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When Holistic Processing is Not Enough: Local Features Save the Day
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lingyun,gary@cs.ucsd.edu

UCSD Computer Science and Engineering
9500 Gilman Dr., La Jolla, CA 92093-0114 USA

Abstract

Is configural information or featural information more
important for facial identity recognition? How are the
skills for processing these types of information devel-
oped? To investigate these issues, Mondloch et al. de-
signed three sets of face images based on a single face,
“Jane”, to measure featural, configural, and contour
processing. These stimuli were tested on human sub-
jects of different ages in a same/different task. We
test our model [Dailey et al., 2002] of face processing on
these stimuli. We find that our model is overly holistic:
It finds the configural differences the easiest to detect,
while adult human subjects find featural changes the
easiest to detect. We then introduce a representation
of the important parts of the face (eyes and mouth)
to our holistic model. We find that only a relatively
small amount of holistic representation, compared to
parts representations, is necessary to account for the
data.

Introduction
We have developed a model of face processing that ac-
counts for a number of important phenomena in facial
expression processing, holistic processing and visual ex-
pertise [Dailey and Cottrell, 1999, Cottrell et al., 2002,
Dailey et al., 2002, Joyce and Cottrell, 2004]. Here, we
investigate the model’s ability to account for human sen-
sitivity to variations in faces that are considered theoret-
ically important for face identification. Face processing
is typically described as holistic or configural. Holistic
processing is typically taken to mean that the context
of the whole face has an important contribution to pro-
cessing the parts: subjects have difficulty recognizing
parts of the face in isolation, and subjects have diffi-
culty ignoring parts of the face when making judgments
about another part. Configural processing means that
subjects are sensitive to the relationships between the
parts, e.g., the spacing between the eyes. We will use
the two terms configural and spacing interchangeably in
this paper. Holistic processing can easily be captured by
a model that uses whole-face template-like representa-
tions as ours does: interference from incongruent halves
of a face occurs when making judgments about a different
part (e.g, expression on top when a different expression
is on bottom [Cottrell et al., 2002]). However, configu-
ral effects related to spacing information are attenuated
by the alignment procedure that we typically use, which
warps the image so the eyes and mouth are always in the
same three positions.

Diamond and Carey [Diamond and Carey, 1986] were
among the first to discriminate between the types of
processing involved in face/object perception and recog-
nition. Based on studies looking at the inversion ef-
fect to faces, landscapes and dogs in both dog novices
and dog experts, they proposed that first-order rela-
tional information, which consists of the coarse spa-
tial relationships between the parts of an object (i.e.
eyes are above the nose), is sufficient to recognize most
objects. By contrast, second-order relational informa-
tion, which is needed for face recognition and recogni-
tion of individuals within categories of expertise, is re-
served for visually homogeneous categories where slight
differences in configuration must be used to distinguish
between individuals (e.g. a slight change in the dis-
tance between the eyes and the nose). Diamond and
Carey [Diamond and Carey, 1986] suggest that experi-
ence allows people to develop a fine-tuned prototype and
to become sensitive to second-order differences between
that prototype and new members of that category (e.g.
new faces).

One implication of the Diamond and Carey study
is that the inversion effect (a large reduction in
same/different performance on inverted faces, com-
pared to inverted objects) is based on a relative re-
liance on second-order relational information, and that
perhaps this characteristic distinguishes face/expert-
level processing from regular object recognition. Farah
et al. [Farah et al., 1995] found that encouraging
part-based processing eliminated the inversion effect,
whereas allowing/encouraging non-part-based process-
ing resulted in a robust inversion effect. Thus Farah
et al. conclude that the inversion effect, in faces and
other types of stimuli, is associated with holistic pattern
perception.

However, subjects are also quite sensitive to changes
in the features themselves – substitutions of different
eyes or mouths can make the face look quite differ-
ent. The Thatcher illusion [Thompson, 1980] suggests
that parts are processed somewhat independently, and
only loosely connected to the representation of the whole
face. Recently, a study by Mondloch et al. that varied
these different aspects of a face (configuration, feature
changes, and changes to contour of the face) found dif-
fering levels of sensitivity to the type of manipulation in a
same/different paradigm. While the manipulations were
not performed parametrically (no equating of the diffi-
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culty of discrimination was performed), but in a rather
ad hoc manner, the results are consistent across subjects.
Hence this is a crucial set of data to account for with our
model.

In the following, we describe Mondloch et al.’s exper-
iments and our attempts to account for their data. We
find that our model must be augmented with a repre-
sentation of the parts of the face in order to account for
most of the data. Finally, we discuss plans for future
work.

Mondloch’s Stimuli and Experiments
Mondloch et al. began with a single face (called Jane)
and modified it to create twelve new versions (called
Jane’s Sisters). These were divided to three sets of stim-
uli: a configural set, a featural set, and a contour set
(Figure 1). The four faces in the configural set were cre-
ated by moving the eyes and/or the mouth. The four
faces in the featural set were created by replacing Jane’s
eyes, nose and mouth with those of four different females.
The four faces in the contour set were created by pasting
the internal portion of Jane’s face within the outer con-
tour of four different females. The control stimuli were
called “cousins” and consisted of three different female
faces (Figure 2).

Figure 1: Jane is shown as the left-most face in each panel,
along with her “sisters” from the configural set (panel A), the
featural set (panel B), and the external contour set (panel C).
(from [Mondloch et al., 2002])

Figure 2: The control stimuli: the cousin set. (from
[Mondloch et al., 2002])

These stimuli were presented to 6, 8 and 10-year-old
children as well as adults in a series of same-different
trials. One face appeared for 200ms. After a 300ms
interval, the second one appeared until the participant
responded. There were also trials in which upside down
versions of these faces were presented.

In this work, we concentrate on modeling the adult
data, and hence focus on the black bars in (Fig-
ure 3). The results (Figure 3) showed that when stim-
uli were presented upright, the relative accuracy for
adults in each set of stimuli was cousin > featural >
configural > contour. This is interesting because it
suggests that, at least for this stimulus set, subjects
were more sensitive to individual feature differences than
to configural changes. When the face images were pre-
sented upside down, however, the order was featural >
contour > configural, and there was an inversion effect,
i.e. the accuracy rate decreased. Note that the configural
set, for which inverted accuracy was the worst, showed a
larger inversion effect (measured by the mean accuracy
of upright trials minus that of inverted trials) than the
featural set.

Figure 3: Mean accuracy for each face set and each age
group when stimuli were presented upright (left panel) and
inverted (right panel). (from [Mondloch et al., 2002])

A Computational Model of Face
Recognition

Our model is a three level neural network that has been
used in previous work (Figure 4). The model takes man-
ually aligned face images as input. The images are first
filtered by 2D Gabor wavelet filters, which are a good
model of simple cell receptive fields in cat striate cor-
tex [Jones and Palmer, 1987]. PCA (principal compo-
nent analysis) is then used to extract a set of features
from the high dimensional data. In the last stage, a sim-
ple back propagation network is used to assign a name
to each face. We now describe each of the components
of the model in more detail.

The Training Set
The FERET database is a large database of facial im-
ages, which is now standard for face recognition from still
images[Phillips et al., 1998]. We used 662 face images
(545 upright images of 117 individuals and 117 inverted
images of 20 individuals (that were also included in the
upright images)) in the training. The inverted faces
were used in order to give a reasonable representation
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Figure 4: Object recognition model (from
[Dailey et al., 2002])

of upside down faces in the PCA layer of the network.
In [Dailey et al., 2002], where the task was to learn facial
expressions, images were aligned so that eyes and mouth
went to designated coordinates. This alignment removed
the configural information which is crucial for our work
because we are trying to understand how configural pro-
cessing and featural processing interact with each other
in the face recognition task. To avoid this negative ef-
fect, we required that the relative spacing between the
parts of the face remain the same. The face images were
rotated, scaled and translated so that the sum of square
distance between the target coordinates and those of the
transferred features (eyes and mouth locations) was min-
imized (Figure 5). Thus, a triangle represented by the
eyes and mouth is scaled and moved to fit closely to a
reference location, but the triangle is not warped. This
way of alignment keeps configural information without
affecting holistic processing. The aligned images were
192 pixels by 128 pixels.

Figure 5: Two examples of face image normalization. The
faces were cropped with the eyes and the mouth as close as
possible to the target position while keeping the shape of the
triangle among these features the same.

Perceptual Layer
Research suggests that the receptive fields of the stri-
ate neurons are restricted to small regions of space,
responding to narrow ranges of stimulus orientation
and spatial frequency[Jones and Palmer, 1987]. DeVal-
ois et al[DeValois and DeValois, 1988] mapped the re-
ceptive fields of V1 cells and found evidence for mul-
tiple lobes of excitation and inhibition. Two-D Ga-
bor filters [Daugman, 1985](Figure 6) have been found
to fit the 2D spatial response profile of simple cells
quite well[Jones and Palmer, 1987]. In this process-
ing step the image was filtered with a rigid 23 by 15
grid of overlapping 2-D Gabor filters[Daugman, 1985]

in quadrature pairs at five scales and eight orienta-
tions [Dailey et al., 2002](Figure 7). We thus obtained
23 × 15 × 5 × 8 = 13, 800 filter responses in this layer,
which is termed the perceptual layer [Dailey et al., 2002].

Figure 6: A Gabor function is constructed by multiplying
a Gaussian function by sinusoidal function[Daugman, 1985].
We use five scales and eight orientations.

Figure 7: An image filtered with a rigid 23 by 15 grid of over-
lapping 2-D Gabor filters in quadrature pairs at five scales
and eight orientations (from [Dailey et al., 2000])

Gestalt layer
In this stage we perform a PCA of the Gabor filter re-
sponses. This is a biologically plausible means of dimen-
sionality reduction[Dailey et al., 2002], since it can be
learned in a Hebbian manner. PCA extracts a small set
of informative features from the high dimensional out-
put of the last perceptual stage. The eigenvectors of the
covariance matrix of the patterns are computed, and the
patterns are then projected onto the eigenvectors associ-
ated with the largest eigenvalues. At this stage, we pro-
duce a 50-element PCA representation from the 13,800
Gabor vectors. Before being fed to the final classifier, the
principal component projections are shifted and scaled
so that they have 0 mean and unit standard deviation,
known as z-scoring (or whitening).

Categorization layer
The classification portion of the model is a two-layer
back-propagation neural network. 20 hidden units are
used. A scaled tanh [LeCun et al., 1998] activation func-
tion is used at the hidden layer and the softmax activa-
tion function yi = eai/

∑
k eak was used at the output

layer. The network is trained with the cross entropy er-
ror function [Bishop, 1995] to identify the faces using lo-
calist outputs. A learning rate of 0.05 and a momentum
of 0.5 were used in the results reported here. 10 percent
of the images are selected randomly as a test set and
another 10 percent as a holdout set [Dailey et al., 2000].
The network achieves 85-90 percent accuracy within 50
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epochs. This is remarkable given that for faces in the
test set, there were only 2-3 images in the training set
on average. This classification rate was decent enough
to show that our model represented face images well.

Modeling Mondloch et al.

Training and Learning
For the following experiments, we simply trained the net-
work on all 662 images, since we are only interested in
obtaining a good face representation at the hidden layer.
Training was stopped at the 50th epoch based on the
above pilot experiment, as we assumed the network had
achieved “adult” level identity recognition expertise at
this point. After training, the preprocessed Jane stimuli
images were presented to the network.

Modelling Discrimination
Hidden unit activations were recorded as the network’s
representation of images. In order to model discrim-
inability between two images, we present an image to the
network, and record the hidden unit response vector. We
do the same with a second image. We model similarity
as the correlation between the two representations, and
discriminability as one minus similarity. Note that this
measure may be computed at any layer of the network.
We computed the average discriminability between im-
ages in each of the stimuli sets (featural, configural, etc.,
both upright and inverted). The average within each set
was taken as the measure of the network’s ability to dis-
criminate each set. The average of the discriminabilities
was computed over 50 networks which were all trained in
the same way, but used different initial random weights.

The results (Figure 10 top graph) showed that our
model was too holistic, i.e. the model showed high sen-
sitivity to the configural set. As a first pass at adding fea-
tural information to the model, we took a cue from Pad-
gett and Cottrell (1998), who developed a parts-based
model for facial expression recognition. They simply had
rectangular windows over the eyes and mouth and ex-
tracted features from those as input to a classifier. Sim-
ilarly, Pentland et al. (1994) used “eigenfeatures”, PCA
of local patches, as input to a face identification classi-
fier. From our grid of Gabor filters, we extracted three
sets of Gabor responses that corresponded to the left eye,
the right eye and the mouth respectively (Figure 8). A
10 dimensional PCA representation was extracted from
each of them. Then we gave both the global and local
PCA to the network as input.

We repeated this experiment multiple times, keeping
the 30 local feature principal components (PC’s) as in-
put to the network, while varying the number of global
PC’s. The results (Figure 10) show how different com-
binations of global and local PC’s affect the behavior
of the network. The graph on the top is the result of
the original model (50 global PC’s with no local PC’s).
The graph second from the top is the result of 50 global
PC’s plus 30 local PC’s. The remaining graphs show the
effects of progressive reduction in the number of global
PC’s from 30 to 0 in steps of 10, while holding the num-
ber of local PC’s constant at 30. When the number of

Figure 8: We extracted local PCA representations for the
eyes and the mouth. The responses of Gabor filters from
patches around the eyes and mouth were extracted and PCA
was done on them separately.

global PC’s is decreased below 20, the discriminability
of the feature set began to exceed that of the configural
set in the upright image trials.

Note that the local feature PC’s did help the model
pay more attention to features because the discriminabil-
ity of the feature set has increased. Also, when the num-
ber of the global PC’s was reduced, the discriminability
of the feature, configural, and cousin sets increased. The
discriminability of the cousin set started around 0.35
when 50 global components with 30 local components
were used and ends up at around 0.45 when no global
components were used. We can observe a gradual in-
crease in discriminability over the sequence of the graphs
from top to bottom. This gradual increase is also seen
for the configural set and the feature set, which each
grew from around 0.2 to 0.3. Further, the qualitative
pattern for the inverted faces is reproduced in almost
every variation.

Discriminability at processing stages
Where do these effects come from? Recall our definition
of discriminability: one minus similarity, where similar-
ity is equal to the correlation between representations.
Hence, we can assess similarity and discriminability at
each stage of processing, i.e., original images, aligned im-
ages, Gabor filter, PCA, z-score PCA. Note that for pre-
processing stages, we are only comparing discriminabil-
ity between a small number of images (Jane and her
sisters), because these stages are identical for all 50 net-
works.

The order of discriminability for all combinations of
local and global PC’s and for both image orientations
is the same for the first three stages. The order of the
sets does not change until the PCA and z-score PCA
stages. Figure 9 shows the discriminability of each set
of different combinations of global PC’s and local PC’s
at the PCA level and the z-score PCA level for upright
images. When there are no local PC’s (i.e., the original
model), the configural set exceeds the feature set. When
there are 30 local PC’s and 50 global: the order is cor-
rect (cousin > feature > configural > contour) at the
PCA stage, though the differences are very small. These
differences are enlarged at the z-scored PCA stage. As
reductions in the number of global PC’s leave propor-
tionally more local PC’s, we observe the same correct
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ordering and progressively larger differences between the
sets at these last two stages. Also there is a trend to-
wards increased discriminability for cousin, featural and
contour sets.

A change in set order can also be observed at the PCA
and z-score PCA stages for the inverted image results
(not shown in figures here). The configural set shows a
larger inversion effect than the feature set, which is con-
sistent with human data. We also observe an increas-
ing gap between the featural set and the configural set
(featural > configural) when the local PC’s are intro-
duced and as their proportion is subsequently increased
(as the number of global PC’s is reduced). However, the
contour set is always less discriminable or at most as dis-
criminable as the spacing set, which is the wrong order
– contour should be more discriminable than spacing in
inverted images. The correct ordering shows up in the
hidden layer for all networks except the ones with no
global PCA or no local PCA (see Figure 10), suggesting
that both are needed.

Figure 9: The discriminability of different combination of
global PC’s and local PC’s at the PCA and the z-scored PCA
level.

Figure 10: The discriminability of different combination of
global PC’s and local PC’s at the hidden layer.
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Discussion

While our standard model has accounted for a fair
amount of data over the years, this particular set of data
required substantial modifications. We found that our
original model was too holistic, in that it was more sen-
sitive to configural changes versus featural changes. This
is not surprising given the way the model is constructed.
Global PCA of the Gabor representation should act sim-
ilarly to global PCA of grayscale images. This represen-
tation is known to develop ghostly-looking, whole face
templates that we have called holons, and others have
termed eigenfaces. These representations have proved to
be very useful in modeling holistic processing effects. For
example, when two halves of different faces are aligned,
it is more difficult for the model to identify the top half
of a face due to interference from the bottom half, even
if the input from the bottom half is severely attenuated
to simulate attention to the top [Cottrell et al., 2002].
This is due to the bottom half of the face matching giv-
ing a partial match to the templates corresponding to
the other person’s face.

Adding a parts-based representation, here imple-
mented as a local feature PCA, turned out to be helpful
in making the model more sensitive to features. This
type of representation can be thought of as a schema
for each part. It could be developed through attend-
ing to parts of the face, where the parts become well-
represented via foveation. As proportionally more of this
representation was used, the network’s upright discrim-
inability profile qualitatively matched the human sub-
jects results.

Our model successfully showed inversion effects on the
configural set and the featural set. This effect on the con-
figural set was especially large, which is consistent with
human behavior. The order for inverted trials qualita-
tively matched the human subjects results when both
global and local components were used. While the model
showed a strong inversion effect on the configural set, the
model did not show any inversion effect on the contour
set. This suggests that our model used the information
mostly, if not entirely, from the inside of the face instead
of the contour. Infants, on the other hand, are known
to use the contour of the face before they are able to
use the inside of the face for recognizing their mothers.
In the future, we intend to add a developmental compo-
nent to our model, in order to model this “outside-in”
progression.
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