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Breast density evaluation using spectral mammography, 
radiologist reader assessment and segmentation techniques: a 
retrospective study based on left and right breast comparison

Sabee Molloi, Huanjun Ding, and Stephen Feig
Department of Radiological Sciences, University of California, Irvine, CA 92697

Abstract

Purpose—The purpose of this study was to compare the precision of mammographic breast 

density measurement using radiologist reader assessment, histogram threshold segmentation, 

fuzzy C-mean segmentation and spectral material decomposition.

Materials and Methods—Spectral mammography images from a total of 92 consecutive 

asymptomatic women (50–69 years old) who presented for annual screening mammography were 

retrospectively analyzed for this study. Breast density was estimated using 10 radiologist reader 

assessment, standard histogram thresholding, fuzzy C-mean algorithm and spectral material 

decomposition. The breast density correlation between left and right breasts was used to assess the 

precision of these techniques to measure breast composition relative to dual-energy material 

decomposition.

Results—In comparison to the other techniques, the results of breast density measurements using 

dual-energy material decomposition showed the highest correlation. The relative standard error of 

estimate for breast density measurements from left and right breasts using radiologist reader 

assessment, standard histogram thresholding, fuzzy C-mean algorithm and dual-energy material 

decomposition was calculated to be 1.95, 2.87, 2.07 and 1.00, respectively.

Conclusion—The results indicate that the precision of dual-energy material decomposition was 

approximately factor of two higher than the other techniques with regard to better correlation of 

breast density measurements from right and left breasts.
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Introduction

Mammographic breast density is an important risk factor in the development of breast 

cancer (1–7). Previous reports have shown that women with highest mammographic density 

(75%–100%) have four to five-fold increased risk of developing breast cancer compared 

with the lowest density (0%–25%) (8–10). Furthermore, it has been shown that the 

sensitivity of screening mammography is lower among women with dense breasts (9, 11–

18). Therefore, improved methods of measuring breast density could potentially be helpful 

in more accurately quantifying breast cancer risk and monitor changes in risk over time. 

This is especially important since breast density can change with external factors such as 

hormonal agents and diet. The importance of quantitative breast density assessment has been 

highlighted by a previous report indicating that for every 1% increase of mammographic 

breast density, there is a 2% increase of the relative risk for breast cancer (19).

Qualitative classification of mammographic breast density is the current clinical standard. 

However, subjective classification of breast density is limited by its considerable intra- and 

inter-reader variability (20–22). Therefore, there have been previous reports of more 

automated methods using area-based and volume-based techniques to measure breast 

density (8, 23). The area-based techniques essentially use a histogram of image gray levels 

for segmentation of fibroglandular and adipose tissues (8, 23). These techniques are limited 

by the segmentation process and the fact that the 3D nature of the breast is not taken into 

account. The current volume-based techniques use paddle position and a shape model for 

estimation of breast thickness, which is used in breast thickness calculation (24, 25). 

However, these techniques are limited by the assumptions required in the breast shape 

model and the errors associated with the paddle position measurement, which can lead to a 

two- to three-fold increase in measurement error in volumetric breast density (26).

Spectral material decomposition can exploit differences between the effective atomic 

numbers of fibroglandular and adipose tissues to provide separate quantitative thickness 

measurements for each tissue. It does not require any assumption for breast density 

measurement since glandular and adipose thickness measurements are based on two separate 

physical measurements using low and high energy image data. Previous studies have shown 

that accurate breast density measurements can be made using dual energy mammography 

(27–29). However, slightly higher radiation dose is required for dual energy mammography 

(27–29) and misregistration artifacts can result if the patient moves between acquisition of 

low and high energy images.

Recent introduction of spectral mammography, which uses energy-resolved photon counting 

detectors, eliminates the need for two exposures by providing the energy information using a 

single exposure (30–33). This addresses the previous limitations associated with radiation 

dose and misregistration artifacts associated with dual energy mammography. A previously 

reported phantom study using spectral mammography has shown that accurate volumetric 

breast density measurements can be made using just a single exposure (34). Previous studies 

have also validated the accuracy of the dual energy mammography technique for breast 

density measurement using chemical analysis in postmortem breasts as the reference gold 

standard (29, 35). The postmortem breast studies have also shown excellent correlation of 
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breast density between right and left breasts (29, 35). The purpose of this retrospective study 

was to compare the precision of breast density measurement using reader assessment, 

histogram thresholding segmentation, fuzzy C-mean segmentation and dual-energy material 

decomposition. The breast density correlation between left and right breasts was used to 

assess the precision of these techniques to measure breast composition relative to dual-

energy material decomposition.

Materials and Methods

Image acquisition

Spectral mammography images from a total of 92 consecutive asymptomatic women (50–69 

years old) who presented for annual screening mammography were retrospectively analyzed 

for this study where the requirement of informed consent was waived under institutional 

review board approval. One of the patients was excluded from this analysis because of an 

obvious breast cancer that changed the mammographic density in one of the breasts. The 

remaining 92 women were included in this study. The digital mammograms were previously 

acquired with a spectral mammography system (MicroDose L30, Philips Healthcare, 

Stockholm, Sweden). For the 92 women, bilateral, craniocaudal (CC) and mediolateral-

oblique (MLO) views were analyzed. The processed (for presentation) images were used for 

radiologist reader assessment, histogram threshold segmentation and fuzzy C-mean 

segmentation while the raw (for processing) images were used for performing dual-energy 

material decomposition. A total of 368 digital images were thus available for density 

analysis in this study. The breast density correlation between left and right breasts was used 

to assess the precision of these techniques to measure breast composition relative to dual-

energy material decomposition.

Breast density measurement

Radiologist reader assessment—All the images from the 92 patients were read 

(August 2012 to September 2012) by 10 board certified radiologists with a range of 1–25 

years of mammography experience. The CC and MLO views of each breast were read 

together but the right and left breasts for all the patients were read in a random order blinded 

from the reviewers. The radiologists were asked to rank the breasts into 4 density categories 

of fatty (1), scattered densities (2), heterogeneously dense (3), and extremely dense (4). The 

averaged categorical ranking for the ten readers was also converted into percentage values 

by using linear interpolations, which assumed rankings of 1–4 as 12%, 37%, 62% and 87%, 

respectively. This allows a more direct comparison of reader assessment with other breast 

density measurement techniques.

Histogram threshold segmentation—A previously reported histogram threshold 

segmentation method (Cumulus, Version 4.2, Sunnybrook Health Sciences Center, Toronto, 

Canada) was used for segmentation of glandular and adipose tissues (36). In this method 

each digital mammogram was adjusted by the reader to a window and level to optimize the 

display. This was followed by application of a manually determined intensity threshold to 

identify and subsequently exclude background air and to identify the breast edge. The 

pectoral muscle edge was then manually delineated and excluded from subsequent analyses. 
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The remainder of the image was designated as the breast tissue region of interest and the 

total breast area was computed automatically by the software. After identification of the 

total breast tissue area, a second gray-level intensity threshold was interactively chosen by 

the reader to segment the fibroglandular tissue from the remaining adipose tissue. The dense 

tissue area was then computed automatically by the software. The breast density was finally 

calculated by taking the ratio of the dense tissue area to the total breast area. Before, the 

reading study, the order of the images was processed with an automated script written in 

Matlab (The MathWorks, Inc. Natick, MA), so that the CC and MLO views of the same 

breast were grouped together but the right and left breasts for all the patients were presented 

to the reader in a random order. Two medical physicists performed the reading 

independently without the knowledge of the image order, after a training session. The CC 

and MLO views of each breast were then averaged together.

Fuzzy C-mean segmentation—The Fuzzy C-mean algorithm classifies pixels with 

similar gray values into distinct clusters allowing for the separation of different tissues by 

their attenuation properties (37). The algorithm involves a series of steps; (1) breast region 

and pectoral muscle segmentation; (2) gray level normalization within the segment; (3) 

adaptive histogram-based determination of the optimal number of clusters for segmentation; 

(4) glandular tissue classification. In this application, a total of 6 clusters were used for 

segmentation of the breast from the pectoral muscle. After the automatic clustering process, 

a trained medical physicist assigned the clusters into a binary classification of glandular and 

adipose tissues for automatic calculation of breast density. The order of the images was 

processed as described above for presenting the right and left breasts in a random order. The 

CC and MLO views of each breast were averaged together after the measurements.

Dual-energy material decomposition—The physical differences in the mass 

attenuation coefficients of glandular and adipose tissues as a function of beam energy is 

used to perform dual-energy material decomposition where the thickness of each tissue is 

quantified on a pixel by pixel basis. This system uses a multi-slit geometry, which rejects 

majority of the scattered radiation (42). The energy-resolved photon counting detector of the 

spectral mammography system enables the possibility to separate the high energy photons 

from all the other photons with an energy threshold using a single exposure. The processed 

total image was used as a standard digital mammogram while the raw total and high energy 

images were used for dual-energy material decomposition measurements of glandular and 

adipose tissues (34). Dual-energy material decomposition yielded individual pixel 

measurements of glandular and adipose equivalent material thickness. The material 

decomposition was based on a previous system calibration with glandular and adipose 

equivalent phantoms (CIRS Inc., Norfolk, VA) (28, 38). Histogram thresholding was used to 

automatically segment the whole breast from the background. The pectoral muscle edge was 

then manually delineated and excluded from subsequent analyses. The remainder of the 

image was designated as the breast tissue region of interest and the mean glandular and 

adipose volumes for the whole breast were automatically calculated using dual-energy 

material decomposition. Breast density was calculated as the mean glandular volume 

fraction for the whole breast.
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Statistical analysis

Fleiss’ Kappa was calculated to measure inter-reader variability in breast density ranking for 

different readers (39). The precision of different breast density measurement techniques was 

evaluated by linear regression of the breast densities measured from the left and the right 

breasts. Pearson’s r and the relative standard error of estimate obtained from the linear 

regression were used to assess the precision of different techniques for breast density 

measurement. The relative standard error of estimate was calculated by taking the ratio of 

the standard error of estimate from each technique relative to dual-energy material 

decomposition. The degree of agreement between breast densities measured from the left 

and right breasts using different techniques was also assessed using Bland–Altman analysis 

(40).

Results

In this study the correlation of right and left breast density was used to assess the precision 

of radiologist ranking, histogram thresolding, fuzzy C-mean and dual-energy material 

decomposition methods for measuring breast density. The right (DR) and left (DL) breast 

densities were linearly correlated as DR = 0.90 DL + 8.11 (r = 0.93) for radiologist reader 

rankings (Figure 1a). Additionally, in a Bland–Altman plot, the mean differences between 

DR and DL measurements were −4.1% ± 15.5% (Figure 1b). The inter-reader variability in 

breast density rankings from different readers is shown in figure 2. Fleiss’ Kappa as a 

measure of inter-reader variability for breast density categories 1, 2, 3, 4 and all the 

categories combined was calculated to be 0.66, 0.38, 0.41, 0.49 and 0.47, respectively.

The breast density using histogram thresholding for the right and left breasts were correlated 

as DR = 0.87 DL + 5.03 (r = 0.80) (Figure 3a). Additionally, in a Bland–Altman plot, the 

mean differences between DR and DL measurements were −1.0% ± 20.2% (Figure 3b). The 

breast density from first (D1) and second (D2) readers were correlated as D2 = 0.51D1 + 22.1 

(r = 0.59) (Figure 3c).

The breast density for automatic Fuzzy C-mean technique was correlated as DR = 0.79 DL + 

4.32 (r = 0.79) (Figure 4a). Additionally, in a Bland–Altman plot, the mean differences 

between DR and DL measurements were 1.5% ± 14.0% (Figure 4b).

Spectral mammography is capable of automatically generating glandular and adipose images 

in addition to the standard mammogram generated from a single exposure. As shown in 

Figure 5, the glandular tissue is primarily in the center of the breast and the skin has similar 

composition as glandular tissue. On the other hand, the adipose tissue is primarily on the 

periphery of the breast. The results showed that the measured volumes using dual-energy 

material decomposition for the right (VR) and left (VL) breasts were correlated as VR = 

0.97VL + 7.86 (r = 0.97) (Figure 6a). The measured breast densities were correlated as DR = 

0.90DL + 1.1 (r = 0.96) (Figure 6b). Additionally, in a Bland–Altman plot, the mean 

differences between DR and DL measurements were 0.2% ± 2.6% (Figure 6c). A summary 

of the linear regression parameters for the relation of breast density from the right and left 

breasts for all the different techniques is shown in Table 1. The relative standard error of 

estimate for breast density measurements from left and right breasts with radiologist 
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rankings, standard histogram thresholding (Cumulus), fuzzy C-mean algorithm and dual-

energy material decomposition was calculated to be 1.95, 2.87, 2.07 and 1.00, respectively.

Discussion

In this study precision of different breast density measurement techniques were determined 

using a right and left breast density comparison. Breast density estimation using radiologist 

reader assessment showed moderate inter- and intra-observer variability, which is in 

agreement with previous reports (22, 41). Breast density was also estimated using two area 

based techniques using standard histogram thresholding and fuzzy C-mean approach. In the 

case of histogram thresholding, the operator manually determines the grey level threshold 

for glandular tissue while the fuzzy C-mean technique is semi-automated. Breast density 

measurements from both of these techniques also showed considerable variability. These 

techniques are fundamentally limited by the visual or automated methods for segmentation 

of fibroglandular tissue in the projection images.

Breast tomosynthesis (42), MRI (43, 44) and CT (35, 45, 46) can also be used for breast 

density measurement. The tomographic nature of these techniques reduces the anatomical 

background, which simplifies segmentation of fibroglandular and adipose tissues as 

compared with standard digital mammography. However, there is still a need for automatic 

segmentation of breast tissue unless more advanced techniques such as dual energy or 

spectral CT (47, 48) are used. Another more practical limitation of these techniques is the 

fact that these modalities are not currently available for routine breast screening. This 

indicates that there is a need for more accurate quantification of breast density using digital 

mammography.

Fibroglandular and adipose tissue thicknesses can be quantitatively decomposed by 

exploiting the attenuation coefficient differences between them using dual-energy material 

decomposition. The energy information basically addresses the limitations related to the 

uncertainty associated with segmentation of fibroglandular tissue purely based on image 

gray level. Previous phantom and postmortem breast studies have validated the accuracy of 

breast density measurement using dual energy and spectral mammography (28, 29, 34, 38). 

The results from dual-energy material decomposition measurements from right and left 

breasts in this study also showed that volume and breast density measurements were highly 

correlated. The relative SEE from dual-energy material decomposition measurements was 

approximately factor of two lower as compared with radiologist reader assessment, 

histogram thresholding and fuzzy C-mean techniques. The Bland-Altman plots also showed 

a substantial reduction in standard deviation for dual-energy material decomposition as 

copared with the other methods. The results from this study is in agreement with our 

previous report on postmortem validation of dual-energy mammography, which also found 

approximately a factor of two improvement in relative SEE from dual-energy material 

decomposition as compared with the other techniques (29). A factor of two reductions in 

variance of breast density measurement using dual-energy material decomposition should 

allow for better integration of breast density into breast cancer risk models. Additionally, 

this objective measure of breast density could allow much more accurate prediction of 
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mammographic sensitivity in a given breast than possible with radiologist reader assessment 

of breast density which entails moderate intra- and inter-observer variability.

A high relative precision along with the previously reported accuracy (28, 29, 34, 38) of 

breast density measurement using spectral mammography is expected to enhance its 

applications for personalized screening. Therefore, an automated method of measuring 

breast density could potentially be helpful in more accurately quantifying breast cancer risk 

and monitor changes in risk over time. It can also be used for treatment monitoring of drugs 

such as tamoxifen and raloxifene which reduce breast density and thereby the risk of breast 

cancer. Therefore, a more precise method of breast density measurement will enable to more 

reliably monitor the treatment on an individual basis.

One limitation of this study is that there is currently no reference gold standard to assess the 

accuracy of breast density measurements in patients. However, the accuracy of dual energy 

mammography has previously been validated both in phantoms (27, 34) and postmortem 

(29) studies. The results from the previous postmortem studies, where chemical analysis was 

used as the gold standard, indicate that a high correlation can be expected between right and 

left breast densities (29, 35). In this study precision of different breast density measurement 

techniques were assessed using a right and left breast density comparison. An averaged 

converted breast density was used for radiologist reader ranking comparison purposes, 

which is expected to have less variability as compared with a single radiologist performance. 

Another limitation of this retrospective study is that system calibration was not available so 

calibration data from a similar system was used (34). Previous phantom and postmortem 

studies indicate that careful system specific calibration with phantoms of known thickness 

and densities is required for accurate quantification of breast density (28, 34, 38). The lack 

of appropriate calibration data can introduce a systematic error in the breast density results. 

However, this systematic error is not expected to affect the correlation of breast density for 

right and left breasts. It also does not affect the relative SEE used in this study.

In summary, the results indicate that the precision of dual-energy material decomposition 

was approximately factor of two higher than the other techniques with regard to better 

correlation of breast density measurements from right and left breasts. Improved 

quantification of breast density is expected to further enhance its utility as a risk factor for 

breast cancer.
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Figure 1. 
Comparison of converted areal breast densities from averaged radiologist reader rankings for 

right (DR) and left (DL) breasts (a). Additionally, in a Bland–Altman plot, the mean 

differences between DR and DL were −4.1% ± 15.5% (b).
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Figure 2. 
Inter-reader variability in breast density rankings (1–4) from different readers.
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Figure 3. 
Comparison of areal breast density for right (DR) and left (DL) breasts using standard 

histogram thresholding (a) and in a Bland–Altman plot, the mean differences between DR 

and DL were −1.0% ± 20.2% (b). The variability between the two operators is also shown 

(c).
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Figure 4. 
Comparison of areal breast density for right (DR) and left (DL) breasts using fuzzy C-mean 

algorithm. Additionally, in a Bland–Altman plot, the mean differences between DR and DL 

were 1.5% ± 14.0% (b).
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Figure 5. 
Examples of processed total (a), raw total (b), raw high energy (c), glandular (d) and adipose 

(e) images. The color scale represents the glandular and adipose thicknesses in a given pixel.
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Figure 6. 
Comparison of breast volume (a) and volumetric breast density (b) for right (DR) and left 

(DL) breasts using dual-energy material decomposition technique. Additionally, in a Bland–

Altman plot, the mean differences between DR and DL were 0.2% ± 2.6% (c).
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Table 1

Summary of the linear regression analysis between left and right breast density measurements for various 

methods.

Slope Intercept Pearson’s r Normalized relative variance

Readers 0.90 8.1 % 0.93 1.95

Cumulus 0.87 5.0 % 0.80 2.87

Fuzzy C-mean 0.79 4.3 % 0.79 2.07

Spectral 0.90 1.1 % 0.96 1.00
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