differences that may have contributed to this discrepancy. Our atlas-

based UF and IFOF ROIs had considerable anatomical overlap in the anterior portion, 

requiring us to exclusively mask out overlapping voxels to isolate effects that were 

uniquely attributable to IFOF. As such, our procedure may underestimate the potential 

contribution of anterior IFOF fibers extending into prefrontal cortex, whereas Nugiel and 

colleagues’ use of ROI-to-ROI deterministic tractography may have been more sensitive 

to these fibers. Furthermore, the tasks used in our respective studies were markedly 

different, raising the possibility that IFOF integrity is more consequential for the type of 
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semantic control needed to rapidly retrieve word associations, whereas UF integrity may 

be more important for the type of control needed to facilitate elaborative semantic 

encoding of words. Future studies will be necessary to better characterize the roles of 

the UF and IFOF pathways in semantic control and verbal memory. 

There is also reason to believe that the UF pathway could more generally play a role in 

reward-incentivized behavior. For instance, studies in monkeys have shown that the UF 

is critical for tasks like conditional rule learning where they must associate a particular 

object with a particular choice location that is rewarded (Parker and Gaffan, 1998; 

Bussey et al., 2002). In DTI work with human subjects, Camara and colleagues (2010) 

found that FA values in a region within the UF correlated with the difference in BOLD 

activity in the ventral striatum when a participant earned a loss versus a gain in a 

gambling task (i.e., was more sensitive to punishments). This finding suggests that the 

structural integrity of the UF is predictive of an individual’s reward processing behavior. 

UF FA has also been shown to predict a participant’s ability to delay gratification in a 

sample of children and adolescents (Olson et al., 2009). These reward-related findings 

may be attributable to the fact that the UF is a critical pathway connecting parts of the 

limbic system with the orbitofrontal cortex. Reward contingencies, like those leveraged 

in our study, have been shown to be encoded in the orbitofrontal cortex (Fellows, 2011), 

and to depend critically on the integrity of white matter projections from this region 

(Rudebeck et al., 2013). Given the role of the OFC in maintaining reward 

representation, it is reasonable to presume that that the OFC would be responsible for 

relaying that reward information to semantic processing regions within temporal lobe by 

way of the UF (Olson et al., 2015).  
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Despite the putative involvement of the UF pathway in reward-driven behavior, we did 

not find a significant correlation between UF integrity and Selectivity Index—our primary 

behavioral measure of the degree to which a participant’s encoding efforts were 

optimized to maximize their accumulation of reward points given the total number of 

items they were able to recall. To the extent that Selectivity Index can be thought of as a 

marker of participants’ reward sensitivity, the fact that this measure did not correlate 

with UF FA suggests that its role in our task paradigm was probably more related to 

enhancing the encoding of high value items via elaborative semantic encoding rather 

than adaptively regulating one’s motivation to learn in accordance with item value. That 

said, individual differences in the Selectivity Index measure did show a significant 

correlation with the tract strength of a mesolimbic white matter pathway connecting a 

critical reward-related region of the ventral striatum (NAcc) with a dopamine-producing 

midbrain region (VTA). In other words, participants with a more robust NAcc-VTA 

pathway tended to be those individuals who were more selective in their encoding 

efforts. Selectivity Index increases across lists as participants experience limits in the 

amount of information that can be recalled on each list (Castel, 2008; Ariel and Castel, 

2014). Those participants with stronger anatomical connections in this reward pathway 

may be more sensitive to feedback on recall performance across lists. These 

participants may prioritize the encoding of the highest value words given the number of 

words that can be recalled per list based on task experience—what they learned from 

performance on prior lists and awareness of their own memory capacity. In this way, 

mesolimbic reward circuitry may play a key role in the metacognitive ability of adjusting 

encoding strategy based on experienced recall ability.  
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Our finding that NAcc-VTA connectivity predicted participants’ selectivity on a value-

directed remembering task accords well with prior research linking motivationally 

significant information to dopaminergic projections from tegmental areas to ventral 

striatal areas (Camara et al., 2009). Such processes allow for cognitive resources to be 

geared toward relevant information during memory encoding, as dictated by potential 

reward (Wittmann et al., 2005; Wittmann et al., 2008; for review, see Shohamy and 

Adcock, 2010).  In the current study, words preceded by a high value cue are much 

more indicative of a subsequent reward (i.e., accumulation of points) than their low 

value counterparts. In our analysis of fMRI data collected from these same participants 

(Cohen et al., 2014), we found significantly increased activity in both the NAcc and VTA 

during the encoding of high value versus low value items. Such engagement of the 

brain’s core reward circuitry supports the notion that point values, although not linked to 

monetary gain in our paradigm, were nonetheless processed as salient reward cues 

and used to modulate behavior (akin to the intrinsic reward value of point accumulation 

in many video games). The present DTI findings expand upon this result by showing 

that the robustness of the white matter pathway connecting these two regions is likely 

one important determinant of both how well, and how selectively, individuals will encode 

the high value words based on feedback across lists.  

Taken together, our results suggest that when presented with a reward value-indicating 

cue, communication between the NAcc and VTA may act as a gating mechanism to 

determine if elaborative encoding processes, as facilitated by the UF, will be 

upregulated to preferentially bolster the encoding of the proceeding word. The UF may 

fulfill the additional role of facilitating information transmission across the OFC and 
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temporal/limbic regions to continually update the association of a reward value with a 

word. The integrity of both of these circuits appears to be a critical determinant of 

behavioral performance in this task paradigm. Although we have been attributing the 

structural correlates of value-related memory modulation to effects that exert their 

influence during encoding, it is important to note the possibility that item reward values 

could impact retrieval dynamics as well. For example, Castel and colleagues (2013) 

found that people tend to recall higher value items first, which could be due to the fact 

that these items were most strongly encoded, but also could be a strategic operation to 

prevent the buildup of output interference from diminishing the accessibility of high 

value items. That said, we have reason to believe that the value effects in our study are 

predominantly indicative of processes engaged at the time of encoding. Post-

experiment questionnaires revealed that all participants reported the use of verbal 

strategies during encoding to help them remember the words (Cohen et al., 2014). 

Moreover, a series of behavioral experiments using variants of this paradigm found 

evidence that providing participants feedback on their point totals at the conclusion of 

each study-test cycle (as was done in the present study) serves to guide learners' use 

of metacognitive control to more selectively employ encoding strategies that will 

promote later recollection of high reward value items (Cohen et al., 2017). Finally, fMRI 

measurement of brain activity levels during word encoding revealed strong effects of 

reward value and correlations with Selectivity Index across a number of regions 

associated with semantic and reward processing (Cohen et al., 2014). 

Our findings should be interpreted with some caution given the relatively small size of 

our sample. Future studies with larger samples would be useful to both assess the 
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replicability of our effects, as well as to explore the putative contributions of additional 

white matter pathways. Given our limited experimental power, we chose to focus our 

brain-behavior correlation analyses on a small number of pathways for which the 

literature provided a priori rationale to expect value-related effects. It would also be 

advantageous for future work to examine the degree to which individual differences in 

UF and NAcc-VTA integrity predict performance on a wider range of reward-incentive 

memory tasks. For instance, it is possible that the role of left UF is particularly 

pronounced for paradigms involving verbal stimuli, for which the use of elaborative 

semantic encoding strategies is most effective; paradigms using visual stimuli may not 

show such a structure-function relationship for this region. Finally, it will be interesting to 

explore whether the white matter pathways implicated in our study as predicting value-

based memory effects in a sample of younger adults will show similar effects in older 

adults. Functional neuroimaging work comparing younger and older adults on this 

paradigm revealed that while both populations show elevated recruitment of the left-

lateralized semantic network during the encoding of high value words, younger adults 

engage these regions—along with reward-related regions—more proactively than older 

adults (Cohen et al., 2016). Diffusion imaging could offer additional insights into the 

nature of age-related changes in value-directed remembering and individual differences 

that predict preserved memory selectivity. 

Figure Captions 
 

Figure 1. Regions of interest. A) Left Uncinate Fasciculus (UF) overlaid on a standard 

T1-weighted template in MNI space. The UF was defined using a probabilistic white 

matter tractography atlas (Johns Hopkins University [JHU]; Mori et al., 2005). B) Left 
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inferior frontal occipital fasciculus (IFOF) ROI defined using the same procedure. C) 

Nucleus accumbens (NAcc) ROI, aligned to and overlaid on a representative subject’s 

MPRAGE. The NAcc was defined using FreeSurfer’s automatic subcortical 

segmentation routine on the T1-weighted structural image. D) Ventral tegmental area 

(VTA) ROI, aligned to and overlaid on a representative subject’s MPRAGE. The VTA 

was defined using a probabilistic atlas of the human VTA (Murty et al., 2014) at a 50% 

threshold. 

Figure 2. Scatter plots depicting the brain-behavior correlations focused on individual 

differences in mean fractional anisotropy (FA) within the uncinate fasciculus (UF) and 

metrics of memory recall performance. Correlations are plotted for the relationship of 

mean FA in A) L UF and B) R UF with mean number of high value words recalled. C & 

D) Same as A & B, but with mean recall for low value words. E & F) Same as A & B, but 

with each subject’s mean Selectivity Index. * p < 0.05 (corrected) comparing the r-value 

to a one-tailed Student’s t-distribution. 

Figure 3. Correlation between NAcc-VTA tract strength and behavioral measures. The 

tract strength values represent the number of samples that reached the target ROI 

(VTA) when emanating from a seed ROI (NAcc), using a probabilistic tractography 

approach and normalizing for the number of samples sent out. The values shown here 

are standardized residuals controlling for ROI size in each subject. Correlations are 

plotted for the relationship of NAcc-VTA tract strength and A) the mean number of high 

value words recalled, B) mean number of low value words recalled, and C) Selectivity 

Index. * p < 0.05 (corrected) comparing the r-value to a one-tailed Student’s t-distribution. 
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Figures 
 

Figure 1. Regions of interest. 
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Figure 2. Scatter plots depicting the brain-behavior correlations focused on 

individual differences in mean fractional anisotropy (FA) within the uncinate 

fasciculus (UF) and metrics of memory recall performance. 

 

 

Figure 3. Correlation between NAcc-VTA tract strength and behavioral measures. 
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Chapter 2: Enhancing the ecological validity of fMRI memory research using 

virtual reality 

 

Abstract 

Functional magnetic resonance imaging (fMRI) is a powerful research tool to 

understand the neural underpinnings of human memory. However, as memory is known 

to be context-dependent, differences in contexts between naturalistic settings and the 

MRI scanner environment may potentially confound neuroimaging findings. Virtual 

reality (VR) provides a unique opportunity to mitigate this issue by allowing memories to 

be formed and/or retrieved within immersive, navigable, multisensory contexts. This can 

enhance the ecological validity of task paradigms, while still ensuring that researchers 

maintain experimental control over critical aspects of the learning and testing 

experience. This mini-review surveys the growing body of fMRI studies that have 

incorporated VR to address critical questions about human memory. These studies 

have adopted a variety of approaches, including presenting research participants with 

VR experiences in the scanner, asking participants to retrieve information that they had 

previously acquired in a VR environment, or identifying neural correlates of behavioral 

metrics obtained through VR-based tasks performed outside the scanner. Although 

most such studies to date have focused on spatial or navigational memory, we also 

discuss the promise of VR in aiding other areas of memory research and facilitating 

research into clinical disorders. 
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Introduction 

Virtual reality (VR) is a term used to encompass any computer-generated experience 

that induces a sense of presence—the feeling of being transported to and inhabiting a 

place different from one’s immediate surroundings (McCreery et al., 2013; Steuer, 

1992). Given the intimate relationship between context and memory (Godden and 

Baddeley, 1975; Smith, 1988), VR provides a powerful means to enhance the ecological 

validity of memory research by providing realistic virtual environments (VEs) in which 

participants can learn information and/or draw upon past memories to guide their 

behavior. These VEs can be highly customized to meet the needs of a wide variety of 

tasks and offer experimental control over the learning experience. Given these 

characteristics, along with the recent surge in VR technological development and 

accessibility (Figure 1a), it is unsurprising that cognitive neuroscientists interested in the 

brain mechanisms of memory have increasingly found ways to incorporate VR into their 

fMRI studies. 

Experimental designs employing VR and fMRI to study memory predominantly fall into 

three categories: 1) having participants actively engage in VR experiences in the 

scanner while functional neuroimaging data are acquired, 2) scanning participants as 

they are prompted to retrieve information previously acquired in a VE, and 3) identifying 

structural or functional correlates of behavioral metrics obtained through the use of VR 

(Figure 2). One virtue of VR as an experimental tool is its ability to enable the translation 

of research paradigms that have been used extensively in animal research, which may 

not otherwise translate readily to human participants for ethical or technical reasons. 

For example, a direct human analog of the Morris water maze—dropping a participant 
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into a pool of cloudy water in the search of an invisible platform—would likely raise the 

ethical eyebrows of any Institutional Review Board, yet such a task paradigm can be 

implemented in VR. Likewise, VR empowers neuroscientists to create experiments that 

would either be impossible or impractical without the use of VR (e.g., imposing invisible 

boundaries, altering/morphing environmental features, or teleporting a participant 

between contexts). 

Given the field’s increasing appreciation that different brain activation profiles tend to be 

evoked by the retrieval of memories for laboratory-encoded stimuli versus real-world 

events (Chen et al., 2017; Chow et al., 2018; Roediger and McDermott, 2013), 

researchers sometimes go to great lengths to increase the ecological validity of their 

tasks. For instance, wearable cameras can be used to capture photographs of 

participants’ real-world experiences so that memories for these events can later be 

probed in the scanner (Chow and Rissman, 2017). A related approach involves having 

participants engage in real-world navigation tasks. In one such study, Schinazi and 

Epstein (2010) created a 3km outdoor walking course for participants to traverse. Later, 

fMRI data were collected while participants were tested on their recollection for 

buildings encountered on the route. While the fMRI results revealed interesting effects 

within visuospatial processing regions such as the retrosplenial cortex, reflecting the 

interplay between landmark-identification and route direction at navigationally pertinent 

decision points, the authors acknowledged that their behavioral results were largely 

consistent with those of a similarly designed VR study by Janzen and Weststeijn (2007). 

A subsequent fMRI study then showed that comparable neuroimaging findings could be 

obtained used a VR-based route navigation task (Wegman and Janzen, 2011). 
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Although real-world task paradigms will continue to have value in memory research, VR 

paradigms have the potential to provide a less labor-intensive and more highly 

controlled investigational medium that sacrifices relatively little in terms of neural 

processing and experimental outcome.  

While VR allows for precise control over stimuli and contexts, providing greater 

consistency across participants than can typically be attained in real-world designs, it is 

not without its caveats. Recently, there has been debate as to whether VR-based 

navigation should be considered true navigation (Minderer et al., 2016; Taube et al., 

2013). One of the most crucial arguments against the fusion of VR and fMRI is that 

when lying in a scanner, vestibular self-motion (idiothetic) cues cannot match external 

landmark-based (allothetic) cues since otolith organs will persistently relay a signal that 

the individual is supine. Decoupling of cues can cause a reorientation (Wang and 

Spelke, 2002) and force one system into domination (Dolins and Mitchell, 2010; 

Golledge, 1998). Further adding to these complications, visual cues alone have proven 

insufficient to elicit accurate distance measurements (Witmer and Kline, 1998) and turn 

responses (Riecke et al., 2012), which can lead to impaired navigation. Meanwhile, on a 

neuronal level, the activity pattern of cells implicated in spatial representation, such as 

place cells, grid cells and head-direction cells (Buzsáki and Moser, 2013) have been 

shown to differ between real-world environments and VEs (Aghajan et al., 2015; Chen 

et al., 2013; Ravassard et al., 2013) 

Nevertheless, the neural responses of spatially selective cells in VR resemble those 

observed in real navigation under certain circumstances (Aronov and Tank, 2014; 

Domnisoru et al., 2013; Killian and Buffalo, 2018). Additionally, VR navigation has been 
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shown to maintain hippocampal theta rhythms (Ekstrom et al., 2005), albeit with some 

differences from real-world navigation (Aghajan et al., 2017; Bohbot et al., 2017; 

Jacobs, 2014). Various VR accessories, including head-mounted displays (HMD) can 

be used to increase participants’ immersion (Figure 1a; Dede, 2009) and, subsequently, 

spatial understanding (Bowman and McMahan, 2007; Ruddle et al., 1997). Importantly, 

Ganesh et al. (2012) found that increasing participants’ self-identification with an avatar 

resulted in increased engagement of left inferior parietal lobe regions associated with 

self-identification and improved recognition memory for traits associated with their 

avatar. Furthermore, brain activity patterns expressed during recall remain similar 

despite encoding in real-world vs. fictional environments (Spiers and Maguire, 2006). 

Even navigation through digital folders (Benn et al., 2015) and abstract conceptual 

space (Constantinescu et al., 2016) recruits similar brain structures and processes.  

Given that the overarching goal of cognitive neuroscience research is to understand the 

brain mechanisms that give rise to our thoughts and behaviors, VR affords researchers 

with the ability to execute task paradigms that more closely mimic the way we use our 

cognition as we dynamically engage with our environment. This mini-review surveys the 

burgeoning neuroimaging literature on VR applications to memory research. In so 

doing, we hope to illustrate some creative ways in which researchers have leveraged 

VR to increase the ecological validity of memory experiments and conduct studies that 

would be relatively infeasible without the use of VR. 

Harnessing the Affordances of VR to Aid Memory Research 

Although neural recordings from freely moving rodents have provided crucial insights 

into spatial memory functioning, ethical and physical limitations have prevented a direct 
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replication of these studies in human participants. However, VR offers researchers 

boundless, safe, and controllable environments to conduct analogs of foundational 

experimental paradigms like the Morris water maze (MWM; Morris, 1984), radial arm 

maze (RAM; Olton et al., 1977), and random foraging tasks. Indeed, when combined 

with fMRI, VR has afforded researchers with the ability to quickly iterate manipulations 

of different MWM task features (e.g., distal vs. no cues; visible vs. invisible platforms) to 

determine hippocampal dependence (Kolarik et al., 2016; Shipman and Astur, 2008), 

identify compensatory mechanisms following scopolamine injection (Antonova et al., 

2011), examine functional connectivity changes (Woolley et al., 2015), and investigate 

the different neural patterns recruited when using egocentric vs. allocentric navigation 

strategies (Rodriguez, 2010a). A research group even recently replicated their rodent 

body-behavior findings in humans using a VR version of the MWM (Müller et al., 2018). 

Virtual variations of the RAM have equipped researchers to study working memory and 

decision-making in both win-shift (Demanuele et al., 2015) and win-stay (Cyr et al., 

2016) paradigms. VR also allows for real-time changes to RAM and similar tasks. For 

instance, shuffling distal cues and providing visual navigational guidance (e.g., following 

arrows on the ground) has made it possible to disentangle cognitive decision-making 

from other processes of interest (Marsh et al., 2010). The ability to “teleport”, restrict 

access to certain areas with virtual “walls”, and track the precise location of the subject 

within the VE permit researchers to tease apart place-based and sequence-based 

strategies (Igloi et al., 2015). VR versions of the RAM were also used to assess the 

integrity of the hippocampus—predicting risk or severity in a variety of psychiatric 

disorders (Astur et al., 2005; Wilkins et al., 2017). Such insights are in line with the 
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growing trend of using VR to provide objective diagnostic metrics (Cogné et al., 2017; 

van Bennekom et al., 2017). For instance, Migo et al. (2016) identified behavioral and 

neural correlates of completing the RAM task in patients with amnestic mild cognitive 

impairment (MCI), which extends upon the work of King et al. (2002) who showed that 

when changing virtual viewpoints, MCI patients could not recall the positions of objects. 

Similar spatial memory tests have been conducted on athletes following mild traumatic 

brain injury (Slobounov et al., 2010). 

Given the expanse of possibilities afforded by VR, experimental paradigms can move 

beyond the replication of rodent studies. By familiarizing participants with a VE, 

experimenters can probe a participant’s spatial memory by asking them to navigate 

from one location to another—a general paradigm that also can be used to test 

orientation, route-learning, and viewpoint-dependence (Brown et al., 2014; Dimsdale-

Zucker et al., 2018; Stokes et al., 2015). Indeed, many such studies have used VEs to 

examine the neural correlates supporting navigation under different manipulations such 

as: using one landmark vs. many (Wegman et al., 2014), finding one’s way vs. following 

a visible path (Hartley et al., 2003), relying on coarse vs. global strategies (Evensmoen 

et al., 2013), leveraging survey vs. route knowledge (Gillner and Mallot, 1998; Wolbers 

et al., 2004), tracking paths and distances (Chrastil et al., 2015; Wolbers et al., 2007), 

varying head directions (Shine et al., 2016), egocentric and/or allocentric related 

manipulations (Suthana et al., 2009; Wolbers et al., 2008), and navigating towards a 

goal in healthy (Brown et al., 2016; Rodriguez, 2010b) and clinical populations (Thomas 

et al., 2001). Embedding several such manipulations within a single VR study, Dhindsa 

and colleagues (2014) utilized fMRI to measure signal fluctuations as participants 



63 

oriented themselves towards a learned location in a VE that lost critical features one-by-

one. Their results provided empirical evidence in support of the Byrne et al. (2007) 

model of orientation and navigation, which emphasizes the translation of egocentric 

representations in parietal cortex to allocentric representations in the hippocampus. 

Furthermore, virtual renditions of familiarized real-world environments can allow 

researchers to probe memory for real-world objects using virtual cues—a technique 

previously used to examine the neural correlates of egocentric representations for 

objects outside of one’s visual field (Schindler and Bartels, 2013).  

The use of concurrent fMRI and VR also begets an opportunity to examine neural 

underpinnings of spatial information that is being encoded incidentally. For example, 

following periods of egocentric navigation, researchers can provide participants with a 

spatial memory test using a bird’s eye view of the environment (Figure 1B)—a metric of 

allocentric memory that has been used to explain differences in navigational ability 

(Pine et al., 2002). Other examples come from fMRI studies looking for evidence of 

pattern separation and pattern completion processes (Yassa and Stark, 2011). By 

having participants complete the same relative distance task across different, but 

visually similar, environments, Kyle et al. (2015) found that the more distinguishable a 

neural representation is of an environment (i.e. successful pattern separation), the less 

the interference of competing memories will hinder performance. Relatedly, a human 

analog of the attractor dynamic model of mnemonic processing (Leutgeb et al., 2007) 

was demonstrated by Steemers et al. (2016): hippocampal responses to VEs that were 

constructed by linearly morphing two previously-known VEs exhibited nonlinear 

(sigmoid-like) response properties indicative of pattern completion, despite participants’ 
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behavioral reports that they consciously perceived linear morphs. By leveraging 

multivoxel pattern analysis in the hippocampus to decode a participant’s location within 

a virtual environment, Hassabis et al. (2009) corroborated the classic function of 

hippocampal place cells (O’Keefe and Dostrovsky, 1971), albeit at a far less granular 

level. VR-based random foraging tasks have also been used to identify population-

based grid-cell-like activity patterns in human entorhinal cortex (Doeller et al., 2010)—a 

measurement whose consistency over time could be prognostic of Alzheimer’s Disease 

risk (Kunz et al., 2015)—and 3D place coding representations in human hippocampus 

(Kim et al., 2017).  

VEs can also be utilized to systematically, and quantitatively, investigate processes that 

rely on imagined navigation. For example, Legge et al. (2012) familiarized participants 

with a VE that they were later instructed to use as a “memory palace” while they 

implemented the Method of Loci mnemonic strategy of mentally ‘placing’ a set to-be-

remembered items along a route within an imagined environment. In this way, the 

authors matched the size, detail, and exposure time to the environment—properties that 

are often confounded in traditional implementations of this mnemonic technique (Yates, 

1966). Further, the use of imagined virtual navigation has revealed fMRI signals that 

exhibit grid-cell-like properties (Bellmund et al., 2016; Horner et al., 2016) and activity 

patterns associated with location and facing direction (Marchette et al., 2014). 

Equalizing environments used for imagination tasks is particularly relevant in the 

domain of prospective memory (the ability to maintain a representation of intended 

tasks and execute them at the appropriate time and place). For instance, VR has 

recently been used in conjunction with high-resolution fMRI to index the degree to which 
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specific goal and sub-goal locations are represented within hippocampal activity 

patterns during route planning, reflecting prospective coding of navigational intentions 

(Brown et al., 2016). Additionally, Kalpouzos and Eriksson (2013) familiarized 

participants to a VE and subsequently collected fMRI data while they mentally executed 

intended tasks within the imagined VE—a design that reduced variability in neural 

representation for environment. 

Given that a time-course of fMRI activity can be collected during virtual navigation, it is 

possible to examine the different temporal phases of navigation behavior (Demanuele et 

al., 2015). Previous work has examined: planning vs. execution (Xu et al., 2010), 

encoding versus retrieval (Suthana et al., 2011), periods of object manipulation 

(Baumann et al., 2003a), and active vs. guided periods (Baumann et al., 2003b). 

Persson et al., (2013) measured hippocampal activity as participants navigated through 

a virtual maze and found that males and females show dissociable recruitment of left 

and right hippocampus during active navigation relative to orientation judgements made 

at maze end-points. Additionally, events that occur within VR (e.g., encountering 

another avatar who dispenses objects) can be dissociated from their visual scene 

context by using different approach routes (Burgess et al., 2001). Even metrics like 

memory for heading direction (Baumann and Mattingley, 2010) and environmental 

size/complexity (Baumann and Mattingley, 2013) can be investigated by examining 

fMRI activity levels at relevant task time points (e.g., when the participant is facing 

North; Figure 2A), without explicitly probing the participant. 

In addition to navigation studies, VEs can be employed to study object-place associative 

memory. VR can be used to efficiently change the constellation of objects and their 
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identities, with respect to locations within the VEs (e.g., shuffling object identities (Wong 

et al., 2014), modulating their saliency (Buchy et al., 2014), or altering the environment 

boundaries (Lee et al., 2016)). Object-place memory tasks have also shown that 

emotion is bound to places by examining how the co-occurrence of task-irrelevant 

emotional events alongside encoding can heighten subsequent retrieval activity (Chan 

et al., 2014)—extending findings that show place cells remapping once an environment 

becomes associated with fear (Moita et al., 2004). VR allows for object-place 

experiments to be conducted with high precision, immersion, and repeatability—a set of 

capabilities that make it particularly useful for obtaining diagnostic metrics in clinical 

populations (e.g., schizophrenia patients; Hawco et al., 2015). 

Performance on VR-based tasks can also serve as a useful measuring instrument for 

examining factors outside of the learning experience that may affect behavior. For 

instance, Rauchs et al. (2008) investigated the neurocognitive effects of sleep 

deprivation on a series of virtual navigation tests. Researchers can also examine how 

fMRI signals measured in one setting (e.g., during resting fixation) might predict 

individual differences in performance on VR-based tasks performed outside the 

scanner. For example, Wong et al. (2014) identified patterns of resting-state activity and 

functional connectivity that correlated with participants’ memory for objects that had 

been learned in a room-scale VE the day before. In another study, Wegman and Janzen 

(2011) scanned participants while passively viewing a route through a VE to identify 

brain regions associated with navigation-based decision points, later using the 

functional connectivity profile of those regions during resting-state to account for 

individual differences in spatial memory. 
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Discussion 

While fMRI has served as a powerful tool in human memory research, it requires 

participants to be placed in a context that is far from naturalistic—a potential confound 

for many memory studies. The inclusion of VR in fMRI memory investigations allows 

researchers to utilize immersive and navigable contexts for stimulus presentation both 

inside and outside the scanner (Figure 1a). Moreover, it affords researchers a medium 

in which to conduct experiments that is both replicable and controllable.  

Facets unique to VR position it as an indispensable toolkit for specific types of 

investigations. For instance, creating invisible walls that restrict movement, but retain 

the visibility of distal cues would not be possible outside of a VE (Lee et al., 2016). Work 

by Bergouignan et al. (2014), which used VR to induce out-of-body experiences in the 

scanner while examining the role of perceiving the world from the perspective of one’s 

own body for successful episodic encoding of real-life events, would not have been 

possible without the use of VR. The same concept applies to VR’s ability to “blend” VEs 

(Steemers et al., 2016) or shift participants’ perspective within the same VE (Sulpizio et 

al., 2016). Additionally, VR has the capacity to even the playing field in experiments that 

hinge on the use of imagination (e.g., Legge et al., 2012): it provides a common virtual 

space instead of relying on familiar real-world environments that could vary across 

individuals as a function of their pre-experimental exposure to the environment.  

VR technologies can also bolster the ecological validity of fMRI for researchers and 

clinicians to obtain objective diagnostic metrics for patient populations (Cogné et al., 

2017; King et al., 2002; Plancher et al., 2012; van Bennekom et al., 2017). With HMDs, 

cross-institutional collaboration can be facilitated as participants immersed in VR will not 
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be cognizant of the real-world environmental cues. Such attributes are particularly 

advantageous for the examination of disorders that are highly context-dependent (e.g., 

post-traumatic stress disorder). For instance, researchers have utilized VR to induce 

context-specific fear-conditioning (Ewald et al., 2014; Huff et al., 2011; Tröger et al., 

2012) and fear extinction (Ahs et al., 2015; Dunsmoor et al., 2014)—dramatically 

extending current treatment methods which often require therapy to occur in a context 

that is dissimilar from where the fear was acquired (for review see Bohil et al., 2011; 

Maples-Keller et al., 2017). Furthermore, compared to many real-world tasks, VR-based 

experimental techniques can be replicated in shorter time spans.  

The utilization of VR in fMRI studies need not be daunting nor expensive; open-source 

software such as OpenSim (http://opensimulator.org) and equipment found in most 

scanner suites (Figure 1a), such as MR-compatible stereoscopic goggles and 

joysticks/joypads, make it increasingly accessible. Nonetheless, VR research is still in 

its infancy and not without limitations. Given the visual-vestibular disconnect of most 

setups, some participants may experience nausea and be unable to complete the study 

(Sharples et al., 2008). However, advances in HMD display technology are already 

helping to alleviate motion-sickness concerns. Devices that increase immersion through 

haptic feedback (e.g., Tesla Suit) and stationary locomotion (e.g., Omni Treadmill) or 

setups that create room-scale environments (e.g., cave automatic virtual environment; 

Figure 1a) afford researchers with the ability to employ encoding paradigms that 

increasingly resemble “real life” circumstances, making the neural correlates associated 

with the formation and recall of such memories more likely to generalize to real-world 

behaviors.  
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Figure Captions 

Figure 1. A) A limited showcase of currently available VR technologies. Devices are 

sorted as a function of their ability to provide the participant with a sense that they are 

“in” a virtual environment (immersiveness; y-axis) and the system’s affordability (x-axis). 

“Window on World” refers to a traditional desktop and monitor setup. CAVE=cave 

automatic virtual environment—a real world room that leverages projectors, HMDs, and 

motion capture to create room-size virtual experiences. B) Examples of common 

perspectives presented to participants while actively navigating VEs or during spatial 

memory tests. Both first- and third-person viewpoints provide an egocentric perspective 

whereas a bird’s eye view provides an allocentric one. 

Figure 2. Examples of VR-fMRI experimental paradigms.  

A) MR-compatible joysticks/gamepads and 3D stereoscopic goggles allow for 

participants to enter a VE while laying supine in the scanner. By time-locking events of 

interest (e.g., a participant’s heading direction while traversing the world) to the 

corresponding fMRI signals, researchers can identify neural correlates associated with 

specific task conditions or behaviors. In this example, entorhinal cortex activity is 

associated with the grid-cell-like property of hexagonal symmetry during navigation.  

Figures adapted with permission from Doeller et al. (2010). 

B) Participants can perform VR-based learning tasks outside of the scanner, and their 

memory for information encoded within a VE can later be tested in the scanner using 

traditional fMRI task paradigms. In this example, trials can be coded based on each 

object's properties within the VE (e.g., whether or not the object was located at a 

pertinent decision-point) to reveal incidental neural differences during retrieval as a 
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function of the encoding experience. Figures adapted with permission from Janzen and 

Weststeijn (2007). 

C) Just as questionnaires and computer tasks reveal individual differences in a host of 

behavioral metrics, VR can serve as an instrument to gather unique behavioral data 

points (e.g., number of times a participant revisited a particular location). Researchers 

can then examine whether these performance metrics can account for variance in brain 

activity or connectivity measured in a completely different context (e.g., while 

participants are simply resting in the scanner). Figures adapted with permission from 

Wong et al. (2014). 
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Figures 

Figure 1. VR systems as a function of Affordability and Immersiveness. 
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Figure 2. Examples of VR-fMRI experimental paradigms. 
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Chapter 3: The Method of Loci in virtual reality: Explicit binding of objects to 

spatial contexts enhances memory 

 

Abstract 

The present study leverages novel virtual reality software to create a highly controllable 

rendition of the Method of Loci (MoL) technique. Specifically, we created three virtual 

environments where participants (n=60) could encode three lists of 15 objects, 

iteratively displayed for 20s as 3D renderings in front of their avatar. Our experimental 

group was given the additional functionality to click on the objects and “freeze” them—a 

phenomenon we argue explicitly binds the to-be-encoded object to the spatial 

scaffolding of the surrounding environment. We found that despite matched 

engagement, exposure, and performance expectations in the control group, participants 

in the experimental group recalled 25% more objects. We also observed a strong 

relationship between spatial memory for objects and landmarks in the environment with 

verbal recall strength—a finding that spanned across groups. These results provide 

evidence for spatially mediated processes underlying the effectiveness of the MoL and 

contributes to theoretical models of memory that emphasize spatial encoding as the 

primary currency of mnemonic function. 

Introduction 

The Method of Loci (MoL), also commonly referred to as the Memory Palace technique, 

has long been appreciated as a highly effective and easily implementable mnemonic 

(Yates, 1966), with most users reporting it to be helpful and engaging (Qureshi et al., 

2014). Indeed, empirical studies spanning several decades have reliably substantiated 

the centuries of anecdotal praise for the MoL’s effectiveness in bolstering mnemonic 
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recall (Bower, 1970; Briggs et al., 1970; Crovitz, 1971; Dalgleish et al., 2013; McCabe, 

2015; Roediger, 1980; Ross and Lawrence, 1968), with one observing a seven-fold 

increase in ordered recall over a rote rehearsal method (Bower, 1970). In light of such 

consistent efficacy, one would predict that the MoL is a complicated, time-consuming 

mnemonic. Conversely, the MoL is relatively simple to implement. Instructions are 

typically given as some minor deviation of the following: 

Close your eyes and imagine yourself walking through a familiar location (e.g. 

your childhood home). Imagine an object that you’d like to remember and place it 

somewhere (e.g. on the front doorknob). Walk, in your mind’s eye, to a new 

location and a place another to-be-remembered object in another location. When 

you want to remember the list of objects, simply retrace your path and observe 

the items in their placed locations. 

According to De Oratore by Marcus Cicero, the MoL was first formalized in 55 B.C.E by 

the Greek poet and orator Simonides de Ceos (Cicero and Wilkins, 1963). As the story 

goes, Simonides survived a tragic building collapse that killed all the members of a 

dinner party he was attending. While assisting the surviving family members who were 

trying to reclaim the unrecognizable bodies of their loved ones, Simonides was 

surprised by his incredibly accurate recall for the spatial arrangement of guests around 

the table. Simonides was regularly faced with the need to memorize long speeches. As 

such, he was motivated to understand the mechanisms behind his marked improvement 

in recall capacity. His conclusion was that since the information he was trying to recall 

was ordered along a spatial border (the table), it was easier to recall-- a notion perhaps 

best encapsulated by the following passage: 
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Noting that it was through his memory of the places at which the guests had 

been sitting that he had been able to identify the bodies, he realized that orderly 

arrangement is essential for good memory. (Yates, 1966) 

The MoL has recently witnessed a modern resurgence, initiated perhaps by the work of 

Joshua Foer— a freelance journalist who, while chronicling memory championships, 

discovered the MoL and used it, along with other mnemonic techniques, to win the 2006 

U.S.A Memory Championship (Foer, 2011). Additionally, the crime drama television 

series, Sherlock, with over 12 million viewers, has also directly alluded to the method by 

way of the protagonist’s creation of a “Mind Palace” (Hurran, 2014). Despite this historic 

and growing popularity, little is known about which aspects of the Method of Loci are 

most potent in providing its users with enhanced mnemonic recall. There has been no 

direct empirical evidence confirming Simonides’ original theory.  

In fact, there are several facets embedded in the MoL that could be responsible for its 

effectiveness in increasing recall. Since the traditional implementation of the MoL takes 

place within one’s mental imagery, it stands to reason that the mnemonic could 

enhance memory by using the same mechanisms as pictorial strategies; text 

illustrations generally enhance learner’s performance on a  variety of cognitive 

outcomes (Levin, 1983). Some may argue that the technique is effective due 

predominantly to the parallel recruitment of neural processes supporting mental 

representation (Paivio, 1990 as in McCabe, 2015). Since implementers traditionally 

choose a familiar location to place objects, their memory increase could be due to their 

insertion of personal meaning into the information, a phenomenon known as the self-

reference effect (Rogers et al., 1977). Additionally, the chosen environments could be 
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embedded with personally relevant emotional contexts, which could heighten arousal 

and modulate memory consolidation (for review, see: Hamann, 2001). Furthermore, 

learning information from a first-person perspective could theoretically recruit 

autobiographical encoding processes. Given that autobiographical memory has a stark 

neurocognitive differences compared to memory for recently learned non-life related 

events (Chen et al., 2017), it could be that the MoL benefits from a parallel recruitment 

of such networks and upregulates encoding processes. Such translation to episodic 

memory would also explain the memory enhancement for lists detected when using 

mnemonics that leverage narratives (Herrmann et al., 1973) and the observation that 

narratives presented with a consistent point of view results in better comprehension and 

memory (Black et al., 1979). 

In light of traditional psychological investigations on recall, it also stands to reason that 

the MoL could be creating a desirable difficulty (Bjork, 1994), which has been reliably 

shown to increase test performance (Pyc and Rawson, 2009). The “textbook” 

explanation seems to suggest that the effectiveness of the MoL could be due to the way 

it a) mandates an increase in effortful attention to the material and b) elaborates on the 

encoded information, increasing the stability of and increasing the breadth of the 

memory’s engram (Bellezza, 1996). Yet another factor could be an increase of 

rumination time, which allows for to-be-remembered information to propagate 

throughout Long-Term Working Memory (developed by Ericsson and Kintsch, 1995). 

Case-studies of world-class memory champions (Hu et al., 2009) seem to corroborate 

this claim (Hu and Ericsson, 2012). However, a more recent case-study looked at the 

verbal reports of an individual who can recall 300 digits presented at 1 digit/s. Analysis 
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revealed that the champion’s trick was to create associations between physical 

locations and the to-be-remembered information, allowing that information to be rapidly 

stored in Long Term Memory (Ericsson et al., 2017). 

This latter most finding by Ericsson and colleagues (2017), that associations between 

information and a physical location were underlying a memory champion’s enhanced 

recall abilities, provides a particularly attractive explanatory variable for what makes the 

MoL so effective: the placement of information within a spatial environment. An 

emphasis on the spatial component within the MoL would certainly be true to form for 

Simonides’s original observation and the naming of the MoL; loci, plural of locus, are 

defined as particular positions—an object’s (or abstraction’s) location. This notion is 

empirically supported by a neuroimaging study by Kondo et al. (2005) which showed 

that brain areas traditionally involved in the processing of spatial information (e.g. 

parahippocamal gyrus and retrosplenial cortex) were recruited during recall after 

participants encoded information using the MoL. Additionally, functional neuroimaging 

has also revealed that memory champions, who most often report use a spatially based 

encoding strategy, recruit brain regions that support spatial memory (Maguire et al., 

2003). 

A framing of memory in terms of spatial processing in is line with evolutionary theories 

which posit that the creation of a mind was to engage in purposeful movement (Dennett, 

1993; Llinás, 2001; Llinas and Ribary, 2001; Wolpert and Ghahramani, 2000) and the 

observation that the medial pallium, whose allocortex forms the hippocampal formation, 

evolved alongside hominid navigation into novel terrain (Jacobs, 2003). As such, the 

hippocampus, whose involvement in episodic recall is well documented (Rissman and 
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Wagner, 2012; Scoville and Milner, 1957; Squire, 1992; Squire and Zola, 1996; Tulving 

and Markowitsch, 1998; Vargha-Khadem et al., 1997), appears to have been originally 

intended for generating a cognitive map that allowed for purposeful movement (e.g. 

acquire resources, avoid danger) by providing a memory for one’s own location and 

their relation to environmental stimuli (O’Keefe and Nadel, 1978). This notion is at least 

partially supported by the evolutionary timeline of the modern human’s cortex. Hominids 

have utilized the encoding of verbal information to increase their fitness for, at 

maximum, 400,000 years (Aiello and Dunbar, 1993). Compared to archaeological 

evidence suggesting that bipedal locomotion over long distance in hominids began 3.6 

million years ago (Stern Jr. Jack T. and Susman Randall L., 2005), it stands to reason 

that human memory for space, and the neural architecture that supports it (i.e. the 

medial temporal lobe), has an evolutionary prowess above that for all other forms and 

facets of memory. 

Indeed, theoretical interpretations of empirical research on spatial navigation and 

memory emphasize the primacy of space for the encoding of information (for review see 

(Robin et al., 2018). Much like Scene Construction Theory (Hassabis and Maguire, 

2007, 2009; Maguire and Mullally, 2013; Mullally and Maguire, 2014), this notion 

positions scenes as the primary currency of the hippocampus. In fact, the definition of 

autobiographical memory is always situated within a specific spatiotemporal context 

(Moscovitch et al., 2016; Tulving, 2002). This is perhaps most eloquently characterized 

by the finding that spatial information is recalled earlier in the retrieval process 

(Hebscher et al., 2017). Adding important evidence to the notion that spatial processes 

are inherently and subconsciously recruited for the encoding of information, 
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Constantinescu et al. (2016)  unveiled that the manipulation of abstract information (i.e. 

creating conceptual relationships) elicits the same activity patterns exhibited by grid-

cells, which are fundamental to purposeful navigation (Hafting et al., 2005). Relatedly, 

navigation through digital folders has been shown to recruit the same areas involved in 

real-world spatial navigation (Benn et al., 2015). While a full investigation into the fused 

function of the medial temporal lobe for the encoding of both spatial and episodic 

memory is beyond the scope of this article, it is important to note that, at minimum, 

spatial context has a dominant neural signature in the coding of events (Eichenbaum 

and Cohen, 2014) and that spatial cues lead to quicker and more detailed memories 

(Hebscher et al., 2017; Horner et al., 2016; Merriman et al., 2016; Robin et al., 2016). 

Disentangling the inherently co-contributing factors of the MoL to determine which are 

most fundamental for the technique’s success would be immensely difficult if 

researchers instructed participants to rely on their mental imagery to implement the 

strategy. Not only are there notable individual differences in mental imagery ability (Cui 

et al., 2007; Kosslyn et al., 1984), but the amount of time physically spent in an 

environment, the aura of emotion those environments subconsciously carry, and the 

size and uniqueness of those environments all vary, in sometimes unquantifiable ways, 

across participants. As such, a controllable and operationalized investigation requires 

an experimental approach that does not mandate the use of mental imagery for 

encoding. Indeed, previous investigations have strategized to counteract individual 

differences by providing participants with standardized images or familiar nearby 

locations to use (Bower and Reitman, 1972; Kliegl et al., 1990; McCabe, 2015; Moè and 
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De Beni, 2005). While creative, such paradigms could theoretically eliminate some of 

the contributing variables of interest (e.g. volitional navigation). 

In addition to the inability to ascribe an underlying cause behind the MoL using mental 

imagery, the use of effective mnemonic strategies is low (McCabe et al., 2013). Despite 

the well-intentioned endorsement of mnemonic improvement techniques being 

incorporated into curriculums (Balch, 2005; Carney and Levin, 1998; Shimamura, 1984), 

such instructions may end in vein; undergraduates often don’t implement the strategies 

they are academically familiar with (Susser and McCabe, 2013). This apparent mental 

barrier is quite noteworthy; even research subjects who receive explicit instructions to 

use the MoL have troubles complying (Legge et al., 2012). As if to even further de-

motivate its adoption, most MoL studies report a need to have long training periods 

before the technique becomes effective (e.g. 4 to 6 hours of training in the study by 

(Brooks et al., 1993).  

The present study positioned itself to simultaneously a) test the hypothesis that the 

binding of information to a spatial scaffolding underlies the effectiveness of the MoL and 

b) provide proof-of-concept for a user-friendly technology that mandates compliance in 

use of the MoL. The current investigation leverages Virtual reality (VR) to implement an 

operationalized rendition of the MoL. VR serves as a particularly viable medium for 

increasing the ecological validity of memory experiments in general (Chapter 2; 

Reggente et al., 2018) and allows for the control and capture of experimental details 

(e.g. exposure time and place of each seen object). Furthermore, by providing a novel 

and common set of environments for participants, this VR paradigm mitigates the 

concerns regarding individual differences in mental imagery, environmental size, 
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complexity, and exposure time discussed above. Previous VR-based investigations by 

Legge et al. (2012) serve as the foundation for utilizing virtual environments for both 

implementing the MoL and increasing participant compliance. 

Participants (n=60) in the current study viewed three lists of 15 objects, displayed 

iteratively for 20s as 3D objects in front of their avatar. Each object remained floating in 

front of the avatar until it was replaced by the subsequent object on the list. All 

participants freely navigated about an environment for the duration of that list’s 

encoding before moving to the next environment and list. Participants were randomly 

assigned to one of two groups. The control group was briefed on a fictitious strategy 

dubbed “Walk and Learn” (WaL) that they were told enhanced memory by being active 

while encoding information in order to counteract any potential effects of anticipated 

task demands (Rummel and Meiser, 2013) or performance (Bandura, 1993; Martell and 

Willis, 1993). The experimental group was briefed on the traditional implementation of 

the MoL and told that this virtual rendition could serve to enhance their memory. If 

spatial representations are fundamental to episodic memory, altering the explicitness 

with which encoded information is bound to an encompassing spatial scaffold should 

alter recall strength. In order to test this notion, and simultaneously provide evidence 

that recruitment of spatial processes is the contributing factor to the effectiveness of the 

MoL, we sought to isolate, as much a possible, the spatial aspect of the MoL. To 

accomplish this, the MoL group was granted the additional functionality to click on an 

object and “freeze” it—a phenomenon that more explicitly binds the to-be-encoded 

object to the spatial scaffolding of the surrounding environment. In order to prevent an 

experimenter-driven direct association between objects and the environment during 
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recall, subjects were told that each of the three lists were items that belonged to a 

fictional individual; during recall, participants were cued to recall the items belonging to 

each of the fictional individuals. In additional to verbal recall, participant’s spatial 

memory for objects and landmarks within each environment was also tested and 

analysis examined the correlates of various spatial metrics with aspects of verbal recall 

performance. 

Methods 

Participants 

67 participants were recruited for this study by way of posted flyers throughout the 

UCLA campus and listings on UCLA’s online participant pool. Seven participants were 

unable to finish the study in its entirety due to technical issues (e.g. objects did not 

appear or did not render completely). As such, a total of 60 participants, aged 18-27 

(M=21, SD=2.25; 30 females) participated in this study for either university credit or 

cash-payment (N=17). 

Participants were required to be right-handed, have normal or corrected-to-normal 

vision and hearing, have a mastery of the English language, and report no diagnosed 

learning disabilities, substance dependencies, nor prescriptions for psychotropic 

medications. Additionally, to prevent unequal exposure to the experimental apparatus, 

applicants were not permitted to participate if they had more than five hours of previous 

experience with the VR software used in this experiment (Second Life 

[http://secondlife.com] or its open-source virtual simulator OpenSimulator 

[http://opensimulator.org]). Eligibility screening was conducted prior to the participant’s 
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enrollment in the study using the Research Electronic Data Capture (REDCap) online 

survey systems (Harris et al., 2009). 

Participants were automatically assigned to one of two groups (MoL or WaL) based on 

gender and the order in which they were recruited for the study to ensure an even 

sampling of males and females within each group. The Institutional Review Board at 

UCLA approved all recruitment and testing procedures. 

Materials 

All tasks were presented on a 27” LG Monitor (1600 x 900 (32bit)(60Hz) display) 

connected to a custom-built computer running a 64-bit Windows 7 Professional 

Operating System on an Intel® Core™ i7-3770K Central Processing Unit (CPU) @ 3.50 

GHz (8 CPUs) with 32GB of Random Access Memory (RAM) and an AMD® Radeon 

Graphics Processor with 4GB of RAM.  

All virtual environments were created using OpenSimulator (http://opensimulator.org; 

Release 0.9.0.0)—an open-source virtual simulator of Second Life 

(http://secondlife.com/) and viewed using the Firestorm Viewer (The Phoenix Firestorm 

Project, Inc; http://www.firestormviewer.org/; Release x64 5.0.7.52912). Screen 

recordings of participant activity were captured using FRAPS real-time video capture 

and benchmarking (Beepa Pty Ltd; https://www.fraps.com; v3.5.99) A total of five 

distinct virtual environments (VEs) were created for this study (“Toon World”, Ruin 

World”, “Lagoon World”, “Moon World”, and “Avatar Island”; Figure 1a). Despite being 

designed specifically to maximize distinctiveness, each VE that was used during 

encoding and encoding practice (all worlds except for Avatar Island) was created with 

http://secondlife.com/
http://www.firestormviewer.org/
https://www.fraps.com/
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the exact same dimensions (a 64 x 64 grid of accessible space) and was populated with 

eight distinct landmarks at the cardinal perimeter points (i.e. North, Northeast, East, 

etc.; Figure 1b).  

Custom-coded software was created and “worn” by the participant’s avatar by way of 

two digital Heads Up Displays (HUDs). The first HUD rendered a count of collected and 

total tokens (Figure 2a) on the participant’s screen. A total of 20 tokens were available 

for participants to collect in each VE: coins in Toon World, rings in Ruin World, and 

seashells in Lagoon World (Figure 2a). All tokens were matched for color and size and 

scattered about each environment to ensure even exploration of the VEs. The release 

of these tokens was triggered by the experimenter via control desks located above the 

environments (Figure 2b). The control desk recorded the total time taken by the 

participant to collect all tokens in the environment. 

The second HUD rendered a 3D object 1m in front of the participant’s avatar (Figure 

3a), updating its position with each change in location and orientation until a participant 

clicked on the object-- at which point the object would freeze in place unless clicked 

again. The object’s name appeared above each object in small white text. The 

experimenter used a separate control desk to control which objects would render in 

which order and for how long during each encoding. This control desk recorded the 

precise location of each item in the environment (x,y coordinates) with a temporal 

resolution of 1s. A total pool of 60 3D open-source objects was gathered for this study 

from TurboSquid (https://www.turbosquid.com) and modified using Blender 

(https://www.blender.org). Objects were randomly sampled, without replacement, from 

this pool when creating the list of objects used for participant encoding. See 

https://www.turbosquid.com/
https://www.blender.org/
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Supplemental Information Appendix 1 for a visual list of the objects used in this 

experiment. 

Verbal recall tests were digitally recorded with participant permission and cued 

conversationally by experimenters. Spatial recall tests (Figure 4.) were conducted and 

analyzed using custom MATLAB (The Mathworks, Inc., 2012b) code and 

Psychophysics Toolbox (Version 3; Brainard, 1997), which allowed participant’s to view 

a bird’s eye view of the VEs and pinpoint their cursor to the cued location of landmarks, 

tokens, and objects they encountered. Finally, all statistical tests were conducted using 

custom R (R Core Team, 2013; http://www.R-PRoject.org/) and MATLAB code. 

Procedure 

All participants were familiarized with our VR software by first visiting “Avatar Island” 

and practicing their use of a keyboard and mouse to navigate about and change their 

perspective in the VE. The experimenter allotted a maximum of five minutes for the 

participant to showcase their ability to execute directed action with their avatar (e.g. 

move forward, turn around). Participants remained in first-person view during this 

orientation and throughout the duration of the experiment. 

Following orientation, participants were teleported in a random order to the Southern-

most region of each VE used for encoding (Toon World, Lagoon World, Ruin World). 

Participants were instructed to navigate about each VE and “walk through” each token 

until all 20 were collected. Participants were given five minutes to collect the tokens and 

encouraged to explore the environment with any remaining time, taking care to note any 

landmarks. After visiting each of the three VEs once, participants were teleported back, 

http://www.r-project.org/
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again in a random order, to the same starting locations. This time, participants were 

instructed to collect the tokens as quickly as possible and given a maximum of three 

minutes to do so. 

After completing the second-round of token collection, participants were given group-

specific encoding instructions. Participants in both groups were informed that a series of 

15 objects would iteratively render in front of their avatar for 30s each before 

disappearing. Prior to viewing each list of objects, participants were told that the objects 

they were about to see belonged to one of three fictional-individuals (Otto, Pike, or 

Viola) and that they would later be asked to recall the list of items belonging to that 

individual, in the order in which they were originally presented. Which objects were on 

each list, which fictional-individual was associated with that list, and the environment in 

which the list was encoded was randomized for each participant. All participants were 

encouraged to walk about the environment while viewing the objects; the objects would 

remain in front of the avatar regardless of movement and view. Participants assigned to 

the WaL group were fictitiously informed that they were employing a virtual rendition of 

“active learning”— presented as a well-documented memory enhancement procedure. 

Conversely, participants in the MoL group were briefed on the classic implementation 

and effectiveness of the MoL technique and told they would be employing the strategy 

using a suite of VR tools. Critically, MoL participants were given the additional 

instruction to click on the object and “freeze” it in a location of their choosing, allowing 

the participant the freedom to navigate away from the stationary object until its 

disappearance. Once clicked, the participant was given the freedom to click the object 

again and reactive its previous behavior of following the avatar’s movements. For a 
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complete transcript of each group’s instructions, see Supplemental Information 

Appendix 2. 

After receiving instructions, but prior to encoding the lists of objects, participants were 

teleported to Moon World where they practiced the viewing and placement (for MoL 

participants) of three geometrical objects (sphere, cube, pyramid). Subsequently, 

participants encoded a total of three lists of 15 objects across the three encoding 

environments. Following this encoding period, participants viewed screen recordings of 

their movements about the environment for a total of 22.5minutes. These recordings 

served as rehearsal periods and presentation order was randomized for each 

participant. Immediately after rehearsal, participants were cued with a fictional-

individual’s name and asked to verbally recall the appropriate list of objects in the order 

in which they were originally presented. Participants were given a maximum of two 

minutes and encouraged to recite as many objects as they could in the case that they 

could no longer retain a temporal order to their recall.  Following each recall attempt, the 

participant was asked to recall the same list of items, but in the reverse order—starting 

with the last item on the fictional-individual’s list and ending with the first. As with 

forward-recall, participants were allotted two minutes for reverse-recall and were 

informed they could recall items out of order if need be. Recall list order was 

randomized across participants.  

As a final test, participants were submitted to a spatial memory task (Figure 4.) where 

they indicated the last seen (WaL) or placed (MoL) locations of each object. Specifically, 

participants used the computer mouse to direct a rectangular cursor and indicate the 

location of a cued object on a bird’s eye view of the encoding environment. Each object 
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and its name was shown on a prompt screen before showing the full-screen map. After 

providing responses for each object encoded within a given environment, participants 

were asked to indicate the location of each landmark and then each token before 

moving on to the next environment. During the landmark portion of this spatial memory 

task, the map was stripped of its landmarks. During the token portion, participants were 

asked to indicate the location of each of the 20 tokens and shown the locations of each 

of their preceding choices. The presentation order of objects, landmarks, and 

environments for spatial tasks was randomized across participants. See Figure 5 for a 

visualization of the experimental procedure. 

Behavioral Scoring 

Subjects’ verbal recall was transcribed and scored by two separate experimenters and 

discrepancies were resolved by a third. All recall metrics are reported as the total words 

recalled across the three lists (45 total words). Recall strength was assessed using 

three metrics: number of words recalled (Recalltotal or Reverse-Recalltotal), number of 

words recalled in the correct order (Clustering or Reverse-Clustering), and the number 

of words a subject recalled before making an error (Recallerror or Reverse-Recallerror). 

Recalltotal was defined by the total number of words recalled before the time-limit by a 

participant—only counting words that actually belonged to the cued fictional individual. 

Clustering was calculated using a serial clustering metric, adjusted for chance, 

developed by (Stricker et al., 2002) and given by:  

Serial Clustering = 𝑋 − (𝑟 − 1)/𝑁 
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where X is the total number of observed pairs of adjacent words in the recalled list that 

were also beside each other in the original presentation list, r is the total number of 

correct words recalled in the trial, and N is the total number of words presented in a list 

(N=15 in all calculations). The amount of serial clustering expected by chance during 

verbal recall is a fraction less than one, suggesting that serial clustering is not highly 

expected by chance. This serial clustering metric is reported as Clusteringserial. We also 

report a metric of clustering that is not corrected for chance and is calculated as the 

total number of correct pairs of adjacent words in the recalled list, referred to hereafter 

as Clusteringsimple. Finally, Recallerror was defined as the number of words recalled 

before an error was made where error is defines as either the recall of a word that was 

not on the list or the recall of a word that was on the list, but did not immediately follow 

the preceding recalled word. 

Behavioral metrics from the spatial memory task were calculated as the average 

Euclidean distance between the coordinate vectors (x,y) for an object’s actual placed 

(MoL) or last-seen (WaL) location in the environment and that indicated by the subject. 

A metric denoting the average proximity of objects to landmarks within an environment 

was calculated as the Euclidean distance between an object and its nearest landmark. 

Finally, a “base metric” for each participant’s spatial memory was calculated as the 

difference in time taken to collect all the tokens throughout each environment from the 

first and second attempts. Given that token-collection was conducted before groups 

received encoding instructions, this measure should reflect an individual’s baseline 

spatial memory. 

Presence 
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A six-question survey, developed by Slater and colleagues over the course of several 

investigations (Appendix 3; Slater, McCarthy, & Maringelli, 1998; Slater, Usoh, & Steed, 

1994; Slater, Usoh, & Chrysanthou, 1995; Slater, Usoh, & Steed, 1995) was used as a 

measure of presence. A metric was calculated for each participant as the number of 

responses that were rated to be > 6 and is referred to hereafter as PresenceSlater. A 

separate ten-item, five-point scale questionnaire that was derived from multiple sources 

and was intended to quantify a participant’s level of presence was also used (Appendix 

4; Fox, Bailenson, & Binney, 2009). A metric was calculated for each participant as the 

average score across all ten items and is referred to in this manuscript as PresenceFox. 

Both measures of presence were collected during a post experimental questionnaire 

using REDCAP (Harris et al., 2009). Finally, to assess the potential impact of 

environment on presence, subjects were asked to provide a ten-point scaling in 

response to the following question form for each world: “To what degree did you feel 

you were ‘in’ (Toon/Lagoon/Ruin) World as you moved around?” 

Statistical Analyses 

Analyses were conducted using a one-way analysis of variance (ANOVA) whenever 

comparing means of two or more independent groups of data and the F-statistic is 

reported as well as its associated p-value. Significant p-values (p<0.05) were submitted 

to a follow-up test using a one-sample t-test and reported with a t-statistic and 

associated p-value. The strength and direction of associations between two continuous 

variables were conducted by computing Pearson’s linear correlation coefficient (r) and 

p-values are reported from a t-test comparing that coefficient to the null hypothesis of 

no-relationship (i.e. 0). Direct comparisons between two correlations were conducted in 
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the presence of a significant correlation within any group to determine if a) the groups 

differed as a function of their relationship to the metric of interest or b) one group was 

driving the effect observed across all participants. Significance of correlation 

comparisons was assessed using a two-tailed test for the difference between either two 

independent correlation coefficients (e.g. MoL free recall and MoL object-placement 

memory vs. WaL free recall and WaL object-placement memory) (Cohen and Cohen, 

2003) or two dependent correlations with one variable in common (e.g. MoL free recall 

and MoL object-placement memory vs. MoL free recall and MoL coin collection time 

difference) (Steiger, 1980) using an online utility (http://quantpsy.org/corrtest/; (Lee and 

Preacher, K. J, 2013; Preacher, 2002). For analyses where multiple metrics were 

collected for each group (e.g. landmark-object proximity across worlds), a multivariate 

analysis of variance (MANOVA) was conducted and the F-statistic and Wilk's Λ are 

reported. 

Finally, a stepwise linear regression was implemented to examine the impacts of 

additional variables on a linear model of group on recall metrics. Independent variables 

of interest were those that were either a) previously revealed a group difference(e.g. 

spatial memory) or b) of general interest due to supporting literature (e.g. gender). An 

analysis of deviance was conducted on the nested models to determine the most 

parsimonious model; F-statistics and associate p-values are reported and beta-

coefficients were analyzed with a t-test. 

Results 

Verbal Recall 

http://quantpsy.org/corrtest/
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Participants assigned to the MoL group had an average Recalltotal score of 10.487 words 

compared to the Recalltotal of 8.2 words for participants in the WaL group; this difference 

was significant [F(1,58)=6.2, p=0.016]. The effect was stronger during Reverse-

Recalltotal for participants assigned to MoL group recalled an average of 10.59 words 

compared to 7.923 by the WaL group [F(1,58)=7.35, p=0.009]. There was no effect of 

the three encoding environments on Recalltotal in the MoL group [F(2,89)=.13, p=.876] or 

WaL group [F(2,89)=.01, p=0.988]. The same was true for Reverse-Recalltotal in the MoL 

[F(2,89)=.02, p=.979] and WaL [F(2,89)=.04, p=0.959] groups. There was no group 

effect of Clusteringserial [F(1,58)=1.04, p=.311] or Clusteringsimple [F(1,58)=1.62, p=.207] 

even though MoL participants had Clusteringserial and Clusteringsimple scores of 4.57 and 

5.323, respectively, compared to 3.7 and 4.133 for the WaL group. The same was true 

for Reverse-Clusteringserial (MoL=14.5; WaL=15.43) [F(1,58)=1.04, p=.311] and 

Clusteringsimple (MoL=16.8; WaL=12.67) [F(1,58)=2.23, p=.14]. There was also no 

difference between groups in Recallerror (MoL=3.522; WaL=3.477) [F(1,58)=0.0029, 

p=0.957] and Reverse-Recallerror (MoL=1.944; WaL=1.623) [F(1,58)=0.23, p=0.633]. 

Spatial Memory 

Participants took significantly less time to collect tokens on their second attempt in each 

world (Ruinrun1=121s, Ruinimprovement=32.697s, t(118)=-8.438, p<.001; Toonrun1=188.35s, 

Toonimprovement=55.183s, t(118)=-6.535, p<.001; Lagoonrun1=231.083s, 

Lagoonimprovement=77.066s, t(118)=-6.924, p<.001). There was a significant difference in 

improvement as a function of world [F(2,89)=8.57, p<0.001], driven by a significant 

difference between token-collection improvement in Lagoon and Ruin World (t(58)=-

4.077, p<0.001). There was no effect of group in token-collection improvement in either 
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Ruin World (MoL=31.693s; WaL=33.7s)[F(1,59)=0.09, p=0.767], Toon World 

(MoL=66.767s ; WaL=43.6s)[F(1,58)=2.26, p=0.138], or Lagoon World (MoL=81.4s ; 

WaL=72.733s)[F(1,58)=0.18, p=0.67]—confirming that neither group had an inherently 

advantageous baseline spatial memory prior to encoding. 

Participants assigned to the MoL group had a significantly lower average Euclidean 

distance between the locations they indicated they had placed an object vs. their actual 

locations (i.e. better spatial memory) compared to the WaL group, who indicated where 

they had last-seen each object (MoL= 13.596; WaL=23.176) [F(1,58)=26.15, p<0.001]. 

There was no group difference in spatial memory for Landmarks (MoL=20.32; 

WaL=24.05)[F(1,58)=1.88, p=0.176] or coins (MoL=3.782; WaL=3.82)[F(1,58)=.06, 

p=0.804]. 

Adding a participant’s average object-placement error score to a linear model of group 

on Recalltotal significantly increased the model’s explanatory power [F(56,2)=9.826, 

p<0.001]. The same effect was seen when Reverse-Recalltotal was used as the 

dependent variable [F(56,2)=11.697, p<0.001]. Object-placement error also increased 

the model’s explanatory power when Clusteringsimple [F(56,2)=9.538,p<0.001], Reverse-

Clusteringsimple [F(56,2)=7.73,p=0.001], Clusteringserial [F(56,2)=7.591,p<0.001], 

Reverse-Clusteringserial [F(56,2)=7.879,p<0.001], Recallerror  [F(56,2)=4.513,p=0.015], 

and Reverse-Recallerror [F(56,2)=3.255,p=0.046] were used as the dependent variable. 

Forward Verbal Recall vs. Spatial Memory 

There was a significant, negative correlation between Recalltotal and error on the object-

placement task (r=-0.57, p<0.001). Recalltotal score was also significantly correlated with 
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average Euclidean distance on the landmark-placement task (r=-0.566, p<0.001). The 

same relationship was seen between Recalltotal and coin-placement task performance 

(r=-.383, p=0.003). Participant performance on the object-placement task also had a 

strong relationship with Clusteringserial (r=-0.453, p<0.001), Clusteringsimple (r=-0.486, 

p<0.001), and Recallerror (r=-0.295, p=0.022). Clustering was also related to participant 

performance on the landmark-placement task (Clusteringserial: r=-0.393, p=0.002; 

Clusteringsimple: r=-0.427, p<0.001), but not the coin-placement task (Clusteringserial: r=-

0.178, p=0.173; Clusteringsimple: r=-0.207, p=0.112). Recallerror was also related to 

performance on the landmark-placement task (r=-0.27, p=0.037), but not the coin-

placement task (r=-0.223, p=0.087). A participant’s baseline spatial memory (difference 

in token-collection times across attempts) showed no relationship with Recalltotal 

(r=0.081, p=0.537), Clusteringserial (r=0.084, p=0.525) or Clusteringsimple (r=0.082, 

p=0.536), or Recallerror (r=0.061, p=0.642). 

Forward Verbal Recall vs. Spatial Memory (Within Group) 

Participants assigned to the MoL group showed a strong relationship between Recalltotal 

and error on the object-placement task (r=-0.572, p<0.001); this relationship was not 

any stronger than that observed across all participants (z=0.013,p=0.989). Participants 

assigned to the WaL group also showed a significant negative correlation between 

Recalltotal and error on the object-placement task (r=-0.449, p=0.013) that did not differ 

from the correlation using all subjects (z=-0.715, p=0.475) or the correlation using only 

MoL subjects (z=-.614, p=.54). Within MoL participants only, the relationship between 

Recalltotal and spatial error on the landmark-placement task was stronger (r=-0.655, 

p<.001), but not significantly, compared to the correlation using all subjects (z=-0.609, 
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p=.542). WaL participants also showed a significant relationship between Recalltotal and 

landmark-placement performance (r=-0.452, p=0.012), but no difference from the 

correlation using all subjects (z=0.661, p=.508). The difference in correlations between 

MoL and WaL participants was not significant (z=-1.09, p=.275). Performance on the 

coin-placement task was significant in its relation to Recalltotal by the MoL group (r=-

.437, p=0.016), but not the WaL group (r=-0.353, p=.056). However, the difference in 

these correlations was not significant (z=-0.366, p=0.714) and the correlation calculated 

using all subjects was no different than when relying only on MoL (z=-0.278, p=0.781) 

or WaL (z=0.149, p=0.882) participants. 

MoL group participants’ performance on the object-placement task correlated strongly 

with their Clusteringserial (r=-0.618, p<0.001) and Clusteringsimple (r=-0.639, p<.001), but 

not more than that observed across all subjects (serial z=0.999, p=0.318; simple 

z=1.147, p=0.251). Within the WaL group, there was no relationship between the object-

placement task and Clusteringserial (r=-0.34, p=0.066) or Clusteringsimple (r=-0.36, 

p=0.05). Despite this difference, the WaL group’s relationship between Clustering and 

object-placement scores did not differ significantly from that of the entire group 

(Clusteringserial: z=-0.575, p=0.562; Clusteringsimple: z=-0.478, p=0.633); nor with that of 

the MoL group (Clusteringserial: z=-1.55, p=0.13; Clusteringsimple: z=-0.867, p=0.386). 

Performance on the landmark-placement task was related to Clusteringserial in the MoL 

group (r=-0.403, p=0.027) and the WaL group (r=-0.369, p=0.045) as well as 

Clusteringsimple (MoL: r=-0.454, p=0.012; WaL: r=-0.373, p=0.043). This difference in 

groups was not significant (Clusteringserial: z=-0.147, p=0.883; Clusteringsimple: z=-0.359, 

p=0.719) and neither group differed from the correlation using all participants 
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(Clusteringserial: MoL: z=-0.051 p=0.959; WaL: z=0.12, p=0.904; Clusteringsimple: MoL: 

z=-0.143, p=0.886; WaL: z=0.275, p=0.783). Performance on the coin-placement task 

was not significant in its relationship to Clustering (Clusteringserial: MoL: r=-0.084, 

p=0.661; WaL: r=-0.2578, p=0.169; Clusteringsimple: MoL: r=-0.136, p=0.475; WaL: r=-

0.266, p=0.155).  

There was no relationship between performance on the object-placement task and 

Recallerror in the WaL group(r=-0.236, p=0.21), but a significant relationship did exist for 

the MoL group (r=-0.521, p=0.003). However, this difference in correlations was not 

significant (z=-1.239, p=0.215), nor did each group differ from the observation when 

using all participants (MoL: z=-1.71, p=0.241; WaL: z=0.272, p=0.786). Participant’s 

performance on the landmark-placement task showed no relationship to Recallerror in 

neither the MoL (r=-0.291, p=0.119) nor WaL (r=-0.26, p=0.165) groups. Performance 

on coin-placement task had no relationship with Recallerror in neither the MoL(-0.16, 

p=0.399) nor WaL (r=-0.274, p=0.142) groups.  

There was also no significant relationship between MoL participants’ baseline spatial 

memory and Recalltotal (r=0.106, p=0.578), Clustering (Clusteringserial: r=0.01, p=0.961; 

Clusteringsimple: r=0.019, p=0.922), and Recallerror (r=-0.06, p=0.754). The same pattern 

was observed in WaL participants: Recalltotal (r=0.183, p=0.334), Clustering 

(Clusteringserial: r=0.232, p=0.218; Clusteringsimple: r=0.228, p=0.227), and Recallerror 

(r=0.203, p=0.283). 

Reverse Verbal Recall vs. Spatial Memory 
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Reverse-Recalltotal showed a highly significant relationship with performance on the 

object-placement (r=-0.61, p<.001), landmark-placement (r=-0.592, p<.001), and coin-

placement (r=-0.337, p=0.009), but not baseline spatial memory (r=0.075, p=0.571). 

Reverse-Clusteringserial showed a significant relationship with performance on the 

object-placement (r=-0.35, p=0.007) and landmark-placement (r=-0.41, p=0.001) tasks, 

but not with coin-placement (r=-0.187, p=0.153) or baseline spatial memory (r=0.084, 

p=0.525). Reverse-Clusteringsimple had a relationship with performance on the object-

placement (r=-0.463, p<0.001) and landmark-placement (r=-0.425, p<0.001) tasks, but 

not with the coin-placement task (r=-0.172, p=0.19) or baseline spatial memory 

(r=0.007, p=0.959). Reverse-Recallerror was significantly related to a participant’s 

performance on the object-placement (r=-0.3, p=0.02) and landmark-placement (r=-

0.338, p=0.008) tasks, but not with the coin-placement task (r=-0.17, p=0.193) or 

baseline spatial memory (r=0.058, p=-.658). 

Reverse Verbal Recall vs. Spatial Memory (Within Group) 

Reverse-Recalltotal had a significant relationship with performance on the object-

placement task for participants assigned to the MoL (r=-0.576, p<0.001) and WaL (r=-

0.516, p=0.004), with no difference in strength across groups (z=-0.314, p=0.753) or 

compared to the relationship across all participants (MoL: z=0.225, p=0.822; WaL: 

z=0.591, p=0.555). Reverse- Recalltotal also had a relationship with performance on the 

landmark-placement task for participants in the MoL group (r=-0.721, p<.001) and the 

WaL group (r=-0.456, p=0.011), but despite this difference in correlations was not 

significant (z=-1.53, p=0.125) and neither group’s correlation differed from the 

correlation observed when using all participants (MoL: z=-0.98, p=0.327; WaL: z=0.807, 
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p=0.42). Reverse- Recalltotal did not share a significant relationship with performance on 

the coin-placement task for participants in the MoL group (r=-0.292, p=0.119), but did 

show one for the WaL group (r=-0.395, p=0.031); the difference in correlations was not 

significant across groups (z=0.43, p=0.667) or compared to the relationship identified 

when using all participants (MoL: z=0.214, p=0.831; WaL: z=-0.287, p=0.774).  

 Reverse-Clusteringserial was related to performance on the object-placement task for 

participants in the MoL (r=-0.552, p=0.002) and WaL (r=-0.37, p=0.045) groups; these 

relationships were not significantly different (z=-0.855, p=0.392) and did not differ from 

the result observed when using all participants (MoL: z=1.095, p=0.274; WaL: z=0.098, 

p=0.922). The finding was slightly different when comparing Reverse-Clusteringsimple to 

object-placement performance: participants assigned to the MoL group showed a 

relationship (r=-0.571, p<0.001), but one was not observed in the WaL group (r=-0.326, 

p=0.079). However, this difference in correlations was not significant (z=1.141, p=0.254) 

and neither differed from the statistic observed when using all participants (MoL: 

z=0.633, p=0.527; WaL: z=-0.697, p=0.486). Performance on the landmark-task was 

significantly correlated with Reverse-Clustering for MoL participants (Reverse-

Clusteringserial: r=-0.55, p=0.002; Reverse-Clusteringsimple: r=-0.578, p<0.001), but not 

WaL participants (Reverse-Clusteringserial:: r=-0.303, p=0.103; Reverse-Clusteringsimple: 

r=-0.245, p=0.193); this difference in correlations was not significant (Reverse-

Clusteringserial: z=1.123, p=0.262; Reverse-Clusteringsimple: z=1.504, p=0.133) and 

neither group statistic was different than that observed when relying on all participants 

(Reverse-Clusteringserial: MoL: z=0.782, p=0.434; WaL: z=-0.526, p=0.599; Reverse-

Clusteringsimple: MoL: z=0.88, p=0.379; WaL: z=-0.872, p=0.383). There was no 
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significant relationship between performance on the coin-placement task and Reverse-

Clustering in either group (Reverse-Clusteringserial: MoL: r=-0.213, p=0.258; WaL: -

0.165, p=0.385; Reverse-Clusteringsimple: MoL: r=-0.243, p=0.196; WaL: -0.095, 

p=0.617).  

Reverse-Recallerror was not significantly related to performance on the object-placement 

task for participants assigned to the MoL (r=-0.318, p=0.086) or WaL (r=-0.325, p=0.08) 

groups. Performance on the landmark-placement task was significantly related to 

Reverse-Recallerror for MoL participants (r=-0.527, p=0.003), but not WaL participants 

(r=-0.215, p=0.254). Despite this difference, the correlations did not vary significantly 

(z=1.351, p=0.177), nor did either differ from the statistic observed when relying on all 

participants (MoL: z=1.002, p=0.316 ; WaL: z=-0.571, p=0.568). Performance on the 

coin-placement task did not correlate with Reverse-Recallerror in either the MoL (r=-

0.017, p=0.929) or WaL (r=-0.277, p=0.139) group.  

Baseline spatial memory was not related to Reverse-Recalltotal for either MoL (r=0.085, 

p=0.657) or WaL (r=0.204, p=0.28) participants. There was also no relationship 

between Reverse-Clustering and baseline spatial memory (Reverse-Clusteringserial: 

MoL: r=-0.024, p=0.9; WaL: r=0.142, p=0.453; Reverse-Clusteringsimple: MoL: r=-0.011, 

p=0.953; WaL: r=0.106, p=0.579). Reverse-Recallerror had no relationship with baseline 

spatial memory (MoL: r=0.078, p=0.681; WaL: r=0.068, p=0.72). 

Object-Landmark Proximity 

MoL participants placed objects closer to landmarks depending on encoding 

environment [F(2,89)=44.91, p<0.001]. This observation was driven by a marked 
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average decrease in an object’s Euclidean distance to the nearest landmark in Ruin 

(7.923) compared to Toon (15.454; t(58)=7.53, p<0.001) and Lagoon (12.389; 

t(58)=4.467, p<0.001); the difference between Toon and Lagoon was also significant 

(t(58)=3.065, p<0.001). WaL participants also varied in the proximity of where they had 

last seen objects to the nearest landmark [F(2,89)=66.42, p<0.001]. Again, the effect 

was due to a closer proximity of objects to landmarks in Ruin (8.52) compared to Toon 

(15.188; t(58)=6.668, p<0.001) and Lagoon(12.085; t(58)=3.566, p<0.001); the 

difference between Toon and Lagoon was also significant (t(58)=3.103, p<0.001). A 

MANOVA revealed no difference in proximity of objects to landmarks between the MoL 

and WaL groups [F(2,57) = 13.74, p=0.436; Wilk's Λ = 0.971]. 

MoL participants’ Recalltotal showed no relationship to object-landmark proximity (r=-

0.01, p=0.958). Neither did WaL subjects, although a trend was observed (r=0.359, 

p=0.051). The same was true for Reverse-Recalltotal (MoL: r=-0.088, p=0.645; WaL: 

r=0.3, p=0.107). No relationship with object-landmark proximity was seen in 

Clusteringsimple (MoL: r=-0.071, p=0.71; WaL: r=0.346, p=0.061), Clusteringserial (MoL: r=-

0.063, p=0.742; WaL: r=0.337, p=0.069), Reverse-Clusteringsimple (MoL: r=-0.153, 

p=0.421; WaL: r=0.165, p=0.384), or Reverse-Clusteringserial (MoL: r=-0.152, p=0.423; 

WaL: r=0.169, p=0.373). While MoL participants showed no relationship between 

object-landmark proximity and Recallerror (MoL: r=-0.066, p=0.727),  WaL subject did 

(r=0.388, p=0.034); however, neither group showed an object-landmark correlation with 

Reverse-Recallerror (MoL: r=-0.226, p=0.229; WaL: r=0.216, p=0.252). 

Effect of Gender 
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Adding a participant’s gender to a linear model of group and object-placement spatial 

memory on Recalltotal significantly increased the model’s explanatory power 

[F(52,4)=4.292, p=0.005]. Upon further examination, the interaction term representing 

object-placement spatial memory and gender was the only significant coefficient [t(58) = 

-2.486, p = 0.016]. When Reverse-Recalltotal was the dependent variable, the same 

increase in explanatory power due to gender was observed [F(52,4)=4.969, p=0.002]. In 

this case, both object-placement spatial memory and its interaction with gender had 

significant coefficients [object-placement: t(58)=2.037, p=0.047: placement x gender 

interaction: t(58)=-2.444, p=0.018]. No other recall metrics, when used as the 

dependent variable, had their variance explained further by the inclusion of gender in 

the model: Clusteringsimple [F(52,4)=1.347,p=0.265]; Reverse-Clusteringsimple 

[F(52,4)=1.216,p=0.315]; Clusteringserial [F(52,4)=1.678,p=0.336]; Reverse-Clusteringserial 

[F(52,4)=1.034,p=0.399]; Recallerror [F(52,4)=0.763,p=0.554]; Reverse-Recallerror 

[F(52,4)=0.842,p=0.505]. 

Effect of Presence 

A participant’s PresenceSlater showed no relationship to Recalltotal (r=0.127, p=0.335) and 

a participant’s group assignment played no role in their score [F(1,58)=1.24, p=0.27]. 

PresenceFox    also showed no relationship with Recalltotal (r=0.092, p=0.487) and no 

effect of group [F(1,58)=0.03, p=0.864]. In response to the questions “To what degree 

did you feel you were ‘in’ (Toon/Lagoon/Ruin) World as you moved around?”, 

participants indicated equal immersion across all encoding environments 

[F(2,177)=0.82, p=0.441]; there was no effect of group. 

Post-Experimental Questionnaire 
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When asked how confident they were regarding their performance on a fictional ordered 

recall test the following day, participants in the MoL group had higher confidence 

compared to WaL participants [F(1,54)=5.12,p=0.028]. This group effect went away 

when subjects were asked about their confidence in a fictional recall test one week later 

[F(1,58)=3.12, p=0.082] or one month later [F(1,57)=1.05, p=0.309]. 

Participants indicated whether or not they had heard of the Method of Loci / Memory 

palace technique before taking part in this study. Previous exposure to the technique 

played no role in determining participant’s Recalltotal [F(2,57)=0.14, p=0.871]. 

Discussion 

Study summary 

This study presents the first utilization of VR software to implement the MoL. Similar to 

Legge et al. (2012), participants were able to leverage standardized virtual 

environments as their “memory palaces”, eliminating the confounding and 

unquantifiability aspect of relying on mental imagery to execute the mnemonic. 

Additionally, the current paradigm provided participants with functionality to actually 

encode lists within the virtual environments by continually rendering 3D objects in front 

of their avatar as they navigated about the virtual environments. Importantly, this 

technology all but enforced compliance in implanting the intended technique—an issue 

that has plagued previous studies (Legge et al., 2012). 

With the precise experimental control afforded by the technology employed, this study 

sought to disentangle the various facets that could theoretically contribute to the efficacy 

of the MoL. Specifically, it was tested whether or not the explicit binding of objects to the 



120 

spatial environment was a major contributing factor to the MoL’s ability to reliably 

increase memory strength. To accomplish this, participants were assigned to one of two 

groups: WaLand MoL. Participants across both groups were matched for exposure 

duration, encoding environments, and gender balance. The authors fictitiously informed 

participants assigned to the WaL group that they were utilizing a proven memory 

enhancement to counteract any potential effects of anticipated task demands (Rummel 

and Meiser, 2013) or performance (Bandura, 1993; Martell and Willis, 1993) that could 

be interpreted as the success of MoL participants who were briefed on the efficacy of 

the MoL. Apart from these instructions, the only difference between the groups was that 

MoL participants were given the ability to click on an object at any point during their 

navigation about the environment. This click would “freeze” the object in place until the 

exposure duration was completed and a new object appeared in front of their avatar. To 

avoid explicit reactivation of the encoding context during recall, the experimenter cued 

the participant with the name of a fictional-individual to whom the objects were 

purported to belong. Finally, all participants were subjected to additional testing of their 

spatial memory to acquire metrics of baseline and encoding-specific egocentric and 

allocentric memory to examine the relationship across individual differences to list-recall 

strength. 

Summary of findings 

Despite encoding information in a pictorial, contextually rich, and active fashion, 

participants in the WaL group recalled 27.8% less objects than their MoL counterparts 

who more explicitly bound the to-be-encoded information to the spatial scaffolding of the 

virtual environments. It is worth noting that MoL participants had the possibility to view 
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the item for a decreased period of time given that they were permitted to face the other 

direction from the object or walk away from it entirely after placement—a possibility not 

extended to the WaL group. The finding of a significant effect in light of such a potential 

occurrence strengthens confidence in this observed effect, as does the observation that 

the effect of recall was even stronger when participants were cued to recall in the 

reverse order. Participants in the MoL group also showed better spatial memory for the 

location of objects within the environments. However, the relationship between 

individual differences in recall and the object-placement task within the MoL group was 

no stronger than that observed in the WaL group, suggesting that the effect of 

remembering where an object was in the environment is intimately related to the 

memory of the object itself, independent of group. This interpretation is strengthened by 

our finding that adding a participant’s object-placement score to a linear model group on 

recall significantly improved its explanatory power. 

Since the MoL has traditionally been applauded for its ability to increase ordered recall, 

it is initially surprising that despite quantifiable increases in ordered recall for MoL 

participants, there was no significant effect of ordered recall from the start of recall 

(Recallerror) or throughout any phase of recall (Clusteringsimple and Clusteringserial). 

Typically, a high serial clustering score is indicative of above-average rote recall (Fisher 

and Deluca, 1997; Harnadek and Rourke, 1994), due mostly to the forging of associated 

between words during an imagery or directed-association strategy. It could stand to 

reason that the remaining factors that were shared across both groups (e.g. 3D objects, 

effortful attention) contributed to the effectiveness in serial recall across both groups so 

much so that there wasn’t enough room for improvement. However, the observation that 
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significant portions of the variance in serial recall was correlated with a participant’s 

spatial memory for where they had last-seen (WaL) or placed (MoL) an object provides 

for an alternative explanation. Importantly, a significant relationship between 

performance on the object-placement task and serial recall (Clusteringsimple , 

Clusteringserial , and Recallerror) was exclusive to participants in the MoL group, 

suggesting that memory for object locations could assist participants with following a 

path from object to object—a phenomenon that is more easily instilled when the objects 

are more explicitly associated with the spatial environment. However, no comparisons 

of correlations across groups were found to be significant, even when MoL was 

significant and WaL was not. A lack of differences across groups in correlations 

between spatial memory and metrics of recall insinuate that spatial memory and verbal 

recall have an intimate relationship, regardless of encoding instructions. 

Crucially, it was not the case that participants with greater baseline spatial memory 

performed better on the task. Specifically, groups did not differ in their improvement 

between token-collection attempts nor on the token-placement tasks. Interestingly 

enough, performance on the landmark-placement task was related to participant’s recall 

in all metrics. This could be reflective of the degree to which a participant was encoding 

the spatial arrangement of the environment in which they were encoding. To address 

the potential that participants were benefiting from an elaborative encoding of specific 

objects to landmarks in the environment, we analyzed for relationships between recall 

and the average proximity of objects to their nearest landmark. Only a relationship 

between Recallerror and object-landmark proximity was found for WaL groups only, 
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which could imply that even participants that did not bind objects to the environment 

experiences a slightly similar effect by viewing their early objects near landmarks. 

Gender increased the explanatory model of group and object-placement on recall. This 

effect was so potent that the only significant coefficient in the model was the interaction 

between gender and object-placement performance. This finding was specific to the 

primary variable of interest (Recalltotal) and no other metrics of recall. There was no 

observed impact of either presence in the virtual environment or previous exposure to 

the MoL on any measured recall metric. 

Taken together, these findings add important empirical evidence to the conversation 

surrounding the primacy of spatial contexts in encoding (for review see Robin et al., 

2018). Specifically, our findings that non-baseline assessments of spatial memory 

strength were predictive of every recall metric, independent of encoding instructions, 

suggests that if one can forge a memory for an object within a loci, there is a greater 

likelihood of that object being remembered. Given that the MoL enforces exactly this 

behavior during encoding, it should come as no surprise that MoL has been so 

historically effective and that removing this integral feature of the technique (i.e. no 

explicit placement / binding of the object to the environment) practically eliminates its 

effectiveness. 

Limitations 

A limitation of this current study is that recall was only tested immediately after a 

rehearsal period. Further investigations are needed to elucidate the impacts of this 

strategy on long-term memory; it could be the case that the recall metrics which yielded 
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insignificant differences across groups would be significant as a function of time. 

Additionally, a version of the experiment that does not include a recall period could 

exacerbate the differences across groups; the MoL group may have been able to 

encode more information in less time, if the total time was limited across groups. 

Future Directions 

With the need for humans to remember lists of objects rapidly declining (digital text and 

voice memos are rapidly accessible and permit near infinite storage), a strategy that 

increases your ability to recall more items seems more effort than it’s worth; why create 

a memory palace for today’s list of groceries when it is probably easier, more reliable, 

and less time consuming to create a checklist on one’s smartphone or notepad? In fact, 

despite the widespread knowledge of the technique’s effectiveness, most learners admit 

to never using the technique – even when explicitly instructed to do so in an experiment 

(Legge et al., 2012). Undergraduates even report their lack of use of mnemonic 

strategies, despite their knowledge of its effectiveness (Susser and McCabe, 2013); the 

most common strategy amongst undergraduates for studying is still rote repetition 

(Karpicke et al., 2009).  

The once revered “art of memory” seems to now only be reserved for a small niche of 

memory enthusiasts who practice mnemonic techniques for relatively useless, but 

impressive, personal goals (e.g. Memorizing Pi to the nth decimal place) or 

understandably motivating competitive reasons (e.g. the World Memory Championship 

carries a $30,000 prize; Foer, 2011). There is simply no longer a need for modern 

humans to leverage their cortex to encode long lists of objects; technology has 
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outpaced human evolution and can simply not be surpassed in regards to storage 

capacity.  

However, the reliable effectiveness of the MoL, and the evolutionary prowess that it 

leverages, need not be limited to increasing the recall of simple concrete nouns. While 

further research will be needed to verify the possibility of extending the technique out of 

the list-learning domain, one can certainly speculate on the ability for spatial strategies 

to bolster recall for procedural, conceptual, and episodic memory—all aspects of human 

cognition that currently require a human consciousness and cannot necessarily be 

offloaded to a computer. While it has been suggested that mnemonics are limited in 

applicability and don’t conform to theory or structure of general memory, emerging 

concepts which emphasize the primacy of spatial constructs for the encoding of events 

(Mullally and Maguire, 2014; Robin et al., 2018) permit for novel and creative ways to 

utilize space to both operate on and retain information—perhaps most poetically 

visualized as a child learning a sequence of numbers using their fingers. 

Such operations could even take advantage of the incidental learning that occurs as 

one navigates about a space and, subsequently, apply rule sets to specific facets of the 

environment that represent complex operations. For instance, a learner could navigate 

about a virtual room that contains only a large elephant and then move through a 

doorway into another room where a monkey is opening the passenger door of a car that 

has 2 balloons tied to it. The learner could later be instructed to mentally traverse this 

memorable path and write down the first letter of each object they encounter, with the 

simple instructions to insert an equal sign whenever they pass through a door and 

exponents whenever they see balloons. By simply recalling this scene, the learner could 
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incidentally unveil a “memory” for E=MC2. Similar, seemingly non-tangible concepts 

(e.g. fractions) also stand to benefit from spatially based incidental encoding tricks (e.g. 

floors separating numerators and denominators). Extending the MoL in ways where it 

can permit for the encoding of information beyond just that of simple objects is of high 

importance when considering the broader educational impacts of such a technology. 

Additionally, the MoL has even been utilized for therapeutic purposes: Researchers 

have increased the recall of self-affirming memories and coping protocols for individuals 

with depression (Dalgleish et al., 2013; Werner-Seidler and Dalgleish, 2016) and 

provided an aid for both aging (Rapp et al., 2002; Verhaeghen et al., 1992; West, 1995; 

Yesavage, 1983) and memory-impaired populations (Richardson, 1995; Tate, 1997). 

Our paradigm significantly decreases the reported extensive training necessary to train 

users to implement the MoL (between 2 and 24 hours; (Bower and Reitman, 1972; 

Brehmer et al., 2008; Brooks et al., 1993; Kliegl et al., 1990; Moè and De Beni, 2005). 

Such ease of use could position virtual renditions of the MoL to more rapidly benefit 

populations with memory ailments. 

Perhaps in the future, researchers could even use spatial environments to identify 

solutions that are particularly unsolvable using only computer memory and processing. 

As an example, researchers have been able to crowd source solutions to various 

protein folding problems by translating the problem into a visuospatial online video 

game (http://fold.it; Cooper et al., 2010). At the very minimum, exposing learners to the 

MoL and potential ways to leverage it for encoding useful information provide them with 

ecologically valid learning tools; McCabe (2015) found that students who were given an 

MoL exercise at the start of the semester used it as study technique-- an effect the 

http://fold.it/
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author attributes to the fact that the students were able to metacognitively observe the 

improvement in their memory. Virtual memory software, like that leveraged in this study, 

stands to revitalize the ability of memory enhancement techniques to impact learners in 

an entertaining and effective fashion. 

Behavioral Piloting Summary 

Prior to landing on the current experimental design, three behavioral pilot experiments 

were conducted to optimize a) the number of items per list, b) the number of worlds / 

lists, and c) differences in encoding / recall instructions as a function of group. 

Methodological details and subsequent experimental results are briefly described below. 

Only variations from the methods described above are mentioned; all other 

experimental designs and apparatus remained the same. 

Behavioral Pilot 1 (n=23; MoL=11) 

This version of the experiment featured only two lists, each containing 15 items 

encoded in either Toon World or Ruin World. See Appendix 5 for a full transcript of 

encoding and recall instructions. This experimental paradigm unveiled a significant 

increase in recall strength across all measures of mnemonic recall for MoL subjects as 

compared to WaL subjects. MoL subjects recalled an average of 14.45 words per list 

compared to 11.2 for control subjects. MoL subjects were almost at ceiling (15).  MoL 

subjects recalled 11.6 words in the right sequence, where controls recalled 6.45. 

Additionally, MoL subjects recalled 9.95 words before making an error compared to the 

4.95 words in control subjects. See Figure 10 for results. 

Behavioral Pilot 2 (n=11) 
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This version of the experiment was exactly the same as Behavioral Pilot 1, except there 

were a total of three lists of 15 items each in an attempt to combat the observation that 

MoL subjects were at ceiling when only 2 lists were used. Lagoon World was the third 

world used to encode the objects. The effect observed in Behavioral Pilot 1 remained 

when adding a third list of 15 items encoded in a third virtual environment, although the 

effects were slightly weaker – due mostly to the small n. MoL subjects recalled 

significantly greater recall strength across all metrics. MoL subjects recalled an average 

of 12.83 words per list compared to 10.2 for control subjects. MoL subjects recalled 7.45 

words in the right sequence, where controls recalled 5.27. Additionally, MoL subjects 

recalled 6.33 words before making an error compared to the 4.26 words in control 

subjects. See Figure 11 for results. 

Behavioral Pilot 3 (n=27) 

In this version of the experiment, each list of objects was given a name; subjects were 

told that the items on each list belonged to one of three people (Otto, Viola, or Pike). 

This was included so as to prepare for an fMRI version of the experiment where our 

hypotheses mandated that we did not explicitly bring to mind the encoding environment 

prior to recall.  When subjects were asked to recall the list of items encoded in each 

world, they were told to recall the items from a cued person’s list (e.g. Otto’s list of 

items). We also dramatically altered the instructions for the WaL group so as to try and 

equate everything across the groups aside from the placement of the objects. Finally, all 

subjects were additionally requested to recall the items in reverse order, starting with 

the last item on the list and making their way to the first. See Appendix 6 for a full 

transcript of encoding and recall instructions. All effects were abolished in this version of 



129 

the experiment. See Figure 12 for results. Upon further review of the video recordings, it 

was determined that WaL participants were acting, effectively, as MoL participants; the 

instructions emphasized the location of an object during retrieval and many WaL 

participants were seen stopping at specific locations to continue encoding objects, 

effectively “freezing” the object in that place. 

Figure Captions 

Figure 1. Virtual Environments and Landmarks 

A) The five Virtual Environments (VEs) created for this study using OpenSim Software. 

Toon World, Ruin World, and Lagoon World were used for encoding. Viewpoints within 

encoding environments reveal the participant’s starting location in the southmost area of 

the world, facing North. Avatar Island was used to familiarize subjects with navigation 

within our VEs and Moon World was used to exposure participants to the object-

placement technology. All environments rested within a 64 x 64 grid region border. B) 

The 24 landmarks placed in the eight cardinal locations (N,S,W,E,NW,NE,SW,SE) 

along the perimeter of each of the three encoding VEs. The figure’s arrangement of 

each landmark reflects their placement in each environment. Landmark names are as 

follows, starting with the landmark in the upper left corner (i.e. NW) and moving 

clockwise for each environment: Toon (slide, penguin pool, mushrooms, lollipop tree, 

Tetris blocks, water pipes, flamingo pool, doghouse), Ruin (fish fountain, treasure 

chests, giant telescope, armillary sphere, large bell, red flags, sun plaque, bubbling 

cauldron), Lagoon (fern statue, horse saddle, giant cactus, kayak, two curvy chairs, 

surfboard, fireplace, ridged planters). 

Figure 2. Token Collection Task and Software 
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A) Tokens collected by participants upon their first entries into each VE. Tokens varied 

as a function of world: coins in Toon World, rings in Ruin World, and shells in Lagoon 

World. Each world contained 20 tokens and a Heads Up Display (HUD) indicated a 

participant’s progress as they collected each of the tokens. B) Experimenter token-

control platforms, located on a platform floating above each environment. 

Experimenters were able to leverage these control platforms to clear tokens, initiate the 

collection phase, and collect metrics concerning a participant’s token collections. 

Figure 3. Object Encoding Task and Software 

A) Objects continually rendered in front of participants as they navigated about each 

encoding environment. A Heads Up Display (HUD) rendered the objects and provided a 

light (green shown here) indicating whether participant was currently in the encoding 

phase. Objects were visible for a period of 20s before disappearing and a new object 

appearing in its place. Participants were able to view the object from all angles of its 

pitch and yaw axes by rotating about the object. Participants assigned to the MoL group 

were given the additional instructions to “click” on the object and “freeze” it in a location 

of their choosing. Shown here is a beer in Toon World, trophy in Ruin World, and a 

pumpkin in Lagoon World. B) Experimenter object-control platform, located on a 

platform floating above each environment. Experimenters were able to leverage these 

control platforms to load in participant/environment specific lists of objects, send objects 

to the participant’s HUD, and collect metrics concerning each object’s location within the 

environment at a temporal resolution of 1s. 

Figure 4. Object/Landmark/Token Placement Task 
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Participants were shown an allocentric, “bird’s eye” view of each environment (Toon 

World used here) that contained landmarks (A) for object-placement and token-

placement tasks and one that was stripped of its eight landmarks (B) for landmark-

placement tasks. C) The instruction screen immediately preceding each placement trial. 

Participants were provided with a 2-D image of an object they encoded and instructions 

to click on the map location where they placed (MoL) or last saw (WaL) the object. D) 

The mouse cursor participants used to select the location of the cued 

object/landmark/token. E) A grid overlay delineating the 4,096 (64 x 64) cells available 

for participant selection via their cursor. This grid was not visible to participants, but 

could be inferred given the cursor’s inability to be placed outside of each cell—the 

cursor would “snap” to fit into the nearest, overlapping grid cell. 

Figure 5. Experimental Paradigm 

All participants underwent a familiarization phase that first included a general orientation 

in Avatar Island, followed by five minutes of token-collection in each of the three 

encoding environments and then a three-minute period of token collection that was 

preceded with an emphasis on collection speed. If participants completed token-

collection before the time limit was up, they were encouraged to explore the 

environments until time expired. Afterwards, participants were read group-specific 

instructions and teleported to Moon World to practice encoding (viewing and walking for 

WaL and viewing, walking, and placement for MoL). All subjects then encoded a list of 

15 objects in each of the three environments. After the third encoding session, 

participants were shown screen recordings of their activity within each environment. 

Following these rehearsal periods, subjects were cued to verbally recall the list of items 
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in forward and, immediately after, reverse encoding order. After forward and reverse-

recall sessions for each of the three lists, subjects were submitted to spatial recall tests 

for object, landmarks, and tokens encountered in each environment. For any phase of 

the experiment that required a cycling through the three VEs, visitation/testing order 

was randomized. 

Figure 6. Average Free Recall Scores 

Average number of words recalled (y-axis) across the three VEs in regards to each 

behavioral measure of interest (x-axis), as a function of group (MoL vs. WaL). *p<0.05, 

**p<0.01 

Figure 7. Spatial Memory Scores 

A) Participant performance on the object-placement, landmark-placement, and token-

placement tasks, as a function of group. Error was defined as the average Euclidean 

distance between where a participant indicated they had placed (MoL) or last seen 

(WaL) a cued object vs. the actual location of that object in the corresponding VE. The 

same analysis was used to probe participant memory for an environment’s static 

features: landmarks and coins. Lower average Euclidean distance (error) is seen as 

higher spatial memory. B) Average improvement on the token collection from Run 1 to 

Run 2, as a function of group. Reduction in time (y-axis) is reported in seconds as (Run 

2 time from start to last-token collected) – (Run 1 time from start to last-token collected). 

C) Time to completion, defined as Time from start to last-token collected, as a function 

of Run, collapsed across groups. ***p<0.001 

Figure 8. Individual Differences In Free Recall vs. Allocentric Memory Performance 
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A) Scatter plot depicting a participant’s average number of words recalled across the 

three VEs (x-axis) vs. their average performance on the object-placement task. B) 

Scatter plot depicting a participant’s average number of words recalled across the three 

VEs (x-axis) vs. their average performance on the landmark-placement task. Individual 

points are color coded to reflect group membership. Trend lines indicate the linear trend 

across all participants, irrespective of group, and are accompanied by r-values and p-

values. 

Figure 9. Object-Landmark Proximity 

Heat map indicating the total number of objects placed by a group’s participants within 

each cell of the 64x64 environmental grid, overlaid on a bird’s-eye view of each VE. B) 

Average proximity of an object to the nearest environmental landmark (defined by 

Euclidean distance) as a function of encoding environment and group. ***p<0.001 

Figure 10. Results From Behavioral Pilot 1 

This version of the experiment utilized only two worlds, each displaying a list of 15 items 

for 30s each followed by a video-playback rehearsal period. Total = average number of 

objects recalled across the two worlds. Correct Sequence = average number of objects 

that were recalled in the correct order across the two worlds. Before Error = average 

number of objects recalled before the subject made an error. See Appendix 5 for 

encoding and retrieval instructions.  

Figure 11. Results From Behavioral Pilot 2 

This version of the experiment utilized all three worlds, each displaying a list of 15 items 

for 30s each followed by a video-playback rehearsal period. Total = average number of 
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objects recalled across the two worlds. Correct Sequence = average number of objects 

that were recalled in the correct order across the two worlds. Before Error = average 

number of objects recalled before the subject made an error. See Appendix 5 for 

encoding and retrieval instructions. 

Figure 12. Results From Behavioral Pilot 3 

This version of the experiment utilized all three worlds, each displaying a list of 15 items 

for 30s each followed by a video-playback rehearsal period. However, subjects received 

different instructions as compared to Behavioral Pilot 2 so as to further equate the two 

groups. Total = average number of objects recalled across the two worlds. Correct 

Sequence = average number of objects that were recalled in the correct order across 

the two worlds. Before Error = average number of objects recalled before the subject 

made an error. See Appendix 6 for more detailed encoding and retrieval instructions.  

Table Captions 

Table 1. Relationship between free-recall and spatial memory 

R-statistics denoting the relationship between a participant’s average free recall 

memory and average performance on placement tasks (object, landmark, and coin) and 

their baseline spatial-memory (reduction in time between first and second coin collection 

attempts). Analyses were conducted separately for forward and reverse recall attempts. 

Rows in bold denote the relationship when relying on all participants in the study (n=60), 

and the accompanying rows beneath indicate results observed when relying exclusively 

on participants assigned to the WaL (n=30) or MoL (n=30) groups. 
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* p<0.05, ** p<0.01, *** p<0.001, † Significantly different from other group (p<0.05),  

‡ Significantly different from effect observed using all participants (p<0.05). 
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Figures 

Figure 1. Virtual Environments and Landmarks 
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Figure 2. Token Collection Task and Software 
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Figure 3. Object Encoding Task and Software 
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Figure 4. Object/Landmark/Token Placement Task 
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Figure 5. Experimental Paradigm 
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Figure 6. Average Free Recall Scores 
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Figure 7. Spatial Memory Scores 
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Figure 8. Individual Differences In Free Recall vs. Allocentric Memory 

Performance 
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Figure 9. Object-Landmark Proximity 
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Figure 10. Results From Behavioral Pilot 1 

 

Figure 11. Results From Behavioral Pilot 2 
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Figure 12. Results From Behavioral Pilot 3 

 

Tables 

Table 1. Relationship between free-recall and spatial memory 
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Appendix 
 

Appendix 1 – Pool of objects from which lists were randomly sampled. 

ball, balloon, basket, beer, bicycle, briefcase, camel, car, cat, cherry, cigar, cow, dog, 

frog, guitar, hammer, handbag, hat, helmet, horse, key, leaf, lemon, net, orange, 

pineapple, pot, pumpkin, record, rocket, rooster, rope, sandal, ship, snail, snake, 

sunglasses, telephone, tooth, trophy, umbrella, watch, watermelon, whale, whistle 

Appendix 2 – Experimental Instructions 

MoL Encoding 

People use a variety of strategies to memorize information. We would like to introduce 

you to one mnemonic technique known as the “Memory Palace” strategy that can be 

used to aid your memorization of a list of items. Conceived in Ancient Greece, this 

strategy takes advantage of the fact that information is more easily remembered when it 

is associated with a spatial location. In its classic implementation, the Memory Palace 

strategy involves imagining yourself navigating a familiar environment (e.g., your home) 

and mentally “placing” each of a list of objects at a specific memorable location along 

your path.  For example, if you had to remember bananas, eggs, and peppers, in that 

order, you could imagine yourself walking up to the door of your home, where you find a 

banana on the doorknob; after entering the door, you see eggs hanging on strings from 

the ceiling in the entryway; after moving through them, you see peppers all over the 

floor in the living room. When it is later time to retrieve the list of objects, you would 

simply re-imagine yourself walking along the original path you traversed and observing 

each item on the list -- right in the place that you left it. 
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While this memorization strategy typically involves placing a list of to-be-remembered 

items using only one’s imagination, we have created a platform for you to implement 

this strategy by placing items as you navigate along a path through a virtual reality 

environment. We are now going to teleport you to an area where you can practice using 

the technique I just described to you. Please teleport to Moon now by scrolling out of 

first person view. 

In this world, a series of three 3D objects will appear in front of you, one at a time. 

Please move about the environment and find a memorable location to place each 

object. When you click on the shape, it will be placed in that location. Be sure to try and 

place the items along a path that you would be able to recreate later, as this will help 

you when you are later asked to recall the objects in order. Each item will be available 

for you to view for 20 seconds before a new one appears. 

We are now going to teleport back to each of the virtual environments you explored 

when you collected tokens. These environments will be your “virtual memory palaces”. 

While you are in each environment, a series of 15 items will appear in front of you, one-

at-a-time, just like during the practice. You will be able to view each item and walk 

around the environment with it for up to 20 seconds before a new item appears. Within 

that 20-second time frame, you will be able to “place” each item in a location of your 

choosing by clicking on the item itself. We encourage you to place the items so that you 

can make the most out of the environment and what you see around you, especially the 

landmarks. Be sure to try and place the items along a path that you would be able to 

recreate later, as this will help you when you are later asked to recall the objects in 
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order. Please do not take longer than 20 seconds for any given item; otherwise you 

would miss the opportunity to place that item.   

“You will be in [WORLD NAME]. Your task is to remember these items in the order they 

were presented. These objects belong to [Name]. We will ask you to tell us the items 

belong to [NAME], so be sure to remember that you learned [NAME]’s List in [WORLD 

NAME]. Teleport to the [WORLD NAME] so you can see the items belonging to [NAME]. 

Right now you are at the southern part of the map. So straight ahead is North, to your 

left is West, and to your right is East.” 

WaL Encoding 

People use a variety of strategies to memorize information. We would like to introduce 

you to one mnemonic technique known as the “Walk and Learn” strategy that can be 

used to aid your memorization of a list of items. Motivated by decades of cognitive 

psychological research, this strategy takes advantage of the active nature of learning. 

Although people often attempt to memorize information while staying in one place (e.g., 

sitting at a desk), this strategy encourages the learner to walk around during learning. 

The changing scenery serves to stimulate the brain’s memory system and makes the 

information you encounter more memorable. After all, humans did not evolve to learn 

information while sitting at desk, but rather our brains are exquisitely adapted to acquire 

new information as we actively move about our environment. 

This strategy can be implemented by going on an actual walk, or even imagining 

oneself on a walk, and studying the to-be-remembered information along the way. We 

have created a platform for you to implement this strategy by studying a set of items as 
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you walk through a virtual reality environment. We are now going to teleport you to an 

area where you can practice using the technique I just described to you. Please teleport 

to Moon now by scrolling out of first person view. In this world, a series of three 3D 

objects will appear in front of you. Please walk around and explore this world as you 

view each of these items. Each item will be available for you to view for 20 seconds 

before a new one appears. (Give me a moment to load these items)” 

We are now going to teleport back to each of the virtual environments you explored 

while collecting tokens. While you are in each environment this time, a series of 15 

items will appear in front of you, one at a time, just like during the practice. You will be 

able to view each item and walk around the environment with it for up to 20 seconds 

before a new item appears. Your goal is to memorize each set of 15 items, and later 

you will be asked to recall the items you encountered in each environment in the order 

in which they were presented. 

You will be in [WORLD NAME]. Your task is to remember these items in the order they 

were presented. These objects belong to [LIST NAME]. We will ask you to tell us the 

items belong to [LIST NAME], in order, so be sure to remember that you learned [LIST 

NAME] in [WORLD NAME]. Teleport to the [WORLD NAME] so you can see the items 

belonging to [LIST NAME].  

MoL Forward Recall 

I would now like you to tell me, in the order in which they appeared, the list of 15 objects 

you saw that belong to [Name]. Please close your eyes and imagine yourself walking 

through the environment where you originally saw [Name]’s List so you can view each 
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item where you placed it. Try and mentally recreate the same exact path you originally 

travelled when you placed the items so you can remember the order of the items. Just 

say each item aloud as you come across it or remember it. Imagining each item in 

relation to context of the environment, such as a nearby landmark, may help as well. As 

you are trying to recall the items in order, if you cannot remember one of the items, feel 

free to skip over that item and continue recalling the remainder of the list in order 

(skipping additional items if need be). If you reach a point where you can no longer 

remember the items in order, just try and remember as many items as you can from 

[Name]’s List. 

MoL Reverse Recall 

We are now going to do some more verbal recall, but this time it will be slightly different. 

This time, I’d like for you to start with the last item you saw on [Name’s] List and tell me 

each item in the list in reverse order until you get to the first item you saw on from 

[Name’s] List. As you are trying to recall the items in reverse order, if you cannot 

remember one of the items, feel free to skip over that item and continue recalling the 

remainder of the list in reverse order (skipping additional items if need be). If you reach 

a point where you can no longer remember the items in reverse order, just try and 

remember as many items as you can from [Name]’s List. 

 

Please close your eyes and imagine yourself walking through the environment where 

you originally saw [Name]’s List so you can view each item where you placed it. Try and 

recreate the same exact path you originally travelled when you placed the items, but 
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mentally walk along this path in reverse so you can remember the reverse order of the 

items. Just say each item aloud as you come across it or remember it. Imagining each 

item in relation to context of the environment, such as nearby landmark, may help as 

well. If you reach a point where you can no longer remember the items in reverse order, 

just try and remember as many items as you can from [Name]’s List 

WaL Forward Recall 

I would now like you to tell me, in order, the list of objects you saw that belong to 

[NAME]. As you are trying to recall the items in order, if you cannot remember one of 

the items, feel free to skip over that item and continue recalling the remainder of the list 

in order (skipping additional items if need be). If you reach a point where you can no 

longer remember the items in order, just try and remember as many items as you can 

from [Name]’s List.  When you begin, please close your eyes and try to imagine yourself 

walking through the environment where you originally saw [Name]'s List. Are you ready 

to begin? Start. 

WaL Reverse Recall 

We are now going to do some more verbal recall, but this time it will be slightly different. 

This time, I’d like for you to start with the last item you saw on [Name’s] List and tell me 

each item in the list in reverse order until you get to the first item you saw on from 

[Name’s] List. As you are trying to recall the items in reverse order, if you cannot 

remember one of the items, feel free to skip over that item and continue recalling the 

remainder of the list in reverse order (skipping additional items if need be). If you reach 

a point where you can no longer remember the items in reverse order, just try and 
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remember as many items as you can from [Name]’s List. When you begin, please close 

your eyes and try to imagine yourself walking through the environment where you 

originally saw [Name]'s List.  

Appendix 3 – Presence Survey (Slater) 

1) Please rate your sense of being there in the virtual reality.  

 

2) To what extent were there times during the experience when the virtual reality 

became the 'reality' for you, and you almost forgot about the 'real world' of the 

laboratory in which the whole experience was really taking place?  

3) When you think back about your experience, do you think of the virtual reality more 

as images that you saw, or more as somewhere that you visited?  

4) During the course of the experience, which was strongest on the whole, your sense 

of being in the virtual reality, or of being in the real world of the laboratory?  

5) When you think about the virtual reality, to what extent is the way that you are 

thinking about this similar to the way that you are thinking about the various places that 

you've been today?  

6) During the course of the virtual reality experience, did you often think to yourself that 

you were actually just sitting in a laboratory wearing a helmet, or did the virtual reality 

overwhelm you?  

Appendix 4 – Presence Survey (Fox) 

1) To what extent do you feel the avatar is an extension of yourself? 

2) To what extent do you feel that if something happens to the avatar, it feels like it is 

happening to you? 
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3) To what extent do you feel you were in the same room with the avatar? 

4) To what extent do you feel you embodied the avatar? 

5) To what extent did the avatar seem real? 

6) To what extent were you involved with the virtual world? 

7) To what extent did you feel surrounded by the virtual world? 

8) To what extent did you feel like you were inside the virtual world? 

9) To what extent did it feel like you visited another place? 

10) How much did the virtual world seem like the real world? 

Appendix 5 – Behavioral Pilot 1 Experimental Instructions 

MoL Encoding 

People use a variety of strategies to memorize information. We would like to introduce 

you to one mnemonic technique known as the “Memory Palace” strategy that can be 

used to aid your memorization of a list of items. Conceived in Ancient Greece, this 

strategy involves mentally ‘placing’ each piece of information you wish to remember in a 

specific location within an imagined environment. For instance, if you had a list of 15 

items to remember, you could conjure up a memory of a familiar environment (like your 

childhood home) and mentally walk through this environment, placing each item on the 

list in a memorable place within the environment. When it is later time to retrieve the 

information, you would simply re-imagine yourself walking along that same route and 

hopefully each item on the list would be right there where you left it. Today, we’d like 

you to teach you this memorization technique using virtual reality. 
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We are now going teleport back to each of the virtual environments you just explored. 

These environments will be your “virtual memory palaces”. While you are there this 

time, a series of objects will appear in front of you, one-at-a-time. You will be able to 

view each object and walk around the environment with it for up to 30 seconds before a 

new item appears. Within that 30 second time frame, you will be able to “place” each 

item in a location of your choosing by clicking on the object itself (not the location). 

Please do not take longer than 30 seconds, otherwise you would miss the opportunity to 

place that item. Your task is to remember these objects in the order they were 

presented. We will test your memory on these at the end of the experiment. 

WaL Encoding 

People use a variety of strategies to memorize information. We would like to introduce 

you to one mnemonic technique known as the “Walk and Learn” strategy that can be 

used to aid your memorization of a list of items. This strategy is designed to take 

advantage of the active nature of learning. We are now going teleport back to each of 

the virtual environments you just explored. While you are there this time, a series of 

objects will appear in front of you, one-at-a-time. You will be able to view each object 

and walk around the environment with it for up to 30 seconds before a new item 

appears. Your task is to remember these objects in the order they were presented. We 

will test your memory on these at the end of the experiment. 

MoL Recall 

We’d like for you to now recite to us, in order, the list of objects you saw in [WORLD]. If 

you’d like, feel free to close your eyes and imagine yourself walking through the 
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environment and viewing each item in the location in which you placed it. Imagining it in 

relation to context of the environment, such as nearby landmarks may help as well. To 

capture the order of the items, it might be a good idea to recreate the same exact path 

you originally travelled. Just say each item aloud as you come across it or remember it. 

If you cannot remember them in order, that’s alright; try and just remember as many 

items as you can from that environment. 

WaL Recall 

We’d like for you to now recite to us, in order, the list of objects you saw in [WORLD]. If 

you’d like, feel free to close your eyes and imagine yourself walking through the 

environment and viewing each item as it was presented in the environment. To capture 

the order of the items, it might be a good idea to recreate the same exact path you 

originally travelled, if you remember. Just say each item aloud as you come across it or 

remember it. If you cannot remember them in order, that’s alright; try and just remember 

as many items as you can from that environment.  

Appendix 6 – Behavioral Pilot 3 Experimental Instructions 

MoL Encoding 

“People use a variety of strategies to memorize information. We would like to introduce 

you to one mnemonic technique known as the “Memory Palace” strategy that can be 

used to aid your memorization of a list of items. Conceived in Ancient Greece, this 

strategy involves mentally “placing” each piece of information you wish to remember in 

a specific location within an imagined environment. For instance, if you had a list of 15 

items to remember, you could conjure up a memory of a familiar environment (like your 
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childhood home) and mentally walk through this environment, placing each item on the 

list in a memorable place within the environment. When it is later time to retrieve the 

information, you would simply re-imagine yourself walking along that same route and 

hopefully each item on the list would be right there where you left it. 

We are now going to teleport you to an area where you can practice using the technique 

I just described to you. Please teleport to Moon now by scrolling out of first person view. 

In this world, a series of three 3D shapes will appear in front of you. Please move about 

the environment and place the shapes in locations of your choosing. For example, try 

placing them on a sofa or coffee table inside the Moon world. Each item will be available 

for you to view for 30 seconds before a new one appears. 

 We are now going to teleport back to each of the virtual environments you explored 

when you collected tokens. These environments will be your “virtual memory palaces”. 

While you are there this time, a series of items will appear in front of you, one-at-a-time, 

just like during the practice. You will be able to view each item and walk around the 

environment with it for up to 30 seconds before a new item appears. Within that 30-

second time frame, you will be able to place” each item in a location of your choosing by 

clicking on the item itself. We encourage you to place the items so that you can make 

the most out of the environment and what you see around you, especially the 

landmarks. Please do not take longer than 30 seconds; otherwise you would miss the 

opportunity to place that item. 

You will be in [WORLD NAME]. Your task is to remember these items in the order they 

were presented. These objects belong to [LIST NAME]. We will ask you to tell us the 

items belong to [LIST NAME], so be sure to remember that you learned [LIST NAME] in 
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[WORLD NAME]. Teleport to the [WORLD NAME] so you can see the items belonging 

to [LIST NAME]. Right now you are at the southern part of the map. So straight ahead is 

North, to your left is West, and to your right is East. 

WaL Encoding 

People use a variety of strategies to memorize information. We would like to introduce 

you to one mnemonic technique known as the “Walk and Learn” strategy that can be 

used to aid your memorization of a list of items. Conceived in Ancient Greece, this 

strategy involves mentally walking in an imagined environment with objects that you 

wish to remember. For instance, if you had a list of 15 items to remember, you could 

conjure up a memory of a familiar environment (like your childhood home) and mentally 

walk through the environment, mentalizing each object in the list – one after another. 

When it is later time to retrieve information, you simply re-imagine your walk along the 

same route and hopefully each item on the list would reappear in your memory as you 

walk. 

We are now going to teleport you to an area where you can practice using the technique 

I just described to you. Please teleport to Moon now by scrolling out of first person view. 

In this world, a series of three 3D shapes will appear in front of you. Please walk around 

and explore this world as you view each of these items. Each item will be available for 

you to view for 30 seconds before a new one appears.  

We are now going to teleport back to each of the virtual environments you explored 

while collecting tokens. While you are there this time, a series of items will appear in 

front of you, one at a time, just like during the practice. You will be able to view each 
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item and walk around the environment with it for up to 30 seconds before a new item 

appears. 

 You will be in [WORLD NAME]. Your task is to remember these items in the order they 

were presented. These objects belong to [LIST NAME]. We will ask you to tell us the 

items belong to [LIST NAME], so be sure to remember that you learned [LIST NAME] in 

[WORLD NAME]. Teleport to the [WORLD NAME] so you can see the items belonging 

to [LIST NAME]. Right now you are at the southern part of the map. So straight ahead is 

North, to your left is West, and to your right is East. 

MoL Forward Recall 

I would now like you to tell me, in order, the list of objects you saw in [LIST NAME]. If 

you would like, feel free to close your eyes and imagine yourself walking through the 

environment and viewing each item as it was presented in the environment. To capture 

the order of the items, it might be a good idea to recreate the same exact path you 

originally travelled, if you remember. Just say each item aloud as you come across it or 

remember it. Imagining each item in relation to context of the environment, such as 

nearby landmark, may help as well. If you cannot remember them in order, just say as 

many items as you can from that list. 

MoL Reverse Recall 

We are now going to do some more verbal recall, but this time slightly different. I would 

like you to tell me, in order, the list of objects from [Name’s] List. However, this time, I’d 

like for you to start with the last item you saw on [Name’s] List and tell me each item in 

the list in reverse until you get to the first item you saw on from [Name’s] List. If you 
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would like, feel free to close your eyes and imagine yourself walking through the 

environment and viewing each item as it was presented in the environment. To capture 

the order of the items, it might be a good idea to recreate the same exact path you 

originally travelled, if you remember. Just say each item aloud as you come across it or 

remember it. Imagining each item in relation to context of the environment, such as 

nearby landmark, may help as well. If you cannot remember them in order, just say as 

many items as you can from that list. 

WaL Forward Recall 

I would now like you to tell me, in order, the list of objects you saw in [LIST NAME]. If 

you would like, feel free to close your eyes and imagine yourself walking through the 

environment and viewing each item as it was presented in the environment. To capture 

the order of the items, it might be a good idea to recreate the same exact path you 

originally travelled, if you remember. Just say each item aloud as you come across it or 

remember it. Imagining each item in relation to context of the environment, such as 

nearby landmark, may help as well. If you cannot remember them in order, just say as 

many items as you can from that list. 

WaL Reverse Recall 

We are now going to do some more verbal recall, but this time slightly different. I would 

like you to tell me, in order, the list of objects from [Name’s] List. However, this time, I’d 

like for you to start with the last item you saw on [Name’s] List and tell me each item in 

the list in reverse until you get to the first item you saw on from [Name’s] List. If you 

would like, feel free to close your eyes and imagine yourself walking through the 
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environment and viewing each item as it was presented in the environment. To capture 

the order of the items, it might be a good idea to recreate the same exact path you 

originally travelled, if you remember. Just say each item aloud as you come across it or 

remember it. Imagining each item in relation to context of the environment, such as 

nearby landmark, may help as well. If you cannot remember them in order, just say as 

many items as you can from that list. 
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Chapter 4: Reusing a Memory Palace: An evaluation of virtual strategies 
 

Abstract 

The Method of Loci (MoL) has been widely regarded as an effective mnemonic 

technique for thousands of years (Yates, 1966). Such historic prowess remains relevant 

in the modern age; the MoL is, by and large, the most widely utilized technique amongst 

competitive memory athletes (Foer, 2011). Recent developments in Virtual reality (VR) 

have even enabled researchers to implement virtual versions of the MoL, whereby 

participants place lists of to-be-remembered objects within a series of virtual 

environments (VEs; Reggente et al., 2018). Given that varying context across lists 

promotes differentiation (Howard and Kahana, 1999), practitioners of the MoL will try to 

leverage different environments to encode separate bundles of information. However, 

this inserts an unnecessary limit on the MoL’s potential as a function of the expanse of 

environments the user is familiar with. Instead, a large proportion of memory champions 

leveraging the MoL will implement strategies that allow for them to “reuse” the same 

memory palace to encode multiple lists of information. In the current study, we tested 

two such strategies, implemented between encoding two lists of 20 objects within a 

single VE to determine the most effective strategy: 1) a cleanout / reversal learning 

strategy whereby participants actively tried to forget the previously learned information 

by watching objects fade upon a revisit to their placed location 2) an elaborative 

encoding strategy that permitted participants to place new objects at the locations of 

previously placed objects –weaving together a visuospatial scene that associated items 

across multiple lists. Results indicate no advantage for either the cleanout or elaborative 

encoding strategy in regards to the total number of words recalled across the two lists. 
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Additionally, we observed a deficit in recall for the second list of items specific to 

participants leveraging an elaborative encoding strategy, compared to those using the 

cleanout method and a control group who simply took a break between encoding 

sessions. While forgetting was minimized in the elaborative encoding group across 

recall attempts for the same list of objects, intrusions were also increased. Taken 

together, our results suggest that sufficiently large VEs may be able to permit inter-

environmental subsections that prevent intrusion when encoding multiple lists of 

information. 

Introduction 

Previous research has shown that virtual reality can serve as a medium for the 

implementation of the Method of Loci (MoL) technique, offering a near 30% increase in 

memory strength for subjects that actively place objects about an environment as 

compared to a control group that walked with objects in virtual environments (VEs; 

Chapter 3). This research also implicated that one’s spatial memory for a particular 

virtual environment was correlated with outcome memory strength—emphasizing the 

importance of spatial memory for list-learning in VEs and subsequently offering that it 

may be prudent to continually increase a subject’s familiarity with established VEs. 

If memory is to be characterized as a constellation of representations of co-occurring 

stimuli (Rumelhart and McClelland, 1988), then it stands to reason that the spatial 

context enveloping an event constitutes a significant portion of the engram dedicated to 

that event (see Tulving, 1993). As such, it appears that the phenomenon of contextual 

reinstatement (Bartlett, 1932; Tulving, 1993) is dominated by spatial environments—a 

notion that is theorized to underpin findings that position space as the primary currency 
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of the brain’s encoding mechanisms (Mullally and Maguire, 2014; Robin et al., 2016, 

2018). This posit is particularly salient when considering that memory retrieval depends 

on both reactivating an engram (i.e. pattern completion) and dissociating it from other 

engrams despite an overlap in nodes that make up multiple such representations (i.e. 

pattern separation; Yassa and Stark, 2011).  

Neural ensembles in the hippocampus are thought to accomplish this differentiation 

partially through the use of attractor networks (Hopfield, 1982). Linear changes in the 

layout of a spatial environment (e.g. morphing from a square to circular enclosure) elicit 

alterations in hippocampal coding for that space only after “enough” of a change has 

occurred; otherwise, the pattern continues to exhibit attractor dynamic properties by 

representing the “new” environment in the same way as the original environment 

(Leutgeb et al., 2005). The readout of such patterns determines behavior as well. The 

degree of sigmoidal hippocampal responses (i.e. attractor dynamics) to the linear 

morphing of familiar environments (e.g. pictorial overlay of 20% environment A, 80% 

environment B) predicts participant behavior on an object-place task whereby 

participants would have learned item A’s location in both environments A and B and 

then tested on their object-place memory when inserted into novel, linear morphs of 

environments A and B; that is, if the hippocampus is representing an A/B morphed 

environment in more of an A-like fashion, the participant will provide a place-based 

response that is closer to the object’s learned location in A than the analog in B 

(Steemers et al., 2016).  

While the learning of information across multiple contexts is beneficial for certain types 

of memory like motor-skill acquisition (for review, see Magill and Hall, 1990), mnemonic 
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strategies like the MoL, which depending on binding information to a spatial 

environment, benefit more so from the compartmentalization of certain lists of 

information within a single environment. It follows that if an environment that has 

previously been utilized for the encoding of visual objects, it is theoretically ripe for 

interference when one is looking to encode new information within that same 

environment. Several experiments have tangentially investigated contextual interference 

by having participants learn multiple lists of items and observing errors in list 

membership during recall. For example, Keppel and Zavortink (1969) showed that when 

using the peg words method (an effective mnemonic based on creating mental 

associations between items and numbers that have previously been associated with 

independent objects) for learning several lists in succession, there is a significant 

degree of retroactive interference whereby items from previous lists infiltrate subjects’ 

recall attempts of subsequent lists. Additionally, Winograd (1968) showed that objects 

which fell into the same category suffered from poor list differentiation. That is, if an 

object belonged to a category that was shared by both lists, that object was more likely 

to cause retroactive interference than an object that belonged to a category that was 

unique to only one list. Additional evidence comes from the observation that changing 

context can assist with directed forgetting (Sahakyan and Kelley, 2002) and that context 

is the most potent predictor of the lag recency (see Raaijmakers and Shiffrin, 1981) and 

end-of-list recency effects (Howard and Kahana, 1999). The effect of object-category on 

retrieval processes is so potent that a to-be-recalled object’s category can be decoded 

using functional magnetic resonance imaging (fMRI) several seconds before the recall 

of the object itself (Polyn et al., 2005). Such neural signatures have behavioral 
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implications as well; if a subject’s brain activity expresses patterns representative of list 

A’s context while they encode list B, their subsequent recall will misattribute list B’s 

items to list A (Gershman et al., 2013). With a small stretch of reasoning, replacing 

“categories” with environments that served as a contextual backdrop, the encoding of 

multiple lists of objects within the same environment could lead to poor list 

differentiation. 

Taken together, it would appear that establishing a new, distinct environment for each 

list of to-be-remembered information would be most prudent in the aim of maximizing 

the retainment of information and reducing interference across lists, especially during 

strategies like the MoL, which explicitly depend on the spatial environment for its 

efficacy. However, seeing as the creation and learning of such virtual environments is a 

cost and time intensive process, it would be beneficial to keep the number of unique 

environments to a minimum. Thus, the development of a method that allows for one to 

implement the MoL for multiple lists of items within the same environment is imperative. 

The process of “cleaning out” one’s memory palace, so as to reuse it for encoding of 

new information, is a common practice for memory champions that traditionally employ 

the MoL (Foer, 2011). This “clean out” process requires spending a prolonged period of 

time imagining the destruction or removal of objects that were previously placed in one’s 

mental memory palace. Often times, implementers of the method will animate the 

destruction so as to make the process more vivid (e.g. using a broom to sweep away 

items or a grenade to blow them up).  

This “cleanout” practice is an extension of what is known as “reversal learning” – a 

process that can be used to “forget” previously learned associations of material, 
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including information bound to spatial environments (Schrijver et al., 2004). The process 

is thought to be a higher order executive function and is known to be mediated by the 

ventrolateral prefrontal cortex (Cools et al., 2002). Essentially, the goal of reversal 

learning / memory updating would be to maximize differentiation across multiple lists of 

items so as to decrease interference.  Underwood (1949) observed that the greatest 

number of intrusions across multiple lists of learned materials occur with low 

differentiation. Yates (1966) postulated a “wax-tablet” theory in which one’s mental 

imagery could house a mnemonic cue and, temporarily, a to-be-forgotten item that 

could be wiped out or erased, similar to the “unlearning hypothesis” (Melton and Irwin, 

1940). Such a theory would seem to be supported by the effectiveness memory 

champions meet when “erasing” previously learned information from their mental 

memory palaces. 

Early experiments have investigated humans’ ability to update their memory using 

mnemonic devices. Surprisingly, some studies yield relatively counterintuitive results 

that seem to de-emphasize the importance of “reversal learning” and instead encourage 

retaining the previously learned material and incorporating it into the learning of new 

material. For example, Bellezza (1982) found that when associative interference was 

maximized (e.g. learn A-B and then A-C to encourage learning B-C), only a limited 

disruption of updating was observed. Exemplifying the notion that forging items, in 

contrast to forgetting them, is a more potent strategy for reducing interference, Bower 

and Reitman (1972) developed a strategy that they dubbed “progressive elaboration” so 

as to combat retroactive interference when using the peg words method to encode 

successive lists of information. Their progressive elaboration involves a subject 
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progressively adding new objects to a picture whereby each nth object on each list is 

associated alongside the nth object from the other lists. The authors use the following 

example to illustrate: 

Suppose the third word in Lists 1, 2, 3 were swing, cigar, fish, respectively. With 

the peg word "3 is a tree,” the scenes progressively elaborated during learning 

of the lists might be: for List 1, "a swing hanging from branches of a tree"; for 

List 2,  "a cigar lying on the swing on the tree"; for List 3,  "a fish smoking a cigar 

while swinging under a tree. 

Such a method appears to embrace the issue of contextual interference head on. In 

their experiment, Bower and Reitman (1972) compared subjects using this progressive 

elaboration to control subjects who were instructed to create entirely new imagined 

scenes for each list, specifically not calling to mind the words from previous lists 

associated to each peg word as it was used anew. The experiment also included a 

variant where participants used the MoL instead of the peg words technique; subjects 

were instructed to use the progressive elaboration technique and re-use the same loci 

(locations of their choosing along a path from their Stanford dorm to their Wednesday 

classes) for each nth object on a list, allowing the items to actively interact as illustrated 

above. The authors hypothesized that in the peg words method, subjects using the 

progressive elaboration strategy would show less retroactive interference across lists. 

However, they were cautious of extending this hypothesis to the MoL as they were 

weary that locations would birth fewer concrete relations than an object peg. However, 

participants in the progressive elaboration condition (in both the peg words and MoL 

groups) remembered more material at the end-of-session test and one-week-later test 
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compared to the subjects who were instructed to use an entirely new association each 

time. Interestingly, they also observed that participants in the new-association group 

had a marked recency effect (lists learned later showed greater memory strength) in the 

end-of session test, where the other groups did not. However, the progressive 

elaboration participants in both the peg word and MoL groups showed a primacy effect 

(lists learned first showed great memory strength) after a week had passed. Finally, 

intrusions were significantly more present during end-of-sessions tests as compared to 

immediate tests, but did not vary as a function of subject group. These findings are 

extended by the observation that increasing the amount of nonredundant elaboration 

one inflicts on an object when employing the MoL (e.g. by rating each object on it’s 

pleasantness) increases the accessibility of that visual image and the effectiveness of 

the mnemonic technique (Yesavage and Rose, 1984). 

In summary, it appears as though two potential strategies exist for reducing contextual 

interference during the recall of independent lists of information: 1) a cleanout / reversal 

learning strategy whereby one actively tries to forget the previously learned information 

before encoding new lists and 2) an elaborative encoding strategy that involves weaving 

together a visuospatial scene that associates items across multiple lists. Leading 

theories of memory and anecdotal reports of memory champions supports the former, 

but the latter has significant empirical support, albeit limited. It is the aim of this 

proposed study to elucidate the most efficient method for one to reduce retroactive 

interference and maximize recall strength when encoding multiple lists of objects within 

the same virtual environments. Briefly, this current work leveraged virtual encoding 

software developed for Chapter 3 and allowed participants to encode a list of objects 
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within a VE. Subsequently, participants were assigned to groups, whose instructions 

and afforded virtual functionality permitted for an evaluations of strategies in reducing 

contextual interference when learning a second list within the same VE: 1) elaborative 

encoding whereby the nth object on list 2 was encoded alongside the nth object of list 1, 

2) cleanout whereby participants could see all previously placed objects “fade” before 

encoding list 2, and finally, as a control, 3) the passage of time between encoding visits 

to the VE. 

Methods 

Participants 

135 participants were recruited for this study using UCLA’s psychology department 

online subject pool, which awards participants with class credit for participating in 

research studies. 33 participants could not finish the study due to either motion sickness 

(n=6) or technical issues (e.g. objects did not render or disappear appropriately). Thus, 

a total of 102 participants, aged 18-33 (M=20.74, SD=2.48, 52 females) completed this 

study. 

Participants were required to be right-handed, have normal or corrected-to-normal 

vision and hearing, have a mastery of the English language, and report no diagnosed 

learning disabilities, substance dependencies, nor prescriptions for psychotropic 

medications. Additionally, to prevent unequal exposure to the experimental apparatus, 

applicants were not permitted to participate if they had more than five hours of previous 

experience with the VR software used in this experiment (Second Life 

[http://secondlife.com] or its open-source virtual simulator OpenSimulator 

[http://opensimulator.org]). Eligibility screening was conducted prior to the participant’s 
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enrollment in the study using the Research Electronic Data Capture (REDCap) online 

survey systems (Harris et al., 2009). 

Materials 

Extensive material description is reported in Chapter 3, but also briefly described below. 

All tasks were presented on a 27” Monitor connected to a custom-built computer 

running Windows 7 Professional Operating System. Virtual environments and software 

were developed using OpenSimulator (http://opensimulator.org; Release 0.9.0.0). Two 

distinct VEs were leveraged in this study: “Lagoon World” for participant orientation and 

“Toon World” for encoding (Figure 1A). Both VEs sat on a 64 x 64 grid (arbitrary virtual 

units) with eight distinct landmarks are the cardinal perimeter points (i.e. South, 

Southwest, West, etc.; Figure 1B). 

Two digital Heads Up Displays (HUDs) were worn by the participant’s avatar during two 

different phases on the experiment. The first HUD presented an on-screen digital 

counter of the coins that the participant had collected throughout Toon World and was 

triggered by an experimental control desk located above the world, which also recorded 

the total time taken by the participant to collect all the coins (Figure 1C). The second 

HUD permitted for a list of 3D objects to render in front of the participant’s avatar with 

the functionality to click on the object and “freeze” it in place (Figure 1D); group-specific 

functionality (described below) was also afforded by this second HUD. An experimental 

control platform located above Toon World provided experimenters with the ability to 

control which list of objects were to be rendered, how long they were present for, and 

which group the participant was assigned to. The control platform also provided reports 

for the precise location of each item in the environment with a 1s time-scale resolution. 
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60 3D objects were rendered for this study using Blender (https://www.blender.org), 

relying partially on open-source objects acquired from TurboSquid 

(https://www.turbosquid.com). Objects were randomly sampled, without replacement, 

from this pool when creating the two lists of 20 objects each used for participant 

encoding.  

With participant permission, verbal recall tests were digitally recorded and cued 

conversationally by experimenters. Spatial recall tests (Figure 3.) were conducted and 

analyzed using custom MATLAB (The Mathworks, Inc., 2012b) code and 

Psychophysics Toolbox (Version 3; Brainard, 1997), which showed participants (for the 

first time) a bird’s eye view of Toon World and allowed them to pinpoint cursor to the 

cued location of landmarks, coins, and objects they encountered. Finally, all statistical 

tests were conducted using custom R (R Core Team, 2013; http://www.R-PRoject.org/) 

and MATLAB code. 

Procedure 

All participants were first placed in Lagoon World where they were instructed how to 

navigate using the mouse and keyboard. Experimenters confirmed all participants could 

move and adjust their looking direction comfortably before moving to the next phase. 

Subjects were then teleported to Toon World where they were told to collect 20 coins 

that were located about the environment, with explicit instructions to take note of the 

layout of the environment and its landmarks and to stay within the boundaries of the 

environment. Participants were given 5 minutes to collect all the coins and instructed to 

spend any remaining time exploring the environment of their own volition. Afterwards, 

participants took a short break while the experimenter prepared the next task. Upon 

https://www.blender.org/
https://www.turbosquid.com/
http://www.r-project.org/
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returning, participants were briefed on the traditional implementation of the MoL and 

how the present VR software would allow for them to implement the technique, virtually 

(see Appendix 1 for a full transcript of the instructions).  Afterwards, they were 

teleported to Lagoon World where they practiced the encoding process using a test list 

of 3D objects (“pyramid”, “cube”, and “sphere”). The objects appeared for 20s each and 

subjects learned to move about Lagoon World with the objects and how to click on them 

to trigger the freezing of the object in its current location (x, y, z). 

What follows is a detailed description of each participant group’s specific encoding and 

retrieval paradigm. Of note is that, in sum, all participants were exposed to each object 

on each list (40 total objects; 20 per list) for a total of 30s within Toon World by the end 

of the paradigm. All participants were informed that each list belonged to one of two 

fictional individuals (“Otto” or “Pike”) and told that they would later be instructed to recall 

the list of items in their original presentation order as cued by the individual’s name. 

Participants were also instructed to recall in the reverse order. In both recalls, 

participants were told to remember as many items as they could, even if they could not 

recall the order. Figure 4 provides a detailed schematic of the experiment for each 

group. 

Cleanout Group 

Participants assigned to the cleanout group were given 20s to view and place each 

object on the first list of items. Afterwards, they were given a short 2-minute break. 

Following the break, they were given two minutes to verbal recall first in the original 

encoding order and, subsequently, in the reverse of the original encoding order. 

Afterwards, they were submitted to the spatial recall task to test their allocentric memory 
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for where they placed the items on list. Participants were then informed of the traditional 

implementation of the cleanout technique (see Appendix 2 for full instruction transcript) 

and told that they would be trying to forget the information they just encoded by 

watching the objects “fade” in the locations they originally placed them. Next, 

participants were placed back into Toon World where a black sphere was located where 

they placed the first item on the first list (Figure 2A, left panel). Participants were 

instructed to navigate to the black sphere. Upon reaching the sphere, it would 

disappear, revealing the object they had previously placed at that location. Immediately 

after rendering, the object would begin to fade for a period of 10s until it disappeared 

completely (Figure 2A, right panel). After viewing each item on the list fade, participants 

were transported back to the southernmost region of Toon World and repeated the 

encoding and recall process for the second list. Following this second encoding / recall 

period, participants were given a surprise forward and reverse recall test for the items 

on list 1, cued by the fictional individual’s name. Following this third recall period, 

cleanout participants were submitted to a second spatial memory test for the location of 

objects on list 1, followed immediately by a spatial memory test for the location of the 

coins collected in the environment and objects located throughout the environment. 

Finally, they were submitted to the post-experimental questionnaire before being 

dismissed from the experiment. 

Elaborative Encoding Group 

Elaborative encoding participants were also given 20s to view and place each object on 

the first list of items and were also subsequently submitted to a forward/reverse/spatial 

memory test after a 2-minute break. Following this break, participants were briefed on 
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the traditional implementation of the elaborative encoding technique (see Appendix 3 for 

full instruction transcript) and told that they would be implementing the technique using 

our VR software. After instructions, participants were placed back into the southernmost 

portion of Toon World, where they were presented with the first object on list 2. At the 

same time as the first object appeared, a black sphere was rendered at the location 

where the participant placed the first object on list 2. The subject was instructed to walk 

with the object to the black sphere. Upon reaching the black sphere, but not before 20s 

had elapsed since the object from list 2 was rendered, the black sphere would 

disappear, revealing the first object on list 1 that was placed in that location. Participants 

had 10s to view both objects at the same time and place the object from list 2 on, below, 

or next to the object from list 1. After placing each nth object on list 2 with its counterpart 

nth object on list 2, all participants were tested on the forward/reverse/spatial recall for 

list 2’s items. Like in the cleanout group, participants were then submitted to surprise 

forward/reverse/spatial recall tests for list 1’s objects, followed by a spatial memory test 

for the landmarks and coins in Toon World, and finally a post-experimental 

questionnaire. 

Control Group 

Participants in the control group were given 30s to view and place each object on the 

first list before taking a short two minute break and then being tested on their 

forward/reverse/spatial recall for list 1’s objects. Following recall, control participants 

were given 10 minutes to take a break in which they were restricted from using their cell 

phone or computer. After this break, participants repeated the same encoding process 

as they did for list 1, but for the second list of objects. No mention of the previous 
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objects or any strategy was mentioned between the encoding of the two lists. After 

encoding all objects on list 2, participants were tested for their forward/reverse/spatial 

recall for list 2’s objects, followed by the same surprise forward/reverse/spatial recall 

prompt for list 1’s objects, a spatial memory test for the landmarks and coins in Toon 

World, and finally the same post-experimental questionnaire. 

Behavioral Scoring 

Participants’ verbal recall recordings were transcribed by one of the five experimenters 

in charge of scheduling and testing participants. The primary recall metrics of interest 

were performance on the surprise recall test as a function of group and previous recall 

attempts, the total number of objects recalled across all sessions, and how individual 

differences in spatial memory for learned objects and their degree of presence in the 

environment played a mediating role. Performance on all recall tests was measured 

using three metrics: 1) the number of words correctly recalled within the 2-minute time-

limit (Recalltotal / Reverse-Recalltotal), 2) the number of adjacent word pairs that were 

representative of the original encoding order (Recallclustering / Reverse-Recallclustering), and 

3) the number of words recalled that were not on the cued list (Interference). Clustering 

was calculated using a serial clustering metric, adjusted for chance, developed by 

(Stricker et al., 2002) and given by:  

Recallclustering or Reverse-Recallclustering = 𝑋 − (𝑟 − 1)/𝑁 

where X is the total number of observed pairs of adjacent words in the recalled list that 

were also beside each other in the original presentation list, r is the total number of 

correct words recalled in the trial, and N is the total number of words presented in a list 
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(N=20 in all calculations). Additional sets of second-order metrics were calculated as the 

difference in recall between recall 1 and recall 3 (both of which tested for memory of list 

1’s objects). 

A participant’s spatial memory for objects was calculated as the average Euclidean 

distance between the coordinate vectors (x,y) for where the participant actually placed 

the object vs. where they clicked on the bird’s eye view of the map. The same metric 

was calculated for a participant’s spatial memory for the landmarks. A third spatial 

metric was calculated to reflect a participant’s memory for the location of coins within 

Toon World by calculating the average Euclidean distance between the selected 

location and the nearest coin, only allowing each coin to be considered the “nearest” 

exactly once. Finally, a metric denoting the average proximity of objects to landmarks 

within an environment was calculated as the average Euclidean distance between an 

object and its nearest landmark, within a list. 

Presence 

Two independent measures of presence were collected via REDCAP (Harris et al., 

2009) during the post-experimental questionnaire: 1) A six-question survey, developed 

and continually refined by another research group (Slater, McCarthy, & Maringelli, 1998; 

Slater, Usoh, & Steed, 1994; Slater, Usoh, & Chrysanthou, 1995; Slater, Usoh, & Steed, 

1995), where the metric reported (PresenceSlater) is the number of responses rated as > 

6 and 2) A ten-question survey developed by Fox, Bailenson, and Binney (2009), where 

the reported metric (PresenceFox) is the average score across all ten items. Participants 

were also given a simple 10-point scale question that asked: “To what degree did you 



190 

feel you were ‘in’ Toon World as you moved around?” to acquire an environment-

specific measure of presence. 

Statistical Analyses 

Analyses comparing the various recall metrics across groups were conducted using a 

one-way analysis of variance (ANOVA); significant F-statistics (p<0.05) were submitted 

to a follow-up t-test of simple effects. If violations of normality were observed (kurtosis 

or skew > 1.96; (Gravetter and Wallnau, 2008) in the underlying dependent variable, a 

Kruskal-Wallis one-way analysis of variance test, which does not assume a normal 

distribution(Kruskal and Wallis, 1952), was used; the Chi-square and associated p-

values are reported and a Mann-Whitney U test was conducted for follow-ups of simple 

effects. Examinations of individual differences across two continuous variables were 

calculated with a Pearson’s linear correlation coefficient; r-values are reported alongside 

p-values from a t-test comparing the r-value to a null hypothesis of no-relationship (i.e. 

r=0). In the presence of a significant correlation within any experimental group (or 

across all participants), a comparison of the correlation within the other groups was 

conducted using a two-tailed test for the difference between either two independent 

correlation coefficients (Cohen and Cohen, 2003) using an online utility 

(http://quantpsy.org/corrtest/; (Lee and Preacher, K. J, 2013; Preacher, 2002). For 

analyses where multiple metrics were collected for each group (e.g. landmark-object 

proximity across worlds), a multivariate analysis of variance (MANOVA) was conducted 

and the F-statistic and Wilk's Λ are reported. 

To examine the impacts of additional variables on a linear model of experimental group 

on the various recall metrics, a stepwise linear regression was implemented for 

http://quantpsy.org/corrtest/
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independent variables of interest. Examined variables included those that either a) 

previously revealed a group difference (e.g. spatial memory) or b) warranted 

investigation due to supporting literature (e.g. presence). An analysis of deviance was 

conducted on the nested models to determine if the model benefited from the inclusion 

of the additional variable (i.e. parsimonious); F-statistics and associate p-values are 

reported and beta-coefficients were analyzed with a t-test. 

Results 

Forward Recall 1 

Despite both cleanout and elaborative encoding participants having seen List 1’s 

objects for 10s less than participants in the control group at the time of Recall 1, there 

was no significant difference across groups in the total number of words recalled 

[H(2)=3.81, p=0.149]. There was a significant difference, however, in the number of 

words recalled in the correct order [H(2)=8.33, p=0.016], driven by participants recalling 

significantly less in the elaborative encoding group compared to cleanout (p=0.014) 

participants. 

Forward Recall 2 

A significant effect of group on the total number of objects recalled was observed 

[H(2)=9.98, p=0.007], driven by the elaborative encoding group recalling significantly 

less than both the cleanout (p=0.012) and the control group (p=0.025). There was also 

a group effect on the number of objects recalled in the correct order [F(2,101)=5.77, 

p=0.004], driven by participants in the elaborative encoding condition recalling 

significantly less words in the correct order compared to control (p=0.007) and cleanout 
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(p=0.019) participants. The number of intrusions was remarkably low across groups 

(Elaborative = 2 total intrusions; Cleanout = 2; Time = 0), and this minor difference was 

not significant. 

Forward Recall 3 

There was no significant difference across groups in the number of words recalled on 

the surprise recall test for List 1’s objects [H(2)=5.36, p=0.068] nor for the number of 

words recalled in the correct order [F(2,101)=1.11, p=0.335]. There was also no effect 

of group on intrusion. The difference in recall attempts for List 1’s object (i.e. recall 1 

and surprise recall 3) was calculated as a measure of “forgetting”. While participants in 

the control group had very little forgetting across recall attempts (M=0.618, SD=2.708), 

participants in the cleanout group actually recalled more objects on the surprise recall 

test (M= -1.06, SD=2.33), as did participants in the elaborative encoding group (M=-

2.62, SD=3.31). This difference was significant [H(2)=16.04, p<0.001], due only to a 

significant difference between elaborative and control participants (p<0.001). Intrusions 

were low across groups (Elaborative= 8 total intrusions, Cleanout=2; Control=3), and 

this minor difference was not significant. 

Reverse Recall 1 

No difference in the number of words recalled was observed as a function of group 

[H(2)=2.71, p=0.258]. There was a significant difference in the number of words recalled 

in the correct reverse order, as a function of group [H(2)=8.44, p=0.015], driven by 

participants recalling significantly less in the elaborative encoding group compared to 

cleanout (p=0.014) participants. 
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Reverse Recall 2 

There was a significant effect of group on the total number of words recalled 

[H(2)=13.06, p=0.002]. Both cleanout (p=0.001) and control (p=0.034) participants 

recalled significantly more words than those in the elaborative encoding group. There 

was also a significant difference in the number of words recalled in the correct order 

[F(2,101)=7.28, p=0.001], driven by participants in the elaborative encoding condition 

recalling significantly less words in the correct order compared to control (p=0.012) and 

cleanout (p=0.002) participants. The total number of intrusions were low across groups 

(Elaborative = 7 total intrusions; Cleanout = 1; Control = 2), and no significant difference 

was observed. 

Reverse Recall 3 

There was no significant difference across groups in the number of words recalled on 

the surprise recall test for List 1’s objects [H(2)=1.46, p=0.482] nor for the number of 

words recalled in the correct order [F(2,101)=1.87, p=0.159]. There was, however, a 

significant effect of intrusion [H(2)=10, p=0.007], with participants in the elaborative 

encoding group having significantly more intrusions than their control (p=0.043) and 

cleanout (p=0.008) counterparts. An effect of group was also observed on forgetting 

[H(2)=12.35, p=0.002], again driven by significantly less forgetting in the elaborative 

group compared to the control (p=0.002) group. The total number of intrusions were 

higher in this recall attempt and varied as a function of group (Elaborative = 40 total 

intrusions; Cleanout = 5; Control = 9) [H(2)=10, p=0.007], driven by elaborative 

encoding participants having more intrusions than cleanout (p=0.008) and control 

(p=0.043) participants. 
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Recall Summary 

As a summary metric for each recall session, we also combined forward and reverse 

recall to yield a Total Recall for each retrieval attempt. Group had no effect on List 1’s 

Total Recall for number of words [H(2)=3.43, p=0.18], but one was observed for correct 

order [H(2)=8.78, p=0.012], driven by less words recalled in the correct order by 

Elaborative participants, compared to cleanout participants (p=0.013). Total Recall on 

List 2 varied as a function of group on number of words recalled [H(2)=11.29, p=0.004], 

driven by elaborative participants recalling less than both cleanout (p=0.004) and control 

(p=0.03) participants, and the number of words recalled in the correct order 

[H(2)=12.19,p=0.002], driven by elaborative participants recalling less than both 

cleanout (p=0.005) and control (p=0.01) participants. There was no significant 

difference across groups in the number of words recalled on the surprise recall test for 

List 1’s objects (Recall 3) [H(2)=2.84, p=0.242] nor for the number of words recalled in 

the correct order [F(2,101)=1.5, p=0.23]. See Figure 5 for recall results as a function of 

group and attempt.There was a strong effect for forgetting as a function of group 

[H(2)=16.8, p<.001], which was driven by elaborative participants forgetting far less 

material than both the cleanout (p=0.028) and control (p<0.001) groups (Figure 6). 

There was no effect of intrusions as a function of group during Recall 2, but one was 

observed during Recall 3 [H(2)=11.47, p=0.003], driven by participants in the 

elaborative encoding group having significantly more intrusions than both cleanout 

(p=0.005) and control (p=0.02) participants (Figure 7). 

Collapsing across lists revealed no consistent effect in forward recall for the number of 

words recalled in total [H(2)=2.86, p=0.24] or in the correct order [H(2)=5.44, p=0.066]. 
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The same was true for the number of words in total during reverse recall [H(2)=3.96, 

p=0.138]. However, there was a difference in group for the number of words recalled in 

the correct reverse order [H(2)=7.5, p=0.024], driven by elaborative encoding 

participants recalling significantly less than the cleanout group (p=0.018). Finally, 

collapsing across all lists and forward/reverse recall attempts revealed no difference in 

total number of words recalled [H(2)=3.46, p=0.177]. However, a small difference was 

found for the number of words recalled in the correct order [H(2)=6.61, p=0.037], but 

this was mainly driven by elaborative encoding participants recalling less than their 

cleanout counterparts (p=0.032). 

Spatial Memory 

There was no effect of group on a participant’s spatial memory for the location of placed 

objects on the first [H(2)=1.84, p=0.399], second [H(2)=2.02, p=0.365], or third 

[H(2)=2.19, p=0.334] attempt. No effect of spatial forgetting (i.e. difference between 

spatial memory for Objects after Recall 1 vs. Recall 3) was observed as a function of 

group [ H(2)=0.46, p=0.796]. There was also no effect of spatial memory for the 

landmarks located about the environment, as recalled on the third spatial memory test 

[H(2)=1.35, p=0.51] nor a difference in groups on the coin-placement task [H(2)=0.04, 

p=0.979]. 

Discussion 

Previous research has shown that using MoL software within multiple VEs affords 

participants with enhanced mnemonic recall (Chapter 3). However, the creation of 

unique VEs is a time-consuming and effortful process, especially when attempting to 

induce a sense of fantasy—an environmental standard thought to increase the efficacy 
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of the MoL (Bower, 1970). As such, the identification of a virtual strategy that would 

allow for the same VE to be used to encode multiple lists of information would increase 

the ecological validity of translating laboratory technology into consumer products. The 

current study sought to determine the best strategy with which to minimize interference 

and maximize encoding capacity when leveraging a single virtual environment (VE) to 

implement the Method of Loci (MoL). 

We evaluated two such potential strategies: 1) A cleanout method, widely utilized by 

memory champions (Foer, 2011), where one revisits the locations where they placed to-

be-remembered objects and actively engages in “destroying” the information in an act of 

directed-forgetting and 2) An elaborative encoding method, where one revisits the 

locations of previous objects on a list and places new objects on or around those 

objects to create a solitary dual-object representation. We created virtual software that 

allowed for participants assigned to the cleanout group to view and place a list of 20 

objects and then return to the same environment to revisit the object locations and then 

watch the objects fade until disappearing before entering the environment for a third 

time to encode a new list of 20 objects. The software constructed for exclusive use by 

the elaborative encoding group allowed for participants to revisit the object locations 

where they previously placed to-be-remembered objects; however, upon re-rendering of 

the previous objects, participants were able to place a new object nearby—encouraging 

a representation of the two objects in simultaneity. A third participant group merely 

allowed participants to take a 10-minute break between the two encoding sessions and 

served as a control. Participants were evaluated based on the number of words they 

recalled in total, the number of words recalled in the correct order, the number of words 
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forgotten (between recall attempts on the same list of objects), and number of intrusions 

(when the object recalled belonged to an incorrectly cued list). 

Results from the current study indicate that neither the elaborative encoding nor 

cleanout strategy afforded participants with enhanced mnemonic recall compared to the 

control group, measured by the total number of words recalled and the number of words 

recalled in the correct order. The elaborative encoding group was actually at a 

disadvantage on these metrics, recalling significantly less words (and less in the correct 

order) than both the cleanout and control group during Recall 2. This finding suggests 

that when encoding a list of objects in an environment where such an encoding had 

recently occurred for a separate list, the elaborative encoding strategy devised for the 

current study is not preferable.  

However, by the metric of forgetting, participants in the elaborative encoding paradigm 

had a clear advantage: participants recalled, on average, more words, compared to 

cleanout and control participants, during the second time recalling List 1’s items than 

they did the first time. This effect may have been observed due to the fact that 

participants in the elaborative control group had multiple independent exposures to the 

original encoding stimuli—an act that is known to bolster memory strength (Szpunar et 

al., 2004). While it is true that the Cleanout group also received an additional exposure 

to the original encoding stimuli between the first and second recall of List 1’s objects, 

this exposure did not have high fidelity to the first experience; the objects were fading 

and, thus, visually different at each time point compared to the entirety of the original 

experience. Additionally, cleanout participants were encouraged to actively forget the 

material they were reviewing—a process known as “reversal learning” which has been 
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successfully used to “forget” previously learned associations of material, including 

information bound to spatial environments (Schrijver et al., 2004).  

This advantage afforded to elaborative encoding participants was dismounted even 

further, by the observation that, in addition to recalling less words on the second list, the 

elaborative encoding group had significantly more intrusions during the second recall of 

List 1’s objects. This finding suggests that in their attempt to co-encode the two stimuli, 

participants in the elaborative encoding group confounded the two objects and reduced 

their independence, making it more likely to associate them together and, subsequently, 

recall them during the wrong cue. 

Importantly, outside of the less-forgetting effect observed in elaborative encoding 

participants, neither of the experimental groups outperformed the control group, even 

when averaging across all recall attempts to obtain a Total Recall metric. As such, it 

appears that given the current study’s experimental stimuli, the most parsimonious 

approach to maximize recall, while minimizing interference, is to simply take a short 

break between encoding sessions. While one may be more likely to forget significantly 

less words from the first list after encoding a second list than if they had employed an 

elaborative encoding strategy, the cons of decreased recall for the second list and an 

overall increase in intrusions does not present an elaborative encoding strategy as a 

worthwhile pursuit. 

While Bower and Reitman (1972) observed that elaborative encoding conducted within 

a single context, held in one’s mental imagery, was advantageous for recall over 

encoding across separate contexts, Karpicke and Smith (2012) found that repeated 

retrieval produced better long-term retention than repeated study with elaborative 
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encoding. This lack of a replication, combined with the current study’s results suggest 

that a successful elaborative encoding may depend on the experimental conditions and 

instructions. Indeed, it has been shown that integrated, highly elaborated memory 

traces are better recalled than either small unelaborated traces or large, poorly 

integrated traces (Bradshaw and Anderson, 1982). As such, encouraging behavior with 

concrete examples is prudent and it could perhaps be reasoned that the current study’s 

virtual software does not allow for a highly elaborated memory trace since the 

functionality afforded to participants was a mere ability to place an object near a 

previously placed object. Specifically, no action was permissible in the current study’s 

elaborative encoding scheme; participants could not have the two objects interact—a 

potentially critical component underlying the mnemonic’s purported efficacy. Additional 

research will need to be conducted to assess the degree with which the elaborative 

encoding technique can be offloaded from mental imagery, where an infinite number of 

object and interaction combinations can be formed, and into a virtual reality software. 

Given that the cleanout method is widely used amongst those who implement the MoL, 

especially competitive memory athletes (Foer, 2011), we were initially surprised to not 

see an advantage for participants afforded the ability to “forget” previous material before 

learning new material. Our previous work with this suite of custom VR software (Chapter 

3) revealed the importance of binding objects with the scaffolding of a VE, and that 

one’s spatial memory for where they placed an object was critically related to their recall 

of that object. Given the potency of those findings, it may be the case that intra-

environment locations served as distinct enough loci that permitted for the encoding of 

multiple lists of information without the need to engage in forgetting. Much as a single 
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university campus can be broken down into subsets of geo-fenced locales (e.g. 

Psychology Department Tower), the VE utilized in the current study could have been 

used by participants to differentiate the two lists (e.g. indoors vs. outdoors). Such a 

strategy would allow for participants to reap the benefits of spatially-directed encoding 

without  being subject to the interference effects often witnessed when doing so (Keppel 

and Zavortink, 1969). Recognizing this potential, there may not have been a need for a 

cleanout between encoding lists; there was enough space for both sets of objects to be 

encoded without overlap. Indeed, those who use the cleanout method are encoding 

orders of magnitude more objects than the 40 mandated by the current study. Future 

research would need to be conducted to determine a) if encouraging participants to use 

discrete sub-sections of the VE can prevent the need for a cleanout and b) what the 

maximal object : square foot ratio is for a single environment and, if when at ceiling, the 

cleanout method leveraged in the current study allows for a successful re-encoding 

within that environment. 

Figure Captions 
 

Figure 1. Virtual Environment and Software 

A) Left panel: “Toon World” where participants encoded both lists of information as seen 

from the southernmost region of the environment from a “first-person” egocentric 

viewpoint. Right panel: the eight landmarks situated in the cardinal positions around the 

perimeter of the environment, arranged respectively. B) Left panel: Example coin 

collected by a participant upon their first entries entry into Toon World. 20 coins were 

distributed across the environment and a Heads Up Display (HUD) indicated a 

participant’s progress as they collected each of the coins. Right panel: Experimenter 
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token-control platform, located on a platform floating above Toon World. Experimenters 

were able to leverage this control platform to clear coins, initiate the collection phase, 

and collect metrics concerning a participant’s coin collection. C) Left Panel: Objects 

continually rendered in front of participants as they navigated Toon World. An HUD 

rendered the objects and provided a light (green shown here) indicating whether 

participant was currently in the encoding phase. Objects were visible for a period of 20s 

before disappearing and a new object appearing in its place. Participants were able to 

view the object from all angles of its pitch and yaw axes by rotating about the object. 

Participants were able to “click” on the object and “freeze” it in a location of their 

choosing. Shown here is a beer in Toon World. Right panel: Experimenter object-control 

platform, located on a platform floating above Toon World. Experimenters were able to 

leverage this control platform to load in participant specific lists of objects, delineate 

which group the participant was in, set the exposure time for objects, send objects to 

the participant’s HUD, and collect metrics concerning each object’s location within the 

environment at a temporal resolution of 1s. 

Figure 2. Group-Specific Functionality 

A) Functionality afforded exclusively to participants in the “Cleanout” group. Left panel: 

a participant initially sees a black sphere at the location where they previously placed an 

object. Right panel: Upon reaching the black sphere, the object appears and begins 

fading for 10s until it complete disappears and a new black sphere appears. B) 

Functionality afforded exclusively to participants in the “Elaborative Encoding” group. 

Left panel: a participant sees a black sphere in the location where they placed object n 

on list 1 while also being exposed to item n on list 2. Right panel: Upon reaching the 
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black sphere, and allowing a minimum of 20s to pass since the participant was first 

shown object n on list 2, object n on list 1 appears for 10s and the participant is 

encouraged to place object n on list 2 on, about, or around object n on list 1. 

Figure 3. Object/Landmark/Token Placement Task 

Participants were shown an allocentric, “bird’s eye” view of Toon World that contained 

landmarks (A) for object-placement and token-placement tasks and one that was 

stripped of its eight landmarks (B) for a landmark-placement task. C) The instruction 

screen immediately preceding each placement trial. Participants were provided with a 2-

D image of an object they encoded and instructions to click on the map location where 

they placed the object. D) The mouse cursor participants used to select the location of 

the cued object/landmark/token. E) A grid overlay delineating the 4,096 (64 x 64) cells 

available for participant selection via their cursor. This grid was not visible to 

participants, but could be inferred given the cursor’s inability to be placed outside of 

each cell—the cursor would “snap” to fit into the nearest, overlapping grid cell. 

Figure 4. Experimental Paradigm 

All participants underwent a familiarization phase that first included a general orientation 

in Avatar Island, followed by five minutes of token-collection. Afterwards, participants 

were read encoding instructions and teleported to Lagoon World to practice the 

placement of a set of test objects (cube, pyramid, sphere). All subjects then encoded a 

list of 20 objects in Toon World. Subjects in the elaborative and cleanout groups saw 

each objects for 20s; participants in the control group saw each object for 30s. 

Following the encoding of the list, participants were cued to verbally recall the list of 
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items in forward and, immediately after, reverse encoding order. After this forward and 

reverse-recall session, participants were submitted to spatial recall tests for where they 

placed the objects (Figure 3.). Afterwards, participants in the control group took a 10 

minute break and then repeated the same encoding process, but with a new list of 

items. During that same time, participants in the elaborative and cleanout group were 

placed back in the environment where a black sphere appears in the location of where 

they placed the first item on the first list. Participants in the cleanout group would 

navigate to the black sphere and, upon coming within a 3-meter radius of it, 

automatically trigger the placed item to reappear and begin fading for a period of 10s 

until it was completely invisible and a new black sphere appeared in the subsequent 

object’s location. Participants in the elaborative encoding group were presented with 

objects on the second list as they made their way to the black sphere. The objects 

would appear for a minimum of 30s: the black sphere would not disappear until they had 

seen the object for 20s and then the previous object placed at that location would 

appear, allowing 10s for the participant to place the new object on, about, or around the 

previous object. After encoding both lists of information, all subjects were asked to recall 

the list of objects on List 2 in the forward and reverse order and were then subjected to 

the object-placement task for those objects. They then repeated this recall process for 

List 1 again. Finally, they were submitted to a landmark and coin-placement task where 

they indicated the location of the objects and coins previously seen in the environment. 

Finally, all subjects filled out the post-experimental questionnaire. 

Figure 5. Recall Results 
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A) Number of words recalled at each recall attempt, collapsed across forward and 

reverse recall attempts (max=40; 20 objects per list, recalled twice). B) Total number of 

words recalled in the correct presentation order during both forward and reverse recall 

(where correct order was determined as the number of words recalled in the reverse of 

the original presentation order).  

*p<0.05; **p<0.01; ***p<0.005 

Figure 6. Forgetting Results 

A) Difference in recall of list 1, which was cued during recall attempts 1 and 3. Negative 

numbers reflect an increase in recall from Recall 1 to Recall 3.   

*p<0.05; **p<0.01; ***p<0.005 

Figure 7. Intrusions Results 

A) The average number of words recalled from the list of objects that was not cued for 

that particular recall attempt. Metrics are averaged across both forward and reverse 

recall attempts. 

*p<0.05; **p<0.01; ***p<0.005 

Figures 
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Figure 1. Virtual Environment and Software 
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Figure 2. Group-Specific Functionality 
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Figure 3. Object/Landmark/Token Placement Task 
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Figure 4. Experimental Paradigm 
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Figure 5. Recall Results 
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Figure 6. Forgetting Results 
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Appendix 

Appendix 1 – MoL Encoding Instructions 

We are now ready to get started with the task. First, I’d like to explain a bit about this 

study.  

People use a variety of strategies to memorize information. We would like to introduce 

you to one mnemonic technique known as the “Memory Palace” strategy that can be 

used to aid your memorization of a list of items. 

Conceived in Ancient Greece, this strategy takes advantage of the fact that information 

is more easily remembered when it is associated with a spatial location. In its classic 

implementation, the Memory Palace strategy involves imagining yourself navigating a 

familiar environment (e.g., your home) and mentally “placing” each of a list of objects at 

a specific memorable location along your path.  For example, if you had to remember 

bananas, eggs, and peppers, in that order, you could imagine yourself walking up to the 

door of your home, where you find a banana on the doorknob; after entering the door, 

you see eggs hanging on strings from the ceiling in the entryway; after moving through 

them, you see peppers all over the floor in the living room. When it is later time to 
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retrieve the list of objects, you would simply re-imagine yourself walking along the 

original path you traversed and observing each item on the list -- right in the place that 

you left it. 

While this memorization strategy typically involves placing a list of to-be-remembered 

items using only one’s imagination, we have created a platform for you to implement 

this strategy by placing items as you navigate along a path through a virtual reality 

environment.  

We are now going to practice using the technique I just described to you. 

In this world, a series of three 3D objects will appear in front of you, one at a time. 

Please move about the environment and find a memorable location to place each 

object. When you click on the shape, it will be placed in that location. Be sure to try and 

place the items along a path that you would be able to recreate later, as this will help 

you when you are later asked to recall the objects in order. Each item will be available 

for you to view for 20 seconds before a new one appears. (Please give me a moment to 

load these items)” 

Appendix 2 – Cleanout Instructions 

Great. We are now going to go back to Toon World. People who use the Memory 

Palace strategy we described to you often struggle with using the same environment to 

encode multiple lists of information. Experts typically employ a “clean out” strategy 

where they mentally imagine themselves going back into the environment, following 

their original path and, when coming across an object they placed in the environment, 

erasing it by imagining it fade away. The idea is that just like how we said earlier 



218 

“information is more easily remembered when it is associated with a spatial location”, 

removing that information from the spatial location helps you forget the objects.  

While this clean out strategy typically involves using one’s imagination, we have created 

a platform for you to implement this strategy by observing the items you previously 

placed fade away.  

You are now going to go back to Toon World. Your task is to revisit the locations where 

you placed the objects from [First Name List]’s, in order, and watch them fade away as 

you try to forget that object and where it was in the environment. The task will go as 

follows: You will start at the South part of the environment and a black-sphere will 

appear where you placed the first item on the list. You will navigate to that black-sphere. 

Once you arrive, the object you placed there will appear and then fade. You should 

watch it fade as you try and forget that you learned that object and placed it in that 

location. After the fade is complete, a new black sphere will appear. You will visit each 

black sphere until you have watched all the objects you originally placed from [First 

Name List]’s List fade. 

Appendix 3 – Elaborative Encoding Instructions 

Great. You are now going to go back to Toon World. People who use the Memory 

Palace strategy we described to you often struggle with using the same environment to 

encode multiple lists of information. Experts typically employ an “elaborative encoding 

strategy” to help them remember new lists. This works by revisiting the locations where 

you placed previous objects and placing new objects near them so that you remember 

both objects. It also helps to imagine those objects interacting with each other. For 
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example, if you previously placed a banana and are now placing a frog, you could 

imagine a frog eating a banana.  

While this elaborative encoding strategy typically involves using one’s imagination, we 

have created a platform for you to implement this strategy by observing the items you 

previously placed re-appear so you can place new items above, below, or to the side of 

them. 

 Your task is to revisit the locations where you placed the objects from [First Name 

List]’s, in order, and place new items that belong to [Second Name List] alongside them. 

The task will go as follows: You will start at the South part of the environment and a new 

object, belonging to [Second Name List] will appear in front of your avatar. At the same 

time, a black-sphere will appear where you placed the first item on the list. You will 

navigate to that black-sphere, with the new object from [Second Name List]’s List in 

front of you. Once you arrive, the object you placed there from [First Name]’s List will 

appear. There may be a slight delay before the object appears. If so, just concentrate 

on remembering the item from [Second Name List]’s List. 
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Chapter 5: Mapping neural representations of environmental context and path 

direction during imagined navigation of learned virtual environments 

 

Abstract 

Constructing a rich egocentric representation of one’s movement about an environment 

is a multi-faceted effort requiring a vast interplay across cortical areas responsible for 

visual processing, heading direction, and spatial coding. While electrophysiological 

recordings in rodents have identified robust neural correlates related to distinct aspects 

of navigation, experimental work with human participants offers the unique potential to 

elucidate the mechanisms of navigational mental imagery, a process we frequently 

engage in when planning a route or giving directions. In the present study, we first 

familiarized participants with navigational paths about three highly distinctive virtual 

environments. The next day, while undergoing functional magnetic resonance imaging 

(fMRI) scanning, participants viewed a series of first-person videos  clips that indicated 

either clockwise or counter-clockwise movement around the perimeter of each 

environment. After several rounds of video viewing, participants performed a new task 

in which they were covertly cued to imagine themselves walking along each of these 

same routes. We leveraged support vector machines within a searchlight-mapping 

approach to identify brain regions whose local BOLD patterns coded for information 

pertaining to the participants’ heading direction or environmental context. As expected, 

early visual areas along the dorsal stream were capable of decoding the environmental 

context during perception, with more downstream regions concerned with spatial 

navigation (e.g. parietal and retrosplenial cortices) supporting successful classification 

during imagery. We also identified regions implicated in working memory and retrieval 

(e.g. dorsolateral and medial prefrontal cortices) in supporting a contextual 
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reinstatement of perceptually derived activity patterns during imagery. Moreover, we 

also revealed regions that were informative of which direction (i.e. clockwise or counter-

clockwise) during both perceived (e.g. V5 and Precuneus) and imagined (extrastriate 

cortex) navigation. 

Introduction 

Navigating about one’s environment is a multi-faceted effort requiring a faithful 

representation of the visuospatial layout and one’s position and orientation within a 

space. A vast network of spatially tuned cells supporting different aspects have long 

been identified in rodent populations: place cells represent an organism’s specific 

location within an environment (O’Keefe, 1979), grid cells provide a coordinate system 

for the calculation of trajectories between known places (Moser et al., 2014), head-

direction cells indicate absolute compass direction (Taube et al., 1990a), boundary 

vector cells represent environmental edges and barriers (Lever et al., 2009), and a 

variety of cells provide a conjunctive representation of position, direction, and velocity 

(Sargolini et al., 2006). Analogous functionality has been observed in humans during 

directed and free navigation (see Spiers and Barry (2015) for a review). 

A great deal of work has been conducted to decode the contents of visual 

consciousness using multi-voxel pattern analysis (MVPA; Harrison and Tong, 2009; 

Kamitani and Tong, 2005). These early studies leveraged relatively simple stimuli like 

oriented grating held in working memory to identify early visual regions sensitive to 

orthogonal orientations. Other studies leveraged more complex stimuli (like objects 

spanning several categories), combined with a searchlight-brain-mapping approach 

(Kriegeskorte et al., 2006), to unveil neural representations supporting the stimuli of 



222 

interest (for review, see: Haxby et al., 2014). Developments in the field have now even 

permitted for the reconstruction of visual experiences based on brain activity evoked 

while participants view movies (Nishimoto et al., 2011). Despite an abundance of 

research dedicated towards unveiling the neural correlates supporting navigation (e.g. 

(Dhindsa et al., 2014; Hartley et al., 2014; Suthana et al., 2009), little work has been 

done to determine the possibility of decoding visual content while participants are 

engaged in more complex, visually-guided tasks, like navigation. In this current study, 

we sought to determine whether environmental context (i.e. which virtual environment 

(VE) a participant was viewing) was decodable from participants’ blood oxygen level 

dependent (BOLD) signal as they were presented with egocentric first-person 

navigational pursuit videos that required visually-dependent feedback– a critical 

extension to research showing that still pictures of natural scene categories can be 

decoded using distributed patterns of activity in the brain (Walther et al., 2009). While 

the debate on whether or not navigation in Virtual reality (VR) is to be considered “true 

navigation” continues to evolve (Minderer et al., 2016; Taube et al., 2013a), 

experimental outcomes vary very little between virtual and real-world navigation and the 

ecological benefits of leveraging VR for fMRI research into memory outweighs its cons 

(for review see Reggente et al. (2018)). 

Mental imagery is known to play a key role in successful navigation; whether planning 

out one’s own route or providing directions to others, we must mentally simulate a 

trajectory through space and conjure up representations of pertinent contextual details. 

Research into decoding the contents of mental imagery has shown that it is possible to 

differentiate between categories of objects (Reddy et al., 2010) and where a participant 
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believes they are in a virtual environment (Hassabis et al., 2009) without any explicit 

perceptual input. It has even been shown that it is possible to decode the contents of 

visual imagery during sleep (Horikawa et al., 2013). While neural correlates supporting 

distinct aspects of imagined navigation have been unveiled (e.g. (Ghaem et al., 1997; 

Ino et al., 2002; Rosenbaum et al., 2004), little work has been done to unveil whether 

context-relevant information is also embedded in such regions. As such, the current 

study also looked to replicate its visual decoding efforts within the imagery domain. 

Previous research has suggested that regions in the human brain contain neural 

populations involved in the encoding and retrieval of allocentric heading information in 

humans (Baumann and Mattingley, 2010) and one study has shown that it is possible to 

decode heading direction in a 4-way classification of N, S,W,E (Rodriguez, 2010). 

Additionally, single-neuron recordings in the human entorhinal cortex while a participant 

navigates a VE have been shown to indicate whether they are taking a clockwise or 

counterclockwise path around a virtual road—a discovery that used the nomenclature of 

“path cells” to denote their function (Jacobs et al., 2010). 

In the current study, participants were first familiarized with a series of three distinct VEs 

and the arrangement of landmarks about them. The next day, participants were placed 

into the scanner as they semi-passively watched a series of videos that showed first-

person movement to and from landmarks within each VE. Importantly, the videos 

indicated either clockwise or counter-clockwise movement around the perimeter of each 

environment. Afterwards, they engaged in a directed mental navigation that was 

designed to implicitly recreate the same landmark-based, direction-specific routes within 

the confines of their mental imagery. MVPA analyses were utilized, within an 
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information-based searchlight brain-mapping cross-validation framework, to reveal 

regions during perception and imagery that were maximally dissimilar enough across 

context to permit successful classification of unseen brain states. Additional analyses 

were conducted to decode the directionality of movement about the environment (i.e. 

clockwise vs. counterclockwise) during perceived and imagined navigation, irrespective 

of VE. 

Methods 

Participants 

34 participants were recruited for this study by way of posted flyers throughout the 

UCLA campus and listings on UCLA’s online participant pool. Two participants were 

unable to finish the study in its entirety due motion sickness encountered on Day 2. As 

such, a total of 32 participants, aged 18-23 (M=19, SD=1.1; 16 females), were analyzed 

in this study for either university credit or cash-payment (N=22). 

Participants were required to be right-handed, have normal or corrected-to-normal 

vision and hearing, have a mastery of the English language, and report no diagnosed 

learning disabilities, substance dependencies, nor prescriptions for psychotropic 

medications. Participants were also asked about their motion sickness (e.g. do you get 

sick when reading in the back of a car), to avoid the enrollment of participants who were 

particularly prone. Additionally, to prevent unequal exposure to the experimental 

apparatus, applicants were not permitted to participate if they had more than five hours 

of previous experience with the VR software used in this experiment (Second Life 

[http://secondlife.com] or its open-source virtual simulator OpenSimulator 

[http://opensimulator.org]). Eligibility screening was conducted prior to the participant’s 
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enrollment in the study using the Research Electronic Data Capture (REDCap) online 

survey systems (Harris et al., 2009). The Institutional Review Board at UCLA approved 

all recruitment and testing procedures. 

Materials 

A 27” LG Monitor (1600 x 900 (32bit)(60Hz) display) connected to a custom-built 

computer running a 64-bit Windows 7 Professional Operating System on an Intel® 

Core™ i7-3770K Central Processing Unit (CPU) @ 3.50 GHz (8 CPUs) with 32GB of 

Random Access Memory (RAM) and an AMD® Radeon Graphics Processor with 4GB 

of RAM was used to run the virtual software. The virtual environments were created 

using OpenSimulator (http://opensimulator.org; Release 0.9.0.0)—an open-source 

virtual simulator of Second Life (http://secondlife.com/) and viewed using the Firestorm 

Viewer (The Phoenix Firestorm Project, Inc; http://www.firestormviewer.org/; Release 

x64 5.0.7.52912). A total of four distinct virtual environments (VEs) were created for this 

study (“Toon World”, Ruin World”, “Lagoon World”, and “Avatar Island”; Figure 1A). 

Despite being designed specifically to maximize distinctiveness, each VE that was used 

during encoding and encoding practice (all worlds except for Avatar Island) was created 

with the exact same dimensions (a 64 x 64 grid of accessible space) and was populated 

with eight distinct landmarks at the cardinal perimeter points (i.e. West, North, 

Northwest, etc.; Figure 1B). A custom-coded Heads Up Display (HUD) was created for 

each participant and “attached” to their avatar. This HUD allowed for participants to see 

a “count” on their screen indicating the number of environment-specific tokens (coins in 

Toon World, seashells in Lagoon World, and rings in Ruin World) they had collected out 

of the total to-be-collected (20 tokens; Figure 1C). 
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All screen recordings used for the video-viewing portion of the fMRI task were captured 

using FRAPS Beepa Pty Ltd; https://www.fraps.com; v3.5.99) at 60fps and were 

generated using custom OpenSimulator scripts that controlled for the stability of the 

camera and perimeter lap time. Each video recording lasted exactly 30s and showed a 

“first-person” perspective, circumnavigating the environment (Figure 1D). To ensure that 

participants formed a robust encoding of each environment, each video started from 

one of the four landmarks at the cardinal perimeter points (N,S,W,E; Figure 1B) and 

provided a tour of the perimeter of the VE before returning back to the same landmark; 

presenting participants with a multitude of entrances to a VE ensures allocentric 

encoding (Suthana et al., 2009). For each starting landmark, two videos were presented 

to the participant throughout the experiment: one where the video moved in a 

“clockwise” direction (e.g. North towards Northwest) and another where it started 

moving in a “counterclockwise” direction (e.g. North towards Northeast). Each video 

consisted of an initial 2s of focus on the starting landmark, followed by circular 

movement about the perimeter of the environment, and finally ending with another 2s of 

focus on the starting landmark. 

In-scanner stimuli were presented using E-Prime 2.0 software (Peirce, 2009) and 

images were shown via an MR-compatible rear projection system. Participants received 

auditory cues for mental navigation through MR-compatible headphones and responded 

using a 4 response button box (Appendix 1). All statistical tests were conducted using 

custom R (R Core Team, 2013; http://www.R-PRoject.org/) and MATLAB code. 

Day 1 Behavioral Paradigm 
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All participants were familiarized with navigating about a VE by first teleporting them to 

“Avatar Island” and then having the experimenter confirm that a participant could use 

the AWSD keys to move about the VE and utilize the computer mouse to adjust the 

pitch and yaw of their first-person perspective. After confirming their familiarization and 

demonstrating a general ability to execute directed actions with their avatar (e.g. move 

forward, turn around, etc.), participants were shown a slideshow that contained each of 

the landmarks they would find in each world. Each slide contained the name of the 

world and a landmark from that world. This served to assure that the participants knew 

exactly which objects in the world the experimenters were deeming to be named 

“landmarks”. 

Participants were then teleported to the southern-most region each of the encoding VEs 

in a random order. While in each VE, participants were instructed to navigate about the 

environment and “walk through” each token until all 20 were collected. Participants were 

given five minutes to collect the tokens and encouraged to explore the environment with 

any remaining time, taking care to make note of the landmarks they had previously seen 

in the slideshow.  

After completing token-collection and subsequent free-exploration, participants were 

instructed by the experimenter to navigate to each of the Landmarks one-by-one (e.g. 

“Navigate to the Penguin Pool. Now navigate to the Lollipop Tree”). After visiting each 

landmark in an environment, participants were teleported to the next environment. 

Following this single-landmark guided-navigation task, participants were teleported, in a 

random order (ensuring no environment was visited twice in a row), back to the 

southern-most region of each VE to complete a dual-landmark guided-navigation task. 
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Specifically, participants were instructed to make sure they passed a separate landmark 

before reaching the final destination (e.g. “Navigate to the Water Pipes, making sure 

that you pass the Flamingo Pool along the way”). After completing the dual-landmark 

guided-navigation in each VE, participants were briefed on the instructions they would 

receive for Day 2. All participants were provided a handout that described the following 

day’s task demands and familiarized participants with the button-box-mapping 

(Appendix 1). They were also encouraged to refrain from illicit drug use, drink a normal 

amount of caffeine the following day, and aim for a minimum of seven hours of sleep. 

Day 2 Behavioral Paradigm 

The next day, participants were teleported back into the southern-most region of each 

VE in a random order. While in each VE, participants were instructed by the 

experimenter to navigate to a landmark and then navigate around the perimeter of the 

environment, back to the same landmark, making sure that they pass a particular as the 

first landmark along the way (e.g. “Please head over to the Penguin Pool landmark. 

Now, please head in a circle around the perimeter of the map, back to the Penguin 

Pool. However, make sure that the first landmark you pass is the Mushrooms”).  

As a final test, participants were submitted to a spatial memory task where they used 

the computer mouse to direct a rectangular cursor and indicate the location of a cued 

landmark on a bird’s eye view of the encoding environment that was stripped of its 

landmarks (Figure 2). Each landmark and its name was shown on a prompt screen 

before showing the full-screen map. After providing responses for each landmarks 

encoded within a given environment, participants were asked to indicate the location of 
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each token before moving on to the next environment. The presentation order of 

landmarks and environments for spatial tasks was randomized across participants.  

Afterwards, participants were placed in the scanner where they completed 4 runs of the 

video-viewing task (see Materials). Each run consisting of 6 videos presented in a 

pseudo-random fashion, ensuring that exactly two videos from each world were shown 

and no two videos from a world started from the same landmark. To ensure active 

attention, participants were instructed to make a button press each time the video 

passed a landmarks. Participants were explicitly instructed to pay close attention to the 

spatial layout of the environment, especially in regards to the location of landmarks, and 

the trajectory of each video (i.e. the order of landmarks that are passed). Between each 

video, participants completed an “active-baseline task” (6s) (Stark and Squire, 2001) 

that required them to make the appropriate button press in response to whether or not 

the product of a pair of numbers was odd or even. 

After viewing all possible clockwise, counter-clockwise, landmark, and environment 

combinations (24 total trials), participants entered the “mental navigation” portion of the 

experiment. For each trial, participants were asked to close their eyes, construct a 

recreation of a particular environment and move about it in an instructed manner. 

Specifically, participants were cued via an instruction screen as to which environment 

they should imagine themselves in, which landmark to start at, and which landmark 

should be the first that they pass as they circumnavigate their way around the perimeter 

of the VE, back to the starting landmark (Figure 3). This was an implicit attempt to get 

participants to mentally recreate the content and directionality of the VE videos they 

watched previously. After on-screen instructions told them which environment, 
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landmark, and first landmark to pass, participants were instructed to close their eyes 

and orient themselves at the landmark. Once oriented, they were instructed to make a 

button press, wait for a beep, and then begin navigating in the instructed direction, 

making a button press each time they passed a landmark until they arrived back at the 

starting landmark (upon which they could open their eyes). After each trial, participants 

were asked to rate (on a scale of 1-4) how vividly they were able to reconstruct the 

given path and environment. After visiting each landmark and navigating either 

clockwise or counterclockwise in each environment (24 trials; 4 runs; 6 trials per run), 

participants were removed from the scanner. Finally, participants were given a post-

experiment questionnaire that gauged their free-placement of objects onto blank 

squares representing the layout of each map. This questionnaire also examined the 

vividness with which they were able to recreate each environment (Appendix 2). 

fMRI Acquisition Parameters 

Magnetic Resonance Imaging (MRI) data were acquired with a 3.0T Siemens Trio 

Scanner at the UCLA Staglin Center for Cognitive Neuroscience using a 32-channel 

head coil. We acquired a high-resolution T2-weighted anatomical scan acquired by 

magnetization-prepared 180 degrees radio-frequency pulses and rapid gradient-echo 

(MPRAGE). TR/TE = 6670ms/62ms. Resolution = 0.8x0.8x3.0 mm3. For the functional 

portion of our task we acquired a series of T2*weighted blood-oxygen level dependent 

(BOLD) images by Echo Planar Imaging (EPI) with a multiband acceleration factor of 3. 

TR/TE = 1500/33. Flip angle = 90°. Slice thickness = 2.25mm. In-plane resolution = 

2.25x2.25x2.5 mm3. 60 interleaved axial slices. In addition, we collected two matched-

bandwidth structural scans to use as an intermediate step in registration. 
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fMRI Data Preprocessing 

fMRI data pre-processing was carried out using FEAT (FMRI Expert Analysis Tool) 

Version 6.00 (FMRIB's Software Library, www.fmrib.ox.ac.uk/fsl). The following pre-

statistics processing was applied: motion correction parameters were estimated using 

MCFLIRT (Jenkinson et al., 2002); non-brain removal using BET (Smith, 2002); grand-

mean intensity normalization of the entire 4D dataset by a single multiplicative factor; 

high pass temporal filtering (Gaussian-weighted least-squares straight line fitting, with 

sigma=50.0s). B0 field unwarping was run with FEAT’s FUGUE using an EPI dwell time 

of .69ms. Given our fast TR, we opted to not include a slice-timing correction. We used 

FLIRT to align each participant’s BOLD timecourse to MNI space, first aligning each 

participant’s middle-timepoint BOLD image from each run to their MPRAGE, followed by 

aligning their MPRAGE to a 2mm MNI template, and finally applying run-specific 

transformation matrices to each BOLD image in the run. Prior to each analysis, 

voxelwise time-courses for each run were filtered using a Savitsky-Golay digital filter 

(Chen et al., 2004; Çukur et al., 2013; Press and Teukolsky, 1990) with a polynomial 

order of 3 and then z-scored across the temporal dimension. 

fMRI Methods 

We employed a support vector classifier with a linear kernel using libSVM (nu-SVC, c=1; 

Chang and Lin, 2011) and a searchlight brain mapping approach (radius= 5voxels; 

Kriegeskorte et al., 2006) to decode which regions in the brain contained information 

related to the differences across virtual environments and path directionality (i.e. 

clockwise or counter-clockwise) both when the participant was viewing videos and when 

they were engaged in mental imagery. Category labels were assigned based on 
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environmental context and path-directionality (i.e. clockwise vs. counterclockwise). 

Importantly, path-directionality labels were assigned to all trials, irrespective of which 

world the video or mental imagery was constructed in. For both video-viewing and 

imagery based classifications, we leveraged a cross-validation approach whereby the 

classifier was trained on n-1 runs worth of valid trials and tested on the trials from the 

left-out run. For analyses of contextual reinstatement, the classifier was trained on all 

valid video-viewing trials and then tested on all valid mental-imagery trials. For all 

classifications, we prevented a bias in the classifier by balancing exemplars within each 

classification category. Specifically, we randomly sampled from the over-represented 

category to match the number of trials in the category with the least representations. To 

maximize the likelihood that each trial was used for training, we repeated each cross-

validation over 50 iterations, averaging the across-iterations classification results. 

For each BOLD time series collected during a mental imagery trial, we identified the 

middle third of the time course (relative to each participant’s total time taken to complete 

the mental navigation task)  and averaged the images contained therein—creating an 

average BOLD pattern of activity. We elected to only include trials where the participant 

completed the mental navigation task in no less than 10.5s (7 TRs) and subsequently 

rated their vividness with at least a 3 or 4. We acknowledged that while completion of the 

mental navigation could be appreciably quicker than that of the video-viewing length of 

the same route (30s), a participant completing the task in less than one third of the time 

could be indicative of a rushed performance and, subsequently, a less high-fidelity BOLD 

signal. The “middle-third” of each time course for the video-viewing portion was the same 
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across all trials and participants; the middle 10s of video-viewing was averaged and 

used as the BOLD pattern of activity. 

To assess significance at the group-level, we created a null-distribution using the 

binomial inverse of the cumulative distribution function. The center of the distribution 

was the expected chance accuracy (33% for environmental context; 50% for path-

directionality) and the number of trials was given as the total number of classifications 

conducted across all participants. We set a significance cutoff to be the top 1% of the 

distribution (p<0.01), Bonferroni corrected for the total number of searchlight masks 

(36% for “which-world” and 53% for “which-direction” analyses). Finally, we report 

regions where 50 contiguous voxels were assigned significant accuracy values. 

Results 

Our main results focus on regions capable of decoding which world the participant was 

viewing/imagining (i.e. environmental context) and decoding which direction, 

irrespective of world, they were viewing/imagining. We also present results indicating 

the involvement of select regions in perceptual reinstatement during mental imagery 

(i.e. results from when the classifier was trained on data collected during perceptual 

trials and tested on imagery trials. Regions containing informative patterns of activity 

towards a successful classification were revealed by thresholding whole-brain 

searchlight maps (Kriegeskorte et al., 2006) at a significant classification accuracy and 

imposing a reliable contiguous-voxel cluster size (see Methods). All results are featured 

in Tables 1 and 2 and Figures 3-8. 

Decoding During Perception 
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Environmental Context 

The classifier was able to successfully decode environmental context (i.e. Which World) 

the participant was viewing videos from. While peak accuracy (59%; chance=33%) was 

found in R. V1, almost the entirety of the bilateral dorsal visual steam yielded significant 

classification results. Bilateral Frontal Eye Field areas were also significant for decoding 

the contents of visual consciousness, albeit at a much lower accuracy (37% peak). See 

Table 1 for peak activation clusters and Figure 3 for whole brain searchlight accuracy 

maps. 

Path-Directionality 

The classifier was also able to decode which direction (i.e. clockwise vs. 

counterclockwise) with which the video was displaying a circumnavigation of the 

environment. Specifically, classification results were irrespective of environment—all 

available clockwise vs. counterclockwise trials were utilized in the cross-validation. Peak 

accuracies (55%; chance = 50%) were found in significant clusters throughout the 

Precuneus, Lingual gyrus, Orbitofrontal cortex, and V5. Intriguingly all results were left 

lateralized. See Table 2 for peak activation clusters and Figure 4 for whole brain 

searchlight accuracy maps. 

Decoding During Mental Navigation 

Environmental Context 

Although we observed a depreciated peak accuracy (39%; chance=33%), there was a 

widespread set of regions that were able to significantly decode environmental context 

while the participant was mentally navigating about the three different environments. 
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Clusters were observed in the L. Superior Parietal Lobule (SPL), L. Intraparietal Lobule 

(IPL), R. Parietal Cortex, R. Retrosplenial cortex, and R. Premotor and sensorimotor 

regions. See Table 1 for peak activation clusters and Figure 5 for whole brain 

searchlight accuracy maps. 

Path-Directionality 

Only one cluster in the R. Extrastriate area yielded significant decoding accuracy (55%; 

chance=50%) when determining which direction (i.e. clockwise vs. counterclockwise) 

the participant was heading during the mental navigation task, irrespective of 

environmental context. See Table 2 for peak activation clusters and Figure 6 for whole 

brain searchlight accuracy maps. 

Contextual Reinstatement  

Environmental Context 

When the classifier was trained to dissociate environmental context during perception 

(i.e. video-viewing) and tested on imagery data (i.e. mental navigation), it was able to 

identify a broad set of regions whose pattern of BOLD activity during imagery 

contributed to a significant classification. Peak accuracy clusters (39%; chance=33%) 

were found in the L. Medial Prefrontal Cortex (MPFC), L. Anterior Thalamus, R. 

Temporo-Parietal Junction (TPJ), R. Superior Temporal Gyrus (STG), R. Orbitofrontal 

cortex, and Right Dorsolateral Prefrontal Cortex (DLPFC). See Table 1 for peak 

activation clusters and Figure 7 for whole brain searchlight accuracy maps. 

Path-Directionality 
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When the classifier was trained on all available direction trials during perception (i.e. 

viewing clockwise vs. counterclockwise videos, irrespective of environmental context) 

and tested on imagery data, it identified several significant peak accuracy (55%; 

chance=50%) clusters in Bilateral IPS, and R. TPJ. 

Discussion 

The current study reveals a wide set of cortical regions whose pattern of BOLD activity 

was dissociable enough to permit significant classification of environmental context 

(“Which World”) and path-directionality (“Which Direction”) during video-viewing 

(perception) and directed mental-navigation (imagery). The employed decoding scheme 

also permitted for the unveiling of regions whose activity during perception for 

representing environmental context and heading direction was self-similar during 

imagery—a proxy for contextual reinstatement. 

Given the stark perceptual differences across the three VEs and previous work on 

decoding visual consciousness/working memory from human brain signals (Harrison 

and Tong, 2009; Haynes, 2009), we expected our classifier to perform well when 

decoding which world a participant was viewing. In line with previous research, the 

classifier relied on early visual (with peak accuracy in R. V1) and dorsal stream regions 

in order to decode the contents of visual perception (for a  review of similar efforts, see 

Haynes and Rees, 2006). The ability for the FEFs to decode environmental context may 

have emerged based on our task design, which encouraged participants to be on the 

lookout for environmental landmarks and to button-press when the video was passing 

one. Importantly, the FEFs are thought to be involved in converting the outcome of 

visual processing into motor commands (Thompson and Bichot, 2005). In primates, 
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neurons in the FEFs have been shown to respond to the behavioral significance of 

stimuli within specific contexts (landmarks against a VE backdrop in the current study), 

even though they aren’t sensitive to specific features of visual stimuli (Thompson and 

Bichot, 2005). Additionally, the FEFs have been shown to modulate their responses 

based on instruction cues (Colby et al., 1996) and preparation for motor-decision 

processes based on context and previous experience (Bichot et al., 1996). Additionally, 

the FEF has been implicated in visual awareness (Grosbras and Paus, 2003) and 

transcranial magnetic stimulations (TMS) to the region shifts visual attention (Grosbras 

and Paus, 2002). Although visual consciousness and attention are not to be conflated 

(Lamme, 2004), the recurrent processing exchange between V1 (visual consciousness) 

and FEF (visual attention) could allow for information to be relayed back-and-forth 

between the two regions. Taken together, our FEF results could indicate context-

specific visual attention that is concerned with motor-planning in familiar environments. 

Future research will be needed to discover if familiar virtual environmental context can 

be decoded within the FEFs without a motor task. 

Research into decoding the contents of mental imagery has shown that it is possible to 

differentiate between categories of objects (Reddy et al., 2010) and where a participant 

believes they are in a virtual environment (Hassabis et al., 2009) without any explicit 

perceptual input. It has even been shown that it is possible to decode the contents of 

visual imagery during sleep (Horikawa et al., 2013). A number of research groups have 

unveiled a common neural signature supporting both perceptual and imagined content. 

For instance, Albers et al. (2013) found that mental images can be decoded from 

activity patterns in early visual cortex— a finding they posit provides evidence for visual 
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cortex in creating a “blackboard” (Bullier, 2001) that is used during both bottom-up 

stimulus processing and top-down internal generation of mental content. Indeed, it also 

has been shown that imagination of objects, scenes, body parts, and faces in a 

particular part of the visual field all recruit regions that highly overlap with the perception 

of those categories during visual presentation to left and right visual fields (Cichy et al., 

2012). Ganis et al., (2004) also showed that visual imagery and visual perception recruit 

the same neural processing regions. However, they note that the overlap was neither 

complete nor uniform across their two task sets, with perception recruiting more early 

visual regions and imagery eliciting activation in more extrastriate regions. In line with 

these results, we saw that decoding environmental context during mental imagery relied 

on the more downstream visual association area. We also observed the recruitment of 

nearby dorsal stream regions like the parietal cortex, which were also observed at the 

anterior tail of the large cluster whose peak accuracy was in V1 during perceptual 

decoding efforts. Ishai et al. (2000) showed that decoding perceptual images was driven 

by activity in right-lateralized visual areas, whereas the decoding of visual imagery was 

more left-dominant—a finding that supports ours: R. V1 contained voxels with peak 

accuracy in differentiating environmental context during video viewing whereas the L. 

Visual Association area was the most accurate visual area for decoding which world a 

participant was completing the mental navigation task. 

While the above referenced research illustrates that a great deal of work has been done 

to decode the contents of one’s mental imagery (see Kamitani and Tong (2005) for the 

first such example), those studies were more concerned with visual orientations and 

object categories—a substantially different endeavor compared to decoding which 
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virtual environment a participant was completing a mental navigation task. Decoding 

mental imagery of places has also been shown to activate corresponding stimulus-

specific brain regions (O’Craven and Kanwisher, 2000). However, the authors note that 

their efforts were dependent on the content of the visual image. The task demands of 

the current study are more multi-faceted compared to the mere visualization of a single 

object; participants were to orient themselves within a familiar VE and then navigate 

about the VE in a goal-directed manner, keeping a constant mental tally of both their 

current position and nearby landmarks. As was seen in our results, other spatial mental 

imagery tasks also see a lack of primary visual area recruitment (Mellet et al., 1996). 

Importantly, early visual cortex re-activation during mental imagery is indeed selective 

and varies as a function of task design an aspects of perceptual anticipation theory (see 

Kosslyn and Thompson (2003) for review) As such, it remains sensible that the only 

overlap in visual regions that was observed for decoding environmental context from 

perception and imagery was the L. Visual Association Area. 

In support of this reasoning is the current study’s identification of regions typically 

implicated in spatial processing as being informative for decoding environmental context 

during mental imagery. The largest cluster observed was in the SPL—a region that has 

been implicated in spatial attention (Corbetta et al., 1995) and shown to be visually 

dependent in preparation for movement (Caminiti et al., 1996), even when conducting 

spatial scanning through mental imagery (Schicke et al., 2006)—extending its role in 

visual imagery (Pelgrims et al., 2009). The SPL has also been shown to have a 

preference for searching for files in digital folders as opposed to searching within a 

control task (Benn et al., 2015)—emphasizing the recruitment of this region, even in 
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abstract conditions like the current study’s VEs. Another robust finding was in the IPL— 

a region concerned with egocentric spatial representations (Lenggenhager et al., 2006) 

and maintaining attention to spatial locations over time (Malhotra et al., 2009). Facets of 

route information (e.g. global vs. local) are also present within the IPL (Evensmoen et 

al., 2013), with a particular emphasis on egocentric-based judgements of relative 

distance (Parkinson et al., 2014). IPL also shows a preference for navigating about 

recently learned environments (like the VEs the participants were exposed to for the first 

time the previous day) over more familiar environments (like the UCLA campus; see 

Spiers and Barry (2015) for review). Yamazaki et al. (2009) also suggest a role for IPL 

as the level of abstraction increases, which may explain the selective presence of this 

region in imagery over perceptual findings. Activity in IPL has also been informative in 

decoding the location of an object within a virtual arena (Rodriguez, 2010). Finally, IPL 

has shown to have a pre-stimulus activity profile that is consistent with a putative role in 

“listening for recollection”—an internally directed attentional state posited to promote 

recollection of event details and bias mnemonic decision making toward the reliance on 

recollected details over perceived familiarity (Quamme et al., 2010). Taken together, the 

environmental-context information contained within SPL and IPL during imagery may 

reflect a context-specific egocentric spatial attention that supports navigation about 

recently learned environments and making judgments that are dependent on previously 

recollected details (i.e. videos shown prior to mental navigation that participants were 

encouraged to reproduce), even when the space is more “abstract”, like with VEs. 

Analysis also unveiled environment-context-specific recruitment of R. parietal cortex. 

The parietal cortex has been widely implicated in spatial attention (Burgess et al., 1999; 
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Colby and Goldberg, 1999; Husain and Nachev, 2007; Mesulam, 1999; Schotten et al., 

2005; Yantis et al., 2002), as well as encoding spatial location (Andersen et al., 1985), 

creating motor commands for operations in extra-personal space (Mountcastle et al., 

1975), and updating representations of visual space (Colby and Goldberg, 1992), 

especially from an egocentric (first-person) perspective (Vogeley and Fink, 2003). The 

R. parietal cortex has also been shown to selectively respond to mental imagery tasks 

(Farah, 1989; Harris et al., 2000), especially during motor imagery (Jeannerod, 1995). 

Given this purported set of roles, and our right-lateralized finding, it is reasonable to 

infer that the R. parietal cortex operates on environmental-context information available 

within one’s mental imagery to navigate about a VE—a task that requires consistent 

spatial attention and, in our task, preparation for motor commands that are executed as 

a function of spatial location. Further in support of our posit that the current study’s 

mental imagery task was less dependent on early visual regions due to its specific 

emphasis on spatial navigation is the revelation of informative patterns within 

retrosplenial cortex for decoding environmental context. retrosplenial cortex has been 

shown to be crucial when finding one’s way, particularly without the use of visual cues 

(Cooper et al., 2001). Damage to the retrosplenial cortex has also been shown to create 

difficulty in route-finding (Maguire, 2001; Suzuki et al., 1998)—a condition called 

Heading Disorientation (Aguirre and D’Esposito, 1999). 

The reliably differentiable patterns of BOLD activity expressed in the premotor and 

sensorimotor regions as a function of environmental context during mental imagery may 

again reflect the nature of our task design (as reasoned above regarding recruitment of 

FEF during visual perception). Single-cell recordings from motor regions in primates 
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have revealed that when asked to complete a sequence of button presses without visual 

input (akin to our mental navigation task where participants had to button press when 

passing an object), neuronal firing is substantially hire than compared to when visual 

input is provided (Mushiake et al., 1991). Additionally, these neurons were found to be 

sequence-specific during mental imagery, suggesting that task-relevant information is 

embedded in motor regions. Indeed, task-related neurons in premotor areas modulate 

their firing frequency in relation to motor tasks which require visual information, even 

before movement was initiated (Godschalk et al., 1985). Such context-dependence was 

also shown to be independent of actual finger muscle activity (Hepp-Reymond et al., 

1999)—a confound that was controlled for in the current study since all environments 

had the same number of landmarks, evenly paced about the environment (i.e. same 

number of button presses / pacing of those button presses were equated across VEs). 

Furthermore, when human participants are cued by abstract visual stimuli, activity in 

premotor regions is significantly increased compared to freely selected movements 

(Moisa et al., 2012). Taken together, our premotor and sensorimotor regions may 

contain internally generated, context-specific information that guides appropriate 

sequences of motor responses, much like the evidence for context sensitivity for 

intended grasps in premotor cortices (Marangon et al., 2011). 

The methodological procedures employed by the current study measured “contextual-

reinstatement” and produced a metric of how well the multi-dimensional decision 

boundaries created by the classifier during perception were useful in discriminating 

environmental context during imagery. That is, regions yielding a significant contextual-

reinstatement classification accuracy must have expressed a BOLD pattern of activity 
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during mental navigation that was maximally similar enough to that observed during 

perception. The opportunity remains likely that regions revealed during the contextual 

reinstatement analysis need not also be informative for context-decoding efforts isolated 

to perceptual or imagery-based navigation; the decision boundary formed by the 

classifier as its trained on perceptual data may not be informative of environmental 

context, but patterns of activity expressed during imagery may conform to such higher-

order delineations. As such, interpretations of contextual reinstatement results should 

be framed as regions whose processing during mental imagery varies as a function of 

environmental-context in the same way as during perception. 

The largest cluster that showed significant decoding accuracy for contextual-

reinstatement of environmental context was observed in the MPFC—a region whose 

activity, in relevance to this current study, has been collectively suggested to support 

learning associations between context, locations, events, and corresponding adaptive 

responses (for review, see Euston et al., 2012). Additionally, activity in the MPFC has 

been implicated in assigning first-person-perspectives (Vogeley and Fink, 2003) and 

used to decode the location of an object in a virtual arena during a navigation task 

(Rodriguez, 2010). The current study’s task-demands almost perfectly reflect a situation 

that would mandate recruitment of MPFC processing: participants took a first-person 

perspective as they recalled the associations between objects (landmarks) and specific 

locations in the environment. As such, MPFC activity could be reinstating place-object 

associations (i.e. where a landmark is) in a first-person perspective that is specific to 

encoding environment. Given that this functionality is shared across all environments, 

there was no dissociable pattern of activity in MPFC that was robust enough to permit a 
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successful perceptual or imagery-based classification; a decision boundary could have 

been formed that did not allow new exemplars to be predicted with high enough 

accuracy in our within-domain cross-validation to be considered significant in 

accordance with our thresholding. Ganis et al. (2004) postulated that cognitive control 

processes function comparably in both imagery and perception, whereas sensory 

processes may be engaged differently by visual imagery and perception. As such, the 

act of recall may have accentuated the representation of imagery exemplars, making 

MPFC activity specific to memory retrieval and not perception nor imagery. 

The anterior thalamus has also been implicated in supporting memory retrieval (Hamani 

et al., 2011; Wolff et al., 2006), especially spatial memory/navigation by way of a 

hippocampal-anterior thalamic axis (Aggleton et al., 2010; Aggleton and Brown, 1999; 

O‘Mara, 2013; Warburton et al., 2000). The anterior thalamus’ indistinguishable 

involvement across environmental contexts in both video-viewing and mental navigation 

(inferred by an inability to classify using those data-sets) follows the same line of 

reasoning as the MPFC’s memory-specific functionality. The logic also extends to a role 

of accentuated contextual reinstatement in the both the DLPFC, a region consistently 

implicated in working memory (Curtis and D’Esposito, 2003; Fregni et al., 2005), and 

TPJ, which is also involved in working memory (Anticevic et al., 2010) and functionally 

connected with the hippocampus during memory retrieval, but not during encoding 

(Huijbers et al., 2011). Finally, the orbitofrontal cortex’s role in memory, especially for 

abstract visual information (Frey and Petrides, 2002), crossmodal associations (Lipton 

et al., 1999; Tsukiura and Cabeza, 2008), and directed attention towards overcoming 
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interference (Stuss et al., 1982), could also explain our contextual-reinstatement-

specific observation. 

Taken as a whole, decoding environmental context in the perceptual and imagery 

domains revealed regions traditionally associated with visual consciousness and spatial 

navigation / motor planning, respectively. Additionally, measures of contextual 

reinstatement revealed regions predominantly concerned with working memory and 

retrieval. These results suggest that information supporting environmental context is 

also embedded in regions traditionally concerned with supporting spatial processing in 

general.  

Our investigations into decoding path-directionality about a VE were more exploratory. 

Previous research has suggested that regions in the human brain contain neural 

populations involved in the encoding and retrieval of allocentric heading information in 

humans (Baumann and Mattingley, 2010) and one study has shown that it is possible to 

decode heading direction in a 4-way classification of N, S,W,E (Rodriguez, 2010). 

However, this study’s task design, much like in the Hassabis et al. study (2009), had 

participants first visually navigate about a space to a goal location and then used the 

post-trial fMRI data for classification. Our study is unique in that the guidance for 

navigation was given only by showing pictures of landmarks where participants should 

orient and navigate towards. Thus, the BOLD data used to successfully decode which 

environment the participant was navigating about was reflective of their natural, 

volitional navigational pursuits.  

Despite a rich literature on the function of head-direction cells in rodents, little research 

has been conducted to decode directionality during human navigation. Given that head-
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direction cells fire in an absolute compass manner—only firing when the animal is 

moving in a particular compass direction within the environment (Taube et al., 1990b)—

it is not practical to assume that our successful decoding efforts relied on neural 

information relayed by head-direction cells. The decoding of “direction” in this current 

study was conducted to reveal regions that could differentiate “clockwise” vs. “counter-

clockwise” during imagined navigation. Indeed, our heading-direction classification 

results did not rely on any of the brain regions containing head-direction cells 

(retrosplenial cortex (Chen et al., 1994), medial entorhinal cortex (Giocomo et al., 2014), 

anterior thalamus (Taube, 1995), lateral mammillary nucleus (Stackman and Taube, 

1998), or dorsal tegmental nucleus (Sharp et al., 2001)). Instead, a more likely 

contributor to the signal that was detected by our classifier would be the purported 

function of so called “path cells”. Single-neuron recordings in the human entorhinal 

cortex while a participant navigates a virtual environment have been shown to indicate 

whether they are taking a clockwise or counterclockwise path around a virtual road 

(Jacobs et al., 2010). Path cells are thought to continuously encode direction across the 

environment and can be selective to encode clockwise, counterclockwise, or both (but 

with different patterns of activity) movement about an environment. While, path cells are 

mostly found in the entorhinal cortex, they have also been observed in the 

hippocampus, parahippocampus, and orbitofrontal regions (Jacobs et al., 2010). 

Partially in line with these previous findings, we observed that differential activations in 

orbitofrontal cortex to viewing videos were reliable enough to significantly decode 

whether the video was indicating movement in a clockwise vs. counterclockwise 

direction. While our searchlight-mapping procedure did not also reveal entorhinal, 
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hippocampal, and parahippocampal regions, it is worth noting that previous research 

into path-cells have all utilized an active navigation scheme (Frank et al., 2000; Jacobs 

et al., 2010), as opposed to our relatively passive video-viewing paradigm where 

participants merely made a button press whenever passing a landmark. While inferred 

motion (e.g. an experimenter picking up a rat and facing them in specific directions) 

elicits the same firing pattern for head-direction cells (Taube et al., 1990a), it is unclear 

whether the same inference would be sufficient for path-cells; place cell preferential 

firing to discrete locations in an environment is abolished if animals are moved passively 

through the environment (Foster et al., 1989), so it could be the case for path-cells as 

well. At the very least, virtual navigation, which has sparked a debate as to whether or 

not it is to be considered true navigation (Minderer et al., 2016; Taube et al., 2013a), 

does seem to elicit path-cell activity (Jacobs et al., 2010). As such, it could be the case 

that the other regions revealed by the searchlight (Precuneus, Lingual Gyrus, and V5) 

are capable of computing the perceptual, passive analog function of path cells that 

subconsciously keep the representation of path-direction “online” and, if needed to 

compute a trajectory, recruit entorhinal and hippocampal processes to compute on a 

direction-specific cognitive map (Markus et al., 1995).  

Indeed, the precuneus and its neighboring parieto-occipital sulcus has been implicated 

in abstract representations of facing direction (Vass and Epstein, 2013) and reports of 

precuneus activation shows its sensitivity to the direction of movements (Bonda et al., 

1995; Parsons et al., 1995) and internal representation of locations, especially in 

regards to distal cues (Shipman and Astur, 2008), while walking through virtual 

environments (Malouin et al., 2003) and navigating computer file systems (Benn et al., 
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2015). Additionally, events that were made up of people, places, and objects were more 

easily distinguished when labeled by places and relying on activity in the Precuneus 

(see Robin et al., 2018). Generally, the Precuneus is also involved in visuo-spatial 

processing and first-person processing operations (for review see Cavanna and Trimble 

(2006) and Spiers and Barry (2015)). Also, the lingual gyrus has been implicated in the 

recollection of places (Burgess et al., 2001)  and navigation, be it through novel 

environments (see Spiers and Barry, 2015), digital folders (Benn et al., 2015), or when 

using the method of loci (Kondo et al., 2005). Additionally, V5 (also known as Middle 

Temporal Area (MT)) has classically been recognized as motion-sensitive (Dupont et 

al., 1994; Tootell et al., 1995) and known to contain axis-of-motion sets of selective 

columnar structures (Albright et al., 1984; Dubner and Zeki, 1971), so its sensitivity to 

directionality during video viewing was somewhat expected: the dominate leftward 

motion experienced at each turning point along the perimeter during counter-clockwise 

video-viewing is equal and opposite to that perceived during the clockwise video 

recordings. V5 is also selectively activated during motion imagery, compared to static 

imagery control (Goebel et al., 1998)—a finding the current study was unable to 

replicate, perhaps due to the nature of the VE stimuli we used, as opposed to oscillating 

Gabor patches. 

Given the Precuneus’ role in directionality, especially during mental imagery of motor 

movements (Gerardin et al., 2000; Stephan et al., 1995), and its scaled response to 

vividness of remembered events (Fletcher et al., 1995; Gilboa et al., 2004; Richter et al., 

2016), it was surprising to not identify BOLD patterns of activation that were reliable to 

decode clockwise vs. counterclockwise mental movement. However, the differentiating 
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signal encoded by the Precuneus may be more granular during mental imagery at each 

timepoint and hence washed out by our feature-set creation, which averaged the entire 

middle-chunk of the mental navigation trials. Instead, the classifier relied solely on the 

R. Extrastriate area to decode directionality during mental imagery, which is roughly 

20mm dorsal to our V5 finding on the contralateral side during perception. TMS 

disruption to the extrastriate region has implicated it in direction discrimination (Hotson 

et al., 1994), with focal electrical stimulation to the region resulting in akinetopsia 

(motion blindness). Given that the extrastriate body area responds to the performance 

of motor actions (Astafiev et al., 2004), our findings could reflect a role for extrastriate in 

producing a feeling of movement in a particular direction during mental navigation. 

In regards to contextual reinstatement of direction sensitivity, results focused on R. TPJ 

and bilateral IPS. Again, the TPJ’s involvement in working memory (Anticevic et al., 

2010) and functional connectivity with the hippocampus during memory retrieval, but not 

during encoding (Huijbers et al., 2011) could represent a path-directional sensitivity that 

is accentuated during retrieval. Since the R. TPJ, specifically, has been identified as a 

flexible hub that couples with the Default Mode Network to promote internally directed 

cognition as well as the Dorsal Attention Network for externally guided cognition 

(Corbetta et al., 2008; Spreng et al., 2010), it is sensible to assume a common role 

across perception and imagery. Additionally, TPJ activity has been implicated in linear 

combinations of movements through abstract spaces (Constantinescu et al., 2016) and 

shows a robust, common cortical metric for distance (Parkinson et al., 2014), which 

contains an embedded directional component (distance is often directional: e.g. the 

apple is five feet to the left of the pear). The IPS has been suggested to serve as an 



250 

interface between perceptive and motor systems for controlling movements in space 

(for review see Grefkes and Fink, 2005), providing an action-oriented spatial reference 

frame (Colby, 1998) that has a visual topography (Swisher et al., 2007) and encoding 

spatial direction (Materna et al., 2008). As such, a distinguishable response within IPS 

to path-directionality may have been observed during perceptual based decoding, but 

not at significant thresholds due to the more passive nature of the task. Once there was 

a need for goal-directed action that was dependent on action (button presses as, the 

IPS may have re-expressed, and heightened, the activity patterns observed during the 

video-viewing trials. 

In summary, this current work revealed a vast set of cortical regions that support the 

decoding of environmental context and path-directionality as participants viewed videos 

from and mentally navigated within a series of three virtual environments. Results 

revealed cortical regions concerned with the contents of visual consciousness and 

motion sensitivity during perception and those concerned with spatial navigation and 

orientation during mental imagery, suggesting the inclusion of content-specific 

information within regions that support basic navigational functioning. Interestingly, 

there was minimal overlap in cortical regions supporting both perceptual and mental 

distinctions. Regions more classically associated with mnemonic retrieval were unveiled 

during contextual-reinstatement analyses, which we postulate could reflect a memory-

enhanced processing signal that more closely reflects the original encoding brain-state. 

Future work will be needed to more directly address the potential memory-induced 

upregulation of imagined navigation to match perceptual processes. Apart from the 

contribution to pursuits of human brain mapping, this work marks and important “proof-
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of-concept” that the decoding of environmental context and path-directionality during 

mental imagery can be accomplished. With this work, and substantial future research, 

brain-computer interfaces could theoretically allow for real-time spatial navigation by 

thought alone—a feat that has already seen impressive progress by way of researchers 

successfully allowing participants to navigate about a 2D maze while using real-time 

fMRI data (Yoo et al., 2004). 

Figure Captions  

Figure 1. Virtual Environments and In-World Stimuli 

A) The five Virtual Environments (VEs) created for this study using OpenSim Software. 

Toon World, Ruin World, and Lagoon World were used for encoding. Viewpoints within 

encoding environments reveal the participant’s starting location in the southmost area of 

the world, facing North. Avatar Island was used to familiarize subjects with navigation 

within our VEs and Moon World was used to exposure participants to the object-

placement technology. All environments rested within a 64 x 64 grid region border. B) 

The 24 landmarks placed in the eight cardinal locations (N,S,W,E,NW,NE,SW,SE) 

along the perimeter of each of the three encoding VEs. The figure’s arrangement of 

each landmark reflects their placement in each environment. Landmark names are as 

follows, starting with the landmark in the upper left corner (i.e. NW) and moving 

clockwise for each environment: Toon (slide, penguin pool, mushrooms, lollipop tree, 

Tetris blocks, water pipes, flamingo pool, doghouse), Ruin (fish fountain, treasure 

chests, giant telescope, armillary sphere, large bell, red flags, sun plaque, bubbling 

cauldron), Lagoon (fern statue, horse saddle, giant cactus, kayak, two curvy chairs, 

surfboard, fireplace, ridged planters). C) A) Tokens collected by participants upon their 
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first entries into each VE. Tokens varied as a function of world: coins in Toon World, 

rings in Ruin World, and shells in Lagoon World. Each world contained 20 tokens and a 

Heads Up Display (HUD) indicated a participant’s progress as they collected each of the 

tokens. D) Starting viewpoints of 8 (of 24 total) 30s video clips that participants viewed 

in the scanner. Each clip from each world started at a cardinal location (North, South, 

West, or East) and moved in either a clockwise (as indicated by the top row) or counter-

clockwise direction (bottom row) about the environment until it ended at the original 

starting location. 

Figure 2. Landmark / Token Placement Task 

Participants were first shown a picture of a landmark, along with its name (A) and, on 

the next-screen, were shown an allocentric, “bird’s eye” view of each environment 

(Lagoon World used here) that was stripped of its landmarks (B). C) The mouse cursor 

participants used to select the location of the cued landmark/token. D) A grid overlay 

delineating the 4,096 (64 x 64) cells available for participant selection via their cursor. 

This grid was not visible to participants, but could be inferred given the cursor’s inability 

to be placed outside of each cell—the cursor would “snap” to fit into the nearest, 

overlapping grid cell. 

Figure 3. Mental navigation instruction screen 

An example of stimuli that participants viewed in the scanner before they engaged in a 

mental imagery trial. Participants were briefed before the scanning session that this 

instruction page would inform them as to which world they should imagine themselves 

in, which landmark they should first orient themselves at, and which landmark should be 
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the first that they pass as they mentally circumnavigate the world. Participants made a 

button press when they had finished reading this instruction prompt indicating they were 

ready to begin. 

Figure 4. Whole brain searchlight accuracy maps from when the classifier was both 

trained and tested on perceptual video-viewing data to predict environmental context 

(i.e. decoding “Which World” the participant was viewing).  

Significant accuracies surviving a 50-contiguous-voxel cluster threshold here are 

shown. Chance decoding accuracy was 33% (3 Worlds).  

Figure 5. Whole brain searchlight accuracy maps from when the classifier was both 

trained and tested on perceptual video-viewing data to predict heading direction (i.e. 

decoding “Which Direction” the participant was viewing).  

Significant accuracies surviving a 50-contiguous-voxel cluster threshold here are 

shown. Chance decoding accuracy was 50% (Clockwise vs. Counterclockwise).  

Figure 6. Whole brain searchlight accuracy maps from when the classifier was both 

trained and tested on imagery data to predict environmental context (i.e. decoding 

“Which World” the participant was mentally navigating).  

Significant accuracies surviving a 50-contiguous-voxel cluster threshold here are 

shown. Chance decoding accuracy was 33% (3 Worlds).  

Figure 7. Whole brain searchlight accuracy maps from when the classifier was both 

trained and tested on imagery data to predict heading direction (i.e. decoding “Which 

Direction” the participant was imagining).  
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Significant accuracies surviving a 50-contiguous-voxel cluster threshold here are 

shown. Chance decoding accuracy was 50% (Clockwise vs. Counterclockwise). Results 

were limited to the posterior, right hemisphere. 

Figure 8. Whole brain searchlight accuracy maps from when the classifier was trained 

on perceptual video-viewing data and tested on imagery data to predict environmental 

context (i.e. decoding “Which World” the participant was mentally navigating based on 

the pattern of response shown during perception of the same world).  

Significant accuracies surviving a 50-contiguous-voxel cluster threshold here are 

shown. Chance decoding accuracy was 33% (3 Worlds). 

Figure 9. Whole brain searchlight accuracy maps from when the classifier was trained 

on perceptual video-viewing data and tested on imagery data to predict heading 

direction (i.e. decoding “Which Direction” the participant was imagining).  

Significant accuracies surviving a 50-contiguous-voxel cluster threshold here are 

shown. Chance decoding accuracy was 50% (Clockwise vs. Counterclockwise). 

Table Captions 

Table 1. Significant searchlight results for decoding environmental context as a function 

of perception, imagery, and reinstatement. 

Table 2. Significant searchlight results for decoding environmental context as a function 

of perception, imagery, and reinstatement. 
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Figures 

Figure 1. Virtual Environments and In-World Stimuli 
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Figure 2. Landmark / Token Placement Task 

 

Figure 3. Mental navigation instruction screen 
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Figure 4. Whole brain searchlight accuracy maps from when the classifier was 

both trained and tested on perceptual video-viewing data to predict 

environmental context (i.e. decoding “Which World” the participant was viewing).  

 

Figure 5. Whole brain searchlight accuracy maps from when the classifier was 

both trained and tested on perceptual video-viewing data to predict heading 

direction (i.e. decoding “Which Direction” the participant was viewing).  
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Figure 6. Whole brain searchlight accuracy maps from when the classifier was 

both trained and tested on imagery data to predict environmental context (i.e. 

decoding “Which World” the participant was mentally navigating).  
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Figure 7. Whole brain searchlight accuracy maps from when the classifier was 

both trained and tested on imagery data to predict heading direction (i.e. 

decoding “Which Direction” the participant was imagining).  

 

Figure 8. Whole brain searchlight accuracy maps from when the classifier was 

trained on perceptual video-viewing data and tested on imagery data to predict 

environmental context (i.e. decoding “Which World” the participant was mentally 

navigating based on the pattern of response shown during perception of the 

same world).  
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Figure 9. Whole brain searchlight accuracy maps from when the classifier was 

trained on perceptual video-viewing data and tested on imagery data to predict 

heading direction (i.e. decoding “Which Direction” the participant was imagining).  
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Tables 
 

Table 1. Significant searchlight results for decoding environmental context as a 
function of perception, imagery, and reinstatement. 

 

 

Table 2. Significant searchlight results for decoding environmental context as a 
function of perception, imagery, and reinstatement. 
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Appendix 

Appendix 1 – Participant Day 2 Instructions Handout (Provided on Day 1) 

Hello  _________________________! 

Thanks for committing to coming back for the second day! 

Remember that we need you to come to Franz Hall Room 8457 at the following date 

and time: 

________________________________  

For this second day of the experiment we are going to have you complete a task in the 

lab before we walk over to the scanner and have you do several task while we scan 

your brain. 

IN LAB 

 

 

Spatial Memory Task  

Remember those virtual environments you explored yesterday? We want to see how 

well you remember the location of the (8) Landmarks that were inside each of the three 

virtual environments. We would also like to see how well you remember the (20) coins 

that you collected in each environment. 
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You will be shown a “bird’s eye view” of each virtual environment and asked to click on 

the location of each landmark. You will be instructed as to which landmark to click on. 

You will also be asked to click on the 20 locations in which you found each coin within 

each environment. 

______________________________________________________________________ 

IN SCANNER 

You will be completing three tasks in the scanner. The number task (described below) 

will be interleaved within each of the other tasks. For example, you will do the Video 

Viewing Task (described below), then the number task, then the video viewing task, 

then the number task, etc. This will continue until you do the Mental Navigation Task 

(described below), which will also be interleaved with the number task. 

All of the tasks will make use of a button box.  You will control this button box while you 

are in the scanner with your right hand. Your index finger will be on button 1; middle on 

2; ring on 3; pinky on 4. Please remember these button assignments, as we will refer to 

them by number for the instructions. 
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Number Judgment Task  

After seeing a prompt that says “Get ready for number task” two numbers will appear on 

the screen.  

It is your task to multiply the two numbers and decide if their product is Odd or Even. 

If the product is Odd, then you will push Button 1. 

If the product is Even, then you will push Button 2. 

For Example, if you see the numbers   3    and   7    on the screen, then you would push 

Button 1, because their product (21) is Odd. 

Video Viewing Task 

In this portion of the experiment, you will see videos taken from each of the virtual 

environments that you explored. You will see one video at a time before going back to 

the number judgment task.  
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Each video will start from one of the eight “landmarks” and provide a circular tour of the 

perimeter of the virtual environment before returning back to the same landmark.  

It is your task to pay close attention to the videos. You will later, during the Mental 

Navigation Task (described later), imagine yourself navigating throughout the 

environment in a way similar to the videos. In order to successfully complete that task, 

you need to pay attention to the order of the landmarks that you pass in this task. 

While viewing the videos, we want you to button press whenever you pass a landmark. 

When the video passes the first landmark (which will appear on the screen for two 

seconds before the video starts playing) you will push Button 2. 

For each of the subsequent landmarks that the video passes (there will be 7 of them), 

you will push Button 3 

When the video arrives back at the first landmark again, you will push Button 4. 

Button 2 3 3 3 3 3 3 3 4 

Landmark 1 2 3 4 5 6 7 8 1 

 

You will see one video at a time, making the appropriate responses, before going back 

to the number judgment task. 

Mental Navigation Task 

In order to successfully complete this task, you will have needed to pay close attention 

to the videos presented during the Video Viewing Task. The purpose of this task will be 



284 

to mentally imagine yourself in the virtual environment we ask and imagine yourself 

moving about the environment in a specific manner. 

It is very important that you allow yourself to concentrate fully on forming a vivid and 

detailed image of the environment in your mind. It is also important to try and actually 

“see” each landmark as you move around the environment. 

It is your task to mentally imagine yourself in the environment and navigate around it in 

a full circle, just like how you saw in the videos. We will prompt you with a screen that 

will tell you which world you need to imagine yourself in and which landmark to mentally 

“place” yourself in front of. We will also tell you which landmark is the “next” landmark. 

This “next” landmark informs you as to which direction you should head as you start to 

mentally imagine yourself navigating in a circle around the environment. The figure 

below shows an example. 

                                         

 

 

Starting Landmark Next Landmark 
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Since this mental navigation task requires you to vividly imagine yourself in the 

environment, we will need you to close your eyes as you mentally navigate about the 

environment. The instructions for this task involve specific times for you to let us know 

when you have “oriented” yourself in the desired virtual environment and are ready to 

begin navigating. You will let us know that you have successfully oriented yourself in the 

environment by a button press. You will also let us know where you are in the 

environment by making a series of a button presses: one as you pass each landmark. 

Lastly, you will let us know when you are finished by making a button press when you 

have completely. Since you will have your eyes closed during this, please remember the 

following order of button presses and tasks. 

1) Instruction Screen [Tells you which environment, which starting landmark, which next 

landmark] 

a. You will Button Press 1 when you are ready to begin. 

2) Close Your Eyes 

3) Imagine Yourself in the environment at the Starting Landmark 

a. Once you feel as though you have vividly oriented yourself at the Starting Landmark, 

Button Press 2 

4) Begin Navigating towards the Next Landmark 

a. As you pass the Next Landmark, Button Press 3 

5) Continue navigating in a circle around the virtual environment in the same direction. 

a. As you pass Each Landmark, Button Press 3 

6) Continue navigating until you get back to the Starting Landmark 

a. When you have reached the Starting Landmark Again, Button Press 4 
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7) Open your eyes 

After each of these mental traversion tasks, you will do a Number Judgment Task again. 

________________________________________________ 

Remember to get a good night’s sleep! 

Remember to not drink or partake in illicit substance abuse the night before the scan! 

Remember to wear comfortable clothing! 

Thank you for taking the time to participate! 

Appendix 2 – Post Experimental Questionnaire 

Thank you for participating in this experiment! Your honest and detailed answers below 

will really help us with the analysis of this experiment. We greatly appreciate it! 

How vividly were you able to recreate Toon World? 

1      2     3     4     5     6      7     8      9      10 

How vividly were you able to recreate Ruin World? 

1      2     3     4     5     6      7     8      9      10 

How vividly were you able to recreate Lagoon World? 

1      2     3     4     5     6      7     8      9      10 
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When you were mentally reimagining routes throughout the environments, did 

you feel like your speed was  faster  /   about the same   /   slower   than the videos 

you saw? 

When you were mentally reimagining routes throughout the environment, did you 

feel like you were: watching a movie clip  / re-experiencing the environment 

When you were mentally reimagining routes throughout the environment, did you 

“jump” form landmark to landmark? 

Yes / No, I walked smoothly like in the video /  

Other:____________________________________________ 

When you were mentally reimagining routes throughout the environment, did you  

actually see the landmarks / button press at the right interval spacing 

Did you feel dizzy at all at any point during this 2-Day experiment?  

Yes / No 

Which of the environments do you feel like was the most vivid and/or unique? 

Toon World   /    Ruin World   /   Lagoon World   /   All were equally vivid and/or unique 

Using the squares below, please write the name of each landmark in its 

appropriate location for each world. 
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                                                        Toon World 

 

 

 

 

 

 

 

       Ruin World 
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                                      Lagoon World 
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Chapter 6: Contextual reinstatement of virtual encoding environments during 

recall 

 

Abstract 

Despite a rich history of anecdotal and empirical success in enhancing human memory, 

the Method of Loci (MoL) remains an understudied mnemonic device. While previous 

research has shown that explicit binding of items to the spatial scaffolding of an 

environment is crucial, above and beyond pictorial representations of information 

(Chapter 3) and that the environmental context can be decoded from mental imagery 

(Chapter 5), no studies have shown a neural pattern indicative of encoding environment 

when participants recall information learned using the MoL. To obtain a quantifiable 

metric of contextual reinstatement of encoding environment during recall, the current 

study tasked participants with learning lists of objects within a virtual implementation of 

the MoL that they were later asked to recall in the scanner. We trained a support vector 

machine classifier on blood oxygen level dependent patterns of activity expressed while 

participants viewed videos  of the distinct encoding environments used for encoding and 

searched for regions whose recall activity (closed-eye verbal recall) conformed to the 

perceptual-derived decision boundary. Results suggest that brain regions involved in 

spatial processing and navigation (e.g. Insula, Superior Temporal Gyrus, Retrosplenial 

cortex), memory (bilateral hippocampus), contextual integration (Rostrolateral prefrontal 

cortex) and visual imagery (e.g. visual association area, V5) carry a signature of the 

encoding environment within the neural processes supporting different aspects of 

domain-invariant cognitive function, consistent with a role for contextual reinstatement in 

successful implementation of the MoL. 
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Introduction 

The Method of Loci (MoL), whose roots can be traced back to the ancient Greeks 

(Cicero and Wilkins, 1963), is designed to exploit the remarkable vividness of our 

visuospatial memories by using spatial environments as scaffolding for memorizing non-

spatial content (Chapter 3). In order to implement the MoL, one is typically instructed to 

conjure up a familiar structure (e.g., a childhood home) that will serve as their “memory 

palace”. While mentally navigating through this environment, one can imagine “placing” 

a series of to-be-remembered items in different locations. When later attempting to 

retrieve this list of items, one can mentally reconstruct the environment and “observe” 

each of the objects along the route. Despite its widely acknowledged efficacy (Bower, 

1970; Dalgleish et al., 2013; McCabe, 2015; Yates, 1966), little is known about the 

consequences of MoL-based learning on the neural correlates of later retrieval.  

A previous functional magnetic resonance imaging (fMRI) study revealed a set of brain 

regions specific to recall after encoding using the MoL (Kondo et al., 2005).While 

informative, these findings essentially identify regions whose activity was greater during 

periods of enhanced mnemonic recall over that of less impressive recall—a finding in 

line with literature showing that enhanced BOLD activity in cortical regions (Canli et al., 

2000), even at rest (Wig et al., 2008), and increases in functional connectivity (Wang et 

al., 2010; Wing et al., 2013) can serve as a correlate of memory enhancement. While 

univariate findings can elucidate the recruitment of episodic encoding brain networks 

during retrieval using the MoL, such insights do not provide granularity in regards to 

which mechanisms of the techniques are most potent in contributing to the reliable 

mnemonic enhancement witness by its practitioners. 
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This lack of clarity stems from the inherently elusive nature of the technique; the MoL is 

traditionally conducted within the confines of one’s mental imagery with no way of 

obtaining quantifiable metrics indicative of individual differences in execution, especially 

when considering the notable individual differences in mental imagery ability (Cui et al., 

2007; Kosslyn et al., 1984). Furthering the confusion and inability to obtain objective 

metrics within participants is that each participant is typically instructed to use a familiar 

environment as their “memory palace”. This presents several issues: the amount of time 

an individual has physically spent in an environment, the aura of emotion those 

environments subconsciously carry, and the size and uniqueness of those environments 

all vary across participants. As such, a controllable and operationalized investigation 

requires an experimental approach that does not mandate the use of mental imagery for 

encoding. 

Advancements in Virtual reality (VR) offer a unique opportunity to equalize exposure to 

virtual environments (VEs) since experimenters can design fantastical environments 

that are equally novel to all participants. While it has been debated whether or not 

navigation (a critical component in the MoL) in VR is to be considered “true navigation” 

(Minderer et al., 2016; Taube et al., 2013), there exists reasoning to believe that VR can 

increase the ecological validity of fMRI investigations of human memory (Reggente et 

al., 2018). Indeed, previous research has successfully exposed participants to VEs that 

were either subsequently used to execute the MoL within mental imagery (Legge et al., 

2012) or served as the actual encoding environment, allowing participants to place to-

be-remembered objects throughout the VE (Chapter 3).  
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In the current study, we sought to use VR and fMRI to test our hypothesis that the 

effectiveness of the MoL is driven by an explicit binding of objects to their spatial 

environment, recruiting neural architecture dedicated to the representation of and 

navigation about space—a set of cognitive processes that is arguably at the root of 

human cognition, especially memory (Robin et al., 2018). If memory is to be 

characterized as a constellation of representations of co-occurring stimuli (Rumelhart 

and McClelland, 1988), then it stands to reason that the spatial context enveloping an 

event constitutes a significant portion of the engram dedicated to that event (see 

Tulving, 1993). As such, it appears that the phenomenon of contextual reinstatement 

(Bartlett, 1932; Tulving, 1993) is dominated by spatial environments—a notion that is 

theorized to underpin findings that position space as the primary currency of the brain’s 

encoding mechanisms (Mullally and Maguire, 2014; Robin et al., 2016, 2018). This posit 

is particularly salient when considering that memory retrieval depends on both 

reactivating an engram (i.e. pattern completion) and dissociating it from other engrams 

despite an overlap in nodes that make up multiple such representations (i.e. pattern 

separation; Yassa and Stark, 2011).  

If a participant were to encode a set of information within a VE using the MoL, then, in 

accordance with our hypothesis, there should exist a neural signature of that VE during 

the recall of that information (i.e. environmental contextual reinstatement). To obtain 

such a metric, we designed a simple paradigm where participants used VR to 

implement a virtual rendition of the MoL and encode three lists of 15 objects across 

three distinct VEs, later recalling those lists of objects while in the scanner. Importantly, 

participants were told that each list of objects belonged to a fictional individual and were 
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cued with that individuals name during recall so as to prevent any explicit reactivation of 

the original encoding environment. Following recall, participants watched a series of 

videos showcasing a tour of the VEs from an egocentric perspective. BOLD data 

collected during this video-viewing period was used to train a classifier model to 

differentiate the neural representations of the three distinct VEs, which allowed for us to 

index their reactivation during individual memory retrieval trials. 

Methods 

Participants 

7 participants were recruited for this study by way of posted flyers throughout the UCLA 

campus. 6 participants were unable to finish the study due to a request to be removed 

from the scanner, which yielded insufficient data to conduct our analyses of interest. As 

a result, 1 participant (Male, 28) was analyzed. Participants were required to be right-

handed, have normal or corrected-to-normal vision and hearing, have a mastery of the 

English language, and report no diagnosed learning disabilities, substance 

dependencies, nor prescriptions for psychotropic medications. Additionally, to prevent 

unequal exposure to the experimental apparatus, applicants were not permitted to 

participate if they had more than five hours of previous experience with the VR software 

used in this experiment (Second Life [http://secondlife.com] or its open-source virtual 

simulator OpenSimulator [http://opensimulator.org]). Eligibility screening was conducted 

prior to the participant’s enrollment in the study using the Research Electronic Data 

Capture (REDCap) online survey systems (Harris et al., 2009). 

Materials 
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The experimental materials leveraged in this current study are described extensively 

elsewhere (Chapter 3), but described briefly here. A total of three distinct virtual 

environments (VEs) were created for this study (“Toon World”, Ruin World”, “Lagoon 

World”; Figure 1A). Despite being designed specifically to maximize distinctiveness, 

each VE was created with the exact same dimensions (a 64 x 64 grid of accessible 

space) and was populated with eight distinct landmarks at the cardinal perimeter points 

(i.e. North, Northeast, East, etc.; Figure 1B). Heads Up Displays (HUDs) were 

alternately worn by participants as they collected tokens about the environment (Figure 

1C) and viewed/placed objects (Figure 1D). Visual stimuli were presented in the 

scanner using MR-safe goggles (Resonance Technology, Inc.) and subject responses 

were collected using an MR-safe 1x4 button box (Current Designs). Verbal recall tests 

were digitally recorded with participant permission in the scanner using the Optoactive II 

noise-cancelling microphone and headphone system 

(http://www.optoacoustics.com/medical/optoactive-ii). All presentation materials were 

rendered using MATLAB (The Mathworks, Inc., 2012b) code and Psychophysics 

Toolbox (Version 3; Brainard, 1997). All statistical tests were conducted using custom R 

(R Core Team, 2013; http://www.R-PRoject.org/) and MATLAB code. 

Procedure 

The experimental paradigm in this current study is identical to that described elsewhere 

(Chapter 3), except that all participants received the same encoding instructions and 

verbal recall and additional memory tests were conducted in the scanner.  Briefly, 

participants visited each VE in a random order and completed a series of token 

collection task that ensured even exploration of the VE across all participants. 

http://www.optoacoustics.com/medical/optoactive-ii


296 

Afterwards, participants were briefed on the classic implementation of the MoL 

technique and how the VEs there were just exposed to would serve as their “virtual 

memory palaces”. Subsequently, participants encoded a total of three lists of 15 objects 

across the three VEs. Prior to viewing each list of objects, participants were told that the 

objects they were about to see belonged to one of three fictional-individuals (Otto, Pike, 

or Viola) and that they would later be asked to recall the list of items belonging to that 

individual, in the order in which they were originally presented. Following this encoding 

period, participants viewed screen recordings of their movements about each 

environment. Following this rehearsal period, participants were escorted to and placed 

in the scanner.  

Once positioned in the scanner, participants were prompted to close their eyes and 

recall by list name (i.e. Otto, Viola, or Pike) and given a maximum of 2 minutes to do so. 

A beep signaled participants to initiate recall after their eyes were closed and a 

subsequent one alerted them that the recall period was complete, and they were free to 

open their eyes. Participants recalled each list a total of four times, twice in the original 

encoding order and, subsequently, twice in the reverse order. Participants were 

instructed to speak with as little movement as possible into a noise-cancelling 

microphone and encouraged to remember as many words as possible, even if they 

could not recall each object in its original encoding order. 

Participants were then submitted to a task that assessed their spatial memory for 

landmarks by showing them either an allocentric or egocentric screenshot of one of the 

virtual environments with a purple star overlaid on the image and four landmarks 

choices positioned below the image (Figure 2). Participants were instructed to indicate 
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which landmark they thought was located at the purple star by making a button press. 

Participants had 6s to respond. All landmarks were removed from the environment 

before creating the images. Participants completed a total of 48 trials (allocentric vs. 

egocentric; 8 trials; 3 worlds), randomly interleaved as a function of world and 

egocentric/allocentric.  

Following the landmark task, participants were shown similar egocentric and allocentric 

viewpoints from each virtual environment. However, instead of a purple star on the 

screen, a purple arrow was displayed, pointing to either the top, bottom, left, or right of 

the image. Participants were instructed to indicate via a button press whether they 

thought the arrow was pointing North, South, West, or East. Crucially, in the allocentric 

condition, the image was rotated in 90-degree intervals such that the top of the screen 

was either N, S, W, or E (Figure 3). In the egocentric condition, the viewpoint of the 

screenshot was facing in either the N, S, W, or E direction as well. As such, participants 

had to first orient themselves so as to identify which direction was which and then use 

that bearing to complete the task. See Figure 4.11 for an example trial. Participants 

completed 96 trials of this task (egocentric vs. allocentric; 4 facing directions; 4 arrow 

directions; 3 worlds). 

At the end of the scan, participants were shown a series of (24) 20 second videos taken 

from a first-person perspective as experimenters navigated about each of the virtual 

worlds. All videos started at one of the eight landmarks and moved towards the center 

of the environment and through to the landmark on the opposite cardinal point, barring 

any environmental constructs. Figure 5 illustrates example paths taken in Toon world. 

Videos were frame rate edited to ensure they were all 20s long.  
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fMRI Acquisition Parameters 

Magnetic Resonance Imaging (MRI) data were acquired with a 3.0T Siemens Magnetom 

Prisma Scanner at the UCLA Ahmanson-Lovelace Brain Mapping Center using a 64-

channel head coil. We acquired a high-resolution T2-weighted anatomical scan acquired 

by magnetization-prepared 180 degrees radio-frequency pulses and rapid gradient-echo 

(MPRAGE). TR/TE = 2300ms/3ms. Resolution = 0.8x0.8x0.8 mm3. For the functional 

portion of our task we acquired a series of T2*weighted blood-oxygen level dependent 

(BOLD) images by Echo Planar Imaging (EPI) with a multiband acceleration factor of 5. 

TR/TE = 1000/30ms; Flip angle = 60°; Slice thickness = 2.00mm; In-plane resolution = 

2x2x2 mm3; 65 interleaved axial slices, with an anterior-posterior phase encoding 

direction. In addition, we collected gradient field and magnitude maps and ran a brief 30s 

epi scan before the start of the experiment to calibrate the noise-cancelling microphone. 

fMRI Data Preprocessing 

fMRI data pre-processing was carried out using FEAT (FMRI Expert Analysis Tool) 

Version 6.00 (FMRIB's Software Library, www.fmrib.ox.ac.uk/fsl). The following pre-

statistics processing was applied: motion correction parameters were estimated using 

MCFLIRT (Jenkinson et al., 2002); non-brain removal using BET (Smith, 2002); grand-

mean intensity normalization of the entire 4D dataset by a single multiplicative factor; 

high pass temporal filtering (Gaussian-weighted least-squares straight line fitting, with 

sigma=50.0s). B0 field unwarping was run with FEAT’s FUGUE using an EPI dwell time 

of .30ms. Given our fast TR, we opted to not include a slice-timing correction. We used 

FLIRT to align each participant’s BOLD timecourse to MNI space, first aligning each 

participant’s middle-timepoint BOLD image from each run to their MPRAGE, followed by 
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aligning their MPRAGE to a 2mm MNI template, and finally applying run-specific 

transformation matrices to each BOLD image in the run. Prior to each analysis, 

voxelwise time-courses for each run were filtered using a Savitsky-Golay digital filter 

(Chen et al., 2004; Çukur et al., 2013; Press and Teukolsky, 1990) with a polynomial 

order of 3 and then z-scored across the temporal dimension. 

fMRI Methods 

Our primary analysis of interest was to assess the degree with which there was a 

contextual reinstatement of encoding environment during the eyes-closed recall 

sessions. To obtain a metric of contextual reinstatement, we trained a nu-linear support 

vector machine (SVM; c=1; libSVM: Chang and Lin, 2011) classifier on all available 

BOLD data collected during the video viewing period (i.e. localizer). Specifically, we 

identified the middle third of the time course and averaged the images contained 

therein—creating an average BOLD pattern of activity. The classifier was given world 

labels (i.e. This data comes from when the subject was viewing videos from Toon World 

or Ruin World or Lagoon World) so that it could “learn” a representative brain pattern 

response to each world and form a v-dimensional decision boundary, where v is the 

number of voxels included, that separates world exemplars. We then probed the 

classifier with data from each TR of both the forward and reverse recall periods to see if 

it could “guess” which world was present in the subject’s BOLD data (i.e. which world 

the subject encoded the information in). Since the participants were recalling items 

following a list name cue (i.e. no explicit reminder of encoding environment), a 

successful classification using this procedure would imply that the participants were 

bringing back to mind the environment in which they originally encoded the information. 
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We leveraged both an informational based, functional-brain-mapping procedure 

(Searchlight; Sphere radius=5 voxels; Kriegeskorte et al., 2006) and ROI method to 

unveil which regions contained BOLD patterns of activity during both forward and 

reverse recall that yielded a successful classification when using the decision boundary 

formed during video-viewing. A group of ROIs were delineated by previous studies and 

automated meta analyses using the forward inference on search terms (Memory, 

Mental Imagery, Object-Category, Spatial Information, Spatial Attention, Context, 

Environment) using the Neurosynth database (Figure 5; Yarkoni et al., 2011). Another 

group of ROIs were defined based on their network membership (Default Mode, Visual, 

Ventral Attention, Dorsal Attention, Memory Retrieval, Fronto-Parietal) as a result of 

large-scale meta-analysis (Figure 5; Power et al., 2011). 

We also leveraged an SVM within a searchlight brain mapping approach to make the 

following classifications: allocentric vs. egocentric in the landmark task, allocentric vs. 

egocentric in the orientation task, allocentric vs. egocentric collapsed across task, and 

landmark vs. orientation. 

To determine significance for our single-subject analysis, we created a null-distribution 

using the binomial inverse of the cumulative distribution function. The center of the 

distribution was the expected chance accuracy (33% for environmental context given 

the three encoding environments). The number of TRs across both forward and reverse 

recall attempts was given as the total number of classifications conducted across all 

participants. We set a significance cutoff to be the top 5% of the distribution (p<0.05), 

which yielded a 41% accuracy threshold. Finally, we report regions where 50 

contiguous voxels were assigned significant accuracy values, averaged across all TRs. 
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Results 

The participant recalled all words from all lists in the correct encoding order—an 

impressive 45 objects across the three lists. 

When trained on the video viewing data, the searchlight brain mapping classification 

procedure unveiled a number of regions that, during recall, contained patterns of BOLD 

activity that was informative of which virtual environment the cued-list was encoded in. 

When applied to both forward and reverse recall, significant clusters revealed that the 

classifier relied most heavily on information in the R. Insula, L. Superior Temporal Gyrus 

(STG), R. Putamen, Bilateral Hippocampus, L. Retrosplenial, R. Rostrolateral Prefrontal 

Cortex (RLPFC), L. Visual Association area, and R. V5 (Table 1; Figure 6). Our 

distributed ROI analyses also revealed significant accuracy in the Visual Network and 

within the “Memory”, “Mental Imagery”, and “Spatial Information” NeuroSynth search 

terms. 

Follow up analyses that independently tested the classifier on only reverse or forward 

recall revealed a set of mostly non-overlapping regions that contributed to the 

classifier’s success. Specifically, the only regions whose BOLD data collected during 

recall that was informative as to the original encoding environment were the right 

putamen, right hippocampus, and right parahippocampus. Interestingly, reverse recall 

accuracy relied more heavily on the right hippocampus whereas forward recall 

depended on BOLD data in the left hippocampus. No significant accuracies were 

observed in the searchlight or ROI decoding attempts for: allocentric vs. egocentric in 

the landmark task, allocentric vs. egocentric in the orientation task, allocentric vs. 

egocentric collapsed across task, and landmark vs. orientation. 
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Discussion 

The current study, with its single subject, serves as a proof of concept that it is indeed 

possible to decode environmental encoding context during recall using fMRI. Briefly, 

participants were exposed to a series of three different VEs where they viewed lists of 

15 objects and placed them about the environments, creating a virtual analog of the 

MoL. Participants were told that each list of objects belonged to one of three fictional 

individuals. The same day, participants were cued with a fictional individual’s name in 

the scanner and asked to close their eyes and recall their list of objects in both the 

forward and reverse encoding order. Following this cued verbal recall, participants 

watched a series of videos taken from an egocentric perspective that moved about each 

of the VEs. Measures of contextual reinstatement were collected by training a SVM to 

form a decision boundary during video-viewing and presenting new exemplars collected 

during recall and determining which regions contained BOLD patterns of activity 

informative of which environment the information being recalled was originally encoded 

in. We focus briefly here on results that had significant decoding accuracy during both 

forward and reverse recall, since the process of interest (contextual reinstatement) 

should be equally present during both trial-types (and arguably more so during reverse 

recall).  

The R. Insula yielded both the highest accuracy (50%) and the largest cluster extent 

(330 contiguous voxels). Meta analyses have revealed that the R. Insula is reliably 

activated when navigating about recently learned environments (like the VEs that were 

exposed to the participants the same day) over familiar environments (Spiers and Barry, 

2015). Other research has shown that mental navigation along memorized routes 
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activates the insula (Ghaem et al., 1997). This suggests that during recall, the 

participant was engaged in a process of placing themselves back in the recently learned 

environment and navigating about it to assist with their recall—an intuition that is 

solidified by the participant’s response (they walked about the encoding environment) 

on the post-experimental questionnaire. Importantly, while the R. Insula has been 

associated with navigation and integrating interoceptive awareness (Simmons et al., 

2013), our results suggest that information regarding environmental context is 

embedded within the neural code that is supporting the base computations necessary to 

imagine (and feel) oneself navigating about an environment.  

The L. STG finding, which was in the more posterior portions, near the TPJ, was also 

found (albeit contralaterally) to support contextual reinstatement in a previous data set 

collected using these same VEs and similar method (video-viewing data trained a 

classifier that was later tested on mnemonic retrieval; Chapter 5). The STG was found 

in the same meta-analysis to be associated with familiar environments over novel ones 

(Spiers and Barry, 2015), which may reflect the relative familiarity the participants had 

with the VEs that same day. Additionally, the TPJ is also involved in working memory 

(Anticevic et al., 2010) and functionally connected with the hippocampus during memory 

retrieval, but not during encoding (Huijbers et al., 2011). The STG has been shown to 

be more active when using distal cues to navigate about a maze as compared to 

shuffled distal cues that provided no information (Marsh et al., 2010), which could 

suggest that the participant was using nearby landmarks to navigate themselves about 

the environment during recall. Entirely in line with our findings, the L. STG has been 

posited to contribute to the formation of allocentric representations through the 
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processing of categorical spatial relations (van Asselen et al., 2008), which strengthens 

our claim that the information being retrieved was intimately encoded alongside the 

context, by way of creating explicit binding to the spatial scaffolding of the environment 

(i.e. spatial relations).  

Lesions to the putamen have shown impairment in spatial navigation (Whishaw et al., 

1987b, 1987a). Combined with the classic purported function of the putamen in 

regulating and planning movement (Kimura, 1990) and its role in stimulus-action 

association learning (Haruno and Kawato, 2006), our results could indicate that 

contextual information is present in the putamen, assisting with computations necessary 

to complete the task (i.e. spatially navigate to loci where an action (placement) 

occurred). Also involved in spatial navigation is our finding in the L. retrosplenial cortex. 

Importantly, during mental navigation attempts, activity in Retrosplenial cortex was 

capable of decoding environmental context (Chapter 5), much like in the current study. 

Given its role in memory, navigation, and imagination (see Vann et al. (2009) for 

review), its not surprising that recruitment of the retrosplenial cortex was necessary to 

complete the task at hand. However, our finding that contextual information is 

embedded within its pattern of BOLD activity as it computes imagined navigation is 

novel.  

Given that the data used to test the classifier was collected while participants were 

engaged in recall, a recruitment of the hippocampus is to be expected given long-

standing observations of its involvement in retrieval processes (see Addis and Schacter 

(2012) and Rissman and Wagner (2012) for review) and its preference for recently 

acquired spatial knowledge (Spiers and Barry, 2015), especially when spatial 
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associations have been formed in a way that allows for successful navigation (Hartley et 

al., 2003). In line with our task demands, the hippocampus is known to be recruited as a 

participant searches for paired-associate places of a previously seen objects (Lee et al., 

2016). Crucially, the hippocampus is also important for learning the layout of new virtual 

environments (Wolbers and Büchel, 2005), a finding that supports its classic role in 

constructing and maintain spatial representations of an environment (O’Keefe and 

Nadel, 1978). The hippocampus was also unveiled as containing information allowing 

for the successful decoding individual episodic memory traces, defined by cued 

imagined recall of video clips viewed before the scan (Chadwick et al., 2010). Furthering 

support for its role in reinstatement, the hippocampus has been shown to be active 

when previously learned information is recalled in its original form (Giovanello et al., 

2009; Xu et al., 2010). While the hippocampus has been shown to be sensitive to 

environmental size and geometry (Baumann and Mattingley, 2010; Muller et al., 1987) 

and fine-grain spatial information, especially for recent over remote spatial knowledge 

(Hirshhorn et al., 2011), including a participant’s current location in an VE (Hassabis et 

al., 2009), no human research, to our knowledge, has shown that contextual 

environment can be decoded during recall. Simple contextual reinstatements (auditory-

reward conditioned stimuli) have been observed in the rodent hippocampus (Fuchs et 

al., 2005) and shown to modulate if an environment is associated with fear (Ji and 

Maren, 2007; Moita et al., 2004), suggesting a potential role for the hippocampus in 

supporting context. Taken together, our findings suggest a role for the hippocampus in 

leveraging contextual information to retrieve place-object associations, while also 

supporting the base computations permitting successful imagined navigation. 
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Decoding mental imagery of places has been shown to activate corresponding stimulus-

specific brain regions (O’Craven and Kanwisher, 2000). As such, our visual association 

finding (which replicates previous contextual-environment decoding during mental 

imagery (Chapter 5), is sensible; mental images can be decoded from activity patterns 

in visual cortex (Albers et al., 2013), suggesting a potential role for visual cortex as a 

“blackboard” (Bullier, 2001) that is used during both bottom-up stimulus processing and 

top-down internal generation of mental content. Also, Ishai et al. (2000) showed that 

decoding perceptual images was driven by activity in right-lateralized visual areas, 

whereas the decoding of visual imagery was more left-dominant, which lines up with our 

left-lateralized results. A similar logic can be extended to our V5 findings, which has 

been implicated in motion imagery (Goebel et al., 1998) and may suggest a role for V5 

in inferring imagined movement necessary for navigation. 

Finally, our R. RLPFC finding may have arisen due to the region’s likely role in 

mediating context-dependent integration (Cocchi et al., 2013) and its suggested part in 

manipulating domain-specific details (Wendelken et al., 2012). Given that RLPFC is 

involved in switching between stimulus-oriented and stimulus-independent thought 

(Gilbert et al., 2005), it could be that our RLPFC results indicate its role in assembling 

environment-specific information in both perceptual and imagery tasks, presenting 

similar patterns of activity each time and, thus, emerging from our analysis technique 

which was sensitive to exactly such operations. 

Taken together, our results suggest that there exists brain regions whose pattern of 

BOLD activity during recall mirror that of their perceptual activity when viewing videos of 

VEs that were previously used to encode the recalled information. Specifically, our 
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results illustrate a presence of contextual information within regions thought to support 

navigation and memory, given the strategy employed by our participant (navigating the 

original encoding environment to retrieve in accordance with the MoL strategy)—

suggesting an incorporation of visuospatial content within processes responsible for 

supporting domain-invariant cognitive function. Future research will need to be 

conducted to unveil if recall processes that rely on different cognitive processes aside 

from memory (e.g. reasoning on previously acquired information) carries a signature of 

contextual reinstatement in regions supporting such processes and whether the degree 

of contextual reinstatement accounts for individual differences in memory retrieval. 

Figure Captions 

Figure 1. A) The five Virtual Environments (VEs) created for this study using OpenSim 

Software. Toon World, Ruin World, and Lagoon World were used for encoding. 

Viewpoints within encoding environments reveal the participant’s starting location in the 

southmost area of the world, facing North. Avatar Island was used to familiarize 

participants with navigation within our VEs and Moon World was used to exposure 

participants to the object-placement technology. All environments rested within a 64 x 

64 grid region border. B) The 24 landmarks placed in the eight cardinal locations 

(N,S,W,E,NW,NE,SW,SE) along the perimeter of each of the three encoding VEs. The 

figure’s arrangement of each landmark reflects their placement in each environment. 

Landmark names are as follows, starting with the landmark in the upper left corner (i.e. 

NW) and moving clockwise for each environment: Toon (slide, penguin pool, 

mushrooms, lollipop tree, Tetris blocks, water pipes, flamingo pool, doghouse), Ruin 

(fish fountain, treasure chests, giant telescope, armillary sphere, large bell, red flags, 
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sun plaque, bubbling cauldron), Lagoon (fern statue, horse saddle, giant cactus, kayak, 

two curvy chairs, surfboard, fireplace, ridged planters). C) Tokens collected by 

participants upon their first entries into each VE. Tokens varied as a function of world: 

coins in Toon World, rings in Ruin World, and shells in Lagoon World. Each world 

contained 20 tokens and a Heads Up Display (HUD) indicated a participant’s progress 

as they collected each of the tokens D) Placement HUD, which allowed participants to 

view 3D rendering of objects and click on them to place them ina  discrete location 

within the environment. 

Figure 2. A) An example allocentric task where a purple star appears in place of the 

“Red Flags” landmark in Ruin World. B) The same task and landmark as A, but from an 

egocentric perspective. 

Figure 3 A) An example allocentric task where a purple arrow appears in the downward 

position in Lagoon World. The map has been shifted 180 degrees, such that North is at 

the bottom of the screen, making the correct direction of the arrow pointing in the North 

direction.  B) The same task and direction as A, but from an egocentric perspective that 

is looking in the North direction, making the arrow pointing to the North. 

Figure 4. An allocentric view of Toon World. Each color denotes the path a virtual 

camera took when creating the 20s videos used in the fMRI localizer. Each path was 

used twice: once from each landmark on the path 

Figure 5. Example distributed ROIs from the Visual Network (defined by meta analysis: 

Power et al. (2011)) or Neurosynth automated meta-analysis search terms (Yarkoni et 

al., 2011). Search terms are displayed to the left of each array of images. Z-score 
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represents the forward-inference in the automated meta-analysis. All voxels with a non-

zero z-score were included in the analysis. 

Figure 6. Whole brain averaged searchlight maps from when the classifier was trained 

on fMRI data collected while the subject viewed 30s video clips from each virtual world 

and subsequently tested on recall data where subject was cued by a list name unrelated 

to the world name. The classifier was tasked with guessing “Which World” the subject 

had encoded the information they were currently retrieving in after having been trained 

on the patterns of activity displayed during the video viewing trials. Thus, chance was 

33%. We only display results that survived a 50% lower threshold cutoff as determined 

by a p<0.05 from a binomial cumulative distribution function. 

Figure 7. Distributed ROI (either defined by meta-analyses (Power et al., 2011) or 

neurosynth search terms (Yarkoni et al., 2011)) decoding accuracies from when the 

classifier was trained on fMRI data collected while the subject viewed 30s video clips 

from each virtual world and subsequently tested on recall data where subject was cued 

by a list name unrelated to the world name. The classifier was tasked with guessing 

“Which World” the subject had encoded the information they were currently retrieving in 

after having been trained on the patterns of activity displayed during the video viewing 

trials. Thus, chance was 33%. We highlight results that survived a 50% lower threshold 

cutoff as determined by a p<0.05 from a binomial cumulative distribution function. 

Table Captions 

Table 1. Significant searchlight results for decoding environmental context when the 

classifier was trained on a video-localizer and tested during free recall. 
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Figures 

Figure 1. Virtual environments and accompanying software 
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Figure 2. Allocentric vs. Egocentric Landmark Task 
 

 

 

Figure 3. Allocentric vs. Egocentric Direction Task 
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Figure 4. Virtual camera paths 
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Figure 5. Distributed ROIs use for analysis 
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Figure 6. Searchlight classification results 

 

 

 

Figure 7. Distributed ROI results 
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Tables 

Table 1. Significant searchlight results for decoding environmental context when 
the classifier was trained on a video-localizer and tested during free recall. 
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General Summary 

The work presented in this dissertation provides neurocognitive insights to the 

determinants of enhanced mnemonic recall. Of particular insert were the behavioral 

outcomes and neural correlates of memory encoding phenomena that result in reliable 

alterations in memory strength during recall: 1) preferential recall of information that is 

associated with behavioral salience; 2) enhanced mnemonic capacity when information 

is encoded within the scaffolding of spatial environments. 

Chapter 1 used Diffusion Tensor Imaging to examine whether individual differences in 

anatomical connectivity within reward and fronto-temporal circuits are associated with 

value-induced modulation of memory. Results suggest that when presented with a 

reward value-indicating cue, communication between the Nucleus Accumbens and 

Ventral Tegmental Area may act as a gating mechanism to determine if elaborative 

encoding processes, as facilitated by the Uncinate Fasciculus, will be upregulated to 

preferentially bolster the encoding of words that follow high-value associations. 

Chapter 2 set the stage for the remainder of the research conducted within the 

dissertation by reviewing the literature and positioning Virtual reality (VR) as an 

ecologically valid medium for fMRI investigations of memory. We hypothesized that 

contextual reinstatement (i.e. an initial binding of information to a spatial environment 

that is later expressed during recall) was underlying the efficacy of the MoL. This notion 

was tested in several stages. First, Chapter 3 demonstrated that the MoL could be 

successfully conducted within an objectifiable medium (i.e. VR) and that removing one’s 

ability to explicitly bind items to an environment context resulted in depreciated 

effectiveness of the technique. Results also revealed an intimate relationship between 
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spatial memory for objects seen in a virtual environment and verbal recall strength for 

those items. Additionally, strategies for the re-utilization of a virtual environment were 

explored in Chapter 4, revealing a role for elaborative encoding (i.e. associating two 

objects with one another in addition to the environmental backdrop) in reducing 

forgetting when encoding multiple lists of information in the same virtual environment.  

The next stage in hypothesis testing relied on a successful decoding of environmental 

context from mental imagery. Chapter 5 revealed a vast set of cortical regions that 

supported the decoding of environmental context and path-directionality as participants 

viewed videos from and mentally navigated within a series of three virtual environments. 

Results revealed cortical regions concerned with the contents of visual consciousness 

and motion sensitivity during perception and those concerned with spatial navigation 

and orientation during mental imagery, suggesting the inclusion of content-specific 

information within regions that support basic navigational functioning. Interestingly, 

there was minimal overlap in cortical regions supporting both perceptual and mental 

distinctions. Regions more classically associated with mnemonic retrieval were unveiled 

during contextual-reinstatement analyses, which we postulate could reflect a memory-

enhanced processing signal that more closely reflects the original encoding brain-state. 

This success allowed for a final test of the hypothesis: is it possible to decode 

environmental encoding context during recall? Chapter 6’s results suggest that there 

exists brain regions whose pattern of BOLD activity during recall mirror that of their 

perceptual activity when viewing videos of VEs that were previously used to encode the 

recalled information. Specifically, our results illustrate a presence of contextual 

information within regions thought to support navigation and memory, given the strategy 
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employed by our participant (navigating the original encoding environment to retrieve in 

accordance with the MoL strategy)—suggesting an incorporation of visuospatial content 

within processes responsible for supporting domain-invariant cognitive function. 

Taken together, the results presented in this dissertation contribute meaningfully to 

discussions concerning the neurocognitive determinants of memory enhancement. 

Behavioral results indicate a definitive role for both reward and spatial context in reliably 

manipulating the selectivity and capacity of memory, respectively. Neuroimaging results 

reveal that a) individual differences in execution of value-directed remembering 

strategies can be explained by the integrity of reward and semantic encoding white 

matter pathways and b) the implementation of the MoL mnemonic instantiates a robust 

signature of encoding environment, which is decodable from regions involved in spatial 

processing and mnemonic retrieval during recall, suggesting an intimate binding of to-

be-remembered information with encoding environment. Importantly, with the use of VR 

and behavioral paradigms aimed at exploiting the naturally occurring memory 

enhancing phenomena of value-directed-remembering and spatially-augmented-

learning, this dissertation presents a suite of technology that is inherently easy to 

implement and which could be theoretically extended to educational environments 

rehabilitation centers to assist those with learning disabilities or memory disorders. 




