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ABSTRACT  
In CASP15, 87 predictors submitted around 11,000 models on 41 assembly targets. The 

community demonstrated exceptional performance in overall fold and interface contact 
prediction, achieving an impressive success rate of 90% (compared to 31% in CASP14). This 
remarkable accomplishment is largely due to the incorporation of DeepMind’s AF2-Multimer 
approach into custom-built prediction pipelines. To evaluate the added value of participating 
methods, we compared the community models to the baseline AF2-Multimer predictor. In over 
1/3 of cases the community models were superior to the baseline predictor. The main reasons 
for this improved performance were the use of custom-built multiple sequence alignments, 
optimized AF2-Multimer sampling, and the manual assembly of AF2-Multimer-built 
subcomplexes. The best three groups, in order, are Zheng, Venclovas and Wallner. Zheng and 
Venclovas reached a 73.2% success rate over all (41) cases, while Wallner attained 69.4% success 
rate over 36 cases. Nonetheless, challenges remain in predicting structures with weak 
evolutionary signals, such as nanobody-antigen, antibody-antigen, and viral complexes. 
Expectedly, modeling large complexes remains also challenging due to their high memory 
compute demands. 

In addition to the assembly category, we assessed the accuracy of modeling interdomain 
interfaces in the tertiary structure prediction targets. Models on seven targets featuring 17 
unique interfaces were analyzed. Best predictors achieved the 76.5% success rate, with the UM-
TBM group being the leader. In the interdomain category, we observed that the predictors faced 
challenges, as in the case of the assembly category, when the evolutionary signal for a given 
domain pair was weak or the structure was large. Overall, CASP15 witnessed unprecedented 
improvement in interface modeling, reflecting the AI revolution seen in CASP14. 

 
 
Keywords: CASP, protein assembly, AF2-Multimer, quaternary structure prediction, protein-
protein interaction, domain-domain interactions, deep-learning based modeling   
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INTRODUCTION  
 
The understanding of protein interactions at the atomistic scale is crucial for studying cellular 
function. Experimental techniques like X-ray diffraction, NMR spectroscopy, and cryo-electron 
microscopy (cryo-EM) provide high-resolution structures of protein complexes1. However, in 
cases where experimental approaches face limitations, modeling becomes valuable2–5. In 
particular, homology modeling is employed when there is a resolved structure of an 
evolutionarily related complex, while docking is preferred in the absence of such a template. 
Various strategies, including coevolution integration and the use of available experimental data, 
have been implemented to enhance docking accuracy6–12. For intricate cases involving 
intertwined complexes, fold-and-dock strategies are employed13,14. 

The CAPRI blind docking competition has been evaluating the state-of-the-art in assembly 
modeling since 2002 15,16. In 2014, CAPRI joined forces with CASP to assess the prediction of 
protein complexes on a larger scale. Several rounds of CASP-CAPRI experiments have been 
conducted, shedding light on the capabilities and limitations of assembly modeling 
approaches15,17–24. A major limitation in protein complex modeling has been the absence of 
reliable templates for modeling the monomer structures of an assembly20,25. This limitation has 
been alleviated to a large extent with the release of AlphaFold2 (AF2), an artificial intelligence 
(AI) tool that has made unprecedented progress in tertiary structure prediction26. In CASP14, AF2 
demonstrated high accuracy in modeling tertiary structure targets regardless of the prediction 
difficulty26,27. Consequently, the release of AF2 Protein Structure Database in 2022, with over 214 
million predicted protein structures covering nearly all UniProt sequences, has significantly 
impacted the field of structural biology28,29. 

Since the release of AF2, scientists have sought to incorporate this framework into their 
modeling pipelines. The simplest way to employ tertiary structure modeling methods to 
quaternary structure modeling was to join individual sequences of complex subunits into a 
longer, artificial sequence by means of adding an artificial glycine linker between monomers or 
introducing a sequence gap between multiple chains30–33. These approaches showed 
improvement over classical docking methodologies34–36. In 2021, DeepMind released AlphaFold-
Multimer (AF2M, version 2.2), the multimeric version of AF2 specifically retrained on biological 
interfaces33. AF2M outperformed previously outlined AF2-monomer modifications in the case of 
heteromers. Although DeepMind did not participate in CASP15, they did so indirectly since the 
vast majority of assembly groups adopted AF2M in their modeling pipelines37.  

In CASP15, to enhance the model accuracy, most of the groups experimented either with 
the multiple sequence alignment (MSA) input or with the AF2M sampling parameters. Among 
these, many benefitted from feeding their improved custom MSA into AF2M. A few utilized 
increasing the number of recycles (how many times the solutions are fed back to the AI-model), 
generating more models by starting from different random seeds or activating the dropout layers 
in the network. While tracing the specific AF2M modification strategies utilized by the 
community, we analyzed 41 assembly targets, considering the capabilities and limitations of the 
presented AF2M modifications. Our analysis shows where the community could push the 
boundaries of AI-based assembly modeling forward. It also highlights the remaining open 
challenges in the field. 
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METHODS 
 
Assembly Assessment: General Concepts 
Predictors in the CASP15 assembly category were provided with the stoichiometry information. 
We verified the symmetries of the targets in collaboration with the CAPRI Team by using 
AnAnaS38 and biological assemblies by using EPPIC39 and PISA40,41. Additionally, we the assessed 
interface properties, where needed by using PISA. Four targets, T119o, T1176o, T1176ov1, and 
T1184o, were canceled due to mismatch between the biological interfaces assigned by us and by 
the authors (Figure S1A). Targets H1171 and H1172 were multiple-conformation complexes 
spanning 1.5Å all-atom RMSD range. While assessing H1171 and H1172, we compared submitted 
models to all available conformers (two for H1171 and four for H1172) and reported the results 
for the top scoring model of each group.  

Targets were classified into three prediction difficulty categories: easy if there is a 
structural template for the entire assembly, medium if there is a partial template for subunits or 
their interactions, and hard if there is no template. HHPred 
(https://toolkit.tuebingen.mpg.de/tools/hhpred)42,43 was used for template search. Additionally, 
we grouped targets based on their complex types, including homomeric (consisting of identical 
subunits), heteromeric (formed by different subunits), intertwined (with small segments or 
domains exchanged between subunits), nanobody-antigen, and antibody-antigen.  

 
Evaluation unit definitions 
 Evaluation of assembly targets requires establishing a structural correspondence 
between the constituent chains of the model and experimental structures. This proved to be a 
challenging and time-consuming task for complexes with many subunits. Recently, Gabriel Studer 
suggested a greedy heuristic approach (https://git.scicore.unibas.ch/schwede/casp15_ema) to 
solve the chain mapping problem [ref: CASP15 EMA Assessment Paper]. This development 
allowed us to proceed with the evaluation of large complexes directly, without splitting them in 
subcomplexes as we did in CASP1420. However, we still needed to alter four targets.  

1) H1114 is an A4B8C8 bacterial assembly with C4 symmetry. In this complex, monomer A is 
forming an intertwined tetrameric tube, which interacts with monomer B. The prediction 
challenge in this complex was to form the intertwined tube and its interactions. To 
specifically focus on these interactions, we evaluated A4B2 assembly as a separate target 
H1114v2 (Figure S1B). 

2-4) H1166, H1167, H1168 are A1B1C1 immune complexes consisting of two antibody 
subunits (heavy and light chains) and an antigen molecule. To focus on the antibody-antigen 
interactions, we merged two antibody chains into a single chain, and formally assessed the 
complexes as hetero-dimers H1166v1, H1167v1, H1168v1 (Figure S1C). 
 

Scoring and ranking 
Submitted models were scored according to four metrics: two evaluating the accuracy of 

reproducing interfaces - Interface Contact Score (ICS, calculated as F1 score)18 and Interface Patch 

https://toolkit.tuebingen.mpg.de/tools/hhpred
https://git.scicore.unibas.ch/schwede/casp15_ema
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Score (IPS, calculated as Jaccard coefficient)18, and the other two evaluating overall model fold - 
Template Modeling (TM) score44, and Local Distance Difference Test (lDDT) score45. 

ICS measures the relationship between the precision (P) and recall (R) of predicted inter-chain 
contacts. P is the fraction of the correct inter-chain contacts among all model inter-chain 
contacts. R is the fraction of correctly reproduced native inter-chain contacts. M and T represent 
the model and target. Two residues are considered in contact when at least two of their non-
hydrogen atoms (one from each residue) are within 5Å from each other. 

𝐼𝐼𝐼𝐼𝐼𝐼(𝑀𝑀,𝑇𝑇) = 𝐹𝐹1(𝑃𝑃,𝑅𝑅) = 2 
𝑃𝑃(𝑀𝑀,𝑇𝑇) × 𝑅𝑅(𝑀𝑀,𝑇𝑇)
𝑃𝑃(𝑀𝑀,𝑇𝑇) + 𝑅𝑅(𝑀𝑀,𝑇𝑇)

    (Eq. 1) 

IPS is calculated as a Jaccard coefficient (Jc) over the interface amino acids (I) predicted by the 
model (IM) compared to the target (IT): 

𝐼𝐼𝐼𝐼𝐼𝐼(𝑀𝑀,𝑇𝑇) = 𝐽𝐽𝐶𝐶(𝑀𝑀,𝑇𝑇) =  
|𝐼𝐼𝑀𝑀 ∩ 𝐼𝐼𝑇𝑇|
|𝐼𝐼𝑀𝑀 ∪ 𝐼𝐼𝑇𝑇|

   (Eq. 2) 

TM score measures the topological similarity of the model with respect to the target, where 
L and Lali represent the target’s length and the number of equivalent residues in two structures, 
respectively. di is the distance between the ith pair of equivalent residues in the two structures 
and score is normalized by scaling with d0. 

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 =  
1
𝐿𝐿

[�
1

1 + 𝑑𝑑𝑖𝑖2
𝑑𝑑02
�

𝐿𝐿𝑎𝑎𝑎𝑎𝑎𝑎

𝑖𝑖=1

]   (Eq. 3) 

lDDT measures the difference in the interatomic distances within a model and the target. It 
is calculated by examining distances between pairs of atoms in the target that fall within a 
predefined threshold. If the difference in these distances is within a threshold (15 Å), the 
interaction is considered preserved in the prediction. The final score is determined by averaging 
the fraction of accurately modeled interactions. 

We consider a model successful if it scores above 0.50 on all metrics. Focusing our analysis 
on the regions where complex subunits interact, we define three interface prediction accuracy 
zones: poor (ICS < 0.50), good (0.50 ≤ ICS < 0.75) and high (ICS ≥ 0.75). To investigate the interface 
prediction improvement across different CASP rounds, we carried out a comparative distribution 
analysis. For this, we collected the best ICS values generated for a given difficulty class during 
every round. The distributions of these values were then represented with box-and-whisker 
plots. 

Participants were ranked based on their relative performance according to all four 
evaluation measures. A per-measure relative performance was calculated in terms of Z-scores 
reporting the number of standard deviations a particular model’s score is above or below the 
per-target population mean: 

 
Z-score = (score - mean) / standard_deviation (Eq.4) 

 
Z-scores were calculated for two different model sets: all submitted models or models designated 
as model_1 (i.e., top ranked models according to the predictor). Initially, Z-scores are computed 
on full model sets. Then outliers (models with Z-scores < -2) are removed, and Z-scores are re-
calculated on the remaining models. Negative Z-scores are reset to 0 to avoid strong penalization 
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of groups who underperformed. The final ranking score of a group is computed as a sum of 
combined per-measure Z-scores over all predicted targets: 
 
 
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶15 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = ∑ [𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍(𝐼𝐼𝐼𝐼𝐼𝐼) + 𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍 (𝐼𝐼𝐼𝐼𝐼𝐼)  + 𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍 (𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙) + 𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍 (𝑇𝑇𝑇𝑇) ]

4𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡    (Eq.5) 
 

Ranking on first models is considered the ‘official’ CASP ranking. 
 
The robustness of ranking is verified by the jackknife resampling. For this, initially, one target was 
excluded from the analysis, and the sum of Z-scores was calculated over the remaining targets. 
This process was repeated iteratively, excluding a different target at each step, until all targets 
were excluded once. For the final ranking, we utilized the mean scores obtained from the 
jackknifing protocol. The standard deviations from the jackknifed data set are used as a measure 
of the results’ variability.  
 
Naïve (baseline predictor) 

Vast majority of CASP15 groups used the AF2M method as a starting point for their 
modeling. To help predictors with obtaining starting models, CASP organizers made an 
arrangement with Claudio Mirabello from the Elofsson group to run the public AF2M (version 
2.2) method on all CASP15 targets and submit obtained models to CASP as predictions from the 
NBIS-AF2-Multimer group (NBIS-AF2M). In our evaluation, these predictions were used as the 
baseline models. Hereafter, NBIS-AF2M will be referred to as the baseline or AF2M46. We also 
used the underlying MSAs (deposited in http://duffman.it.liu.se/casp15/)47 to calculate the depth 
of sequence profiles. By default, the input MSAs were generated by JackHMMER v3.348.The 
informational content of an MSA was evaluated with Neff, the number of effective sequences49. 
Neff is calculated as  

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 = �
1

𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑡𝑡𝑖𝑖

𝑁𝑁

𝑖𝑖=1

    (Eq. 6) 

where N is the number of sequences in the MSA. For each sequence i, weighti is the sum of 
weightij over all the sequences in the MSA, while weightij is the sequence identity between any 
homologues sequence i and j in the MSA. The minimum sequence identity between i and j was 
set to 80% identical residues. 

For the targets with subunits, we calculated the multimeric Neff as  
 

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 =  (𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁1 ∗ … .∗ 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁)1/𝑁𝑁   (Eq.7), 
 
where N is the number of different subunits. 
 
The baseline AF2M method was run with default parameters (no_recycles=3, no_seeds=5)46, 
except for T1173, T1174, and T1181, where NBIS team set the number of recycles to 25. Models 
for large targets - H1111, H1114, H1115, H1135, H1137 - were built by MolPC50. The final ranking 
was performed according to the model confidence score (0.8 · ipTM + 0.2 · pTM)33, where pTM 
is the predicted TM and ipTM is the same metric calculated over the interface. 

http://duffman.it.liu.se/casp15/)45
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To quantify the difference between the community performance and the baseline, we 
introduced a ΔICS score (Eq. 8). For each target, this score measures a gain in the ICS of the best 
community model over the AF2M one: 

 
ΔICS = ICSbest ICS scoring model - ICSbest ICS scoring naive model  (Eq.8) 

 
If needed, buried surface area (BSA) and noncovalent intermonomer interactions were 

calculated with the COCOMAPS tool (https://www.molnac.unisa.it/BioTools/cocomaps/)51. 
 
Interdomain Assessment: General Concepts 

All multi-domain targets were considered as candidates for the interdomain assessment. 
If a tertiary structure target had multiple different interfaces, each of them was considered as a 
potential interdomain target18. Domain pairs with weak interfaces were disregarded, and only 
interfaces with ten or more interacting residue pairs were considered. For the evaluation of 
interdomain interactions we employed two interface metrics used in the assembly assessment: 
Interface Contact Score (ICS) and Interface Patch Score (IPS), and, additionally, the global 
Quaternary Structure (QSglobal) score52,53. The predictors were ranked according to the 
cumulative Z-score function: 
 
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶15 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 =  ∑ [𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍(𝐼𝐼𝐼𝐼𝐼𝐼) + 𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍 (𝐼𝐼𝐼𝐼𝐼𝐼)  + 𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍 (𝑄𝑄𝑄𝑄𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔) ]

3𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡        (Eq.9) 
 
Z-scores for each metric were calculated on first models using the same procedure as explained 
above for ranking assembly groups. 
 
 
Visualization software 

All plots in this paper were generated by using Python 3.8.10 and numpy, seaborn, 
matplotlib, pandas, and statistics libraries54–58. 

The structure figures were generated with PyMOL(TM) 2.5.259. 
  

https://www.molnac.unisa.it/BioTools/cocomaps/
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RESULTS AND DISCUSSION 
 

General Overview of the CASP15 Assembly Prediction Category 
In CASP15, 40 protein complexes were offered as prediction targets (Table 1, Figure S2). 29 of 
them were solved by X-ray crystallography, and the remaining 11 by cryo-EM. Half of the 
structures exhibited various degrees of cyclic symmetries. The target complexes contained from 
two to 27 subunits, with dimers prevailing. The homomeric cases comprised half of the assembly 
targets, including ten intertwined assemblies. The heteromeric cases consisted of three 
intertwined complexes (H1114, H1114v2 and H1137), one host-pathogen complex (H1129), and 
eight immunity complexes - five nanobody-antigen (H1140-H1144) and three antibody-antigen 
(H1166-H1168). The nanobody-antigen series involved binding of five different nanobodies to 
the catalytic domain of mouse CNPase, an enzyme responsible for regulating cyclic nucleotide 
synthesis60. While sharing a moderate sequence identity (ranging between 62%-73%), the 
nanobodies adopt distinct conformations (ranging between 3-7 Å all-atom RMSD) when bound 
to their targets. In the case of antibody-antigen series, the N-terminal domain of the SARS-CoV-
2 nucleocapsid (N-) protein was bound to different human antibodies, derived from COVID-19-
infected individuals. The antibodies' light and heavy chains exhibited moderate to high sequence 
identity, ranging from 43% to 81% and 74% to 96%, respectively, leading to 4-6 Å all-atom RMSD 
variations. In addition to these cross-species and immunity complexes, the primary target sources 
were bacterial and eukaryotic cells. Five targets presented different conformational states that 
were induced by ligand binding, mutation, or buffer conditions. The heptameric (H1171) and 
octameric (H1172) Holliday junction targets showcase the ligand-binding-induced 
conformational changes happening in the corresponding hexameric apo structure T1170o. Target 
T1109o, an isocyanide hydratase mutant, is an example of conformational changes due to a one-
point mutation (D183→A183) in the corresponding wild-type structure T1110o. The point 
mutation resulted in an all-atom RMSD change of 11.2 Å. The ancient protein reconstruction 
target T1160o exhibits conformational differences compared to what is available in the literature 
due to different compounds used in the crystallization buffer61. T1161o is a mutation-induced 
version of T1160o, designed to explore the connection between an ancient DPBB (DNA/RNA 
polymerase binding) protein and a RIFT (ribosomal) protein. Each monomer of this protein had 
five amino acid differences compared to the original sequence, leading to a 1.6 Å all-atom RMSD 
change. 

All targets were evaluated with all interfaces contributing to the assessment score. For 
one of the targets with complicated stoichiometry (H1114, A4B8C8), the prediction challenge 
was to predict the smallest interface of the complex, formed between an intertwined tube and a 
protein dimer. We, therefore, additionally evaluated this subcomplex (A4B2) as a separate target 
(H1114v2) (Figure S1B). This increased the total number of evaluated cases to 41. From the 
perspective of prediction difficulty, the targets were categorized into 16 easy, 21 medium, and 4 
hard cases according to the principles outlined in Methods (see Table S1). Further details on the 
assembly targets are presented in Table 1, together with their structural depictions in Figure S2. 

A record number of participants - 61 human and 26 server groups - took part in CASP15. 
These groups submitted a total of 11,000 models, presenting the load four times larger than that 
in the previous CASP (Table 2). All targets were shared with CAPRI, and most of them were 
selected for CAPRI prediction (Table 2). Among the 87 CASP15 participating groups, 60 submitted 
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predictions on more than half of the targets. According to the CASP15 Abstract Book, 90% of the 
groups used the AF2M methodology in one way or another37,46. Some groups directly used the 
standard setup of AF2M, while others tried to enhance the sampling and/or scoring procedures 
of AF2M by supplying custom MSAs, templates, increasing the number of recycles used in 
sampling, or activating the dropout layers in the AI model to increase sampling diversification. 
Only very few groups performed solely classical docking and template-based modeling, but this 
time starting from the AF2 tertiary structure models. A small set of groups utilized normal mode 
analysis and short molecular dynamics to model conformational changes happening upon 
binding. A brief description of these methods can be found in the CASP15 Abstract Book46. Finally, 
it is worth mentioning that all AF2M-dependent CASP groups encountered a bottleneck in the 
straight-on modeling of large complexes, which had to be modeled upon dissecting the whole 
assembly into smaller subcomplexes. 
 
CASP15 witnessed an unprecedented improvement in assembly modeling 
In CASP15, we employed four different metrics to evaluate the accuracy of assembly models (see 
Methods). Distributions of the evaluation scores for all targets are shown in Figure 1. As defined 
in Methods, we consider a model to be successful (or acceptable) if it scores above 0.50 according 
to all evaluation metrics. Strikingly, the CASP15 community could submit at least one successful 
model for 90% (37 out of 41) targets (Table 1). For comparison, only 31% of CASP14 targets had 
successful models. In CASP15, the failing targets correspond to two antibody-antigen complexes 
(H1166, H1167), one nanobody-antigen complex (H1142), and a viral homodimer (T1123o). 
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Figure 1. Per-target distribution of A. ICS, B. TM, C. IPS, and D. lDDT metrics calculated over the 
submitted models. The box coloring follows the target difficulty color code (green: easy, blue: medium, 
red: difficult). The threshold for a model to be successful (0.50) is marked with a horizontal gray line.  

 
Best predictors managed to model the overall fold of CASP15 targets extremely well. 

According to the fold similarity measures (lDDT and TM), 100% of CASP15 targets had models 
scoring over 0.50 (76% in CASP14) and 90% scoring over 0.75 (14% in CASP14). Getting interface 
regions accurately proved to be a slightly more difficult task, with 90% of CASP15 targets having 
models scoring over 0.50 according to the interface-based metrics IPS and ICS (31% in CASP14). 
Figure 2A confirms the striking improvement in the accuracy of interface modeling in the latest 
CASP. While in the pre-CASP15 editions the vast majority of targets (around 70%, red) were falling 
in the poor accuracy zone and only very small fraction (around 10%, green) in the high accuracy 
zone, in CASP15 the situation flipped with only less than 10% of targets being modeled poorly 
and more than a half modeled with high accuracy. The mean ICS score of the top models doubled 
from 0.37 in CASP14 to 0.74 in CASP15, almost reaching the lower boundary of the high-accuracy 
prediction zone (0.75 - see Methods for zone definitions). Notably, best models for some of the 
hardest targets almost perfectly reproduced native interfaces in CASP15 (for example, ICS of 0.95 
for T1187o or 0.90 for T1174o), while never crossing the 0.52 level in all previous CASP rounds 
(Table 2).  
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In CASP15, half of our targets were homomers. Also, the majority of the targets had 
complete or partial templates, de-facto making these targets easier for modeling. To ensure that 
the advancement observed in CASP15 was not solely due to the decreased difficulty of the target 
set, we conducted a difficulty-tuned comparative analysis of results across different CASP rounds 
(Figure 2B, Methods). This analysis demonstrated a significant performance enhancement across 
all difficulty categories, with an upward shift of 0.2 ICS for the easiest targets and 0.5 for the 
hardest ones, which shows that target difficulty was not the major determinant in the 
unprecedented accuracy improvement in CASP15.  

 

 
Figure 2. A. Percentage of the best models in CASP12-15 falling into three interface accuracy bins: poor: 
ICS<0.50, red; good: 0.50 ≤ ICS < 0.75, blue; and high: ICS ≥ 0.75, green. B. Box-and-whisker plots for the 
best ICS scores generated in each round. The distributions are presented under different difficulty 
categories.  
 
Best performing CASP15 groups and their modeling strategies 
We ranked participating groups according to a Z-score-based function composed of equally 
weighted inputs from ICS, IPS, lDDT, and TM metrics (Eq.5, Methods, Table S2). Zheng group 
ranked at the top (Figure 3A), followed by the second tier of groups including Venclovas and 
Wallner groups, and the third tier comprising Yang and Yang-Multimer. The robustness of the 
ranking is confirmed by the jackknife cross-validation. If we rank groups on the best models 
submitted on targets, the first two tiers would remain the same, while the third tier would include 
PEZYFolding and Kiharalab.  Zheng, Venclovas, and Kiharalab groups predicted all 41 targets, 
Wallner - 36 targets, and PEZYFolding and Yang - 39. If we consider the average Z-scores for 
ranking, Zheng continues to lead as the top-performing group, followed by Wallner and 
Venclovas (Figure S3). These groups achieved successful model submissions (considering their 
best ICS models) for a substantial percentage of the targets they participated in: 73% for Zheng 
and Venclovas, 69% for Wallner, 64% for Yang, 67% for PEZYFolding, and 56% for KiharaLab. The 
NBIS-AF2M group, which employed the standard AF2M settings (Methods), ranked 30th and 
successfully generated at least one good ICS model for 54% of the targets (22/41).  
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The top-ranked Zheng group utilized DeepMSA2 pipeline for generating MSAs that are 
subsequently fed into AF2M [ref: CASP15 Zheng Paper]. The MSAs were built by iteratively 
running HHblits62, Jackhmmer63, and HMMsearch63 on several databases. While modeling 
heteromers, they sampled all possible MSA pairing combinations to obtain the most optimal 
pairing scenario. Models were ranked according to the AF2M’s pTM score. The Venclovas group 
used ColabFold32, which employs MMseqs2 to search genetic databases and construct MSA64. 
For sampling they used both the AF2M and monomeric AF2 AI models (so, both versions 2.126 
and 2.233). They sampled different paired MSAs by using different sequence databases. They also 
increased the number of recycles. When ColabFold failed to assemble the complex (due to the 
system size limitations), Venclovas’ team used rigid body docking. SAM was used to dock 
symmetric homomers, while FTDOCK and HEX were used to assemble heteromers65–67. After 
pooling all models, they ranked the models with their consensus VoroIF-jury method68 [CASP15 
Venclovas Paper]. Wallner sampled an exhaustive set of models by using AF2M versions 2.126 and 
2.233. While using these AI models, they activated the dropout layers in the Evoformer block, 
increased the number of recycles, as well as the number of seeds, and turned on/off the template 
usage. They ranked the sampled conformations according to the AF2M’s model confidence score 
(Methods). Wallner aimed to submit a diverse set of models having a high model confidence 
score (>0.7)69. The Yang teams replaced AF2M’s template search with HHsearch and disabled 
MSA pairing70. For model ranking, they used the same scoring scheme as Wallner. PEZYFolding 
and Kiharalab groups performed well on sampling, but not on scoring. PEZYFolding used custom 
MSAs as an input to AF2M. For this, they used their sequence search tools PZLAST and PSI-
BLASTexB next to AF2M’s sequence search tools71–73. These tools were run over several public 
and private sequence databases. The top model was picked either by plDDT or ipTM. The rest of 
the models were selected to reflect minimum structural similarity among all submitted models. 
Kiharalab generated its custom MSA by running HHblits, Jackhmmer over different genetic 
databases in an iterative manner. For the symmetric homomeric complexes, where AF2M failed, 
they used the docking tool SAM, like the Venclovas group. SAM was run with the bound 
monomeric conformations obtained from AF2M. 

To examine the sampling space covered by the top five assembly groups, we analyzed the 
similarity of their ICS scores compared to the baseline AF2M’s (Figure S4). Zheng and Yang-
Multimer showed the highest correlations with AF2M, with values of 0.78 and 0.74, respectively. 
On the other hand, Wallner and Venclovas had the least similar models, with correlations of 0.43 
and 0.51, respectively. This difference could be attributed to Wallner and Venclovas focusing on 
diversifying their final model sets. To evaluate the effectiveness of these groups’ ranking 
schemes, we compared their best ICS models with their top-ranking (i.e., first) model’s ICS (Figure 
3B). According to our analysis, the pTM scoring method worked exceptionally well for Zheng. 
Wallner performed as the second-best scorer, although they couldn't rank their best models for 
three cases (T1109o, T1161o, T1153o). Lastly, Venclovas had only one significant discrepancy 
between what they thought was their best model and their actual best ICS model (T1187o). 
Strikingly, for the other targets, their custom scoring function performed almost as well as 
AF2M's confidence score. 

Homology modeling and docking driven by AF2 tertiary structure models was employed 
as the main methodology in CASP15 only by a few groups (ChaePred, ClusPro, and FTBiot0119). 
These groups achieved lower rankings than standard AF2M, indicating that simultaneous 
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modeling of monomers in the context of an assembly is a more efficient modeling practice than 
these semi-classical approaches. 

 

 
Figure 3. A. The CASP15 assembly groups, ordered from left to right according to their relative 
performance. For the final ranking, we utilized the average scores obtained from the jackknifing protocol 
(Methods). The bar height represents the cumulative Z-score (Eq.7), while the error whiskers mark the 
standard deviation of the jackknifed data set. Human groups are shown in blue, servers in green, and the 
baseline NBIS-AF2-Multimer in orange. B. Model ranking efficiency of the top performing groups. The 
ICS of the first submitted model is plotted against the best ICS model. Yellow boxes highlight off-diagonal 
targets (i.e., those, for which predictors wrongly identified their best model). 
 
Exploring the factors affecting model accuracy: MSA, templates, and sampling parameters 
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In this section we investigate the influence of input data and sampling parameters on the 
accuracy of protein complexes generated by the AF2M AI model. First, we analyze whether 
richness of evolutionary information (in terms of the complex’ combined MSA depth) has an 
impact on the accuracy of assembly models. Thirty out of 41 assembly targets are suitable for 
this analysis; the remaining 11 are disqualified as either representing inter-species complexes or 
being merely a duplication of other targets. Complexes H1129, H1166-H1168, and H1140-H1144 
are cross-species by their nature and as such do not contain intra-species binding signal in their 
individual subunit MSAs (i.e., for these targets the model accuracy will not be a function of their 
multimeric Neff).  Targets T1109o and T1161o are close mutants of their wild-type relatives 
(T1110o and T1160o) that are already included in the selected 30 and contribute to the MSA-
centered analysis. These eleven special interaction cases are examined further below from the 
perspectives of template availability and optimized sampling. 

Figure 4A shows the relationship between the multimeric MSA depth, Neff (see Methods), 
and the best ICS scores for the qualified 30 targets, after their separation into three difficulty 
classes. The results reveal that the easiest for modeling targets have the deepest MSA (average 
Neff of 4203), while the most difficult ones have the shallowest MSA (average Neff of 1344). 
Interestingly, and against the expectation, interfaces of the hard modeling targets were modeled 
most accurately (average ICS of 0.87) in the hardest targets. A possible reason for this can be that 
all hard targets are rather small and formed by obligate interactions (Figure S5). The trend for a 
better performance with increasing alignment depth is apparent when analyzing the ICS-Neff 
correlation inside each target difficulty bin. These results are in line with the conclusions drawn 
for the tertiary structure prediction category26,74,75. Figure 4A also suggests that size of the 
complex may be another factor influencing modeling accuracy, as larger targets (1800 residues 
or more) were modeled slightly worse than the smaller ones (average ICS of 0.68 versus 0.75 for 
the latter). 

To examine the relationship between the model accuracy and Neff in more detail, we 
divided the plot in Figure 4A into four distinct zones based on the mean ICS and Neff values. The 
mean ICS are 0.77, 0.69 and 0.87 and the mean Neff are 4203, 2952 and 1344 for easy, medium, 
and hard classifications, respectively. We focused on two zones: the "green" zone, where models 
with higher-than-average ICS scores could be generated despite relatively low Neff values, and 
the "red" zone, where lower ICS models were generated despite relatively high Neff values. The 
green zone includes three targets in the easy category (H1106, H1151, and T1179 - all small 
dimers), three bacterial symmetric cases in the medium category (T1132, T1153, and H1114), and 
two intertwined homomers in the hard category (T1113o and T1174o) (Figure 4B). There is a 
tendency for the green zone targets to be smaller or composed of intertwined molecules. The 
red zone is populated only for easy targets, with all cases being large-sized targets (H1172, H1171, 
and H1185). We also paid special attention to the targets with good or high accuracy ICS models 
and extremely low Neff values (i.e., points in immediate closeness to the Y-axis). These cases 
include T1178o, T1179o (small viral homodimers with structurally distant templates), H1135 (a 
cyclic homononamer in complex with three repeating peptides having a poor template), and 
T1113o, T1173o (intertwined bacterial homomers with no templates at the sequence and 
structure level) (Figure 4B). As these complexes are all made of obligate interactions, AF2M might 
have tried to assemble them by using building blocks learned from various entries in the Protein 
Data Bank, even in the absence of the MSA information. This observation is also supported by 
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the fact that intertwined complexes could be predicted accurately even in the absence of MSA 
pairing, as proved by Yang. The absence of homologous sequences had a substantial negative 
impact only in the case of T1123o, where the interface was primarily composed of loop 
interactions.  

 
Figure 4. A. Relationship between baseline Neff values and the best ICS values for each difficulty 
category. In all categories, the horizontal green dotted line represents the mean best-ICS value, and the 
vertical red dotted line represents the mean Neff value. The green zone represents areas where lower 
Neff values are associated with higher ICS values, while the red zone represents areas where higher Neff 
values are associated with lower ICS values. Neff values are depicted on the x-axis using a logarithmic 
scale to emphasize distinctions among low Neff values. The special cases (11 targets) are shown in purple. 
Markers of data points are scaled to their assembly size with larger complexes shown as larger circles. B. 
Comparison of the best ICS models with the experimental structures. The best ICS models (shown in 
color) superimposed on target structures (gray) for the green, red, and extremely low Neff zone targets 
(see panel A). Stoichiometry and difficulty definitions are provided for each target.  
 

Among the 11 special case targets, two complexes, H1143 and H1168, had templates 
highlighting the antigen binding site on the target. H1143’s template was the substrate bound 
CNPase (Figure S6A, Table S1). H1168v1’s template was another antibody-binding N-protein 
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(Figure S6B, Table S1). For both targets, the availability of templates resulted in the generation 
of numerous high-accuracy models (Figure 1A). The remaining complexes had partial or complete 
templates only at the monomeric level. Among these, exhaustive sampling was necessary to 
produce differentially improved models for the mutation-induced T1109o and T1161o, the host-
pathogen H1129, and nanobodies H1140-H1141-H1143, compared to the rest of the community 
(see positive outliers generated for these complexes in Figure 1A). Among the top-performing 
groups, Wallner and Venclovas stood out for their utilization of exhaustive sampling techniques. 
The Wallner group notably produced the best or one of the best high accuracy models for targets 
T1109o, T1161o, H1129, H1140, H1141, and H1144 (Figure S6). The Venclovas group produced 
the second-best ICS model for target H1129. Interestingly, in the case of two nanobody-antigen 
targets (H1141 and H1144), the custom MSA approach by the Zheng group worked and yielded 
the best ICS models. Only H1142 remained elusive for prediction by all groups, with the best 
model achieving an ICS score of 0.45 (Figure S6A). The buried surface area for these nanobody-
antigen complexes follows the order: 1174.1 Å2 (H1142) < 1545.3 Å2 (H1140) < 1784.1 Å2 
(H1144) < 1854.1 Å2 (H1141). So, the smallest interface was observed in H1142, hinting at a 
transient interaction, and thus posing a challenge for its prediction. Nevertheless, predicting real 
antibody-antigen interactions in the absence of templates (H1166-H1167) remains a challenge 
(Figure S6B).  
 
Advancing Beyond Standard AF2M Modeling 
The community submitted at least one acceptable model for 90% of the targets, while the 
baseline predictor (NBIS-AF2-M) managed to generate an acceptable model only in 54% of cases. 
The performance gap observed between NBIS-AF2-M and the community motivated us to 
conduct further analysis to determine the factors that contributed to the improvements achieved 
by top ranking groups compared to the standard AF2M pipeline. For this, we identified the best 
ICS model for each target and calculated the difference between its ICS score and that of the best 
NBIS-AF2-M model. Figure 5A shows that the community significantly outperformed AF2M 
(ΔICS>0.25) on 15 targets (T1109o, T1115o, T1121o, T1160o, T1161o, T1179o, T1187o, H1111, 
H1114, H1114v2, H1129, H1135, H1140, H1141, H1144). Among these, enhanced sampling might 
explain the improvement for T1109o, T1161o, H1129, H1140, H1141, H1144, as discussed above. 
H1111, H1114, H1114v2, T1115o, H1135 share a common characteristic — they are large targets 
containing more than 1800 amino acids (Table 1, Figure S2). Modeling the complete 
stoichiometry of these complexes was beyond the capacity of the AF2M server and therefore for 
these complexes, AF2M submitted a subcomplex of the entire assembly. As an example, H1111 
represents a symmetric A9B9C9 bacterial assembly. The best model for this target was submitted 
by the Yang group, achieving an ICS of 0.61 and a ΔICS of 0.57. NBIS-AF2-M, in contrast, submitted 
a trimeric model where the largest subunit hindered the formation of the 27-meric ring (Figure 
5B). As another example, the bacterial 20-mer assembly H1114 features an intertwined tube at 
its center, which could not be built in the absence of partners (Figure 5C). Yang submitted the 
best model for the entire complex with an ICS of 0.84 and a ΔICS of 0.67. Two more targets are 
worth further exploring. The first one is T1179o, where AF2M predicted a more compact model 
than the actual structure. For this case, an unpaired MSA-driven approach, DFolding-server 
produced a model with an ICS of 0.81 and a ΔICS of 0.67 (Figure 5D). The other one is H1129, 
where the complex was left undocked by the AF2M but was accurately predicted by Wallner as 
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described above (Figure 5E). Finally, we also observed that the community and baseline AF2M 
methods performed similarly on all the Neff-based green and red zone complexes, except for 
H1114 (Figure 4A). For the template driven H1143 and H1168 complexes too, the community 
could not produce better models than the AF2M (Figure S6B).  
 

 
Figure 5. A. The best ICS model submitted by the community vs. the best ICS model submitted by NBIS-
AF2-M. The color code used for the best community submissions follows the one in Figure 1. The best 
NBIS-AF2-M models are shown in tan. Each data point is marked with the complex type, where Ho stands 
for homomer, He for heteromeric, Int for intertwined, Nb for nanobody-antigen, Ab for antibody-antigen, 
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and MI for mutation-induced change. The targets where NBIS-AF2-M and the community produced similar 
successful models (ΔICS<0.25) are marked with an asterisk *. The tabulated form of this plot is provided 
as Table 3. B. The best ICS model submitted by the community, the best ICS model submitted by AF2M 
and the experimental structure for H1111, C. H1114, D. T1179o and E. H1129. The best ICS models were 
depicted in color and the experimental structures were depicted in gray. 
 
From inter-monomer to interdomain predictions  
In CASP15, the assessment of interdomain interface predictions was conducted alongside the 
assembly category, as both categories share conceptual similarities and can be analyzed using 
similar assessment approaches.  

Tertiary structure prediction in CASP was evaluated at the level of evaluation units (EU), 
which are either structural domains or easily predictable combinations of such (see 
Kryshtafovych and Rigden for details of the CASP15 EUs definition)76. The tertiary structure 
assessment concentrates on the question of how well structures of separate domains are 
reproduced, while the interplay between domains is left outside the scope of that assessment 
and is the subject of this study. All in all, 22 single-sequence CASP15 targets (monomers and 
subunits of multimers) were split into multiple EUs (called here for simplicity “domains”). We 
took these targets, calculated their interdomain interactions, and kept the domain pairs having 
at least ten interdomain contacts (see Methods). In the end, we evaluated 17 interfaces from 7 
targets (Table 5). To assess accuracy in modeling interdomain interfaces, we employed the ICS, 
IPS, and QSglobal metrics. Similar to the assembly category, a successful model was defined as 
having scores above 0.50 for all metrics. According to this definition, 12 out of the 17 interfaces 
had successful predictions. However, five interfaces (T1125-D12, T1125-D34, T1125-D56, T1165-
D16, and T1169-D12) proved to be challenging for the community (Figure 6). For one of these 
interfaces, T1125-D56, two of the evaluation scores were well above 0.50 (the best ICS of 0.63, 
and the best IPS of 0.67), while the third (QSglobal) was slightly below 0.50. We decided to count 
this target also as a successful case, thus bringing the total number of successful predictions to 
13 and achieving an overall success rate of 76.5%.  
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Figure 6. Per-target distributions of A. ICS, B. IPS and C. QSglobal scores on interdomain targets. The 0.50 
solid gray line mark denotes the threshold for a successful prediction.  
 

Predictors in the interdomain category were ranked according to the Z-score-based 
function presented in (Eq.9). UM-TBM and Yang-server groups outperformed other groups by a 
large margin (Figure 7A and S8, Table S3). The UM-TBM, developed by Zheng's group, is a fully 
automated pipeline designed to generate tertiary structure models. This approach combines 
multiple tools and strategies, including contemporary deep learning approaches to predict 
contacts, angles, distances, as well as classical techniques, such as template-based modeling and 
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molecular dynamics simulations. In particular, UM-TBM produced exceptionally good results for 
T1125-D23 (Table S4, Figure 7B). The second-best predictor, Yang-server, employed trRosettaX2 
and AF2. Their pipeline incorporated the attention-based network from AF2 to improve the 
prediction of inter-residue distances and orientations, along with energy minimization from 
trRosetta. Notably, the Yang-server achieved top rankings in T1169 and T1154 targets (Table S4, 
Figure 7C, D). 

To investigate the impact of MSAs on prediction success, we plotted the best ICS for each 
domain combination versus the depth of their combined MSAs (Neff, see Methods) (Figure 7E). 
Similar to the assembly category, we divided the plot into four zones based on the mean ICS and 
Neff values and focused on the analysis of targets in green and red zones. The red zone includes 
T1165 targets: T1165, T1165-D16, T1165-D56. The green zone includes seven targets: T1125-D23, 
T1125-D45, T1145, T1154, T1169, T1169-D23, T1169-D34.  

Among the green zone targets, T1125-D23, T1125-D45, T1154, T1169, and T1169-D23 
have extremely low Neff values. As an outcome, in the case of T1125 and in T1169, the lack of 
MSA information hindered achieving the required domain compaction. T1125 is a gp96RNAP 
enzyme found in Thermus phage. Among the six domains of T1125, only D3 has a moderate Neff 
value, while the remaining domains have extremely low Neff values. Even so, three interfaces of 
this target, namely T1125-D23, T1125-D45, and T1125-D56 were successfully predicted. 
However, having these three interfaces modeled properly was not enough to model the whole 
system, since the wrongly predicted D12 and D34 interfaces hindered the necessary closing of 
the N-terminal region of this protein upon its C-terminal region (Figure 7B). T1169 is a mosquito 
salivary gland surface protein 1 with more than 3000 residues. It consists of four domains and 
three qualified interfaces (Table 5). Despite the very low Neff values for its D2 and D4 two 
domains, D23 and D34 could be predicted successfully. As in T1125, in this case too, accurate 
prediction of D12 was needed for the proper folding of the protein, which could not be achieved 
by anyone (Figure 7C). The final extremely low Neff case, T1154, is an archaeal protein with two 
domains and one interface for evaluation. This Y-shaped target is mainly made of beta sheets. 
Despite having an extremely low Neff value, it was surprisingly well predicted by many predictors 
(Figure 7D). This tells us that this target somehow falls into the “learned structural space” of the 
participating AI models.  

The final interdomain target worth mentioning is T1165, which is a modified construct of 
the native ubiquitin-protein ligase TOM1 from Saccharomyces cerevisiae. This protein is 
composed of more than 3000 amino acids, made of six domains and five qualified interfaces. 
Among these five interfaces, four could be successfully predicted, however the models for three 
of them, i.e., T1165, T1165-D16, T1165-D56, fell into the red zone. The interfaces falling into the 
red zone despite a high Neff suggests that the large size of the protein may be a limiting factor in 
these cases. Additionally, the only mispredicted interface was D16 (Figure S9). The D1 and D6 
domains are made of stacking of several alpha helices as in TPR repeat proteins. Predicting the 
proper stacking of these alpha helices posed a challenge, which resulted in the misprediction of 
the D1-D6 interface. As an outcome, the 894 Å² D1-D6 interface was predicted to be as small as 
25.5 Å² by the top predictor of this target (Figure S9). This highlights the challenge in predicting 
the overall fold of the alpha helical repeat proteins. 
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Figure 7. A. Performance of CASP15 groups in predicting interfaces of multi-domain targets. The groups 
are ranked according to their first submitted models with the Z-score function given in Eq.9. B. The domain 
organization of T1125. The top-ranking model generated for this target is submitted by UM-TBM. In this 
model, D6 is not closing upon D1, as in the crystal structure. C. The domain organization of T1165. The 
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top-ranking model generated for this target is submitted by Yang-server. In this model, D1 is not closing 
upon D2, as in the cryo-EM structure. D. The domain organization of T1154. The top-ranking model 
generated for this target is submitted by Yang-server.  E. Relationship between the baseline Neff values 
and the best ICS values generated for the interdomain category. The horizontal green dotted line 
represents the mean best-ICS value (0.64), and the vertical red dotted line represents the mean Neff value 
(2117). The green zone represents the area where lower Neff values are associated with higher ICS values, 
while the red zone represents the area where higher Neff values are associated with lower ICS values. 
Neff values are depicted on the x-axis using a logarithmic scale to emphasize distinctions among low Neff 
values.  The interdomain targets from the same structure are colored uniformly. Data point markers are 
scaled to their assembly size with larger complexes shown as larger circles. The depicted Neff data are 
tabulated in Table 6.  
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CONCLUSIONS AND PERSPECTIVES  
The CASP15 assembly category witnessed unprecedented advancements in assembly modeling, 
achieving an impressive success rate of 90% compared to previous rounds. This remarkable 
progress can be attributed to the improved performance of AF2M, achieved through the 
utilization of custom-built MSAs and the optimization of sampling parameters. In order to explore 
the potential of combining MSA- and sampling-focused approaches, we conducted a detailed 
analysis on a per-case basis, comparing the models generated by Zheng and Wallner based on 
their best ICS scores (Figure S10). The analysis revealed that Wallner demonstrated excellent 
performance in cases involving mutation-induced, host-pathogen, and nanobody-antigen 
complexes, while Zheng excelled in modeling large assemblies (Figure S10). Such a combination, 
though, would still be limited in modeling antibody-antigen complexes or constructing very large 
assemblies. To this end, two recently proposed methodologies can come to rescue. The first one, 
AlphaLink, incorporates experimental distances obtained from cross-linking mass spectrometry 
to guide AF2M-based complex formation77,78. The second one, RoseTTAFold2, leverages the 
strengths of both RoseTTAFold and AF2 and has shown scalability in modeling large complexes79. 
Additionally, the success of CASP15 has motivated DeepMind to release an updated version of 
AF2, known as AF2-v2.3.080. This update has successfully addressed sampling challenges 
encountered in standard AF2M for modeling host-pathogen interactions (H1129), nanobody-
antigen complexes (H1144), and large assemblies (H1111 and H1114) (Figure S11). 
 
Notes to the CASP16 Assembly Assessor 
In the CASP15 assembly category, we followed the conventional CASP difficulty classification. 
However, based on our assessment, we recommend updating the difficulty classification in the 
next round to consider both MSA depth and available structural models. Additionally, we found 
that ICS was an effective metric for discriminating between the top-ranking groups. However, 
upon further analysis, we identified a limitation in ICS scores for very large complexes with 
multiple interfaces, where the scores were inflated due to the dominance of larger interfaces 
(Figure S12). To address this issue, we propose either upweighting the smaller interfaces, or 
evaluating each interface separately. Furthermore, in future rounds, it would be beneficial to 
incorporate target resolution information into the accuracy calculation. In the current round, we 
observed that targets with >3Å resolution consistently exhibited ICS values ranging from 0.6 to 
0.8 (Figure S13). A systematic analysis is necessary to determine whether this lower ICS range 
corresponds to experimental error or other factors. Lastly, as proposed in the CASP13 Assembly 
Assessment paper, we suggest introducing an initial phase in the next competition round where 
assembly targets are provided without revealing the stoichiometry information19. This would 
present an additional challenge and encourage novel approaches in assembling protein 
complexes. 
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TABLES 
 
Table 1. The CASP15 assembly targets with target's pdb id (if available), size, stoichiometry, symmetry, 
prediction difficulty, assembly class, taxonomy, experimental technique used to resolve it, and the best 
ICS model’s group. The targets shared with CAPRI are indicated with *. 

Target ID PDB ID 
# of 

amino 
acids 

Stoichiometry Symmetry Difficulty Assembly 
classification Taxonomy Exp. Tech. 

The best ICS 
model’s group 

H1106* 7qih81 182 A1B1 - Easy Heteromer Bacteria X-Ray OpenFold 
H1111 - 4499 A9B9C9 C9 Medium Heteromer Bacteria X-Ray Yang-Multimer 
H1114 7uus82 7360 A4B8C8 C4 Medium Intertwined Bacteria EM Yang 

H1114v2 7uus82 1324 A4B2 - Medium Intertwined Bacteria-
Phage EM Venclovas 

H1129* 8a8c83 1259 A1B1 - Medium Heteromer Bacteria EM Wallner 
H1134* 7ubz84 506 A1B1 - Medium Heteromer Bacteria X-Ray Wallner 
H1135* - 1821 A9B3 C3 Medium Heteromer Eukaryotes X-Ray UltraFold 

H1137* 8fef85 3343 A1B1C1D1 
E1F1G2H1I1 - Medium Intertwined Bacteria EM bio3d 

H1140* - 328 A1B1 - Medium Nanobody-
antigen Eukaryotes X-Ray Wallner 

H1141* - 329 A1B1 - Medium Nanobody-
antigen 

Nanobody-
mouse X-Ray Zheng 

H1142* - 335 A1B1 - Medium Nanobody-
antigen 

Nanobody-
mouse X-Ray Kiharalab 

H1143* - 329 A1B1 - Medium Nanobody-
antigen 

Nanobody-
mouse X-Ray NBIS-AF2-

multimer 

H1144* - 324 A1B1 - Medium Nanobody-
antigen 

Nanobody-
mouse X-Ray Zheng 

H1151* - 539 A1B1 - Easy Heteromer Bacteria X-Ray Wallner 
H1157* - 1446 A1B1 - Medium Heteromer Eukaryotes EM Manifold-E 

H1166v1* - 553 A1B1 
(H+L=1chain) - Medium Antibody-

antigen Human-virus X-Ray Manifold-E 

H1167v1* - 540 A1B1 
(H+L=1chain) - Medium Antibody-

antigen Human-virus X-Ray ShanghaiTech 

H1168v1* - 564 A1B1 
(H+L=1chain) - Medium Antibody-

antigen Human-virus X-Ray DFolding-refine 

H1171* 7pbl86 1918 A6B1 - Easy 
Heteromer, 

Ligand-induced 
change 

Bacteria EM MultiFOLD 

H1172* 7pbp86 1964 A6B2 - Easy 
Heteromer, 

Ligand-induced 
change 

Bacteria EM Manifold-LC-E 

H1185 - 928 A1B1C1D1 - Easy Heteromer Eukaryotes EM Yang 

T1109o* - 442 A2 C2 Easy 

Homomer, 
Mutation-
induced 
change 

Bacteria X-Ray Wallner 

T1110o* - 442 A2 C2 Easy Intertwined Bacteria X-Ray ColabFold 
T1113o* - 336 A2 C2 Hard Intertwined Bacteria X-Ray Manifold 
T1115o* - 3968 A16 C16 Medium Homomer Eukaryotes EM Venclovas 
T1121o* 7til87 739 A2 C2 Medium Intertwined Bacteria EM DFolding-server 
T1123o* 7uzt88 428 A2 C2 Medium Homomer Virus X-Ray MULTICOM_deep 
T1124o 7ux889 738 A2 C2 Easy Intertwined Bacteria X-Ray MULTICOM 

T1127o* - 411 A2 C2 Easy Intertwined Plant X-Ray NBIS-AF2-
multimer 

T1132o* - 603 A6 D3 Medium Homomer Bacteria X-Ray BAKER 
T1153o* - 530 A2 C2 Medium Homomer Eukaryotes X-Ray MULTICOM_qa 

T1160o* - 58 A2 C2 Easy 

Intertwined, 
Condition-

induced 
change 

Ancient 
reconstruction 

X-Ray PEZYFoldings 

T1161o* - 96 A2 C2 Easy 

Intertwined, 
Ancient 

reconstruction, 
mutation-
induced 

Ancient 
reconstruction X-Ray Wallner 

T1170o* 7pbr86 1870 A6 C6 Easy Homomer Bacteria EM Yang 
T1173o* - 612 A3 C3 Hard Intertwined Bacteria X-Ray Yang 
T1174o* - 1014 A3 C3 Hard Intertwined Bacteria X-Ray Manifold-E 
T1178o* - 537 A2 - Easy Homomer Virus X-Ray DFolding-server 



 

26 
 

T1179o* - 505 A2 - Easy Homomer Virus X-Ray DFolding 
T1181o* - 2064 A3 C3 Easy Intertwined Virus X-Ray PEZYFoldings 
T1187o* 8ad290 330 A2 C2 Hard Homomer Plant X-Ray Venclovas 
T1192o* - 1246 A10 C10 Easy Homomer Eukaryotes EM Yang 

 
Table 2. Statistics of CASP assembly rounds over the years, including the share of heteromeric targets, 
the number of targets having > 2 chains, difficulty class shares, number of targets shared with the joint 
CAPRI round, the ICS profiles acquired for the hard targets, the number of competitors and the total 
number of models submitted, the top performing approaches. 

CASP 
Round 

# of targets 
(heteromers 

/all) 

# of 
targets 

>2 
chains 

Difficulty 
(easy/ 

medium/ 
hard) 

# of 
shared 
targets 

with 
CAPRI 

Max. ICS 
observed 
for hard 
targets 

# of 
groups/# 
of models 

Notable 
approaches 

CASP12 8/30 14 9/6/15 15 0.15 108/1600 Homology 
modeling 

CASP13 12/42 17 12/17/13 20 0.52 45/5000 Homology 
modeling 

CASP14 17/22 13 2/20/6 12 0.48 39/2500 

Homology 
modeling 
Docking 

DL-based 
contacts 

Fold-and-dock 

CASP15 20/40 17 14/22/4 36 0.95 87/11,000 

Mainly AF2-M 
based 

modeling 
 

  
Table 3. ΔICS values for each target, the best ICS of NBIS-AF2-M, the best ICS and its performed group, 
which groups performed well and the reason for NBIS-AF2-M failure. 

Target ID 
NBIS-
AF2-

M ICS 

The 
best 
ICS 

The best ICS 
model’s group 

ΔIC
S 

Community and 
NBIS-AF2-M 

performed well 

Nobody 
performed 

well 

Community 
performed 

well 

The reason of 
NBIS-AF2-M 

failure 
H1106 0.80 0.84 OpenFold 0.03 x    

H1111 0.04 0.61 Yang-Multimer 0.57   x technical 
limitation 

H1114 0.17 0.84 Yang 0.67   x technical 
limitation 

H1114v2 0.38 0.62 Venclovas 0.24   x technical 
limitation 

H1129 0.08 0.76 Wallner 0.67   x wrong interface 
H1134 0.69 0.81 Wallner 0.12 x    
H1135 0.38 0.68 UltraFold 0.30   x wrong interface 
H1137 0.66 0.83 bio3d 0.16 x    

H1140 0.10 0.81 Wallner 0.71   x Nanobody-
antigen 

H1141 0.09 0.80 Zheng 0.72   x nanobody-antigen 
H1142 0.00 0.45 Kiharalab 0.45  x  nanobody-antigen 
H1143 0.92 0.92 NBIS-AF2-multimer 0.00 x    
H1144 0.09 0.74 Zheng 0.65   x nanobody-antigen 
H1151 0.82 0.84 Wallner 0.02 x    
H1157 0.74 0.79 Manifold-E 0.05 x    

H1166v1 0.20 0.30 Manifold-E 0.09  x  antibody-antigen 
H1167v1 0.00 0.12 ShanghaiTech 0.12  x  antibody-antigen 
H1168v1 0.71 0.84 DFolding-refine 0.13 x    

H1171 0.58 0.62 MultiFOLD 0.04 x    
H1172 0.56 0.63 Manifold-LC-E 0.07 x    
H1185 0.70 0.72 Yang 0.03 x    
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T1109o 0.52 0.85 Wallner 0.33   x Mutation induced 
change 

T1110o 0.92 0.95 ColabFold 0.03 x    
T1113o 0.79 0.93 Manifold 0.14 x    

T1115o 0.18 0.68 Venclovas 0.50   x technical 
limitation 

T1121o 0.42 0.68 DFolding-server 0.25   x wrong interface 

T1123o 0.20 0.46 MULTICOM_deep 0.27  x  
viral protein/weak 

evolutionary 
signal 

T1124o 0.87 0.89 MULTICOM 0.02 x    
T1127o 0.91 0.91 NBIS-AF2-multimer 0.00 x    
T1132o 0.86 0.90 BAKER 0.04 x    
T1153o 0.74 0.86 MULTICOM_qa 0.12 x    

T1160o 0.16 0.57 PEZYFoldings 0.41   x Mutation induced 
change 

T1161o 0.36 0.92 Wallner 0.56   x Mutation induced 
change 

T1170o 0.57 0.65 Yang 0.08 x    
T1173o 0.47 0.69 Yang 0.22 x    
T1174o 0.81 0.90 Manifold-E 0.09 x    
T1178o 0.64 0.72 DFolding-server 0.09 x    
T1179o 0.16 0.81 DFolding 0.65   x wrong interface 
T1181o 0.49 0.63 PEZYFoldings 0.14 x    
T1187o 0.00 0.95 Venclovas 0.95   x wrong interface 
T1192o 0.70 0.75 Yang 0.05 x    
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Table 4. Assembly Neff-multimer and subunit Neff values calculated for the MSA obtained by standard 
AF2-M sampling. s denotes subunit and D denotes domains. Neff-multimer calculation is performed as 

described in Methods. 
Assembly target ID Subunit target ID Neff of subunit Neff-multimer 

H1106   612 
 T1106s1 246  
 T1106s2 1522  

H1111   1617 
 T1111s1 245  
 T1111s2 1490  
 T1111s3 11563  

H1114   2250 
 T1114s1-D1 241  
 T1114s2 5478  
 T1114s3 8626  

H1114v2   2250 
 T1114s1-D1 241  
 T1114s2 5478  
 T1114s3 8626  

H1129   44 
 T1129s2 44  

H1134   6372 
 T1134s1 9879  
 T1134s2 4110  

H1135   324 
 T1135s1 3875  
 T1135s2 27  

H1137   11889 
 T1137s8 12171  
 T1137s9 11613  

H1140    
 H1140s1 672 2778 
 H1140s2 11493  

H1141   2754 
 H1141s1 672  
 H1141s2 11290  

H1142   2682 
 H1142s1 672  
 H1142s2 10714  

H1143   2711 
 H1143s1 672  
 H1143s2 10940  

H1144   2597 
 H1144s1 672  
 H1144s2 10046  

H1151   1142 
 T1151s2 1142  

H1157   4889 
 T1157s1-D1 6142  
 T1157s2-D1 5225  
 T1157s2-D2 2853  
 T1157s2-D3 6239  

H1166v1   3215 
 H1166s1 14760  
 H1166s2 12892  
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 H1166s3 175  
H1167v1   3138 

 H1167s1 14571  
 H1167s2 12142  
 H1167s3 175  

H1168v1   3166 
 H1168s1 14246  
 H1168s2 12756  
 H1168s3 175  

H1171   4521 
 T1171s1 12756  
 T1171s2 1602  

H1172   4521 
 T1171s1 12756  
 T1171s2 1602  

H1185   6963 
 T1185s1 9210  
 T1185s2 8754  
 T1185s4 4187  

T1109o   9426 
 T1109-D1 9426  

T1110o   9478 
 T1110 9478  

T1113o   8 
 T1113 8  

T1115o   3201 
 T1115-D1 4502  
 T1115-D2 2276  

T1121o   2160 
 T1121-D1 1535  
 T1121-D2 3040  

T1123o   10 
 T1123-D1 10  

T1124o   11132 
 T1124 11132  

T1127o T1127 7245 7245 
 T1127 7245  

T1132o   1992 
 T1132 1992  

T1153o   1950 
 T1153-D1 1950  

T1160o   1584 
 T1160 1584  

T1161o   1148 
 T1161 1148  

T1170o   3686 
 T1170-D1 3810  
 T1170-D2 3567  

T1173o   221 
 T1173-D1 2870  
 T1173-D2 17  

T1174o   1288 
 T1174-D1 3687  
 T1174-D2 450  

T1178o   33 
 T1178 33  
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T1179o   117 
 T1179 117  

T1181o   2432 
 T1181-D1 1191  
 T1181-D2 4965  

T1187o   3859 
 T1187 3859  

T1192o   3206 
 T1192s1 3206  

 
Table 5. The CASP15 interdomain target list with target's pdb id (if available), taxonomy, the 

experimental technique used to resolve its structure, number of domains, evaluated interfaces* and 
Buried Surface Area. *For domains, refer to Figure S7. 

Target ID Pdb 
ID Taxonomy Exp. 

Tech. 
Number of 

domains Evaluated interfaces* BSA (A2) 

T1125 - virus X-Ray 6 D12, D23, D34, D45, D56 871, 894, 854, 937, 
187 

T1145 - bacteria X-Ray 2 D12 516 
T1154  archaea EM 2 D12 441 

T1158  eukaryotes EM 2 D12 2231, 3072, 2927, 
2799, 4932 

T1165  eukaryotes EM 6 D12, D16, D23, D36, D56 1245, 894, 735, 
1088, 815 

T1169 8fjp91 eukaryotes EM 4 D12, D23, D34 1685, 2381, 2115 
T1180 - bacteria X-Ray 2 D12 639 
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Table 6. Interdomain Neff-multimer and domain Neff values calculated for the MSA obtained by 
standard AF2 sampling. D denotes domains. Neff-multimer calculation is performed as described in 

Methods. 
Target and domain/interface ID Neff Neff-multimer 

T1125-D1 2  
T1125-D2 8  
T1125-D3 40  
T1125-D4 2  
T1125-D5 3  
T1125-D6 10  

T1125-D12  4 
T1125-D23  18 
T1125-D34  9 
T1125-D45  2 
T1125-D56  5 

T1125  6 
T1145-D1 1333  
T1145-D2 2543  

T1145  1841 
T1154-D1 18  
T1154-D2 118  

T1154  46 
T1158-D1 12810  
T1158-D2 14436  

T1158  13599 
T1165-D1 2515  
T1165-D2 2297  
T1165-D3 2630  
T1165-D4 1472  
T1165-D5 2678  
T1165-D6 2429  

T1165-D12  2404 
T1165-D16  2472 
T1165-D23  2458 
T1165-D36  2528 
T1165-D56  2550 

T1165  2293 
T1169-D1 1197  

T1169-D2* 0  
T1169-D3 3586  
T1169-D4 112  

T1169-D12*  35 
T1169-D23*  60 
T1169-D34  634 

T1169  783 
T1180 11234  
T1180  11234 
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