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ABSTRACT 
 

Gene expression evolution leads to much of the diversity observed among species. Expression 

divergence may be driven by regulatory evolution in cis loci and trans factors. Additionally, 

regulatory evolution may lead to hybrid incompatibilities in the form of misexpression linked to 

sterility. Many studies have shown that expression divergence varies widely among tissues, and 

male gonadal tissues tend to evolve particularly rapidly. There has been less work on somatic 

male reproductive tissues, and little work on the evolutionary properties of different cell types. 

Additionally, our understanding of how gene regulatory evolution and hybrid misexpression vary 

among tissues is especially limited. In this study I use the Drosophila male accessory gland and 

ejaculatory duct—organs that produce seminal fluid—as a for evolution of expression and 

regulation in cells and tissues. In Chapter I, I used single-nucleus RNA-Seq of the accessory 

gland and ejaculatory duct three Drosophila species to comprehensively describe the cell 

diversity of these tissues for the first time. I found that rates of transcriptome divergence were 

heterogenous among cell types and lineages, with ejaculatory duct cells evolving faster than the 

cells of the accessory gland. I also found that proteins characteristic of each cell type have 

variable rates of adaptive substitutions. In Chapter II, I used allele-specific expression in 

accessory glands and ejaculatory ducts of hybrids between D. melanogaster and D. simulans to 

estimate regulatory changes in cis and trans and quantify hybrid misexpression. I found an 

unexpected excess of trans-regulatory divergence in contrast to the prevailing expectation in the 

literature. I also found that the accessory gland has limited misexpression, potentially indicative 

of less hybrid dysgenesis in comparison to gonads. I integrated ATAC-Seq and RNA-Seq data 

to show that differences in chromatin accessibility correlate with divergence in both cis and 

trans. Taken together, these studies contribute to our knowledge of the unique evolution of the 

accessory gland and ejaculatory duct and underline the importance of tissue- and cell-type 

specific differences in expression and regulatory divergence. 
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CHAPTER 1: Single-nucleus transcriptomes reveal functional and evolutionary properties of the 

Drosophila accessory gland 

 
 

Alex C Majane, Julie M Cridland, David J Begun, Single-nucleus transcriptomes reveal 

evolutionary and functional properties of cell types in the Drosophila accessory 

gland, Genetics, Volume 220, Issue 2, February 2022, 

iyab213, https://doi.org/10.1093/genetics/iyab213 
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ABSTRACT 
 

Many traits responsible for male reproduction evolve quickly, including gene expression 

phenotypes in germline and somatic male reproductive tissues. Rapid male evolution in 

polyandrous species is thought to be driven by competition among males for fertilizations and 

conflicts between male and female fitness interests that manifest in post-copulatory phenotypes. 

In Drosophila, seminal fluid proteins secreted by three major cell types of the male accessory 

gland and ejaculatory duct are required for female sperm storage and use, and influence female 

post-copulatory traits. Recent work has shown that these cell types have overlapping but 

distinct effects on female post-copulatory biology, yet relatively little is known about their 

evolutionary properties. Here we use single-nucleus RNA-Seq of the accessory gland and 

ejaculatory duct from Drosophila melanogaster and two closely related species to 

comprehensively describe the cell diversity of these tissues and their transcriptome evolution for 

the first time. We find that seminal fluid transcripts are strongly partitioned across the major cell 

types, and expression of many other genes additionally define each cell type. We also report 

previously undocumented diversity in main cells. Transcriptome divergence was found to be 

heterogeneous across cell types and lineages, revealing a complex evolutionary process. 

Furthermore, protein adaptation varied across cell types, with potential consequences for our 

understanding of selection on male post-copulatory traits. 
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INTRODUCTION 
 

Identifying and explaining variance in rates of evolution, which is commonly observed at all levels 

of biological organization, has been one of the great preoccupations of evolutionary biology. For 

example, some genes, proteins, and chromosomes evolve more quickly than others (White 1977; 

Kimura 1983), some traits evolve quickly in some lineages and slowly in others (Simpson 1944), 

and some traits evolve much more quickly in males than in females (Darwin 1871). This truism of 

evolutionary biology, that evolutionary rate variance is common and demands an explanation, 

extends to gene expression phenotypes, which tend to evolve relatively quickly in male 

reproductive tissues compared to most other tissues (reviewed in Ellegren and Parsch 2007). 

While the explanations proffered for faster expression evolution in male reproductive tissues often 

invoke rapidly changing selection pressures due to sexual selection or genomic conflicts, the 

biological processes driving rapid divergence of male reproductive tissues remain mostly 

unknown. Because the level of biological organization at which an evolutionary phenomenon is 

measured fundamentally shapes our understanding of evolutionary patterns, the level of analysis 

necessarily constrains the universe of testable hypotheses and the generation of new hypotheses. 

In the context of Drosophila gene expression, the phenomenology of rapid male-biased 

expression divergence has often been observed at the whole animal level or the organ level 

(focusing primarily on gonads) (Ranz et al. 2003; Meiklejohn et al. 2003; Assis, Zhou, and 

Bachtrog 2012; Whittle and Extavour 2019). In reality, most organs are a complex mixture of many 

cell types, which suggests that while organ analysis is preferable to whole-animal analyses, layers 

of biological causation and evolutionary inferences are still missed. Indeed, since gene products 

are produced in individual cells, one could reasonably argue that the cell is the natural level of 

organization for understanding expression variation and generating hypotheses relating 

expression variation to downstream phenotypes. 

Theoretical concepts underlying the evolution of cell type diversity and the process of 
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evolution in different cell types within a tissue are well-developed (reviewed in Arendt et al. 2016; 

Musser and Wagner 2015). Single-cell data in evolutionary contexts have generally been applied 

to distantly related taxa (Tosches et al. 2018; Hodge et al. 2019; Liang et al. 2018), typically 

focusing on cell type diversity (Sebé-Pedrós et al. 2018; La Manno et al. 2016; Colquitt et al. 2021; 

Feregrino and Tschopp 2021; J. Wang et al. 2021). Evolutionary analysis of different cell types 

across species, particularly on short time scales, has received less attention (Liang et al. 2018). 

In this study we use the polyandrous genus Drosophila as a model for evolution at the cellular 

level, with a focus on the tissues producing seminal fluid proteins (Sfps), which are transferred to 

females along with the sperm during mating. Many of these secreted proteins, which are produced 

in the accessory glands (AG) and the ejaculatory duct, induce a set of physiological and behavioral 

changes in females collectively referred to as the post-mating response (PMR; reviewed in Ravi 

Ram and Wolfner 2007). In D. melanogaster, the PMR includes increased rates of egg laying 

(Soller, Bownes, and Kubli 1999; Heifetz et al. 2000), decreased receptivity to re- mating (Liu and 

Kubli 2003), storage of sperm in specialized reproductive tract tissues (Neubaum and Wolfner 

1999), elevated immune response (Peng, Zipperlen, and Kubli 2005), elevated feeding rates 

(Carvalho et al. 2006), increased activity rate, and decreased sleep (Isaac R. Elwyn et al. 2010). 

Genetic variation in Sfps may also play a role in the outcome of sperm competition (Clark et al. 

1995; Fiumera, Dumont, and Clark 2005). Population genetic and comparative analyses of these 

proteins suggest they evolve unusually rapidly, often under the influence of directional selection 

(Begun et al. 2000; Tsaur, Ting, and Wu 1998; Aguadé 1999). These genes are frequently gained 

or lost during evolution (Wagstaff and Begun 2005, Muller et al. 2005), even on short timescales, 

(Begun and Lindfors 2005) and experimental evolution has shown that sexual conflict linked to 

PMR phenotypes may contribute to the rapid evolution of seminal fluid proteins (Hollis et al. 2019). 

The D. melanogaster AG consists of two specialized, morphologically distinct, secretory 

epithelial cell types (Bairati 1968). Main cells are smaller, hexagonal, and squamous, while 
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secondary cells are much larger, spherical, project into the lumen of the gland, and contain 

extensive vacuole-like compartments (Bairati 1968; Prince et al. 2018). Main cells, which 

constitute the vast majority of AG cells, are necessary and sufficient to initiate the PMR (Kalb, 

DiBenedetto, and Wolfner 1993; Sitnik et al. 2016; Hopkins et al. 2019). Secondary cells, which 

are located at the distal tip of the gland, appear to contribute in part to the long term maintenance 

of the PMR, particularly with respect to remating phenotypes; females mated to males with 

deficient secondary cell secretions exhibit greater receptivity to remating (Leiblich et al. 2012; 

Hopkins et al. 2019). It is difficult to dissect individual phenotypic contributions of each cell type, 

however, given their apparent interdependence in production of the seminal fluid (Hopkins et al. 

2019). The ejaculatory duct consists of a single secretory epithelial cell type (Bairati 1968), 

contributing additional Sfps to the ejaculate (Sepil et al. 2018; Rexhepaj et al. 2003; Takemori 

and Yamamoto 2009). While the duct and its products contribute to the PMR (Rexhepaj et al. 

2003; Saudan et al. 2002; Xue and Noll 2000), relatively little experimental work has been 

performed on this tissue. 

While genetic and gene expression studies of the AG have revealed evidence of both 

shared and distinct properties of these three major cell types, and much has been learned from 

genetic mutants knocking out (Kalb, DiBenedetto, and Wolfner 1993; Xue and Noll 2000; Minami 

et al. 2012; Gligorov et al. 2013; Sitnik et al. 2016) or suppressing secretions of (Leiblich et al. 

2012; Corrigan et al. 2014; Hopkins et al. 2019) specific cell types in the AG, no study has directly 

investigated patterns of cell-type expression bias from transcriptome data. Here we carry out 

single-cell transcriptome analysis of the accessory gland and ejaculatory duct in three closely 

related Drosophila species, D. melanogaster, D. simulans, and D. yakuba. We characterize main 

cells (MC), secondary cells (SC), and ejaculatory duct cells (EDC) to: (1) reveal new biological 

attributes of the various cell types in the male somatic reproductive tract, (2) investigate rates of 

transcriptome divergence at the cellular level in multiple lineages, (3) determine the degree to 

which expression evolution is concerted or independent across cell types, and (4) investigate the 
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connection between cell type-biased gene expression and adaptive protein divergence. 
 

METHODS 
 

Fly stocks and single-nucleus RNA sequencing 
 

Additional details of all methods in this study can be found in Supplementary Information. We 
 

used the following sequenced stocks to generate AG and ejaculatory duct transcriptomes from 2- 

3 day old virgin males for three melanogaster subgroup species: D. melanogaster RAL 517 

(Mackay et al. 2012), D. simulans w501 , and D. yakuba Tai18E2 (hereafter referred to as mel, sim, 

and yak) (Begun et al. 2007). Nuclei were isolated into a suspension using a modified version of 

Luciano Martelotto’s protocol (2019). FACS was used to purify single nuclei, and single-nucleus 

RNA-Seq libraries were created using the 10X Genomics Chromium platform and Illumina 

sequencing. 

 
Bioinformatic assignment of species origin, RNA-Seq alignment, QC, and ortholog formatting 

 

We parsed the 10X barcodes of raw reads and counted the number of unique molecular identifiers 

(UMIs) corresponding to each. We examined the distribution of UMI counts in descending rank 

order, using the ‘knee’ inflection point method (Macosko et al. 2015) to identify putative nuclei and 

empty barcodes. We used a custom alignment-based bioinformatic pipeline 

(github.com/alexmajane/AG_single_nucleus) to assign species-of-origin to each nucleus. We 

aligned reads to the appropriate species genome (Flybase; D. melanogaster v6.33, D. simulans 

v2.02, D. yakuba v1.05) using STAR v2.7.5a (Dobin et al. 2013) with default parameters. We then 

filtered the set of nuclei according to alignment statistics to remove probable multiplets and nuclei 

with low sequencing depth. Next, we counted features from BAM files using HTSeq-count v0.12.3 

(Anders, Pyl, and Huber 2015) with default parameters. For comparative analyses we created a 

set of 1-to-1-to-1 orthologs (11,481 genes) using the D. melanogaster ortholog table from Flybase 

(2020 version 2). 
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Marker gene identification and differential expression among species 
 

Single-nucleus gene expression analyses were performed in R v3.6.1 using Seurat v3.2.2 (Satija 

et al. 2015; Butler et al. 2018; Stuart et al. 2019) using two parallel approaches. We did an 

integrated analysis (Stuart et al. 2019) of the data across species using our mel/sim/yak 1-to-1- 

to-1 orthologues. We also performed an independent analysis of mel using all annotated genes 

to gain a fuller picture of gene expression variation among cell types. We identified marker genes 

using Seurat’s FindAllMarkers() method and assessed significance using a Wilcoxon Rank Sum 

test. We required marker genes to be expressed in at least 25% of focal cluster cells and set a 

minimal average log2(fold-change), hereafter referred to as logFC, requirement of 0.25. We 

filtered marker genes to those with Bonferroni-corrected p-values less than 0.05. To further 

investigate cell type specific expression bias of all Sfps, in addition to those strictly classified as 

marker genes, we did not impose minimum percent cells expressing and average logFC 

thresholds. We additionally identified markers distinguishing MC subpopulations from one another 

using the FindMarkers() method. To further characterize these subpopulations, we estimated 

pseudotime using Slingshot (Street et al. 2018) and identified dynamically differentially expressed 

genes with tradeSeq (Van den Berge et al. 2020). 

We used limma v3.42.2 (Ritchie et al. 2015) to infer differentially expressed (DE) genes 

for each cell type. We performed pairwise contrasts among the three species and classified genes 

as DE with an FDR of 5% (Benjamini and Hochberg 1995). Further details of the limma analysis 

can be found in our R scripts (github.com/alexmajane/AG_single_nucleus). To compare the rate 

of qualitative expression divergence across cell types, we calculated ratios of DE genes at various 

logFC cut-offs across the three cell types for each of the three pairwise species contrasts, and 

tested for differences in these ratios using a G-Test of goodness-of-fit (Sokal and Rohlf 2012). To 

test for differences in the magnitude of expression differences across cell types, we similarly 

compared distributions of absolute values of logFC using a Kruskal-Wallis test (Kruskal and Wallis 
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1952). Finally, we examined overall expression correlations between species within cell types by 

calculating average expression per gene and Pearson correlation coefficients. 

To examine the relative level of concerted vs independent gene expression evolution 

across cell types, we subset the data to the set of DE genes exhibiting a logFC greater than one 

in at least one cell type-specific pairwise species contrast. We then calculated pairwise Pearson 

correlation coefficients of logFC across cell types within each of the three pairwise species 

contrasts. We permuted logFC values across genes 10,000 times to obtain a distribution of 

Pearson correlation coefficients under the null expectation of entirely cell type independent 

change within our set of DE genes. 

 
Population genetic inference of adaptive protein divergence of marker genes 

 

To investigate potential differences in the prevalence of adaptive protein evolution across cell 

types, we used existing population data from D. melanogaster (Fraïsse, Puixeu Sala, and Vicoso 

2019) with D. simulans as the outgroup. We considered two summaries of the role of adaptation 

in protein divergence (McDonald and Kreitman 1991; Smith and Eyre-Walker 2002): the 

proportion of marker genes with 𝛼	> 0, and the distribution of 𝛼	values amongst those genes with 

𝛼	> 0. The proportions of positive 𝛼	values were compared using Fisher’s exact test, with post- 

hoc pairwise tests between cell types. The distributions of positive 𝛼	values were visualized in 

ggplot2 v3.3.3 (Wickham 2016), and compared using a Kruskal-Wallis test with post-hoc pairwise 

Wilcoxon tests. 

To determine whether the prevalence of positive selection in AG-expressed genes 

correlates with differential gene expression, we intersected 𝛼	values with DE genes. We selected 

the set of all genes expressed in the AG and filtered out genes expressed at a level lower than 

the lowest-expressed DE gene, to account for power to detect DE. We tested whether DE genes 

and non-DE genes had different likelihoods of showing positive selection by comparing the 

fraction of positive 𝛼	values in each class of genes using a G-test. We tested whether the fraction 
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of sites with evidence of positive selection differed among classes of genes by comparing 

distributions of positive 𝛼	values using a Kruskal-Wallis test. 

To catalog non-SFP genes narrowly expressed in the AG with evidence of recurrent 

protein adaptation, we used the index of tissue specificity, τ (Yanai et al. 2005), which we 

previously computed (Cridland et al. 2020) using FlyAtlas2 RNA-Seq data (Leader et al. 2018). 

We selected genes with the greatest expression in the AG and values of τ > 0.9, indicative of 

highly AG-specific expression, 𝛼	> 0.5, and at least five fixed nucleotide substitutions, leading to 

a limited list of candidate non-SFPs with AG-specific expression that may have undergone 

adaptive protein divergence between mel and sim. 

 
De novo transcriptome assembly and identification of unannotated D. melanogaster transcripts 

 

For de novo transcriptome assembly, we trimmed reads with TrimGalore! v0.6.5 

(github.com/FelixKrueger/TrimGalore) and used Trinity v2.11.0 (Grabherr et al. 2011) to create 

the assembly. We augmented our assembly with two additional bulk RNA-Seq datasets (Leader 

et al. 2018; Immarigeon et al. 2021)—see Supplemental Methods. We quantified abundances of 

de novo-assembled transcripts in each cell type population with Salmon v0.12.0 (Patro et al. 

2017). We used a BLAST-based strategy (Camacho et al. 2009) to identify candidate unannotated 

transcripts in D. melanogaster. We then took the set of transcripts that had at least one BLAST 

hit to the mel reference sequence but no BLAST hits to mel gene annotations. We also used the 

Ensembl Metazoa BLAST search tool to verify that these candidate transcripts do not overlap with 

any annotated features (Howe et al. 2020). We filtered out very lowly expressed transcripts using 

counts from Salmon. We created a GTF file based on the BLAST coordinates of our candidate 

transcripts, and aligned our raw sequencing reads with STAR, performed feature counting with 

HTSeq, and removed ambient RNA using SoupX, as described earlier for transcriptome-wide 

analysis. 
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We used Ensembl Metazoa BLAST and the mel genome browser (Howe et al. 2020) to 

identify transcript coordinates, strand, and neighboring annotated genes. For cell type biased 

analysis of unannotated-transcript expression we added transcript counts to the broader mel 

dataset, post-hoc. We used Seurat’s FindAllMarkers() method to identify cell type expression bias. 

and significance was assessed using a Wilcoxon Rank Sum test with Bonferroni multiple test 

correction. We assessed coding potential with CPAT v2.0.0 (L. Wang et al. 2013). To identify 

potential open reading frames (ORFs), we used the getorf function in the EMBOSS software 

package (http://emboss.sourceforge.net/apps/cvs/emboss/apps/getorf.html). We attempted to 

characterize these potential ORFs further using Ensembl Metazoa Protein BLAST (Howe et al. 

2020) to the database of all mel proteins, NCBI’s Conserved Domain Database search tool (Lu et 

al. 2020), and SignalP v5.0 (Almagro Armenteros et al. 2019) to identify putative signal 

sequences. 

 
RESULTS 

 
Overview of single-nucleus RNA-Seq data 

 

Following QC filtering to remove putative multiplets, we obtained a total of 4271 nuclei for single- 

cell analysis. The dataset comprised 1167 mel, 2116 sim, and 994 yak nuclei. While the 

overrepresentation of sim nuclei could be an artifact, given that tissue was pooled from nearly 

equal numbers of glands from each species prior to isolation of nuclei, it seems plausible that this 

difference results from divergence in cell number. Median counts per nucleus for D. melanogaster, 

simulans, and yakuba (hereafter referred to as mel, sim, and yak), were 1022, 1262.5, and 741.5, 

respectively, exhibiting the same species rank order as nuclei abundance, consistent with the 

idea of species differences in levels of seminal fluid production. We used k-nearest-neighbor 

based clustering with UMAP visualization to identify three primary clusters of cells in both the mel 

and three-species dataset (Fig. 1A-C). We then used marker gene identification along with the 

relative sizes of clusters to assign cell type identity to clusters, identifying MC, SC, and EDC. MC 
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Figure 1. (A) UMAP showing clustering of mel single-nucleus transcriptomes into three major cell types: main 
cells (MC), secondary cells (SC), and ejaculatory duct cells (EDC). (B) Nuclei from three species cluster 
concordantly, (C) into the same three major cell types. Differences between (A) and (B-C) are due to the 
nature of the UMAP algorithm (McInnes et al. 2018). Example marker genes in mel, with expression indicated 
in teal: (D) well known markers, (E) novel markers. Cell type clusters in (D) and (E) match those of (A). (F) 
Heatmap showing scaled expression of the top 20 markers of each cell type. Sfps are highlighted in blue text. 
Here we have down-sampled MC to 55 nuclei to aid visualization of SC and EDC, and so that scaled 
expression distributions are comparable among various marker genes. For the full population of MC, refer to 
Fig. S1. 
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were identified as the cluster with the largest number of cells, and based on markers Sex Peptide 

(SP) (Styger 1992), Acp36DE (Wolfner et al. 1997), and Acp95EF (DiBenedetto, Harada, and 

Wolfner 1990; Kalb, DiBenedetto, and Wolfner 1993) (Fig. 1D). SC and EDC were classified as 

relatively smaller clusters. SC were identified by expression of lectin-46Ca (CG1652), lectin- 46Cb 

(CG1656), abd-A (Maeda et al. 2018) and additionally by iab-8 (Maeda et al. 2018) in the mel-

only dataset (iab-8 orthologues are not annotated in sim or yak) (Fig. 1D). EDC were identified by 

expression of vvl (Junell et al. 2010) and Dup99B (Rexhepaj et al. 2003) (Fig. 1D). We additionally 

used Abd-B to characterize both SC and EDC (Maeda et al. 2018; Gligorov et al. 2013). In the 

mel dataset, we identified 1056 MC, 51 SC, and 60 EDC, with 6444, 2596, and 3445 expressed 

genes, respectively. In the three species dataset, we identified a total of 3629 MC, 139 SC, and 

509 EDC, with 6978, 3573, and 5978 expressed orthologous genes, respectively. While our 

results revealed no evidence of subclusters within SC or EDC, we observed strong evidence of 

MC subpopulations (see Transcriptome heterogeneity among main cells below). For 

downstream analyses, we merged these sub-clusters into a single MC cluster. 
 

Using all annotated mel genes, marker genes for each mel cell type reveal both expected 

and novel markers, including Sfps and non-Sfps, and many lncRNAs (Table S1, Dataset S1, Fig. 

1D,E). Details of some of the most notable marker genes specific to each cell type can be found 

in our Supplemental Results. 

 
Cell type transcriptomes in the Drosophila melanogaster accessory gland 

 

Thresholding marker genes as expressed in at least 25% of cells in the focal cell type and 

minimum log2 of the fold change (logFC) = 0.25, we identified 540 mel marker genes (Fig. 1F, 

Dataset S1). Of these, 128 are annotated Sfps identified from proteomic studies of the male 

ejaculate (Findlay, MacCoss, and Swanson 2009; Sepil et al. 2018). Of the 128 Sfp markers, 94 

(73%) are MC markers, 10 (8%) are SC markers, and 24 (19%) are EDC markers, consistent with 

previous results that the majority of Sfps showing cell-type bias are expressed in MC (Swanson 
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et al. 2001; Wolfner et 

al. 1997; Kalb, 

DiBenedetto, and 

Wolfner 1993). Marker 

Sfps for SC and EDC 

 
are summarized in 

Table S1. Among the 

214 total MC markers, 

44% are Sfps. Among 

the 82 SC markers, only 

12%  are  Sfps,  and 

among the 262 EDC
 

markers, 9% are Sfps. 

MC marker genes are 

significantly enriched 

for Sfps relative to both 

SC and EDC (pairwise G-tests, p < 0.001), while SC and EDC are not significantly different (p = 

0.43). Thus, in contrast to MC, the distinct natures of SC and EDC transcriptomes are not driven 

primarily by Sfp expression. Tables of GO enrichment terms for cell type markers can be found in 

Dataset S10. 

To investigate cell type expression bias for all Sfps in addition to that of marker genes, we 

calculated for each of 264 mel Sfps the log2(average expression) for the focal cell type and the 

average logFC vs. all other cell types. Among the 224 Sfps detected in the data (Dataset S2), 159 

(71%) show greatest expression in MC, 25 (11%) show greatest expression in SC, and 40 (18%) 

show greatest expression in EDC. Expressed Sfps generally exhibit cell-type expression bias, 
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Figure 2. Expression of Sfps tends to be highly cell type-biased. (A-C) 
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with relatively few Sfps showing consistent expression among all three cell types (Fig. 2). Highly 
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MC-biased Sfps tend to also show expression in SC, though at a substantially lower level. Even 

among non-marker Sfps we observe a trend towards greater MC expression than SC expression 

(Fig. 2A, SC expression vs. MC expression gives a slope = 0.73, r2 = 0.82). EDC vs. MC 

comparison for non-marker Sfps exhibits a similar pattern (Fig. 2B, slope = 0.79, r2 = 0.75). 

Comparing SC vs. EDC suggests a relatively more even spread of expression across these cell 

types, with some bias towards SC (Fig. 2C; slope = 0.67, r2 = 0.598 Among the 97 non-marker 

Sfps, 66 show highest expression in MC, while 14 have highest expression in SC, and 17 have 

highest expression in EDC. Additionally, the distribution of average logFC of Sfps in MC. vs all 

other cells skews significantly greater than SC vs all others and EDC vs all others, respectively 

(Fig. 2D). The median logFC of MC vs all other cells is 0.75, while SC vs all others is -0.85, and 

EDC vs all others is -0.89. 

Using all annotated mel genes, marker genes for each mel cell type reveal both expected 

and novel markers (Dataset S1). In MC we identify many expected Sfps including SP (Fig 1D), 

Acp36DE, Acp26Aa, and Acp95EF, and relatively uncharacterized Sfps including Obp22a (Fig. 

1E). The top non-Sfp markers of MC are generally functionally uncharacterized: CG42852, 

CG43254, CG42481, CG43392, lncRNA:CR43146, lncRNA:CR45013, CG34041, lncRNA:TS14 

(Fig. 1E), and the genes CG44388 and lncRNA:CR44389, which are neighbors. Despite its 

annotation as a lncRNA, CR44389 possesses a 41 amino acid ORF strongly predicted to have a 

signal sequence, suggesting it could be a secreted protein. Ugt50B3, a UDP-glycosyltransferase, 

is another strong marker of MC. 

Among the 10 Sfps identified as SC markers (Table S1), three were previously known to 

be SC-specific: Acp32CD, lectin-46Ca and lectin-46Cb (Maeda et al. 2018). Previous work with 

MC-null mutants identified Acp32CD as expressed in SC (Swanson et al. 2001), and here we 

additionally show that it exhibits very low expression in MC. The Sfps CG17575, CG3349, 

CG9029, CG13695 (Fig. 1E), and mfas have also been previously identified as SC-expressed 

(Gligorov et al. 2013; Sitnik et al. 2016; Immarigeon et al. 2021). Here we show that these Sfps 
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show very low expression in MC and EDC. We also identify the Sfp Pgant9 as a novel SC marker. 

We additionally recovered expected non-Sfp markers: lncRNA:iab8, abd-A (Maeda et al. 2018), 

abd-B, and defective proventriculus (dve) (Minami et al. 2012). We also identify non-Sfp SC 

markers stranded-at-second (sas) (Fig. 1E), musashi (msi), form3, nahoda, CG31121, CG4629, 

and CG46430. Additionally, we discovered that the unannotated transcript DN2695 (see 

Identification of unannotated candidate genes in the AG, Table 1, Table S4, Fig. S6) is a strong 

SC marker. 
 

We identified 24 Sfp EDC markers (Table S1). Of these, 1 had previously been identified 

as EDC-enriched: Dup99B, Obp51a, Spn77Bc, Spn77Bb, Est-6, Gld, Anp, CG18258, CG5162, 

CG17242, CG5402, CG34034, and CG31704 (Takemori and Yamamoto 2009; Sepil et al. 2018; 

Samakovlis et al. 1991; Cavener 1985; Saudan et al. 2002). The remainder have not been 

previously identified as EDC-specific Sfps: Treh, betaggt-I, Sfp93F (Fig. 1E), trx, NT5E-2, 

CG43101, CG33290, CG11590, CG17549, CG42782, and CG15394. CG42782 was previously 

identified as a likely mating plug protein gene, consistent with origin in the ejaculatory duct or 

ejaculatory bulb (Avila et al. 2015). We also identified expected non-Sfps, ventral veins lacking 

(vvl) (Junell et al. 2010) and Abd-B (Gligorov et al. 2013). Novel EDC markers are anion 

exchanger 2 (Ae2) (Fig. 1E), axundead (axed), single-minded (sim), CG7720, CG43101, 

CG7342, and CG13012, and CR44391. CR44391 is annotated as a pseudogene created by a 

tandem duplication of CG11400 (an EDC-biased gene), however, it has a homologous ORF with 

a strongly predicted signal sequence. 

 
Transcriptome heterogeneity among D. melanogaster main cell subpopulations 

 

During initial analysis we discovered an apparent subcluster of main cells characterized by unique 

SNN clusters at k = 4 and clear separation in UMAP space (Fig. 3A). Of a total 1057 MC, 942 are 

in subcluster one (MCsp1) and 115 are in subcluster two (MCsp2). 349 significant markers 

(Bonferroni-corrected p < 0.05) distinguish these subclusters (Dataset S3). In all three species,
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these subclusters are apparent and appear in roughly equal proportions (Fig. S2A, Dataset S4), 

strongly supporting the idea that they reflect a conserved, regulated phenomenon. Of the 349 

markers distinguishing the MC subclusters, 34 are Sfps, all of which are MC markers and 

expressed in both subpopulations (Fig. 3B). 26 show higher expression in MCsp2, while just eight 

show higher expression in MCsp1 (Dataset S3). Non-Sfps show the opposite pattern, with 102 

genes showing increased expression in MCsp2, and 213 genes with higher expression in MCsp1 

(Dataset S3). The most enriched non-Sfp genes for each subpopulation are shown in Fig. 3D. 
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Figure 3. Transcriptome heterogeneity among subpopulations of MC in mel. (A) Subpopulations 
of MC are apparent in both UMAP space and SNN clustering with k = 4. (B) Examples of MC 
marker Sfps with greater expression in MCsp2. (C) MCsp1 has a significantly lower level of RNA 
counts per cell than MCsp2 or EDC (Kruskal-Wallis test and Wilcoxon rank sum tests, p < 0.001), 
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Genes significantly enriched in MCsp2 include 57 of the proteins comprising the large and small 

ribosomal subunits, along with Eukaryotic Translation Elongation Factor 2 (eEF2), additional 

translation elongation factors eEF5, eEF1δ, and eEF1α1, and translation initiation factors eIF3a, 

eIF3b, and eIF3c. Notably, MCsp1 has a lower level of RNA counts per nucleus than MCsp2, with 

832 vs. 1248 median counts (Fig. 3C, Wilcoxon rank sum test, p < 0.001). We find this same 

pattern of lower RNA counts in MCsp1 in sim and yak (Fig. S2B, Wilcoxon rank sum tests, p < 

0.001). Together with the quantitatively greater level of Sfp expression, these markers suggest a 

higher level of transcription accompanied by greater expression of translational machinery. 

Markers of MCsp1 include Golgi microtubule-associated protein (Gmap), easily shocked (eas), 

taiman (tai), and lncRNAs including roX1, Hsrω, CR43104, CR43146, and CR45114 (Fig. 3D). 

roX1, one of the strongest markers of MCsp1, plays a central role in dosage compensation 

(Mukherjee and Beermann 1965; Meller et al. 1997; Hallacli et al. 2012). We investigated patterns 

of broadly expressed genes using the methods of Mahadevaraju et al. (2021), but found no 

evidence of correlations between roX1 abundance and X-to-autosome expression, or variation in 

X-to-autosome expression among subclusters or cell types. Thus, we find no evidence of 

differential dosage compensation between MC subpopulations. 

We also used a pseudotime approach to model MCsp1 and MCsp2 as a continuous 

trajectory of differentiating cells. We found evidence of a continuous distribution of MC over 

pseudotime, strongly concordant with transcriptomic differences between MCsp1 and MCsp2, 

suggesting a range of expression within the entire population of MC (Fig. S3A,B). These results 

are consistent with a dynamic process between MCsp1 and MCsp2, which could be explained by 

temporal or spatial factors. Visualizing dynamic differential gene expression with tradeSeq, we 

find a limited population of intermediate phase cells, but no obvious evidence of pseudotemporal 

variance in the onset of differential gene expression, pointing to a relatively simple process (Fig. 

S3B). Finally, we observe evidence of finer functional divisions within MC in an apparent third 

subpopulation (Fig. S2A; Dataset S5) that deserves further investigation. Unlike MCsp2, MCsp3 
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does not show significant differences from MCsp1 in Sfp expression. Some of the top genes 

characterizing MCsp3 include Idgf4, Wnt6, pain, luna, CG18067, and CG9336. However, given 

that this subpopulation is less well-supported than MCsp2, we do not wish to speculate about it 

here. 

 
Cell type-specific differential gene expression across species 

 

We used our integrated three-species dataset to characterize differential gene expression (DE) 

across species. UMAP visualization reveals strongly concordant clustering of cell types across 

species (Fig. 1B,C). The top 12 DE genes for each cell type are summarized in Table S2, and 

expression of DE genes in all cell types can be found in Dataset S9. We found 132 genes that 

are DE (logFC > 1) in at least one pairwise species contrast among MC (Dataset S6), of which 40 

(30%) are Sfps. Among SC we found 106 DE genes (Dataset S7), of which 21 (20%) are Sfps, 

while in EDC we found 221 (Dataset S8), of which just 32 (14%) are Sfps. The percentage of 

expressed genes that are DE for each species contrast and cell type (Fig. 4A) is significantly 

heterogeneous (G-test, p < 0.001, Table S3). Notably, EDC show a consistently greater fraction 

of DE genes than MC and SC for each species comparison, except for sim-yak EDC vs SC. The 

fraction of DE genes does not differ between MC and SC for any species contrasts. The fraction 

of DE genes in different cell types tends not to vary significantly over species contrasts, except 

for EDC, where the mel-yak fraction is significantly greater than mel-sim, but not significantly 

different from sim-yak. To determine the magnitude of DE among the genes that most distinguish 

each cell type we asked how many marker genes were DE in each cell type. In MC, 73 of 309 

markers (24%) are DE, in SC, 25 of 121 markers (21%) are DE, and in EDC, 123 of 255 markers 

are DE (33%). EDC markers are significantly more likely to be DE than MC or SC (pairwise 

Fisher’s Exact Tests, p < 0.001), while MC and SC are not significantly different (p = 0.7). 

Together, the data suggest an elevated level of DE for EDC relative to MC and SC, and 
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Figure 4. (A) Percentage of expressed genes DE by cell type and species contrast (G-test, p < 0.001). For 
significance values of pairwise tests see Table S2. (B) Examples of differential expression detected in this study. 
(C-E) Pearson correlations of transcriptome-wide expression show cell type- and species-specific patterns of 
divergence. The level of divergence among species is summarized by r. (C) MC, (D) SC, (E) EDC; columns indicate 
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lower correlations among sim-yak relative to other species contrasts. (F-H) Pearson correlations of logFC of DE 
genes among contrasts reveal differences in the level of concerted vs independent DE among cell type- and 
species-contrasts. The level of concerted DE among species is summarized by r. (F) MC vs SC, (G) MC vs EDC, 
(H) SC vs EDC. Columns indicate each of three species-contrasts. Note the overall greater level of concerted DE 
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an effect of lineage on DE in EDC; the mel-yak EDC contrast has significantly more DE genes 

than sim-yak, suggesting that DE genes accumulated faster in the mel EDC than the sim EDC. 

These conclusions are robust to different logFC cutoffs (Fig S4A-D). There is a trend towards 

elevated MC enrichment compared to SC at particularly high and low cutoffs, however these 

differences are not statistically significant (Wilcoxon rank sum tests, p > 0.05). We found no 

evidence of differences in the magnitude of DE across cell types and lineages; distributions of 

logFC among DE genes are not significantly different (Fig. S4E-F). 

We used Pearson correlations of expression among all genes in species contrasts to 

investigate overall levels of transcriptome-wide divergence. A lower correlation coefficient (r) 

suggests a greater level of divergence. MC have the greatest overall correlations (Fig. 4B; rMCmel- 

sim = 0.88, rMCmel-yak = 0.86, and rMCsim-yak = 0.84). Pearson correlations for SC and EDC are lower 

overall (Fig. 4D-E; rSCmel-sim = 0.81, rSCmel-yak = 0.84, rSCsim-yak = 0.74; rEDCmel-sim = 0.82, rEDCmel- 

yak = 0.80, rEDCsim-yak = 0.78). The data suggest an overall slower rate of expression evolution in 

MC than SC and EDC. Furthermore, the heterogeneous correlations for SC and EDC across 

species pairs suggest lineage by cell type interactions on rates of transcriptome evolution. 

DE genes are summarized in Datasets S6-9, but below we wish to highlight a few 

interesting examples. The Sfp Acp95EF is strongly differentially expressed in MC, which has 

highest expression in mel, lower expression in sim, and lowest expression in yak (Fig 4B). The 

transcription factor shaven (sv) is lowly expressed in mel and sim, but much more highly 

expressed in yak MC. Meiosis regulator and mRNA stability factor 1 (Marf1) has near-zero 

expression in sim and yak, but high expression and MC bias in mel (Fig 4B), supporting our 

previous work using bulk-tissue RNA-Seq characterizing this pattern of gain-of-expression 

specific to the mel AG (Cridland et al. 2020). Odorant-binding protein 58b (Obp58b) is highly 

expressed in sim, expressed moderately in yak, and rather lowly expressed in mel (Fig 4B). 

Findlay et al. (2009) detected peptides corresponding to Obp58b in a proteomic screen of sim 

seminal fluid but did not detect any corresponding peptides in mel or yak seminal fluid. Taken 
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together, these results suggest Obp58b is a MC-expressed Sfp in sim but does not have a role 

as an Sfp in mel. The status of Obp58b in yak is less clear. 

Sex Peptide Receptor (SPR), which is responsible for interactions with Sfp SP in the 

female reproductive tract (Yapici et al. 2008), is expressed in yak SC, but not in sim or mel, or in 

MC or EDC (Fig 4B). SPR is known to have additional ligands, and is expressed in the CNS of 

both males and females, but not in the melanogaster male reproductive tract (Y.-J. Kim et al. 

2010; Poels et al. 2010), so potential functions of SPR in yak SC and whether it interacts with 

endogenous SP are interesting questions. Further examples of DE genes among SC include 

Na+/H+ hydrogen exchanger 3 (Nhe3), with high expression in sim and near-zero expression in 

mel and yak (Fig 4B), consistent with sim gain-of-expression, and Peroxin 19 (Pex19), which 

exhibits what is likely gain-of-expression in mel SC and near-zero expression in sim and yak (Fig 

4B). In general, we observed little DE among SC-biased Sfps. While 24 Spfs exhibit SC DE, 22 

of these are MC markers, with significantly lower expression in SC than MC. Two exceptions are 

midline fascilin (mfas) and CG3349 (Dataset S7). 

The EDC marker gene Esterase 6 (Est-6) is highly expressed in mel and sim, and much 

more lowly expressed in yak (Fig 4B). Est-6 transcript and Est-6 protein expression in the 

ejaculatory duct is specific to mel, sim, and D. sechellia, and notably absent in the rest of the 

melanogaster subgroup, including yak (Richmond et al. 1990). Serpin 28Dc (Spn28Dc) has yak- 

specific EDC expression, with no expression in other cell types or species (Fig 4B). Serpins are 

a common component of seminal fluid (reviewed in Laflamme and Wolfner 2013), making 

Spn28Dc a good candidate for a yak-specific Sfp. Glucose dehydrogenase (Gld) has a high level 

of expression in sim, a lower level in mel, and near-zero expression in yak (Fig 4B). This same 

species-specific pattern was previously observed in enzymatic GLD assays (Cavener 1985), 

suggesting that variation in GLD abundance in the ejaculatory duct is ultimately controlled at the 

transcriptional level. 
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To determine the ratio of markers to non-markers among DE genes, we used singlet 

markers (characterizing just one cell type) called independently for each species to filter our list 

of DE genes, thereby allowing markers to be unique to one species or shared. We found 61% of 

DE genes were markers specific to a particular cell type. However, we find large differences in 

this ratio among cell types; 73% of genes differentially expressed in MC are MC markers, 75% of 

genes differentially expressed in EDC are EDC markers, while just 19% of DE genes in SC are 

SC markers. Thus, much DE is associated with cell-type biased expression for MC and EDC but 

not for SC. For example, muscleblind (mbl) exhibits high EDC expression in sim relative to both 

mel and yak, while showing no DE in MC or SC, despite high expression in these cell types (Fig 

4B). Alternatively, DE may be correlated in the same direction across multiple cell types. For 

example, Ornithine decarboxylase antizyme (Oda) is broadly expressed and shows the same 

pattern of increased mel expression in each cell type (Fig 4B). We also identified nine cases 

where genes have shifted in their marker status among species (Fig. S5). For example, Sfp24C1, 

the only Sfp in this gene set, is modestly expressed in mel MC, strongly EDC-biased in sim, and 

expressed in few yak cells. This rapid expression evolution is mirrored in its coding sequence, 

with high levels of adaptive amino acid substitutions between mel and sim (⍺	= 0.75, dN/dS = 5). 

Glucuronyltransferase P (GlcAT-P) shows a striking pattern of MC-biased expression in mel, with 

weaker MC expression in sim and yak, and very strong expression in yak EDC specifically (Fig 

S5). GlcAT-P is expressed in the female spermatheca where it is thought to be involved in sperm 

maturation and/or preservation (Allen and Spradling 2008), but potential functions in the AG are 

unexplored. 

To investigate the degree of concerted vs. independent expression evolution across cell 

types we calculated pairwise Pearson correlation coefficients (r) of logFC of DE genes for each 

cell type for each of the three species contrasts. A greater value of r suggests a greater overall 

level of concerted evolution, where expression evolution is more similar among different cell types. 

Conversely, a lower r would suggest relatively more independent expression evolution 



24  

across cell types. We find r ranges between 0.28 and 0.57 for each comparison (Fig. 4F-H). MC 

and SC have the highest correlations (Fig. 4F); rmel-sim = 0.53, rmel-yak = 0.57, and rsim-yak = 0.53. SC 

and EDC are less correlated (Fig. 4G); rmel-sim = 0.38, rmel-yak = 0.44, and rsim-yak = 0.35. MC and 

EDC have the lowest correlations (Fig. 4H): rmel-sim = 0.34, rmel-yak = 0.37, and rsim-yak = 0.28. To 

determine the expected distribution of r under a null model of cell type-independent evolution, we 

permuted logFC 10,000 times and calculated values of r, as before. The 99th percentile of 

permuted r (0.123 to 0.133) was much lower than each observed r, supporting the hypothesis of 

correlated transcriptome divergence across cell types. Nevertheless, a gene is unlikely to pass 

our logFC ≥ 1 threshold for DE in multiple cell types; of 362 DE genes, 282 (78%) appear in a 

single cell type, 51 (14%) appear in two, and just 25 (7%) appear in all three cell types. This 

pattern is reflected in plots of logFC across cell types, with relatively few points falling near the 

line x = y (Fig. 4F-H). Thus, while the overall directionality of DE is similar among cell types, the 

largest interspecific expression differences tend to be limited to one cell-type. 

 

Protein sequence evolution in melanogaster 

To investigate the evidence for protein adaptation among marker genes of each cell type, we 

used the McDonald-Kreitman test estimator 𝛼 (McDonald and Kreitman 1991; Smith and Eyre-

Walker 2002). A positive value of 𝛼 suggests a history of directional selection. Among positive 

values, 𝛼 provides an estimate of the proportion of amino acid differences between mel and sim 

attributable to directional selection. We obtained estimates of 𝛼 for 561 of 691 marker genes 

(called from joint analysis of mel, sim, and yak), of which 265 (47%) were positive. The proportion 

of MC markers with positive 𝛼 (61%) is significantly greater than SC (41%) or EDC (40%) (Fig. 

5A; pairwise Fisher’s exact tests, p = 0.002, p < 0.001, respectively), suggesting that compared 

to SC and EDC, MC markers are more likely to have a history of adaptive protein divergence. 

Median values among positive 𝛼 for SC, MC, and EDC are 0.30, 0.57, and 0.52, respectively 
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(Kruskal-Wallis test, p = 

0.01), with SC being 

significantly smaller than 

MC and EDC (pairwise 

Wilcoxon rank sum tests, 

p = 0.008). Overall, it 

appears MC-biased 

genes exhibit the 

greatest adaptive protein 

divergence and SC-

biased genes the least. 

Given the enrichment for 

Sfp expression in MC we 

wanted to investigate 

whether this pattern of MC 

protein adaptation is driven 

by Sfp variation or is a general property of this cell type. Among marker genes, 91 of 126 Sfps 

(72%) have positive 𝛼 values, while 174 of 432 non-Sfps (40%) have positive 𝛼 values, a 

significant enrichment among Sfps (Fig. 5B; Fisher’s exact test, p < 0.001). However, medians of 

positive 𝛼 values are not significantly different for Sfps vs. non-Sfps (Kruskal-Wallis test, p = 0.11). 

Among non-Sfp markers there is no significant difference in the proportion of positive vs. negative 

𝛼 among cell types (Fig. 5C; Fisher’s exact test, p = 0.40). However, non-Sfps show significant 

differences in distributions of positive 𝛼, with median 𝛼 of 0.24 in SC, 0.54 in MC, and 0.50 in EDC 

(Kruskal-Wallis test, p = 0.001). Both MC and EDC are significantly greater than SC (pairwise 

Wilcoxon rank sum tests, p = 0.004 and p = 0.02, respectively). Thus, while the unequal 

distribution of Sfps among marker genes in different cell types accounts for some of the observed 

cell-type heterogeneity in the proportion of markers showing excess protein divergence, the 
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Figure 5. Distributions of a (mel population data vs sim) for marker 
genes. (A) a values by cell type show that MC markers are 
significantly greater than SC or EDC (Kruskal-Wallis test, p = 0.001). 
(B) Sfp markers have a dramatically greater median a than non-Sfps 
(Fisher test, p < 0.001). (C) Removing Sfps from the data shifts the 
distribution of MC a lower. MC and EDC are no longer significantly 
different, but SC is significantly less than MC and EDC (Kruskal-
Wallis test, p = 0.001). (D) Genes that are DE between mel and sim 
have a modest but significantly greater a than non-DE markers 
(Kruskal-Wallis test, p < 0.001). 
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reduced effect of directional selection on protein divergence in SC-biased genes remains 

apparent as a general phenomenon. 

To investigate whether genes that are differentially expressed between mel and sim are 

also enriched for adaptive protein divergence for the mel-sim species pair, we compared 𝛼 for 

genes that were DE vs. non-DE. While the proportion of DE vs. non-DE genes exhibiting 𝛼 > 0 

(42.5% and 38.7%, respectively) were not significantly different (Fig. 5D; G-test, p = 0.37), the 

median positive 𝛼 value for DE genes, 0.59, was significantly greater than median positive 𝛼 for 

non-DE genes 0.46 (Kruskal-Wallis test, p < 0.001). Thus, expression divergence appears to be 

more strongly correlated with the proportion of protein divergence explained by selection than 

with the probability of a protein having elevated levels of fixed nonsynonymous substitutions.  

Finally, we investigated some individual AG-expressed genes with unusually high values 

of 𝛼. While adaptive protein divergence in Sfps has been studied extensively (Tsaur, Ting, and 

Wu 1998; Begun et al. 2000; Swanson et al. 2001; Kern, Jones, and Begun 2004; Holloway and 

Begun 2004; Mueller et al. 2005; Begun and Lindfors 2005; Wagstaff and Begun 2005; Schully 

and Hellberg 2006; Wong et al. 2008; but see also: Dapper and Wade 2020; Patlar et al. 2021), 

there has been no targeted study of adaptive protein evolution of non-Sfp genes exhibiting 

strongly AG-biased expression. Non-secreted genes with evidence of rapid divergence might play 

important roles in the regulation of the seminal fluid at the level of transcription, post-translational 

modification, secretory pathway control, or other points in the production of the ejaculate. We 

report protein coding non-Sfps with extreme AG expression bias and high values of 𝛼 in Table 

S4. Most of these genes are uncharacterized, apart from Carbonic anhydrase 16 (CAH16). An 

alternative possibility is that these genes are unannotated Sfps, however it seems unlikely that 

they would have escaped proteomic screening (Findlay, MacCoss, and Swanson 2009; Sepil et 

al. 2018; Wigby et al. 2020) given their relatively high expression in the AG.
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Identification of unannotated genes expressed in the AG 
 

Following stringent filtering (see Supplemental Methods), we identified 11 unannotated, single- 
 

exon genes (Table 1, Table S4, github.com/alexmajane/AG_single_nucleus). Transcript 

assemblies of FlyAtlas2 data were used to improve our annotation for seven of these candidates. 

Since DN100097 and DN2695 are SC-limited in expression (Fig. S6A), we used RNA-Seq data 

from FACS-sorted secondary cells (Immarigeon et al. 2021) to further improve our annotations. 

The median transcript length is 630 bp (range = 352 to 3,102 bp). None of these genes overlap 

annotated features in the mel genome. 

Among these genes, 

four show strong MC bias, 

two are SC-biased, and two 

are EDC-biased. In general, 

these candidates are 

expressed at a relatively high 

level compared to expressed 

annotated genes, but a 

relatively low level compared 

to marker genes (Fig. S6B). 

The two notable exceptions 

Table 1. Unannotated candidate genes expressed in the D. 
melanogaster accessory gland. Length refers to the span of BLAST 
coordinates. logFC is the cell type with highest fraction of expression 
compared to the other two cell types. p is the result of a Wilcoxon Rank 
Sum test with Bonferroni correction. See Table S4 for additional details. 

 

transcript chromosome length expression bias
 
p 

logFC p 

DN4707 3R 352 broad 0.544 0.309 
DN8354 2R 530 broad 0.255 1 
DN35169 3R 630 broad / MC 0.595 0.087 
DN10930 3R 863 EDC 0.750 <0.001 
DN16089 3R 572 EDC 0.718 <0.001 
DN11110 X 352 MC 0.923 0.001 
DN2736 2L 739 MC 0.856 0.006 
DN5813 2R 1278 MC 0.981 <0.001 
DN818 3R 3102 MC 1.170 <0.001 
DN10097 2L 353 SC 0.826 <0.001 
DN2695 2L 2176 SC 2.130 <0.001 

to this trend are DN2695 in SC, and DN818 in MC, which are expressed at a more intermediate 

level among markers. These two candidates additionally pass more stringent criteria (expressed 

in ≥ 25% of focal cells) to be considered marker genes (Dataset S1). DN2695, the 7th most 

significant SC marker, is expressed in 47% of SC yet shows no evidence of MC or EDC 

expression. Interestingly, the two candidate SC-biased genes, DN2695 and DN10097, lie 5.4 kb 

apart within a 20.1 kb intergenic region on chromosome 2L. Both EDC-biased candidates, 

DN16089 and DN10930, are exclusively detected in EDC, although they do not meet our criteria 
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for marker genes. DN16089 is expressed in 18% of EDC, DN10930 is expressed in 15% of EDC; 

neither exhibit SC or MC expression. DN16089 is located just 79 bp from the EDC marker sim, 

but on the opposite strand. All 11 transcripts are predicted to be non-coding by CPAT. Although 

getorf identified many putative ORFs (github.com/alexmajane/AG_single_nucleus), BLAST 

comparisons of predicted proteins to the D. melanogaster protein database and the NCBI 

database of conserved domains returned no significant matches. SignalP revealed no evidence 

of signal sequences. 

 
DISCUSSION 

 

Our single-nucleus transcriptome analysis of the primary Drosophila seminal fluid producing 

organs has validated conjectures in the literature and revealed several new findings. As expected, 

MC are the primary source of Sfp diversity and exhibit transcriptomes biased toward Sfp 

production. While several individual Sfps are produced in all three major cell types investigated 

here, it is notable that the majority of Sfps exhibit strong cell-biased expression, raising the 

question of why this occurs. Given that these three cell types are spatially separated along the 

reproductive tract, with the SC distal, the EDC proximal, and the MC intermediate, perhaps there 

are Sfp “order effects” in assembling the seminal fluid prior to transfer to the female. Order effects 

have been observed in assembly of the spermatophore in Pieris rapae butterflies (Meslin et al. 

2017) and seminal fluid in tsetse flies (Odhiambo, Kokwaro, and Sequeira 1983). Such order 

effects could influence the details of how Sfps bind sperm or interact directly with the female 

reproductive tract. In spite of the important role for MC in Sfp production, many genes showing 

MC bias are not annotated as Sfps; their roles in AG function remain to be investigated. SC and 

EDC transcriptomes are much less biased toward Sfp expression. Indeed, most SC and EDC 

markers are not Sfps, and most of the genes exhibiting strongly biased expression in these cell 

types have no known functions in male reproduction. Thus, much of the biology of the AG and 
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ejaculatory duct is still mysterious. Especially notable is the relatively small number of Sfps 

produced in SC, as first reported by Immarigeon et al. (2021). 

Our data confirm that expression of the ‘Sex Peptide network’—Sfps that interact with SP 

in the female reproductive tract and enhance the PMR (Ravi Ram and Wolfner 2007, 2009; 

LaFlamme, Ravi Ram, and Wolfner 2012; Singh et al. 2018; Findlay et al. 2014; McGeary and 

Findlay 2020)—is divided across cell types. lectin-46Ca, lectin-46Cb, and CG17575 are SC 

markers, while SP, aqrs, antr, intr, CG9997, and Sems are MC markers, and Esp appears EDC- 

biased. frma and hdly, remaining members of the known Sex Peptide network, are not strongly 

expressed in our dataset. Discovery of the EDC marker Anion exchanger 2 (Ae2), provides a clue 

about possible functions of the ejaculatory duct apart from Sfp production. In D. melanogaster, 

Ae2 regulates intracellular pH through Cl−/HCO3
− exchange in the midgut (Overend et al. 2016) 

and ovary (Benitez et al. 2019; Ulmschneider et al. 2016). Ae2 is a highly conserved membrane 

protein, responsible for pH regulation in the mouse epididymal epithelium, seminiferous tubules, 

and developing spermatocytes, and is essential for spermatogenesis (Medina et al. 2003). Thus, 

EDC-biased expression of Ae2 suggests that the ejaculatory duct may regulate ejaculate pH. 

Many of our strongest marker genes are lncRNAs, including markers of our newly defined 

MC subpopulations. Aside from iab-8 and msa (Maeda et al. 2018), the roles of lncRNAs in AG 

biology and male reproduction more broadly are uncharacterized, though the possibility that some 

of these RNAs code for small proteins cannot be ruled out (Immarigeon et al. 2021; Cridland et 

al., in press). Our analysis revealed strong evidence of transcriptionally distinct main cell 

subclusters. The most obvious distinction between them is that one exhibits evidence of higher 

transcriptional and translational activity. Many of the markers for these MC subclusters are 

annotated as lncRNAs, further supporting the possible importance of non-coding RNAs in AG 

biology. Given that we observe no correlation between roX1 expression and dosage 

compensation, roX1 might have other, uncharacterized functions in the AG. Whether MC 

subpopulations represent cell subtypes, transitory states, or developmental states, and whether 
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communication among these subclusters occurs, are important questions. To compare our MC 

subcluster inference with a similar inference made in the Fly Cell Atlas pre-print (Li et al. 2021), 

we investigated some of our top marker genes (Fig. S7) and found concordant patterns of 

expression in their data, consistent with the same subpopulations identified in the two 

experiments. 

We found evidence for 11 unannotated D. melanogaster genes expressed in seminal fluid 

producing tissues, most of which are strongly cell type-biased. Given the low coding potential of 

these transcripts, and that predicted ORFs exhibit no homology to known proteins and show no 

evidence of signal sequences required for secretion, their possible functions are mysterious, yet 

likely relevant to the biology of these three cell types. The two SC-biased genes DN2695 and 

DN10097, located proximal to one another in a large intergenic region, are particularly interesting 

candidates for future research into their role in SC biology. 

The transcriptomes of the three major cell types investigated here show many similarities 

between species, as expected given their recent common ancestor. Moreover, interspecific 

transcriptome divergence among cell types is not occurring independently, supporting the notion 

that these cell types have correlated functions. Nevertheless, each cell-type exhibits a distinct 

transcriptome and has distinct evolutionary properties. MC and SC, the two cell types of the AG 

proper, have less transcriptional divergence from each other than either has from EDC, consistent 

with more functional and developmental overlap between MC and SC. Overall, interspecific 

transcriptome divergence is substantially slower for MC than for SC or EDC. However, divergence 

rates are heterogenous among lineages. For example, SC transcriptome divergence is 

substantially greater in the sim vs. yak comparison than the mel vs. yak comparison, consistent 

with the hypothesis of accelerated transcriptome evolution along the sim lineage for this cell type. 

A slightly different picture emerges if one focuses on the most strongly differentially 

expressed genes between species rather than on overall transcriptome divergence. While the 

directionality of DE is similar among cell types, the largest expression changes tend to be 



31  

exhibited in a single cell-type, suggesting that the mechanisms driving divergence operate 

heterogeneously across cell types. EDC generally show the greatest interspecific divergence, 

though again, the data are consistent with the hypothesis of lineage differences in evolutionary 

rates. Whether the greater proportion of DE genes among EDC results from directional selection 

or relaxed stabilizing selection (Dapper and Wade 2020) is an open question. Many DE genes 

are Sfps, as expected since Sfps are a major component of these transcriptomes, but notably, 

most DE genes are not Sfps, raising important questions about the functional axes along which 

species differences are evolving in these cell types. Indeed, many of the most strongly 

differentiated genes, which include genes expressed at a high level in some species and 

apparently unexpressed in others, have unknown functions in these cells in any of the three 

species. Consistent with transcriptome-wide results, correlations of logFC for DE genes among 

cell types suggest concerted change, as expected given the closely shared developmental origins 

of these cell types (Musser and Wagner 2015; Liang et al. 2018) and short time-scales examined 

in this study. Indeed, correlations of logFC are greatest between MC and SC, which differentiate 

later in development (Minami et al. 2012; Xue and Noll 2000; Gligorov et al. 2013), compared to 

EDC cells. Given the limited inquiry into the phenomenon of DE across related cell types in 

Drosophila, however, it is difficult to establish a baseline expectation of concerted change. Finally, 

we identified a small set of genes that have shifted their marker gene status to different cell types 

among species. These appear to be relatively rare evolutionary events, at least on the time scales 

examined here, but the regulatory basis and functional significance of these shifts remain to be 

determined. 

Our investigation of the interaction of protein divergence with cell-biased expression and 

interspecific expression divergence revealed a few salient patterns. As expected, given genome 

wide results (Begun et al. 2007; Langley et al. 2012), directional selection appears to play an 

important role in driving protein evolution for cell-biased genes. Indeed, 𝛼	values for marker genes, 

though high, are not obviously different from genome-wide estimates (Fraïsse, Puixeu 
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Sala, and Vicoso 2019), raising interesting questions about whether protein divergence of the AG 

is unusual in any way. Nevertheless, the relative importance of adaptive divergence appears to 

vary across cell-types. MC-biased genes are more likely than SC- or EDC-biased genes to show 

evidence of directional selection. Much of this enrichment results from the strongly Sfp-biased 

expression of MC, and cell-biased genes that are not Sfps are equally likely to show evidence of 

protein adaptation for all three cell types. However, conditioning on positive 𝛼, the relative 

importance of directional selection is much lower for SC-biased genes than for MC- or EDC- 

biased genes. Overall, it seems that while adaptive protein evolution is likely common for all cell 

types, it is most pronounced for MC and least for SC. A speculative hypothesis for this observation 

is that more beneficial non-synonymous mutations are associated with phenotypes related to 

establishment of the female PMR, which is primarily a MC function, than with long term 

maintenance of receptivity to remating, which is in part a SC function (Sitnik et al. 2016). However, 

it is difficult to make strong statements about the agents of selection driving protein divergence in 

marker genes without more information on their biological functions in the AG or other tissues and 

cell types. Finally, we found differentially expressed genes are not more likely than other genes 

to show evidence of protein adaptation, however, there is a small, significant elevation of positive 

𝛼	for DE genes vs. non-DE genes. Thus, while there appear to be some correlations between 

expression divergence and protein adaptation, the relationship is neither particularly strong nor 

simple. 

While our analyses of single-nucleus transcriptomes in an evolutionary genetics 

framework has led to many functional and evolutionary findings and hypotheses, perhaps what is 

most apparent is how little we still understand the biology and evolution of these cells. Many open 

questions remain about the regulation and function of the seminal fluid producing cells, the 

biological consequences of species divergence in these cells, and the evolutionary mechanisms 

shaping this divergence. Continued investigation of closely related species for single-cell 

phenotypes and population genetic variation will facilitate the fruitful investigation of both 
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functional and evolutionary mechanisms and help to draw additional connections between these 

two research domains. 
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ABSTRACT 
 

Gene expression is an important phenotype that evolves and leads to divergence among species. 

The genetic basis of expression may include cis-regulatory loci and trans-acting factors. 

Additionally, incompatibilities between regulatory factors among species may give rise to hybrid 

sterility. Studies of allele-specific expression with interspecific hybrids have given major insights 

into gene-regulatory evolution and hybrid incompatibilities. However, properties of regulatory 

differences vary widely among species, sex, and tissues. Tissue-specific allele-specific 

expression studies may improve our understanding of how regulatory evolution and accrual of 

hybrid incompatibilities proceeds in different biological contexts. In this study we use a hybrid 

between sister species, Drosophila melanogaster and D. simulans, to characterize gene 

regulatory evolution and hybrid misexpression in a somatic male sex organ, the accessory gland. 

The accessory gland produces seminal fluid proteins (Sfps), a class of proteins involved in sexual 

conflict with extremely rapid rates of protein sequence evolution. We find that trans differences 

are relatively more abundant than cis in this organ, in contrast to most of the interspecific hybrid 

literature. However, large-effect size trans differences are rare. Sfps and accessory gland- biased 

genes have significantly elevated levels of expression divergence and tend to be regulated through 

both cis and trans divergence. We find limited misexpression in this organ compared to other 

Drosophila studies. As with previous studies, male-biased genes are overrepresented among 

misexpressed genes and are much more likely to be underexpressed. Finally, we integrate ATAC-

Seq data to show chromatin accessibility is correlated with expression differences among species 

and hybrid allele-specific expression. In summary, this work identifies unique regulatory evolution 

and hybrid misexpression properties in the accessory gland, contributing to our understanding of 

this organ’s evolution and suggesting a general importance of tissue-specific allele-specific 

expression studies. 
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INTRODUCTION 
 

Gene expression is a key phenotype on which stabilizing, directional, or diversifying selection may 

act. The gene regulatory variants that are targeted by selection and must ultimately explain within 

and between species expression variation can be broadly classified into cis-acting components, 

such as promoters and enhancers, and trans-acting components, such as transcription factors 

(Rabinow and Dickinson 1981; Dickinson, Rowan, and Brennan 1984; Patricia J. Wittkopp, 

Haerum, and Clark 2004; Gibson et al. 2004; P. J. Wittkopp 2005; Ronald et al. 2005; Ronald and 

Akey 2007). Because the genetic control of gene expression can involve several sites spanning 

both cis- and trans-acting factors, selection could plausibly have many potential substrates on 

which to act. Thus, understanding the relative importance of these factors in regulatory evolution 

is critical for achieving a comprehensive view of expression evolution. 

A commonly used method for detecting and estimating magnitudes of cis and trans effects 

is measuring allele-specific expression (ASE) in hybrids and their parents. ASE can be used to 

classify genes into regulatory types based on the presence and directionality of cis and trans 

components (McManus et al. 2010). It has been broadly applied to both intraspecific and 

interspecific hybrids to study the genetics of expression variation within species and divergence 

between species. The comparison of within- and between species regulatory genetics informs our 

understanding of evolutionary mechanisms because the concordance or discordance of 

phenomena on these two timescales can narrow the range of evolutionary explanations for the 

variation. A major conclusion from accumulated ASE research is that intraspecific gene 

expression evolution in animals is mediated predominantly through trans effects, while 

interspecific evolution proceeds predominantly via cis effects (reviewed in Signor and Nuzhdin 

2018; Hill, Vande Zande, and Wittkopp 2021). It is thought that trans regulation has a broader 

mutational target but generally deleterious pleiotropic effects, underlying this general observation 

(P. J. Wittkopp 2005; Gruber et al. 2012; Lemos et al. 2008). However, this pattern is not always 

observed. For example, Sánchez-Ramírez et al. (2021) found cis-regulatory divergence was more 
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frequent than trans in male Caenorhabditis but not in females, and some studies of flies have 

found relatively more trans effects between species (McManus et al. 2010; Coolon et al. 2014). 

Deeper investigation into regulatory evolution across sexes, tissues, cell types, or environmental 

conditions might reveal more nuanced patterns than expected based on whole-organism, single- 

condition studies. 

There is no reason to expect that the genetics of regulatory variation will be identical 

across tissues in multicellular organisms, as the cell and developmental biology, as well as the 

influence of mutation and selection on expression phenotypes may vary across cell types, tissues, 

and organs. Indeed, empirical evidence supports the view that tissues and cell types exhibit 

varying rates of expression divergence (Gu and Su 2007; Brawand et al. 2011; Romero, Ruvinsky, 

and Gilad 2012; Kryuchkova-Mostacci and Robinson-Rechavi 2015; Liang et al. 2018; J. Chen et 

al. 2019; Pal, Oliver, and Przytycka 2021). Intraspecific studies of mouse (Babak et al. 2015; 

Andergassen et al. 2017; St Pierre et al. 2022), humans (Babak et al. 2015; Leung et al. 2015; 

Castel et al. 2020), flycatchers (Wang, Uebbing, and Ellegren 2017), and Drosophila (Combs et 

al. 2018) have revealed tissue-specific variance in cis-effects; genes may exhibit ASE in some 

tissues but not others, and the total number and magnitude of cis-effects also varies across 

tissues. These studies did not identify trans-effects, however, limiting the insight we have into how 

regulatory evolution varies among tissues. 

There is, however, little literature investigating the genetics of interspecific expression 

divergence at the level of organ or tissue. Indeed, much of the influential Drosophila literature on 

this topic analyzes parental and hybrid expression in whole animals (Patricia J. Wittkopp, Haerum, 

and Clark 2004; Landry et al. 2005; Patricia J. Wittkopp, Haerum, and Clark 2008; McManus et 

al. 2010; Wei, Clark, and Barbash 2014; Coolon et al. 2014) or heads (Graze et al. 2009); while 

this literature has provided valuable generalities about regulatory evolution, the possibility remains 

of henceforth undiscovered genetically and evolutionary important heterogeneity across organs. 

Additional studies used ASE to investigate interspecific divergence in Drosophila testes (Haerty 

 



47  

and Singh 2006; Lu et al. 2010; Llopart 2012; Brill et al. 2016; Banho et al. 2021). While this work 

has shed light on the regulatory basis of hybrid incompatibilities, given the propensity for hybrid 

dysgenesis in the testis, conclusions from studies of this organ may not apply to gene regulatory 

evolution more broadly. Few studies of interspecific ASE in animals have investigated single 

somatic tissues and characterized both cis and trans regulatory divergence (Goncalves et al. 

2012; Davidson and Balakrishnan 2016). 

Our goal here is to contribute to the literature on the genetics of interspecific regulatory 

divergence using the accessory gland (AG) of Drosophila as a model. Seminal fluid proteins (Sfps) 

are secreted by the accessory glands, ejaculatory duct, and ejaculatory bulb and transferred to 

females along with sperm during mating and are essential for fertilization, similarly to the seminal 

fluid of the mammalian prostate (reviewed in Poiani 2006; Wilson et al. 2017). The genus 

Drosophila has a polyandrous mating system featuring competition between males for matings 

and sperm competition (Boorman and Parker 1976; Imhof et al. 1998; Clark, Begun, and Prout 

1999). Sfps of Drosophila and many other insects induce a range of physiological and behavioral 

changes in females comprising the post-mating response (PMR; reviewed in Ravi Ram and 

Wolfner 2007; Avila et al. 2011; Sirot et al. 2014; Wigby et al. 2020), including increased egg laying, 

facilitation of sperm storage, immune system responses, increased feeding rates, increased 

activity level and decreased sleep, and decreased receptivity to remating. PMR phenotypes 

evolve in response to sperm competition and sexual conflict (Hollis et al. 2019). Sfps play a key 

role in mediating sperm competition; genetic variation in Sfp loci is linked to competitiveness 

(Clark et al. 1995; Chapman et al. 2000; Fiumera, Dumont, and Clark 2005), and males respond to 

perceived level of competition through differential allocation of Sfps to the ejaculate (Sirot, 

Wolfner, and Wigby 2011; Hopkins et al. 2019). 

As expected, given their possible roles in sexual conflict (Swanson and Vacquier 2002; 

Haerty et al. 2007), Sfp protein sequences evolve at an especially rapid rate, often under the 

influence of recurrent directional selection (Tsaur, Ting, and Wu 1998; Aguadé 1999; Begun et 
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al. 2000; Holloway and Begun 2004; Begun et al. 2006-3; Schully and Hellberg 2006; Wong et al. 

2008; Majane, Cridland, and Begun 2022), though relaxed selective constraint may also 

contribute to their rapid divergence (Dapper and Wade 2020; Patlar et al. 2021). Sfp genes have 

rapid rates of turnover (Wagstaff and Begun 2005; Mueller et al. 2005), exhibiting gene gain and 

loss even among closely related species (Begun and Lindfors 2005). 

While there is a long history of work on sequence evolution and turnover in Sfps (reviewed 

in Hurtado et al. 2022), less is known about gene expression evolution among Sfps or in the 

accessory gland more broadly. RNAi knockdowns demonstrate that PMR phenotypes are 

sensitive to expression level of many Sfps (Ravi Ram and Wolfner 2007; Patlar and Civetta 2022), 

suggesting that Sfp expression is a relevant phenotype on which selection could act via male 

reproductive success. Consistent with the observation that male-biased genes tend to have higher 

levels of interspecific expression divergence (Meiklejohn et al. 2003; Parisi et al. 2004; Ellegren 

and Parsch 2007; Brawand et al. 2011; Graveley et al. 2011; Assis, Zhou, and Bachtrog 2012; 

Whittle and Extavour 2019; Pal, Oliver, and Przytycka 2021), we recently reported rapid 

expression divergence as well as the evolution of novel genes and expression phenotype in the 

accessory gland (Cridland et al. 2020). However, Cridland et al. did not focus on the general 

properties of accessory gland transcriptome divergence, did not compare Sfp expression to 

expression divergence of other gene classes expressed in the accessory gland, and did not 

address the genetics of accessory gland expression divergence between species. To our 

knowledge there has been no work on regulatory evolution in the accessory gland. 

While hybrid males derived from crosses between D. melanogaster and its sibling species, 
 

D. simulans are generally completely sterile or inviable (Sturtevant 1920), with severely atrophied 

or absent testes, a previous report noted that hybrids between male D. melanogaster and female 

D. simulans have morphologically normal accessory glands that produce seminal fluid that can 

induce the PMR in females (Stumm-Zollinger and Chen 1988). In this study, we use ASE analyses 

derived from measures of gene expression in accessory glands of D. melanogaster, D. simulans, 
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and their hybrids to estimate cis and trans expression effects in the accessory gland and 

ejaculatory duct. We investigate regulatory evolution of the gland and uncover unique evolutionary 

properties of Sfps and other accessory-gland biased genes. We also quantify inheritance of 

expression phenotypes and characterize misexpressed genes that may be related to hybrid 

incompatibilities. We tie regulatory evolution to divergence in upstream noncoding regions and 

protein sequence evolution. Finally, we integrate ATAC-Seq data to link changes in chromatin 

state with expression divergence. 

 

METHODS 

 

RNA-Seq 

We performed RNA-Seq on each of three samples: D. melanogaster (Raleigh 517, Mackay et al. 

2012), D. simulans (w501), and a D. melanogaster X D. simulans interspecific hybrid, with three 

replicates per sample. We raised all Drosophila stocks on cornmeal-molasses-agar medium at 

25C and 60% relative humidity, on a 12:12 light/dark cycle. When we crossed the parents to 

produce the interspecific hybrid, we used a ratio of five female D. simluans to 25 male D. 

melanogaster, as females are unlikely to mate with heterospecific males. We collected virgin male 

adult flies and grouped them together with five males per vial. We aged flies for two days before 

dissection. On the day of the experiment, we anesthetized flies with CO2, dissected their 

accessory glands and anterior ejaculatory duct in cold 1X PBS, and collected the tissue in TRIzol 

(Thermo-Fisher 15596026) on ice. We confirmed that the hybrid organs appeared morphologically 

normal with seminal fluid production. After we collected tissue from 20 males we flash-froze the 

TRIzol tubes containing tissue in liquid nitrogen and stored the material at -80C. We extracted 

RNA using the standard TRIzol protocol followed by DNAse digestion (Invitrogen AM1907) and 

clean-up with AMPure beads (Beckman-Coulter A63881). Novogene performed RNA-Seq library 

preparation and Illumina sequencing (paired-end 150bp). 
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Assigning species-of-origin 
 

To determine the species-of-origin for each allele in the hybrid, we used an alignment-based 

approach relying on differences in the number of mismatches between the reads and each 

reference. We aligned each sample to each of two references, D. melanogaster (custom 

reference based on Flybase release 6.04 with SNPs included for the strain used here, Raleigh 

517), and D. simulans (Princeton University, release 3.0), using HiSat2 and requiring a MAPQ 

score ≥ 30. We sorted reads using custom perl, bash and R scripts 

(github.com/alexmajane/hybridASE). We sorted reads into groups that mapped to one reference 

uniquely or mapped to both references. For read pairs where at least one mate aligned uniquely, 

we assigned both reads to that species. For the remaining reads, we analyzed the number of 

nucleotide mismatches algorithmically to assign species-of-origin. Reads that aligned to one 

species with at least six fewer mismatches were assigned to the species with fewer mismatches. 

We also subjected our D. melanogaster and D. simulans samples to the same workflow, to A) 

account for artifactual effects of the procedure on expression analysis, B) establish a ground-truth 

false-positive rate for species-assignment, and C) identify problematic gene regions with high 

rates of erroneous species-assignment. To address the latter point, we calculated the fold change 

of counts (see below) per gene with and without inclusion of misassigned parental reads. If the 

absolute value of log2(fold change) was greater than 0.025 in either species, we removed that 

gene from our downstream analyses, a total of 382 genes. 

 
Quantification of gene expression 

 

After we assigned hybrid reads to species-of-origin and filtered out unassignable reads in hybrid 

and parental samples, we quantified gene expression using Salmon (Patro et al. 2017). We used 

Salmon’s alignment-free approach because it can account for differences in transcript length and 

GC content across samples. Since length and GC content vary between species due to evolution 

or annotation differences, we think it is important to account for this in comparative RNA-Seq 
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studies. Following quantification, we used tximport (Soneson, Love, and Robinson 2015) to 

estimate counts per gene. We limited our analysis to 1-to-1 orthologs between D. melanogaster 

and D. simulans, based on the FlyBase annotation (02/2020 release) with additional Sfp orthologs 

(Majane, Cridland, and Begun 2022). 

 
Differential expression 

 

We used estimated counts from tximport as the basis of all downstream analysis. We performed 

independent analyses of autosomal and X-linked genes because of their different inheritance in 

the hybrid. We used DESeq2 (Love, Huber, and Anders 2014) to normalize count data with the 

median-of-ratios method (Anders and Huber 2010), identify DE genes using Wald tests, and 

estimate moderated log-fold changes with the apeglm model (Zhu, Ibrahim, and Love 2019). 

 
Regulatory and inheritance classifications 

 

We refer to counts from D. melanogaster as Pmel, D. simulans as Psim, and allele-specific hybrid 

counts as F1mel and F1sim. We calculated total F1 expression (F1total) as F1mel + F1sim. We classified 

genes into regulatory and inheritance groups using the algorithm outlined in McManus et al. 

(2010). For this purpose, we define DE as a significant Wald test (Bonferonni adjusted p < 0.05) 

and make comparisons between A) parental expression: Pmel and Psim (P), B) ASE within the 

hybrid: F1mel and F1sim (H), and C) between parent expression and expression of parental-specific 

alleles in the hybrid: Pmel and F1mel or Psim and F1sim (T). We define regulatory classes as follows: 

A. conserved: no significant P, H, or T. 
 

B. cis: significant P and H, no significant T. 
 

C. trans: significant P and T, no significant H. 
 

D. cis + trans: significant P, H, and T, same directionality between the parental contrast 

and hybrid ASE. cis and trans effects favor expression of the same allele. 

E. cis by trans: significant P, H, and T, opposite directionality between the parental 

contrast and hybrid ASE. cis and trans effects favor expression of different alleles. 
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F. compensatory: significant H and T, but no significant P. cis and trans effects 

complement one another such that there has been no evolved expression difference 

among species. 

G. ambiguous: all other patterns of expression without classical interpretations, such as 

no P or H, but significant T (evidence of trans effects that appear only in the hybrid). 

We classified genes by inheritance comparing overall hybrid expression (F1total) to parental 

expression. Note that here we refer to dominance only in the phenotypic sense; we do not make 

inferences about the genetic basis of inheritance of expression phenotypes in the hybrid. We 

define the following inheritance classes: 

A. conserved: no DE between F1total and Pmel or Psim. 
 

B. additive: DE between F1total and both Pmel and Psim. F1total has an intermediate 

expression level. 

C. mel dominant: no DE between F1total and Pmel. DE between F1total and Psim. 
 

D. sim dominant: no DE between F1total and Psim. DE between F1total and Pmel. 
 

E. overdominant: DE between F1total and both Pmel and Psim. F1total is expressed at a higher 

level than both parents. 

F. underdominant: DE between F1total and both Pmel and Psim. F1total is expressed at a 

lower level than both parents. 

 
SFPs and AG-biased genes 

 

We define sets of seminal fluid proteins (Sfps) and accessory gland (AG)-biased genes to 

investigate patterns of DE, regulation, and inheritance in these gene classes. We refer to Wigby 

et al. (2020) for annotation of Sfps. There are 208 Sfps expressed in our dataset. To annotate 

AG-biased genes we obtained expression data from FlyAtlas2 (Leader et al. 2018), and calculated 

the index of tissue specificity, 𝜏	(Yanai et al. 2005), for all genes. We define AG-biased genes as 

those that are more highly expressed in the accessory gland than all other tissues and have 𝜏	≥ 
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0.8. There are 378 AG-biased genes expressed in our dataset, 238 of which are non-Sfps, which 

we use for further analysis. 

 
GO analysis 

 

We performed gene ontology (GO) enrichment analyses with Enrichr (Kuleshov et al. 2016). We 

defined background gene sets as all genes expressed in the data (log2(counts) ≥ 1). We used the 

Bioconductor D. melanogaster annotation (Carlson 2021) and queried terms from all three sub- 

ontologies (Biological Process, Molecular Function, and Cellular Component). 

 
Upstream sequence analysis 

 

We obtained sequences spanning 1000 bp, 750 bp, and 500 bp upstream of each D. 

melanogaster TSS (Flybase annotation 6.41) and removed any overlapping coding sequence. 

Then we used BLAST (gap open penalty: 2; gap extension penalty: 1) to find orthologous 

sequences in the D. simulans genome (Princeton University, release 3.0). We discarded 

sequences with more than one BLAST hit or overlapping alignments. Next we aligned D. 

melanogaster and D. simulans sequences with MUSCLE (Edgar 2004). We estimated the Kimura 

2-parameter nucleotide substitution rate (Kimura 1980) for each upstream region using EMBOSS 

distmat (Rice, Longden, and Bleasby 2000). We also trimmed the 500 bp sequences to shorter 

lengths of 100 bp, 200 bp, and 300 bp upstream of the TSS and repeated estimation of substitution 

rate. 

 
Protein sequence evolutionary analysis 

 

We analyzed protein sequence evolution by estimating divergence between species and rates of 

synonymous (dS) and nonsynonymous substitutions (dN). We obtained the longest open reading 

frame per gene from FlyBase annotations (D. melanogaster 6.41, D. simulans 2.02), translated 

nucleotide sequences with EMBOSS transeq (Rice, Longden, and Bleasby 2000), and aligned 

amino acid sequences with MUSCLE (Edgar 2004). We back-translated to codon alignments with 
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gaps removed using PAL2NAL (Suyama, Torrents, and Bork 2006). For each gene we estimated 

dN and dS using Goldman and Yang’s maximum likelihood codon-based substitution model 

(codeml; Goldman and Yang 1994). We performed this analysis with PAML (Yang 1997) 

implemented in BioPython (Cock et al. 2009). 

We additionally analyzed adaptive protein evolution in D. melanogaster using available 

population genomics data (Fraïsse, Puixeu Sala, and Vicoso 2019) with pre-computed McDonald- 

Krietman tests (McDonald and Kreitman 1991), as in our previous work (Majane, Cridland, and 

Begun 2022- see supplement for detail). We used the summary statistic 𝛼, which estimates the 

proportion of amino acid substitutions due to positive selection. A positive value suggests 

directional selection on a given gene, with larger values suggesting a greater proportion of 

adaptive substitutions. 

 
Chromatin state integration 

 

We analyzed chromatin state in D. melanogaster and D. simulans with ATAC-Seq data from Blair 

et al. (unpublished), who inferred ATAC-Seq peaks called from three replicates each in the same 

strains that we used. We used reciprocal BLAST (gap open penalty: 2; gap extension penalty: 1) 

on peak sequences between species and verified orthology of 1-to-1 best hits using synteny 

(nearest upstream and downstream annotated exons). We defined conserved peaks as those 

with a single reciprocal hit in each species and shared synteny. We inferred synteny from the 

nearest upstream and downstream exons. We defined orphan peaks as those with no BLAST 

hits. We additionally BLASTed orphan peak sequences to the reciprocal species’ genome and 

filtered out peaks with A) no hits to the genome, B) a hit within 100 bp of any annotated peak, C) 

multiple hits. It is important to compare truly orthologous regions when we quantify peak 

accessibility by counting reads. We defined orthologous regions of orphan peaks in reciprocal 

species as the span of each BLAST hit. We re-annotated conserved peaks by reciprocal BLAST 
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of peaks to each other species’ genome and extended the boundaries of each peak to the span 

of BLAST hits intersecting the original annotation. 

To quantify chromatin accessibility in each peak, we counted the number of aligned ATAC- 

Seq reads intersecting each peak with HTSeq (Anders, Pyl, and Huber 2015). We analyzed count 

data using DESeq2 similarly to RNA-Seq analysis. We then annotated peaks with the nearest 

TSS. For each gene, we used our Salmon quantification to select the transcript with highest 

expression in our sample and chose its annotated TSS. We then selected 1-to-1 peak-to-TSS 

pairs with the closest or overlapping peak per TSS, removing any duplicate matches from further 

analysis. We also filtered the data to include only pairs where each orthologous peak (or region 

in the case of orphans) matched the same gene in both species. 

 
RESULTS 

 
Alignment and identification of allele-specific reads 

 

We performed RNA-Seq on D. melanogaster, D. simulans, and an interspecific hybrid (Pmel, Psim, 

and F1). We obtained between 25.4 and 30.8M reads per RNA-Seq sample. We aligned each 

sample to each of two references, D. melanogaster and D. simulans. Each species aligns at a 

rate of 94-97% to the matching reference (Table S5). A slightly better alignment rate for Psim is 

expected, since the D. simulans strain we used in our experiment matches the reference strain, 

while our D. melanogaster strain differs from the reference. F1 aligned to the D. melanogaster 

reference at a rate of 61-62%, and to the D. simulans reference at a rate of 69-71%. A higher rate 

of alignment to D. simulans is expected given that the hybrid inherits a D. simulans X 

chromosome. 

Among F1 reads, ~20% aligned uniquely to D. melanogaster, 33-34% aligned uniquely to 
 

D. simulans, and 46-47% aligned to both references (Table S6). We used a mismatch-based 

approach to compare alignments and assign non-uniquely aligned reads to each species (Table 

S7). We were able to assign ~25% of non-uniquely aligned reads (~12% of total aligned reads) 
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to D. melanogaster, and 35-36% of non-uniquely aligned reads (16-17% of total aligned reads) to 
 

D. simulans, leaving 18-19% of total aligned reads of indeterminable origin and removed from our 

analysis. 

We gave parental samples the same treatment as the F1, to A) account for artifactual 

effects of the procedure on expression analysis, B) establish a ground-truth false-positive rate for 

species-assignment, and C) identify problematic gene regions with high rates of erroneous 

species-assignment. ~1.2% of Pmel reads uniquely aligned to the D. simulans genome, and 0.6- 

0.7% of Psim reads uniquely aligned to the D. melanogaster genome (Table S6). Among non- 

uniquely aligning parental reads, our assignment algorithm assigned 0.16-0.17% of Pmel reads to 

D. simulans, and 0.031-0.035% of Psim reads to D. melanogaster (Table S7). We used incorrectly 

assigned parental reads to identify gene regions with elevated levels of misassignment. Most 

misassigned reads do not overlap genes (Table S8). We identified 382 genes where misassigned 

reads significantly impacted estimates of gene expression (Supplemental Data), which we 

removed from downstream analysis. 

We used Salmon (Patro et al. 2017) to quantify gene expression on reads that passed our 

filtering and species-assignment. For F1 samples we used read whitelists to only quantify those 

reads with a confident species call. Salmon has advantages over alignment-based approaches 

for interspecific differential gene expression analysis because it accounts for transcript length and 

GC content differences, which may vary among orthologs across species due to evolution and/or 

gene annotation. Salmon mapping rates are as follows: 89-90% of F1 reads of D. melanogaster 

origin (hereafter F1mel), 84-85% of F1 reads of D. simulans origin (hereafter F1sim), ~94% of Pmel 

reads, and 86-87% of Psim reads. 

Transcriptome-wide view 
 

We converted quantified expression values from Salmon to estimated counts with tximport 

(Soneson, Love, and Robinson 2015) and used these counts as the basis of all downstream 

analyses. Given the different inheritance patterns of the autosomes and X chromosome in the 
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hybrid, we give these gene sets independent treatment for all analyses. Because the hybrid has 

a single D. simulans X chromosome, there is no ASE analysis of X-linked genes. We will refer to 

total F1 expression (sum of both alleles) as F1total, and ASE measures by F1mel and F1sim. 

Principal component analysis of transcriptome-wide gene expression shows tightly shared 

variance of within-sample replicates (Figure 6). Among autosomal genes, Pmel groups with F1mel 

and Psim groups with F1sim, while F1total groups away from these two clusters. PC1 appears to 

explain differences between F1 samples and Pmel/sim, with allele-specific samples lying between 

F1total and Pmel/sim, though much closer to Pmel/sim. PC2 appears to explain differences in expression 

between D. melanogaster and D. simulans, with F1total lying roughly halfway between species- 

specific expression. Among X-linked genes, both PC1 and PC2 appear to explain differences 

 

 

Figure 6. PCA of transcriptome-wide expression (log-transformed counts) showing the first two PCs. A) 
Autosomal-linked genes expression. Parental expression is similar to parent-specific alleles in the hybrid, 
with total hybrid expression clustering away from parental and allele-specific expression. B) X-linked 
gene expression. D. simulans expression is similar to hybrid expression. 
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between D. melanogaster and D. simulans allele-derived expression, and X-linked F1 expression 

is tightly grouped with Psim expression. We did not find appreciable differences in distributions of 

expression variance between samples or allele-specific expression (Fig. S8), aside from a very 

modest elevation in standard deviation among X-linked genes relative to autosomal genes. 

We used correlations of average gene expression to quantify transcriptome-wide 

divergence. Among autosomal genes, Pmel and Psim have a Pearson correlation coefficient r = 

0.934 (Figure 7A). F1total expression is more like each parent; expression profiles between F1total 

and Pmel have an r = 0.965 (Figure 7B), while F1total and Pmel have an r = 0.967 (Figure 7C). 

Correlations between allele-specific expression and the same-species parent are strongest: F1mel 

and Pmel have an r = 0.982 (Figure 7D); F1sim and Psim have an r = 0.980 (Figure 7E). Allele- 

specific expression within hybrids is somewhat more correlated than parental expression profiles 

are to one another; F1mel and F1sim have an r = 0.945 (Figure 7F). Among X-linked genes, Pmel 

and Psim are similarly correlated as with autosomal genes (r = 0.930, Figure 7G). X-linked gene 

expression in hybrids is overall very similar to D. simulans: F1total and Psim have an r = 0.983 

(Figure 7H). Comparing F1total and Pmel is very similar to the parental X-linked expression contrast 

with an r = 0.929 (Figure 7I). Overall, the data suggest widespread additivity for autosomal genes, 

and D. simulans-like expression on the hybrid X chromosome. The strong similarity in expression 

between the hybrid and the parents, and between hybrid ASE and parents, suggests that the 

accessory glands of this hybrid are not subject to particularly widespread misexpression. 

 
Differential gene expression 

 

In our analyses of differential gene expression (DE), we define DE in two ways: A) genes with a 

significant difference in normalized counts (Wald test, adjusted p < 0.01), and B) genes with an 
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Figure 7. Correlations of average gene expression across the transcriptome. r refers to the Pearson 
correlation coefficient, r2 is the coefficient of determination in a simple linear model. (A-C) Comparisons 
of parental expression and total hybrid expression. (D-F) Comparisons of ASE. (G-I) Comparisons of X- 
linked gene expression. 

adjusted p value < 0.01 and an absolute value of moderated log2(fold change) > 1. This second 

class of genes comprises larger effect-size DE which are potentially more biologically relevant. 

Without a log2(fold change) cutoff, we find that 33% of 9,223 total expressed genes are 

DE between Pmel and Psim (Table 2). Fewer are DE in comparison to the hybrid: 25% of expressed 

genes are DE between F1total and Pmel, and 27% between F1total and Psim. Requiring a log2(fold 

change) > 1 reduces the number of DE genes, and there are relatively fewer DE genes among 

contrasts with the hybrid: 17% of genes are DE between Pmel and Psim, while 10% are DE between 

F1total and Pmel, and 10% between F1total and Psim. 
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DE is less frequent between hybrid allele-specific expression and parents relative to total 

hybrid expression (Table 2): 17% of genes are DE between F1mel and Pmel with no log2(fold 

change) cutoff, and 19% of genes are DE between F1sim and Psim. DE with a log2(fold change) > 

1 is infrequent; just 5% of genes are DE between F1mel and Pmel, and 6% between F1sim and Psim. 

The percent of genes DE between F1mel and F1sim (allele-specific expression within the hybrid 

indicative of cis-regulatory effects) is 23% without a log2(fold change) cutoff, and 12% with a cutoff 

> 1. 
 

Among expressed X-linked genes, rates of DE between Pmel and Psim are similar to 

autosomal genes: 33% with no log2(fold change) cutoff, and 17% with a cutoff > 1. DE is more 

common between F1 and Pmel with 37% of X-linked genes DE with no cutoff and 18% with a cutoff. 

18% of genes are DE between F1 and Psim with no cutoff, indicative of trans-regulatory effects on 

expression given that the hybrid has a D. simulans X chromosome. Requiring log2(fold change) 

> 1 dramatically reduces the number of genes DE between F1 and Psim to just 4%, however, 

suggesting that trans-regulatory differences are unlikely to lead to large shifts in X-linked gene 

expression. 

Table 2. Differentially expressed genes. In the first three columns, DE is defined as a significant Wald 
test (Bonferroni adjusted p < 0.01). In the last three columns, DE additionally requires a log2(fold change) 
value greater than 1. 

chromosome contrast DE non-DE fraction DE DE: 
log2(FC) > 1 

non-DE: 
log2(FC) > 1 

fraction 
log2(FC) 

DE: 
> 1 

autosomes Pmel Psim 3005 6218 0.326 1608 7615 0.174  
autosomes F1total Pmel 2290 6933 0.248 883 8340 0.096  
autosomes F1total Psim 2459 6764 0.267 956 8267 0.104  
autosomes F1mel Pmel 1585 7638 0.172 430 8793 0.047  
autosomes F1sim Psim 1790 7433 0.194 561 8662 0.061  
autosomes F1mel F1sim 2132 7091 0.231 1103 8120 0.120  
X Pmel Psim 564 1135 0.332 284 1415 0.167  
X F1sim Pmel 631 1068 0.371 303 1396 0.178  
X F1sim Pmel 310 1389 0.182 66 1633 0.039  
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DE among seminal fluid proteins (Sfps) and accessory gland-biased genes 
 

Sfps are known to have very high rates of amino acid substitutions as well as gene turnover 

between species. Given the observation that rates of protein evolution are often correlated with 

gene expression evolution, we asked whether expressed Sfps (208 total) were more likely than 

non-Sfps to be DE between D. melanogaster and D. simulans (Pmel vs Psim) and between hybrid 

alleles (ASE: F1mel vs F1sim). Indeed, 59% of Sfps are DE between D. melanogaster and D. 

simulans, compared to 32% of non-Sfps (G test, p < 0.001), and 51% of Sfps are DE between 

hybrid alleles (ASE), compared to 23% of non-Sfps (G test, p < 0.001, Table S9). A greater 

proportion of Sfps are also DE with a log2(fold change) cutoff > 1: 28% of Sfps are DE between 

D. melanogaster and D. simulans, compared to 17% of non-Sfps, and 22% of Sfps are DE 

between hybrid alleles (ASE), compared to 12% of non-Sfps (Table S10). However, Sfps are a 

highly expressed class of genes (Fig. S9A-C), making them more likely to be DE. The median 

log2(counts) of Sfps is 8.46, while the median of non-Sfps is 4.31. To account for the effect of 

expression level on the likelihood of DE, we used a multiple logistic regression with average 

expression and Sfp status as independent variables and DE as the dependent variable (DE ~ 

log2(counts) + Sfp). In the parental contrast, average expression significantly predicts DE between 

Pmel and Psim (β = 0.22 ± 0.01, p < 0.001), however Sfp status does not predict DE (β = -0.04 ± 

0.16, p = 0.792). Considering ASE, average expression significantly predicts DE between F1mel 

and F1sim (β = 0.21 ± 0.007, p < 0.001), but Sfp status does not predict DE (β = 0.09 ± 0.16, p = 

0.554). Therefore, we conclude that in our experiment, Sfps are not any more likely to be DE than 

non-Sfps when accounting for expression level. 

If we consider genes to be DE with a log2(fold change) cutoff > 1 however, we observe a 

strikingly different result. Highly expressed genes are not much more likely to have large effect- 

size DE; average expression level has a weak relationship with DE between Pmel and Psim (β = 

0.04 ± 0.01, p < 0.001). Sfp status does predict large-effect size DE (β = 0.45 ± 0.16, p = 0.006). 

Average expression does not have a relationship with DE between F1mel and F1sim (β = 0.01 ± 
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0.01, p = 0.08), and Sfp status predicts DE (β = 0.53 ± 0.17, p = 0.002). We therefore conclude 

that Sfps are significantly enriched for large effect size DE events compared to non-Sfps. 

In addition to Sfps, other genes characteristic of the accessory gland can be defined with 

the index of tissue specificity, 𝜏	(Yanai et al. 2005). Here we define AG-biased genes as non-Sfps 

with 𝜏	> 0.8, a set of 238 genes. 31.1% of non-biased genes are DE between Pmel - Psim, and 

21.5% are DE between hybrid alleles. AG-biased genes have an elevated level of DE; 63% are 

DE between Pmel - Psim, and 57% are DE between hybrid alleles (Table S9). AG-biased genes are 

more highly expressed than non-AG-biased genes, but not as highly expressed as Sfps (Fig. 

S9D-F). To ask whether AG-biased genes are more likely to be DE, we used a multiple logistic 

regression on non-Sfps with average expression and AG-bias as independent variables and DE 

as the dependent variable (DE ~ log2(counts) + AG-bias). In the parental contrast, average 

expression significantly predicts DE between Pmel and Psim (β = 0.32 ± 0.01, p < 0.001), and AG- 

bias also predicts DE (β = 0.51 ± 0.15, p < 0.001). For ASE, average expression significantly 

predicts DE between F1mel and F1sim (β = 0.21 ± 0.007, p < 0.001), and again AG-bias predicts 

DE (β = 0.71 ± 0.14, p < 0.001). 

With a log2(fold change) cutoff, the AG-biased genes are even more likely to be DE. 16.6% 
 

of non-biased genes are DE between Pmel - Psim, and 11.3% are DE between hybrid alleles. 37% 

of AG-biased genes are DE between Pmel - Psim, and 28.6% are DE between hybrid alleles (Table 

S10). In the parental contrast, average expression weakly predicts DE between Pmel and Psim (β = 

0.03 ± 0.01, p < 0.001), and AG-bias strongly predicts DE (β = 0.95 ± 0.14, p < 0.001). For ASE, 

average expression does not predict DE between F1mel and F1sim (β = 0.01 ± 0.01, p = 0.40), and 

AG-bias strongly predicts DE (β = 0.96 ± 0.15, p < 0.001). It is therefore apparent that AG-biased 

genes are much more likely to be DE than more broadly expressed genes in the accessory gland 

and are especially enriched for large effect-size DE events. 



63  

Gene regulatory divergence classification 
 

We characterized cis- and trans-regulatory effects for each autosomal gene by comparing ASE 

in hybrids to expression in each parent species. 2764 genes have evidence of cis effects (30% of 

expressed genes), 3338 have evidence of trans effects (36%), and 1601 have evidence of both 

cis and trans effects (17%). While there are more genes with significant trans effects, the median 

cis effect is significantly larger (log2(fold change) = 0.92) than the median trans effect (log2(fold 

change) = 0.64, Wilcoxon rank sum test, p < 0.001). 

We further classified the regulatory basis of each gene following the algorithm outlined by 

McManus et al. (2010) (Figure 8, Tables S11, S12). 4062 genes (44%) are conserved, with 

nosignificant cis or trans effects. 933 (10.1%) are purely cis-regulated, and 912 (9.9%) are purely 

trans-regulated. Genes with both cis and trans effects are classified into three groups. First, there 

are 1116 (12.1%) with cis + trans regulation, where cis and trans effects have the same 

directionality (eg. Pmel > Psim and F1mel > F1sim). Secondly, just 104 (1.1%) genes have cis by trans 

regulation—cis and trans effects with opposite directionality (eg. Pmel > Psim and F1mel < F1sim). 

Figure 8. Regulatory classification by cis and trans mechanisms. A) Fraction of genes classified into 
each regulatory type, with Sfps and AG-biased genes shown separately. B) log2(fold change) of ASE and 
parental expression are shown with regulatory types highlighted. Ambiguous genes are removed, and 
scale is limited for clarity. For full data visualization see Figure S10. 
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Finally, there are 381 genes (4.1%) with compensatory regulation, such that there is no DE 

between Pmel and Psim despite evidence of cis and trans regulatory evolution. There are 

additionally 1715 genes (18.6%) that cannot be classified into any of the above categories and 

are labeled ambiguous. 

Comparing the regulatory classification of all genes to Sfps and AG-biased genes, both 

these gene classes are much less likely to be conserved (Figure 8A, Table S11), which is 

expected given their higher rates of divergence overall. Removing conserved and ambiguous 

classifications from consideration more clearly reveals differences in how Sfps and accessory 

gland-biased genes are regulated relative to all autosomal genes (Table S12). Both Sfps and 

accessory gland-biased genes are less likely to be purely cis regulated. There are about half as 

many cis-regulated genes among Sfps and a third fewer among accessory gland-biased genes. 

cis + trans regulation is particularly more common in Sfps and accessory gland-biased genes. 

Rates of pure trans, cis by trans, and compensatory regulation are roughly equal among gene 

sets. 

 
Inheritance classification, misexpression, gain- and loss-of-function phenotypes 

 

We characterized patterns of inheritance of expression phenotypes for autosomal genes by 

comparing F1total to each parent (Figure 9, Tables S13, S14). Conserved genes exhibit no DE in 

any comparison, comprising 4886 genes (53% of all expressed genes). 731 genes (7.9%) are 

additive, where Pmel and Psim are DE and F1total has an intermediate expression phenotype. Genes 

with parental divergence and with F1total expression levels that were not DE relative to either 

parent are classified as either mel dominant or sim dominant. Rates are similar: 1403 (15.2%) are 

mel dominant and 1208 (13.1%) are sim dominant. Genes that are overexpressed in F1total relative 

to both parents are overdominant, and underexpressed genes underdominant. There are 448 

(4.9%) overdominant and 547 (5.9%) underdominant genes. 
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Figure 9. Inheritance classification gene expression phenotypes in hybrid offspring. A) Fraction of inheritance 
types for autosomal, X-linked, Sfps, and AG-biased genes are each shown independently. B) log2(fold change) 
of hybrid expression relative to each parent for autosomal genes. C) X-linked genes. Scale is limited in B-C 
for clarity. For full visualization, see Figure S10. D) Inheritance types among each of the regulatory 
classifications identified through cis and trans mechanisms. 
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We also classified X-linked genes according to phenotypic inheritance patterns (Figure 

9A, C, Tables S13, S14). Compared to autosomal genes, X-linked have a similar percentage of 

conserved genes. As expected, given the hemizygous sim X chromosome and lack of cis effects 

in the hybrid, there is little additivity (3%) or mel dominant inheritance (7%); X-linked genes have 

a strong excess of sim-dominant phenotypes (28%). X-linked genes are also more likely to be 

underdominant or overdominant compared to autosomal genes: 14.5% of X-linked genes are 

misexpressed compared to 10.8% of autosomal genes (G-test, p < 0.001), consistent with the 

faster-X hypothesis (Vicoso and Charlesworth 2006). 

As with regulatory classes, Sfps and accessory gland-biased genes are much less likely 

to be conserved than all genes. Looking at the distributions of non-conserved classes (Table S14), 

both gene classes are more likely to be additive than mel or sim dominant. Sfps and accessory 

gland-biased genes as well as significantly higher levels of underdominance than overdominance, 

a departure from trends among all autosomal genes. 

Beyond misexpression, we also classified genes that are not DE between parents, and 

have a gain-of-function (GOF, overexpression in hybrids) or loss-of-function (LOF, 

underexpression in hybrids) expression phenotype (Supplemental Data). There are 58 genes with 

significant GOF (12% of all overexpressed genes), and 40 with significant LOF (10% of all 

underexpressed genes)—representing relatively rare events. Further, restricting GOF to cases 

with insignificant expression in parents (log2(counts) < 1 in Pmel and Psim, log2(counts) > 1 in F1total) 

leaves five instances, including prolyl-4-hydroxylase-⍺	MP and four uncharacterized genes (Table 

S14). There are two cases of LOF with insignificant hybrid expression (log2(counts) > 1 in Pmel 

and Psim, log2(counts) < 1 in F1total): β-Tubulin at 85D and Pendulin (Table S16). 

Next, we examined the relationship between regulatory and inheritance classes (Figure 

9D, Table S17). We expect that genes with stronger cis components would be more likely to have 

an additive inheritance pattern, on the basis of the relative contributions of each species’ allele to 

total hybrid expression (Lemos et al. 2008; McManus et al. 2010). We found that genes with 
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strong cis regulatory components had the highest levels of additivity: 31.8% of cis and 31.9% of 

cis + trans regulated genes had additive inheritance, compared to just 5.9% of trans regulated 

genes. We expected that genes with antagonistic cis and trans components would be more likely 

to lead to misexpression in hybrids, highlighting potential incompatibilities between species. 

Indeed, we find that cis-by-trans and compensatory gene classes are more likely to lead to 

underdominant and overdominant inheritance patterns than other genes classes. Cis by trans 

regulated genes have an excess of overdominance (22%) relative to underdominance (7%), but 

this may be attributable to the small sample size of 104 cis-by-trans regulated genes. Finally, we 

observe a strong trend towards trans regulated genes being inherited in a mel-dominant fashion 

(46% of trans regulated genes, compared to just 27% being sim-dominant; mel-dominant genes 

have a significantly greater proportion of trans regulation: G-test, p < 0.001). 

 
GO enrichment analysis 

 

We ran a GO analysis to determine significantly enriched terms within regulatory and inheritance 

classes (Fig. S11, Supplemental Data). To increase the sample of X-linked genes, we used genes 

overexpressed or underexpressed in the hybrid relative to D. simulans, rather than genes strictly 

classified as overdominant or underdominant. Purely cis-regulated, cis-by-trans, and conserved 

genes are generally associated with larger p values and/or weakly enriched GO terms. Among 

our more significant results are 73 terms associated with translation in purely trans-regulated 

genes, including many ribosomal subunit and eukaryotic elongation factor proteins (Fig S11A, 

Supplemental Data). Translation-related genes are also significantly enriched for mel-dominant, 

and particularly for overdominant inheritance. Among the 40 translation proteins that are trans 

and mel-dominant, 32 are more highly expressed in D. melanogaster (chi-square test, p = 0.005). 

The remaining 33 genes with other modes of inheritance are not biased towards either parent 

(chi-square test, p = 0.82). 
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Translation-related GO terms are also enriched in overdominant inheritance gene sets on 

the autosomes and overexpressed genes on the X chromosome (Fig S11B, C, Supplemental 

Data). There are 61 overdominant translation-related genes on the autosomes. This gene set only 

partially overlaps with the trans-regulated gene set—18 of overdominant translation-related genes 

are trans-regulated, but eight are cis + trans, six are cis by trans, 12 are compensatory, and 17 

are ambiguous. On the X chromosome, there are an additional 52 overexpressed genes 

associated with translation. Taken together, the data suggest that translation-related genes are 

especially likely to be both trans-regulated and overdominant, but that overdominance in these 

genes may be enacted through diverse regulatory mechanisms. 

Underdominant inheritance / underexpression is strongly associated with golgi / 

endoplasmic reticulum vesicle transport GO terms on both the autosomes (137 genes, Fig. S11B) 

and X chromosome (36 genes, Fig. S11C). Of 137 underdominant transport-related genes on the 

autosomes, 86 have an ambiguous regulatory classification, while 20 are trans, 18 are cis + trans, 

and 13 are compensatory. Of the ambiguous terms, all are non-DE between parents, and non- 

DE between hybrid alleles. Therefore, there is no evidence of cis effects in these genes. 

Underdominance is indicative of trans factors, however these effects have not led to divergence 

between D. melanogaster and D. simulans, suggesting trans effects that occur specifically in the 

hybrid. 

 
Upstream sequence divergence 

 

We aligned noncoding sequences upstream of orthologous D. melanogaster and D. simulans 

TSSs and estimated the nucleotide substitution rate (Kimura 1980) to analyze divergence in 

putative promoter regions. We analyzed distributions of substitution rate for various upstream 

sequence lengths (Fig. S12). The 300 bp region captures the highest overall levels of divergence, 

so we chose this set for further analysis. We observe significant variation in upstream sequence 

evolution among regulatory and inheritance classes (Kruskal tests, p < 0.01). Among regulatory 
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classes, conserved genes have the lowest rate of upstream sequence divergence with a median 

of 70.1 substitutions / kb (Figure 10A). All other classes except cis by trans have significantly 

greater divergence rates (Wilcoxon rank sum tests, p < 0.01). Ambiguous and compensatory 

genes have the greatest rates at 88.1 and 88.3 substitutions / kb, respectively. Among inheritance 

classes, additive genes (median 74.4 substitutions / kb) have similar rates to conserved genes 

(median 73.2 substitutions / kb; Wilcoxon rank sum test p > 0.05). Underdominant genes have 

much higher rates of upstream sequence divergence with a median of 103.5 substitutions / kb 

(pairwise Wilcoxon rank sum tests, p < 0.001 vs all other classes). Given the enrichment of 

underdominant genes for golgi / protein transport-related GO terms, we asked whether those 

 

Figure 10. A) Distributions of Kimura-2-parameter estimated substitution rates among regulatory and 
inheritance classes. B) Distributions of nonsynonomous substitution rate (dN) among regulatory and 
inheritance classes. K2P distance and dN vary significantly across (Kruskal tests, p < 0.001). Alongside 
the median, significant differences by pairwise Wilcoxon rank sum tests (Holm-Bonferroni adjusted p < 
0.05) are indicated by different letters (a, b, …) across gene sets. 
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genes were confounded with the elevated level of upstream sequence divergence. Of 451 

underdominant genes with upstream sequence information, 109 are associated with golgi / protein 

transport-related GO terms. If we remove these from the analysis, underdominant genes still have 

significantly greater upstream sequence divergence than all other classes (median 101 

substitutions / kb, pairwise Wilcoxon rank sum tests, p < 0.001). Genes with mel or sim dominance 

(median 86.2 and 80.4 substitutions / kb) have an intermediate level of upstream sequence 

divergence. Since cis-regulatory evolution could proceed through mutations in promoter regions, 

we asked whether the magnitude of ASE or parental divergence is correlated to upstream 

sequence divergence, however, there does not appear to be any relationship (Fig. S13). 

Upstream sequence divergence in Sfps or AG-biased genes does not differ significantly from non- 

Sfps / non-AG-biased genes (Wilcoxon rank sum tests, p = 0.16, p = 0.26, respectively). 

 
Protein sequence evolution 

 

Previous studies have demonstrated positive correlations between gene expression divergence 

and protein sequence evolution (Warnefors and Kaessmann 2013; Hodgins et al. 2016; Zhong, 

Lundberg, and Råberg 2021). We asked whether this was the case in our data, and additionally 

whether rates of protein sequence evolution vary among different regulatory and inheritance 

classes. There is no evidence of association between the rate of protein sequence evolution (dN) 

and expression divergence between parents or ASE in the accessory gland (Fig. S14A, B). In 

contrast, conserved genes tend to have higher dN than other regulatory and inheritance classes 

(Figure 10B). dN is negatively correlated with expression, as expected (Drummond et al. 2005). 

However, a multivariate regression of dN by expression level and parental expression divergence 

suggests that genes with parental conservation do have greater dN than DE genes (average 

expression: β = 1.3x10-3 ± 8.1x10-5, p < 0.001; parental expression DE: β = 1.7x10-3 ± 6.4x10-4, p 

= 0.007). Expression averaged between both parents Conserved genes are followed by cis 
 

regulated genes and other classes with strong cis components. Trans, compensatory, and 
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ambiguous genes have relatively lower dN. Conserved and additive classes have higher dN than 

other inheritance modes. These are followed by mel and sim dominant genes, with overdominant 

and underdominant genes having the lowest dN. 

We also observed differences in dN among Sfps and AG-biased genes (Fig. S14C, D). As 

expected given high rates of positive selection (Tsaur, Ting, and Wu 1998; Aguadé 1999; Begun 

et al. 2000; Holloway and Begun 2004; Begun et al. 2006-3; Schully and Hellberg 2006; Wong et 

al. 2008; Majane, Cridland, and Begun 2022) or relaxed selective constraint (Dapper and Wade 

2020; Patlar et al. 2021) on Sfps, median dN is 3.6 times greater in Sfps than non-Sfps (Wilcoxon 

rank sum tests, p < 0.001). Among AG-biased non-Sfps, dN is modestly elevated 1.3 times higher, 

but still significantly different from non-accessory gland-biased genes (Wilcoxon rank sum tests, 

p = 0.00101, p < 0.001). 

We also analyzed adaptive protein substitutions in D. melanogaster with McDonald- 

Kreitman tests and compared the summary statistic 𝛼	 (higher 𝛼	 suggests a greater overall 

proportion of adaptive amino acid substitutions) among gene classes. We find patterns that are 

similar to—although weaker than—patterns in dN (Fig. S15A). In both regulatory and inheritance 

classes, conserved genes have significantly higher median 𝛼	than some other types, but we do 

not observe significant differences among other classifications. As with dN, we observe 

significantly elevated 𝛼	among Sfps (Fig. S15B): median 𝛼	among Sfps is 0.256; among non- 

Sfps, median 𝛼	= -0.375 (Wilcoxon rank sum test, p < 0.001). Unlike dN, 𝛼	 does not differ 

significantly among AG-biased and non-biased genes (Fig. S15C, Wilcoxon rank sum test, p = 

0.52). 

 
Chromatin state integration 

 

We used ATAC-Seq data (Blair et al., unpublished) from D. melanogaster and D. simulans to 

intersect chromatin accessibility with our DE and ASE analyses. We annotated ATAC-Seq 

 
 
 
 



72  

 

ρ = 0.296

0

5

10

15

2.5 5.0 7.5 10.0
promoter peak accessibility

ge
ne

 e
xp

re
ss

io
n

A
ρ = 0.312

0

5

10

15

2.5 5.0 7.5 10.0
promoter peak accessibility

ge
ne

 e
xp

re
ss

io
n

B

0.00

0.25

0.50

0.75

1.00

non-DE DE
parental divergence

fra
ct

io
n

C

0.00

0.25

0.50

0.75

1.00

non-DE DE
ASE divergence

fra
ct

io
n

type
sim_orphan_peak

mel_orphan_peak

conserved_peak

no_peak

D

ρ = 0.35

-5.0

-2.5

0.0

2.5

5.0

-5.0 -2.5 0.0 2.5 5.0

DA :  log2 
mel
sim

D
E

: 
lo
g 2

 P m
el

P s
im

E
ρ = 0.22

-5.0

-2.5

0.0

2.5

5.0

-5.0 -2.5 0.0 2.5 5.0

DA :  log2 
mel
sim

AS
E

: 
lo
g 2

 F1
m
el

F1
si
m

F

M: -0.02 M: 0.014 M: 0.277 M: -0.194
Q1: -0.313 Q1: -0.344 Q1: -0.213 Q1: -0.997
Q3: 0.262 Q3: 0.385 Q3: 0.981 Q3: 0.241
S: -1.14 S: 0.67 S: 2.28 S: -1.83

-2

-1

0

1

2

no_peak
conserved_peak

mel_orphan_peak

sim_orphan_peak

lo
g(

pa
re

nt
al

 e
xp

re
ss

io
n 

di
ffe

re
nc

e)

G M: -0.006 M: -0.005 M: 0.232 M: -0.207
Q1: -0.212 Q1: -0.284 Q1: -0.115 Q1: -0.805
Q3: 0.208 Q3: 0.273 Q3: 1.101 Q3: 0.231
S: -0.94 S: 0.63 S: 2.31 S: -1.93

-2

-1

0

1

2

no_peak
conserved_peak

mel_orphan_peak

sim_orphan_peak

lo
g(

AS
E)

H

Figure 11. Interfacing promoter region accessibility estimated from ATAC-Seq data with gene expression. 
Gene expression and conserved peak accessibility have a positive relationship in (A) Pmel and (B) Psim. 
Spearman’s rank coefficient ⍴ is displayed. DE genes are more likely to be associated with orphan peaks in 
both the (C) parental and (D) ASE contrast. (E) Parental expression divergence and (F) ASE (y-axis) for are 
plotted against accessibility differences for DA conserved chromatin peaks called by ATAC-Seq (x-axis). 
(G) Distributions of log2(fold change) of parental expression difference differ among peak types. M: median, 
Q1: 1st quartile, Q3: 3rd quartile, S: skewness. Genes associated with conserved peaks have a broader 1st-
3rd interquartile range and significantly larger median absolute value than genes without an annotated 
promoter peak. Orphan peaks are skewed towards greater expression values in the species with a peak. 
(H) Distributions of log2(fold change) of ASE show similar patterns to parental divergence. 
 



73  

peaks as conserved, mel orphans, or sim orphans. Conserved peaks are called in orthologous 
 

regions of both species, whereas orphan peaks are called only in one species. We used log2 of 

normalized counts of reads overlapping each peak region to define peak accessibility in each 

species, and quantified differential accessibility (DA) similarly to differential expression. Note that 

due to the high level of background in ATAC-Seq, there is accessibility even in orphan regions 

where no peak is called (eg., D. simulans will still have appreciable accessibility in the region of 

a mel orphan peak). 

In total we annotated 7,416 conserved, 2,370 orphan sim, and 1,680 orphan mel peaks. 

We made peak-to-gene associations annotating peaks to the closest / overlapping transcription 

start site (TSS), which left us with 2,898 conserved, 1,627 orphan sim, and 1,232 orphan mel 

peaks with 1-to-1 gene annotations. Among annotated conserved peaks, 88% overlap the TSS. 

Roughly 6% of non-overlapping peaks are upstream of the TSS, and 6% are downstream. The 

median width of conserved peaks is 644 bp in both D. melanogaster and D. simulans, while the 

mean is 759.5 bp in melanogaster and 758 bp in simulans. Orphan peaks are much less likely to 

overlap with the TSS: 16% of orphan mel and 19% of orphan sim have overlap. Orphan peaks 

are also more likely to be upstream than downstream. In D. melanogaster, 57% of orphan peaks 

are upstream while 26% are downstream; in D. simulans, 50% are upstream and 30% are 

downstream. Orphan peaks are also smaller than conserved peaks: the median width of mel 

orphans is 399 bp, while the median width of sim orphans is 255 bp. PCA of log2(counts) shows 

that replicates cluster together by species (Fig. S16A-C), though we note that clustering is not as 

strong as RNA-Seq data, which is expected due to the background and variance inherent of 

ATAC-Seq data. 

Relative accessibility among species in conserved peaks is normally distributed (Fig. 

S17A; 25% percentile log2(mel / sim) = -0.205; 75% percentile = 0.212), suggesting there is no 

systematic directionality in chromatin accessibility between species. The distribution of log2(mel / 

sim) for orphan peaks is highly skewed towards each respective species (Fig. S17B, C; mel 
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orphans: 25% percentile log2(mel / sim) = 0.48; 75% percentile = 1.50; sim orphans: 25% 

percentile log2(mel / sim) = -1.48; 75% percentile = -0.48, in line with the expectation that the 

species with a peak called will have higher accessibility. There are a small number of cases where 

the species without a peak has higher accessibility (2.3% of mel orphans, 4.9% of sim orphans). 

We removed from further consideration A) orphan peaks that are less accessible in the species 

with a peak present, and B) orphan peaks that are not DA, leaving 74% of mel and 72% of sim 

orphans (Fig. S17D, E). 

We expect that relatively more accessible chromatin should allow for greater levels of 

gene expression, so we assessed the relationship between peak accessibility and gene 

expression. There is a weak positive relationship between accessibility and expression (Figure 

11A, B), suggesting that chromatin state and expression are indeed correlated. Given this 

relationship, we asked whether the presence of chromatin peaks was associated with the 

likelihood of DE in nearby genes. In both parental and ASE contrasts, genes that are DE are 

particularly enriched for the presence of nearby orphan peaks relative to non-DE genes (Figure 

11C, D, Table S18). We used a multiple logistic regression with average expression and peak 

status as independent variables and DE as the dependent variable (DE ~ log2(counts) + peak). In 

the parental expression contrast, presence of a conserved peak is not related to DE (β = -0.04 

± 0.06, p = 0.512), but presence of orphan peaks are strong predictors of DE (mel orphan: β = 

0.56 ± 0.10, p < 0.001, sim orphan: β = 0.48 ± 0.08, p < 0.001). Similarly, conserved peaks are 

not related to DE in ASE (β = -0.10 ± 0.07, p = 0.132), but orphan peaks strongly predict DE (mel 

orphan: β = 0.46 ± 0.10, p < 0.001, sim orphan: β = 0.49 ± 0.08, p < 0.001). Average gene 

expression also predicts DE in both contrasts, but the regression coefficients are notably smaller 

in comparison with orphan peak presence (parental: β = 0.22 ± 0.01, p < 0.001; ASE: β = 0.21 ± 

0.01, p < 0.001). 

If we define DE genes with log2(fold change) > 1, there is a stronger relationship between 

orphan peaks and DE than without a log2(fold change) cutoff, and a weak negative relationship 
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between conserved peak presence and DE (Table S19). In the parental contrast, presence of a 

conserved peak negatively predicts DE (β = -0.17 ± 0.08, p = 0.046), and orphan peaks are strong 

predictors of DE (mel orphan: β = 0.78 ± 0.11, p < 0.001, sim orphan: β = 0.86 ± 0.09, p < 0.001). 

Similarly, conserved peaks are negatively related to DE in ASE (β = -0.30 ± 0.10, p = 0.002), and 

orphan peaks strongly predict DE (mel orphan: β = 0.85 ± 0.11, p < 0.001, sim orphan: β = 0.77 

± 0.10, p < 0.001). 
 

Next, we asked whether the magnitude of expression differences between species or ASE 

was correlated with the magnitude of peak accessibility differences among DA peaks. We find a 

weakly positive relationship between ranks of these measures (Figure 11E, F; conserved peaks, 

parental divergence: ⍴	= 0.35; ASE: ⍴	= 0.22). These correlations are remarkably weaker for 

orphan peaks (Fig. S18). In summary, it appears that the presence of accessible chromatin 

increases the likelihood of differential expression of nearby genes, and that quantitative 

differences in conserved peak accessibility are correlated with concordant differences in gene 

expression. However, there is not a strong quantitative relationship here regarding orphan peaks. 

To ask about the relationship of chromatin accessibility on cis and trans regulatory 

divergence, we compared Spearman rank correlations between expression divergence and 

accessibility divergence among conserved, pure cis, pure trans, and cis + trans regulated genes 

(Table S20). As expected, among conserved genes there is no correlation of accessibility 

divergence with either parental expression (⍴	= -0.01) or ASE divergence (⍴	= -0.08). Genes with 

trans-regulatory components have a stronger correlation of accessibility divergence with parental 

expression divergence (⍴	= 0.52 for both trans and cis + trans) than pure cis-regulated genes (⍴	

= 0.41). Genes with trans-regulatory components have a no correlation of accessibility divergence 

with ASE divergence (⍴	= 0.14), while cis (⍴	= 0.42) and cis + trans (⍴	= 0.44) genes have relatively 

strong correlations. It therefore appears that genes with cis and trans regulatory divergence have 

relatively stronger correlations between accessibility and parental expression divergence, and 
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that only cis-regulated genes show 

correlations between accessibility 

divergence and ASE divergence. 

Finally, we observed the relative 

distributions of gene expression 

differences in genes with nearby 1-to-1 

peaks and genes without a nearby 

peak, by comparing log2(fold changes) 

(Figure 11G). In the parental contrast 

(Pmel - Psim), genes without a peak 

annotation have a narrower distribution 

of log2(Pmel / Psim) relative to peaks with 

a conserved peak nearby, but both 

gene sets have medians near 0. The median absolute value of log2(Pmel / Psim) in genes with 

a conserved peak is 0.37, significantly higher than genes with no peak, median = 0.29 (Wilcoxon 

rank sum test, p < 0.001). Genes with a mel orphan peak nearby are biased towards positive 

values of log2(Pmel / Psim) with median = 0.252, and genes with a sim orphan peak nearby are biased 

towards negative values with median = -0.221. The median absolute values of log2(Pmel / Psim) of 

genes near orphan peaks are significantly greater than genes near a conserved peak or no peak 

(median mel orphan = 0.61; sim orphan = 0.59; Kruskal test, p < 0.001, pairwise Wilcoxon rank sum 

tests, p < 0.001 in each case). Medians associated with mel peaks and sim peaks are not 

significantly different (Wilcoxon rank sum test, p = 0.30). We observe the same patterns in ASE 

among different classes of peaks, but the magnitude of expression differences is smaller 

compared to parental DE (Figure 11H).  

Regulatory and inheritance classes are associated with different proportions of chromatin 

peak types (Figure 12, Table S21). As expected, genes that are annotated as conserved in 
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Figure 12. Proportions of peak types among A) 
regulatory and B) dominance classes. 
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regulation or inheritance are much less likely to be associated with nearby peaks. The set of 

genes with purely cis regulation have a smaller proportion of conserved peaks than genes with 

significant trans factors. Genes with cis + trans regulation, and genes with additive inheritance, 

have the highest respective shares of orphan peaks. Underdominant genes have the highest 

share of conserved peaks among inheritance classes. 

 
DISCUSSION 

 
 

Autosomal gene expression profiles between D. melanogaster and D. simulans were overall 

similar as evidenced by transcriptome-wide expression correlations (r = 0.934). The correlation is 

somewhat stronger than what we observed in our recent bulk RNA-Seq (Cridland et al. 2020) and 

single-cell RNA-Seq studies (Majane, Cridland, and Begun 2022). Given the myriad technical 

differences between independent studies, it is difficult to put the strength of these correlations into 

a broader context, and we therefore cannot make conclusions about the relative level of 

transcriptome divergence observed here to other Drosophila tissues or species. Hybrid 

expression profiles are overall more like each parent than the parents are to each other, and 

appear to be a midpoint between parental expression, as evidenced by PCA. ASE profiles within 

the hybrid are more similar than parents are to one another, as expected given that parental 

divergence is the result of cis and trans effects, while divergence between hybrid alleles is driven 

only by cis effects. Similarly, we observed a higher rate of DE between parents than between 

hybrid alleles. As we see with transcriptomic correlations, large effect-size DE between hybrid 

alleles and parent-of-origin is rare (4% of genes), suggesting that trans- effects of large effect size 

are uncommon. 

X-linked genes are strikingly more similar between the hybrid and D. simulans than to D. 

melanogaster or between the parents, which is expected since, given that the hybrids have a D. 

simulans X chromosome, deviations from simulans X-linked expression in the hybrid must be due 

to trans-acting factors. X-linked and autosomal gene expression profiles have very similar 

correlations between parents. X-linked and autosomal genes also have similar levels of DE, with 
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and without a log2(fold change) cutoff. These results are unexpected since whole-animal 

transcriptome data shows a strong faster-X effect with greater divergence between X-linked 

genes, even among non-male biased genes (Meisel, Malone, and Clark 2012; Kayserili et al. 

2012). We observed a modest rate of DE between the hybrid and D. simulans X chromosomes, 

suggesting trans effects are not uncommon on the X. However, large effect-size DE in this 

contrast is particularly rare at just 4% of genes, suggesting that these trans effects are unlikely to 

have a large effect on gene expression. 

Since Sfps are known to evolve rapidly at the level of protein sequence and gene turnover, 

we asked whether they had particularly high rates of expression divergence between species. 

Sfps are not any more likely to be DE than all autosomal genes. However, Sfps are much more 

likely to have large effect-size DE. This suggests that in addition to extraordinarily rapid protein 

divergence, Sfps have also diverged in expression level at an unusually high rate. Accessory 

gland-biased non-Sfps also have a particularly high rate of expression divergence. Taken 

together, it therefore appears that genes that comprise the accessory gland’s unique 

transcriptome are diverging at a particularly elevated rate. Given the gland’s function and central 

role in sexual conflict between males and females, adaptive divergence is a plausible explanation 

for this expression divergence, but future research using phylogenetic methods to model 

expression phenotypes as evolving traits on a tree is required to distinguish between directional 

selection and relaxed constraint on expression. 

Consistent the observation of relatively little DE between hybrid alleles and parents-of- 

origin, we find the median cis effect is 43% larger than the median trans effect, in contrast to 

McManus et al. (2010), who observed significantly larger trans effects in whole female Drosophila 

hybrids. Despite being smaller, trans effects are more common than cis effects in our data. While 

there is a general expectation that cis effects accumulate more than trans between species 

(reviewed in Signor and Nuzhdin 2018; Hill, Vande Zande, and Wittkopp 2021), this is not always 

the case (McManus et al. 2010; Coolon et al. 2014; Sánchez-Ramírez et al. 2021). More work is 

needed on diverse somatic organs to understand the distribution of cis and trans effects across 
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tissues, which could help answer a broader question of which factors influence the variation 

observed in relative levels of interspecific cis and trans divergence. 

We classified genes into regulatory and inheritance classes as originally outlined in 

McManus et al. (2010). We find that relatively equal proportions of genes have evolved through 

purely cis or trans regulation, and a larger proportion evolve through both mechanisms. Opposing 

directionality of cis and trans evolution (cis by trans and compensatory classes) is particularly 

rare. Interestingly, it appears that opposing cis and trans effects are particularly pronounced in 

studies with whole adult females or heads (Gibson et al. 2004; Ranz et al. 2004; Landry et al. 

2005; Graze et al. 2009; McManus et al. 2010; Coolon et al. 2014). Mouse liver (Goncalves et al. 

2012) and testes (Mack, Campbell, and Nachman 2016) also have relatively high levels of 

opposing cis and trans effects. Notably, Sánchez-Ramírez et al. (2021) found a higher level of 

opposing cis and trans effects among female-biased genes in Caenorhabditis. Cartwright and Lott 

(2020) found low levels of opposing cis and trans effects in the early embryo, which increased in 

later stage embryos. Avian brains (Davidson and Balakrishnan 2016) and Hawai’ian testes (Brill 

et al. 2016) also had low levels of opposing cis and trans effects. Thus, there is evidence of 

variation among species, tissues, developmental stage, and sex. Given the sparsity of 

interspecific tissue-specific data however, it is difficult to draw general conclusions from the 

existing studies. Sfps and accessory gland-biased genes appear to accumulate higher levels of 

cis + trans regulation than all autosomal genes, with purely cis or trans regulation being relatively 

rare. Additionally, Sfps and accessory gland-biased genes have much more additivity than all 

genes, as well as elevated misexpression (see below). Levels of opposing cis and trans effects 

are very similar to all autosomal genes. 

Misexpression is relatively rare, with just 10.8% of autosomal genes overdominant or 

underdominant in the hybrid. Further, just a handful of genes have complete GOF or LOF 

expression phenotypes. These results suggest that the accessory gland is not prone to 

widespread dysgenesis between these species, in contrast to results in Drosophila testes or 

female whole-animal data (Ranz et al. 2004; Haerty and Singh 2006; Moehring, Teeter, and Noor 
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2007; McManus et al. 2010; Coolon et al. 2014; Cartwright and Lott 2020), Caenorhabditis 

(Sánchez-Ramírez et al. 2021), mouse liver (Goncalves et al. 2012) and mouse testis (Mack, 

Campbell, and Nachman 2016). Thus, transcriptomic data are consistent with Stumm-Zollinger 

and Chen’s observations (1988) that these hybrid accessory glands have relatively normal 

morphology, Sfp protein expression, and ability to induce the female PMR. Other studies have 

also found limited levels of misexpression in Drosophila larva (Moehring, Teeter, and Noor 2007; 

Wei, Clark, and Barbash 2014), female heads (Graze et al. 2009), Hawai’ian Drosophila testes 

(Brill et al. 2016), and avian brains (Davidson and Balakrishnan 2016). Clearly, the level of hybrid 

dysgenesis in gene expression is highly variable among species and tissues; more work on tissue-

specific ASE is needed to fill the gaps and broaden our understanding of hybrid misexpression. 

Several studies in Drosophila have found that male-biased genes are prone to being 

misexpressed in hybrids and are especially likely to be underdominant in whole animals or testis 

(Haerty and Singh 2006; Michalak and Noor 2003; Moehring, Teeter, and Noor 2007; McManus 

et al. 2010), a pattern observed in most, but not all Drosophila crosses (Banho et al. 2021). 

Underdominant male-biased genes are also linked to male sterility (Michalak and Noor 2004). We 

also found higher levels of misexpression among male biased genes with a particular enrichment 

for overdominance. Autosomal genes have similar rates of overdominance and underdominance. 

Sfps have 2.7 times as many misexpressed genes, with a ratio of underdominant to overdominant 
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expression of 2.3; accessory gland-biased non-Sfps are have 2.9 times as many misexpressed 

genes, with a ratio of underdominant to overdominant expression of 3.4. These data suggest that 

the widely reported observation of male biased underexpression is not limited just to the testis. 

Whether this pattern holds for male-biased genes across multiple somatic tissues or only those 

related to reproduction is an important question for future studies. 

Two predictions of the faster-X hypothesis (Vicoso and Charlesworth 2006) are 1) 

elevated expression divergence among X-linked genes (faster-X divergence) along with 2) 

increased misexpression in hybrids (faster-X misexpression). Faster-X divergence has been 

observed in flies (Meisel, Malone, and Clark 2012; Kayserili et al. 2012), but Drosophila hybrids 

actually have a slower-X misexpression pattern in the testes (Lu et al. 2010; Llopart 2012) or no 

difference from autosomal misexpression in larvae (Wei, Clark, and Barbash 2014). On the 

contrary, our data shows no evidence of faster-X divergence, but does show faster-X 

misexpression, similar patterns to those observed in mice (Good et al. 2010; Larson et al. 2016). 

Faster-X gene expression patterns may therefore vary among tissues in Drosophila, and future 

studies of tissue-specific hybrid gene expression are needed to determine the extent and biology 

underlying these potential differences. 

Genes that are autosomal overdominant or X-linked overexpressed are both highly 

enriched for translation-related genes, including numerous elongation factors and ribosomal 

subunits. Overexpressed proteins in D. melanogaster - D. simulans hybrid embryos were enriched 

for “translation initiation” genes (Bamberger et al. 2018), and misexpressed genes in hybrid house 

mice testes were also significantly enriched for translation-related GO terms (Mack, Campbell, 

and Nachman 2016). Therefore, misexpression of translation-related genes could plausibly be 

related to hybrid incompatibilities across species and developmental stages. Notably, hybrid male 

sterility evolves very quickly, and the regulation of spermatogenesis occurs primarily at the 

translational level (Schäfer et al. 1995). Whether sterility and misexpression of translational 

machinery are linked remains a speculative matter. Translation is also enriched among trans- 
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regulated and mel-dominant genes in our data, but these gene sets are only partially overlapping 

with one another, suggesting that translation-related genes may be regulated and inherited via 

diverse mechanisms in the accessory gland, and that overdominant translation-related genes are 

not regulated through a unifying mechanism. Underdominant autosomal and underexpressed X- 

linked genes are highly enriched for genes related to protein transport, golgi, and endoplasmic 

reticulum. Notably, ambiguous regulated genes are also enriched for these GO terms, and this 

gene list substantially overlaps with underdominance. Ambiguous regulation may occur in many 

ways and is difficult to put into biological context, however in this case, most of these genes are 

not DE between the parents but do have evidence of trans-effects leading to underdominance. 

This suggests that emergent properties of trans factors active specifically in hybrid cells leads to 

underexpression, potentially indicative of hybrid incompatibilities related to protein transport in the 

golgi and endoplasmic reticulum. 

We analyzed levels of nucleotide divergence in regions upstream of the TSS, which could 

plausibly affect promoter regions and thereby impact expression divergence. While we do not find 

a quantitative relationship between expression divergence and upstream sequence divergence, 

genes that are conserved in their regulation and inheritance tend to have a lower level of 

divergence. Compensatory, ambiguous, and particularly underdominant genes have elevated 

levels of upstream sequence divergence. This suggests that underdominance might be arising 

from incompatibilities between rapidly evolving cis loci and trans regulatory factors. 

We also examined protein sequence in the context of expression evolution. As expected, 

Sfps have extraordinarily high dN. Sfps also have elevated median α, suggesting overall greater 

levels of adaptive substitutions in these genes. Accessory gland-biased non-Sfps also have 

elevated dN, but no significant elevation in α. These results suggest that in addition to Sfps, other 

proteins characteristic of the accessory gland evolve rapidly. If accessory gland-biased non-Sfps 

are involved in the production of seminal fluid, which seems likely given that is the gland’s only 

known function, then it is plausible they may be subject to the same selective forces as Sfps, 
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including positive selection (Tsaur, Ting, and Wu 1998; Aguadé 1999; Begun et al. 2000; Holloway 

and Begun 2004; Begun et al. 2006-3; Schully and Hellberg 2006; Wong et al. 2008; Majane, 

Cridland, and Begun 2022) and/or relaxed constraint (Dapper and Wade 2020; Patlar et al. 2021). 

Unexpectedly, we found that conserved genes have the highest overall levels of dN, ω, and α in 

the accessory gland, despite Sfps and accessory gland-biased genes having high levels of both 

forms of divergence. This suggests that for most genes expressed in the accessory gland, there is 

a modest decoupling between expression evolution in the gland and protein sequence evolution. 

Finally, we associated ATAC-Seq peaks with nearest TSS to identify chromatin tied to 

putative regulatory regions. We found that orphan peaks were highly biased in accessibility 

towards one species. We observed a modest but significant correlation between gene expression 

and accessibility among conserved peaks, similar to results of some studies (Nair et al. 2021), 

but weaker than others (Starks et al. 2019). We observe weaker correlations with orphan peaks, 

which may be explained by the greater median distance of orphan peaks to the TSS. Many factors 

contribute to expression level in addition to chromatin state, so we expect to find relatively weak 

positive relationships. Additionally, the ATAC-Seq data we used here includes only accessory 

gland tissue, while the RNA-Seq data is from the accessory gland and ejaculatory duct. We 

therefore expect that our observations relating gene expression and log2(fold changes) across 

groups to chromatin state in this study are conservative estimates of true relationships. 

We further identified a weakly positive quantitative relationship between DA conserved 

peak accessibility and the magnitude of DE, in contrast to some other studies that find stronger 

associations (Racioppi, Wiechecki, and Christiaen 2019; Gontarz et al. 2020; Nair et al. 2021; 

Sanghi et al. 2021). However, if we limit the analysis to genes with evidence of cis or trans 

regulatory divergence, we observe a relatively strong correlations between peak accessibility 

divergence and expression divergence, suggesting a concordant directionality effect linking 

chromatin state and expression. Orphan peaks do not appear to have this quantitative 
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relationship, but the presence of an orphan peak very strongly predicts both small- and large- 

effect size DE in nearby genes. Taken together, the data suggest that presence/absence of 

chromatin peaks (either by evolutionary gain or loss, which is impossible to determine with this 

data) likely contributes to gene expression differences between D. melanogaster and D. 

simulans—if a peak appears in one species, there is a better chance that the nearest gene will 

be DE, and more often than not in the direction of the species with the peak—but there is no 

evidence of a straightforward quantitative relationship, at least that we can detect with this dataset. 

To overcome some of the technical and biological variables that complicate this analysis, an allele-

specific multi-omic gene expression and ATAC-Seq experiment on single cells (Cao et al. 2018; 

S. Chen, Lake, and Zhang 2019) would provide stronger insights into the relationships between 

chromatin state, expression, and regulation. 

 
DATA AVAILABILITY 

 
 

Upon peer-reviewed publication of this work, all scripts and supplemental data will be published 

at github.com/alexmajane/hybridASE. Sequencing reads will be released on the NCBI SRA. 

Prior to publication, data and scripts can be made available upon request by emailing Alex 

Majane (acmajane@gmail.com). 
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SUPPLEMENTAL RESULTS 
 
 

Using all annotated mel genes, marker genes for each mel cell type reveal both expected and 

novel markers (Dataset S1). In MC we identify many expected Sfps including SP (Fig 1D), 

Acp36DE, Acp26Aa, and Acp95EF, and relatively uncharacterized Sfps including Obp22a (Fig. 

1E). The top non-Sfp markers of MC are generally functionally uncharacterized: CG42852, 

CG43254, CG42481, CG43392, lncRNA:CR43146, lncRNA:CR45013, CG34041, lncRNA:TS14 

(Fig. 1E), and the genes CG44388 and lncRNA:CR44389, which are neighbors. Despite its 

annotation as a lncRNA, CR44389 possesses a 41 amino acid ORF strongly predicted to have 

a signal sequence, suggesting it could be a secreted protein. Ugt50B3, a UDP- 

glycosyltransferase, is another strong marker of MC. 

Among the 10 Sfps identified as SC markers (Table S1), three were previously known to 

be SC-specific: Acp32CD, lectin-46Ca and lectin-46Cb (Maeda et al. 2018). Previous work with 

MC-null mutants identified Acp32CD as expressed in SC (Swanson et al. 2001), and here we 
 

additionally show that it exhibits very low expression in MC. The Sfps CG17575, CG3349, 

CG9029, CG13695 (Fig. 1E), and mfas have also been previously identified as SC-expressed 

(Gligorov et al. 2013; Sitnik et al. 2016; Immarigeon et al. 2021). Here we show that these Sfps 

show very low expression in MC and EDC. We also identify the Sfp Pgant9 as a novel SC 

marker. We additionally recovered expected non-Sfp markers: lncRNA:iab8, abd-A (Maeda et 

al. 2018), abd-B, and defective proventriculus (dve) (Minami et al. 2012). We also identify non- 
 

Sfp SC markers stranded-at-second (sas) (Fig. 1E), musashi (msi), form3, nahoda, CG31121, 

CG4629, and CG46430. Additionally, we discovered that the unannotated transcript DN2695 

(see Identification of unannotated candidate genes in the AG, Table 1, Fig. S6) is a strong SC 

marker. 

We identified 24 Sfp EDC markers (Table S1). Of these, 1 had previously been identified 

as EDC-enriched: Dup99B, Obp51a, Spn77Bc, Spn77Bb, Est-6, Gld, Anp, CG18258, CG5162, 
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CG17242, CG5402, CG34034, and CG31704 (Takemori and Yamamoto 2009; Sepil et al. 2018; 
 

Samakovlis et al. 1991; Cavener 1985; Saudan et al. 2002). The remainder have not been 
 

previously identified as EDC-specific Sfps: Treh, betaggt-I, Sfp93F (Fig. 1E), trx, NT5E-2, 

CG43101, CG33290, CG11590, CG17549, CG42782, and CG15394. CG42782 was previously 

identified as a likely mating plug protein gene, consistent with origin in the ejaculatory duct or 

ejaculatory bulb (Avila et al. 2015). We also identified expected non-Sfps, ventral veins lacking 

(vvl) (Junell et al. 2010) and Abd-B (Gligorov et al. 2013). Novel EDC markers are anion 
 

exchanger 2 (Ae2) (Fig. 1E), axundead (axed), single-minded (sim), CG7720, CG43101, 

CG7342, and CG13012, and CR44391. CR44391 is annotated as a pseudogene created by a 

tandem duplication of CG11400 (an EDC-biased gene), however, it has a homologous ORF 

with a strongly predicted signal sequence. 
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SUPPLEMENTAL METHODS 
 
 

Fly stocks and reproductive tract dissection 
 

We used the following sequenced stocks to compare AG transcriptomes between three 

melanogaster subgroup species: D. melanogaster RAL 517 (Mackay et al. 2012), D. simulans 

w501, and D. yakuba Tai18E2 (hereafter referred to as mel, sim, and yak). All animals were 

raised on a cornmeal-molasses-agar medium at 25°C and 60% relative humidity, on a 12:12 

light/dark cycle. For snRNA-Seq experiments, virgin male flies were collected and placed into 

fresh vials of food in groups of five males per vial. On the day of the experiment, 2-3 day old 

virgin males were anaesthetized with CO2 and their accessory glands plus anterior ejaculatory 

duct were dissected in cold 1X PBS and moved to 1X PBS + 2% BSA (Sigma SRE0036) on ice. 

Animals were dissected between Zeitgeber time (ZT) 0:30 and 2:30. Five animals from each 

species (derived from a single vial of food) were dissected before moving to the next species, in 

a repeating pattern, to prevent biasing interspecific sampling due to potential effects of circadian 

rhythms or the dissection protocol. Together, 23 mel (13 three day old, 10 two day old), 26 sim 

(15 three day old, 11 two day old), and 24 yak (14 three day old, 10 two day old) were 

dissected, and tissue from all three species was pooled together into a single microfuge tube. 

 
 

Nuclear isolation and purification 
 

Our nuclear isolation protocol is based on Luciano Martelotto’s (2019) with some modification. 

For all steps we used non-stick, nuclease-free polypropylene tubes and pipette tips. All plastics, 

glassware, and filters were rinsed with PBS + 2% BSA before use. Pooled reproductive tract 

tissue was washed once with PBS + 2% BSA, then resuspended in 1 mL of lysis buffer (10 mM 

Tris-HCl pH 7.4, 10mM NaCl, 3 mM MgCl2) with 0.1% NP40 (Sigma 9002-93-1). The tissue and 

lysis buffer were moved to a glass dounce homogenizer on ice and incubated for five minutes, 

with intermittent low-speed vortexing. The tissue was then dounce homogenized with 25 strokes 
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with pestle A (loose fit) and incubated for an additional 10 minutes with intermittent low-speed 

vortexing. The tissue was next dounce homogenized with 25 strokes with pestle B (tight fit). 0.5 

mL of PBS + 2% BSA was added to the homogenate, and the mixture was triturated 15 times 

with a silanized fire-polished glass pasteur pipette (BrainBits FPP). The homogenate was 

filtered through a 35 micron mesh (Falcon 352235) to remove unlysed tissue, and an additional 

100 uL of PBS + 2% BSA was rinsed through the filter afterwards. The filtrate was centrifuged at 

500 rcf for eight minutes at 4°C. The supernatant was removed, 200 uL of PBS + 2% BSA was 

added to the pellet, and the pellet was incubated on ice for five minutes. The pellet was then 

resuspended before an additional 800 uL of PBS + 2% BSA was mixed into the solution. Nuclei 

were centrifuged again at 500 rcf for eight minutes at 4°C, the supernatant removed, and the 

pellet was incubated in 200 uL of PBS + 2% BSA with 10 ug/mL DAPI on ice for five minutes 

before being resuspended. 

 
 

FACS and snRNA-Seq 
 

Following isolation of semi-pure nuclei, we used Fluorescence Activated Cell Sorting (FACS) to 

further purify singlet nuclei from clumps and cell debris. FACS was gated using DAPI and 

singlet nuclei were sorted into a new tube. Library preparation and sequencing was performed 

by the UC Davis Genome Center DNA Technologies & Expression Analysis Core Laboratory. 

The 10X Genomics 3’ Single Cell (v2) kit was used to create libraries for snRNA-Seq on purified 

nuclei, and libraries were then sequenced on one lane of an Illumina HiSeq4000. 

 
 

Bioinformatic assignment of species origin, RNA-Seq alignment, QC, and orthologue formatting 
 

We used custom perl scripts (github.com/alexmajane/AG_single_nucleus) to identify reads 
 

originating from droplets containing nuclei vs. those that were empty and therefore composed 

entirely of ambient background RNA. For 10X Chromium v3, the R1 fastq contains droplet 

barcode and UMI data, while the R2 fastq contains cDNA sequence (Zheng et al. 2017). We 
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used the R1 fastq file to parse counts of unique molecular identifiers (UMIs) per droplet 

barcode. After gathering this count data, we examined the distribution of UMIs per barcode in 

descending rank-order, to identify the ‘knee’ inflection point separating true cell-containing 

barcodes from barcodes associated with empty droplets (Macosko et al. 2015). For initial 

alignment of reads we selected all barcodes above the inflection point, which we expected was 

an overestimate of the true number of singlet nuclei, prior to further downstream filtering of low- 

UMI nuclei and multiplet-containing droplets. Given that single-nucleus RNA-Seq typically has a 

higher background RNA content than single-cell RNA-Seq (Alvarez et al. 2020), we wanted to 

profile this RNA background for later downstream bioinformatic correction. To profile 

background RNA, we selected 1,000 empty droplets at random from rank-orders below the 

inflection point. 

We used an alignment-based approach to determine species-of-origin for each cell. Our 

goal was to use natural genetic variation among the three species. Our approach does not 

attempt to assign species identity at the level of individual reads, rather, we assign species 

identity to each nucleus, considered as a population of reads, summarized by the overall 

alignment rate to each species genome of the reads corresponding to each nucleus. While 

many individual reads might, considered in isolation, not be assignable to species, since we 

consider the entire set of reads in a nucleus together for species identification, we do not have 

to filter out any individual reads within a nucleus based on sequence divergence. Divergence 

was sufficient to effectively assign species identity while filtering out 4.8% of cells due to 

insufficient alignment bias. For each cell we aligned all reads to each species’ genome (D. 

melanogaster version 6.19, D. simulans version 2.02, D. yakuba version 1.05) respectively, 

using Hisat2 v2.1.0 (D. Kim et al. 2019). We sampled five million aligned reads and retained 

those with a best alignment match to a single species, dropping reads that aligned best equally 

well to two or more species. We used this subset of aligned reads to determine the percentage 

of reads originating from each species for each barcode. We selected those barcodes where ≥ 
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50% of the reads aligned best to a single genome and categorized them as barcodes for that 

species. Next, we selected the R1 and R2 reads corresponding to barcodes associated with 

putative nuclei, and a new set of fastq files was created for each barcode, removing duplicated 

UMIs from these files. For empty droplets, we selected the R1 and R2 reads corresponding to 

each of the randomly sampled barcodes and created new fastq file pairs for each empty droplet. 

We aligned raw R2 reads to the appropriate species’ genome (D. melanogaster version 6.33, D. 

simulans version 2.02, D. yakuba version 1.05) using STAR v2.7.5a (Dobin et al. 2013) with 

default parameters. We removed all transcripts of the gene mod(mdg4) from the D. 

melanogaster GTF file used for alignment, as this gene has trans-spliced transcripts without 

meaningful strand data, which causes a STAR error. We parsed the STAR logfile of each cell 

for percent of reads unmapped, percent of reads multi-mapped, and number of total mapped 

reads. We then used an R script to visualize these data and choose cut-offs to filter probable 

multiplets, as well as filtering low-quality/high background nuclei from the data. 

In our first pass analysis of the data, we discovered an apparent lack of Abd-B 

expression in secondary cells of sim and yak, which was highly unexpected due to the central 

role of Abd-B in mel secondary cell development. Investigating possible technical explanations, 

we found discrepancies in the completeness of exon annotation across the three species, with 

the annotated Abd-B orthologues in sim and yak significantly shorter than that of mel. Since the 

Chromium library prep produces reads beginning around 300-400 bases from 3’ end of 

expressed transcripts, rather than across the length of the transcript as in typical bulk mRNA- 

Seq library preps, differences in exon annotation of orthologous genes, especially at the 3’ end, 

may lead to artifactual inference of DE across species. To investigate this possibility we used de 

novo transcriptome assemblies from paired-end bulk tissue mRNA-Seq samples to improve the 

annotation of all AG-expressed transcripts, prior to counting features in our aligned single- 

nucleus data. Transcripts for D. simulans (w501) and D. yakuba (Tai18E2) were generated using 

Trinity v2.11.0 (Grabherr et al. 2011). We then aligned these transcripts back to the appropriate 
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species genome and transcriptome to identify assembled transcripts that aligned to existing 

genes. Records for these new transcripts were added to the species’ GTF files from FlyBase. 

Custom GTF files with updated sim and yak exon annotation can be found at 

github.com/alexmajane/AG_single_nucleus. Following this improved annotation, count data 

exhibited similar Abd-B expression in secondary cells across species, as expected. 
 

Next, we counted features from BAM files using HTSeq-count v0.12.3 (Anders, Pyl, and Huber 

2015) with default parameters. Given that intronic reads may be included in single-nucleus 

RNA-Seq (Lake et al. 2016), we counted reads mapping to either exons or introns. Empty 

droplets were treated similarly to nuclei and were independently processed using each of the 

three species’ annotations. Although the “true” background RNA profile is not expected to vary 

by the species of the nucleus contained in each droplet, the alignment and feature counting 

steps will filter out some number of reads of discordant species origin that are sufficiently 

divergent, so background profiles at this step will depend on the species-specific genome and 

gene models used. 

To remove background RNA from nuclei, we used the R package SoupX v1.4.8 (Young 

and Behjati 2020). We performed preliminary cell type clustering of uncorrected data to identify 

marker genes in Seurat v3.2.2 (Stuart et al. 2019), the basis for the background correction 

algorithm used by SoupX. We also did additional filtering of high UMI-count cells to remove 

outliers (potential doublets). This final filtering left us with 1167 mel, 2115 sim, and 989 yak 

nuclei. We performed preliminary Seurat analysis independently for each species using its full 

set of genes (not limited to 1-to-1-to-1 orthologues). The set of empty drops aligned to each 

respective species was used as the basis for estimation of the background transcriptome, and 

background correction was independently performed for each species. 

For comparative analyses we created a set of 1-to-1-to-1 orthologues (11,481 genes) 

using the D. melanogaster orthologue table from Flybase (2020 version 2). We used an R script 

to identify the set of mel orthologues with single orthologues identified in sim and yak 
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respectively. To maximize the number of Sfps included in our comparative analysis we compiled 

the unique set of Sfps published from two proteomic studies, Findlay et al. (2009), and Sepil et 

al. (2018). Of these 264 Sfps, 77 were not in our set of annotated 1-to-1-to-1 orthologues. Of 

these, we were able to manually curate 25 novel 1-to-1-to-1 orthologous genes (Table S6) using 

tblastx (Camacho et al. 2009) and Ensembl Metazoa genome browsers (Howe et al. 2020) to 

confirm synteny. 

 
 

Marker gene identification and differential expression among species 
 

All analyses of single-nucleus gene expression data were performed in R v3.6.1 using Seurat 

v3.2.2 (Satija et al. 2015; Butler et al. 2018; Stuart et al. 2019). We used two parallel 

approaches. We did an integrated analysis of the data across species, using our set of mel, sim, 

and yak 1-to-1-to-1 orthologues. We also performed an independent analysis of mel using all 

annotated genes to get a fuller picture of differences in gene expression among cell types. For 

both datasets we used a fairly standard Seurat workflow. We log-normalized UMI counts and z- 

score transformed counts on a gene-by-gene basis. We selected the top 2000 variable genes 

for downstream analysis by ranking their dispersion values. We chose not to use the usual 

variance-stabilizing transformation (VST) method, which normalizes dispersion by absolute 

expression to account for noise inherent in single-cell RNA-Seq (Hafemeister and Satija 2019). 

Our dataset has one dominant cell type (MC), and two rare cell types (SC and EDC). The nature 

of the data means that the most highly expressed, specific markers to MC tend not to show a 

very high variability over the entire dataset. As expected, VST did not include several important 

MC marker genes including SP and Acp95EF, while the dispersion method includes them. We 

clustered cells with the Shared Nearest Neighbor (SNN) algorithm and used UMAP 

dimensionality reduction (McInnes et al. 2018) to visualize clustering. We identified marker 

genes using Seurat’s FindAllMarkers() method and assessed significance using a Wilcoxon 

Rank Sum test. We required marker genes to be expressed in at least 25% of focal cluster cells, 
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and set a minimal average logFC requirement of 0.25. We filtered marker genes to those with 

Bonferroni-corrected p-values less than 0.05. To further investigate cell type specific expression 

bias of all SFPs, in addition to those strictly classified as marker genes, we did not impose 

minimum percent cells expressing and average logFC thresholds. We additionally identified 

markers distinguishing MC subpopulations from one another using the FindMarkers() method. 

To further characterize these subpopulations, we sampled only MC and estimated pseudotime 

using Slingshot (Street et al. 2018) and identified dynamically differentially expressed genes 

with tradeSeq (Van den Berge et al. 2020). Further details of the specific parameters and 

methods used to process data in Seurat can be found in our R scripts. We performed GO 

enrichment analyses for non-Sfp markers of each mel cell type (SC, EDC, MCsp1, MCsp2, and 

the complete population of MC considered jointly) using DAVID (Huang et al. 2009) with all 

expressed non-Sfps as a background gene list. We considered only non-Sfps because of the 

overwhelming impact of Sfps as a class on GO enrichment terms. 

We used limma v3.42.2 (Ritchie et al. 2015) to infer DE genes for each cell type. We 

performed pairwise contrasts among the three species, and classified genes as DE with an FDR 

of 5% (Benjamini and Hochberg 1995). Further details of the limma analysis can be found in our 

R scripts. To compare the rate of qualitative expression divergence across cell types, we 

calculated ratios of DE genes at various log2 fold change (logFC) cut-offs across the three cell 

types, for each of the three species contrasts, and tested for differences in these ratios using a 

G-Test of goodness-of-fit (Sokal and Rohlf 2012). To test for differences in the magnitude of 

expression differences across cell types, we similarly compared distributions of absolute values 

of logFC using a Kruskal-Wallis test (Kruskal and Wallis 1952). Finally, we examined overall 

expression correlations between species, within cell types, by calculating average expression 

per gene and Pearson correlation coefficients. 

To examine the relative level of concerted vs independent gene expression evolution 

across cell types, we subset the data to the set of differentially expressed genes exhibiting a 
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logFC greater than one in at least one cell type specific pairwise species contrast (out of a total 

of nine contrasts: three cell types X three species). We then calculated pairwise Pearson 

correlation coefficients of logFC across cell types within each of the three pairwise species 

contrasts. We permuted logFC values across genes 10,000 times to obtain a distribution of 

Pearson correlation coefficients under the null expectation of entirely cell type independent 

change within our set of DE genes. 

 
 

Population genetic inference of adaptive protein divergence of marker genes 
 

To investigate potential differences in the prevalence of adaptive protein evolution across cell 

types, we used existing population data (2019) from D. melanogaster (Fraïsse, Puixeu Sala, 

and Vicoso 2019) with D. simulans as the outgroup. The McDonald-Kreitman test (McDonald 

and Kreitman 1991) compares the ratios of polymorphic and fixed synonymous amino acid 

substitutions to nonsynonymous substitutions. The summary statistic 𝛼	(Smith and Eyre-Walker 

2002) represents an estimate of excess fixed amino acid substitutions relative to the expectation 

under strict neutrality, describing the predicted proportion of amino acid substitutions resulting 

from directional selection. A positive value of 𝛼	suggests directional selection acting on a given 

gene. Among positive 𝛼	values, a greater value for a given set of genes suggests a greater 

proportion of amino acid substitutions fixed under directional selection. We considered two 

summaries of the role of adaptation in protein divergence: the proportion of marker genes with 𝛼	

> 0, and the distribution of 𝛼	values amongst those genes with 𝛼	> 0. The proportions of positive 
 

𝛼	values were compared using Fisher’s exact test, with post-hoc pairwise tests between cell 

types. The distributions of positive 𝛼	values were visualized in ggplot2 v3.3.3 (Wickham 2016), 

and compared using a Kruskal-Wallis test with post-hoc pairwise Wilcoxon tests. 

To determine whether the prevalence of positive selection in AG-expressed genes correlates 

with differential gene expression, we intersected 𝛼	values with DE genes. We selected the set of 
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all genes expressed in the AG and filtered out genes expressed at a level lower than the lowest- 

expressed DE gene, to account for power to detect DE. We tested whether DE genes and non- 

DE genes had different likelihoods of showing positive selection by comparing the fraction of 

positive 𝛼	values in each class of genes using a G-test. We tested whether the fraction of sites 

with evidence of positive selection differed among classes of genes by comparing distributions 

of positive 𝛼	values using a Kruskal-Wallis test. 

To catalog non-SFP genes narrowly expressed in the AG with evidence of adaptive 

protein substitutions, we used the index of tissue specificity, τ (Yanai et al. 2005), which we 

previously computed (Cridland et al. 2020) using FlyAtlas2 RNA-Seq data (Leader et al. 2018). 

We selected genes with the greatest enrichment of expression in the AG and values of τ > 0.9, 

indicative of highly AG-specific expression, 𝛼	> 0.5, and at least five nucleotide substitutions, 

leading to a limited list of candidate non-SFPs with AG-specific expression that may have 

undergone adaptive protein divergence between mel and sim. 

 
 

De novo transcriptome assembly and identification of unannotated D. melanogaster transcripts 
 

We first identified the set of cell barcodes corresponding to each of the three cell types (MC, 

SC, EDC) based on marker gene identification as described earlier. Next, we concatenated raw 

fastq files corresponding to each barcode together to create a set of reads originating from each 

population of cells. We used TrimGalore! v0.6.5 (github.com/FelixKrueger/TrimGalore) to prep 

the raw reads, followed by de novo transcriptome assembly using Trinity v2.11.0 (Grabherr et 

al. 2011). Since transcript content is only contained in the R2 read of 10X Chromium libraries, 

our data is effectively single-end, so we used the ‘--single’ and ‘--SS_lib_type F’ options to 

Trinity. 

We used a BLAST-based strategy (Camacho et al. 2009) to identify candidate 

unannotated transcripts in D. melanogaster. First, using blastn we aligned all transcripts to two 

custom databases, A) the sequences of all annotated genes in mel, sim, and yak, and B) the 
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whole-genome sequences of all three species. We aligned the mel de novo transcriptome to all 

three species’ concatenated databases to avoid having background transcripts from sim or yak 

identified as unannotated in mel. We then took the set of transcripts that had at least one 

BLAST hit to the genomic database, but no BLAST hits to the database of annotated genes. 

In the course of this analysis we discovered template-switching oligo (TSO) concatemer 

occurrence at the 5’ end of some transcripts. TSO concatemers in 10X Chromium libraries have 

been previously documented (Svensson 2017). We removed the sequence 

(AAGCAGTGGTATCAACGCAGAGTACATGGG) from the 5’ end of assembled transcripts. We 

also checked the raw data for TSO occurrence and found that these sequences exclusively 

occur at the 5’ end, precluding the possibility of artifactual chimeric transcripts formed during 

Trinity assembly. Additionally, these concatemers are not expected to affect alignment of reads 

to the genome since STAR automatically trims non-aligning adapter sequences (Dobin et al. 

2013). 
 

We used counts from Salmon v0.12.0 (Patro et al. 2017) to filter the set of assembled 

transcripts to those expressed at a level of counts greater than 10% of the total number of cells 

in at least one cell type, to filter out very-lowly expressed transcripts. We removed poly-A 

sequence from the transcripts, and we aligned these filtered transcripts back to a blastn 

database containing solely the mel genome to remove background transcripts from other 

species. We converted tabular BLAST output to a GTF file using a python script and used 

HTSeq to do feature counting on individual cell transcriptomes aligned with STAR (described 

earlier), as well as background drop transcriptomes. We used SoupX to remove background 

contamination as described above, with the global contamination fraction estimated from earlier 

all-genes analysis. 

Given the single-ended, 3’-biased nature of the 10X library prep, full-length transcript 

assemblies cannot be confidently constructed. Therefore, we augmented this analysis by 

making a de novo transcriptome assembly for the FlyAtlas2 (Leader et al. 2018) accessory 
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gland data using Trinity (Grabherr et al. 2011). We identified homologous FlyAtlas2 transcripts 

using BLAST. These transcripts were used to improve the completeness of our candidate 

transcripts and eliminate a few candidates that overlapped annotated genes. Similarly, for SC- 

biased transcripts we used bulk RNA-Seq data from FACS-sorted secondary cells (Immarigeon 

et al. 2021) to improve our annotations. Both supplementary RNA-Seq datasets are unstranded, 

so we obtained strand information from our 10X-based transcript assemblies. We used 

FlyAtlas2 data to improve the annotation of DN8354, DN35169, DN10930, DN16089, DN2736, 

DN5813, and DN818. We found no matching FlyAtlas2 transcripts for DN4707, DN11110, and 

DN10097. We found a single, very lowly expressed FlyAtlas2 transcript homologous to DN2695, 

but the 10X transcript was longer than the FlyAtlas2 transcript. We searched for transcripts 

homologous to DN2695 and DN10097 in FACS-sorted secondary cell RNA-Seq data 

(Immarigeon et al. 2021). We found matching transcripts in this dataset expressed at significant 

levels: DN2695 at a mean 20.8 TPM and DN100097 at a mean 1.12 TPM. This improved our 

assembled DN2965 transcript length from 463 to 2,176 bp, and took DN10097 from 260 to 353 

bp. 

We used Ensembl Metazoa BLAST and the mel genome browser (Howe et al. 2020) to 

identify gene coordinates, strand, and neighboring annotated genes, and to verify that these 

candidate genes do not overlap with any existing annotated features. Though we selected our 

candidate gene sequences based on expression, Trinity groups sets of transcripts together 

based on shared k-mers—many of which are very lowly expressed. For each of the 11 

candidates, we additionally verified that none of the clustered transcripts within the gene “family” 

overlapped with annotated features. 

For cell type-specific analysis of unannotated gene expression, we added counts to the 

broader mel dataset post-hoc. We used Seurat’s FindAllMarkers() method to identify cell type 

bias of unannotated genes. To adjust the test for identification of cell type specific bias, rather 

than identification of canonical cell type markers, we relaxed the default thresholding 
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requirements, including the requirement that a gene be expressed in at least 25% of focal 

cluster cells, and the minimal logFC requirement of 0.25. Significance of expression bias was 

assessed using a Wilcoxon Rank Sum test with Bonferroni multiple test correction. To identify 

potential open reading frames (ORFs), we used the getorf function in the EMBOSS software 

package (http://emboss.sourceforge.net/apps/cvs/emboss/apps/getorf.html). We attempted to 

characterize these potential ORFs further using Ensembl Metazoa Protein BLAST (Howe et al. 

2020) to the database of all mel proteins, NCBI’s Conserved Domain Database search tool (Lu 

et al. 2020), and SignalP v5.0 (Almagro Armenteros et al. 2019) to identify putative signal 

sequences. We additionally assessed coding potential of our transcripts using CPAT v2.0.0 (L. 

Wang et al. 2013). 
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TABLES S1 – S4 
 
 

Table S1. Sfp marker genes in mel SC and EDC, as described in Dataset 
S1. pct.1 refers to the fraction of focal cells expressing the marker, pct.2 
refers to the fraction on non-focal cells expressing the marker. p is the result 
of a Wilcoxon rank-sum test with Bonferroni correction. 
gene cluster avg logFC pct.1 pct.2 p 
CG14913 SC 3.109 0.780 0.001 5.37E-189 
CG17575 SC 4.598 1.000 0.021 3.71E-172 
CG3349 SC 1.711 0.320 0.001 6.09E-72 
CG13965 SC 3.692 1.000 0.139 6.00E-68 
lectin-46Ca SC 4.504 1.000 0.169 2.11E-60 
CG9029 SC 4.328 1.000 0.186 1.60E-56 
Acp32CD SC 4.606 1.000 0.207 3.82E-53 
lectin-46Cb SC 4.527 1.000 0.237 6.51E-49 
mfas SC 1.186 1.000 0.813 5.12E-16 
Pgant9 SC 0.619 0.720 0.383 0.00102 
Dup99B EDC 6.457 1.000 0.002 1.32E-243 
Obp51a EDC 4.210 1.000 0.003 2.87E-239 
Anp EDC 4.879 1.000 0.003 3.40E-239 
Spn77Bc EDC 5.066 1.000 0.006 8.92E-226 
CG18258 EDC 2.809 0.797 0.001 8.95E-194 
CG43101 EDC 4.484 0.983 0.020 1.11E-181 
CG17549 EDC 3.056 0.831 0.013 4.41E-161 
CG42782 EDC 3.457 0.966 0.030 1.67E-150 
CG33290 EDC 2.687 0.712 0.006 2.85E-150 
CG5162 EDC 3.741 0.983 0.042 5.18E-142 
CG17242 EDC 3.371 0.966 0.042 1.45E-136 
CG5402 EDC 3.561 0.966 0.049 5.77E-129 
CG15394 EDC 2.950 0.898 0.040 1.79E-124 
Spn77Bb EDC 5.154 1.000 0.084 8.22E-105 
Est-6 EDC 3.979 0.983 0.082 1.59E-101 
Treh EDC 2.358 0.847 0.055 2.51E-93 
Gld EDC 2.441 0.763 0.046 4.62E-86 
betaggt-I EDC 2.132 0.559 0.017 1.14E-83 
CG34034 EDC 4.023 1.000 0.175 3.77E-68 
Sfp93F EDC 3.023 0.966 0.161 8.77E-65 
CG11590 EDC 1.99 0.508 0.023 1.92E-64 
NT5E-2 EDC 1.118 0.254 0.009 7.80E-33 
CG31704 EDC 1.937 0.983 0.450 1.13E-32 
trx EDC 0.491 0.356 0.106 0.00106 
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Table S2. p values (Benjamini-Hochberg corrected) of pairwise G-tests for percentage 
of expressed genes DE among cell types and species contrasts. ms = mel vs sim, my 
= mel vs yak, sy = sim vs yak; MC = main cells, SC = secondary cells, EDC = 
ejaculatory duct cells. Significant values in bold face. 

 ms_MC ms_SC ms_ED my_MC my_SC my_ED sy_MC sy_SC 

ms_SC 0.750 - - - - - - - 

ms_ED 0.001 0.009 - - - - - - 

my_MC 0.027 0.099 0.276 - - - - - 

my_SC 0.061 0.171 0.272 0.872 - - - - 

my_ED 0.000 0.000 0.001 0.000 0.000 - - - 

sy_MC 0.352 0.662 0.018 0.193 0.301 0.000 - - 

sy_SC 0.027 0.090 0.423 0.839 0.760 0.000 0.171 - 

sy_ED 0.000 0.000 0.303 0.031 0.037 0.031 0.000 0.087 

 
 
Table S3. Genes annotated as non-SFPs that are narrowly expressed in the AG and have 
strong evidence of adaptive protein substitutions between mel and sim. All are MC-biased in 
expression. Substitution counts are from Fraïsse et al. (2019). Expression values are from 
Leader et al. (2018), with τ calculated in Majane et al. (2020). tau am refers to τ in adult males. 
ag exp is the mean AG expression expressed in FPKM. next tissue is the adult male tissue 
with the next-greatest expression, and next exp is the value in FPKM. max af and max larval 
indicate the greatest level of expression in any adult female or larval tissue, respectively. 
gene pS pN dS dN alpha tau 

am 
ag exp next 

tissue 
next 
exp 

max 
af 

max 
larval 

CG42852 5 1 1 4 0.950 0.995 158055 testis 7262 107 28 
CG42789 9 3 6 5 0.600 0.997 933 testis 25 0.5 0.2 

CAH16 17 7 28 37 0.688 0.998 144 testis 1.6 0.3  0 
CG42470 14 10 2 14 0.898 0.998 269 fat body 6.1 0.2 0.2 
CG34299 36 25 12 18 0.537 0.996 458 testis 14 0.2 0.1 
CG43829 11 17 2 9 0.657 0.998 60 fat body 4.7 0.3 0.1 
CG43354 4 2 2 6 0.833 0.991 3119 testis 259 3.3 1.2 
CG43396 14 11 10 17 0.538 0.995 194 testis 4.7 2.2 0.4 
CG4271 38 12 16 18 0.719 0.998 311 testis 4.3 55 0 
CG31493 8 2 16 17 0.765 0.998 273 testis 3.1 0.3 0 
CG43050 20 10 17 34 0.750 0.985 301 testis 45 0.5 0.7 
CG42869 6 6 2 14 0.857 0.996 1101 testis 43 0.5 0 
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Table S4. Unannotated candidate genes expressed in the D. melanogaster accessory gland. Coordinates are from BLAST 
results to D. melanogaster version 6.36. Length refers to the span of BLAST coordinates. MC, SC, and EDC refer to the fraction 
of genes in each cell type with expression, respectively. Average logFC is the cell type with highest fraction of expression 
compared to the other two cell types. p is the result of a Wilcoxon Rank Sum test with Bonferroni correction. 
transcript coordinates strand length neighbor genes (dist., strand) expression bias MC SC EDC logFC p 

DN4707 3R:2934632
2-29346674 

F 352 lncRNA:CR45547 (9.4 kb, R); 
Cnx99A (26.7 kb, R) 

broad  0.121 0.060 0.050 0.544 0.309 

DN8354 2R:2014996
9-20150499 

R 530 lncRNA:CR45229 (0.2 kb, F); 
CG1041 (3.2 kb, F) 

broad  0.074 0.060 0.017 0.255 1 

DN35169 3R:2674522
4-26745903 

R 630 CG14247 (6.6 kb, F); 
lncRNA:CR45562 (11.4 kb, R) 

broad / MC 0.141 0.060 0.050 0.595 0.087 

DN10930 3R:1305681
4-13057676 

R 863 pic (0.1 kb, F); sim (0.1 kb, F) EDC 0.000 0.000 0.150 0.750 <0.001 

DN16089 3R:1409914
3-14099715 

R 572 PK1-R (0.1 kb, R); CG9920 
(1.1 kb, R) 

EDC 0.000 0.000 0.183 0.718 <0.001 

DN11110 X:9316379-
9316731 

F 352 lncRNA:CR44534 (1.2kb, F); 
c1.21 (1.2kb, R) 

MC 0.149 0.020 0.017 0.923 0.001 

DN2736 2L:9747046
-9747785 

R 739 Cyp4e3 (0.05 kb, R); 
Nckx30C (0.5 kb, R) 

MC 0.177 0.060 0.050 0.856 0.006 

DN5813 2R:1692291
7-16924195 

F 1278 Pkc53E (0.5 kb, F); inaC (21 
kb, F) 

MC 0.160 0.000 0.017 0.981 <0.001 

DN818 3R:7341782
-7344884 

R 3102 lncRNA:CR44337 (9.7 kb, F); 
CG31496 (0.2 kb, F) 

MC 0.353 0.080 0.167 1.170 <0.001 

DN10097 2L:7597302
-7597655 

R 353 lncRNA:CR45370 (6.6 kb, F); 
Spn28B (14 kb, F) 

SC 0.002 0.100 0.000 0.826 <0.001 

DN2695 2L:7601554
-7603730 

R 2176 lncRNA:CR45370 (0.5 kb, F); 
Spn28B (18 kb, F) 

SC 0.000 0.460 0.000 2.130 <0.001 
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FIGURES S1 – S7 
 
 
 

Figure S1. Heatmap showing scaled expression values for the complete set of D. 
melanogaster cells. Note that MC dominate the dataset (> 90% of total cells), as expected 
given the composition of the male reproductive tract. Since expression values are scaled cell-
wise, the distributions of scaled expression for MC markers are strikingly different from SC or 
EDC markers. This is an artifact of the scaling process, which is resolved by downsampling to 
comparable numbers of nuclei across cell types, as we have done in Fig. 1F. 
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Figure S2. (A) Subpopulations of MC appear conserved among mel, sim, and 
yak. MCsp2, explored in depth in melanogaster, is conserved with roughly equal 
proportionality among species. The data suggest an additional subpopulation, 
MCsp3, but given its relatively weak support, it is not analyzed further here. (B) 
Decreased counts per nucleus in MCsp1 relative to MCsp2, SC and EDC are 
observed for all three species (Kruskall and pairwise Wilcoxon Rank Sum tests, 
p < 0.001). We have excluded MCsp3 here given the low number of observations. 
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Figure S3. PCA plots of MC subpopulations, colored by (A) pseudotime, and (B) color 
estimated in Slingshot. (C) The top 50 dynamically DE genes identified by tradeSeq. 
Expression is displayed as ln(counts + 1), with intensity of blue color indicating relative 
expression; darker cells are more highly expressed. The dendogram indicates Euclidean 
distance among genes. Nuclei are ordered by pseudotime from left to right column-wise, and 
cluster identity is indicated in the bar at the top of the plot. 
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Figure S4. Patterns of DE among cell types are robust to a range of logFC cutoffs. 
(A): logFC ³ 0.5, (B): ³ 1, (C): ³ 1.25, (D): ³ 1.5. While there is a trend towards MC 
enrichment at the lowest and highest cutoffs, MC and SC are not significantly 
different in any intraspecific comparison (Wilcoxon rank sum tests, p > 0.05). The 
magnitude of DE does not vary among (E) cell types or (F) species contrasts. 
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Figure S6. (A) UMAP showing three cell types in mel, along with expression of unannotated candidate genes 
(Table 1, Table S4) indicated in teal. (B) Distributions of gene expression among all expressed genes (grey) and 
marker genes (color), for MC, SC, and EDC. Expression values for unannotated genes are overlayed. These data 
indicate that most unannotated genes are expressed at a relatively high level among all expressed genes, but a 
very low level among marker genes. Two exceptions to this trend are DN818 in MC and DN2695 in SC—the only 
two unannotated genes that are also characterized as marker genes.  
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Figure S7. Fly Cell Atlas (Li et al. 2021) shows the same major subpopulations of MC as our data. UMAP plots for male 
reproductive tract data show evidence of MCsp1 and MCsp2 (for complete cluster information, see Fig. S14 of Li et al. 
2021). Top marker genes from our data (Fig. 3D) show the same patterns in the Fly Cell Atlas. Bright blue indicates 
greater expression, dark blue indicates less, while gray indicates lack of expression. The same marker genes in our 
data are displayed below each Fly Cell Atlas plot, with darker cyan indicating greater expression. roX1, Gmap, and 
Hsrω have decreased expression in MCsp2 relative to MCsp1. RpL31, eEF2, and the Sfps SP, Mst57Db, and Acp36DE 
all show increased MCsp2 expression. Plots obtained from the SCope Fly Cell Atlas Database, 10X stringent dataset 
(https://scope.aertslab.org/#/FlyCellAtlas/*/welcome). 
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Supplemental materials for Chapter II: Regulatory basis of gene expression evolution in the 

Drosophila accessory gland 
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TABLES S5 – S18 

 
 

Table S5. Overall alignment rates of reads to each reference genome: D. 
melanogaster (mel) and D. simulans (sim). 

sample replicate mel alignment (%) sim alignment (%) 
D. melanogaster 1 94.7 43.0 
D. melanogaster 2 94.3 44.4 
D. melanogaster 3 94.4 44.3 
D. simulans 1 37.9 96.5 
D. simulans 2 41.0 96.9 
D. simulans 3 39.2 97.0 
hybrid 1 62.3 71.0 
hybrid 2 62.8 69.0 

hybrid 3 61.7 70.6 
 
 

Table S6. Uniquely mapping and shared reads among references. M = millions of reads. 
 

sample replicate mel 
unique 

mel unique 
(%) 

sim 
unique 

sim unique 
(%) 

shared shared (%) 

D. melanogaster 1 11.93M 45.4 0.32M 1.20 14.1M 53.4 
D. melanogaster 2 11.51M 43.6 0.33M 1.23 14.6M 55.1 
D. melanogaster 3 12.9M 44.1 0.36M 1.22 16.0M 54.7 
D. simulans 1 0.16M 0.62 13.1M 52.3 11.8M 47.1 
D. simulans 2 0.17M 0.69 11.8M 50.9 12.4M 48.4 
D. simulans 3 0.17M 0.63 13.8M 50.6 13.3M 48.7 
hybrid 1 5.18M 20.1 8.68M 33.7 11.9M 46.7 
hybrid 2 5.56M 20.5 9.02M 33.3 12.5M 46.1 
hybrid 3 5.01M 19.9 8.35M 33.1 11.9M 47.0 

 
 

Table S7. Species-of-origin assignments to reads that mapped to both genomes. 

sample replicate assigned mel (%) assigned sim (%) undetermined (%) 
D. melanogaster 1 62.9 0.17 36.9 
D. melanogaster 2 61.9 0.20 37.2 
D. melanogaster 3 61.5 0.16 38.4 
D. simulans 1 0.035 64.9 35.1 
D. simulans 2 0.035 65.2 34.8 
D. simulans 3 0.031 65.0 35.0 
hybrid 1 24.7 34.8 40.4 
hybrid 2 25.1 35.0 39.8 
hybrid 3 25.6 35.6 38.7 
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Table S8. Percentage of misassigned parental reads that do not overlap any gene 
features (corresponding to intergenic regions). Uniquely misassigned reads originate in 
the step of aligning reads to both genomes. Algorithmically misassigned genes aligned to 
both genomes but were misassigned when assigning species-of-origin. 

 
sample 

 
replicate 

uniquely misassigned 
with no feature (%) 

algorithmically misassigned with 
no feature (%) 

D. melanogaster 1 73.7 39.5 
D. melanogaster 2 72.0 41.1 
D. melanogaster 3 73.9 41.7 
D. simulans 1 53.6 45.8 
D. simulans 2 54.1 45.4 
D. simulans 3 53.1 44.6 

 
 

Table S9. Number of DE genes among different classes. AG-biased and non- 
biased gene sets exclude Sfps. P refers to the Pmel - Psim contrast while ASE 
refers to the F1mel - F1sim contrast. 

gene class contrast DE genes non-DE genes % DE genes 

non-Sfp P 2883 6132 32.0 
Sfp P 122 86 58.7 
non-biased P 2733 6044 31.1 
AG-biased P 150 88 63.0 
non-Sfp ASE 2025 6990 22.5 
Sfp ASE 107 101 51.4 
non-biased ASE 1889 6888 21.5 
AG-biased ASE 136 102 57.1 

 
 

Table S10. Number of DE genes among different classes, with log2(fold change) 
> 1. AG-biased and non-biased gene sets exclude Sfps. P refers to the Pmel - 
Psim contrast while ASE refers to the F1mel - F1sim contrast. 

gene class contrast DE genes non-DE genes % DE genes 

non-Sfp P 1549 7466 17.2 
Sfp P 59 149 28.4 
non-biased P 1461 7316 16.6 
AG-biased P 88 150 37.0 
non-Sfp ASE 1057 7958 11.7 
Sfp ASE 46 162 22.1 
non-biased ASE 989 7788 11.3 
AG-biased ASE 68 170 28.6 
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    Table S11. Regulatory classifications among gene sets. 
 

 
  

regulatory class cis trans cis + trans cis by trans compensatory conserved ambiguous  
autosomal 933 912 1116 104 381 4062 1715  
autosomal (%) 10.12 9.89 12.1 1.13 4.13 44.04 18.59  
Sfps 20 31 73 8 15 20 41  
Sfps (%) 9.62 14.9 35.1 3.85 7.21 9.62 19.71  
AG-biased 33 32 85 7 21 18 42  
AG-biased (%) 13.87 13.45 35.71 2.94 8.82 7.56 17.65  

Table S12. Regulatory classifications (except conserved and ambiguous) among 
gene sets 
regulatory class cis trans cis + trans cis by trans compensatory 
autosomal 933 912 1116 104 381 
autosomal (%) 27.07 26.47 32.39 3.02 11.06 
Sfps 20 31 73 8 15 
Sfps (%) 13.61 21.09 49.66 5.44 10.20 
AG-biased 33 32 85 7 21 
AG-biased (%) 18.54 17.98 47.75 3.93 11.80 
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          Table S13. Inheritance classifications among gene sets. 
 

inheritance class additive mel 
dominant 

sim 
dominant 

overdominant underdominant conserved 

autosomal 731 1403 1208 448 547 4886 
autosomal (%) 7.93 15.21 13.10 4.86 5.93 52.98 
X-linked 51 119 473 125 121 810 
X-linked (%) 3.00 7.00 27.84 7.36 7.12 47.68 
Sfps 42 39 33 18 43 33 
Sfps (%) 20.19 18.75 15.87 8.65 20.67 15.87 
AG-biased 55 34 46 17 57 29 
AG-biased (%) 23.11 14.29 19.33 7.14 23.95 12.18 
       

 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Table S14. Inheritance classifications (except conserved) among gene sets. 
inheritance class additive mel dominant sim dominant overdominant underdominant 
autosomal 731 1403 1208 448 547 
autosomal (%) 16.85 32.35 27.85 10.33 12.61 
X-linked 51 119 473 125 121 
X-linked (%) 5.74 13.39 53.21 14.06 13.61 
Sfps 42 39 33 18 43 
Sfps (%) 24 22.29 18.86 10.29 24.57 
AG-biased 55 34 46 17 57 
AG-biased (%) 26.32 16.27 22.01 8.13 27.27 
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Table S15. Gain-of-function in hybrids with insignificant parental expression. Average expression 
is log2(normalized counts) 

gene average expression in 
D. melanogaster 

average expression 
in D. simulans 

average expression in 
hybrid 

prolyl-4-hydroxylase-⍺	MP 0.000 0.000 2.681 
CG9395 0.407 0.202 2.362 
CG8500 0.705 0.706 2.324 
CG30090 0.000 0.178 1.929 
CG34316 0.795 0.380 2.501 

 
 
 
 
 
 
 
 
 
 
 
 
 

Table S16. Loss-of-function with insignificant hybrid expression. Average expression is 
log2(normalized counts). 

gene 
average expression in D. 

melanogaster 
average expression in D. 

simulans 
average expression in 

hybrid 
β-Tubulin at 85D 2.229 1.576 0.000 
Pendulin 2.227 2.952 0.314 

Table S17. Percentage of inheritance classifications among regulatory types. 
regulation  conserved additive mel dominant sim dominant overdominant underdominant 
cis 16.4 32.8 26.6 25.2 0 0 
trans 2 5.9 45.3 26.8 8.2 10.9 
cis + trans 0.9 32 26.3 24.5 9.6 6.7 
cis by trans 12.5 7.7 26.9 24 22.1 6.7 
compensatory 30.2 0 13.6 16.3 19.2 20.7 
conserved 96.1 0 1.6 2.2 0 0.2 

ambiguous 39.3 0.9 17.3 16.4 9.9 16.3 
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Table S18. Percentage of chromatin peak types associated with DE genes. 
 

contrast type no peak conserved mel orphan sim orphan 
Pmel Psim non-DE 74.0 19.0 2.6 4.5 
Pmel Psim DE 55.8 27.7 6.4 10.1 
F1mel F1sim non-DE 73.2 19.6 2.8 4.5 
F1mel F1sim DE 56.1 27.1 6.2 10.6 

 
 
 
 

Table S19. Percentage of chromatin peak types 
associated with DE genes, with log2(fold change) > 1. 

contrast type no peak conserved mel orphan sim orphan 
Pmel Psim non-DE 74.0 19.0 2.6 4.5 
Pmel Psim DE 55.8 27.7 6.4 10.1 
F1mel F1sim non-DE 73.2 19.6 2.8 4.5 
F1mel F1sim DE 56.1 27.1 6.2 10.6 

 
 

 
Table S20. Correlations of expression divergence and accessibility divergence 
among regulatory classes, with differentially abundant, conserved ATAC-Seq 
peaks (as in Figure 6E,F). n is the sample size of genes in each comparison. Pmel 

Psim ρ is the Spearman rank coefficient of determination between parental 
expression divergence and chromatin accessibility divergence. Pmel Psim p is the p 
value where the null hypothesis is that ρ = 0. Similarly, F1mel F1sim ρ and p 
represent the Spearman rank coefficient of determination and p value for the 
correlation between ASE divergence and chromatin accessibility divergence. 
regulatory class n Pmel Psim ρ Pmel Psim p F1mel F1sim ρ F1mel F1sim p 
conserved 145 -0.01 0.954 -0.08 0.364 
cis 70 0.41 < 0.001 0.42 < 0.001 
trans 97 0.52 < 0.001 0.14 0.162 
cis + trans 140 0.52 < 0.001 0.44 < 0.001 
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Table S21. ATAC-Seq peak classes among regulatory types 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
regulation 

conserved 
peak 

conserved 
peak (%) 

mel 
orphan 

mel orphan 
(%) 

sim 
orphan 

sim orphan 
(%) 

no peak no peak 
(%) 

cis 209 22.4 83 8.9 99 10.6 542 58.1 
trans 276 30.3 75 8.2 117 12.8 444 48.7 
cis + trans 303 27.2 103 9.2 173 15.5 537 48.1 
cis by trans 34 32.7 7 6.7 17 16.3 46 44.2 
compensatory 111 29.1 27 7.1 57 15.0 186 48.8 
conserved 527 13.0 111 2.7 182 4.5 3242 79.8 
ambiguous 479 27.9 104 6.1 159 9.3 973 56.7 
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FIGURES S8 – S19 
 
 

 
Figure S8. Distributions of observed standard deviation of 
expression among replicates. The first five depict autosomal-
linked genes and the last three depict X-linked genes. 
 
 
 
 

Figure S9. Correlations of average gene expression, as in Figure 7, with Sfps (A-C) and AG-
biased genes (D- F) highlighted 
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Figure S10. A) Regulatory classification as in Figure 3 with the addition of ambiguous genes. B) Full-scale 
log2(fold change) regulatory plot. C) Full-scale log2(fold change) inheritance plot for autosomal-linked 
genes. D) Full-scale log2(fold change) inheritance plot for X-linked genes. 
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Figure S11. GO terms associated with regulatory and inheritance types. Enrichmentis the ratio of terms in the test 
gene set compared to the background gene set. A) Regulatory types; B) inheritance types in autosomes; C) over- or 
underexpressed X-linked genes. Terms associated with cis and cis by trans genes are particularly weakly significant 
and not shown here (see Supplemental Data). 
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Figure S12. Kimura-2-parameter estimated substitution rates in upstream sequences 
between D. melanogaster and D. simulans at various lengths from the TSS. A) regulatory 
classes; B) inheritance classes.  

Figure S13. Kimura-2-parameter estimated substitution rates in upstream sequences 
between D. melanogaster and D. simulans plotted against A) allele-specific and B) parental 
expression divergence. Spearman's rank correlation coefficient ⍴ is shown on each panel. 
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Figure S14. dN between D. melanogaster and D. simulans plotted against A) parental divergence 
and B) ASE divergence. Spearman’s rank correlation coefficient ⍴	is shown in each panel. C) 
Distributions of dN between Sfps and non-Sfps (Wilcoxon rank sum test, p < 0.001). D) Distributions 
of dN between accessory gland-biased and non-accessory gland-biased genes (Wilcoxon rank sum 
test, p = 0.00101). 
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Figure S15. A) Distributions of ⍺ among regulatory and inheritance classes. Genes with 
conserved regulation have significantly greater median ⍺ than trans (Wilcoxon rank sum test, p = 
0.003), cis + trans (p < 0.001), and ambiguous genes (p < 0.001); all other comparisons of 
inheritance types are not significantly different (p > 0.05). Genes with conserved inheritance have 
significantly greater median ⍺ than mel dominant (p = 0.001), sim dominant (p = 0.007), and 
underdominant genes (p = 0.021); all other comparisons of inheritance types are not significantly 
different (p > 0.05). B) Sfps have significantly greater median ⍺ than non-Sfps (p < 0.001). C) 
Distributions of ⍺ between AG-biased and non-AG-biased genes are not significantly different (p = 
0.52).  
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Figure S16. PCA of peak accessibility (log2 transformed counts) with the first two PCs shown: (A) 
conserved peaks, (B) mel orphan peaks, (C) sim orphan peaks.  
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Figure S17. Differential accessibility (DA) of chromatin peaks called by ATAC-Seq, defined as the 
log2-transformed ratio of counts D. melanogaster counts to D. simulans counts. (A) Conserved 
peaks; (B) mel orphan peaks; (C) sim orphan peaks. We further filtered orphan peaks to just those 
that are DA and more highly expressed in the species with a peak called: (D) filtered mel orphan 
peaks; (E) filtered sim orphan peaks. 
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Figure S18. Parental expression divergence or ASE (y-axis) plotted against differential accessibility 
(DA) of chromatin peaks called by ATAC-Seq (x-axis). (A) mel orphan peaks; (B) sim orphan peaks. 
Spearman’s rank coefficient ⍴ is shown on each plot.  
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