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ABSTRACT 

UCRL-8912. 

We investigate the problem of approximating the solution of an 

ill-conditioned linear system. With the inadequacies of the results obtained 

to date in mind, the intuitive concept of "near-singularity" is formalized 

in the definition of an "E' -dependence measure, " the basic properties of 

which are immediately developed. This measure is then used to establish 

the mathematical basis for the instability inherent in ill-conditioned 

systems, and the implications of the results thus obtained for both direct

and indirect-solution algorithms are examined. On the basis of these 

implications, a solution technique which is a variant of Gaussian conden

sation is selected and described. This technique is tentatively evaluated 

in terms of certain experimental calculations with a program prepared for 

the IBM 650. 
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L INTRODUCTION 

UCRL-8912 

The phenomenon of near-singularity of the coefficient matrix of 

a linear system, usually called "ill-condition, " is both familiar and trouble

some. Because of the frequency with which linear correlations in data to 

be processed are inherent in certain classes of numerical problems 1 it has 

become especially important to devise techniques for dealing effectively 

with such data. Perhaps the earliest important research along these lines 

was done at the Institute for Advanced Study by von Neumann and Goldstine, 

who maqe the first detailed error analyses for certain inversion algorithms. 
2 

Since that time (1947), the problem of numerical approximations in ill

conditioned systems has acquired even greater significance, and the research 

and experimentation concerned at least peripherally with near-singular 

matrices has become correspondingly extensive. 'of the more recent work 

in the field, that of J. Todd 
3 

and of M. Newmann 
4 

is of course well known. 

However, despite all previous and current effort, encouraged largely by 

the National Bureau of Standards, 5 much remains to be desired in the 

techniques available for dealing practicably with the numerical solution of 

highly ill-conditioned systems. In this paper we re-examine and possibly 

make more precise the theoretical nature of the problems involved and 

suggest a possible approach to their solution under certain circumstances.-

One of the greatest difficulties involved is the lack of any dir

ectly applicable decision procedure to determine whether or not a linear 

system in question is in fact very ill-conditioned. To partially overcome 

this difficulty, we have introduced several so-called "condition numbers" 

as possible means of classifying matrices. Thus, . if the system (A)x = b 

is approximated by the roughly equivalent system (A-E)x = b, then, for 

)'.,: 

Summer visitor from Harvard University, Cambridge, Mass. 
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small E, the solution obtained will be, to first order in E~ approximately 

x
0 

+(A -l}(E)x
0

, where x
0 

is the correct solution. 
6 

Turing points out that 

if the effect of this error is averaged over a random matrix population for 

E, and over the coefficients in the solution and matrix, then we have 

(1.01) 

where 6
1 

= RMS (root mean square) of the error of solution coefficients, 

6
1 

= RMS of the solution coefficients, 6
1

1 = RMS of the error of (A) coeffic-

ients, 6
2

' = RMS of the (A) coefficients, N(A)= norm(A) = ( ~ a .. 
2

)
1

/
2

. 
6 

1 . 0 1J 
-1 -1 ~1,J~n 

Turing thus adopts n N(A)N(A ) as theN-condition number of 

A, N(A). He further shows that in certain (Jordan) elimination algorithms, 

the ~-condition number M (A) is equal to nM(A)M(A -l ), where M= max I A .. j, 
c . 0 • 1J 

1~1, J~n 

determines the magnitude of errors when the computations are carried to a 

definite number of figures. 
7 

The work of von Neumann and Gold~tine pre

viously mentioned suggests the P-condition number P(A) = X.(A)/ fl(A) where 
c 

X.(A) is the largest (in absolute value~ and fl(A) the smallest (in absolute value) 

of the latent roots (eigenvalues) of (A). 2 Todd points out the basic relation

ship between the three condit:lbn numbers: 
8 

I I 

n -
2 

M(A) ~ N(A) ~ M(A) . c c c 
(1.02) 

-1 
n M(A) ~ P(A) ~ nM(A). 

c c c 
(1.03) 

It is evident that, for random (A), the three condition numbers are 

of very little practical value, since their determination is an even more 

delicate and unstable problem than the actual solution of the corresponding 

linear system. In addition they possess the self-defeating property of be

coming harder to obtain as their magnitude indicates increasing difficulty in 

approximating the solution of the associated system. Nonetheless, it is 

certainly true that for the evaluation of matrix-inversion programs 9 the 

three condition numbers M, N, and P may be of definite value (we will have 

recourse to them in Section V in connection with certain experiments with 

Hilbert matrices). However, they are not in fact direct measures of ill

condition in the sense of near-singularity as such, but are instead measures 

of error probability, with chiefly empirical justifications. 



.• 

c 

-5~ UCRL-8912: 

It may be that the development of a condition measure of a very 

different sort, with an a priori justification in the fundamental concept of 

linear dependence, may bring to light more clearly certain of the essential 

causes of the instability inherent in near-singular systems. This may lead 

eventually to a numerical decision-procedure analogue of greater value 

than existing criteria. With the possibility of such a future application in 

mind, we will formulate this new condition measure directly in terms of the 

coefficients themselves; this formulation, together with some pertinent 

theoretical consequences, will form the content of Section II of this paper. 

In Section III, we will pursue further certain of the theoretical implications 

of this measure as they pertain to the instability and sensitivity of ill

conditioned systems. In Section IV we will consider the relationship of the 

results of Section III to the problem of selecting the particular solution 

algorithm we will use. In Section V we will include some preliminary re

sults of the method selected, in terms of comparative experiments with 

finite segments of the highly ill-conditioned Hilbert matrix. 
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II. THE ·e-DEPENDENCE MEASURE: 
SOME THEORETICAL PROPERTIES 

For any n Xn real matrix (A), let ~[A: x] denote the set of values 

assumed by 

II xA., II 
max 

L~j~n 
Jx.J 

J 

' ' ' . (2. 01) 

where (x) is any nonzero, n-dimensional, real vector and where II xA II 

denotes the length of the vector (x)(A), i. e. 

x. a.. ) 2 .) 1/2 
J Jl 

(2. 02) 

Then we define the e: -dependence of (A) by 

e:(A)=g.l.b. ~ [A:x], (2. 03) 

where g. 1. b. signifies the greatest lower bound. 

We proceed to demonstrate certain relevant properties of the 

E -dependence measure, as defined above. Because v (A), real and n Xn, 

we:~[A:x]-+ w~O, theset ~[A:x] hasanl.b. (lowerbound), and, 

since the real numbers ar·e a· complete ordered field, the set ~[A: x] has 

a g. 1. b. , proving 

V (A), real and n Xn, 3:! e: (A). Lemma 2.04 

Further, we will prove 

v f, f real, e: (fA) = If I e:(A). Lemma 2.05 

Let 6 be an l. b.of ~ [A:x]. 

zero real vector, we have 

Then, V(x') with (x 1 ) ann-dimensional non ... 

II x'AII 
~ 6. (2.06) 

max lx' .1 
l~J· ~n J. "" "" . 

" 
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But we have 

II x 1 fA II = [ [ ( f x 
1 

• f a. ·)
2 

] 
1
/

2 
= 

i=1 j=1 J Jl 
I f I [ I ( f" x 

1 
• a· i) 2

] 

1

/
2 

= 
1=1 J71 J J 

so that 

llx 1 fAll 

max 
1.:Sj~n 

lx 1 .1 
J 

I fl · II x 1 All. 

:;::_ I flo . (2. 07) 

Therefore· lfl o is an l.b. of l/J[fA:x]. Thus lfiE(A) is an l.b .. of lJ![fA:x]. 

Suppose it is not the g. 1. b. of l/J[ fA:x]. Then let S > I fl e(A) be the g. 1. b. 

[which exists and is unique, as in Lemma (2. 04)]. Then, v (y), with (y) 

an n-dimensional non zero real vector, we have 

whence 

so that 

I fl · 

llyfAII 

max ly.l 
1~j ~n J 

llyAII 

max IY·I 
1~j~n J 

~ s. 

> s > If IE (A), 

llyAII ~ s If I - 1 > E (A). 
max ly.l 

1 ~j ~n J 

(2. 08) 

(2. 09) 

(2.10) 

This contradicts the fact that, by definition, we have E(A) = g.l. b. l/J[A:x]. 

Therefore, contrary to our supposition, we obtain lfiE(A) = g.l. b. lJ![fA:x], 

Q.E.D. 
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A second important property of € (A) is given by Lemma 2.11. 

V€ >E(A), (A) a fixed real nXn matrix, 

a real nonzero n-dimensional vector, such that 

max 
l~j~n 

lx.l 
J 

3: (x), Lemma 2. 11 

(2. lla) 

Suppose the contrary. Then, 

sional vector, we have 

v(x), a real nonzero, n-dimen-

( max 
l~i~n 

( 
max 

1~j~n 

n 

xj aji If L. 
J=l 2 

I xjJ)2 

> € . 

But then we may write 

x.a .. )t·(max 1x.1)
2 

J Jl 1 <J. <n J 
" "" 

so that we have 

( n ( n x.a.f) l/2 
'L L llxAII 

i= l j= l J Jl 
= 

max lx.l max lx.l 
l~j~n J 1~j~n J 

> 

> 

2 
€ 

€ ' 

(2. 12) 

(2.13) 

(2. 14) 

whence € is an l.b. for ljJ[A:x]. But by hypothesis € >€(A), so that 

supposing the falsity of Lemma 2. ll contradicts the fact that 

E(A)=g.l.b.ljJ[A:x]. ThusLemma2.1listrue, Q.E.D. 

The following theorem, a consequence of Lemma 2.11, presents 

a preliminary formalization of the intuitive notion that € (A) is a measure, of 
11near-linear dependence" or of 11near-singularity: 11 
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Theorem 2.15. g. Lb. 4{A:x] = 0 - MIN. Lj;(A:x] = 0. 

Suppose that € (A) = 0, where (A) is a real n Xn matrix that will 

remain fixed throughout the proof. Then, for max 
l~i,j~n 

IA .. l = 0, 
lJ 

Theorem 2. 15 is trivial. But suppose that this is not the case. Then we 

have a real nonzero nXn matrix (A) with e(A) =g. 1. b.lj; [A:x] = 0. Now 

let (} be any real number with (} > 0. We then define: 

and 

n1 ( ·max 
l~i, j ~n )

n-1 
A.. = y lJ 

-1 (} y = € > 0 = € (A). 

(2. 16) 

(2. 17) 

For € > € (A), Lemma 2.11 is applicable, so that 3: (x), a real 

nonzero n-dimensional vector, with 

n 

max I x.a .. 
l~i~n j= 1 J Jl 

max I xj I 
1 ~j ~ n 

or, letting max I xj I = I xk I • with 
l~j~n 

max 
l~i~n 

n 

I 
j=l 

€ ' 

x. a .. 
J Jl 

Next we define an n-dimensional real vector 

n 

(v.) = I lxk-llxjaji l 
j= 1 

Thus we can write 
n 

(v) = l_ I xk -l I x.A., 
i= 1 l l• 

(2.18) 

(2. 19) 

(v) by 

(2. 20a) 

(2. 20b) 
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where A. denotes row i of matrix (A}. By Eq. (2. 20}, it follows from 
1• 

Eq. (2. 19} that 

max I v. I -::S £ 
1 

1~i~n 

(2.21} 

Then the rearrangement (v} = ± Ak· + L jx,_-
1

1 x.A .. leads to either 
j:;ik ~ J J• 

(v) = ~· + Jk h-llxjAj (2. 22} 

for xk ?" 0, or 

(2.23} 

for xk < 0. Thus we apply the elementary row operations given explicitly 

by Eq. (2. 22} or (2. 23} to row k of (A} by forming the product 

g 

A(l) = -~-~ (U) (A), 
w= 1 

(2. 24) 

g -::S n-1 and each (U ) is an n Xn matrix with I det U I = 1. w w 
where Then 

has the directly verifiable properties 

(2. 25a} 

for j F k and 

= ± (v) • (2. 25b} 

with (v) defined in Eq. (2. 20). 

Now suppose we have n 
8 ~ n! ( max I A .. 1) . Then by Eq. (2.16} 

1 . . 1J 

we have e.,y- 1 ~ max 
1~i,j~n 

IA .. I 
1J 

so that 

max 
1~i,j~n 

~1, J~n 

n-1 lA. -I) , 
1J 

(2.26) 

.. 



or, by Eq. (2.17 ), 

e~ max 
1 ~i, j ~n 

-11-

IA .. I. lJ 

But then, by Eqs. (2.21), (2.25b), and (2.27) we have 

max 
1 ~i, j ~n 

so that by Eqs. (2. 25a) and (2. 28) we conclude 

max max 
1 ~i, j ~n 1 ~i, j~n 

lA .. I I lJ 

lA .. I. lJ 

UCRL-8912 

(2.27) 

(2. 28} 

(2. 29) 

If, however~. 8 > n ! ( max I A .. 1 )n, then the conclusion of 
1-s;:i,j~n lJ 

Eq. (2. 33) becomes trivial so that we need consider only the case in which 
, n 

we have e ~ ( max I A. ·I) for which, by Eq. (2. 24), 
1 ~i, j ~n lJ · 

g 

=rr 
w=l 

I det U I I det A I = I det A I . w 

By Eqs. (2.17), (2.21), and (2.25b) it follows that we have 

-1 e qT • n: ( max 
l~i, j ~n 

so that by Eqs. (2. 2 9) and (2. 30) we have 

jdet AI -1 
~ e "¥ . n ! ( max 

n-1 I A .. 1) , lJ 1 ~i, j~n 

whence by Eqs. (2.16) and (2. 32) we still have 

I det AI ~ e I v e > 0 

.:(2. 30) 

(2.31} 

(2. 32) 

(2. 33) 
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This leads to the conclusion 

I det AI = o. (2. 34) 

Therefore (A) is singular, so that the linear dependence of its 

rows implies that 3: (x), an n-dimensional nonzero real vector, with 

II xA II = 0. 
max Jx.J 

1 ~j ~ n J 

Since WE ljJ[A:x] --. w ~ 0, we have the result 

Min. ljJ [ A:x] = Oi 

Q. E. D. Theorem 2. 15 

By Eq. (2. 34), we of course have the equivalent theorem 

Theorem 2.37. V(A), nXn and real, E(A) = 0-. det(A)"' 0 

(2. 35) 

(2. 36) 

We now use Lemma 2. 05 and Theorem 2. 37 (Theorem 2. 15) to 

prove the following corollary: 

Corollary 2. 38 V integer n;:::. 1, andV a, a ;;;::. 0, 3: (A), 

a real nxn matrix, •3· E(A) =a. 

Suppose a := 0. Then we simply take any n Xn singular matrix 

for (A). Or suppose a > 0. Then let (J) represent any nXn nonsingular 

matrix, and let E (J) = Z. Since det(J) f 0, 2. 37 gives us Z > 0, so that 

Z -l exists. Then we simply define (a .. ) = aZ -l (J .. ), i. e., (A) = aZ -l (J). 
-1 lJ -llJ 

Then Eq. (2.05) gives us E(A)= laZ IE(J)= JaZ JZ. But then a> 0, Z > 0 
~ . .;. 

leads. to E (A) = a, and we have proved Corollary 2. 38. 

A more direct proof follows from considerations of E[ a(I)], but 

since the preceding proof utilizes an arbitrary nonsingular n Xn matrix (J), 

we have the somewhat stronger result given in Corollary 2. 39. 

Corollary 2. 39. Let (a 1, · · · · · , an) be any basis for n-space over the real 

field. Then, V (3, (3real, 3: (A) •. a real n Xn matrix, having the 

properties that, for some real r: 

(2. 39a) 

with I .::::; i ~ n and 

€ (A) = (3. (2. 39b) 
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III. E DEPENDENCE AND THE INSTABILITY OF LINEAR SYSTEMS: 
FURTHER THEORY 

It is well known that ill-conditioned systems are peculiarly 

sensitive to small errors in the physical determination of the coefficients 

and in the numerical (approximate) solution of the resulting system~ and 

that such ill-conditioned systems often resist conventional indirect (as well 

as direct) solution methods. Using the more general results developed in 

Section II, .we proceed first to make the mathematical basis for these 

difficulties more precise. 

We begin with a system (A)(Y) = (B), where (A) is nonsingular, 

real, and n Xn, and where (Y) and (B) are real and n X s. We then return 

to the previous discussion at Eq. (2. 24) to form 

(A ( 1 )) = g 
1/ (U) 
w=l w 

(A) (3. Ola) 

and 

(B(l)) = g 
IT (U ) 
w=l 

w 
(B). (3.0lb) 

Here we have g ~ n -1, each factor (U ) is an n Xn matrix with I det U I= 1, w w 
and the rra trices (U ) , 1 ~ w ~ g are selected to represent the elementary 

w 
row operations given by Eq. (3. 02) or (3. 03) (depending as in Eqs. (2. 22) and 

(2. 23) upon the sign of xk ). For xk >,. 0, we can write 

(v)A = Ak· + L I -ll x.A. 
jfk ~ J J• 

(3. 02a) 

and 

(v)B = Bk· I -1 
x.B. + lxk I 

jfk J J• 
(3. 02b) 

For xk < 0, we write 

- (v) A = Ak· L -1 
x.A. - lxk I 

jfk 
J J• 

(3. 03a) 

-(v) Bk· I -1 
x.B. = lxk I B jf k J J• 

(3. 03b) 
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Then, as in Eq. (2. 25), for j f k we have 

A (_l) =A. 
J· J• 

A (1) = ± (v)A' 
k· 

UCRL-8912 

(3. 04a) 

(3. 04b) 

with (v) A = (v), defined as in Eq. (2. 20), with the property of Eq. (2. 21 ): 

max I v A I . ~ €, V € > € (A) 
1~i~n 1 

(3. 05) 

so that 

max IvA I i ~ € (A). 
1~i~n 

(3.06) 

-ft Now by the transformation w= 1 (Uw) of Eq. (3.01)~ we 

have replaced the original system (A)(Y) = (B) by the equivalent system 

so that 
n 

L 
i=1 

(1) - (1) 
a ki y ij - b kj 1 .$. j ~ n, 

whence, selecting (x) in Lemma 2. U • 3. a (l) .1. 0 
kw r ' 

y . = (b (1_) -
WJ kJ 

L ( 1 ) ) (a (k1w) ) - 1 ak. y .. 
i-fw 1 1J 

This gives us the fundamental relationship 

( bk. - ak. y .. ) (1) ~ (1) 
J . 1 1J 

1 w 

= (a ( 1) ) - 1 
kw ' 

(3.07) 

(3. 08) 

(3.09) 

(3. 1 0) 

providing y . f 0. Now, by Eqs. (3. 02), (3. 03), and (3. 04), we have 
WJ 

' ( 1) a- =±a ± 
kw kw 

L -1 lxk lx. a. , 
.1. J J'w jr-k 

(3. 11) 

whence we obtain 

( 

y. . j WJ -
(1) (1) -

bkj - ~w aki Yij 

(3. 12) 

• 



.. 

• 

But
8
als(o we ~;w that ) -

a ak b ll) - [ akP >y. . -
w kJ . .L 1 lJ 

lrw 

1 
( 1) 

.akw Ywj 
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1 

Combining Eqs. (3.12) and (3.13), we obtain 

_I (~ 
y . ifw 

WJ 

whence 

ay . 
··wJ 
~ + L 

Thus we can conclude 

max 
l~.i~.n 

if w 

ay .. 
__ l_J 

aakw 

n 

L 
i= 1 

ay. ·t 
-.:JI 
aakw 

UCRL-8912 

ay .. ) __ lJ_ 

aakw 

(3. 13) 

ay .. ) __ l_J 

aakw 

= ± 1 (3.14a) 

(3. 14b) 

(3. 14c) 

Further, the abo~e is trivially true for y . = 0, so the. restriction pre-
WJ 

.ceding Eq. (3.11) is unessential to the result of Eq. (3.14c), which will 

hold in any case. 

Now let CY) be any nonsingular nXs matrix .. Then, y W•3' 1 ~w~n, 

:!£0.• l ~a~ n, ·3· I y I > 0. Set I y I = o. Now, for any nonsingular wa. . wa. 
n Xn matrix (A), if we set (A)(Y) = (B), then the application of all the 

preceding analysis proves that 
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'· n 
ay. L ( 1) 1a 

~ o. (3.14d) max aki 
1 ~i~ n aakw i=1 

where k in general depends upon (A). n 

~ (1) 
But by Eq. (3.04b) and (3.06). we conclude that ne(A) ~ i=l laki I· 

max I ay. jaak I > M. 
1 /. / 1a w . 
~1~n . 

Further, we note t?at, by Eq. (3.11 ). 

Then, by the reasoning leading. to, Eq. (3.14c), we obtain 

max 
l ~i~n 

ay .. 
lJ 

a a 
pw 

n 

~ 
i= l 

-1 
;;: lx X. Y · I · p .1< WJ 

(3.15) 

In Eq. (2.11 ). we choose (x) •3•X f 0, and we obtain a more general form 
p i 

of Eq .. (3.15), where akw may be replaced by ahw' with no restrictions on 

h or w except that l .:::;:: h, w ~ n. In addition, since 

max I a y . ./a ah I ;::. max I a y. I a ah '· we reach the broader : 
l . . IJ w 1 / . 1a w 
~1. J~n ~1~n 

conclusion expressed in the following Theorem: 

Theorem 3.16. Let (B) be a nonsingular nX s matrix. Then, 

V M > 0,3:~M> 0 · 3' Y nXn matrix (A) with 0 <£,(A)~ eM• 

we have, V p, q.3. 1 ~ p. q_~ n, the following: 

.max 
1~i. j~n 

in the system (A)(Y) = (B). 

ay .. 
lJ 

a a 
pq 

> M ( 3. 16 ) 

In 'the special case of greatest concern, that of matrix inversion, 

we have the followfhg direct result of Eq. (3.16): 

• 
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Theorem 3.17. V n?: 1, VM > 0, 3: EM> 0·3•-:'i;fnXn:rnatri;x: (f\), 

if 0 < E(A) ~EM' then Vp, q ·3· 1.::;. p, q~ n, we have: 

max 
l~i,j~n 

!l -1 va .. 
lJ 

'8a 
pq 

-3>- M (3.17 

By Corollary 2. 38, we know that, V EM > 0, if 0 < £ ~EM' then 3: a non

singuJar, · · nXn matrix (A)•3•E(A) = £, so that the effects described 

conditionally by Eqs. (3.16) and (3.17) do in fact arise in a material sense. 

We could, of course, have obtained still stronger results by 

using Corollary 2. 39 instead of 2~ 38. Thus, using 2. 39, we show directly 

that for any basis (a.
1

, · · .. · . ; .... , a.n) of real n-space, 3:(A), a real 

nXn matrix, satisfying the requirements of Theorems 3.16 and 3.17, 

respectively, and also satisfying the restriction of Eq. (2. 39a): 

A. 
1• 

1 ~ i ~ n, (3. 18) 

where r is real and is the same for all i. 
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We will use the results of Theorems 3.16 and 3.17 in Section IV 

when we consider the implications of e (A) for the actual solution process. 

At this point, however, we proceed with the pertinent theory leading up to 

the analysis of the next section .. Returning then to Eqs. (3. 03), we define: 

and 

(E .. ) = 0 
18 

if i f k, 1 ~ j ~ n 

lEk.) = ± (vA). . J J 

(3.19) 

(3. 20) 

where the positive sign is taken if we use Eqs. (3. 03) and the negative 

sign if we use Eqs. (3. 0-2). Then we let (A) + (E) = (S), so that, by Eqs. 

(3. 04), we have 

S. =A. if j f k 
J• J" 

(3. 21a) 

and 

sk· = (O). (3. 21 b) 

Thus det(S) = E(S) = 0, and by Eq. (3.06) we have: 

max I Eki I ~ e(A). 
1-::;i~n 

p.22) 
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B~fore proceeding, we remark that Eqs. (3.21) and (3.22), 

together with (3.0l)and (3.02) prove the following theorem: 

Theorem 3.23. V(A), nXn and real, :3: (E), nXn and real, •3•for some k, 

1 ~ k ~ n, the following requirements are met:. 

(E .. ) = 0 
1J 

if i f k, 

max IEkjl ~ £(A) 
1-.::;j~n 

(A) -t (E) = (S) is n xn, real, and singular. 

(3. 23a) 

(3. 23b) 

(3.23c) 

We will have occasion to discuss the intuitive meaning and the 

numerical significance of Theorem 3. 23, as well as of the earlier results 

of this section, in Section IV. 

Continuing from Eq. (3. 22), since det(S) = € (S) = 0, the matrix 

(S) represents a proper (noninjective) endomorphism of real n-space. Now 

let {C.}, 1 ~ i ~ n, be any set of n real numbers. Then, evidently, 3:(W) 
1 

n Xn and real, with the properties: 

IIW. II= c. 
1" 1 

(3. 24a) 

(S)(W. ) = 0 
1• 

1 ~ i ~ n. (3. 24b) 

We need only take any (n), a nonzero real n-dimensional vector, 

in the null space of (S), and thus define Wi• = (C/ U n.ll )(n), Suppose now 

that we have, as before, the system (A) (Y) = (B). Then we define a matrix 

(Y(l)) row-wise by 

Y(.l) = W. 
1• 1• 

+ Y. 
1• 

(3. 25) 

so that we have 

( y ( 
1 ) - Y). = W. , 1 ~ i ~ n. 

1' 1• 
(3.26) 

Next, let 

jC.j =JVI . 
1 

(3.27) 
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Then, by Eqs. (3.20a), (3.20b), (3.22), (3.24b), (3.26), and (3.27), we have 

(A+E) (Y(l)_y) = (S)(Y(l)_Y) = 0), (A)(Y(l)_y) = -(E)(Y(l)_Y), 

and 

with 

I A ( Y ( 
1

) - Y) I . . = o if i f k, 
1J 

(1) 
max .IA(Y - Y) I kj ~ ne(A) max 

1 ~ j ~ n 1 ~ i, j ~n 

But, using Eqs. (3.26) and (3.27), we have 

max IA(Y(l)_Y)Ikj ~ ne(A).fit . 
l~j~n 

(3. 28a) 

(3. 28b) 

(3. 29) 
' 

Therefore, for fixed n, we need only e (A) .:::; A/nfil to insure 

that max I A(Y(l)- Y) I kj ~ A. Thus again using Corollary 2. 38, we 
1 ~ j ~n 

have the result: 

Theorem 3. 30. V{Ci }, where {C) is a set of n real numbers, and 

V A > 0, and V(Y), nxs and real, 3:(A), nXn and real but 

nonsingular, for which, for a .certain k, 1 ~ k ~ n, we have 

3: (Y(l)), nxs and real, satisfying 3.30b, c, and d. (3. 30a) 

(3. 30b) 

(3.30c) 

(1) II (Y - Y.). II = c. , 
1' 1 

(3. 30d) 

Condition 3. 30e is sufficient for the requirement of 3. 30a, b, c, and d: 

e (A) ~ A/n_/V1 , (3.30e) · 

where_.M is given by 

= max 
l~i~n 

!C. I 
1 

(3. 30f) 
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o Now suppose we take ·:k > 1, c 1 = c 2 = Cn = (k M), so that 

II (Y(l)_ Y). II > M and so that /YI = kM. Then we have below a special 
1" 

case of Theorem 3. 30: 

Corollary 3. 31 V M > 0, VA.> 0, and V(Y), nxs and real, ~(A), nXn, 

real, and nonsingular, for which, for some k, 1 .::;. k.::;. n, 

3: (Y(l)). nXs and real, which satisfies Eqs, (3.3la, b, and c): 

(A(Y(l)_Y)). =(0) ifif.k, l~i~n (3.3la) 
1• 

IA(Y(l)_y)lkj < A. 

II (Y(l)_ Y)i· II > M 

with the sufficient condition 

E(A) < X./n M . 

l~j~n (3.3lb) 

(3.3lc) 

(3.3ld) 

In Theorem 3. 30 and Corollary 3. 31, as before, n and s are arbitrary 

positive integers. 
10 

We state one further theorem, proved by A, S. Householder 

and by N. S. Mendelsohn: 
11 

Theorem 3. 3i. V X. > 0, Vfl > 0, 3: (A), (C) such that every element of 

AC - I is (absolutely) less than· X., whereas some element of 

CA - I equals fl (absolutely). 
=1 In his proof, Householder takes C = A + uv~, where ( 1

) 

denotes transposition, and where Au = A. u, A' v = flV, Thus we have 
-1 -1 A(A _ + uv' ) = I + AflV 1 and (A + uv' )A = I + f!UV 1

, and the proof is com-

plete. It is clear, however, that a sufficient condition may again (cf. 3. 16·,, 

3.17 '• 3. 30e, 3. 3ld) be formulated directly in terms of £(A), in the manner 

of Theorem 3, 30. 
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IV. IMPLICATIONS FOR THE NUMERICAL SOLUTION 
OF LINEAR SYSTEMS 

Intuitively, the E -dependence measure of a real n Xn matrix (A} 

may be thought of as a "pseudolinear dependence" relationship, and 

Theorem 3. 23 presents a mathematical parallel to this intuitive notion1 

demonstrating that E (A) is in fact an upper bound for a matrix (E) 

representing the deviation of the rows A. I 1 ~ i ~ n, from a neighboring 
1· 

linearly dependent set. 

Given a linear system (A}(Y) =(B), Theorems 3.16 and3.17 

prove that, for sufficiently small E (A) 1 the "sensitivity" of the solution (Y) 
' 

to even seemingly negligible errors in (A) or (B) becomes arbitrarily great 

as measured by certain partial derivatives. It can further be shown that 

some elements of (A -l) must become arbitrarily large for sufficiently small 

E(A} 1 providing yet another indication of the same sensitivity. Thus if 

the system (A)(Y) = (B) is approximated by (A+ E
1
)(Y') = (B + E 2 ), we 

have 

(4. 00) 

-1 so that large elements in (A ) may well force even very small (but nonzero) 

matrices (E 1 )~ (E
2

) to induce the formation of large elements in the 

deviation matrix (Y' - Y). 

Thus we find that the numerical sensitivity of linear systems to 

either external noise (errors in physical observations) or internal noise 

. (errors in automatic computation) is 1 by the results of the preceding section, 

a direct consequence of the near-linear dependence of the rows of its 

coefficient matrix, as determined by the E -dependence measure of Section 

II. We also find that a sufficiently near-dependent set of coefficient rows, 
I 

in the sense of Section II, will !produce an arbitrarily unstable system. 

Because of this extrbme instability, which we have found to be 

an inherent property of ill-conritioned systems, our aim must be to 

Jninimize computational (rounding) errors, or "internal noise. 11 We must 
I 

recognize the. fact that "external noise, 11 in the form of inevitable 

limitations upon physical measurement accuracy, may make actual solution 

impossible, even without the further complication of "internal noise. 11 

Thus the physical system represented to nine figures by x + y = 1, 

x + (1 + 10- 9 ) y = 2, has only fictitious "solutions, 11 since changes in the 

.-
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tenth figure alter the pseudosolution drastically. Here the pseudosolution 

of the system is x = 1 - 109, y = 109 . The pseudosolution of 

x + (1 + l0- 9 )y = 1, x - (1 - l0- 9 )y = 2, which represents to nine figures 

precisely the same physical situation, is x = 1. 5 + 5.10
8

, y = -5.10
8 

(We 

will encounter similar difficulties with the Hilbert matrices). When the 

matrices involved in a certain numerical problem are too ill-conditioned 

(and hence unstable) to yield any useful (nonfictitious) solution to the physical 

system in question under the limitations imposed by the inaccuracy of the 

physical measurements made, the possible courses of action are beyond 

the scope of this paper. For our purposes, we will assume that this is not 

the case, and we will concentrate on minimizing internal noise only. 

One class of methods designed to accomplish this end -- the in

direct or iterative methods --was the motivation for the discussion be

ginning at Eq. (3.ll9) and culminating in Theorem 3. 30 and its Corollary 

3.31. Thus, beginning with the system (A)(Y) = (B), we have been led to 

the conclusion (3.31) that there exist families of "approximate solutions" 

(Y(l )) yielding arbitrarily small (and largely zero) residual matrices 

(A)(Y(l )) - (B), but arbit;rarily large error matrices (Y(l )) - (Y). The 

reason, as we have seen in Theorem 3. 23, is that the smallness of € (A) 

implies the existence of singular neighbor matrices differing arbitrarily 

little from (A). Thus arbitrarily large error matrices, if they lie in the 

null space of a singular neighbor, give rise to only very small residual 

matrices. And we note in passing that if singular neighbors of small rank 

exist, then statistically a very large number of seemingly "arbitrary" 

error matrices will project near-zero residuals. Specifically, a. "neigh

bor-rank" of (k) implies (n-k) degrees of freedom for the choice of error 

matrices with near -zero residual projections. Theorem 3. 32 simply notes 

the possible effect of this general phenomenon for the special case in which 

(A)(Y) = (I). We are thus forced by Section III (and the preceding) to the 

conclusion that very small E (A) implies not only that (Y), in the system 

(A)(Y) = (B), is very sensitive to small errors in (A) and (B), but also 

that an approximation (Y(l )) to the solution (Y) is inherently difficult to 

evaluate for accuracy, because the deviation or error (Y(l)- Y) becomes 

inherently difficult to estimate as € (A) becomes small. Thus, as the 

sensitivity of the system increases with smaller e-(A)1 the solution becomes 
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correspondingly more difficult to adjust. The residuals available after any 

approximation then fail to be indicative of the exactness of the approximation. 

Difficulties of precisely this nature have in fact occurred 

repeatedly on the New York University Univac, according to Newmann and 

Todd. 
12 

Thus any iterative or rela:xative procedure designed (as such 

procedures evidently must be) to minimize the residuals may well seem to 

converge to some pseudosolution (Y(l)) despite the possibly astronomical 

magnitude of (Y(
1 

)) ~ (Y). Such "pseudoconvergence" may continue until 

the residuals have been forced below a certain lower bound € (see 3.30e, 

3.3le), which is in general an increasing function of E(A). Thus an 

examination of the residuals until they reach a certain lower bound E will 

be decreasingly indicative for fixed € as E(A) decreases. As a simple 
-7 10 

example, the system x + y = 1, x + (l + 10 )y = 5.10 , has the property 
7 -3 7 

that an error vector of (:- 10 -10 , 10 ), obviously close to the vector 

( -10 
7

, 10 
7

) of the null space of the singular neighbor all of whose elements 

are 1, gives a residuaJ~e_ctor _of_only_(=-.10~_17 , _ ~_10- 17 
)._Rounding may ___ _ 

then proceed to obscure the residual vector altogether, causing the 

degeneration of the iterative procedure. 

Further considerations of the slowness of convergence, even 

when it does occur, and even when it does tend to a nonfictitious solution, 

lead to the rejection of the iterative approaches (e. g. Gauss -Seidel 

relaxation, method of conjugate gradients, biorthogonalization). It is well 

known, for instance, that the rate of convergence for basic iterative 

procedures decreases prohibitively as the P-condition number increases, 

and that the procedures (on the whole) diverge for >..(A) > l. 13 
Finally, 

our earlier results and Eqs. (l. 02) and (1. 03) can be used to demonstrate 

that P (A) increases rapidly as E(A) becomes very small. The results we 
c 

have thus far obtained, then, imply that there seems to be no value, at least 

at present, in an ~doption of the indirect methods for the solution of ill

conditioned systems on a generalized basis. 

But the sensitivity of such systems remains a major obstacle, 

and we must therefore seek another general approach to their solution. 

In particular we will consider solving ill-conditioned systems directly.-
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d 1 h 
14 d B d · 15 d" h . "b"1"t f " Men e so n an o ew1g 1scuss t e poss1 1 1 yo pre-

conditioning" the system before direct solution. The basic problem is that 

the form which such preconditioning should take [e. g. Mendelsohn suggests 

100 A
2

. - 97 A 1. followed by 704 A 1. - 700 A 2. to precondition the matrix 

whose first row is (1, 1) and whose second row is (1, 1.01)] is by no means 

a directly observable consequence of any readily accessible properties of 

the system. Analysis of the kind required to determine desirable modes of 

preconditioning or scaling, as von Neumann and Goldstine point out, 
2 

is a 

problem of greater depth than the solution itself. Moreover, even "ideally" 

selected scalings, mathematically speaking, may hazardously magnify 

certain errors (caused by external noise) concealed within the system. If 

the system is highly ill-conditioned, then the theory of Section III would 

warn us against risking the magnification of errors which may already be 

grossly distorting the solution. Finally, there seems to be no generally 

useful "automatic" scaling procedure. Symmetrization, for instance, can 

never improve the condition of a matrix in the normal sense 
16 

and will 
. 17 

often make it worse. Thus, for example, for I det AI < 1, we have 

I det A' A I < I det A I . 
Within the framework of a direct solution, the basic flexibility 

is that of format and of the precision of intermediate computations. The 

studies of von Neumann and Goldstine
2 

have indicated elimination to be 

preferable to triangular resolution as a general procedure. Of the possible 

elimination patterns (typically, those of Gauss, Jordan, Aitken, Doolittle, 

and Crout) we will choose a variant of Gaussian condensation, ignoring for 

the time the not negligible possibilities of the resolution methods, particularly 

that of Cholesky for symmetric matrices. 
5 

Our aim will be to reduce the coefficient matrix to the identity 

matrix by an ~asily codifiable.sequence of elementary row operations and, 

in the process, to solve approximately the associated system. But actually 

to perform this reduction in its entirety in any of the possible variations of 

(Jordan) diagonalization would be both unnecessary in the general case and 

unwise in the ill-conditioned case, since (n 
2 

-n) multiplications and as many 

subtractions are wasted on the formation and subsequent alteration of in

termediate coefficients above the diagonal. 
18 

Thus 0 in the ith diagonalization 

step, (x.) is "eliminated" not only from rows i + 1, ..... , n, but also from 
1 

rows 1, .... , i- L This involves a sequence of matrix premultiplications 
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(in effect) altering possibly every element (ajk), 1 ~ j ~ i-1, i+l ~ k ~ n, and 

every corresponding element (bjk)' and thus forces the unnecessary accumu

lation of computational errors. Of course the theoretical results obtained in 

Theorems 3.16 and 3.17 make clear the possible numerical consequences of 

any such accelerated propagation of internal noise in the form of rounding 

errors. Triangular condensation eliminates at least interference as a 

source of added error since the above-diagonal elements in question remain 

unaltered after their initial formation and are used in their initial form in 

the back-substitution process, after having once been located in any of the 

rows 1, ... , i-1 at the ith triangulization step. Thus triangulization wo~ld 

seem preferable to diagonalization, both from the point of view of economy 

and also from the point of view of suitability for ill-conditioned linear 

systems. 

Because we seek a generalized technique that is applicable even 

when the matrix coefficients either of the initial system or of some derived 

system-va-ry-greatly,-we-will-find-it-necessary-to-provide for--some-type-of __ _ 

selective pivoting. Therefore we must summarily reject the so-called 

"compact" techniques (e. g. Doolittle, Crout), since the price of their 

compactness is the inflexible requirement that the order of elimination must 

be fixed at the start. 
19 

Since elimination by cross -multiplication (without division by the 

pivot until the final stage) doubles the number of operations required and 

correspondingly increases the propagation of internal noise, we will do well 

to eliminate by a "pivotal" division method. Thus, at the ith step of the 

condensation, we will do the following: 

-1 
Replace (yik) by (yik)(aii. ) = (y 'ik) for y = a, 

k=i+l, ... , n; andfory=b, k= 1,2, ... ., s (4.01) 

Replace (y.k) by (y.k)- (a .. )(y'.k) for j = i+l, ... ,n, with 
J J Jl 1 

y = a, k = i+ 1, ... , n and with y = b, k = 1, ... , s . (4. 02) 

The above algorithm (except for omitted operations which would 

have no effect on subsequent computation) is clearly equivalent to pre

multiplication by a sequence of lower triangular matrices. 
20 

The back 

substitution is effected after steps 4.01, 4.02 have been repeated for 
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i = 1, ... , n, by a loop through 4.02 fori= n, ... , 2 with the new limits 

j = 1, ... , i-1, y = b, and k = 1, ... , s. In all of the above, the system 

referred to is still that of Theorem 3. 30, where (A) is n Xn and (B) is 

nxs, with (A)(Y) = (B), (Y) nxs. 

Blanch has suggested that in any pivoting algorithm, the best 

possible arrangement in theory would be to have all pivots (a .. ) of equal 
11 

magnitude, each equal to the nth root of det(A)D so that relative error is 

minimized. 
21 

Even if he is correct, the obvious impossibility of such a 

procedure in automatic computation leads us to seek the minimization of 

absolute error by always selecting a pivot (a .. ) of greatest possible 
11 

magnitude. The reasons for such a choice follow. 

First, the multipliers (y' ik) are subjected to the bound 

I y'.k I ~ 1, so that errors accumulated in the (a .. ) are decreased rather 
1 J1 

than increased during the formation of the machine -product (a .. )(y.'k) in 
J1 1 

4. 02. Obviously, suppression of the choice of a maximum pivot, or even 

the limitation to a partial choice within only column A. i • cannot subject 

the multipliers to this bound. Second, note that the approximation 

(y.k/ a .. )' is used to represent (y.k/ a .. ), where we have 
1 11 1 11 

I -1 
(y.k a .. )' = (y.k + el)(a .. + £2} + €3· 

1 11 1 l1 
(4. 03) 

Here (€ 1 ) and (€ 
2

) are rounding errors that have accumulated in (yik) and 

in (a .. ), respectively, in steps 1, ... , i-1 of the reduction, and (€
3

) is a 
11 

machine-division rounding error. Then, if we let D.~ represent the 
1 

error in the resulting_ multiplier (Y\k)' we have, at worst, 

k -1 -2 -2 
D.. = €1 ja.. I+ €2 ly.ka.. l + €1€2 !a.. I + €3 

1 11 1 11 ll 
(4. 04) 

At the very best, we. have 

k -1 -2 
D. = E Ia I £2 1£ 1 +y I Ia 1+£. (4.05) i 1 ii ik ii 3 

Thus (D.~ is, roughly speaking, an increasing function of I a .. I and of 
2 1 

l1 k 
I a ... 1 • (At least upper and lower bound approximations for (D..) are such 

11 1 

functions.) Since (D.~) will itself be propagated as an error (cf. £
1

, £
2

) 

in further computations, the selection of the pivots (a .. ) without regard to 
11 

size may significantly increase the error in the final solution. This is true 
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especially if E (A) of Section II is so small that some (or all) of the derived 

matrices generated during condensation have several very small elements. 

In certain cases, notably those in which some coefficients are very small 

and others very large to begin with, the ill-condition of the system may 

indeed necessitate the use of the maximum pivot at each reduction stage even 

if only a vague resemblance between the machine approximation and the 
22 

exact solution is expected. We note in passing that if no nonzero pivot 

may be found at the ith. stage of the reduction, the matrix must be considered 

"machine- singular" and condensation must }:lalt. If it is really the case that, 

all computations being exact, no nonzero pivot remains for reduction step 

i, then rows i ... n are (0), and det(A) = E(A) = 0, since the premultiplication 

reflected ·in the algorithm (4. 01), (4. 02) utilizes only nonsingular matrices. 

We must finally decide on the number of digits to be carried 

throughout the computation. Hotelling argues that as many as n log 
10

4 

guarding figures may be necessary for very ill-conditioned systems. 23 

Turi!lg c~:>It,~id~_rs this an absolute maximum and notes the rarity of cases in 

which even n log 
10

2 are essential. 24- But t~e -diff'i~~lty of carrying even ;ne

guarding figure to delay the accumulation of rounding errors (in response 

to the findings of Section III) is no less than is the difficulty of carrying ten 

such figures, whether in terms of programming technique or of machine 

economy. Triple -precision being out of the question for machines of modest 

memory capacity, it thus becomes a question of either complete double

precision or simple single-precision. We will select double precision, with 

the theoretical justification of Theorems 3. 16 and 3. 17 and with the empirical 
25 

justification of actual experiments with ill-conditioned systems. 
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V. PRELIMINARY EVALUATION WITH HILBERT MATRICES 

As Newman and Todd point out, 
26 

it is both tedious and difficult 

to evaluate a program for the solution of a linear system of significant size 

by using rigorous error estimates. They write: "we must be content to 

carry out 'experimental' calculations on 'representative' problems for 

which exact results are known, to observe the errors, arid to extrapolate 
,) 27 

from these to predict the errors in less academic problems. 11 In this 

section we report the results, to date, of just such experimental calculations 

using the highly ill-conditioned Hilbert matrices. 

In what follows we consider the matrix defined by 

(H ) = (( (i+j-l)- 1)), 
n 

(5.01) 

for i, j = 1, .... , n. This is the nth finite segment of the infinite Hilbert 

matrix, which arises in the estimation of the mean value function of certain 

stochastic processes and also in least-squares theory when an integral is 

minimized for a polynomial fit of the type L a.x.,. 
28 

i 1 ~ 

The matrices defined by Eq. (5. 01) are especially useful for the 

evaluation of inversion programs because tables of their exact inverses 

may be computed systematically by the formulas: 29 

-1 _ (n+i)(n+ J) 
(Hn+ 1 \j - (n+ 1-i}{n+ 1- j) 

-1 
(H ) .. 

n lJ (5. 02) 

for i, j = 1, ....• n and 

(-l)n+j-1 
= (n+j) 

[n.i (j-1)!] 2 (n+1-J)! 

(2n+1)! (n+j)~ 
(5.03) 

for j = 1, 2, ...• (n+1). 

Regarding the notoriety of the matrices (H ) for th~ir ill-condition, 
n 

Todd has estimated that
30 

M (H ) - Ae3. 525" 
c n 

(5. 04) 

for a certain constant A. 
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-1 31 
Since we have X.(H ) - rr + n , the more general relation-

n 
ships (1.02) and (1.03) which relate the standard condition numbers may be 

replaced by the more precise bounds 32 

-1 rrn M (H ) < P (H ) < rr M (H ) . 
c n c n c n 

(5. OS) 

)
4 (2n-l )-1 ., 7T ., 

1 • J, 
j= 1 

(5.06) 

asymptotically. Table I is an approximate reference table of 

M(H ), l?(H ), and det(H ) = D(H ), 4 ~ n ~ 10, computed with the use of 
c n c n n n 

Eqs. (5.04), (5.05), and (5.06). 

The experiments performed to date have included the inversion 

of (H4 ) through (H
10

). The results of the inversions, carried out on the 

IBM-650 computer, are shown in Table II. The smallest number of 

significant digits obtained in any.coefficient is listed under "significant 

figures," even though over 80% of the coefficients may have been obtained 

to an additional figure (e. g. in H
5

, H
9

). 

The fact that inversion time seems to be almost precisely n
3 

seconds is q~ite explicable in terms of the 4.8-msec cycle of the IBM-650 

machine and in terms of the number of operations(excluding seeking a 

maximum pivot) that the algorithm of Eqs. (4.01) and (4.02) requires -

namely, 3n
2 
/2 - n/2 divisions, Sn 

3
/6 - n

2 + n/6 multiplications, and the 

same number of subtractions. The necessity of performing each operation 

with the interpretative double-precision floating-point routine, carrying 

a mantissa of 18 decimal digits and a characteristic of two decimal digits, 

makes the long running time an inevitable consequence of the relatively 

long cycle of the 650 system. Each interpretative operation takes from 

250 to 550 mseC. 
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Table I 

Condition numbers of finite segments of the Hilbert matrix 

k M (Hk) "f (Hk) det (Hk) 
c 

.,.· 4 - (2.6) 10 - (6) 10 - 10 

5 - (9) 10
5 - (2) 106 '":" 10-11 

6 - (2. 7) 10
7 

- (6) 107 - 10-18 

7 - (9.3) 108 109 - 10-25 

8 - (3.4) 1010 - (6) 1010 . -32 
- 10 

9 -(1.1) 1012 1012 - 10-41 

. 10 - (3.5) 1013 - (3) 1013 - 10-53 

Table II 

Results of inversion of H 4 through H 10 

Matrix N3 Inversion time Significant 
(seconds) figures 

(H4) 64 62 14 

(H5) 125 130 12 

(H6) 216 223 11 

(H7) 343 347 10 

(H8} 512 510 9 

(H9) 729 740 7 

(H1o> 1000 1016 6 
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Aside from the time difficulty, which seems unavoidable under 

the circumstances, the results thus far obtained seem reasonably satisfactory, 

especially when compared with those obtained by Todd and the National 

Bureau of Standards on the SEAC, with an elimination process essentially 

like that described by von Neumann and Goldstine. 
34 

No pivot searching 

was executed (in our program, it will be recalled, we selected to search 

for a maximum possible pivot) 22 and 44 binary bits (about 13 1/3 decimal 

digits) were carried (in contrast with our 18). The process gave five 

significant (decimal) figures with (H4 ) and three significant (decimal) figures 

with (H
5

), but failed in the attempt on (H6 ). The additional time required 

by the double precision thus seems to be a justifiable drawback of the pro

gram written in conjunction with this paper, in the event that the linear 

system involved is subject to the very great instability discussed in Section 

IV. Evidently, (see Table I), the Hilbert matrices are just such systems. 

Thus the advantages of using our program instead of a more conventional 

routine, demonstrated by the preceding considerations, are not unexpected. 

We mention further one rather striking property of the experi

ments that we have performed. We let S represent the minimum number 

of significant figures obtained in an inversion, and let k represent the 

approximate base -ten logarithm of the M-condition numbers of the matrix. 

Then for (H4 ), (H
5

), and (H
6

), we have S + k - 18, and for (H
7 

), (H
8

), (H
9

), 

and (H 10), we haveS + k- 19. This quite unexpected pattern is only 

partially explainable by Turing's results with the M-condition number 

(see discussion pr.eceding Eq. (1. 02) in Section I]. 

The results obtained with the Hilbert :.rntlt;rices illustrate quite 

well the possible effect of "external noise 11 on highly ill-conditioned systems 

(see discussion in Section IV). Thus, for example, if the physical measure

ments leading to a matrix (H
6

) were known exactly to only nine or ten 

figures, there would be no real point in attempting an inversion, since an 

error in the thirteenth place of (H6 ) already causes a totally erroneous 

"inverse" to be produced when 44 binary bits are carried (cf. SEAC). The 

same is true, but to a far greater extent, with (H
1 0

), in which an initial 

error in the fifteenth place will invalidate the inverse completely. 
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We note finally that the relative uniformity of the coefficients of 

the submatrices derived during the condensation of the Hilbert matrix 

apparently removes the urgency of selective pivotingo Even in the case of 

(H
10

), only one figure was lost when the pivots were taken in order along 

the diagonaL It would thus seem advisable to carry out further experiments 

on ill-conditioned systems displaying great variations in coefficient magnitudeo 

Thus the effect of selective pivoting (which» in the program as prepared for 

the IBM 650, may be suppressed optionally) as well as of double precision9 

might be reliably evaluatedo 
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