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ABSTRACT OF THE DISSERTATION 

 

Dynamic Stresses in Foundation Soils  

from Soil-Structure Interaction  

 

by 

 

Bahareh Heidarzadeh 

Doctor of Philosophy in Civil and Environmental Engineering 

University of California, Los Angeles, 2016 

Professor Jonathan P. Stewart, Co-Chair 

Professor George Mylonakis, Co-Chair 

 

This research concerns the impacts of Soil-Structure Interaction (SSI) on the seismic stress 

demands in soil materials beneath the foundation, referred to as ‘foundation soils’. Engineering 

procedures for evaluation of these stress demands are needed for a variety of applications 

including ground failure evaluation in foundation soils and possible impacts of SSI on buried 

structures such as pipelines. Conventional engineering practice typically ignores SSI during 

evaluation of the seismic stress demands in foundation soils based on the perception that this 

demand is dominated by wave propagation from site response. The goals of this study are to 

show how the presence of a structure affects wave propagation in the vicinity of the foundation 

due to SSI and to propose rigorous procedures by which to assess these demands due to vertical 
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or horizontal point loads, line loads, or arbitrary combinations of these acting within a foundation 

area.  

Following an exhaustive literature review, I find that while integral transform methods 

exist to evaluate the response of foundation soils to surface loads, such approaches have two 

major limitations: (1) the resulting equations are so complex that closed form solutions for 

stresses produced by harmonic surface loads are absent in the literature, despite over a century of 

research in this subject; and (2) the resulting equations can be solved numerically, but only one 

such study has been conducted, and that work has limited practical applicability.  

Accordingly, I solve the governing equations numerically for harmonically applied 

surface loads (horizontal and vertical, point and line) acting on a visco-elastic halfspace using the 

Boundary Element Method via a well-verified software platform (ISoBEM). The results are 

interpreted within a framework derived from dimensional analysis considerations, specifically 

applying the Buckingham π theorem to determine the dimensionless fundamental parameters 

applicable to these problems. I demonstrate that induced stresses normalize using appropriate 

dimensionless variables, and that these normalized stresses have clear dependencies on 

dimensionless frequency, location within the soil, and soil Poisson’s ratio. Moreover, I 

demonstrate that phase angle is associated with wave travel times from source to the point of 

interest in the foundation soil, and as such varies with aperture angle due to variations in body 

and surface wave radiation patterns from horizontal and vertical surface loads.   

Results for the amplitude and phase of all relevant stress components are presented in 

dimensionless graphical forms and the effects of fundamental parameters for each case are 

discussed. For the case of loads applied to rigid surface foundations, I evaluate the distribution of 
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normal and shear stresses at the base of the foundations. Finally, for the flexible foundation case 

I have developed and verified a numerical code that applies superposition principles to combine 

soil stress demands associated with uniformly distributed surface loads.  
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1 Introduction 

Earthquake ground shaking induces strains and stresses in soil materials as a result of the wave 

propagation from site response. In the absence of an overlying structure, these seismic demands 

on the soil materials are considered free-field. Such demands on soil materials can cause pore 

pressure generation and associated losses in shear strength and stiffness. The presence of a 

structure modifies the characteristics of wave propagation in the vicinity of the foundation due to 

soil-structure interaction (SSI), and hence also modifies local demands on soil elements that may 

or may not trigger various forms of ground failure.  

The general field of SSI is in a period of transition. As documented by NIST (2012), 

while SSI has traditionally been ignored in analysis of the seismic response of structures, the 

increasing application of Performance Based Earthquake Engineering (PBEE) procedures in 

structural evaluations has motivated increased consideration of SSI as well. These applications 

are most often in the context of nonlinear static procedures and nonlinear response history 

analyses. The procedures employed concern SSI effects on ground motions and the flexibility 

and energy dissipation at the foundation-soil interface. While procedures for these analyses have 

reached a level of maturity that allows them to be applied in practice, what remains much more 

poorly understood is the effect of SSI on stresses in foundation soil.  

This introduction is organized to provide context for the research presented in this 

dissertation by answering the following questions:  
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1. What is SSI? 

2. How are SSI effects accounted for in an analysis of seismic structural response? 

3. How are SSI effects accounted for in the seismic response of foundation soils? 

1.1 WHAT IS SOIL-STRUCTURE INTERACTION? 

Considering soil and structure as independent systems, soil-structure interaction can be described 

as a system of systems which creates more complexity than simply the sum of constituent 

systems. In other words, in SSI problems, the motion of the soil affects the structural response 

and the motion of the structure modifies the soil response and neither the structural response nor 

the soil response, are independent of each other. 

From the structural standpoint, SSI effects reflect the difference between the actual 

response of the structure and the response for the theoretical, rigid base condition where the 

motions at the base of the structure and on the ground away from it match. In other words, there 

is neither flexibility at the foundation-soil interface, nor damping in case of a rigid-base 

structure. The presence of the foundation for a structure causes the ground motions on the 

foundation to deviate from free-field motions due to averaging of incoherent wave fields, which 

is referred to as kinematic effects, and the relative foundation-free field displacements and 

rotations associated with structure and foundation inertia. The inertial response, in turn, is 

affected by the flexibility and damping at the foundation soil interface. Therefore in this context, 

the SSI analysis involves evaluation of ground shaking demands at the base of structures in 

consideration of realistic inputs and analysis of structural response in consideration of the 

complex interface behavior.   
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From the foundation soil standpoint, SSI effects account for the difference between the 

actual stress and strain demands placed upon foundation soil and the corollary demands from 

free-field wave propagation. In this case, the SSI effect describes how the presence of a structure 

causes the characteristics of wave propagation and associated stress/strains to deviate from the 

free-field condition as a result of aforementioned kinematic and inertial effects.  

1.2 SOIL STRUCTURE INTERACTION EFFECTS ON SEISMIC 

RESPONSE OF STRUCTURES 

To properly address the seismic response of structure, one approach is to use the finite element 

method to model the structure, foundation soil, and portions of the surrounding soil media, which 

is known as direct modeling. As presented in Figure 1.1, in this approach, appropriate boundary 

conditions should be applied to truncate the discretized domain such that it properly accounts for 

the semi-infinite soil domain. Despite difficulties in formulating appropriate boundary conditions 

and the requirement for a large number of input parameters for soil constitutive models, the 

direct approach is increasingly being used in unique projects involving complex structural 

configurations such as the Transbay Terminal in San Francisco (Ellison et al., 2015).      

 

Figure 1.1: Schematic illustration of a direct analysis of soil-structure interaction using 
continuum modeling by finite elements- Adapted from NIST (2012) 



 4 

The substructure approach, as shown in Figure 1.2, breaks the structure-foundation-soil 

system into several parts to capture various effects of SSI on the seismic response of structures 

(NIST, 2012). This approach also accounts for the modified input motion at the soil-foundation 

interface, which is termed a Foundation Input Motion (FIM).  

 

Figure 1.2: Schematic illustration of a substructure approach to analysis of soil-structure 
interaction using either: (i) rigid foundation; or (ii) flexible foundation 

assumptions- Adapted from NIST (2012) 

Figure 1.3 illustrates inertial interaction effects through a single-degree-of-freedom 

(SDOF) system. Figure 1.3(a) shows a fixed-based SDOF system with height h , period T  and 
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damping ratio β , which ignores SSI effects. Figure 1.3(b) shows the deformable nature of soil-

foundation system by using vertical, horizontal, and rotational springs, ( , ,x z yyk k k ). 

 

Figure 1.3: Schematic illustration of deflections caused by force applied to: (a) fixed-
based structure; and (b) structure with vertical, horizontal, and rotational 

flexibility at its base- Adapted from NIST (2012) 

As observed in this figure, inertial interaction introduces base flexibility, which lengthens 

the SDOF oscillator period. The ratio of the flexible-to-fixed-base period is known as period 

lengthening, T T% . Analysis of period lengthening is developed by Jennings and Bielak (1973) 

and Veletsos and Meek (1974), as shown in Equation 1.1.  

2

1
x yy

T k kh
T k k
= + +

:

              (1.1) 

It is shown in NIST (2012) that for a rectangular foundation, the period lengthening is 

controlled by following dimensionless parameters: 

s

h
V T
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B
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L

, 
4s

m
BLhρ

, and ν  

where B  and L  refer to the half-width and half-length of the rectangular foundation, and 

respectively, h , m , ρ , and ν  represent the distance from the base to the center of mass in the 
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first mode shape, the effective modal mass, soil mass density, and the soil Poisson’s ratio. These 

parameters are discussed in detail in NIST (2012). 

Aside from period lengthening, foundation damping is a significant contributor to the 

system behavior. Foundation damping derives from soil hysteretic and radiation damping. The 

damping of the flexible-base system as a whole includes contributions from foundation damping 

as well as damping in the super structure (e.g., Veletsos and Nair, 1975, Bielak  1976). 

Figure 1.4 illustrates the effect of inertial SSI on force-based seismic demand (i.e., base 

shear). For the long period structures for which the slope of the response spectrum with respect 

to period is negative, inertial SSI typically reduces the base shear. At short periods, where the 

spectrum slope is ascending, SSI can increase the base shear demand.  

 

Figure 1.4: Effect of inertial SSI on spectral acceleration (base shear) associated with 
period lengthening and change in damping- Adapted from NIST (2012) 

In addition, kinematic interaction causes deviation of FIM at the base of the foundation 

from free-field motions due to base slab averaging and embedment effects. Base slab averaging 

refers to the phenomenon in which stiffness and strength of the foundation system average out 

the spatially variable ground motions within the building envelop. Embedment effects also cause 

ground motion reduction with depth below the free-surface. To properly account for kinematic 
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SSI effects, frequency dependent transfer functions should be used to modify the free-field 

motion into a suitable FIM. Formulations that account for base slab averaging and embedment 

effects on this transfer function are given in NIST (2012). 

NIST (2012) summarizes the required steps for a complete SSI evaluation in the 

assessment of the seismic response of a structure: 

1. Evaluation of free-field ground motion and soil material properties. 

2. Evaluation of transfer function as the ratio of foundation to free-field motion in frequency 

domain in order to convert the free-field input motion to a suitable FIM. 

3. Selection of sets of springs and dashpots to model the effects of stiffness and damping at 

the soil-foundation interface due to translational and rotational modes of foundation 

vibration. 

4. Implementation of a response analysis of the combined system of structure-

spring/dashpot system with excitation provided by the FIM. 

1.3 SOIL STRUCTURE INTERACTION EFFECTS ON SEISMIC 

RESPONSE OF FOUNDATION SOIL 

As discussed earlier, SSI effects have been typically investigated by consideration of their impact 

on the vibrating structure and its foundation. In this research, the question is turned around by 

asking – what is the effect of the structure on the soil? More specifically, the objective is to seek 

the impacts of SSI on the seismic stress demands in the soil materials beneath the foundation, 

referred to as ‘foundation soils’. As schematically shown in Figure 1.5, the seismic stress 

demand of the overall foundation soil is obtained by the proper combination of stress induced in 
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the soil mass due to the vibrating structure and its foundation (SSI problem) and the stresses 

associated with site response if the structure were not present (free-field problem).   

There are many examples of infrastructure that could be affected by local ground failure 

in foundation soils, including various structures (buildings, bridges), earth structures such as 

levees, and buried structures such as pipelines. Among these, SSI-induced ground failure beneath 

building foundations is the most well documented, which has been attributed to liquefaction of 

granular soils and cyclic softening of cohesive soils (Bray and Stewart, 2000; Chu et al., 2008; 

Ashford et al., 2011, Cubrinovski et al., 2011). The levee problem is also of great interest. 

Levees are earth fills used to provide flood protection around water bodies (often rivers). Levees 

are often constructed on soft foundation soils that can be highly susceptible to ground failure 

from liquefaction, cyclic softening, and post-cyclic volumetric deformations associated with 

peats (Shafiee et al., 2015). Our concern in this research is not the ground failure mechanisms 

per se, but the stress demands associated with SSI that could potentially contribute to the 

triggering of ground failure associated with any applicable mechanism. 

 

Figure 1.5: Seismic stress demand on foundation soil due to (a) vibrating structure and 
its foundation (SSI problem), and (b) upward propagating seismic waves 

(free-field problem) - Adapted from Nikolaou and Go (2009) 
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Engineering assessments of ground failure potential express seismic demands in the form 

of shear stresses or shear strains (e.g., Seed and Idriss, 1971; Dobry and Ladd, 1980). Of these, 

demand characterization in the form of stresses is more common because peak shear stresses can 

readily be related to peak horizontal ground accelerations. It is common to normalize the shear 

stress by the pre-shaking vertical effective stress to form the Cyclic Stress Ratio (CSR): 

0

hv

v

CSR τ
σ

=
′

               (1.2) 

where τhv is shear stress on horizontal and vertical planes and σ΄v0 is the pre-shaking vertical 

effective stress. These stresses are depicted graphically in Figure 1.6. Seed and Idriss (1971) 

compute CSR as:  

0

0.65 ( )v
d

v

PHACSR r z
g

σ
σ

=
′

                (1.3) 

where PHA  is peak horizontal acceleration at the ground surface and σv is the total vertical 

stress. The rd factors in Equation 1.3 are based on free-field ground response analyses, and as 

such CSR computed from Equation 1.3 only reflects free-field demands. The effects of a 

vibrating structure and its foundation on seismic stress demand (SSI problem) is ignored in this 

classical definition of seismic demands. As described further in Chapter 2, other than by 

performing relatively complex finite element analyses of structure-foundation-soil systems, there 

are no current methods for estimating stress demands from SSI. The principle objective of the 

present work is to develop such procedures.  
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Figure 1.6: Schematic illustration of seismic stress demand in a rigid soil column due to 
1-D propagating seismic waves (free-field problem) 

1.4 RESEARCH OBJECTIVE AND SCOPE 

The principal objective of the work presented in this dissertation was to study the problem of 

stress distribution in soil beneath a vibrating foundation, gain insights into the physical processes 

controlling these stresses, and devise practical procedures for estimating SSI-induced stress 

demands.  

I investigated the use of boundary element methods as tools for analysis of dynamic 

stress fields in soil, and then applied these simulation procedures to problems with known 

solutions to verify the simulation results. I performed simulations using the verified code to 

evaluate dynamic stress fields in soils beneath foundations. As part of this process, vertical and 

horizontal cyclic foundation loads were applied in the form of both concentrated (point) loads 

and line loads. I then identified the principle factors governing foundation soil stress amplitudes 

and phasing in consideration of appropriate normalization procedures. I then presented the 

results of the stress computations in the form of dimensionless plots.  

Using the verified code, I also performed simulations to evaluate the dynamic traction 

(stress) distributions directly beneath rigid foundations subject to cyclic loading. Results are 
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presented in the form of graphs as well as parametric equations. The devised stresses can then be 

converted to input surface loads applied to foundation soils to simulate the effects of vibration of 

a rigid foundation. I developed a tool in MATLAB for computing stresses produced by surficial 

loads with any arbitrary distribution across a defined foundation area. This computational tool 

applies the principles of superposition through integration of point and line load solutions 

developed as part of this research.  

1.5 ORGANIZATION OF THE TEXT 

This document is structured as follows: In Chapter 2, I provide an overview of the historical 

development of analytical expressions for the response of a solid medium to static and dynamic 

loads on or within the soil medium. Then, I present existing numerical solutions for evaluating 

the stress response due to dynamic point loads at the surface of a semi-infinite soil mass. Some 

shortcomings of those solutions for the present application are identified.  

In Chapter 3, I begin by reviewing the Buckingham π theorem as the basis for 

normalization. This theorem is then applied to the static and dynamic problems of vertical and 

horizontal point loads applied on surface of a half-space to evaluate the fundamental 

dimensionless parameters. I then describe the numerical technique and the appropriate software 

that was selected for the analysis of stress demands beneath dynamically applies surface forces. I 

subsequently verify the results produces by this software by comparing to available solutions in 

the literature. Verification is also conducted for the normalization of the dynamic stress results 

with respect to proposed dimensionless parameters. The variations of the six components of the 

three-dimensional stress tensor with respect to the identified fundamental parameters are then 

investigated through suites of sensitivity analyses. Results for stress amplitudes are presented in 
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the form of stress bulbs. Time delays between surface loads and stresses are represented with 

phase shifts, which are also presented in a graphical form.  

Chapter 4 is very similar to Chapter 3, except that vertical and horizontal point loads are 

replaced by corresponding line loads, representing the plane strain problem. In this case, results 

are provided for three components of the two-dimensional stress tensor.  

In Chapter 5, I also perform simulations to evaluate the dynamic stress distributions 

directly beneath rigid foundations subject to cyclic loading. I present the results in the form of 

graphs as well as parametric equations. The devised stresses can then be converted to input 

surface loads applied to foundation soils to simulate the effects of vibration of a rigid foundation. 

Moreover, I apply the principle of superposition to fundamental dynamic stress solutions in order 

to obtain the resulting stress distributions in the soil medium due to surficial loads applied at 

different locations on the ground surface. The accuracy of the integration techniques is verified 

by comparing to the available solutions as well as the stress solutions obtained by direct 

modeling of distributed loads using the selected software package. The corresponding 

computational tools are implemented in Matlab. Finally, in Chapter 6, conclusions from the 

study are summarized and several recommendations for future work are presented. 

. 
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2 Historical Development 

Perhaps not many problems are more familiar, yet more complicated to solve to most engineers 

than the assessment of effects of an applied load onto body of material(s) modeled as a 

continuum. The early fundamental solutions to static-type problems were developed during the 

early 19th century (Kelvin 1848, Cerruti 1882, and Boussinesq 1885) by researchers being mostly 

interested in applied mathematics and physics. Over time, dynamic cases involving transient 

loads attracted many researchers mostly for seismological purposes (Stokes 1848, Lamb 1904). 

In fact, this group was more interested in finding the solution in terms of displacements due to 

any source on or within a full space semi-infinite half-space. In recent decades, the stresses 

induced by a source load have been the focus of investigations. Modern geotechnical engineers 

dealing with liquefaction-related analysis, transportation engineers studying the dynamic 

behavior of pavement structures under moving loads, and biomedical and bio-material engineers 

working on modeling of cutting force for surgical simulations (Peng and Zhou, 2013) are only a 

few groups working on assessment of stresses within an elastic continuum due to a surface load. 

Although first developed mostly by mathematicians and applied physicists, the 

assessment of strains and stresses caused by loads applied onto the surface of an elastic 

continuum have proven to have value in engineering applications that likely far exceeds the early 

pioneers’ imaginations. In this chapter, a brief review of solutions to various types of loading is 

presented with the purpose of summarizing fundamental developments and highlighting the level 
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of difficulty in obtaining analytical solutions, especially for dynamic loads. Detailed description 

of methodologies and derivation of solutions are beyond the scope of this work. The actual 

solutions in terms of equations and graphs are presented only for the cases to be used in Chapter 

3 for verification purposes. 

2.1 TERMINOLOGY, NOTATION AND DEFINITION 

Full-space:  

An idealization in which all the boundaries are infinitely far away. The medium under 

consideration is usually assumed to be perfectly homogeneous and isotropic. 

Half-space: 

A mathematical model in which only one planar boundary exists, all others being 

infinitely far away. The medium under consideration is usually assumed to be perfectly 

homogeneous and isotropic (Allaby and Allaby, 2008). Unless otherwise specified, in most of 

the developments provided in this chapter, the medium is a linear elastic, homogeneous, isotropic 

half-space. For simplicity, this medium is referred to as half-space throughout this work. 

Cylindrical Coordinates: 

Figure 2.1 shows the cylindrical coordinate system with respect to a Cartesian coordinate 

system. This coordinate system is widely used in geotechnical engineering, in cases where an 

axis of symmetry exists. The location of a point in cylindrical coordinates is defined by 

horizontal distance r from the origin, vertical distance z from the origin, and angle θ as measured 

from the x-axis. As shown in Figure 2.1, a new set of axes can also be defined as follows: 

ˆ :r  radial coordinate 
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ˆ :z  axial coordinate 

ˆ :θ  circumferential coordinate 

However, it is more common in geotechnical practice to simply use r, z, and θ as shown in 

Figure 2.1 and that convention is followed here.  

 

Figure 2.1 The cylindrical coordinates- adapted from Weisstein (2007) 

Axisymmetric Formulation: 

The basis of axisymmetric formulation is that all the functions defined in the problem are 

functions of r and z only, i.e. independent of the circumferential coordinate, θ. Therefore, three-

dimensional problems are reduced to two-dimensional ones where, however, both hoop strain 

and stress (εθ and σθ) are nonzero, although angular displacement (uθ) is zero (Hughes, 2012). 

The axisymmetric coordinate parameters are as follows: 

1 :x r=  radial coordinate 

2 :x z=  axial coordinate 
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3 :x θ=   circumferential coordinate 

With the constraint of uθ = 0, four nonzero components of stress and strain are expressed in 

equations 2.1 and 2.2. 
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Integral Transform: 

In mathematics, integral transform is an operator that maps the function within the 

integrand, f, from its original domain into another function, Tf, in a target domain where 

manipulation and solving of the equation is much easier. The solution is then mapped back to the 

original domain by means of inverse integral transform. Each integral transform is specified by a 

choice of the function K of two variables, the kernel function or nucleus of the transform. 

Equations 2.3 and 2.4 show integral transform and inverse integral transform, respectively. 

2

1

( )( ) ( , ) ( )
t

t

Tf u K t u f t dt= ∫                (2.3)

2

1

1( ) ( , )(T( ( ))
u

u

f t K u t f u du−= ∫              (2.4) 

Among numerous integral transforms, Fourier transform, Hankel transform, and Laplace 

transform are generally the most applicable in the elasto-dynamics field. By means of equations 
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such as 2.3 and 2.4, the order of a partial differential equation is reduced by one, and an ordinary 

differential equation is transformed to an algebraic one. The difficulty typically lies in solving 

the inversion Equation 2.4 as shown later on.  

Phase Angle: 

In dynamic problems, the responses of the system, i.e. displacements and stresses, are complex 

numbers which can be described as either a pair of real and imaginary parts or as amplitudes and 

phase angles. The latter form is chosen in this research for the graphical presentation of stress 

response due to vertical and horizontal harmonic loading.  

As shown in Figure 2.2 and Equation 2.5, the phase angle (ϕ) is the angle of a vector 

having length (r) with respect to the positive real axis for any complex number (z):  

(cos sin )z x iy r iφ φ= + = +             (2.5)   

 

Figure 2.2: Phase angle definition 

This coordinate system is known as Argand diagram in which angle ϕ is defined as:  
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It is important to note that the phase angle calculated by Equation 2.6 is called the 

wrapped phase angle, which is constrained to the range [-π π]. However, the actual phase angle is 

continuous and may take any value within or outside of this range.  In Equation 2.6, when the 

actual phase angle is not within the range [-π π], the value is increased or decreased by multiples 

of 2π to keep it within this range. This procedure causes discontinuities in the phase diagram. 

The process of recovering the true, or unwrapped, value of phase angle involves adding or 

subtracting multiples of 2π. Phase unwrapping is a particularly challenging numerical problem 

for which various algorithms have been developed that can produce different results from the 

same input data. The challenges associated with this process, and a suggested algorithm, are 

discussed by Ghiglia and Pritt (1998).  

2.2 KELVIN PROBLEM 

The problem of static point load acting within a full-space, shown on Figure 2.3, was first solved 

by Lord Kelvin and published in a short paper (Kelvin, 1848). Kelvin’s fundamental solution in 

modern terminology is also known as Green’s function (Favata, 2012). The complete set of 

equations for both displacements and stresses in cylindrical coordinates can be found in Poulos 

and Davis (1974) and are partly obtainable by pure dimensional means. The dynamic counterpart 

 (2.6) 
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to Kelvin problem’s was solved by George Stokes (1849) considering body waves of both types, 

i.e. longitudinal and transverse, radiating from the point source, yet not reflected body or surface 

waves as no boundary exists. The solution to this problem is known in closed-from in both time 

and frequency domains (Eringen and Shuhubi, 1975), being suggested as a fundamental solution 

in elastostatics and elastodynamics and implemented as a so-called Boundary Element Method 

(BEM) in recent years. 

 

Figure 2.3 Kelvin problem 

2.3 STATIC POINT LOAD ON HALF-SPACE 

The problem of a vertical point load acting on the surface of a half-space is known in three-

dimensional (3-D) and two-dimensional (2-D) forms as the Boussinesq problem and the Flamant 

problem, respectively. The Flamant problem also contains the horizontal point load on 2-D half-

space, while the 3-D case of a horizontal point load is known as the Cerruti problem. The 

difficulty in solving them over the Kelvin problem lies in the need to satisfy a stress-free 

condition over the whole surface of the half-space, where the loads are applied. 
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2.3.1 Boussinesq Problem 

Figure 2.4 illustrates the 3-D problem on the action of a static normal concentrated force on the 

surface of a half-space, which was first solved by Boussinesq (1885) for both displacement and 

stress fields. This problem has the axisymmetric property both in geometry and loading. 

Equations 2.7 to 2.10 show the solution to the stress field in cylindrical coordinates. This 

solution is used in Chapter 3 for validation purposes. In the following equations, P is the point 

load in units of force, z, r and R are distances shown in Figure 2.4 in units of length, and ν is the 

Poisson’s ratio. Variables σz, σr, σθ, and τrz are vertical, radial, hoop, and shear stresses in 

cylindrical (polar) coordinates, respectively.  

 

Figure 2.4 Boussinesq problem 
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Figure 2.5 depicts the case of distributed load over a circular area. The solution is 

obtained from the Boussinesq’s solution by integration over a circular area. Because of the 

complexities associated with the analytical evaluation of the particular problem, the closed-form 

solutions are available only for σz, σr, and σθ along the vertical axis (r = 0). In Equations 2.11 and 

2.12, the load p, in unit of force per length square, is applied on a circular area of radius a.  

 

Figure 2.5: Uniform vertical loading on a circular area 
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Numerical solutions to all components of stress, strain, and displacement are tabulated by 

Ahlvin and Ulery (Ahlvin and Ulery, 1962). For the case of shear stress, the key to the use of 

Table 2.1 is shown in Equation 2.13. 

          (2.13) 

The value of 𝐺! could be found in Table 2.1 for corresponding r/a and z/a.  

1rz zr pGτ τ= =
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Table 2.1 Function "G1"- adapted from Ahlvin and Ulery (1962) 

 

2.3.2 Cerruti Problem 

 
Figure 2.6 illustrates a horizontal point load acting parallel to the surface of a half-space, known 

as the Cerruti problem (Cerruti, 1882). The solution is available for both stress and 

displacements in cylindrical coordinates. This solution is partly presented in Equations 2.14 to 

2.19, corresponding to stress components in cylindrical (polar) coordinates.  

2
2 2
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0zθτ =                            (2.19) 

 

Figure 2.6: Cerruti Problem 

2.3.3 Flamant Problem 

Figure 2.7 represents the 2-D half-space under a horizontal or vertical line load, commonly 

known as the Flamant problem (Saad, 2009). The solution to this problem is developed for both 

stresses and displacements. However, the displacement solution contains logarithmic terms that 

cause unbounded outcomes at infinity as a result of two-dimensional modeling in an unbounded 

homogeneous domain (Saad, 2009). Stress components resulting from vertical load are 

calculated from Equations 2.20 to 2.22. The stress results corresponding to horizontal load are 

shown in Equations 2.23 to 2.25. Variables Px and Py in these equations are measured in units of 

force per length.  
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Figure 2.7: Flamant problem 

It is worth mentioning that all the static stress solutions are independent of Young’s 

modulus of the half-space, and some components (vertical and shear in point load problems) are 

independent of Poisson’s ratio as well. The latter, however, is not true for dynamic loading as 

demonstrated below. 

2.4 DYNAMIC POINT LOAD ON HALF-SPACE: LAMB’S PROBLEM 

The solutions discussed in previous sections correspond to the case of static loading which is 

described by elliptic partial differential equations and, thereby, does not involve propagation 

phenomena (i.e. response to applied loads is instantaneous). The solutions to dynamic-type 

problems are coupled tightly with the wave propagation theories and correspond to partial 
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differential equations of the hyperbolic type which are much harder to solve. The first such 

solution is D’Alembert’s solution of one-dimensional waves (Bekefi & Barrett, 1987). In the 

early 20th century, investigations of the effects of applying a vibratory force at a point entered a 

new era after Lord Rayleigh’s discovery of new types of surface waves, currently known as 

Rayleigh (R) waves (Figure 2.8). The presence of Rayleigh waves clarified that the influence of 

the free-surface in modifying the characteristics of the vibration is more significant than what 

had been suspected earlier using Stokes solution in laws of wave-propagation (Lamb, 1904).  

 

Figure 2.8: Propagating Rayleigh wave- Adapted from Bolt (1993) 

In an unbounded elastic medium, i.e. full-space, only two types of waves, primary (or 

Compression) (P) and shear (S) waves can be propagated. It should also be noted that P and S 

waves propagate independently in a full-space medium. In the presence of a boundary, as in the 

half-space problem, two phenomena introduce deviations from classical wave-

propagation theory. One is the coupling of the P and S waves through the surface boundary.  In 

other words, an incident wave of sharp angle (i.e. close to vertical), either P or S polarized on the 

plane of the paper (SV waves), can be converted into two waves on reflection (Graff, 1975). This 

behavior is called Mode Conversion and is shown in Figure 2.9.  
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Figure 2.9: Mode Conversion phenomenon, incident P wave with amplitude A1 is 
reflected as P wave with amplitude A2 and SV wave with amplitude B2 

The second phenomenon referenced above is the existence of Rayleigh waves due to the 

refraction of P and S waves traveling at obtuse angle on the surface boundary. The surface or 

Rayleigh wave is essentially two-dimensional (although not necessary planar), as no propagation 

take place in the vertical direction; therefore, it dissipates its energy less rapidly than P and S 

waves, which propagate in three-dimensional space. Figure 2.10 shows the distribution of 

displacement and energy due to different types of waves as a result of a harmonic vertical load 

applied on a half-space. In this figure, the predominance of Rayleigh waves in terms of energy 

and response is evident, especially close to the surface. It should also be noted that the effects of 

Rayleigh waves decays rapidly with depth, and the velocity of propagation is slower than that of 

body waves. An interesting discussion on the importance of Rayleigh waves in foundation 

dynamics has been provided by Wolf (1994) and Wolf and Deeks (2004). 
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Figure 2.10: Distribution of displacement and energy in P, SV, and Rayleigh waves 
resulting from a harmonic normal load on half-space for 𝝂   = 𝟏

𝟒
 - Adapted 

from Woods (1968), based on the results from Miller and Pursey (1958). 

The classical analysis of the surface dynamic source problem was first conducted by Sir 

Horace Lamb, Professor of Mathematics at the Victoria University of Manchester (before that in 

the newly founded University of Adelaide, Australia), and was published in 1904. Lamb 

considered a half-space under an impulsive 2-D and a suddenly applied 3-D vertical load. Lamb 

discussed harmonic loading and used superposition techniques to obtain results for pulse loading 

(Graff, 1975). His procedure was a great contribution to what is known today as the modern 

integral transform method.  However, due to lack of mathematical capacity required for 

evaluation of associated integrals, he only evaluated the response at large distance from the 

source load, i.e. the far field response (Kausel, 2012). As part of that study, Lamb laid the 

foundation of what we call today the integral transform method (Kause, 2012). A great number 

of contributions have been conducted over time to solve this problem; however, the problem of a 
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dynamic source applied on the surface of a half-space is referred to as Lamb’s Problem in the 

honor of the very first pioneer in this field, Sir Lamb. 

Kausel (2012) provides a thorough review of the analysis of Lamb’s problem in different 

studies including Cagniard (1939), Pekeris (1955), De Hoop (1960), Chao (1960), Mooney 

(1974), Eringen et al. (1975), and Richards (1979).  

Four decades after Lamb formulated the problem, Cagniard (1939) developed a technique 

for performing the inversion of Lamb’s integrals. A simplification to Cagniard’s method was 

presented by De Hoop (1960). The latter is currently known as Carniard-De Hoop method. 

Pekeris (1955) and Chao (1960) obtained closed-form solutions for suddenly applied vertical and 

horizontal loads on a half-space. But these solutions were limited to a Poisson’s ratio of 0.25. 

Mooney (1974) expanded Perkins’ results to obtain the vertical component of displacement due 

to vertical point loads with arbitrary Poisson’s ratio. In the book, Elastodynamics, Eringen et. al 

(1975) completed Mooney’s work by providing results for radial components, for Poisson’s 

ratios up to 0.2631 (numerical problems were encountered for larger values of ν). Finally, 

Richards (1979) provided a complete set of equations for both vertical and horizontal 

components for different values of Poisson’s ratio. Recently, Kausel (2012) revisited Lamb’s 

problem for the cases of suddenly applied vertical and horizontal point loads on the surface of an 

elastic, homogeneous half-space and presented a compact set of equations for space-time 

displacement response at the surface and at depth underneath the load (i.e. r = 0) for any 

Poisson’s ratio from 0 to 0.5, and concluded that the outcomes are in full agreement with those in 

Richard’s study. The advantages of this new set of equations compared to previous works are 

their simplicity as a result of reducing the number and form of constants, and providing 
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equations that makes no distinction between real and complex roots associated with the Rayleigh 

poles. The latter simplifies the task of taking derivatives.  

Table 2.2 summarizes the available theoretical solutions to Lamb’s problem. Note that 

aside from some of the original work by Lamb (1904), these solutions do not apply directly for 

cyclic loads. Moreover, the solutions predict only displacements, and while displacement 

solutions can be readily converted to stresses for simple 1-D wave propagation, this conversion 

is not straightforward for the more complex 2-D and 3-D wave propagation associated with 

surface loading. The third major shortcoming of existing integral transform solutions is that their 

outcomes (for displacements) are only applicable for limited positions relative to the point load 

(i.e., at the ground surface and directly beneath the load; i.e., aperture angles of 90º and 0º). 

Hence, while these solutions represent significant milestones in the development of our 

theoretical understanding of how foundation soils respond to surface loads, they are not suitable 

to predict for any location the SSI-induced stresses that are of interest in the present work.   
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Table 2.2 Available integral transform solutions to Lamb’s problem of point loads on the surface 
of a halfspace. 

Developers Lamb 
(1904) 

Pekeris 
(1955) 
Chao 
(1960) 

Mooney 
(1974) 

Eringen et. 
al (1975) 

Richards 
(1979) Kausel (2012) 

Load Direction 
Vertical  

Horizontal 

Vertical  

Horizontal 

Vertical  

Horizontal 

Vertical  

Horizontal 

Vertical  

Horizontal 

Vertical  

Horizontal 

Load Type Cyclic, 
Impulsive Impulsive Impulsive Impulsive Impulsive Impulsive 

Solution for 
Displacement 

(ui) 

far field 

uz, ur 
uz, ur 

(z = 0) 

uz 

(z = 0) 

uz, ur 

(z = 0) 

uz, ur 

(z = 0) 

uz, ur 

along r = 0 or z = 0 
only 

Solution for 
Stress (σij) 

N.A. N.A. N.A. N.A. N.A. N.A. 

Poisson’s ratio 0 - 0.5 0.25 0 - 0.5 0 - 0.2631 0 - 0.5 0 - 0.5 

It should also be noted that although the formulation of integral transforms is exact, in 

most cases, such complex integrals are not tractable using exact analytical solutions. Therefore, 

the integrals should be evaluated numerically. As discussed earlier in this chapter, exact 

solutions are even lacking in the static case, in particular for distributed loads. On the other hand, 

evaluation of integrals numerically encounters many difficulties due to the singular nature of 

these loads (Schepers et al., 2010). This is in fact the main cause of the aforementioned limited 

availability of analytical solutions for: (1) some specific load types (i.e. mostly impulsive point 

loads), (2) displacements and not stresses, and (3) locations along the ground surface or directly 

beneath the load, but not at other aperture angles.  

An excellent contribution was recently presented by Schepers et al. (2010) to deal with 

some numerical problems associated with evaluation of integrals for the problem of harmonic 

vertical and horizontal point load applied on the surface of an elastic or viscoelastic half-space. 

They also provide solutions in the form of stresses. In a nutshell, the closed-form static solution 
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is subtracted from the kernel in the wavenumber domain, and is added back in the spatial 

domain. The focus of this work is to evaluate the contours of stress components for various 

frequencies and a full range of Poisson’s ratios. To illustrate the difficulty in obtaining such 

response functions, the procedure described in Schepers et al. (2010) for shear stress component 

evaluation is summarized in Equations 2.26 to 2.40. 

z r
rz

u u
r z

τ µ ∂ ∂⎧ ⎫= +⎨ ⎬∂ ∂⎩ ⎭
                                                                                                                 (2.26) 

where zu  and  ru are vertical and radial displacement and  µ and λ are Lame constants. 

The displacement components for horizontal (n = 1) and vertical (n = 0) loads can be 

written as: 

( , )(cos )r ru u r z nθ=                                                                                                                  (2.27) 

( , )(cos )z zu u r z nθ=                                                                                                                  (2.28) 

1
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1( , , ) ( )
2r xzu r z f J kr dkω
πµ

∞

= − ∫                                                                                               (2.29) 

0
0

1( , , ) ( )
2z zzu r z f J kr dkω
πµ

∞

= − ∫                                                                                              (2.30) 

In these equations J0 and J1 are the Bessel functions of the first kind and order 0 and 1, 

respectively. The kernels of these expressions involve flexibility functions in the frequency-

wavenumber domain (fxz ,fzz), which are as shown in Equations 2.31 and 2.32. It should be 

mentioned that the flexibility functions are related to actual Green’s functions (Gxz, Gzz) 

(Schepers et al., 2010). 
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21 1 (1 )
2 2xz xz e pf kG pse s eµ ⎡ ⎤= = − +⎢ ⎥Δ ⎣ ⎦
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where Gxz and Gzz are actual Green’s functions and Δ is the Rayleigh function in which 
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are complex P and S wave velocities, respectively.  
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exp( ) ( )pe kpz exp kp z= = −                                                                                                     (2.38) 

exp( ) ( )se ksz exp ks z= = −                                                                                                       (2.39) 

The wave numbers are also defined as: 

, ,p S R
P S R

k k k
C C C
ω ω ω= = =                                                                                                  (2.40) 
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where Cp, Cs, and CR are P, S, and R wave velocities. The full derivations of aforementioned 

equations can be found in aforementioned publications as well as Schepers et al. (2010) and in 

Chapter 10 of Kausel (2006). 

Figure 2.11 presents one set of pressure bulbs corresponding as determined by Schepers 

et al. (2010) to vertical load on an elastic and homogenous half-space with Poisson’s ratio (ν) of 

0.33, damping (ξ) of 0.5%, shear wave velocity (VS) of 100 m/s, and mass density (ρ) of 1.8 

Mg/m3. The normalization is performed based on the corresponding static stress value at the 

reference location R0(φ0) = 1 m (i.e. the radial distance along the ray = 0∘, 45∘, or 90∘, depending 

on the stress components (Schepers et al., 2010). It should be noted that in their presentation, all 

bulbs in one tile are lines of “one and only one” constant value of the non-dimensional stress. So 

in order to compute the dimensional value, the corresponding static stress value at the reference 

location R0 should be considered applying the appropriate static closed-form equation, i.e. 

Boussinesq’s solution. Since all bulbs are lines of one and only one constant stress value, the 

stress value of the static one and the non-scaled dynamic ones are equal at any point on any bulb 

of a tile. 
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Figure 2.11: Pressure bulbs due to vertical load, ν = 0.33, ξ = 0.005, VS = 100 m/s, ρ = 1.8 
Mg/m3 - Adapted from Schepers et al. (2010) 

This specific set of results is used in Chapter 3 for verification purposes. The pressure 

bulbs in this work are limited to a few numbers of frequencies as well as a nominal shear wave 

velocity of 100 m/s. If any other values of shear wave velocity or frequency are of interest, some 

scaling adjustment procedures need to be performed in order to get the corresponding stress 

outputs. For the applied nominal shear wave velocity, 10 Hz is the threshold above which 

dynamic effects become more pronounced and dynamic bulbs deviates from static ones. 
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Nevertheless, this threshold is strongly a function of actual to nominal shear wave velocity ratio, 

and tends to decrease with increases of this ratio (Schepers et al., 2010). Moreover, dynamic 

stresses reach deeper in the soil mass and follow more complex patterns as a result of 

constructive and destructive wave interference (Schepers et al., 2010). These will be explored in 

detail in later chapters. 

2.5 BEYOND THE SSI PROBLEM 

Although mostly familiar to engineers and researchers working in geotechnical earthquake 

engineering and Soil-Structure Interaction fields, the problem of assessment of strains and 

stresses caused by loads applied onto surface of a medium has attracted many researchers in 

other fields such as pavement design, biomedical and bio-material. In the following section, 

some important developments in such fields are discussed briefly. 

2.5.1 Flexible Pavement Design  

Flexible pavements typically consist of two or three layers, i.e. the surface layer which is 

primarily made of asphalt, the granular base course, sub-base as an optional treated subgrade, 

and subgrade being the existing soil.  

Many laboratory investigations as well as in-situ and analytical studies have been 

conducted to evaluate the effects of speed and frequency of a moving load, i.e. the vehicle, on 

the response of the flexible pavement. Brown (1967) performed laboratory testing on two 

models, a single layer of clay, and two layers of granular base on clay subgrade. The applied load 

was a single bell-shaped pulse of duration between 0.1 and 2 seconds. In addition, pressure and 

strain cells were used to measure the stresses and strains due to the applied load. The results were 

then compared with the Boussinesq’s solution and the layered system solution both in elastic 
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theory. In general, the obtained stress outcomes showed a meaningful agreement with theory, but 

strains were more difficult to predict due to the dependency on modulus. In another study, Hardy 

and Cebon (1994) proposed a quasi-dynamic analysis, which disregards the effects of frequency 

of loading but accounts for the speed and fluctuation amplitude of dynamic load. They validated 

this simplified method by comparing the results in terms of primary load responses and fatigue 

damage to those predicted by a full dynamic analysis. They concluded that in practice, the quasi-

dynamic analysis can successfully predict the response of pavement to the applied load as long 

as suitable load-damage relationships are used. Analysis of contact stresses on the surface of 

flexible pavements is another area that has attracted many researchers in recent years. In analysis 

of rutting and top-down cracking (TDC), shear stress is believed to be one of the critical factors. 

As opposed to traditional methods that assume uniformly distributed circular vertical contact 

pressure equal to tire inflation pressure, Su Kai et al. (2008) measured realistic tire-pavement 

contact pressure in the laboratory using a static test system. They applied the measured pressure 

on a 3D-FEM of pavement and investigated the effects of tire load and inflation pressure, 

horizontal stresses, and the asphalt layer thickness. The results indicated that the maximum shear 

stress that occurs at the tire edge is the major factor causing rutting and TDC developments. 

Despite the asphalt layer thickness, tire pressure, tire vertical load, and horizontal stress had 

significant effects on shear stress. 

2.5.2 Biomedical and Biomaterial Areas 

In this field of research, the materials of interest, i.e. biomaterial, are usually considered to be 

viscoelastic, indicating both viscous and elastic properties. The elastic property is the tendency 

of materials to return to their original shape after the applied load is removed. The viscosity is 

generally the resistance to flow. Therefore, viscoelastic materials have a time-dependent strain 
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rate even in static problems. Human organs, animal tissue, and most materials in the food 

industry are classified as viscoelastic materials.  

The solution to the Boussinesq problem in viscoelastic materials is developed by Talybly 

(2010) in which two time-dependent functions were introduced to account for relaxation and 

Poisson’s ratio. Also, equilibrium equations and boundary conditions were used to obtain the 

equations to solve for the determining functions. Such equations were solved using Volterra 

integral equation of second kind (Talybly, 2010). In another study, Peng and Zhou (2012) 

developed the formulation for tangential point force on a half-space, i.e. Cerruti’s visco-elastic 

problem. The derivation of the formulas follows the same approach as of Talybly’s; however, the 

asymmetry due to tangential force makes the formulation much more complicated (Peng and 

Zhou, 2012). Peng and Zhou (2013) developed a model of cutting force on a viscoelastic body 

mostly for surgical simulation purposes and presented a closed form solution for stress 

distribution in a body subjected to the force from the cutting blade. In their analysis, they 

modeled the body as a linear viscoelastic material and the interaction between the blade and the 

body as distributive forces acting on the surface of a viscoelastic half-space. The result was 

presented as a mathematical model and could be used for the stress distribution estimations 

during biomaterial cutting which could be useful in surgical simulations for the purpose of 

training new practitioners as well as in the food processing industry where it is desired to know 

the stress distribution in a food medium under a robot-controlled blade cut. The latter could 

improve cutting yield and meat harvesting quality (Peng and Zhou, 2013). 

In this chapter, the historical development in assessment of effects of an applied load 

onto a body of material(s) is discussed. As described in this chapter, significant progress has 

been made over time both in terms of methodology (i.e. integral transforms and inverse integral 
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transforms) and computational tools. The main objectives were to (1) emphasize the level of 

complexity in obtaining analytical and numerical solutions to these types of problems, especially 

in dynamic cases; and (2) demonstrate that currently available solution cover a limited range of 

conditions and as such are not suitable to practical applications. Moreover, currently available 

solutions are formulated with a considerable degree of complexity, limiting the potential of 

practical engineering implementation. 
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3 Stress beneath Dynamically Applied Vertical 
and Horizontal Point Loads 

As discussed in detail in Chapter 1, based on several studies including NIST (2012) practical 

guidelines have been developed to help engineers take into account soil-structure interaction 

(SSI) effects in earthquake engineering.  Based on these guidelines, input motions reflect 

expected levels of ground motion at the base of structures (as opposed to the free field motion) 

and the structural models include appropriate springs and dashpots that account for the 

geotechnical and foundation conditions associated with the structure. The aforementioned steps 

should be taken to answer the most important question in classical SSI; what are the effects of 

soil on structural response? However, what remains is the commonly ignored question: what are 

the effects of the structure on soil?  

Earthquake ground shaking induces strains and stresses in soil materials as a result of 

wave propagation from site response. In the absence of a structure, these seismic demands on the 

soil materials reflect free-field conditions. Such demands on soil materials can cause, among 

other effects, pore pressure generation and associated losses in shear strength and stiffness. The 

presence of a structure modifies the characteristics of wave propagation in the vicinity of the 

foundation due to SSI. Therefore, dynamic stress demands in the soil beneath the foundation 

(referred to as ‘foundation soils’) result from both site response and SSI. In conventional 

practice, stress demands from SSI are ignored in engineering assessments of ground failure 
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potential, based on the perception that demands from wave propagation are dominant. However, 

numerous post-earthquake field investigations [e.g., 1999 Kocaeli, Turkey (Bray and Stewart, 

2000); 1999 Chi-Chi, Taiwan (Chu et al., 2004), 2011 Tohoku, Japan (Ashford et al., 2011), 

2011 Christchurch, New Zealand (Cubrinovski et al., 2011)] provide evidence for local ground 

failure beneath foundations, apparently influenced by SSI-related demands. Similar phenomena 

have been observed and documented in centrifuge modeling (e.g., Dashti et al., 2009).  

As explained in Chapter 2, the stress solutions for static vertical and horizontal loads 

applied on the surface of an elastic half-space are given by exact formulae by Boussinesq (1885) 

and Cerruti (1882), which are available in engineering textbooks and manuals. Moreover, a few 

analytical and some numerical solutions exist for more general types of static loading such as 

circular or square vertical and horizontal loads applied on the surface of an elastic half-space or a 

finite soil layer over rigid rock, obtained by integration of the above solutions (Poulos & Davis 

1974). In the case of dynamic loading, the body of knowledge is much more limited, primarily 

due to the difficulty in solving the governing differential equations in closed form. The first to 

successfully perform such an analysis was Lamb (1904), who extended Boussinesq’s solution by 

considering a suddenly applied vertical load of constant amplitude. Despite several subsequent 

studies (summarized by Kausel 2012), little progress has occurred over the last century for two 

main reasons: (1) the difficulty in evaluating certain integrals (i.e., inverting the integral 

transforms) employed in the analysis; and (2) the focus in practice on determining surface 

motions for seismological purposes, not soil stresses. An exception is a recent study by Schepers 

et al. (2010) on the problem of harmonic vertical and horizontal point loads on the surface of a 

visco-elastic half-space. However, the pressure bulbs presented are difficult to use due to 

necessary scaling adjustments to get the corresponding stress outputs. Inspired by the 
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aforementioned analyses, the goals of this chapter are to: (1) extend the Boussinesq (1885) and 

Cerruti (1882) problems to the dynamic regime, by considering a harmonic load applied on the 

surface of a visco-elastic half-space, (2) develop general normalization schemes to facilitate ease 

of application, and (3) provide insight into the physics of SSI-induced stresses and thereby take 

initial steps towards a simplified procedure for evaluating seismic stress demands in foundation 

soil. 

In this chapter, the Buckingham 𝜋 theorem (Buckingham, 1914) is discussed as part of 

the normalization scheme. This theorem is applied to the static and dynamic problems of vertical 

and horizontal point loads imposed on the surface of the half-space to determine the number of 

dimensionless parameters. Such parameters are then selected with regards to characteristic 

properties of the systems and investigated throughout the analysis presented in this chapter. 

Boundary Element Method (BEM) is selected as the numerical method of analysis. The 

commercial program ISoBEM (2012) is employed as the main software throughout this work. 

The analyses in this part of research includes two cases for dynamically applied vertical and 

horizontal point loads on the surface of an elastic half-space. The verification of the solutions in 

the point load problems is performed by comparing the stress results to the Boussinesq’s solution 

(Boussinesq, 1885), Cerruti’s solution (Cerruti, 1882), and Lamb’s problem solution by Schepers 

et al. (2010). Upon verification, the final analysis is performed for a large set of parameters 

including dimensionless frequencies (ωR/VS) ranging from 0 to 20, Poisson’s ratios of 0.34 and 

0.45, and soil damping values of 1% and 5%, to account for sand and incompressible clay soils, 

respectively. The solutions are then illustrated in the form of dimensionless stress bulbs for 

amplitude and phase angles. A discussion is also presented on effects of Poisson’s ratio, 
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damping, and most importantly, dimensionless frequency on the stress response of soil mass due 

to an applied dynamic point load.  

3.1 BUCKINGHAM’S THEOREM 

The differential equations describing the dynamic response of the soil mass are not solvable 

analytically; dimensional analysis is employed to identify the governing parameters that 

characterize the system. The Buckingham π theorem (1914) states that the original expression of 

a certain physical problem involving N number of parameters with M number of fundamental 

dimensions is equivalent to an equation involving a set of P = N - M dimensionless parameters, 

i.e. π groups. In other words, identifying the variables involved in a physical problem would 

suffice for computing the number of dimensionless parameters, even when the form of the 

governing equation describing the problem or the solution is unknown, or an analytical solution 

is not available. It should be noted that the choice of dimensionless parameters is not specified in 

this theorem; therefore the process of selecting the π groups should be bounded with knowledge 

of physical characteristics of the corresponding problem and requires judgement. The π theorem 

is the key scheme in the normalization process and serves as a useful technique in addressing 

problems being represented by relatively few physical parameters. In the research at hand, as the 

differential equations describing the response of the soil are not solvable analytically (or even 

numerically in some occasions), the normalization technique is chosen to capture the 

dimensionless groups that characterize the system. 
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3.2 DIMENSIONLESS PARAMETERS OF POINT LOADS ON AN 
ELASTIC HALF-SPACE 

The fundamental units are length [L] and force [F] in static problems and are length [L], force 

[F] and time [T] in dynamic ones. In the following sections, the solution to Boussinesq and 

Cerruti problems are represented in dimensionless forms for both static and dynamic cases.  

3.2.1 Dimensional Analysis of the Classical Boussinesq Problem 

With reference to the coordinate system of Figure 3.1(a), the classical Boussinesq problem is 

presented in Figure 3.1(b).  

 

Figure 3.1: (a) Cartesian versus cylindrical coordinates - Adapted from Schepers et al. 
(2010), (b) Classical Boussinesq problem 

 

In this figure the position of an arbitrary element within the elastic soil medium (with 

Young’s modulus E and Poisson’s ratio ν) is defined by radial distance R from the point of 

application of load P (origin of axes), and the vertical aperture angle, φ. Hence, in this problem, 

three parameters, E, R, and P have two fundamental units, i.e. length [L] and force [F]. Two 
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intrinsically dimensionless parameters, φ and ν, complete the definition of the physical system. 

Accordingly, the number of dimensionless groups required to define this problem is given as 

(where Q refers to the number of intrinsically dimensionless parameters): 

(N M) Q (3 2) 2 3− + = − + =                 (3.1) 

Therefore, the solution to the classical Boussinesq problem must be represented by an 

equation involving three dimensionless parameters, two of which are known (φ and ν). 

Additional steps are required to identify the third parameter. Equation 3.2 shows the stress 

response, σij, of a soil element, with the associated units appearing in Equation 3.3. 

( , )i j P E R gα β γσ ϕ ν=               (3.2) 

2 2[ ] [ ][ ] [ ]F FF L
L L

α β γ=               (3.3) 

Parameters α, β, and γ are determined through dimensional analysis per Equation 3.3. 

Equation 3.4 provides two equations and three unknowns.  

1
2 2
α β

β γ
= +

− = − +
                           (3.4) 

The linearity of the problem requires α = 1. Values of β and γ are then obtained as 0 and -

2, respectively, resulting in: 

( )2 ,i j
P g
R

σ ϕ ν=               (3.5)  

Equation 3.5 reveals the independence of stresses to the Young's modulus of the half-

space, as mentioned in Chapter 2. This equation is rewritten in dimensionless form as Equation 

3.6 where the third dimensionless parameter is (σijR2/P). In other words, for an element located at 
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distance R from the vertical static point load applied at ground surface, the dimensionless stress 

depends only on aperture angle and, possibly, ν. This is confirmed by the exact stress solution to 

the Boussinesq problem as shown in Equations 3.7−10 in dimensionless forms. 

( )
2

,i jR g
P

σ
ϕ ν=               (3.6) 

2
33 cos

2
zR
P

σ ϕ
π

=                   (3.7) 

2
21 1 23cos sin

2 1 cos
rR
P

σ νϕ ϕ
π ϕ
⎡ ⎤−= −⎢ ⎥+⎣ ⎦

                                 (3.8)

2 1 2 1 cos
2 1 cos

R
P
θσ ν ϕ

π ϕ
⎡ ⎤−= −⎢ ⎥+⎣ ⎦

            (3.9) 

2
23 sin cos

2
rzR
P

τ ϕ ϕ
π

=            (3.10) 

The independence of the right-hand side of the above solutions to R indicates self-

similarity of the problem, as it reduces the number of independent variables from two (i.e., φ, R) 

to one (φ), which greatly simplifies the governing equations as an ordinary differential equation 

is required to solve the problem instead of a partial differential equation. This remarkable 

property is discussed in detail by Barenblatt (1996). The elegancy of this approach is more 

pronounced when it comes to problems for which solutions are not fully available in closed-

form. The dynamic Boussinesq problem is among those lacking a closed form solution, and is 

discussed in the following section.  
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3.2.2 Dimensional Analysis for the Dynamic Vertical Point Load Problem 

In the dynamic counterpart to the Boussinesq problem, shown in Figure 3.2(b), the point load is 

periodic with amplitude P and angular frequency ω. Radial Distance (R), shear wave velocity 

(VS), shear modulus (G), and mass density of the soil medium (ρ) are other essential parameters.  

 

Figure 3.2: (a) Cartesian versus cylindrical coordinates - Adapted from Schepers et al. 
(2010), (b) Dynamic vertical point load problem  

 

Since G, VS, and ρ are correlated, only two of them should be considered as fundamental 

parameters resulting in a total of five (N = 5), three fundamental dimensions, length [L], force 

[F], and time [T], (M = 3), and three intrinsically dimensionless parameters ν, ξ, and φ (Q = 3). 

Accordingly, the number of dimensionless groups is: 

             (3.11) 

Hence, in addition to the three intrinsically dimensionless parameters and (σijR2/P), 

another dimensionless parameter is required to fully describe the dynamic solution. This 

( ) (5-3) 3 5N M Q− + = + =
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parameter is selected to be (ωR/VS), which is recognized in most studies involving dynamic 

analysis as dimensionless frequency. A difference in the present case is that R is a coordinate, not 

a characteristic length such as a footing dimension. Alternatively, (ωR/VS) can be interpreted as 

proportional to the ratio of R to wavelength. As shown in Equation 3.12 in the dynamic problem 

(σijR2/P) is a function of soil ν and ξ, aperture angle, and dimensionless frequency: 

2

, , ,ij

s

R Rg
P V

σ ωϕ ν ξ
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

                                                                                                           (3.12) 

3.2.3 Dimensional Analysis of the Classical Cerruti Problem 

The classical Cerruti problem is presented in Figure 3.3(b). 

 

Figure 3.3: (a) Cartesian versus cylindrical coordinates - Adapted from Schepers et al. 
(2010), (b) Classical Cerruti problem 

 

Considering dimensional analyses, the Cerruti problem is similar to the Boussinesq 

problem except that whereas the Boussinesq problem is axi-symmetric, the Cerruti problem is 
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antisymmetric. To account for the additional dimension in the Cerruti problem, azimuthal angle 

θ should be considered. Equation 3.13 shows the dimensionless presentation of the Cerruti 

problem. For an element located at distance R from the horizontal static point load applied at the 

ground surface, the dimensionless stress depends only on aperture angle, azimuthal angle, and ν. 

This is confirmed by the exact stress solution to the Cerruti problem as shown in Equations 

3.14−18 in dimensionless forms. 
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As mentioned earlier, the remarkable value of this approach is more pronounced when it 

comes to dynamic problems for which general solutions are not available in closed-form. 

Dimensional analysis of the dynamic Cerruti problem is addressed in the following section.  
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3.2.4 Dimensional Analysis for the Dynamic Horizontal Load Problem 

As shown in Figure 3.4(b), the dynamic counterpart to the Cerruti problem is the periodic 

horizontal point load with amplitude P and angular frequency ω. Radial Distance (R), shear wave 

velocity (VS), shear modulus (G), and mass density of the soil medium (ρ) are other essential 

parameters. 

 

Figure 3.4: (a) Cartesian versus cylindrical coordinates - Adapted from Schepers et al. 
(2010), (b) Dynamic horizontal point load problem  

 

Following the same approach as the one described in Section 3.2.2 along with 

considering the three dimensional nature of the problem, Equation 3.19 shows the dimensionless 

presentation of a harmonically applied horizontal point load. In this dynamic problem (σijR2/P) is 

a function of soil ν and ξ, aperture angle, azimuthal angle, and dimensionless frequency: 

2
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                                                                                                        (3.19) 
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3.3 NUMERICAL TECHNIQUE AND SOFTWARE VERIFICATION 

As discussed previously, the stress responses are not fully available in closed-form for two 

dynamic problems described in Sections 3.2.2 and 3.2.4. Nevertheless, utilization of 

Buckingham’s π theorem together with dimensional analysis provides a basis to redefine such 

problems in the most physically meaningful dimensionless format. The missing part, however, is 

the function g in Equations 3.12 and 3.18. Evidently, this function is not unique and changes 

depending on the stress component of interest. Instead of solving the governing differential 

equation of the system analytically, which is a formidable task, function g is investigated here 

numerically.  

The selection of a numerical technique is tied to the ability of the technique and the 

software to address the effects of fundamental parameters of the problem. In the dynamic vertical 

and horizontal point load problems discussed previously, determinative parameters are the 

frequency of the applied load and geometric location of the element within the soil medium. 

Other components to be considered are the accuracy of the technique in dynamic analysis and its 

capability to properly address the radiation of energy to infinity. Considering the specific 

parameters that characterize the problem, we selected the boundary element method numerical 

technique as implemented in software ISoBEM (2012).  

BEM is a computational tool for solving a wide range of differential equations 

numerically. In a particular problem, the fundamental solution of the differential equation, or 

Green’s function, is employed by BEM to develop the solution at any internal point given the 

solution at its boundary. The fundamental solutions for partial differential equations (PDE) are 

generally proposed for infinite domains which are free of boundary conditions (and thus of 

complications resulting from presence of surface waves). For example, Kelvin’s and Stoke’s 
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fundamental solutions are developed in elastostatics and elastodynamics problems, respectively. 

In some problems involving semi-infinite or infinite domains, it is possible to find the solutions 

of the PDE given the boundary conditions. In such cases, the solutions are called Green’s 

functions, which in many cases can only be obtained numerically (Roach, 1982).  

BEM has a number of distinct advantages over FEM for linear elastic problems in semi-

infinite domains under dynamic loading. The BEM reduces the dimensions of the problem by 

one, as discretization is restricted only to the boundary, thereby leading to influence matrices of 

very small size and simplifying the data input during pre-processing. Moreover, the presence of 

the fundamental solution increases the accuracy of BEM. The latter advantage over FEM is more 

pronounced in problems addressing fracture mechanics and semi-infinite domains. The most 

important strength of BEM in such problems is the accuracy and efficiency of solutions, as the 

radiation condition at infinity is satisfied spontaneously by the fundamental solution (Banerjee 

and Wilson, 1989). Moreover in BEM, the solution is obtained in the interior domain at any 

desired point with no need for considering inter-element continuity as in FEM. Although 

influence matrices have very small sizes, they are fully populated, non-symmetric and complex-

valued which leads to increasing the time required to solve the matrix equations. But the 

development of efficient solvers in recent years increases the computational capacity and reduces 

the processing time significantly. It is important to note that fundamental solutions are not fully 

available for very special categories of problems. In such cases, special integration techniques 

are required due to the singular nature of the solutions. It is worth mentioning that compared to 

FEM, BEM is much more sophisticated from the programming perspective; hence, fewer BEM-

based platforms are available in the market (ISoBEM, 2012). 
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ISoBEM (2012) is an advanced, user-friendly platform that employs BEM for solving a 

wide range of engineering problems including compressible and incompressible elastostatics and 

elastodynamics, SSI, and propagation of 2-D and 3-D elastic waves in soil. For each problem, a 

complete set of integral formulation, corresponding Green’s function, and numerical 

implementation are presented in ISoBEM Theory Manual. ISoBEM can accommodate non-

uniform soil properties by specifying multiple boundaries at their interfaces. These boundaries, 

including the ground surface, can be flat or inclined.  

The accuracy of ISoBEM analyses are verified for the static vertical and horizontal 

loading problems as well as corresponding dynamic problems in the following sections. 

Moreover, a final verification is performed to confirm the normalization of stresses.  

3.3.1 Verification of ISoBEM Analyses – Static Problems 

The accuracy of ISoBEM analyses are verified for the static vertical and horizontal loading 

problems in Figures 3.5 and 3.6, which compare vertical, shear, radial, and hoop stress 

components from ISoBEM analyses to the Boussinesq and the Cerruti solutions, respectively. In 

both cases, a total of 30 nodes are created at which the internal stresses are calculated by 

ISoBEM. These nodes are located 1m below the surface boundary and are spaced 0.05m apart. 

The element types applied for these analyses are considered to be Two-node Linear Line (2LL) 

for both axisymmetric (vertical point load) and anti-symmetric (horizontal point load) modeling.  
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Figure 3.5 Comparison between ISoBEM and analytical solution for classical Boussinesq 
problem (a) Vertical, (b) Shear, (c) Radial, (d) Hoop stress components (y 

= 0, z = -1 m, P =1 N, ρ = 1.8 Mg/m3, VS = 100 m/s, ν = 0.33) 

 

 

Figure 3.6 Comparison between ISoBEM and analytical solution for classical Cerruti 
problem (a) Vertical, (b) Shear, (c) Radial, (d) Hoop stress components (y 

= 0, z = -1 m, P =1 N, ρ = 1.8 Mg/m3, VS = 100 m/s, ν = 0.33) 
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As shown in Figures 3.5 and 3.6, there is nearly perfect compatibility between the stress 

fields obtained from the Boussinesq and Cerruti closed-form solutions and ISoBEM. It is also 

confirmed that the axisymmetric and anti-symmetric setups perform well while reducing 

processing time significantly and enabling the user to apply a denser mesh that helps increasing 

accuracy in dynamic analyses. 

3.3.2 Verification of ISoBEM Analyses – Dynamic Problems 

To validate the solutions obtained from ISoBEM analysis in dynamic problems, a comparison is 

performed with the solution provided by Schepers et al. (2010). As discussed in Chapter 2, 

Schepers et al. (2010) proposed numerical techniques to evaluate the inversion integrals for the 

problems of harmonic vertical and horizontal point loads applied on the surface of a visco-elastic 

half-space. They presented their results in form of dimensionless stress bulbs for various 

frequencies and a range of Poisson’s ratios. In all cases, a damping ratio of 0.5%, shear wave 

velocity of 100 m/s, and mass density of 1.8 Mg/m3 were assumed. The last two parameters were 

employed without loss of generality, as explained below.  

The normalization is performed based on the corresponding static stress value at the 

reference location R0(φ) = 1 m (representing the radial distance along the ray = 0∘, 45∘ , or 90∘ 

depending on the stress component). It is important to note that all bulbs in one tile are lines of 

“one and only one” non-dimensional constant stress value. Thus, the dimensional value is equal 

to the corresponding static stress at the reference location R0, which could be calculated from the 

appropriate static closed-form equation, i.e. Boussinesq or Cerruti solution. As all bulbs are lines 

of one and only one constant stress value, the stress magnitude of the static case and the non-

scaled dynamic ones are equal at any point on any bulb of a tile. 
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In the cases of a harmonic vertical and horizontal applied point loads, comparisons are 

performed between vertical and shear stress results from ISoBEM analyses and the solution of 

Schepers et al. (2010) for ν = 0.33, ξ = 0.5%, VS =100 m/s, and ρ =1.8 Mg/m3. The outcomes of 

these comparisons are presented in Tables 3.1 and 3.2 for vertical and horizontal loads, 

respectively. The stress values corresponding to Schepers et al. (2010) were computed using a 

MATLAB script provided by Schepers that evaluates the associated integrals numerically 

(personal communication, 2013).  

Table 3.1 ISoBEM axisymmetric verification models for vertical load.  
SEA 2010=Schepers et al. (2010) 

Freq 
f 

(Hz) 

Coord. 
 (r,z)  
(m) 

ISoBEM 
σ z   

(N/m2) 

SEA 
2010 
σ z   

(N/m2) 

σ z   
Diff. 
(%) 

Coord. 
 (r,z)  
(m) 

ISoBEM 
τhv 

(N/m2) 

SEA 
2010 
τhv 

(N/m2) 

τhv 
Diff. 
(%) 

0 (0,-1) 0.484 0.478 1% (0.704,-0.704) 0.170 0.170 0% 
12.5 (0,-0.958) 0.595 0.468 24% (0.758,-0.758) 0.176 0.168 5% 
25 (0,-1.188) 0.530 0.462 14% (1.032,-1.032) 0.162 0.209 25% 

37.5 (0,-1.406) 0.450 0.461 2% (1.11,-1.11) 0.177 0.166 7% 
50 (0,-1.450) 0.453 0.458 1% (1.176,-1.176) 0.144 0.114 23% 

 
 

Table 3.2 ISoBEM anti-symmetric verification models for horizontal load.  
SEA 2010=Schepers et al. (2010) 

Freq 
f 

(Hz) 

Coord. 
 (r,z)  
(m) 

ISoBEM 
σ z   

(N/m2) 

SEA 
2010 
σ z   

(N/m2) 

σ z   
Diff. 
(%) 

Coord. 
 (r,z)  
(m) 

ISoBEM 
τhv (N/m2) 

SEA 
2010 
τhv 

(N/m2) 

τhv 
Diff. 
(%) 

0 (0.704,-0.704) 0.1703 0.170 0% (0,-1) 0.170 0.170 0% 
12.5 (0.758,-0.758) 0.1340 0.116 15% (0,-0.958) 0.168 0.157 8% 
25 (1.032,-1.032) 0.1347 0.115 17% (0,-1.188) 0.167 0.172 3% 

37.5 (1.11,-1.11) 0.1573 0.149 6% (0,-1.406) 0.219 0.223 2% 
50 (1.176,-1.176) 0.1786 0.188 5% (0,-1.450) 0.243 0.221 10% 

 
While the results are generally compatible, they exhibit differences of up to 

approximately 25%, which is considered high for this relatively well-defined and simple 
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problem. Accordingly, we performed additional checks of displacement results between the 

MATLAB script, ISoBEM, and numerical finite element analyses performed by E. Esmaeilzadeh 

(personal communication, 2015) using an axisymmetric frequency domain wave solver with 

perfectly matched layers as absorbing boundary conditions (Esmaeilzadeh et al., 2015). In these 

finite element analyses, element sizes are determined such that at least 20 nodes are enclosed 

within the smallest wavelength (λ= VS/fmax) (Bao et al., 1998), where VS	
   denotes the smallest 

shear wave speed and fmax	
   denotes the maximum discernible frequency. The material used in 

finite element analyses is compatible with that used in ISoBEM.  

The comparison shown in Figure 3.7 indicates that the results from ISoBEM analyses are 

generally more consistent with those from finite element simulations than with those from 

Schepers et al. (2010). Exploring the reasons beyond this discrepancy lies beyond the scope of 

this work.  
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Figure 3.7 Comparison between ISoBEM and solution obtained from FEM (EEA 2015= 
Esmaeilzadeh et al. (2015)) and SEA 2010 (SEA 2010=Schepers et al. 

(2010)) for frequencies of (a) 12.5 Hz, (b) 25 Hz, (c) 37.5 Hz, (d) 50 Hz (x = 3 
m, P =1 N, ρ = 1.8 Mg/m3, VS = 100 m/s, ν = 0.33) 

3.3.3 Verification of ISoBEM Analyses– Normalization 

Additional verification is conducted to test the normalization of the dynamic stress results with 

respect to (σijR2/P) and (ωR/VS). For this purpose, three models were built in ISoBEM 

representing different values of frequencies, shear wave velocities, and radial distances, yet 

identical sets of dimensionless frequencies, (ωR/VS). Tables 3.3 and 3.4 summarize the three 

models used for normalization verifications for vertical and horizontal loads, respectively. 

Corresponding stress amplitudes are presented in Figures 3.8 and 3.9 in non-normalized and 

normalized forms for vertical normal stresses σz and in-plane shear stresses on horizontal and 

vertical planes τrz. The results support the proposed normalization scheme.   
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Table 3.3 ISoBEM axisymmetric models used to verify normalization for vertical point load;  
ν = 0.34, ξ = 1%. 

  Model 1 Model 2 Model 3 

ωR/VS ω     
(rad/s) 

VS     
(m/s) 

R           
(m) 

ω     
(rad/s) 

VS     
(m/s) 

R           
(m) 

ω     
(rad/s) 

VS     
(m/s) 

R           
(m) 

0.5 98.06 100.0 0.51 49.75 100.0 1.00 33.26 100.0 1.50 
1 196.1 100.0 0.51 99.50 100.0 1.00 66.52 100.0 1.50 
2 392.2 100.0 0.51 199.0 100.0 1.00 133 100.0 1.50 
4 784.5 100.0 0.51 398.0 100.0 1.00 266 100.0 1.50 
6 1177 100.0 0.51 597.0 100.0 1.00 399.1 100.0 1.50 
8 1569 100.0 0.51 796.0 100.0 1.00 532.1 100.0 1.50 
10 1961 100.0 0.51 995.0 100.0 1.00 665.1 100.0 1.50 

 

Figure 3.8 Checks of stress normalization using ISoBEM analyses for the conditions 
described in Table 3.3; (a) stress components (b) normalized stress 

components 
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Table 3.4 ISoBEM axisymmetric models used to verify normalization for horizontal point load; 
ν = 0.34, ξ = 1%. 

  Model 1 Model 2 Model 3 

ωR/Vs ω     
(rad/s) 

VS     
(m/s) 

R           
(m) 

ω     
(rad/s) 

VS     
(m/s) 

R           
(m) 

ω     
(rad/s) 

VS     
(m/s) 

R           
(m) 

0.5 98.06 100.0 0.51 49.75 100.0 1.00 49.75 149.6 1.50 
1 196.1 100.0 0.51 99.50 100.0 1.00 99.50 149.6 1.50 
2 392.2 100.0 0.51 199.0 100.0 1.00 199.0 149.6 1.50 
4 784.5 100.0 0.51 398.0 100.0 1.00 398.0 149.6 1.50 
6 1177 100.0 0.51 597.0 100.0 1.00 597.0 149.6 1.50 
8 1569 100.0 0.51 796.0 100.0 1.00 796.0 149.6 1.50 
10 1961 100.0 0.51 995.0 100.0 1.00 995.0 149.6 1.50 

 

Figure 3.9 Checks of stress normalization using ISoBEM analyses for the conditions 
described in Table 2; (a) stress components (b) normalized stress 

components 

3.4 A DIMENSIONLESS PRESENTATION OF DYNAMIC STRESS 
FIELDS  

3.4.1 Vertical Point Load  

As discussed earlier, stress response due to vertical oscillation of a point load on the surface of 

the soil mass is represented, in a dimensionless form, at any point inside the half-space using 

Equation 3.20.  
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           (3.20) 

Axisymmetric models in ISoBEM were set up to develop dimensionless graphical 

representations of stress fields resulting from harmonic vertical point loads on a visco-elastic 

half-space. A total of 40 combinations of dimensionless frequencies, damping and Poisson’s 

ratios are designed to cover the likely parameter range for practical applications. For each 

combination, locations of internal points are selected such that a full range of angles from 0∘ to 

90∘ are covered. Such combinations are summarized in four major groups in Table 3.5.  

Table 3.5: Summary of model setup in ISoBEM for dynamic point load analysis  

Group Model φ (∘) ωR/VS ω (rad/s) VS 
(m/s) R (m) ν ξ 

1 1-10 0 - 90 0 - 20 0 - 12000 300 0.5 0.34 0.01 
2 11-20 0 - 90 0 - 20 0 - 12000 300 0.5 0.34 0.05 
3 21-30 0 - 90 0 - 20 0 - 12000 300 0.5 0.45 0.01 
4 31-40 0 - 90 0 - 20 0 - 12000 300 0.5 0.45 0.05 

 

The models in ISoBEM are set up as axisymmetric where 2LL element types are applied. 

According to Oudry et al. (2012), a minimum of 16 elements per wavelength is required to 

ensure accuracy. This is higher that 4-6 nodes per wavelength adopted in finite element analyses 

(Douglas et al 1972, Wolf 1985). A total of 10,000 elements are considered to mesh the surface 

boundary. To reduce the processing time, ISoBEM analysis is performed on HOFFMAN2 

Cluster1 processors at the University of California Los Angeles (UCLA) and XSEDE2, which are 

collections of multiple processors enabling users to run multiple jobs in parallel. The non-zero 

components of dynamic stress amplitudes and phase angles are generated and plotted as polar 

graphs. Amplitudes of stress components are presented in Figures 3.11, 3.13, 3.15, and 3.17. To 
                                                
 
1 http://hpc.ucla.edu/hoffman2/hoffman2.php 
2 https://www.xsede.org/ 
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illustrate the effect of dimensionless frequency on the shape of stress bulbs, results are shown in 

two groups corresponding to (ωR/VS) = 0 to 2 (left column) and (ωR/VS) = 4 to 20 (right 

column). 

In these figures, the values read around the radial lines correspond to dimensionless stress 

amplitudes. To get the dimensional stress values for a specific frequency at a specific location, 

one should properly calculate the dimensionless frequency (ωR/VS) then read from the graph the 

corresponding dimensionless stress values knowing radial distance (R) and aperture angle (φ). 

The de-normalization should then be performed with respect to known value of vertical point 

load (P) and R.   

The corresponding phase angles are shown in Figures 3.12, 3.14, 3.16, and 3.18. In these 

figures the values read around the radial lines correspond to actual phase angle in unit of radians. 

The phase angles are associated with the time shift between the surface load time series and the 

stress time series at the point of interest. Based on 1-D wave propagation theory, the time shift 

for a wave travelling at speed V is Δt = R/V. In turn, the phase shift ϕ between two sinusoids with 

frequency ω is related to time shift as ϕ = Δtω. Accordingly, phase shift for 1-D shear wave 

propagation is equal to ωR/VS, which is referred to as dimensionless frequency throughout this 

dissertation. 

To help interpret the phase angle behavior, consider the case of the vertical stress 

component, σz, due to a vertical oscillatory surface point load. The axisymmetric models in 

ISoBEM are set up to investigate phase angles at different aperture angles and the results are 

presented in Figures 3.10.  
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The values of phase angles are negative indicating the time lag of vertical stress with 

respect to the applied load. Moreover, at points along the vertical axis, i.e. aperture angle of 0°, 

one would expect P-waves to dominant the vertical stress components. According to this 

expectation, the phase angles should match the theoretical value of ωR/VP indicating 1-D P-

wave-propagation. As shown in Figure 3.10, this expected behavior is observed at low aperture 

angles (0 and 10 degrees). At large aperture angles of 70 to 85 degrees, the wave speeds are more 

akin to those for S-waves or Rayleigh waves, which matches expectation for vertical loads. 

 

Figure 3.10: Phase angle variation for vertical stress component due to vertical point 
load, ν = 0.34, ξ = 1% 
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 Figure 3.11: Stress amplitude bulbs due to vertical point load, ν = 0.34, ξ = 1%; (a) ωR/VS = 0 (static) to 
2, (b) ωR/VS = 4 to 20 

(a) (b) 

φ 
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 Figure 3.12: Phase angle bulbs due to vertical point load, ν = 0.34, ξ = 1%; (a) ωR/VS = 0 (static) to 2, (b) 
ωR/VS = 4 to 20 

(b) (a) 

φ 
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 Figure 3.13: Stress amplitude bulbs due to vertical point load, ν = 0.34, ξ = 5%; (a) ωR/VS = 0 (static) to 
2, (b) ωR/VS = 4 to 20 

(b) (a) 

φ 
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Figure 3.14: Phase angle bulbs due to vertical point load, ν = 0.34, ξ = 5%; (a) ωR/VS = 0 (static) to 2, (b) 
ωR/VS = 4 to 20 

(b) (a) 

φ 
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 Figure 3.15: Stress amplitude bulbs due to vertical point load, ν = 0.45, ξ = 1%; (a) ωR/VS= 0 (static) to 2, 
(b) ωR/VS = 4 to 20 

(b) (a) 

φ 
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 Figure 3.16: Phase angle bulbs due to vertical point load, ν = 0.45, ξ = 5%; (a) ωR/VS = 0 (static) to 2, (b) 
ωR/VS = 4 to 20 

(b) (a) 

φ 
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 Figure 3.17: Stress amplitude bulbs due to vertical point load, ν = 0.45, ξ = 5%; (a) ωR/VS = 0 (static) to 
2, (b) ωR/VS = 4 to 20 

(b) (a) 

φ 
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 Figure 3.18: Phase angle bulbs due to vertical point load, ν = 0.45, ξ = 5%; (a) ωR/VS = 0 (static) to 2, (b) 
ωR/VS = 4 to 20 

(b) (a) 

φ 
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Stress amplitudes are found to have upper limits of about 2.25 P/R2 for σz and about 4.0 

P/R2 for τrz in the examined frequency range which far exceeds the corresponding static values. It 

is also noteworthy that the number of lobes in the stress bulbs increases with frequency, from 

one under static conditions to five at (ωR/VS) = 20 for σz, and from two in the static case to four 

at the highest considered dimensionless frequency for τrz. This pattern can be explained on the 

basis of successive zones of destructive and constructive interference of P, S and R waves, which 

is expected to become more pronounced as frequency increases, leading to a flower-like pattern. 

Similar changes are also observed for the other two stress components, σr and σθ.  

In general, phase angle patterns grow radially with increases of dimensionless frequency, 

which is expected. As discussed earlier, the phase shift should be roughly equivalent to the 

dimensionless frequency appropriate to the dominant wave type for the aperture angle under 

consideration. For instance, for σz, at aperture angle of 30°- 60°, phase angle values are close to  

ωR/VS; whereas, for higher aperture angles (φ > 60°), there is a minor increase in phase angle 

values due to dominancy of Rayleigh waves travelling at velocities slower than that of shear 

waves. Finally, at aperture angle of 0°, the decrease in phase values is due to the propagating of 

P-waves along the z-axis. 

To help interpret the results, with reference to Figures 3.13 and 3.14, consider the 

example of a point within the soil media located at r = 1.25 m and z = - 2.16 m. This point is 

located at radial distance R = 2.5 m from the point of application of the vertical load at a vertical 

angle of φ = 30 degrees. If VS = 300 m/s and ω = 60 rad/s, the dimensionless frequency is ωR/VS 

= 0.5. In Figure 3.12, the ray along an aperture angle of 30 degrees intersects the vertical and 

shear stress bulbs for ωR/VS = 0.5 (i.e. solid blue curve) at dimensionless values of 0.34 and 

0.19, respectively. For a unit vertical point load (P = 1 kN), vertical and shear stress amplitudes 
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are obtained by dividing the aforementioned values by R2 (i.e., σz = 54 kN/m2 and τrz = 30 

kN/m2).  

The corresponding phase angles are 0.01π and 0.003π for vertical and shear components, 

respectively. At zero frequency (static case), the corresponding stresses are 51 and 28 kN/m2 and 

the phase angles are zero.  

The results from Figures 3.11 and 3.15 and Figures 3.13 and 3.17 can be compared to 

show the effects of Poisson’s ratio on stress bulbs; while Figures 3.11 and 3.13 and Figures 3.15 

and 3.17 can be used to investigate damping effects. The most critical effects of Poisson’s ratio 

are summarized in Figure 3.19, which shows that an increase of Poisson’s ratio causes no 

perceptible change in stress bulb amplitudes or phase angles for aperture angles associated with 

shear wave propagation (approximately 45º to 60º). However, Poisson’s ratio increases produce 

stress amplitude increases and decreases for aperture angles associated with P-wave (0º − 45º) 

and Rayleigh wave (45º to 90º) propagation, respectively. Our interpretation is that in the high-ν 

case, the higher bulk moduli of the soil ‘attracts’ more P-wave propagation (at the expense of 

Rayleigh wave energy), thereby modifying stress amplitudes associated with these wave types. 

These effects are most apparent for relatively high values of dimensionless frequencies (ωR/VS = 

10, 20).   
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Figure 3.19: Stress amplitudes due to vertical point load, ξ = 1%; (a) ν = 0.34, (b) ν = 0.45 

Figure 3.20 shows the most critical effects of increasing soil damping ratio. As expected, 

there is a reduction of stresses with increasing damping, which are more obvious for high values 

of dimensionless frequencies (ωR/VS = 4 − 10). Aside from stress reductions, increasing damping 

also serves to smooth the dramatic sharpness in dimensionless stress bulbs for high values of 

dimensionless frequencies. 

It should be noted that the complete sets of results corresponding to 1° increments of 

azimuthal angle are available in the digital text files (i.e. libraries) and will be used in Chapter 5 

to extend the point load solutions to the distributed load cases. 

  

(a) (b) 
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Figure 3.20: Stress amplitudes due to vertical point load, ν = 0.34; (a) ξ = 1%, (b) ξ = 5% 

3.4.2 A Dimensionless Presentation of Dynamic Stress Field – Horizontal Point 
Load  

As discussed earlier, stress response due to horizontal oscillation of a point load on the surface of 

the soil mass is represented in a dimensionless form at any point inside the half-space using 

Equation 3.21.  

2
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                      (3.21) 

Similar to the vertical point load case, 40 axisymmetric models in ISoBEM were set up. 

To account for the three-dimensional aspect of the problem, azimuthal angles from 0° to 360° 

were considered (strictly, a range of 0-180° would suffice, but ISoBEM uses the larger range by 

default). To illustrate the behavior, the non-zero components of dynamic stress amplitudes and 

phase angles at θ = 0° (i.e. σr, σθ, σz, and τrz) and at θ  = 90° (i.e. τrθ and τθz) are generated and 

plotted as polar graphs. Amplitudes of stress components are presented in Figures 3.22, 3.24, 

(a) (b) 
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3.26, and 3.28. Similar to the vertical point load case, results are shown in two groups 

corresponding to (ωR/VS) = 0 to 2 (left column) and (ωR/VS) = 4 to 20 (right column). In these 

figures, the values read around the radial lines correspond to dimensionless stress amplitudes.   

The corresponding phase angles are shown in Figures 3.23, 3.25, 3.27, and 3.29. In these 

figures the values read around the radial lines correspond to actual phase angle in unit of radians.  

As indicated earlier, for 1-D wave propagation, the theoretical value of phase angle 

should be equal to the corresponding dimensionless frequency considering the dominant wave 

type. To help interpret the phase angle behavior shown in previous figures, it is useful to 

consider the case of in-plane shear stress component, τrz, due to a horizontal oscillatory surface 

point load. The axisymmetric models in ISoBEM were set up to investigate phase angles at 

different aperture angles and the results are presented in 3.21. 

 

Figure 3.21: Phase angle variation for in-plane shear stress component due to horizontal 
point load, ν = 0.34, ξ = 1% 

The values of phase angles are negative indicating the time lag with respect to the applied 

load. Moreover, the in-plane shear stress component at any points along the vertical axis is 
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expected to be dominated by the 1-D propagation of shear waves; hence the phase angle should 

be equal to ωR/VS. As shown in Figure 3.21, the observed trends nearly match this expectation 

for aperture angles of 0 and 10 degrees. For larger aperture angles, the wave speeds are 

considerably faster, likely due in part to P-waves.  

It should be noted that the complete sets of results corresponding to 1° increments of 

azimuthal angle are available in the digital text files (i.e. libraries) and will be used in Chapter 5 

to extend the point load solutions to the distributed load cases. 
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Figure 3.22: Stress amplitude bulbs due to horizontal point load, ν = 0.34, ξ = 1%; (a) ωR/VS = 0 (static) to 2, (b) 
ωR/VS = 4 to 20 

(b) (a) 

φ 
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 Figure 3.23: Phase angle bulbs due to horizontal point load, ν = 0.34, ξ = 1%; (a) ωR/VS = 0 (static) to 2, (b) 
ωR/VS = 4 to 20 

(b) (a) 

φ 
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 Figure 3.24: Stress amplitude bulbs due to horizontal point load, ν = 0.34, ξ = 5%; (a) ωR/VS = 0 (static) to 2, (b) 
ωR/VS = 4 to 20 

(b) (a) 

φ 
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 Figure 3.25: Phase angle bulbs due to horizontal point load, ν = 0.34, ξ = 5%; (a) ωR/VS = 0 (static) to 2, (b) 
ωR/VS = 4 to 20 

(b) (a) 

φ 
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 Figure 3.26: Stress amplitude bulbs due to horizontal point load, ν = 0.45 , ξ = 1%; (a) ωR/VS = 0 (static) to 2, (b) 
ωR/VS = 4 to 20 

(b) (a) 

φ 
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 Figure 3.27: Phase angle bulbs due to horizontal point load, ν = 0.45, ξ = 1%; (a) ωR/VS = 0 (static) to 2, (b) 
ωR/VS = 4 to 20 

(b) (a) 

φ 
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 Figure 3.28: Stress amplitude bulbs due to horizontal point load, ν = 0.45 , ξ = 5%; (a) ωR/VS = 0 (static) to 2, (b) 
ωR/VS = 4 to 20 

(b) (a) 

φ 
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 Figure 3.29: Phase angle bulbs due to horizontal point load, ν = 0.45, ξ = 5%; (a) ωR/VS = 0 (static) to 2, (b) 
ωR/VS = 4 to 20 

 

(b) (a) 

φ 
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Stress amplitudes are found to have upper limits of about 2.25 P/R2 for σz and about 

2.5P/R2 for τrz in the examined frequency range. The number of lobes in the stress bulbs 

increases with frequency, from one under static conditions to four and six at (𝜔𝑅/𝑉s)  = 20 for σz 

and Poisson’s ratios of 0.34 and 0.45, respectively, and from two in the static case to three and 

four at the highest considered dimensionless frequency for τrz. As mentioned previously, this 

pattern can be explained on the basis of successive zones of destructive and constructive wave 

interference, which is expected to become more pronounced as frequency increases, leading to 

multi-lobe, flower-like bulbs. The number of bulbs may increase indefinitely as the frequency 

approaches infinity. Similar changes are also observed for the other four stress components, σr, 

σθ, τrθ, and τθz.  

In general, phase angle patterns grow radially with increases in dimensionless frequency. 

As discussed earlier, the phase shift values correspond approximately to the dimensionless 

frequency (ωR/V) computed with the propagation velocity of the dominant wave type for a given 

aperture angle. For instance, for τrz, at aperture angle of 0°, phase angle values are close to 

(ωR/VS) since shear waves are the dominant travelling waves in this case. For higher aperture 

angles there is a minor decrease in phase angle values due to presence of P-waves travelling at 

velocities higher than that of shear waves. However, the amount of reduction illustrates 

combined effects of different wave types rather than pure propagation of P-waves. Moreover, 

worthy of comment are the nearly perfect semi-circle phase patterns associated with some of the 

stress components (i.e. σθ, τrθ, and τθz). Although the phase values are slightly smaller than ωR/VS, 

the constant phase patterns indicate either perfect shear waves as controlling, or a relatively 

constant combination of different wave types.  
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Finally, for the azimuthal angle of 180°, the amplitudes of stress components are the 

same as that of 0°; however, the phase angles are different by a value of π for σr, σθ, and σz yet 

the same for τrz. 

To help interpret the results, with reference to Figures 3.18 and 3.19, consider the 

example of a point within the soil media located at x = 7.07 m,  y = 0 m and z = - 7.07 m. This 

point is located at radial distance R = 10 m from the point of application of the vertical load at a 

vertical angle of φ = 45 degrees. If VS = 100 m/s and (ω = 60) rad/s, the dimensionless frequency 

is (ωR/VS) = 6. In Figure 3.20, the ray along an aperture angle of 45 degrees intersects the 

vertical and shear stress bulbs for (ωR/VS) = 6 (i.e. marked red curve) at dimensionless values of 

0.5 and 0.8, respectively. For a unit vertical point load (P = 1 kN), vertical and shear stress 

amplitudes are obtained by dividing the aforementioned values by R2 (i.e., σz = 5 kN/m2 and τrz = 

8 kN/m2). The corresponding phase angles are 2.54π and π for vertical and shear components, 

respectively. At zero frequency (static case), the corresponding stresses are 2 and 1.8 kN/m2 and 

the phase angles are zero.  

The results from Figures 3.22 and 3.26 and Figures 3.24 and 3.28 can be compared to 

show the effects of Poisson’s ratio on stress bulbs; while Figures 3.22 and 3.24 and Figures 3.26 

and 3.28 can be used to investigate damping effects. The most critical effects of Poisson’s ratio 

are summarized in Figure 3.30, which shows that an increase of Poisson’s ratio causes no 

perceptible change in stress bulb amplitudes or phase angles for aperture angles associated with 

shear wave propagation (approximately 0º to 20º). However, Poisson’s ratio increases produce 

stress amplitude increases and decreases for aperture angles associated with P-wave (20º − 60º) 

and Rayleigh wave (60º to 90º) propagation, respectively. Our interpretation is that in the high-ν 

case, the higher bulk moduli of the soil ‘attracts’ more P-wave propagation (at the expense of 
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Rayleigh wave energy), thereby modifying stress amplitudes associated with these wave types. 

These effects are most apparent for relatively high values of dimensionless frequencies (ωR/VS = 

10, 20).   
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Figure 3.30: Stress amplitudes due to horizontal point load, ξ = 1%; (a) ν = 0.34, (b) ν=0.45 

Figure 3.31 shows the most critical effects of increasing soil damping ratio. As expected, 

there is a reduction of stresses with increasing damping, which are more obvious for high values 

of dimensionless frequencies (ωR/VS = 4 − 10). Aside from stress reductions, increasing damping 

also serves to smooth the dramatic sharpness in dimensionless stress bulbs for high values of 

dimensionless frequencies. 

It should be noted that the complete sets of results corresponding to 1° increments of 

azimuthal angle are available in the digital text files (i.e. libraries) and will be used in Chapter 5 

to extend the point load solutions to the distributed load cases. 

  

(a) (b) 
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Figure 3.31: Stress amplitudes due to horizontal point load, ν = 0.34; (a) ξ = 1%, (b) ξ = 5% 

3.5 CONCLUSIONS 

The value of dimensionless stress, (σijR2/P), within foundation soil underlying a harmonic 

vertical point load at ground surface is a function of dimensionless frequency, aperture angle, 

damping, and Poisson’s ratio. For the harmonic horizontal point load case, an extra 

dimensionless value of azimuthal angle should be added to the equation. The following 

conclusions may be drawn for both load types (emphasizing the vertical and shear components): 

• For (ωR/VS) < 1, dynamic effects range from negligible to moderate for both vertical and 

shear stress components and could probably be ignored. 

• For (ωR/VS) ≈ 2 to 4, the general shapes of the stress distributions are similar to those for 

the static case, but the stress amplitudes are increased by about 70% for the vertical 

component and 50% for shear component in vertical load case, and are increased by 

about 50% for vertical component and 80% for shear component in horizontal load case.  

(a) (b) 



 90 

• For (ωR/VS) > 4, stress patterns deviate substantially from the static case and follow a 

more complex pattern, due to constructive and destructive interference of the travelling 

waves. 

• Increase of Poisson’s ratio causes no perceptible change in stress bulb amplitudes or 

phase angles for aperture angles associated with shear wave propagation However, 

Poisson’s ratio increases produce stress amplitude increases and decreases for aperture 

angles associated with P-wave and Rayleigh wave propagation, respectively. Our 

interpretation is that in the high-ν case, the higher bulk moduli of the soil ‘attracts’ more 

P-wave propagation (at the expense of Rayleigh wave energy), thereby modifying stress 

amplitudes associated with these wave types.  

• Reduction in stress values is a natural outcome of soil damping ratio. However, this effect 

is more obvious for higher dimensionless frequencies. In other words, higher damping 

ratio values alleviate the dramatic sharpness in dimensionless stress bulbs with high 

dimensionless frequencies and cause smoother stress patterns. 
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4 Stress beneath Dynamically Applied Two-  
Dimensional Vertical and Horizontal Line 
Loads 

In geotechnical engineering many elements of infrastructure are modeled using two-dimensional 

(2-D) configurations. Some examples include strip foundations, retaining structures, dams, and 

earthen levees. To complete the library of fundamental stress solutions and to lay the ground 

work for the general stress solutions arising from combinations of loads on foundations, this 

chapter concerns the problem of a 2-D half-space under dynamically applied surface line loads. 

As discussed earlier in Chapter 2, the corresponding static case is known as the Flamant problem 

(Saad, 2009) for which analytical solutions are available for both stresses and displacements. The 

goals of this chapter are to (1) extend the Flamant solutions to the dynamic regime, by 

considering harmonic vertical and horizontal 2-D line loads applied on the surface of a visco-

elastic half-space, (2) develop general normalization schemes to facilitate ease of application, 

and (3) provide insight into the physics of SSI-induced stresses in two-dimensional problems and 

thereby take initial steps towards a simplified procedure for evaluating seismic stress demands in 

foundation soil. It should be mentioned that this problem was also considered by Lamb in 1904 

paper, yet no solutions for stresses were considered. 

In this chapter, similar to Chapter 3, the Buckingham theorem (Buckingham, 1914) is 

applied to the static and dynamic problems of vertical and horizontal line loads imposed on the 
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surface of a 2-D half-space to determine the number of dimensionless parameters. Such 

parameters are then selected with regards to characteristic properties of the system and are 

investigated through the numerical analyses. The commercial program ISoBEM (2012) was 

employed to perform the numerical analyses. The verification of the solutions is performed by 

comparing the static stress results to the Flamant’s solution (Saad, 2009). There are no dynamic 

solutions against which to compare our results.  

Upon verification, the final analyses are performed for a large set of parameters including 

dimensionless frequencies (ωR/VS) ranging from 0 to 20, Poisson’s ratios of 0.34 and 0.45, and 

soil damping values of 1% and 5%. The solutions are then illustrated in the form of 

dimensionless stress bulbs for amplitude and phase angles. A discussion is also presented on the 

effects of Poisson’s ratio, damping, and most importantly, dimensionless frequency on the stress 

response of a soil mass due to applied dynamic 2-D line loads. 

4.1 DIMENSIONLESS PARAMETERS OF LINE LOAD PROBLEMS 

As discussed in Chapter 3, the fundamental units are length [L] and force [F] in static problems 

and are length [L], force [F], and time [T] in dynamic ones. In the following sections, the 

solutions to vertical and horizontal Flamant problems are presented for the static and dynamic 

cases. 

4.1.1 Dimensional Analysis of the Classical Flamant Problem 

The vertical and horizontal classical Flamant problems are illustrated in Figure 4.1. 
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Figure 4.1: Schematic illustration of Flamant problem 

In this figure the position of an arbitrary element within the 2-D elastic soil medium (with 

Young’s modulus E and Poisson’s ratio ν) is defined by radial distance from the point of 

application of line load P (origin of axes), and the aperture angle φ in the x-y plane. Hence, in 

this problem three parameters, E, R, and P have two fundamental units, i.e. length [L] and force 

[F]. Two intrinsically dimensionless parameters, φ and ν, complete the definition of the physical 

system. Accordingly, the number of dimensionless groups required to define this problem is 

given as (where Q refers to the number of intrinsically dimensionless parameters): 

( ) (3 2) 2 3N M Q− + = − + =                                                                                                      (4.1) 

Therefore, the solution to the classical Flamant problem must be represented by an 

equation involving three dimensionless parameters, two of which are known (φ and ν). 

Additional steps are required to identify the third parameter. Equation 4.2 shows the stress 

response, σij, of a soil element, with the associated units appearing in Equation 4.3. It should be 

noted that due to 2-D nature of the problem, the dimension for the applied surface load is [F/L], 

which is different from the problems described in Chapter 3 where the load had units of [F]. 

( ),i j P E R gα β γσ ϕ ν=              (4.2) 
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2 2[ ] [ ] [ ] [ ]F F F L
L L L

α β γ=               (4.3) 

Parameters α, β, and γ are determined through dimensional analysis per Equation 4.3. 

Equation 4.4 provides two equations and three unknowns.  

1
2 2
α β

β γ
= +

− = − +
                           (4.4) 

The linearity of the problem requires α = 1. Values of β and γ are then obtained as 0 and −1, 

respectively, resulting in: 

( ),i j
P g
R

σ ϕ ν=               (4.5)  

Equation 4.5 reveals the independence of stresses to the Young's modulus of the 2-D 

half-space, as mentioned in Chapter 2. This equation is rewritten in dimensionless form as 

Equation 4.6 where the third dimensionless parameter is (σijR/P). In other words, for an element 

located at distance R from the 2-D vertical or horizontal static line loads applied at the ground 

surface, dimensionless stresses depend only on aperture angle and, possibly, ν. This is confirmed 

by the exact stress solution to the Flamant problem as shown in Equations 4.7 to 4.9 for vertical 

load and in Equations 4.10 to 4.12 for horizontal load in dimensionless forms.  

( ),i jR g
P

σ
ϕ ν=               (4.6) 

22 sin cosx

y

R
P
σ ϕ ϕ

π
= −                  (4.7) 
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32 cosy

y

R
P
σ

ϕ
π

= −                                                  (4.8)

22 sin cosxy

y

R
P

τ
ϕ ϕ

π
= −                                    (4.9) 

32 sinx

x

R
P
σ ϕ

π
= −                        (4.10) 

22 sin cosy

x

R
P

σ
ϕ ϕ

π
= −                                  (4.11) 

22 sin cosxy

x

R
P

τ
ϕ ϕ

π
= −                                  (4.12) 

The independence of the right-hand side of the above solutions to R indicates self-

similarity of the problem, as it reduces the number of independent variables from two (i.e., φ, R) 

to one (φ), which greatly simplifies the governing equations such that an ordinary differential 

equation is sufficient to solve the problem instead of partial differential equations. This 

remarkable property is discussed in detail by Barenblatt (1996). The elegance of this approach is 

more pronounced when it comes to problems for which solutions are not fully available in 

closed-form. The dynamic Flamant problem lacks an exact closed form solution, as discussed in 

the following section. While the static stress solutions are independent of Young’s modulus and 

Poisson’s ratio of the half-space materials, the latter will not hold for dynamic loads. 
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4.1.2 Dimensional Analysis for 2-D Dynamic Vertical and Horizontal Line Load 
Problems 

In the dynamic counterpart to the Flamant problem, shown in Figure 4.2, the line loads are 

periodic with amplitude P and angular frequency ω. Radial distance (R), shear wave velocity 

(VS), shear modulus (G), and mass density of the soil medium (ρ) are other essential parameters. 

 

Figure 4.2: 2-D dynamic vertical and horizontal line load problems 

Since G, VS and ρ are correlated, only two of them should be considered as fundamental 

parameters resulting in a total of five (N = 5). There are three fundamental dimensions, length 

[L], force [F], and time [T], (M = 3). There are three intrinsically dimensionless parameters ν, ξ, 

and φ (Q = 3). Accordingly, the number of dimensionless group is: 

( ) (5 3) 3 5N M Q− + = − + =                                                                                                     (4.13) 

Hence, in addition to the three intrinsically dimensionless parameters and (σijR/P), 

another dimensionless parameter is required to fully describe the dynamic solution. Similar to 

Chapter 3, this parameter is selected to be dimensionless frequency (ωR/VS). As shown in 

Equation 4.14 in the 2-D dynamic problem (σijR/P) is a function of soil ν and ξ, aperture angle, 

and dimensionless frequency. 
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, , ,ij

s

R Rg
P V

σ ωϕ ν ξ
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

                                                                                                             (4.14) 

4.2 Numerical Technique and Software Verification  

As discussed previously, numerical analyses are required to evaluate the functional dependence 

of dimensionless stress in Eq. 4.14 on the indicated controlling variables. This approach is taken 

because solving the governing differential equation of the system analytically is a formidable 

task. We use the software package ISoBEM (2012) for these analyses. 

The accuracy of ISoBEM analyses are verified for the static vertical and horizontal 

Flamant problems. We also verify the applicability of the proposed stress normalization. There 

are no prior solutions against which to compare computed dynamic stresses.  

4.2.1 Verification of ISoBEM Analyses – Static Flamant Problem 

The accuracy of ISoBEM analyses are verified for the 2-D static vertical and horizontal loading 

problems by comparing to published solutions presented in Section 4.1.1. Results are shown in 

Figure 4.3, which compare horizontal, vertical, and shear stress components from ISoBEM 

analyses to Flamant’s solution. For this comparison, stresses are calculated by ISoBEM for a 

total of 20 internal nodes. These nodes are located 1m below the surface boundary. The element 

type applied for these analyses are considered to be Three-node Quadratic Line (3QL) element. 

As shown in this figure, there is nearly perfect compatibility between the stress fields obtained 

from the Flamant’s closed-form solutions and ISoBEM. 
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Figure 4.3: Comparison between ISoBEM analytical solution for classical Flamant 
problem for (a) vertical load and (b) horizontal load. Results apply for: y = 

-1, ρ = 1.8 Mg/m3, VS = 300 m/s, ν = 0.34  

4.2.2 Verification of ISoBEM Analyses - Normalization 

The final verification is conducted to test the normalization of the dynamic stress results with 

respect to (σijR/P) and (ωR/VS). For this purpose, three models were built in ISoBEM 

representing different values of frequencies, shear wave velocities, and radial distances, yet 

identical sets of dimensionless frequencies, (ωR/VS). Table 4.1 summarizes the three models 

used for normalization verifications for vertical and horizontal loads.  
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Table 4.1: ISoBEM 2-D models used to verify normalization for vertical and horizontal loads; ν = 
0.34, ξ = 1% 

  Model 1 Model 2 Model 3 

ωR/VS ω     
(rad/s) 

VS     
(m/s) 

R           
(m) 

ω     
(rad/s) 

VS 
(m/s) 

R           
(m) 

ω     
(rad/s) 

VS 
(m/s) 

R           
(m) 

0.5 98.06 100.0 0.51 49.75 100.0 1.00 49.75 149.6 1.50 
1 196.1 100.0 0.51 99.50 100.0 1.00 99.50 149.6 1.50 
2 392.2 100.0 0.51 199.0 100.0 1.00 199.0 149.6 1.50 
4 784.5 100.0 0.51 398.0 100.0 1.00 398.0 149.6 1.50 
6 1177 100.0 0.51 597.0 100.0 1.00 597.0 149.6 1.50 
8 1569 100.0 0.51 796.0 100.0 1.00 796.0 149.6 1.50 
10 1961 100.0 0.51 995.0 100.0 1.00 995.0 149.6 1.50 

 

Corresponding stress amplitudes are presented in Figures 4.4 and 4.5 in non-normalized 

and normalized forms for vertical and horizontal 2-D point load cases, respectively. The results 

support the proposed normalization scheme. 

 

 

Figure 4.4: Checks of stress normalization using ISoBEM analyses for the conditions 
described in Table 4.1 for vertical 2-D line load case; (a) stress 

components (b) normalized stress components  



 100 

  

 

Figure 4.5: Checks of stress normalization using ISoBEM analyses for the conditions 
described in Table 4.1 for horizontal 2-D line load case; (a) stress 

components (b) normalized stress components   

4.3  A DIMENSIONLESS PRESENTATION OF DYNAMIC STRESS 
FIELDS 

In this section I present the stress responses produced by vertical and horizontal oscillating 2-D 

line loads on the surface of a visco-elastic half-space. Stresses are presented in dimensionless 

form for any location inside the soil mass as:  

, , ,ij

s

R Rg
P V

σ ωϕ ν ξ
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

                                                                                                             (4.15) 

Similar to the models discussed in Chapter 3, a total of 40 combinations of dimensionless 

frequencies, damping, and Poisson’s ratios are used in suites of analyses that are designed to 

cover the likely parameter range for practical applications. The locations of internal points are 
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selected such that a full range of aperture angles from 0° to 90° are covered. Such combinations 

are summarized in four major groups in Table 4.2. 

Table 4.2: Summary of model setups in ISoBEM for dynamic 2-D point load analysis  

Group Model φ (∘) ωR/Vs ω (rad/s) Vs 
(m/s) R (m) ν ξ 

1 1-10 0 - 90 0 - 20 0 - 12000 300 0.5 0.34 0.01 
2 11-20 0 - 90 0 - 20 0 - 12000 300 0.5 0.34 0.05 
3 21-30 0 - 90 0 - 20 0 - 12000 300 0.5 0.45 0.01 
4 31-40 0 - 90 0 - 20 0 - 12000 300 0.5 0.45 0.05 

 

The models in ISoBEM are set up as 2-D using three-node Quadratic Line (3QL) element 

types. The 3QL elements are the most common element types in 2-D boundary element 

problems. These elements apply quadratic interpolation functions to represent both boundary 

geometry and boundary variables (i.e. traction and displacement) (Mottershead, 2013). Three 

components of dynamic stress amplitudes and phase angles are generated and plotted as polar 

graphs. Amplitudes and phase angles of stress components are presented in Figures 4.8 to 4.15 

for the vertical line load case and in Figures 4.16 to 4.23 for the horizontal line load case. To 

illustrate the effect of dimensionless frequency on the shape of stress bulbs, results are shown in 

two groups corresponding to (ωR/VS) = 0 to 2 (left column) and (ωR/VS) = 4 to 20 (right 

column). 

In these figures, the values read around the radial lines correspond to dimensionless stress 

amplitudes (σijR/P). To get the dimensional stress values for a specific frequency at a specific 

location, one should properly calculate the dimensionless frequency (ωR/VS) then read from the 

graph the corresponding dimensionless stress values knowing radial distance (R) and aperture 

angle (φ). The de-normalization should then be performed with respect to known value of 

vertical point load (P) and R.   
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In the figures corresponding to phase angles, the values read around the radial lines 

represent the actual phase angle in units of radians. The phase angles are associated with the time 

shift between the surface load time series and the stress time series at the point of interest. As 

discussed in Chapter 3, 1-D wave propagation theory indicates a phase shift is ωR/V for waves 

travelling at speed V. When wave propagation is dominated by shear waves, the phase shift 

should be ωR/VS, which is referred to as dimensionless frequency throughout this dissertation. 

To help interpret the phase angle behavior, consider the case of the vertical stress 

component, σy, due to a vertical oscillatory surface line load (Figure 4.6) and the shear stress 

component, τxy, due to horizontal oscillatory surface line load (Figure 4.7). The 2-D models in 

ISoBEM are set up to investigate phase angles at different aperture angles, and the results in 

Figures 4.6 and 4.7 apply for ϕ = 0, 10, 45, 70, and 85 deg.  

 

Figure 4.6: Phase angle variation for vertical stress component due to vertically 
oscillating line load, ν = 0.34, ξ = 1% 
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Figure 4.7: Phase angle variation for shear stress component due to horizontally 
oscillating line load, ν = 0.34, ξ = 1% 

The values of phase angles are negative indicating the time lag of stresses with respect to 

the applied loads. Moreover, at points along the vertical axis, i.e. aperture angle of 0°, one would 

expect: (1) for applied vertical loads, a dominant effect of P-waves on vertical stress 

components, resulting in phase angles being approximately equivalent to the theoretical value of 

ωR/VP; (2) for applied horizontal loads, a dominant effect of S-waves on shear stress 

components, resulting in phase angles being approximately (ωR/VS).  Figures 4.6 and 4.7 show 

that these expected behaviors are observed with minor deviations for aperture angles of 0 and 10 

degrees. As aperture angles increase to values ≥ 45 degrees, phase shifts for the vertical load case 

more nearly match those for theoretical S-waves or Rayleigh waves and phase shifts for the 

horizontal load case more nearly match those for theoretical P-waves.  
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 Figure 4.8: Stress amplitude bulbs due to vertical 2-D line load, ν = 0.34, ξ = 1%;  
(a) ωR/VS = 0 (static) to 2, (b) ωR/VS = 4 to 20 

φ 
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 Figure 4.9: Phase angle bulbs due to vertical 2-D line load, ν = 0.34, ξ = 1%;  
(a) ωR/VS = 0 (static) to 2, (b) ωR/VS = 4 to 20 

φ 
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 Figure 4.10: Stress amplitude bulbs due to vertical 2-D line load, ν = 0.34, ξ = 5%;  
(a) ωR/VS = 0 (static) to 2, (b) ωR/VS = 4 to 20 

φ 
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 Figure 4.11: Phase angle bulbs due to vertical 2-D line load, ν = 0.34, ξ = 5%;  
(a) ωR/VS = 0 (static) to 2, (b) ωR/VS = 4 to 20 

φ 
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 Figure 4.12: Stress amplitude bulbs due to vertical 2-D line load, ν = 0.45, ξ = 1%;  
(a) ωR/VS = 0 (static) to 2, (b) ωR/VS = 4 to 20 

φ 
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 Figure 4.13: Phase angle bulbs due to vertical 2-D line load, ν = 0.45, ξ = 1%;  
(a) ωR/VS = 0 (static) to 2, (b) ωR/VS = 4 to 20 

φ 
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 Figure 4.14: Stress amplitude bulbs due to vertical 2-D line load, ν = 0.45, ξ = 5%;  
(a) ωR/VS = 0 (static) to 2, (b) ωR/VS = 4 to 20 

φ 
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 Figure 4.15: Phase angle bulbs due to vertical 2-D line load, ν = 0.45, ξ = 5%;  
(a) ωR/VS = 0 (static) to 2, (b) ωR/VS = 4 to 20 

φ 
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 Figure 4.16: Stress amplitude bulbs due to horizontal 2-D line load, ν = 0.34, ξ = 1%;  
(a) ωR/VS = 0 (static) to 2, (b) ωR/VS = 4 to 20 

φ 
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 Figure 4.17: Phase angle bulbs due to horizontal 2-D line load, ν = 0.34, ξ = 1%;  
(a) ωR/VS = 0 (static) to 2, (b) ωR/VS = 4 to 20 

φ 
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 Figure 4.18: Stress amplitude bulbs due to horizontal 2-D line load, ν = 0.34, ξ = 5%;  
(a) ωR/VS = 0 (static) to 2, (b) ωR/VS = 4 to 20 

φ 
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 Figure 4.19: Phase angle bulbs due to horizontal 2-D line load, ν = 0.34, ξ = 5%;  
(a) ωR/VS = 0 (static) to 2, (b) ωR/VS = 4 to 20 

φ 
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 Figure 4.20: Stress amplitude bulbs due to horizontal 2-D line load, ν = 0.45, ξ = 1%;  
(a) ωR/VS = 0 (static) to 2, (b) ωR/VS = 4 to 20 

φ 
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 Figure 4.21: Phase angle bulbs due to horizontal 2-D line load, ν = 0.45, ξ = 1%;  
(a) ωR/VS = 0 (static) to 2, (b) ωR/VS = 4 to 20 

φ 
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 Figure 4.22: Stress amplitude bulbs due to horizontal 2-D line load, ν = 0.45, ξ = 5%;  
(a) ωR/VS = 0 (static) to 2, (b) ωR/VS = 4 to 20 

φ 
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 Figure 4.23: Phase angle bulbs due to horizontal 2-D line load, ν = 0.45, ξ = 5%;  
(a) ωR/VS = 0 (static) to 2, (b) ωR/VS = 4 to 20 

 

φ 
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As shown in these figures, in the examined frequency range, stress amplitudes are found 

to have upper limits that far exceed the corresponding static values in both vertical and 

horizontal line load cases. Similar to the point load stress solutions described in Chapter 3, line 

loads produce successive zones of destructive and constructive wave interference that 

complicates the patterns of stress bulbs as frequency increases. We hasten to add that although 

the overall patterns are similar in line and point load problems, the stress bulbs penetrate deeper 

into the soil mass in line load cases compared to the point load ones. This fact is related to line 

load problems requiring 2-D wave propagation; hence the dissipation of energy only occurs in 

the x-y plane. In the case of a point load (Chapter 3), the wave propagation occurs in three-

dimensional space, leading to more rapid geometric spreading of wave energy. To illustrate these 

differences, consider the example of a vertical line load for which P = 1 kN/m, ωR/VS = 2 

rad/sec, and φ = 0∘.  With reference to Figure 4.8, where 𝜉   =   0.01 and ν = 0.34, the normalized 

vertical stress value is σyR/P = 0.85. Assuming the same values for force, dimensionless 

frequency, aperture angel, damping, and Poisson’s ratio shown in Figure 3.10, the normalized 

vertical stress is σzR2/P = 0.7, where P has the unit of force. Considering same value of radial 

distance for both cases (R=1m): 

2

2
2

vertical line load 0.85 0.85 /

vertical point load 0.70 0.70 /

y
y

z
z

R
kN m

P
R kN m
P

σ
σ

σ σ

→ = → =

→ = → =
                                (4.16) 

These results confirm that at the same radial distance from the source load, stresses from 

vertical line loads exceed those for vertical point loads; put another way, stress bulbs penetrate 

deeper into the soil mass for 2-D problems than for the 3-D case.  



 121 

In general, phase angle patterns grow radially with increases of dimensionless frequency, 

which is expected. As discussed earlier, the phase shift should be roughly equivalent to the 

dimensionless frequency appropriate to the dominant wave type for the aperture angle under 

consideration. For instance, for vertical stress component, σy,  due to a vertical line load, phase 

angle values are close to  (ωR/VS) at aperture angles of 30°- 60°, whereas higher aperture angles 

(φ > 60°) produce a minor increase in phase angles due to the dominance of Rayleigh waves. In 

addition, for the vertical load case the phase bulbs at aperture angles near 0° have a dimple 

indicating a decrease in phase value, which is due to the predominance of P-waves along the y-

axis.  

For the case of a horizontally oscillating surface load, the shear stress component, τxy, at 

aperture angle near 0° are close to (ωR/VS) due to the dominance of shear waves in this case. For 

higher aperture angles there is a minor decrease in phase angle values due to the presence of P-

waves travelling at faster velocities. However, the amount of reduction illustrates combined 

effects of different wave types rather than pure propagation of P-waves. 

The results from Figures 4.8 and 4.12 and Figures 4.10 and 4.14 can be compared to 

show the effects of Poisson’s ratio on stress bulbs; while Figures 4.8 and 4.10 and Figures 4.12 

and 4.14 can be used to investigate damping effects. The most critical effects of Poisson’s ratio 

are summarized in Figure 4.24, which shows that an increase of Poisson’s ratio causes no 

perceptible change in stress bulb amplitudes or phase angles for aperture angles associated with 

shear wave propagation (approximately 0º to 20º). However, Poisson’s ratio increases produce 

stress amplitude increases and decreases for aperture angles associated with P-wave (20º − 60º) 

and Rayleigh wave (60º to 90º) propagation, respectively. Our interpretation is that in the high-ν 

case, the higher bulk moduli of the soil ‘attracts’ more P-wave propagation (at the expense of 
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Rayleigh wave energy), thereby modifying stress amplitudes associated with these wave types. 

These effects are most apparent for relatively high values of dimensionless frequencies (ωR/VS = 

10, 20).  

	
   	
  

 

Figure 4.24: Stress amplitudes due to vertical line load, ξ = 1%; (a) ν = 0.34, (b) ν=0.45 

Figure 4.25 shows the most critical effects of increasing soil damping ratio. As expected, 

there is a reduction of stresses with increasing damping, which are more obvious for high values 

of dimensionless frequencies (ωR/VS = 4 − 10). Aside from stress reductions, increasing damping 

also serves to smooth the dramatic sharpness in dimensionless stress bulbs for high values of 

dimensionless frequencies. 

It should be noted that the complete sets of results corresponding to 1° increments of 

azimuthal angle are available in the digital text files (i.e. libraries) and will be used in Chapter 5 

to extend the point load solutions to the distributed load cases. 

  

(a) (b) 
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Figure 4.25: Stress amplitudes due to vertical line load, ν = 0.34; (a) ξ = 1%, (b) ξ = 5% 

 

4.4 CONCLUSIONS 

Values of dimensionless stress, (σijR/P), within foundation soils underlying harmonic vertical 

and horizontal line loads at the ground surface are a function of dimensionless frequency, 

aperture angle, damping, and Poisson’s ratio. The following conclusions may be drawn for both 

load types (emphasizing the vertical and shear components): 

• For (ωR/VS) < 1, dynamic effects range from negligible to moderate for both vertical and 

shear stress components and could probably be ignored. 

• For (ωR/VS) ≈ 2 to 4, the general shapes of the stress distributions are similar to those for 

the static case, but the stress amplitudes are increased by about 80%.  

(a) (b) 
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• For (ωR/VS) > 4, stress patterns deviate substantially from the static case and follow a 

more complex pattern, due to constructive and destructive interference of the travelling 

waves. 

• Increase of Poisson’s ratio causes no perceptible change in stress bulb amplitudes or 

phase angles for aperture angles associated with shear wave propagation However, 

Poisson’s ratio increases produce stress amplitude increases and decreases for aperture 

angles associated with P-wave and Rayleigh wave propagation, respectively. Our 

interpretation is that in the high-ν case, the higher bulk moduli of the soil ‘attracts’ more 

P-wave propagation (at the expense of Rayleigh wave energy), thereby modifying stress 

amplitudes associated with these wave types.  

• Reduction in stress values is a natural outcome of soil damping ratio. However, this effect 

is more obvious for higher dimensionless frequencies. In other words, higher damping 

ratio values alleviate the dramatic sharpness in dimensionless stress bulbs with high 

dimensionless frequencies and cause smoother stress patterns. 
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5 Dynamic Interface and Within-soil Stresses 
due to Distributed Surface Loads 

Most elements of infrastructure impose loads on the ground surface through foundations of finite 

area, which may require formal treatment of the distributed nature of the loads across the 

foundation area. The goal of this chapter is to obtain the stress distribution in the soil medium 

due to distributed loading that is applied dynamically. Foundations are often idealized at two 

extremes of rigidity – perfectly flexible and rigid. The evaluation of within-soil stresses from 

flexible foundations is rather trivial, if computationally expensive; all loads applied to the 

foundation are idealized as point or line loads, allowing the solutions from Chapters 3 and 4 to be 

applied sequentially across all foundation loads and dynamic stresses at any point are obtained 

through summation of their respective complex-valued components.  

Rather, in this chapter, I begin with an overview of available stress solutions for the soil-

rigid foundation interface from the literature, most of which is applicable to static loads. I 

describe a relatively limited body of literature for cyclic loading of rigid foundations, and 

proceed to present the results of ISoBEM simulations for this problem.  The results are presented 

in the form of graphs as well as parametric equations for pressures at the soil-rigid foundation 

interface (these solutions do not apply for stresses at depth within the soil body).  

To evaluate within-soil dynamic stresses, the devised interface stresses can be converted 

to input surface loads to simulate the effects of vibration of a rigid foundation. Moreover, to 
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facilitate simplified modeling of this problem in Matlab, I demonstrate how the principle of 

superposition can be applied via integration of the fundamental dynamic stress solutions 

presented in Chapters 3 and 4 to obtain within-soil dynamic stresses resulting from surficial 

loads applied at different ground surface locations. This implementation is only developed 

currently for uniform surface loads (analogous to the flexible foundation problem). The accuracy 

of the currently implemented solutions is verified by comparison to stress solutions obtained by 

direct modeling of uniform distributed loads using ISoBEM.  

5.1 STRESS DISTRIBUTIONS AT THE SOIL-RIGID FOUNDATION 

INTERFACE 

In the following sections, I describe available static stress solutions at the soil-rigid foundation 

interface for two types of circular and rigid foundations. I then perform ISoBEM simulations for 

each case to evaluate dynamic stresses directly beneath the cyclically loaded rigid foundation.  

5.1.1 Circular Rigid Foundation on Elastic Half-space 

Schiffman and Aggarwala (1961) were the first to evaluate the vertical contact pressure directly 

beneath a rigid circular foundation. Their results apply for the conditions of a foundation on the 

surface of a homogeneous, elastic and isotropic half-space. The foundation is exposed to static 

vertical load (shown in Figure 5.1 where ω = 0), producing stresses described by,  

2 22
z

P
a a r

σ
π

=
−

                                                                                                                     (5.1) 

where r is the radial distance from the center, a is the radius of the circular foundation, and P is 

the applied vertical load.  
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Figure 5.1 Symmetrical vertical loading of rigid circular foundation 

The dynamic counterpart to the aforementioned problem, shown in Figure 5.1 (ω > 0), is 

investigated using ISoBEM. As shown in Figure 5.2, I first verify the accuracy of ISoBEM 

analyses for the static vertical problem relative to the classical solution of Schiffman and 

Aggarwala (1961). In Figure 5.2, interface stresses are normalized by the average stress P/(πa2) 

and location r is normalized by radius a. There is nearly perfect compatibility between the stress 

fields obtained from the closed-form solutions and ISoBEM. The results indicate that the stress 

near the center of the footing is only half of the average stress. The interface stresses exceed the 

average only for r/a > 0.8. The singularity at the edge of the footing (r/a =1) is typical "corner" 

behavior encountered in elasticity problems. In practical applications, the stress at the edge will 

always be finite due to local yielding of the soil material and lack of perfectly rigid behavior in 

the foundation elements. In this light, elasticity solutions are seen to provide lower bounds for 

stresses close to the center of the footing and upper bounds close to the edge. Interestingly, the 

stress distribution in Equation 5.1 is independent of the elastic constants of the half-space. 
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Figure 5.2 Comparison between ISoBEM and analytical solution for vertical contact 
pressure of a circular rigid foundation under static vertical loading 

(𝝈𝒛/𝝈𝒛𝒂𝒗𝒈   = 𝟏/(𝟐 𝟏 − 𝒓/𝒂 𝟐)) 

For dynamic problems, I define the dimensionless frequency using the characteristic 

dimension of the problem, which is the radius of the circular foundation. Hence, the 

dimensionless frequency is selected to be (ωa/VS).  Sung (1953) and Bycroft (1956) present 

approximate solutions suggesting that dynamic stresses are well approximated by static solutions 

at low frequencies (ωa/VS < 1.5), where the foundation dimension is small compared to the 

wavelength of stress waves emitted from the soil-foundation interface. As shown in Figure 5.3, 

the transition from the static behavior is first evident at ωa/VS = 1.0. Hence, ωa/VS ≤ 0.5 is taken 

as equivalent to the static solution.  

 

Figure 5.3 Comparison between static and dynamic behavior for vertical contact 
pressure of a circular rigid foundation 
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To investigate the dependence of contact stresses on frequency, axisymmetric models in 

ISoBEM were developed to simulate tractions at the soil-foundation interface for circular rigid 

foundation on the surface of an elastic half-space. The simulations are performed for 

dimensionless frequencies ranging from 0.1 − 10. Vertical stress components for nine 

dimensionless frequencies are shown in Figures 5.4 in terms of their real and imaginary parts.  

 

Figure 5.4 Dynamic vertical stress distribution at soil-foundation interface of a rigid 
circular foundation under vertical cyclic loading (a) Real part, (b) 

Imaginary part 

To establish equations for practical use corresponding to these stress distributions, 

polynomials are fitted to each curve. The polynomials are of order six,  

6

1

i
z i

i
c xσ

=

=∑                                                                                                                              (5.2) 

where x is the dimensionless location (r/a). For stress distribution at soil-foundation interface of 

a rigid circular foundation under vertical cyclic loading with dimensionless frequency of (ωa/VS 

≤ 0.5), one should use Equation 5.1 for the real part while keeping imaginary part as zero. For 

higher dimensionless frequencies (for ωa/VS ≥ 0.5), Equation 5.2 should be used for which the 

coefficients are presented in Tables 5.1 and 5.2, respectively.  
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5.1 Dynamic vertical stress distribution polynomial coefficients at soil-foundation interface of a 
rigid circular foundation under vertical cyclic loading – Real Part 

Dimensionless 
Freq.  

(ωa/Vs) 
c0 c1 c2 c3 c4 c5 c6 

0.5 -0.45 -0.76 9.32 -43.9 100 -107 44.2 
1.5 -0.17 -1.23 15.8 -72.3 165 -177 73 

2 -0.79 -1.71 22.2 -99.7 228 -244 100 

4 -1.28 -3.03 35.8 -178 413 -439 180 

6 0.66 -3.58 33.5 -215 509 -533 216 

8 -0.37 -3.35 55.2 -164 229 -219 108 
10 2.32 -2.77 26.6 -145 350 -477 255 

Table 5.2 Dynamic vertical stress distribution polynomial coefficients at soil-foundation interface 
of a rigid circular foundation under vertical cyclic loading – Imaginary Part 

Dimensionless 
Freq.   

(ωa/Vs) 
c0 c1 c2 c3 c4 c5 c6 

1.5 0.67 -0.59 7.18 -34.4 78.6 -84.0 34.4 

2 0.79 -0.51 6.05 -29.8 68.1 -72.7 29.7 

4 1.20 -0.31 2.91 -18.4 42.4 -44.9 18.2 

6 1.05 -0.21 3.11 -11.6 23.2 -26.0 11.4 

8 1.05 -0.18 2.90 -10.1 20.3 -24.1 10.9 
10 1.16 0.02 -3.10 -4.44 43.6 -65.3 28.8 

The coefficients of the polynomials are also plotted as a function of dimensionless 

frequency for real and imaginary parts in Figure 5.5, and are presented in form of equations in 

Tables 5.3 and 5.4. Using these coefficients, the devised surface stresses can then be readily 

computed.  
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Figure 5.5 Polynomials coefficients for equations of dynamic vertical stress distribution 
at soil-foundation interface of a rigid circular foundation under cyclic 

loading (a) Real part, (b) Imaginary part 

5.3 Polynomials coefficients for equations of dynamic vertical stress distribution at soil-
foundation interface of a rigid circular foundation under cyclic vertical loading – 

Real Part 

 𝒄 = 𝒂𝒊(
𝝎𝒂  
𝑽𝒔

)𝒊
𝟓

𝒊!𝟏

 

c0 y = 0.0054x5 - 0.1294x4 + 1.0806x3 - 3.5885x2 + 3.8921x - 0.9668 

c1 y = -0.0002x5 + 0.0059x4 - 0.0565x3 + 0.3547x2 - 1.7963x + 0.8289 

c2 y = -0.0484x5 + 1.1538x4 - 9.6679x3 + 33.475x2 - 37.813x + 24.356 

c3 y = -0.0731x5 + 1.7588x4 - 15.197x3 + 64.284x2 - 174.12x + 87.188 

c4 y = 0.4434x5 - 10.53x4 + 89.343x3 - 349.49x2 + 731.48x - 397.47 
c5 y = -0.518x5 + 12.189x4 - 102.7x3 + 399.07x2 - 822.15x + 447.15 
c6 y = 0.191x5 - 4.4302x4 + 36.864x3 - 142.35x2 + 298.84x - 158.4 

 

5.4 Polynomials coefficients for equations of dynamic vertical stress distribution at soil-
foundation interface of a rigid circular foundation under cyclic vertical loading – 

Imaginary Part 

 𝒄 = 𝒂𝒊(
𝝎𝒂  
𝑽𝒔

)𝒊
𝟓

𝒊!𝟏

 

c0 y = -0.0007x5 + 0.0197x4 - 0.1919x3 + 0.78x2 - 1.1114x + 1.1353 

c1 y = 1E-04x5 - 0.0024x4 + 0.0234x3 - 0.1221x2 + 0.419x - 1.0112 
c2 y = 0.0015x5 - 0.0488x4 + 0.5113x3 - 1.9101x2 + 0.6903x + 8.9523 

c3 y = 0.0067x5 - 0.1744x4 + 1.7325x3 - 8.7467x2 + 27.276x - 60.649 

c4 y = -0.0135x5 + 0.4055x4 - 4.394x3 + 22.715x2 - 68.069x + 142.47 
c5 y = 0.0071x5 - 0.2587x4 + 3.1698x3 - 18.362x2 + 62.86x - 146.42 
c6 y = -0.0009x5 + 0.0542x4 - 0.8181x3 + 5.6279x2 - 22.673x + 58.24 

 

The accuracy of the approximation of dynamic vertical stress distribution using 

polynomial is examined using direct modeling in ISoBEM and is shown in Figure 5.6.  
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Figure 5.6 Verification of the accuracy of polynomials solutions (Approx.) for dynamic 
vertical stress distribution at soil-foundation interface of a rigid circular 

foundation under cyclic loading (a) Real, (b) Imaginary parts 

It should be noted that we attempted the horizontal and moment cases for the circular 

foundation, but we encountered some difficulties. These two cases will be evaluated further in 

future research. 

5.1.2 Strip Rigid Foundation on Elastic Half-space 

Borowicka (1939) presented a static solution for the vertical contact pressure directly beneath a 

rigid strip foundation subjected to symmetrical vertical static loading (shown in Figure 5.5 where 

ω = 0). The results apply for a smooth (zero friction at soil interface) rigid foundation of width 

2b on the surface of a homogeneous, isotropic half-space and are given by,   

2

2

1
y

P

xb
b

σ

π

=
⎛ ⎞− ⎜ ⎟⎝ ⎠

                                                                                                                     (5.3) 

where x is the horizontal distance from the footing centerline and P is the applied vertical load 

per unit footing length. The order of the singularity at x=b is the same as at r=a in the 3-D 

problem.  As before, no elastic constants for the soil medium appear in the solution.  
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Figure 5.7 Symmetrical vertical loading of rigid strip foundation 

The dynamic counterpart to problem in Figure 5.5 (ω > 0) is investigated using ISoBEM. As 

shown in Figure 5.8, I first verify the accuracy of ISoBEM analyses by comparing the static 

result to the solution provided by Borowicka (1939). In Figure 5.8, interface stresses are 

normalized by the average stress P/(2b) and location x is normalized by half-width b. There is 

nearly perfect compatibility between the stress fields obtained from the closed-form solutions 

and ISoBEM.  Interestingly, the contact stress at the center of the footing is somewhat higher 

than in the 3-D problem (2/π instead of 1/2). 

 

Figure 5.8 Comparison between ISoBEM and analytical solution for vertical contact 
pressure of a rigid strip foundation under static vertical loading  

(𝝈𝒚/𝝈𝒚𝒂𝒗𝒈   = 𝟐𝒃/(𝝅 𝟏 − (𝒙/𝒃)𝟐) 
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Similar to the case of circular rigid foundation, the dimensionless frequency is selected to 

be (ωb/VS). Two-dimensional models in ISoBEM were developed to simulate soil-foundation 

interface stresses for a rigid strip foundation on surface of an elastic half-space for dimensionless 

frequency ranging from 0.1 − 10. The stress components corresponding to these dimensionless 

frequencies are shown in Figures 5.9 for both real and imaginary parts. 

 

Figure 5.9 Dynamic vertical stress distribution at soil-foundation interface of a rigid strip 
foundation under cyclic vertical loading (a) Real part, (b) Imaginary part 

The corresponding coefficients of the stress distribution equations are presented in Tables 

5.5 and 5.6 for real and imaginary parts, respectively (for ωb/VS ≥ 1.5). These coefficients are 

also plotted as a function of dimensionless frequency in Figure 5.10, and are presented in form of 

equations in Tables 5.7 and 5.8. Using these coefficients, the devised surface stresses can be 

readily computed.  
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Table 5.5 Dynamic vertical stress distribution polynomial coefficients at soil-foundation interface 
of a strip rigid foundation under cyclic vertical loading– Real Part 

Dimensionless 
Freq.   

(ωa/Vs) 
c0 c1 c2 c3 c4 c5 c6 

1.5 -0.91 -3.38 49.0 -222 507 -543 223 
2 -2.17 -6.12 78.5 -354 810 -867 356 

4 -0.49 -8.33 92.5 -491 1139 -1207 493 

6 0.78 -8.60 95.2 -501 1129 -1195 497 

8 1.00 -19.9 284 -1023 1685 -1652 761 
10 7.78 -2.09 -139 -285 2612 -4503 2374 

Table 5.6 Dynamic vertical stress distribution polynomial coefficients at soil-foundation interface 
of a strip rigid foundation under cyclic vertical loading – Imaginary Part 

Dimensionless 
Freq.   

(ωa/Vs) 
c0 c1 c2 c3 c4 c5 c6 

1.5 0.89 -0.64 7.75 -37.7 86.0 -91.9 37.6 

2 0.98 -0.51 5.94 -30.0 68.6 -73.2 29.9 

4 1.13 -0.31 3.27 -18.7 42.6 -45.4 18.5 

6 1.04 -0.22 3.24 -12.4 25.0 -27.9 12.2 

8 1.05 -0.19 2.19 -12.4 32.9 -39.3 16.6 
10 1.01 -0.07 0.14 -8.08 36.6 -51.3 22.5 

 

Figure 5.10 Polynomials coefficients for equations of dynamic vertical stress distribution 
at soil-foundation interface of a strip rigid foundation under cyclic vertical 

loading (a) Real part, (b) Imaginary part  
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5.7 Polynomial coefficients for equations of dynamic vertical stress distribution at soil-foundation 
interface of a strip rigid foundation under cyclic vertical loading – Real Part 

 𝒄 = 𝒂𝒊(
𝝎𝒂  
𝑽𝒔

)𝒊
𝟓

𝒊!𝟏

 

c0 y = -0.0028x5 + 0.1068x4 - 1.4096x3 + 8.2339x2 - 20.496x + 15.547 
c1 y = 0.0151x5 - 0.3147x4 + 2.0972x3 - 4.3297x2 - 3.5792x + 6.1308 

c2 y = -0.3014x5 + 6.4497x4 - 46.521x3 + 128.87x2 - 88.09x + 17.83 

c3 y = 0.7289x5 - 15.589x4 + 108.95x3 - 257.45x2 - 65.304x + 160.89 

c4 y = -0.1384x5 + 1.2872x4 + 29.092x3 - 420.56x2 + 1787.5x - 1331.6 
c5 y = -0.6207x5 + 15.746x4 - 170.65x3 + 964.04x2 - 2757.8x + 1925.5 
c6 y = 0.3159x5 - 7.6653x4 + 79.352x3 - 429.79x2 + 1188.5x - 824.15 

5.8 Polynomial coefficients for equations of dynamic vertical stress distribution at soil-foundation 
interface of a strip rigid foundation under cyclic vertical loading – Imaginary Part 

 𝒄 = 𝒂𝒊(
𝝎𝒂  
𝑽𝒔

)𝒊
𝟓

𝒊!𝟏

 

c0 y = -0.0002x5 + 0.0056x4 - 0.0456x3 + 0.1205x2 + 0.0685x + 0.6434 

c1 y = 0.0002x5 - 0.0062x4 + 0.0686x3 - 0.3748x2 + 1.0619x - 1.5914 

c2 y = 0.0002x5 + 0.0048x4 - 0.214x3 + 2.3011x2 - 9.8079x + 17.981 

c3 y = 0.0173x5 - 0.4884x4 + 5.239x3 - 27.12x2 + 71.699x - 99.568 

c4 y = -0.0516x5 + 1.4272x4 - 14.762x3 + 72.657x2 - 181.25x + 237.38 
c5 y = 0.054x5 - 1.4982x4 + 15.534x3 - 76.76x2 + 192.51x - 253.21 
c6 y = -0.0197x5 + 0.5521x4 - 5.8063x3 + 29.279x2 - 75.286x + 101.6 

 

I next turn my attention to an important problem for dynamic applications for which no 

classical solution is available in the literature for the static case – horizontal loading applied to a 

strip foundation. The problem geometry, depicted in Figure 5.11, is antisymmetric. The 

corresponding stresses at soil-rigid foundation interface are presented in Figure 5.12 for real and 

imaginary parts. As before, the normalizing average stress used in Figure 5.12 is P/(2b). The 

polynomial coefficients associated with these stress distributions are presented in Tables 5.9 and 

5.10 for real and imaginary parts, respectively. These coefficients are also plotted as a function 

of dimensionless frequency in Figure 5.13 (for ωb/VS ≥ 1.5), and are presented in form of 

equations in Tables 5.11 and 5.12. 
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Figure 5.11 Antisymmetric horizontal loading of rigid strip foundation 

 

Figure 5.12 Static and dynamic horizontal stress distribution at soil-foundation interface 
of a rigid strip foundation under horizontal cyclic loading: (a) Real part, 

(b) Imaginary part 

Table 5.9 Static and dynamic horizontal stress distribution polynomial coefficients at soil-
foundation interface of a rigid strip foundation under horizontal cyclic loading – 

Real Part 

Dimensionless 
Freq.   

(ωa/Vs) 
c0 c1 c2 c3 c4 c5 c6 

static 0.83 -6.87 77.37 -347 735 -727 272 

1.5 0.38 -1.53 19.2 -88.6 202 -216 88.8 

2 0.31 -1.70 21.3 -98.9 225 -241 99.2 
4 0.07 -3.81 43.1 -223 519 -550 224 

6 -1.73 -3.58 60.4 -188 354 -387 174 
8 -0.21 -5.34 64.8 -304 671 -711 298 

10 2.84 15.7 -310 798 -298 -792 599 

Table 5.10 Dynamic horizontal stress distribution polynomial coefficients at soil-foundation 
interface of a rigid strip foundation under horizontal cyclic loading – Imaginary 

Part 
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Dimensionless 
Freq.   

(ωa/Vs) 
c0 c1 c2 c3 c4 c5 c6 

1.5 0.85 -0.73 8.84 -42.7 97.4 -104 42.6 
2 0.91 -0.67 7.89 -38.9 88.9 -95.0 38.8 

4 0.86 -0.52 6.76 -30.0 67.3 -72.7 30.0 

6 0.99 -0.36 5.00 -20.1 41.2 -44.7 19.2 

8 1.22 -0.19 -1.65 -19.0 80.8 -101 41.7 
10 1.03 -0.72 10.27 -42.0 74.3 -62.4 20.6 

 

Figure 5.13 Polynomials coefficients for equations of dynamic horizontal stress 
distribution at soil-foundation interface of a rigid strip foundation under 

horizontal cyclic loading: (a) Real part, (b) Imaginary part 

5.11 Polynomial coefficients for equations of dynamic vertical stress distribution at soil-
foundation interface of a strip rigid foundation under cyclic horizontal loading – 

Real Part 

 𝒄 = 𝒂𝒊(
𝝎𝒂  
𝑽𝒔

)𝒊
𝟓

𝒊!𝟏

 

c0 y = -0.0047x5 + 0.1236x4 - 1.149x3 + 4.6134x2 - 8.1341x + 5.4884 

c1 y = 0.0129x5 - 0.3106x4 + 2.7727x3 - 11.194x2 + 19.358x - 13.263 
c2 y = -0.1195x5 + 2.6537x4 - 22.173x3 + 86.198x2 - 144.61x + 104.48 

c3 y = 0.778x5 - 18.968x4 + 170.62x3 - 690.88x2 + 1196.2x - 814.16 
c4 y = -1.5781x5 + 40.287x4 - 375.84x3 + 1560.2x2 - 2742.5x + 1881.7 
c5 y = 1.2845x5 - 34.137x4 + 328.78x3 - 1397.6x2 + 2484.3x - 1744.5 
c6 y = -0.3923x5 + 10.868x4 - 108.1x3 + 470.98x2 - 846.31x + 611.35 

5.12 Polynomial coefficients for equations of dynamic vertical stress distribution at soil-
foundation interface of a strip rigid foundation under cyclic horizontal loading – 

Imaginary Part 
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 𝒄 = 𝒂𝒊(
𝝎𝒂  
𝑽𝒔

)𝒊
𝟓

𝒊!𝟏

 

c0 y = 0.0002x5 - 0.0077x4 + 0.0958x3 - 0.5124x2 + 1.1857x - 0.0615 

c1 y = -0.0001x5 + 0.0024x4 - 0.0107x3 - 0.0054x2 + 0.1929x - 0.982 
c2 y = 0.0076x5 - 0.1568x4 + 1.0632x3 - 2.6495x2 + 0.5968x + 11.054 

c3 y = 0.0076x5 - 0.2418x4 + 2.6598x3 - 13.076x2 + 33.681x - 71.611 
c4 y = -0.0945x5 + 2.3601x4 - 21.177x3 + 85.575x2 - 167.64x + 216.56 
c5 y = 0.1303x5 - 3.2079x4 + 28.406x3 - 113.18x2 + 215.19x - 252.75 
c6 y = -0.0538x5 + 1.323x4 - 11.726x3 + 46.93x2 - 89.699x + 104.84 

 

As can be observed in Figure 5.14 although values are not the same, vertical stress 

distributions at soil-foundation interface of a rigid strip foundation under vertical cyclic loading 

follow the same trend as horizontal stress distribution at soil-foundation interface of a rigid strip 

foundation under horizontal cyclic loading.  

 

Figure 5.14 Comparison between stress distribution at soil-foundation interface of a rigid 
strip foundation under (a) vertical load, (b) horizontal load 

Finally, I consider the antisymmetric problem of moment applied to a strip foundation, 

the geometry of which is depicted in Figure 5.15. Mushelishvili (1963) present the static solution 

to this problem, which is given by,  
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                                                                                                                 (5.4) 

 

Figure 5.15 Moment loading of rigid strip foundation 

Two-dimensional models in ISoBEM were developed to simulate soil-foundation 

interface stresses from applied moment for a rigid strip foundation on surface of an elastic half-

space for dimensionless frequency ranging from 0.1 − 10.  As shown in Figure 5.16, I first verify 

the accuracy of ISoBEM results through comparison to the static solution provided by 

Muskhelishvili (1963). There is nearly perfect compatibility between the stress fields obtained 

from the closed-form solution and ISoBEM. Note that due to antisymmetry, the contact normal 

stress at the center of the footing is zero. 
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Figure 5.16 Comparison between ISoBEM and analytical solution for vertical contact 
pressure of a rigid strip foundation under static moment loading  

The corresponding real and imaginary parts of cyclic stresses at the soil-rigid foundation 

interface are presented in Figure 5.17. Similar to previous cases, the coefficients of polynomials 

corresponding to these stress distributions are presented in Tables 5.13 and 5.14 for real and 

imaginary parts, respectively (for ωb/VS ≥ 1.5) , and are presented in form of equations in Tables 

5.15 and 5.16. 

 

Figure 5.17 Dynamic vertical stress distribution at soil-foundation interface of a rigid 
strip foundation under moment cyclic loading (a) Real part, (b) Imaginary 

part  
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Table 5.13 Dynamic vertical stress distribution polynomial coefficients at soil-foundation interface 
of a rigid strip foundation under moment loading – Real Part 

Dimensionless 
Freq.   

(ωa/Vs) 
c0 c1 c2 c3 c4 c5 c6 

1.5 0.05 -2.53 31.1 -149 344 -369 152 
2 0.08 -5.43 47.5 -227 526 -565 232 

4 1.33 -154 563 563 7022 -7922 3534 

6 0.78 61.0 939 939 1241 -11282 5337 

8 0.25 -14.9 126 126 12236 -1543 744 
10 0.13 -9.38 31.2 31.2 -131.5 -433 449 

Table 5.14 Dynamic vertical stress distribution polynomial coefficients at soil-foundation interface 
of a rigid strip foundation under moment loading – Imaginary Part 

Dimensionless 
Freq.   

(ωa/Vs) 
c0 c1 c2 c3 c4 c5 c6 

1.5 0.02 -0.06 16.8 -81.5 186 -199 81.8 

2 0.01 0.30 14.9 -72.4 164 -176 72.3 

4 0.00 1.91 8.19 -41.7 89.8 -94.8 38.9 

6 0.00 1.91 6.61 -27.1 61.6 -69.5 29.3 

8 0.00 1.62 2.61 -7.01 26.2 -44.6 22.7 
10 0.00 2.08 10.3 -66.4 157 -161 59.6 

5.15 Polynomial coefficients for equations of dynamic vertical stress distribution at soil-
foundation interface of a strip rigid foundation under cyclic moment loading – Real 

Part 

 𝒄 = 𝒂𝒊(
𝝎𝒂  
𝑽𝒔

)𝒊
𝟓

𝒊!𝟏

 

c0 y = -0.0029x5 + 0.0844x4 - 0.8866x3 + 4.0877x2 - 7.7489x + 5.0633 

c1 y = 0.8543x5 - 22.956x4 + 223.36x3 - 954.39x2 + 1728.9x - 1092.7 

c2 y = 0.8695x5 - 18.387x4 + 119.79x3 - 242.28x2 + 132.52x + 59.649 

c3 y = 0.0194x5 + 6.404x4 - 149.26x3 + 1085x2 - 2714x + 1951.8 

c4 y = -42.966x5 + 1108.8x4 - 10399x3 + 43315x2 - 77200x + 48497 
c5 y = -5.5806x5 + 87.13x4 - 102.04x3 - 2971x2 + 9316.7x - 7713.7 
c6 y = 3.4707x5 - 63.521x4 + 266x3 + 473.75x2 - 2738.5x + 2591.3 

5.16 Polynomial coefficients for equations of dynamic vertical stress distribution at soil-
foundation interface of a strip rigid foundation under cyclic moment loading – 

Imaginary Part 
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 𝒄 = 𝒂𝒊(
𝝎𝒂  
𝑽𝒔

)𝒊
𝟓

𝒊!𝟏

 

c0 y = -1E-05x5 + 0.0004x4 - 0.0049x3 + 0.0295x2 - 0.0859x + 0.0971 

c1 y = -0.0015x5 + 0.0452x4 - 0.478x3 + 2.1202x2 - 3.1922x + 1.3541 
c2 y = 0.0113x5 - 0.284x4 + 2.5723x3 - 9.9975x2 + 13.056x + 12.381 

c3 y = -0.0443x5 + 1.0514x4 - 9.0613x3 + 33.475x2 - 35.984x - 77.248 
c4 y = -0.0443x5 + 1.0514x4 - 9.0613x3 + 33.475x2 - 35.984x - 77.248 
c5 y = 0.1015x5 - 2.4552x4 + 21.603x3 - 81.054x2 + 88.614x + 174.2 
c6 y = -0.1005x5 + 2.504x4 - 22.79x3 + 88.462x2 - 102.68x - 179.02 

5.2 WITHIN-SOIL STRESSES FROM DISTRIBUTED DYNAMIC 
SURFACE LOADS  

5.2.1 Motivations and Methodology 

In Chapters 3 and 4, dynamic stress solutions were developed for vertical and horizontal point 

and line loads. These solutions are stored as different libraries corresponding to developed 

loading cases, where each library contains several text files presenting dimensionless stresses 

(i.e., σijR2/P or σijR/P and corresponding phase angles for point and line loading) as a function of 

aperture angle (φ) for specific values of dimensionless frequency, Poisson’s ratio, and damping 

(ωR/VS, ν, ξ). The goal of this chapter is to apply the principle of superposition using those 

fundamental dynamic stress solutions to obtain within-soil stress distributions due to surficial 

loads applied at different locations on the ground surface. I first develop and implement the 

integrations in a Matlab code. I then verify the accuracy of the code by comparing to available 

solutions for static problems as well as to stress solutions obtained by direct modeling of 

distributed loads using ISoBEM for dynamic problems. 

5.2.2 Distributed Vertical Point Load Problems: Methodology and Verification  

In Chapter 3 I presented fundamental dynamic stress solutions for vertical and horizontal point 

loads. The results were presented as dimensionless (normalized) stresses in graphical form, but 
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the numerical values for stress amplitudes and phase angles are also stored in digital libraries. In 

this section, superposition techniques are applied for the case of distributed vertical point loads. 

The same logistics apply to the problem of horizontal point load with consideration of azimuthal 

angle (θ) and the corresponding Matlab code can provide results for this case as well. The 

normalized stress solution for the vertical point load problem is:  

2

, , ,ij
ij

s

R Rf
P V

σ ωξ ν ϕ
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

                                                                                                            (5.5) 

where function fij represents the complex-valued stress distribution including real and complex 

parts (or, equivalently, amplitudes and phase angles). The within-soil stress solution due to 

circular surficial loading is developed by discretizing the circular foundation as shown in Figure 

5.15. The following equations present the area dAk of a random small element and the force 

applied on that element from a radially varying surface load σk.  

( )1 1 2 2
2 12k

r d r ddA r rθ θ+⎛ ⎞= −⎜ ⎟⎝ ⎠
                                                                                                 (5.6) 

( )k k kdP dAσ=                                                                                                                        (5.7) 

where σk is the applied stress on the kth increment. For the case of a uniform load applied to a 

flexible foundation, σk is independent of radius (and hence subscript k) because the stress 

distribution at the soil-foundation interface matches that applied to the surface. For the case of a 

rigid foundation, the radial distribution of interface pressures is obtained using the procedures 

given in Section 5.2. Within-soil stresses for any stress component σij are computed by 

summation over all N elements: 



 145 

2 2
1 1

, , , , , ,
N N

k k k k k
ij ij k ij k

k kk s k s

P R A Rf f
R V R V

ω σ ωσ ξ ν ϕ ξ ν ϕ
= =

⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞
= =⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦
∑ ∑                                           (5.8)                        

The summation in Equation 5.8 is applied using the stress solutions expressed as real and 

complex parts (because it is not useful to sum phase angles).  

 

Figure 5.18 Discretization of a circular distributed load area  

In order to verify the presented integration (summation) methodology, I compare against 

published solutions for the static problem. Those solutions are based on similar principles of 

integration as applied here, in this case of the Boussinesq’s solution and with the integration 

performed over a circular area representing a perfectly flexible foundation (Poulos and Davis, 

1974). Because of complexities associated with evaluating inverse integral transforms (or 

directly integrating Boussinesq’s solution), closed-form solutions are only available for σz, σr, 

and σθ along the z-axis (r = 0). Because the solution is for a flexible foundation, the vertical 

stress p is constant over the radius a of the foundation. The resulting stresses from Poulos and 

Davis (1974) are,  
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                                                               (5.10) 

Numerical solutions for all components of stress, strain, and displacement are tabulated 

by Ahlvin and Ulery (1962). Shear stresses are given by,  

1rz pGτ =                                                                                                                                   (5.11) 

where G1 is presented in Table 5.9. 

Results from the published solutions are compared to those obtained using the 

aforementioned Matlab integration code in Figure 5.19. The two results are nearly identical. It 

should be noted, however, that this comparison does not test that the code maintains proper 

phasing, since the static component is real-valued.   
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Table 5.17: Function "G1"- Adapted from Ahlvin and Ulery (1962) 

 

 

Figure 5.19 Comparison between stress solutions obtained from integration and 
available solutions in the literature for vertical distributed circular load (a) 

Vertical, (b) Shear stress components (r = 0, p =1 kN/m2, ν = 0.33) 

To verify the integration methodology in Equation 5.8 for the harmonic loading problem, 

including proper summation of real and complex values of within-soil stresses, I compare results 

from the Matlab code with those obtained directly from ISoBEM. The problem considered is a 

perfectly flexible circular foundation on a uniform, isotropic half-space. Outcomes for vertical 

and shear stresses at three frequencies are presented in Figures 5.20 to 5.25. The comparisons are 

excellent for the real parts. There are differences between the imaginary components that become 

larger (as a percent error) as frequency decreases. However, when viewed as a fraction of the real 

part, the differences between the imaginary components are small. Moreover, the differences in 
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the imaginary components decreases as the dimensionless frequency increases, and the 

imaginary values increase and contribute more to the amplitude values. The errors are thought to 

result from the interpolation of the point load solution in Matlab. 

 

Figure 5.20 Comparison between vertical stress solutions obtained from integration and 
direct modeling in ISoBEM for vertical distributed circular load (a) Real 

part, (b) Imaginary part, and (c) Amplitude (z = -1 m, p =1 kN/m2, ν = 0.34, 
ωa/VS = 0.2) 
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Figure 5.21 Comparison between shear stress solutions obtained from integration and 
direct modeling in ISoBEM for vertical distributed circular load (a) Real 

part, (b) Imaginary part, and (c) Amplitude (z = -1 m, p =1 kN/m2, ν = 0.34, 
ωa/VS = 0.2) 

 

Figure 5.22 Comparison between vertical stress solutions obtained from integration and 
direct modeling in ISoBEM for vertical distributed circular load (a) Real 

part, (b) Imaginary part, and (c) Amplitude (z = -1 m, p =1 kN/m2p, ν = 0.34, 
ωa/VS = 0.5) 

 

Figure 5.23 Comparison between shear stress solutions obtained from integration and 
direct modeling in ISoBEM for vertical distributed circular load (a) Real 
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part, (b) Imaginary part, and (c) Amplitude (z = -1 m, p =1 kN/m2p, ν = 0.34, 
ωa/VS = 0.5) 

 

Figure 5.24 Comparison between vertical stress solutions obtained from integration and 
direct modeling in ISoBEM for vertical distributed circular load (a) Real 

part, (b) Imaginary part, and (c) Amplitude (z = -1 m, p =1 kN/m2, ν = 0.34, 
ωa/VS = 2.0) 

 

Figure 5.25 Comparison between shear stress solutions obtained from integration and 
direct modeling in ISoBEM for vertical distributed circular load (a) Real 

part, (b) Imaginary part, and (c) Amplitude (z = -1 m, p =1 kN/m2, ν = 0.34, 
ωa/VS = 2.0) 
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5.2.3 Distributed Vertical and Horizontal Line Load Problems: Methodology and 
Verification 

In Chapter 4 I presented fundamental dynamic stress solutions for vertical and horizontal line 

loads on strip foundations. The results were presented graphically and numerical values were 

stored for the complex-valued stresses in multiple libraries. In this section, the application of 

superposition techniques is presented for the case of vertical and horizontal line loads. The 

normalized stress solution for a line load of P (force/length) is as follows:  

, , ,ij
ij

s

R Rf
P V

σ ωξ ν ϕ
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

                                                                                                           (5.12) 

where function fij represents the complex-valued stress distribution including real and complex 

parts (or, equivalently, amplitudes and phase angles).  

I consider the problem of uniformly distributed vertical and horizontal loading of a 

flexible strip foundation, as shown in Figure 5.26.  The length of a random small element (kth 

increment) and the load acting upon it are,  

kL dx=                                                                                                                                      (5.13) 

k k kP Lσ=                                                                                                                                  (5.14) 

where σk is the applied stress on the kth increment, which may be constant for the case of a 

uniform foundation but will vary with x for a rigid foundation.  Within-soil stresses for any stress 

component σij are computed by summation over all N elements: 
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∑ ∑                                             (5.15)    
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Figure 5.26 Discretization of a strip distributed load area  

As with the 3D problem the integration methodology is verified against published 

solutions for the static problem by Poulos and Davis (1974), as follows:  

 

[ ]sin cos( 2 )x
Pσ α α α δ
π

= − +                                                                                                 (5.16) 

[ ]sin cos( 2 )y
Pσ α α α δ
π

= + +                                                                                                 (5.17) 

[ ]sin sin( 2 )xy
Pτ α α δ
π

= +                                                                                                        (5.18) 

Results from these published solutions are compared to those obtained using the 

integration code in Figure 5.27-5.28 for vertical and horizontal strip loads, respectively. The two 

results are nearly identical, but as before, this verification does not pertain to phasing.  
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Figure 5.27 Comparison between static stress solutions obtained from integration and 
analytical solutions for vertical distributed strip load (a) Vertical, (b) 
Horizontal, and (c) Shear stress components (y = -1 m, p =1 kN/m2) 

 

 

Figure 5.28 Comparison between static stress solutions obtained from integration and 
analytical solutions for horizontal distributed strip load (a) Vertical, (b) 

Horizontal, and (c) Shear stress components (y = -1 m, p =1 kN/m2) 

To verify the integration methodology in Equation 5.15 for the harmonic loading 

problem, including proper summation of real and complex values of within-soil stresses, I 
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compare to results obtained from directly from ISoBEM. The problem considered is a vertically 

loaded perfectly flexible strip foundation on a uniform, isotropic halfspace. Outcomes for 

vertical and shear stresses at two frequencies are presented in Figures 5.29 to 5.32. 

The comparisons are excellent for the real parts. There are large differences between the 

imaginary components at both of the considered frequencies. However, since dimensionless 

frequencies are small (ωb/Vs = 0.2, 0.5) the differences between imaginary components are small 

when viewed as a fraction of the real part. Moreover, the differences in the imaginary 

components decreases as the dimensionless frequency increases, and the imaginary values 

increase and contribute more to the amplitude values. This is more pronounced for higher values 

of frequencies as presented for the case of vertical circular load in Section 5.2.2. The errors are 

thought to result from the interpolation of the line load solution in Matlab.  

 

Figure 5.29 Comparison between vertical stress solutions obtained from integration and 
direct modeling in ISoBEM for vertical distributed strip load (a) Real part, 

(b) Imaginary part, and (c) Amplitude (y = -1 m, p = 1 kN/m2, ν = 0.34, 
ωb/Vs = 0.2) 
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Figure 5.30 Comparison between shear stress solutions obtained from integration and 
direct modeling in ISoBEM for vertical distributed strip load (a) Real part, 

(b) Imaginary part, and (c) Amplitude (y = -1 m, p = 1 kN/m2, ν = 0.34, 
ωb/Vs = 0.2) 

 

 

Figure 5.31 Comparison between vertical stress solutions obtained from integration and 
direct modeling in ISoBEM for vertical distributed strip load (a) Real part, 

(b) Imaginary part, and (c) Amplitude (y = -1 m, p = 1 kN/m2, ν = 0.34, 
ωb/VS = 0.5) 
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Figure 5.32 Comparison between shear stress solutions obtained from integration and 
direct modeling in ISoBEM for vertical distributed strip load (a) Real part, 

(b) Imaginary part, and (c) Amplitude (y = -1 m, p = 1 kN/m2, ν = 0.34, 
ωb/VS = 0.5) 

To conclude, for both cases of circular and strip loading, the integration techniques 

appear to work well for static and dynamic problems involving uniform surface loads. Overall, 

the real parts and amplitudes compared better with those from direct modeling of distributed 

loading in ISoBEM. This will cause negligible errors in amplitude, but can affect phase angles. 

We believe the source of this error lies in the interpolation process preformed in Matlab code and 

as the numbers get larger, the interpolation errors get smaller. Finally, it should be noted that this 

approach can be easily extended to a more general type of loads, such as non-uniform or non-

symmetric loads. 
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6 CONCLUSIONS AND RECOMMENDATIONS 

6.1 SCOPE OF THE RESEARCH 

The objective of this research was to evaluate the impacts of soil-structure interaction on the 

seismic stress demands in soil materials beneath the foundation, referred to as ‘foundation soils’. 

The goals of this study were to show how the presence of a structure affects wave propagation in 

the vicinity of the foundation due to SSI and to propose rigorous procedures by which to assess 

these demands due to vertical or horizontal point loads, line loads, or distributed loads acting 

within a foundation area. 

Following the introduction of the SSI problem from the structural standpoint, this 

research began by asking –what is the effect of the vibrating structure on the foundation soil? – 

to discuss how the presence of a structure causes the characteristics of wave propagation and 

associated stress/strains to deviate from the free-field condition as a result of kinematic and 

inertial effects (Chapter 1). To answer this question the initial steps were to overview of the 

historical development of analytical and numerical expressions for the response of a solid 

medium to static and dynamic loads on the soil medium, and to identify some shortcomings of 

those solutions for the present application (Chapter 2).  

For harmonically applied surface loads (horizontal and vertical, point and line) acting on 

a visco-elastic half-space, the governing equations were solved numerically using the Boundary 

Element Method via a well-verified software platform (ISoBEM). The results are interpreted 
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within a framework derived from dimensional analysis considerations, specifically applying the 

Buckingham π theorem to determine the dimensionless fundamental parameters applicable to 

these problems. The results produces by this software were verified by comparing to available 

solutions in the literature. Verification was also conducted for the normalization of the dynamic 

stress results with respect to proposed dimensionless parameters. The variations of the six 

components of the three-dimensional stress tensor with respect to the identified fundamental 

parameters were then investigated through suites of sensitivity analyses. Results for stress 

amplitudes were presented in the form of stress bulbs. Time delays between surface loads and 

stresses were represented with phase shifts, which were also presented in a graphical form 

(Chapters 3 and 4). 

For the case of rigid foundations, in order to obtain the surface loads applied to 

foundation soils, and to simulate the effects of vibration of a rigid foundation, the simulations 

were performed to evaluate the dynamic stress distributions directly beneath rigid foundations 

subject to cyclic loading. The results were presented in the form of graphs as well as parametric 

equations. Moreover, the principle of superposition was applied to fundamental dynamic stress 

solutions in order to obtain the resulting stress distributions in the soil medium due to surficial 

loads applied at different locations on the ground surface. The accuracy of the integration 

techniques was verified by comparing to the available solutions as well as the stress solutions 

obtained by direct modeling of distributed loads using ISoBEM. The corresponding 

computational tools were implemented in MATLAB (Chapter 5).  
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6.2 RESEARCH FINDINGS AND RECOMMENDATIONS 

6.2.1 Chapter 2: Historical Development 

Fully analytical solutions are available in the literature for the problems of static vertical and 

horizontal point and line loads on an elastic half-space. In case of surficial static distributed load, 

due to complexities associated with evaluating inverse integral transforms (or directly integrating 

static solutions), closed-form solutions are only available at limited locations relative to the point 

load (i.e., at the ground surface and directly beneath the load). Numerical solutions are available 

for all stress components. 

In case of dynamic problems, mostly known as Lamb’s problem (Lamb, 1904) for the 

case of point and line loads, the analytical solutions are limited to: (1) some specific load types 

(i.e. mostly impulsive point loads), (2) displacements and not stresses, and (3) locations along the 

ground surface or directly beneath the load, but not at other aperture angles. Although the 

formulation in most of the problems the formulation for the integral transforms is exact, the 

aforementioned limitations are due to complexities associated with evaluating the inverse 

integrals transforms. 

An excellent contribution is presented by Schepers et al. (2010) to deal with some 

numerical problems associated with evaluation of the inverse integrals for the problem of 

harmonic vertical and horizontal point load applied on the surface of an elastic or viscoelastic 

half-space. The solutions are also provided in the form of stresses. However, the pressure bulbs 

in this work are limited to a few numbers of frequencies as well as a nominal shear wave velocity 

of 100 m/s. Nevertheless, the presented stress results are strongly functions of dimensional 

frequencies and nominal shear wave velocity. If any other values of shear wave velocity or 
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frequency are of interest, rigorous scaling adjustment procedures need to be performed in order 

to get the corresponding stress outputs. 

6.2.2 Chapter 3: Stress beneath Dynamically Applied Vertical and Horizontal 
Point Loads 

In this chapter, the Buckingham 𝜋 theorem (Buckingham, 1914) was discussed as part of the 

normalization scheme. This theorem was applied to the static and dynamic problems of vertical 

and horizontal point loads imposed on the surface of the half-space to determine the number of 

dimensionless parameters. With regards to characteristic properties of the systems, the value of 

dimensionless stress, (σijR2/P), within foundation soil underlying a static vertical point load at 

ground surface was found to be a function of aperture angle and Poisson’s ratio. For the static 

horizontal point load case, an extra dimensionless value of azimuthal angle was added to the 

equation.. The proposed normalizations were confirmed by comparing to analytical solutions to 

the Boussinesq and the Cerruti problems. 

Boundary Element Method (BEM) was selected as the numerical method of analysis. The 

commercial program ISoBEM (2012) was employed as the main software throughout this work. 

The analyses in this part of research included two cases for dynamically applied vertical and 

horizontal point loads on the surface of an elastic half-space. For the corresponding dynamic 

problems, two more parameters were selected to be dimensionless frequency and damping ratio. 

The proposed normalizations were confirmed by direct modeling in ISoBEM such that 

normalized graphs of stresses match well once the aforementioned dimensionless parameters are 

the same. 

The verification of the solutions in the point load problems was performed by comparing 

the stress results to the Boussinesq’s solution (Boussinesq, 1885), Cerruti’s solution (Cerruti, 
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1882), and Lamb’s problem solution by Schepers et al. (2010) and Esmaeilzadeh et al. (2015). 

Upon verification, the final analysis was performed for a large set of parameters including 

dimensionless frequencies (ωR/VS) ranging from 0 to 20, Poisson’s ratios of 0.34 and 0.45, and 

soil damping values of 1% and 5%, to account for sand and incompressible clay soils, 

respectively. The solutions were then illustrated in the form of dimensionless stress bulbs for 

amplitude and phase angles.  

For (ωR/VS) < 1, dynamic effects ranged from negligible to moderate for both vertical 

and shear stress components and were suggested to be ignored. For (ωR/VS) ≈ 2 to 4, the general 

shapes of the stress distributions were similar to those for the static case, but the stress 

amplitudes were increased by about 70% for the vertical component and 50% for shear 

component in vertical load case, and were increased by about 50% for vertical component and 

80% for shear component in horizontal load case. For (ωR/VS) > 4, stress patterns deviated 

substantially from the static case and followed a more complex pattern, due to constructive and 

destructive interference of the travelling waves. 

Increase of Poisson’s ratio caused no perceptible change in stress bulb amplitudes or 

phase angles for aperture angles associated with shear wave propagation However, Poisson’s 

ratio increases produced stress amplitude increases and decreases for aperture angles associated 

with P-wave and Rayleigh wave propagation, respectively. Our interpretation was that in the 

high-ν case, the higher bulk moduli of the soil ‘attracted’ more P-wave propagation (at the 

expense of Rayleigh wave energy), thereby modifying stress amplitudes associated with these 

wave types.  

Reduction in stress values was the expected outcome of soil damping ratio. However, this 

effect was more obvious for higher dimensionless frequencies. In other words, higher damping 
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ratio values alleviated the dramatic sharpness in dimensionless stress bulbs with high 

dimensionless frequencies and caused smoother stress patterns. 

In general, phase angle patterns growed radially with increases in dimensionless 

frequency. The phase shift values corresponded approximately to the dimensionless frequency 

(ωR/V) computed with the propagation velocity of the dominant wave type for a given aperture 

angle. For instance, for τrz, at aperture angle of 0°, phase angle values were close to (ωR/VS) 

since shear waves were the dominant travelling waves in this case. For higher aperture angles 

there was a minor decrease in phase angle values due to presence of P-waves travelling at 

velocities higher than that of shear waves. However, the amount of reduction illustrated 

combined effects of different wave types rather than pure propagation of P-waves. Moreover, 

worthy of comment were the nearly perfect semi-circle phase patterns associated with some of 

the stress components (i.e. σθ, τrθ, and τθz). Although the phase values were slightly smaller than 

ωR/VS, the constant phase patterns indicated either perfect shear waves as controlling, or a 

relatively constant combination of different wave types.  

Finally in the case of horizontal point load, for the azimuthal angle of 180°, the 

amplitudes of stress components were the same as that of 0°; however, the phase angles were 

different by a value of π for σr, σθ, and σz yet the same for τrz. 

 

6.2.3 Chapter 4: Stress beneath Dynamically Applied Two-Dimensional Vertical 
and Horizontal Line Loads 

In this chapter, similar to Chapter 3, the Buckingham theorem (Buckingham, 1914) was applied 

to the static and dynamic problems of vertical and horizontal line loads imposed on the surface of 

a 2-D half-space to determine the number of dimensionless parameters. With regards to 
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characteristic properties of the systems, the value of dimensionless stress, (σijR/P), within 

foundation soil underlying a static vertical or horizontal line load at ground surface was found to 

be a function of aperture angle, and Poisson’s ratio, damping ration, and dimensionless 

frequency. These parameters were investigated through the numerical analyses in ISoBEM. The 

verification of the solutions was performed by comparing the static stress results to the Flamant’s 

solution (Saad, 2009). There were no dynamic solutions available in the literature against which 

to compare our results. Verification of normalization was performed similar to the case of point 

loads in Chapter 3. Upon verification, the final analyses are performed for a large set of 

parameters including dimensionless frequencies (ωR/VS) ranging from 0 to 20, Poisson’s ratios 

of 0.34 and 0.45, and soil damping values of 1% and 5%. The solutions are then illustrated in the 

form of dimensionless stress bulbs for amplitude and phase angles. 

For (ωR/VS) < 1, dynamic effects range from negligible to moderate for both vertical and 

shear stress components and could probably be ignored. For (ωR/VS) ≈ 2 to 4, the general shapes 

of the stress distributions were similar to those for the static case, but the stress amplitudes were 

increased by about 80%. For (ωR/VS) > 4, stress patterns deviated substantially from the static 

case and followed a more complex pattern, due to constructive and destructive interference of the 

travelling waves. 

Increase of Poisson’s ratio caused no perceptible change in stress bulb amplitudes or 

phase angles for aperture angles associated with shear wave propagation However, Poisson’s 

ratio increases produced stress amplitude increases and decreases for aperture angles associated 

with P-wave and Rayleigh wave propagation, respectively. Our interpretation was that in the 

high-ν case, the higher bulk moduli of the soil ‘attracted’ more P-wave propagation (at the 
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expense of Rayleigh wave energy), thereby modifying stress amplitudes associated with these 

wave types.  

Reduction in stress values was expected as the outcome of soil damping ratio. However, 

this effect was more obvious for higher dimensionless frequencies. In other words, higher 

damping ratio values alleviated the dramatic sharpness in dimensionless stress bulbs with high 

dimensionless frequencies and cause smoother stress patterns. 

Although the overall patterns were similar in line and point load problems, the stress 

bulbs penetrated deeper into the soil mass in line load cases compared to the point load ones. 

This fact was found to be related to line load problems requiring 2-D wave propagation; hence 

the dissipation of energy only occurred in the x-y plane. In the case of a point load (Chapter 3), 

the wave propagation occurred in 3-l space, leading to more rapid geometric spreading of wave 

energy. 

In general, phase angle patterns growed radially with increases of dimensionless 

frequency. The phase shift was expected to be roughly equivalent to the dimensionless frequency 

appropriate to the dominant wave type for the aperture angle under consideration. For instance, 

for vertical stress component, σy,  due to a vertical line load, phase angle values were close to  

(ωR/VS) at aperture angles of 30°- 60°, whereas higher aperture angles (φ > 60°) produced a 

minor increase in phase angles due to the dominance of Rayleigh waves. In addition, for the 

vertical load case the phase bulbs at aperture angles near 0° had a dimple indicating a decrease in 

phase value, which was found to be due to the predominance of P-waves along the y-axis. For 

the case of a horizontally oscillating surface load, the shear stress component, τxy, at aperture 

angle near 0° were close to (ωR/VS) due to the dominance of shear waves in this case. For higher 

aperture angles there was a minor decrease in phase angle values due to the presence of P-waves 
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travelling at faster velocities. However, the amount of reduction illustrated combined effects of 

different wave types rather than pure propagation of P-waves. 

6.2.4 Chapter 5: Dynamic Stress Distribution due to Distributed Surficial Loads 

In this chapter, I began with an overview of available stress solutions for the soil-rigid 

foundation interface from the literature, most of which was applicable to static loads. I proceeded 

to present the results of ISoBEM simulations for cyclic loading of rigid foundations. The results 

were presented in the form of graphs as well as parametric equations for pressures at the soil-

rigid foundation interface (these solutions do not apply for stresses at depth within the soil body).  

To evaluate within-soil dynamic stresses, the devised interface stresses were 

recommended to be converted to input surface loads to simulate the effects of vibration of a rigid 

foundation.  Moreover, to facilitate simplified modeling of this problem in Matlab, I 

demonstrated how the principle of superposition can be applied via integration of the 

fundamental dynamic stress solutions presented in Chapters 3 and 4 to obtain within-soil 

dynamic stresses resulting from surficial loads applied at different ground surface locations. The 

accuracy of these solutions was verified by comparison to stress solutions obtained by direct 

modeling of distributed loads using ISoBEM. 

For the stress solutions due to harmonically applied point or line loads, it is 

recommended to use the graphical solutions with consideration of examples provided in Chapters 

3 and 4. 

For the stress solutions due to harmonically applied distributed solutions, it is 

recommended to either use integration techniques presented in Chapter 5, or to contact authors 

for the access to Matlab codes. It should be mentioned that the Matlab codes will be eventually 
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available at UCLA Department of Civil and Engineering website under supervision of Professor 

Jonathan Stewart and Professor Scott Brandenberg. 

6.3 RECOMMENDATIONS FOR THE FUTURE RESEARCH 

The following are recommendations for future research: 

• Devise procedures for predicting seismic stress demands that account for both SSI and 1-

D wave propagation effects with consideration of phase differences between the two 

stress demands.  

• Validation of the proposed procedure against test data such as centrifuge modeling of 

levee structure resting atop soft organic peat. 

• Validation of the proposed procedure against direct simulations in FEM (Esmaeilzadeh et 

al. (2015) or LS-DYNA) or FDM (FLAC). 

• Validation of the proposed procedure against case histories to confirm the calculated 

dynamic stress demand can predict the triggering of liquefaction in real events. 

• Extending the proposed procedure to evaluate the stress distribution at soil-foundation 

interface of a circular rigid foundation under cyclic horizontal and moment load. 

• Extending the proposed procedure to evaluate the within-soil pressure for the rigid 

foundation problem. 

• Study the effects of inhomogeneous soils and soil non-linearity on the proposed 

procedure. 
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