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The rapid progress in quantum technology enables the implementation of artificial many-body systems with
correlated photons and polaritons. A multiconnected Jaynes-Cummings (MCJC) lattice can be constructed by
connecting qubits and cavities alternately. Such models can be realized with superconducting qubits coupled
to superconducting microwave resonators or with quantum dots coupled to optical nanocavities. We study the
physical properties of a one-dimensional MCJC lattice using the density-matrix renormalization-group method.
This model has an intrinsic symmetry between the left and right qubit-cavity couplings. The competition between
these couplings may drive the ground state either to a Mott-insulating phase or to a superfluid phase at integer
fillings. We calculate the single-particle and density-density correlation functions, the correlation lengths in the
Mott-insulating phase, and the Luttinger parameters in the superfluid phase and determine accurately the critical
points that separate these two phases.

DOI: 10.1103/PhysRevB.96.174502

I. INTRODUCTION

The past few decades have witnessed enormous progress
in the development of quantum devices in various physical
systems, such as superconducting devices, trapped ions, and
semiconductor photonic devices, with significant improve-
ment in their controllability and coherent property [1–4].
Besides the goal of building scalable fault-tolerant quantum
computers [5], these devices have been exploited to emulate
numerous many-body phenomena that are difficult to solve
with conventional techniques [6–10] in condensed-matter
physics, high-energy physics, and nonequilibrium systems
[11–26]. In particular, rich varieties of many-body effects
in ultracold atoms coupled to optical cavities have been
intensively studied in recent theoretical and experimental
works [27–35].

Meanwhile, the construction of artificial many-body sys-
tems leads to the study of strongly correlated photons and
polaritons [36,37]. In the coupled-cavity array (CCA) models
[38–40], photons can hop between adjacent cavities. The
cavity modes are also coupled to a nonlinear medium,
such as qubits and defects, which adds nonlinearity to the
spectrum of the polariton excitations. The nonlinearity can be
viewed as an on-site Hubbard interaction, in comparison to
the Bose-Hubbard model [41–44]. The competition between
the hopping and the nonlinearity results in quantum phase
transitions between the Mott-insulating (MI) phase with
localized polariton excitations and the superfluid (SF) phase
with long-range spatial correlation. In the past few years, the
CCA has been studied extensively in theory and in experiments
[45–53]. Photon blockade has been demonstrated in a recent
experiment [54]. Dynamical quantum phase transition with
driven and dissipative cavities has been investigated [55,56].
In recent works [57–60], a multiconnected Jaynes-Cummings
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(MCJC) lattice was introduced, where qubits and cavities are
connected alternately. Both CCA and MCJC can be realized
with the microwave modes in superconducting resonators
coupled to superconducting qubits or with optical modes in
nanocavities coupled to quantum dots or defects [1,3]. A
specific realization of the MCJC lattice is to connect Xmon
qubits to superconducting resonators, enabled by the rich
connectivity of superconducting circuits [61,62]. Different
from the CCA, no direct coupling exists between cavities
in the MCJC. Quantum phase transition in a MCJC lattice
has been studied with exact diagonalization [57,58]. It was
shown that at integer filling, transitions between the MI and SF
phases occur due to the competition between the qubit-cavity
couplings. These systems provide a promising platform to
study correlations in interacting photons and polaritons.

In this paper, we study the quantum critical behavior of the
one-dimensional (1D) MCJC model using the density-matrix
renormalization group (DMRG) [63,64]. This method has
previously been used to study the Bose-Hubbard and CCA
models [43–45,52]. We calculate the polariton ground states at
both integer and half fillings. The phase boundaries separating
the MI and SF phases are obtained by calculating the chemical
potentials [65]. The single-particle density matrix is utilized
to obtain the correlation lengths and the Luttinger parameters
of the qubits and the cavities. Using the Luttinger parameters
extrapolated to the thermodynamic limit, the quantum critical
points are determined accurately and compared with the
previous results [57,58]. We also calculate the structure factors
and find no evidence for a crystalline or charge-density-wave
(CDW) phase at half filling. Our result could shed light on the
studies of many-body effects in strongly correlated photons
and polaritons.

This paper is organized as follows. In Sec. II, we introduce
the MCJC model and discuss its relation to the well-studied
Bose-Hubbard model. In Sec. III, we describe the DMRG
method for the MJCJ model and discuss the results for
entanglement entropy and local density. In Sec. IV, the DMRG
results for the phase boundary, single-particle density matrix,
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FIG. 1. Schematic of (a) and (b) a 1D MCJC and (c) a CCA.
The circles represent the qubits, and the blocks represent the cavities.
A unit cell of the MCJC consists of a qubit and an adjacent cavity
coupled to the qubit via (a) gr or (b) gl .

correlation lengths, Luttinger parameters, and density-density
correlation functions are discussed. Conclusions are given in
Sec. V.

II. MULTICONNECTED JAYNES-CUMMINGS LATTICE

A. Model Hamiltonian

A MCJC lattice is composed of alternately connected qubits
and cavities [57,58]. A schematic of a 1D MCJC lattice is
shown in Fig. 1, where each qubit couples to two adjacent
cavities. The Hamiltonian of this model reads (h̄ = 1)

Ht = H0 + Hl + Hr, (1)

H0 =
∑

i

(ωz

2
σ z

2i−1 + ωca
†
2ia2i

)
, (2)

Hl =
∑

i

gl

(
σ+

2i−1a2i−2 + a
†
2i−2σ

−
2i−1

)
, (3)

Hr =
∑

i

gr

(
σ+

2i−1a2i + a
†
2iσ

−
2i−1

)
, (4)

where ωz is the energy splitting of the qubits, ωc is the
frequency of the cavity modes, σ

z,+,−
i are the Pauli matrices,

ai is the annihilation operator of the cavity modes, gl (gr ) is the
coupling constant between a qubit and a cavity next to it from
the left- (right-) hand side. In this paper, periodic boundary
conditions are assumed.

Similar to the CCA model [Fig. 1(c)], a unit cell contains
one qubit and one cavity. But unlike in the CCA model, the
cavities are not directly coupled to each other. The unique
geometry of this model renders a symmetry between gl and
gr , and the energy spectrum is unchanged under the exchange
of these two coupling constants. This leads to the symmetry in
the phase diagram discussed below.

The MCJC model can be realized with superconducting
quantum circuits, in particular the Xmon or gmon qubits,
where controllable couplings between qubits and cavities have
been achieved [61,62]. The couplings in such systems can
be tuned continuously from zero to a few hundred mega-
hertz, which makes it an ideal system for studying strongly
correlated effects of polaritons [57,60,66]. In the discussion

below, we set the coupling constants gl,r/2π ∈ (0,300) MHz,
ωc/2π = 10 GHz, and ωz = ωc (� = 0). These parameters
can be reached with current experimental technology. Recent
progress in superconducting quantum devices also ensures
long decoherence times for qubits and resonators. The decoher-
ence times of Xmon or gmon qubits can easily exceed 10 μs.
For a superconducting resonator with a 10-GHz frequency
and a quality factor of 105, the relaxation time of resonator
states with several photons is ∼2 μs. In comparison, quantum
manipulation or preparation of qubit and resonator states can
be achieved within 10 ns [17,18,67]. With the time for state
preparation much shorter than the decoherence times, our
system can be prepared and can remain in a ground state with
a finite number of polariton excitations without being strongly
affected by qubit decoherence or resonator dissipation.

The energy spectrum of a single unit cell in the MCJC
lattice can be exactly solved. If we take a qubit with its right
cavity as a unit cell [Fig. 1(a)], the Hamiltonian of the ith unit
cell is given by

Hi = ωca
†
2ia2i + ωz

2
σ z

2i−1 + gr (a†
2iσ

−
2i−1 + σ+

2i−1a2i), (5)

which is nothing but the standard Jaynes-Cummings (JC)
model between a qubit and a cavity [68]. It has been extensively
studied in cavity and circuit quantum electrodynamic (QED)
systems [69–71]. In the ground state, there is no photon
excitation, and the qubit is in the down-spin state. If we use
|n,σ 〉 to denote the basis states, then the ground state is given
by |0,↓〉, where n is the number of photons in the cavity and
σ = (↑,↓) corresponds to the two spin states of the qubit, with
ground-state energy E0 = −ωz/2. The higher excitation states
appear in pairs and can be regarded as a doublet, resulting from
the coupling between the basis states |n − 1,↑〉 and |n,↓〉. In
this doublet subspace, the Hamiltonian can be expressed as a
2 × 2 matrix,

[Hi]n =
(

(n − 1)ωc + ωz

2

√
ngr√

ngr nωc − ωz

2

)
. (6)

There is no coupling between different doublets. Diagonaliz-
ing this matrix, we obtain the eigenstates

|n,±〉 = γn±|n,↓〉 + ρn±|n − 1,↑〉, (7)

where γn+ = −ρn− = sin θn, γn− = ρn+ = cos θn, and

θn = arctan

(√
4ng2

r + �2 − �

2
√

ngr

)
. (8)

In the notation |n,±〉, n = 〈σ+
2i−1σ

−
2i−1 + a

†
2ia2i〉 refers to the

total number of excitations in the unit cell. The corresponding
eigenenergies are

En,± =
(

n − 1

2

)
ωc ± 1

2

√
4ng2

r + �2, (9)

where � = ωz − ωc is the detuning between the qubit and the
cavity. At � = 0, the doublets become

|n,±〉 = 1√
2
|n,↓〉 ± 1√

2
|n − 1,↑〉, (10)

and En,± = (n − 1/2)ωc ± √
ngr .
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B. Polariton representation

To analyze the MCJC model at finite gl , we adopt the
polariton mapping technique [40,49] and define a polariton
operator at each unit cell,

pi
nα ≡ |0,−〉i〈n,α|. (11)

This is an operator to annihilate an n-polariton state at the ith
unit cell. These operators satisfy the commutation relation[

pi
nα,p

j†
mβ

] = δij (δnα,mβ |0,−〉i〈0, − | − |m,β〉i〈n,α|). (12)

Using these operators, the spin and photon operators can be
expressed as

ai =
∑
n,α,α′

tnαα′p
i†
(n−1)α′p

i
nα, (13)

σ−
i =

∑
n,α,α′

kn
αα′p

i†
(n−1)α′p

i
nα, (14)

where the coefficients are given by

tnαβ = √
nγnαγ(n−1)β + √

n − 1ρnαρ(n−1)β (15)

and kn
αα′ = ρnαγ(n−1)α′ .

The Hamiltonian Ht can be represented in terms of the
polariton operators. For example, at � = 0,

Ht =
∑
iαn

[(n − 1/2)ωc + α
√

ngr ]pi†
nαpi

nα

+ gl

∑
inm

∑
αα

′
ββ

′
kn
αα′ t

m
ββ ′V

αα′ββ ′
imn , (16)

with a hopping term

V
αα′ββ ′
imn = pi†

nαp
(i−1)†
(m−1)β ′p

i−1
mβ pi

(n−1)α′ + H.c. (17)

The first term in Eq. (16) describes the local polariton states
with a nonlinear spectrum that resembles the effective on-site
interactions. The second term in Eq. (16) describes the hopping
of a polariton from site (i − 1) (reducing the number of
polaritons from m to m − 1) to site i (increasing the number
of polaritons from n − 1 to n). The competition between
these two terms leads to a transition between the MI and SF
phases. When gl = 0, the system is in the MI phase. Increasing
gl , especially in the parameter range where gl becomes
comparable to gr , the hopping can effectively lower the on-site
interaction generated by double occupancy and drive the
system into the SF phase at a critical point gl/gr = β0. This
is similar to the MI-SF phase transition in the Bose Hubbard
model with the increase of the hopping integral [44]. In the
SF phase, the low-energy excitations of interacting polaritons
can be described by the Luttinger liquid Hamiltonian [72,73].
Parameters in the Luttinger liquid Hamiltonian determine
the exponents of the correlation functions. When further
increasing gl , another MI phase whose properties are similar to
the first one by simply exchanging gl with gr emerges above
a critical point gl/gr = 1/β0. This analysis agrees with the
result obtained by an exact diagonalization calculation [57].

The polariton mapping is valid in the limits of gl � gr and
gr � gl , when the two couplings are significantly different
from each other. In these limits, the system is dominated by

the stronger one of these two couplings and can be described
with the polariton eigenmodes in each unit cell.

C. Equivalence to the Bose-Hubbard model

In the low-energy limit, the MCJC is equivalent to the Bose-
Hubbard model. Below we give a proof for this. Consider the
Bose-Hubbard model with the Hamiltonian

HBH =
∑

i

[
−t(b†i bi−1 + H.c.) − μb

†
i bi + U

2
ni(ni − 1)

]
,

(18)

where bi (b†i ) is the annihilation (creation) operator of bosons
at site i, U is the on-site Hubbard interaction, t is the hopping
integral, and μ is the chemical potential. By introducing a
polaritonlike operator

pi
n = |0〉i〈n|, (19)

we can represent the boson operator as

bi =
∑

n

√
n|n − 1〉i〈n| =

∑
n

√
np

i†
n−1p

i
n. (20)

These p operators satisfy the commutation relation[
pi

n,p
j†
m

] = δij (|0〉i〈0|δn,m − |m〉i〈n|). (21)

In this new representation, the Bose-Hubbard model becomes

HBH =
∑
in

[
−μn + U

2
n(n − 1)

]
pi†

n pi
n − t

∑
imn

√
mnṼimn,

(22)

where

Ṽimn = pi†
n p

(i−1)†
m−1 pi−1

m pi
n−1 + H.c. (23)

By comparing Eq. (16) with Eq. (22), we find that in the low-
energy limit where the contribution from the higher-polariton
excitations is negligible, the MCJC is equivalent to the Bose-
Hubbard model if the parameters of these two models are
related by

(
n − 1

2

)
ωc − √

ngr → −μn + 1
2Un(n − 1), (24)

glk
n
−−tm−− → −t

√
mn. (25)

We can also determine the effective Hubbard interaction
in the MCJC by directly comparing the energies of the low-
energy excitations in these two models. In the MCJC lattice,
the lowest energy to excite one polariton is �E1 = E1,− − E0,
and the energy to add the second polariton is �E2 = E2,− −
E1,−. In the limit � = 0, �E1 = ωc − gr and �E2 = ωc −
(
√

2 − 1)gr . For the Bose-Hubbard model, the corresponding
energies are �E1 = E1 − E0 = −μ and �E2 = E2 − E1 =
−μ + U . By setting these two excitation energies equal in
these two models, we find that the effective on-site interaction
U = (2 − √

2)gr for the lowest states in the MCJC at � = 0.
Similarly, at � = 0, γ+ = −ρ− = √

2/2, γ− = ρ+ = √
2/2,

tαβ = √
n/2 + αβ

√
n − 1/2, and kαβ = α/2. From Eq. (25),

we obtain the effective hopping amplitude t = gl/4.
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D. Integer and noninteger fillings

The total number of polaritons in the entire lattice

Nt =
∑

i

(σ+
2i−1σ

−
2i−1 + a

†
2ia2i) (26)

is a conserving operator. It commutes with the model Hamil-
tonian, [Nt,Ht ] = 0.

At an integer filling, N = 〈Nt 〉 is an integer multiple of
the number of unit cells L. In the limit gl = 0, the unit cells
are decoupled, and the ground state is a product state with all
the unit cells being in the lower polariton states |1,−〉, and the
corresponding energy is E = NE1,−. We denote this state as
|1111 . . . 〉 and the empty site as |0〉 for simplicity. Apparently,
this state is in the MI phase, and there is a finite energy gap for
adding or removing one polariton excitation from the system.

With finite gl , the polariton excitations can tunnel between
adjacent unit cells. The competition between the tunneling
and the effective on-site repulsion strongly affects the physical
properties of this model.

Away from integer filling, the ground states become highly
degenerate. For example, in a lattice of L = 4 at half filling,
i.e., N = 2, the ground states are sixfold degenerate, with
the following polariton configurations: |1010〉, |0101〉, |1100〉,
|0110〉, |0011〉, and |1001〉. In the weak intercell coupling limit,
gl � gr , we can treat Hl as a perturbation. In the first-order
approximation, the perturbed Hamiltonian can be expressed in
this sixfold-degenerate subspace as

Hl = −gl

2

⎛
⎜⎜⎜⎜⎜⎝

0 0 1 1 1 1
0 0 1 1 1 1
1 1 0 0 0 0
1 1 0 0 0 0
1 1 0 0 0 0
1 1 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎠. (27)

By diagonalization, we obtain the ground state

|g〉 =
√

2

4
(|1100〉 + |0110〉 + |0011〉 + |1001〉)

+ 1

2
(|1010〉 + |0101〉), (28)

and the corresponding correction to the ground-state energy
E(1) = −√

2gl .

III. THE DMRG METHOD

We use the finite-lattice algorithm of the DMRG to
characterize the critical behavior of the MCJC model [63]. This
method has already been used to study the critical behavior
and quantum dynamics of low-dimensional strongly correlated
systems, including the 1D Bose-Hubbard and CCA models
[43–45,52]. In the calculation, we limit the number of photon
excitations at each cavity to be less than or equal to five.
For the cases we have examined, we find that this is a good
approximation because the contribution from the states with
more than five photons at one cavity to the ground-state energy
is much smaller than the truncation error.

0 200 400 600 800
2.6

3.0

3.4

2.6

2.8

3.0 (a)

(b)

FIG. 2. The entanglement entropy S as a function of the bond
dimension D for the MCJC at (a) half filling N/L = 0.5 and
(b) integer filling N/L = 1, both with gl,r/2π = 150 MHz.

In order to see how fast the DMRG calculations converge
with the bond dimension D, which is the dimension of
the truncated space during the iteration, we calculate the
entanglement entropy of the ground state [74], defined by

S = −Tr(ρL ln ρL), (29)

where ρL is the reduced density matrix for the left half of the
lattice. Figure 2 shows the entanglement entropy as a function
of the bond dimension D at both half and integer fillings at
the symmetric point gl = gr . After a rapid increase at small
D, we find that the entanglement entropy becomes almost
saturated, which suggests that the ground-state wave function
is converged, when D is larger than 500. To further ensure
the convergence, we take D = 600 for all the calculations
presented below.

For all the cases we have studied, we find that the ground
states are translation invariant, as revealed by the distribution
functions of the local excitation densities of qubits and cav-
ities, defined by n̄

q

i = 〈σ+
i σ−

i 〉 and n̄r
i = 〈a†

i ai〉, respectively.
Our calculation indicates that the excitation densities are
homogenous on the whole lattice with no obvious fluctuations.
For example, for the system with L = 120 at the integer
filling and � = 0, we find that n̄

q

i = 0.40 and n̄r
i = 0.60

when gl,r/2π = 150 MHz and n̄
q

i = 0.46 and n̄r
i = 0.54

when gl/2π = 55 MHz and gr/2π = 245 MHz on all the
lattice sites. One interesting observation is that the difference
|n̄q

i − n̄r
i | between the qubit and cavity excitation densities

in the limit of gl � gr (and, similarly, gr � gl) is smaller
than that at gl = gr . This is because in the limit gl � gr , the
system behaves like a chain of uncoupled JC models where
the excitation is equally split between the qubit and the cavity.
However, at gl = gr , the polariton excitations can hop along
the lattice, enlarging the splitting of local densities. A similar
result is found at half filling.
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0 0.5 1 1.5-0.5-1-1.5
0.976

0.980

0.984

0 1-1
0

0.005

FIG. 3. The chemical potentials μp and μh versus ln(gl/gr ) for
the MCJC model at the integer filling N/L = 1 with (gr + gl)/2π =
300 MHz. Inset: the energy gap Egp versus ln(gl/gr ) at N/L = 1.

IV. NUMERICAL RESULTS

A. Phase boundaries

We calculate the ground-state energy EL(N ) of the MCJC
model with L unit cells and N polariton excitations using
the DMRG. The chemical potential for adding or removing a
polariton to the ground state is then determined by the formula

μp(N,L) = EL(N + 1) − EL(N ), (30)

μh(N,L) = EL(N ) − EL(N − 1). (31)

Here μp and μh are the chemical potentials for adding and
removing a polariton, respectively [44]. To obtain the chemical
potentials in the thermodynamic limit, we first calculate these
quantities for finite-lattice systems with L up to 120 and then
perform an extrapolation using the formula

μγ (N,L) = μγ + bγ /L (γ = p,h), (32)

where μγ is the extrapolated chemical potential in the
thermodynamic limit.

Figure 3 shows the extrapolated chemical potentials, μp and
μh, as functions of ln(gl/gr ). At the integer filling with N = L,
we find that μp = μh in the regime gl ∼ gr (small | ln(gl/gr )|)
within numerical errors. As the ratio | ln(gl/gr )| increases, a
finite difference appears between μp and μh, corresponding to
the opening of a finite-energy gap for adding or removing
a polariton [44]. Thus there is a transition from the SF
phase in the small | ln(gl/gr )| regime to the MI phase in the
large | ln(gl/gr )| regime. In the SF phase, there is no gap in
the energy spectrum, and μp = μh. However, in the MI phase,
the energy to add or remove a polariton becomes different,
and μp > μh. The extrapolated chemical potentials shown in
Fig. 3 thus determine the phase boundaries that separate the
MI and SF phases. If the chemical potential falls between μp

and μh in the MI phase, the filling factor is fixed at N/L = 1,
and the polariton density remains a constant within this phase
with zero compressibility.

At integer filling, there are two quantum critical points
which are symmetric with respect to the point ln(gl/gr ) = 0.
The transitions between the MI and SF phases in this 1D

0

0.5

1

0

0.5

1

10 25 40 5510 25 40 55

(a) (c)

(b) (d)

FIG. 4. The normalized single-particle density matrices �r (i −
j )/�r (0) and �q (i − j )/�q (0) versus (i − j ) for the MCJC model
with L = 120 at (a) and (b) integer and (c) and (d) half filling.
Circles: gl,r/2π = 150 MHz; triangles: gl/2π = 55 MHz, gr/2π =
245 MHz.

system are of the Kosterlitz-Thouless (KT) type [72,73]. These
transitions result from the competition between gl and gr .
However, in the Bose-Hubbard and CCA models, the phase
transitions are due to the competition between the hopping
and the on-site interaction [38–41].

The inset of Fig. 3 shows the energy gap for exciting a
polariton, Egp = μp − μh, as a function of ln(gl/gr ). It is
clear that there is a finite regime in which Egp = 0. As is
well known, the transition between MI and SF phases in this
system is driven by phase fluctuations, and the excitation gap
can be written as Egp ∼ exp(−c/|β − β0|), with β = gl/gr

and c being a dimensionless parameter. Using our numerical
result, we fit these parameters to be β0 = 0.933 and c = 2.375.
Because the energy gap changes slowly with β near the critical
points, this fitting is often inaccurate.

At half filling, the results of chemical potentials indicate that
there is no difference in the energy for adding or removing a
polariton, i.e., μp = μh, in the whole parameter regime. Thus
there is no MI-SF phase transition, and the ground state is
always in the SF phase.

B. Correlation functions

The single-particle density matrices for the qubits and
cavities are defined, respectively, by

�q(i − j ) = 〈σ+
2i−1σ

−
2j−1〉, (33)

�r (i − j ) = 〈a†
2ia2j 〉. (34)

They measure the correlations of polariton excitations [75,76].
Figure 4 shows the normalized single-particle density ma-

trices �r (i − j )/�r (0) and �q(i − j )/�q(0) versus i − j for
two sets of parameters. At the integer filling, N/L = 1, both
density matrices drop exponentially to zero with the increase
of the distance between the two unit cells in the MI phase,
gl/gr � 1. In the SF phase, however, the two density matrices
remain finite even in the large-distance limit, indicating the
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210-1-2
0

4

8

12
0

0.1

0.2 (a)

(b)

FIG. 5. (a) The coefficients yq and yr and (b) correlation lengths
ξq and ξr versus ln(gl/gr ) for the MCJC model with L = 80,100,120
and (gr + gl)/2π = 300 MHz. Circles: yr and ξr ; triangles:
yq and ξq .

existence of superfluid off-diagonal long-range order. At half
filling, N/L = 1/2, the ground state is in the SF phase,
and the two density matrices behave qualitatively similarly
to the case of gl = gr at the integer filling: they decrease
with the increase of the distance between the two unit cells
and saturate to certain finite values in the large-distance limit.

The single-particle density matrices can be fitted using the
formulas

�α(i − j ) = yα + Aqe
− |i−j |

ξα (α = q,r), (35)

where ξq (ξr ) is the correlation length between two qubits
(cavities). Figure 5(a) shows the coefficients yq and yr as
functions of ln(gl/gr ). As expected, both yq and yr are zero
in the MI phase but become finite in the SF phase around the
regime ln(gl/gr ) close to zero.

The correlation lengths, shown in Fig. 5(b), increase quickly
around the critical points in the MI phases. But we do not
see the divergence of the correlation lengths at the critical
point due to the finite-lattice-size effect. At the critical point,
the entanglement entropy is expected to grow logarithmically
with the system size. Thus in order to accurately determine the
critical points from the divergent correlation lengths, we need
to enlarge not just the lattice size but also the number of states
retained in the DMRG calculation.

From the density-density correlation functions, we calcu-
late the structure factors of the qubits (α = q) and cavities
(α = r), defined by

Sα
π = 1

N2

∑
i,j

(−1)|i−j |〈nα
i nα

j

〉
(α = q,r), (36)

where nr
i = a

†
i ai and n

q

i = σ+
i σ−

i . Figure 6 shows S
q
π and Sr

π

as functions of 1/L at half filling with gl/2π = 55 MHz and
gr/2π = 245 MHz. Within numerical errors, the extrapolated
structure factors are found to be approximately zero, indicating

4×10-3

8×10-3

0
1×10-2 2×10-20

FIG. 6. The structure factors Sq
π and Sr

π versus 1/L at half filling
with gl/2π = 55 MHz and gr/2π = 245 MHz.

that there is no crystalline or CDW ordered phases in this
system at half filling [43].

C. Luttinger parameters

In the superfluid phase, the low-energy excitations of
interacting bosons are effectively described by the Luttinger
liquid Hamiltonian [72,73]

H0 = 1

2π

∫
ds

[
(ναKα)[�α(x)]2 +

(
να

Kα

)
[∂x�α(x)]2

]
,

(37)
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FIG. 7. The log-log plot of the single-particle density matrices
�q,r (i) versus the distance i for the MCJC model at integer filling
N/L = 1 with gl,r/2π = 150 MHz. Insets: the Luttinger parameters
Kq,r versus 1/L. The curves are for L = 80,90,100,110,120 from
top to bottom.

174502-6



QUANTUM PHASE TRANSITION IN A MULTICONNECTED . . . PHYSICAL REVIEW B 96, 174502 (2017)

210-1-2

0-1 1

1

0

2

0

2

4

6

FIG. 8. The Luttinger parameters K0
q and K0

r versus ln(gl/gr ) at
N/L = 1 with (gr + gl)/2π = 300 MHz. The dashed horizontal line
is K0

α = 1/2. Inset: K0
q,r at N/L = 1/2.

where �α(x) (α = q,r) is the phase variable, �α(x) is the
density fluctuation, να is the second sound velocity, and Kα is
the Luttinger parameter that determines the exponents of the
correlation functions in the large-distance limit with [77]

�α(i − j ) ∝ |i − j |−Kα/2 (α = q,r). (38)

Our calculation, as shown in Fig. 7, has indeed confirmed
this power-law dependence for the single-particle density
matrices. The deviation from the power-law dependence at
large distance results from the finite-size effect. The power-law
behaviors have also been observed at half filling, where the
ground state is always in the SF phase. In contrast, in the MI
phase, the single-particle density matrices decay exponentially
with the distance.

The Luttinger parameters Kq and Kr are important parame-
ters for characterizing the critical behavior of the MCJC model.
To obtain the Luttinger parameters in the thermodynamic limit,
an extrapolation of the finite-lattice results to the L → ∞
limit is needed. From the numerical results, we find that Kα

(α = q,r) can be well fitted by the formula (see the insets
of Fig. 7)

Kα = K0
α + λα/L, (39)

where K0
α is the extrapolated Luttinger parameter in the limit

L → ∞ and λα is a coefficient.
The MI-SF phase transition at integer fillings is of the

Kosterlitz-Thouless type, and K0
q = K0

r = 1/2 are expected
at the critical points for N/L = 1 [43,72,73]. In contrast,
the corresponding commensurate-incommensurate phase
transitions satisfy K0

q = K0
r = 1. From the calculation of

these Luttinger parameters, we can accurately determine
the critical points. Figure 8 shows K0

q and K0
r as functions

of ln(gl/gr ) for the MCJC model at the integer filling
N/L = 1. Within numerical accuracy, we find that K0

q = K0
r

in the whole parameter range we have studied. Deep in the
SF phase, gl ∼ gr , K0

q,r < 1/2, indicating that the spatial
correlation decreases slowly with the distance. As | ln(gl/gr )|
is increased, K0

q,r increase and cross the points K0
q,r = 1/2

at β0 = gl/gr ≈ 0.579 and 1/β0 = gl/gr ≈ 1.727. The
Luttinger parameters at half filling, as shown in the inset of
Fig. 8, are found to be 1/2 < K0

α < 2, indicating no phase
transition in the whole parameter regime studied.

V. CONCLUSIONS

To conclude, we studied the ground-state properties of
the 1D MCJC model of coupled qubits and cavities with
the DMRG method. Using the polariton representation, we
showed that the MCJC model is equivalent to the Bose-
Hubbard model in the low-energy limit. From the numerical
calculation, we determined accurately the phase boundaries,
the correlation lengths, and the Luttinger parameters at both
integer and half-integer fillings. Our result sheds light on the
understanding of the critical behavior of strongly correlated
polaritons in the MCJC lattice and related models.
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