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ABSTRACT OF THE THESIS

Neural Architecture Search for Biological Sequences

by

Zijun Zhang

Master of Science in Statistics

University of California, Los Angeles, 2019

Professor Ying Nian Wu, Chair

We report a neural architecture search framework, BioNAS, that is tailored for biomedical

researchers to easily build, evaluate, and uncover novel knowledge from interpretable convo-

lutional neural network models using biological sequences. BioNAS introduces knowledge

dissimilarity functions to enable the joint optimization of predictive power and biologi-

cal knowledge when searching architectures. By optimizing the consistency with existing

knowledge, we demonstrated that BioNAS optimal models revealed novel knowledge in

both simulated data and in real data of functional genomics. In a simulated multitask

learning framework, BioNAS robustly uncovered the masked knowledge by generating child

networks with high knowledge consistency of existing unmasked knowledge. Furthermore,

we applied BioNAS to the task of predicting the protein-RNA binding sites using the real

data of ENCODE eCLIP. BioNAS augmented eCLIP model training with information from

RNAcompete, and facilitated the annotation of convolutional feature maps with biologi-

cal semantics. In sum, BioNAS provides a useful tool for domain experts to incorporate

their prior belief into an automated machine learning framework. BioNAS is available at

https://github.com/zj-zhang/BioNAS-pub.
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CHAPTER 1

Introduction

1.1 Motivation

Deep learning has been successfully applied to many genomics and biomedicine problems

[7]. The modern genomic studies employ deep learning to build predictive models based on

large scale data, such as high-throughput sequencing of DNA [27, 11] or RNA [21, 24]. Deep

learning has also been adopted to biomedical image analysis for diagnostics [8].

Despite many successful implementations, an Achilles heel for deep learning in bioin-

formatics applications has been its black-box nature [4]. When and how the practitioners

could trust (and not trust) a model’s prediction is vital, as the prediction tasks are directly

or indirectly linked to medicine or patient treatments. Hence, building interpretable deep

learning models and understanding the decision logics in highly predictive models is an urgent

call in biomedicine [22].

With the continued cost reduction in high-throughput sequencing, the genomics field is

arguably one of the largest contributors for today’s big data era [7]. Predictive deep learning

models based on genomic DNA and RNA sequences have shed new lights on discovering the

molecular regulatory patterns as well as the therapeutics potentials in various human diseases

[27, 21, 26]. However, harnessing deep learning requires non-trivial amount of parameter

tuning and code development, hence it imposes a computational barrier for life science domain

experts. Building an automated machine learning framework that meets the specific needs of

domain researchers can democratize big data science, and potentially speed up the feedback

loop of data generation.

In this work, we propose a neural architecture search framework, BioNAS, that is tailored
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for life science researchers in genomic sequence analysis using deep learning (Figure 1.1a).

BioNAS incorporates biological knowledge through a generic family of knowledge dissimilarity

functions, to balance the interpretability and predictive power in architecture searching.

We used BioNAS to search convolutional neural network architectures with genomic

sequences as inputs. The generic tasks using genomic sequences as inputs for convolutional

neural networks are illustrated in Figure 1.1b. With the fast development of high-throughput

sequencing machines, genomic sequences have become an important source of information for

elucidating the regulatory patterns in computational biology and functional genomics. The

genomic sequences are first encoded as one-hot matrices in general. Then the convolutional

neural networks take the one-hot encoded genomic sequences as inputs and provides an "end-

to-end" computational framework for a wide variety of predictive tasks, including DNA/RNA

sequence properties such as protein-DNA/RNA interaction sites and methylation levels,

and gene activities such as expression and splicing levels. In particular, the first layer of

convolutional filters are feature extractors and are often enriched in biological motifs [27, 11].

Matching motifs to the convolutional filters have greatly improved the interpretability of the

CNNs and advanced the understanding of regulatory patterns in many biological sequence

applications [27, 11], while also provided useful approaches for transfer learning to related tasks

[26]. However, the influence of different neural network architectures on the interpretability

of the first-layer convolutional filters remains elusive. Methods for robustly improving the

model interpretability while maintaining prediction accuracy are lacking.

We demonstrate the necessity of considering knowledge dissimilarity for searching inter-

pretable models, and the efficiency of finding both predictive and interpretable models by

BioNAS. Finally, novel knowledge discovery from trained deep learning models is facilitated

by optimizing uncovered prior knowledge, as we show in both simulated data and in real data

of functional genomics.
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Figure 1.1: An overview of the BioNAS framework. (a) The generic neural architecture

framework for joint optimization of predictive power on empirical data and knowledge consis-

tency with existing biological knowledge. (b) General workflow for applying convolutional

neural networks to genomic sequence tasks. Sequences are one-hot encoded, then fed into

convolution, pooling and fully-connected layers, to perform a variety of predictive tasks.

First-layer convolutional feature maps are often enriched in biological motifs. (c) A hypo-

thetical example of two architectures with similar predictive power. After consideration of

knowledge consistency, one architecture compares favorably to the other.

1.2 Related Work

Deep learning using genomic sequences: The application of deep learning to solve

biological questions was pioneered by three methods: DeepBind[2], DeepSEA [27] and Basset

[11]. DeepBind trained multiple single-task models, while DeepSEA and Basset employed a

multitask learning framework. All three methods used raw genomic DNA sequence data as

inputs to predict specific DNA properties. With the rapid accumulation of sequencing data,

there have been numerous efforts utilizing convolutional neural networks to predict various

DNA, RNA and gene-level molecular phenotypes [7].

Decoding deep learning for biomedicine: Recent efforts of opening the black-box

of deep learning in biomedicine can be cataloged in two types. First, methods are devel-

oped to understand the decision rules after models are trained. This includes the back

propagation-based methods [19], and permutation-based methods [27]. More broadly, ideas
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and implementations for interpreting generic deep learning models, e.g. approximating the

non-linear decision boundaries locally with linear classifiers [17], are in principle applicable

to genomics models as well. In essence, these methods are "model decoders" in the BioNAS

framework that decode trained model to a human-understandable space (Figure 1.1; also see

Methods). These methods can be readily supplemented to the naive model decoder discussed

in this paper, depending on particular applications.

A second class of methods aim to obtain interpretable models through customized tensor

operations during training. This includes separable fully-connected layer (SFC) [1] and de

novo layer [15]. While outperforming built-in layers in the reported tasks [15, 1], these layers

might not be suitable for all data types and tasks, hence posing a challenge for domain

experts to fully utilize their advantages. Depending on different data and contexts, these

customized layers can be incorporated in the target model space and subsequently evaluated

by BioNAS in a data-driven manner.

Hyperparameter optimization: Various methods have been developed for hyperpa-

rameter optimization. A popular class of methods are based on Bayesian Optimization, which

has been shown to outperform random search or grid search through the consideration of

the past history of target function evaluations [10, 13]. A sub-domain for hyperparameter

optimization that is more specialized for deep learning is called Neural Architecture Search

(NAS). NAS was first proposed and implemented through reinforcement learning [29]. While

reinforcement learning and Bayesian optimization aim to optimize an unknown black-box

function, another method that directly parameterized the architecture and used gradients to

search layer connectivity was recently proposed and discussed [14]. BioNAS can employ any

optimizer for searching the neural architecture so long as the optimizer works with the loss

function and the knowledge dissimilarity function.
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CHAPTER 2

Methods

2.1 Knowledge dissimilarity function design

We propose a family of generic functions, i.e. knowledge dissimilarity function K(·, ·), to

measure the distances between a set trained model parameters denoted as W , and some

existing knowledge A. The knowledge A can be information from orthogonal experiments

conducted on the same experimental materials, similar experiments conducted in another

relevant biological system, or through textbooks and previous research articles. Because of the

diverse forms of A and the its inherent incompleteness and uncertainties, we introduce another

encoder function h(A) to transform abstract knowledge into a probabilistic representation.

On the other hand, extracting relationships from trained model weights is non-trivial, a model

decoder function f(W ) is designated to distill the model decision rules. Collectively, the

knowledge dissimilarity function is dissected into two components, which transform abstract

knowledge and model weights into the same space to be compared.

In this work we aim to design knowledge dissimilarity functions for Convolutional Neural

Network (CNN) models with genomic sequences as inputs. The input genomic sequences of N

nucleotides are one-hot encoded into a N × 4 matrix (Figure 1.1b). Genomic sequences have

short and conserved patterns, namely motifs [6]. Motifs scatter sparsely and are presumed

with biological functions in the genome. Previous experimental and statistical approaches

have established the probabilistic representations of these motifs, called positional weight

matrices [6].

Specifically, the knowledge A is a set of foreground DNA sequences generated by biological

experiments that are presumably enriched in functional motifs. By contrasting the foreground
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sequences to a set of random background DNA sequences, statistical methods based on

mixture modeling [3, 28] can effectively detect the motif positional weight matrices. These

motif-learning methods are the knowledge encoder function h(A) in this application. The

output of h(A) is a n × 4 matrix, with the motif length being n, and each row following

a multinomial distribution with respect to four DNA letters. We start with the simplest

case where a single motif is encoded as knowledge. Let W̃ ∈ Rn×4 denote the h(A) encoded

knowledge for a given motif.

To understand the learned patterns in the CNN weights, we look at the first convolutional

layer with J filters, with the j-th filter denoted as W j,∀j ∈ {1, 2, .., J}. Each filter weight

W j is a m × 4 matrix, i.e. W j ∈ Rm×4, where m denotes the filter width, and 4 columns

correspond to four DNA letters. Let wjik,∀i ∈ {1, 2, ..,m},∀k ∈ {1, 2, 3, 4} be the element of

i-th row and k-th column in the j-th convolutional filter.

In order to compare a convolutional filter W j to the encoded knowledge W̃ , we apply a

softmax function f(W j) on each row W j
i = [wji1, w

j
i2, w

j
i3, w

j
i4] by

Ŵ j
i = f(W j

i ) = exp(βwjik)∑
k exp(βwjik)

(2.1)

where β is a pre-defined positive value representing temperature. In this paper we set β = 0.1.

The output of f(W j) is still a m × 4 matrix with each row following a multinomial

distribution; we let Ŵ := f(W ) = {f(W j) ∈ Rm×4,∀j} be the decoded model weights.

Now with the encoded knowledge W̃ := h(A) and the decoded model weights Ŵ :=

f(W ), it’s straight-forward to measure the dissimilarity function K(·, ·) between these two

multinomial distributions, as described below. To account for length differences of W̃ and Ŵ ,

Ŵ is first padded by uniform distributions of length n
2 on both sides. Then W̃ is slided on

positions from leftmost i = 0 to rightmost i = m on each of the j-th filter Ŵ j, to compute

the average distance d over n columns, as measured by Kullback–Leibler divergence. We

let the distance between knowledge W̃ and the j-th filter Ŵ j, denoted as d(W̃ , Ŵ j), be the

minimum distance among all possible positions i; and let knowledge dissimilarity function K

be the distance of W̃ to the best matched filter Ŵ j:

6



d(W̃ , Ŵ j) = min({DKL(W̃ , Ŵ j
i ),∀i}) (2.2)

K(W,A) = min({d(W̃ , Ŵ j),∀j}) (2.3)

When more than one motif is encoded in knowledge, i.e. W̃ = {W̃ b, b = 1, 2, .., B}, B > 1,

we treat each W̃ b independently and compute the arithmetic mean as the final knowledge

dissimilarity:

K(W,A) = 1
B

B∑
b=1

min({d(W̃ b, Ŵ j),∀j}) (2.4)

2.2 Architecture search for joint optimization of loss and knowl-

edge

We use reinforcement learning controller network [29] as the black-box optimizer in this paper

to search neural architectures. The objective function to be optimized is a weighted sum of

model loss and model knowledge.

Specifically, we first define a model space of L layers as Ω = {Ω1,Ω2, ..,ΩL}, an ordered

collection of different layers. For each layer Ωl,∀l ∈ {1, 2, .., L}, there are |Ωl| number of

choices for candidate layer operations and/or hyperparameters, hence the total number of

child models in the model space Ω is |Ω| = ΠL
l=1|Ωl|. Let at = {at1, at2, .., atL} be the child

model architecture indexed by t, where each element atl ∈ Ωl. at is a list of one-hot encoded

selections for each layer in Ω, hence fully specifying a child model.

In the given model space Ω, we seek to find a set of child network architectures at that

maximizes the reward R on a fixed set of inputs X, labels y, and knowledge A:

R(at) = −(L(W ; at, X, y) + λ ·K(W,A; at)) (2.5)

where L is the loss function for the child neural network evaluated on a held-out validation

data, K is the knowledge dissimilarity function, λ is a non-negative weight for knowledge in

optimization, and W is the child model parameters after training.

Since the reward R is non-differentiable, we employ a Recurrent Neural Network, called
7
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Figure 2.1: The process of controller network sampling convolutional neural network for a

target task. The controller network predicts convolutional layer, feature pooling, channel

pooling and dense layer sequentially, where each prediction by a softmax classifier is based

on the previous prediction as input.

controller network, parameterized by θ. The controller network generates a child network

by sequentially sampling a probability for each layer (Figure 2.1). For example, in a simple

convolutional model space of 4 layers, the controller network predicts convolutional layer,

feature pooling, channel pooling and dense layer one by one, where each prediction by a

softmax classifier is based on the previous prediction as input. Let πθ(at) be the log-likelihood

of selecting at under the controller with parameters θ; i.e.

πθ(at) =
L∑
l=1

log(P (atl|at(l−1):1; θ)) (2.6)

Intuitively, we would like to update the controller network parameters θ such that the

likelihood πθ(at) is increased for generating child networks at with high reward, and decreased

the likelihood for at with low reward. In the original NAS paper [29], the authors followed

REINFORCE algorithm to obtain the gradients for updating θ. Let D be a batch of

architectures and reward signals, the empirical REINFORCE gradients are computed as
1
|D|

∑
t∈D
∇θπθ(at)(Rt − b) (2.7)

where the baseline function b is an exponential moving average of the previous architecture

rewards. In this work, Rt − b is equivalent to the advantage At, as described below.

The REINFORCE algorithm is easy to implement and understand in that it scales the

gradients with advantages, which gives larger magnitude of gradient updates for larger Rt and
8



eventually encourages θ to move towards higher reward. However, the REINFORCE gradient

updates have high variances. Empirically, performing multiple updates of optimization using

REINFORCE gradients often leads to destructively large policy updates [18].

As an alternative, we implemented proximal policy optimization (PPO) [18] to train the

controller. The PPO policy gradients for controller parameters θ was empirically obtained

through minimizing a surrogate controller loss function LC on the batch dataD of architectures

and reward signals:

LC(θ) = 1
|D|

∑
t∈D

min(rt(θ|θold) · At, clip(rt(θ|θold), 1− ε, 1 + ε) · At) (2.8)

where ε is a hyperparameter for clipping the controller loss function. We followed the previous

report [18] and set ε = 0.2. By clipping the surrogate function, PPO prevents destructive

policy updates in REINFORCE, and enables multiple epochs of mini-batch updates.

The ratio function rt(θ|θold) is the likelihood ratio for selecting at under the updated

parameters θ with respect to the old parameters θold, i.e.

rt(θ|θold) = exp(πθ(at)− πθold
(at)) (2.9)

The advantage At is determined by the current reward Rt subtracting an exponential

moving average of previous rewards, At = Rt − EWA(R(t−1):1). The exponential weight of

previous weights is set to 0.8.

2.3 Simulated data

We generated simulated genomic sequence data to benchmark the performance of BioNAS.

Using a genomic sequence simulator [12], we first simulated a set of positive DNA sequences

(n = 10000) with a single DNA binding event based on the Transcription Factor (TF) protein

motif MYC. Each DNA sequence was set to be 200bp in length. We embedded exactly one

motif in each of the positive DNA sequence. Then the negative set (n = 10000) without any

binding event was simulated by random DNA sequences.

Next we simulated DNA sequences with a mixture of three binding events for transcription

factors CTCF, IRF and MYC in n = 100000 DNA sequences. We set the minimum binding
9



motif occurrence 0, maximum 3, with a mean at 1. Then we also simulated an equal sized

set of n = 100000 negative background sequences without any binding events.

In benchmarking the BioNAS optimization, we defined a bootstrapping procedure to

return reward signals from a fixed set of training history of loss and knowledge values.

Specifically, for each possible child network architecture a in a model space Ω, we trained 20

independent models for each architecture a ∈ Ω and recorded its loss and knowledge values.

The bootstrap function FΩ(at) randomly returns one loss/knowledge pair out of 20 runs given

any at. In training BioNAS for benchmarking purposes, instead of generating and training

the child network independently each time for a new sampled at, we called the bootstrap

function instantly to return the reward signals.

2.4 ENCODE eCLIP multitask protein binding prediction

Using the publicly-available eCLIP experiments in ENCODE, we aimed to predict the

protein-RNA interaction sites for given RNA sequences. More concretely, for any given RNA

sequence, we predict a list of multi-class binary label of whether there are protein binding

sites corresponding to a list of proteins of interests.

All publicly available ENCODE eCLIP peak files were downloaded from the online

data portal [5]. Each gene in the hg19 human genome assembly was divided into 100bp

bins, then converted into a vector of binary indicators depending on whether the target

bin overlapped with a particular set of peaks. In total, the ENCODE consortium provided

n = 333 datasets, rendering 333 binary labels for each genomic bin. As a result of non-uniform

distributed experimental data in the human transcriptome, a negative label in this set might

be underpowered for positive signal detection, instead of no true binding sites. To account

for this bias, we filtered out bins with less than or equal to 2 peaks across 333 datasets. Then

each labeled data was extended symmetrically by 450bp in both directions to consider the

genomic context to make each input 1000bp. Finally, all labeled data and inputs from human

chromosome 8 were held out for independent testing, while the remaining data were further

randomized and split into training and validation with ratio 9:1.

10



Motif positional weight matrices were compiled from RNAcompete experiments [16].

All motifs with the corresponding protein data in eCLIP were used as prior knowledge in

knowledge dissimilarity function.

11



CHAPTER 3

Experiments and Results

3.1 BioNAS framework for joint optimization of accuracy and

knowledge consistency

We developed BioNAS as an automated machine learning framework for employing neural

network models. In searching the model architectures for a given task, we augmented

the loss function with an additional knowledge (dis)similarity function as the optimization

objective (Figure 1.1a). The knowledge function allows flexible incorporation of domain

knowledge in searching for neural network architectures. It is defined by transforming and

subsequently comparing the existing knowledge and the trained target network parameters

in the same space (Methods). In the hypothetical example shown in Figure 1.1c, two

distinct model architectures have comparable predictive powers when optimizing for accuracy

(i.e. loss). Using the empirical data alone cannot distinguish the two architectures. Now

suppose we have a knowledge function that scores the architectures and trained weights.

After considering the knowledge, one architecture compares favorably to the other and

hence becomes discriminated by the optimizer. As a proof-of-principle application, we used

BioNAS to search convolutional neural network architectures for predicting sequence molecular

properties using one-hot encoded genomic sequences as inputs (Figure 1.1b), augmented with

motif-encoding knowledge functions. We applied BioNAS for simulated genomic sequences of

single-task and multi-task learning, as well as real functional genomics data from ENCODE

eCLIP experiments, as detailed in the following sections.

To demonstrate the validity of BioNAS, we first studied a simple 1D-convolutional model

for predicting binding sites (bound or not bound) of one transcription factor. Input sequence

12
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Layer 3

Layer 1

Figure 3.1: Benchmarking BioNAS with a bootstrapping procedure. (a) Gold standard values

of loss- and knowledge-dissimilarity functions for converged architecture on varying knowledge

weights. (b) The rank order of loss- and knowledge-dissimilarity for converged architectures.

The total number of architectures is 216; smaller rank is better. (c) The average of n = 100

loss- and knowledge-dissimilarity function values are plotted at each training step of the

controller network for knowledge weight λ = 0.0001, and for (d) λ = 1000. The values

are smoothed by simple moving average; shaded area is the 95% confidence interval for the

plotted average values.

data was simulated for n = 10000 positive and negative DNA sequences (Methods). For

this simple task, we assumed the underlying true motif was known and subsequently was

considered in the knowledge dissimilarity function. We defined a model space of 216 different

architectures, each with 4 layers, including convolution, feature-level pooling, channel-level

pooling, and dense. Two customized layers that were reported to increase sequence model

interpretability were also implemented and/or included [15][1]. The detailed model space

configuration is shown in Table 3.1.

For a given architecture, the loss and knowledge values are not deterministic, but rather

subject to initial weights and stochastic gradient updates. To account for the randomness

in parameter initialization and stochastic optimization, we trained 20 models for each
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Table 3.1: Model space for a simple 1D-convolutional model.
Candidate Layers No. of Choices

Layer 1
conv1d_f3_k8, conv1d_f3_k14, conv1d_f3_k20,

regconv2d_f3_k8, regconv2d_f3_k14, regconv2d_f3_k20
6

Layer 2 identity, maxpool1d, avgpool1d 3

Layer 3 flatten, globalmaxpool1d, globalavgpool1d, sfc 4

Layer 4 dense_u3, dense_u10, identity 3

Total 216

architecture with independent initialization and training process, then evaluated its loss

and knowledge dissimilarity values. Using these pre-computed loss and knowledge values,

BioNAS was trained independently 100 times to find the optimal architecture on each of the

varying knowledge weights λ = {0.001, 0.01, 0.1, 1, 10, 100, 1000} through bootstrapping the

pre-computed values (Methods).

We first show the necessity of incorporating knowledge in neural architecture search. For

each architecture, we considered the median value of 20 pre-computed loss and knowledge

dissimilarity values as its summary statistic. We compared and ranked the summary statistics

of loss and knowledge across all 216 architectures, with smaller ranks representing better

architectures. The average of converged architecture summary statistics using different

knowledge weights were plotted in Figure 3.1. A proper knowledge weight had little or

no impact on the predictive power, but dramatically increased the interpretability of the

converged models (λ ∈ [0.001, 1]). However, when the knowledge weight λ is too small

(i.e. λ ∈ 0.001, 0.01), BioNAS converges to highly predictive models (i.e. low loss), but less

interpretable models (i.e. high knowledge dissimilarity), especially when the knowledge weight

becomes smaller (e.g. λ = 0.001) (Figure 3.1a,b). Similarly, when the knowledge weight is

too large (i.e. λ ∈ 10, 100, 1000), the converged architectures were more interpretable but

less predictive. Overall, models that are both predictive and interpretable can be achieved by

BioNAS with a mild knowledge weight (e.g. when λ ∈ {0.1, 1} in Figure 3.1a).

Next we examined what types of architectures/layers are contributing to predictive and
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interpretable models, respectively. We plotted the changes of average weights in the 100

BioNAS runs for each candidate layer type as a function of training steps. As shown in

Figure 3.1b, convolutional layer with kernel size 14 is preferably selected for better predictive

power (i.e. λ = 0.001), while convolutional layer with kernel size 20 is selected for better

interpretability (i.e. λ = 1000). For λ = 1, a mixture between these two types of layers is

observed. The different preference in convolutional filter size is potentially due to the fact

that knowledge function encourages decoding motifs from individual filters, hence a larger

filter size is more likely to decode a complete motif. Similarly, separable fully-connected

layer works comparably well with global max pooling layer when not considering knowledge

dissimilarity, but is more useful for building interpretable models (Figure 3.1b), a scenario

similar to the hypothetical example illustrated in Figure 1.1b. In the meanwhile, we also

observe layers that are consistently essential for both predictive and interpretable models. For

example, BioNAS selects dense layer with 10 units over dense 3 units or identity layer (Figure

3.2). Together, we show that a balanced predictive and interpretable model can be achieved

by tuning the λ parameter and thereby sampling differential target network architectures.

3.2 Uncovering novel knowledge in multitask learning

Having demonstrated the optimization behavior on detecting predictive and interpretable

architectures, we ask whether we can explicitly learn and extract knowledge from neural

network models with BioNAS optimized knowledge consistency. Our hypothesis is that by

searching neural network architectures that are in consistency with the existing knowledge,

we can more reliably decode the trained neural networks and uncover novel knowledge. A

distinctive feature in biological and biomedical studies is that the domain researchers have

massive prior beliefs and/or knowledge. These knowledge are either derived in the same

experimental materials through complementary or orthogonal approaches, or accumulated

from external data and information through years of practices and experiences, which provide

invaluable guidance in designing the neural network architectures as well as interpreting and

understanding the trained model decision logics. BioNAS is designed for flexible incorporation
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a
log10(Lambda) = −3 log10(Lambda) = 0 log10(Lambda) = 3

Layer 2

Layer 4

Figure 3.2: Layers consistently selected by BioNAS on different knowledge weight values. (a)

Max pooling is consistently selected on Layer 2 and (b) Dense unit 10 layer is selected on

Layer 4.

of such domain knowledge (Figure 1.1).

A popular neural network framework for genomic sequence has been multitask learning,

where multiple relevant sequence properties are jointly learned and predicted with sharing

predictive features [27]. To emulate a practical multitask learning scenario, we generated

a multitask simulation dataset with three TFs (CTCF, IRF, MYC). Suppose two of the

three TF binding events (CTCF and IRF) are well-studied, and are therefore considered

in the knowledge dissimilarity function as the reward to optimize the neural architecture

(i.e. unmasked knowledge). Meanwhile we know nothing about the third TF (MYC), which

remains masked. A graphical illustration for this multitask learning and the corresponding

biological knowledge is in Figure 3.4.

Our goal was to evaluate how well the trained models could recapitulate unmasked

knowledge, and more importantly, uncover the masked knowledge. We used λ = 1 to train

BioNAS and sample child networks for n = 4 times independently, in order to account for the

randomness in BioNAS training. We defined BioNAS optimal models as a set of models with
16
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High Knowledge Model

Medium Knowledge Model
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e

Loss = 0.163
Knowledge = 0.117

Loss = 0.162
Knowledge = 0.359

Loss = 0.164
Knowledge = 0.687

BioNAS optimal
Background

BioNAS optimal
Background

Figure 3.3: Uncovering novel knowledge by improving model consistency with existing

knowledge in multitask learning. A set of background models (n = 100) were selected to

match (a) the validation loss distribution of the BioNAS converged optimal models (n = 100),

while (b) consistency with the unmasked knowledge (i.e. prior knowledge) was improved

in BioNAS optimal models. (c) Testing loss distributions and (d) Knowledge-dissimilarity

distribution for the masked knowledge of BioNAS optimal models and background models.

(e) Examples of the masked knowledge detection by three models of similar loss but different

knowledge-dissimilarity. Top row is the ground truth embedded in the simulation data.

any one of the four BioNAS-converged target architectures that were sampled during training

BioNAS. Given the BioNAS-optimal models, we also compiled a set of background models

that were not BioNAS-optimal by matching the validation loss distribution (n = 100; Figure

3.3a), in order to ensure a fair comparison of knowledge dissimilarities (Methods). We further

downsampled the BioNAS optimal models to n = 100 such that both BioNAS-optimal and

background groups have the same number of models. For models in both BioNAS-optimal

and background sets, they were independently initialized and trained during the training of

BioNAS. Indeed, BioNAS-optimal architecture in general has significantly lower knowledge
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Input genomic sequence: 200bp

Neural Architecture

Multi-task Output

CTCF IRF MYC

Unmasked Knowledge Masked Knowledge

Figure 3.4: An overview of the multi-task TF prediction. Two TFs, CTCF and IRF, are

unmasked knowledge to optimize the target network architecture. The third TF MYC is

masked for evaluation purpose.

dissimilarity compared to background models (Figure 3.3b), despite the identical distribution

on validation loss.

We next sought to benchmark the model performance on the masked knowledge. As an

independent testing set, we simulated n = 1000 positive sequences by embedding only MYC

binding site in the motif, in addition to the training and validation sequences. As expected,

the BioNAS-optimal and background models have comparable testing loss distributions on

the testing set (Figure 3.3c), indicating both BioNAS-optimal and background models are

comparable in predictive powers. When we evaluated the unmasked knowledge dissimilarity,

BioNAS-optimal again outperformed the background models (Figure 3.3d). This shows that

we can more robustly obtain interpretable models to uncover masked/new knowledge, through

the optimization of the knowledge dissimilarity on the unmasked/existing knowledge.

As specific examples, we show the sequence logos of masked knowledge decoded from

three different trained models (Figure 3.3e). On the top is the ground-truth motif. This

motif is not embedded in the knowledge dissimilarity function, and therefore is the knowledge

we wish to uncover from the trained models. Notably, these three models are very close in
18



testing loss and hence predictive powers. However, the motif decoded from these models

are dramatically different. The high knowledge model was one of the BioNAS-converged

optimal architectures. It learned a motif highly similar to the ground truth embedded in the

training data. By contrast, the medium knowledge model decodes a more divergent motif

which misses the flanking patterns; while the low knowledge model cannot decode meaningful

motifs. The detailed architecture and benchmark metrics is in Table 3.3.

To extend our observations that BioNAS promotes robust discovery of novel knowledge,

we repeated the same analysis protocol of MYC, but with masked CTCF and IRF as the

knowledge to be uncovered, respectively. Notably, these three motifs were dramatically

different (Figure 3.6), hence the uncovered knowledge was not an artifect of overfitting. In

both CTCF and IRF analysis, novel knowledge discovery was facilitated if the trained model

was more consistent with the existing knowledge. Since the validation loss distributions

were matched between BioNAS-optimal and background models, this further demonstrates

that knowledge discovery cannot be surrogated by only optimizing for predictive power (left

column in Figure 3.6), reinforcing the importance of considering knowledge in searching for

neural architectures.

3.3 Multitask architecture search for protein-RNA binding site

prediction using ENCODE eCLIP

Finally, we applied BioNAS to study the protein-RNA binding sites using the ENCODE

eCLIP data [20]. Briefly, for any given RNA sequence, the task is to predict a multi-class

binary outcome (bound or not bound) corresponding to a set of proteins binding to the

RNA molecule with that sequence. CLIP is an immunoprecipitation-based experimental

approach to identify the binding events of a target RNA-binding protein (RBP) across the

transcriptome [20]. Existing computational methods find putative protein binding sites across

the transcriptome by a statistical procedure called peak-calling [25]. The CLIP technology

provides a global landscape of the protein-RNA binding events in living tissue or cells.

Therefore, the readout of CLIP experiments reflect not only the comprehensive binding
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U2AF2

QKI

RBM5

RBFOX2

Orthogonal Experimental 
Motif

Model Decoded

Figure 3.5: BioNAS application in ENCODE eCLIP multitask learning. The (a) loss

and (b) knowledge dissimilarity function values were optimized as the controller network

generated model architectures for eCLIP binding prediction. (c) Existing prior knowledge

from orthogonal experiments and (d) the model decoded motifs were visualized.

patterns for the protein of interest, but also the potential combinatorial interactions and

tissue-specific regulation with other genes.

Meanwhile, a complementary experimental approach to study the RBP binding patterns

has been RNAcompete [16], which is directly enriching short synthesized RNA oligo-nucleotides

bound by the RBP of interest in order to determine its sequence preferences, and is more

easily interpretable compared to eCLIP. The shortcoming of RNAcompete experiment is that

it loses any potential context information (e.g. flanking motifs of interacting protein partners)

because of being conducted outside living cells. The knowledge provided from RNAcompete

experiments is explicit but potentially incomplete.

Using BioNAS, our aim is to generate more interpretable models for predicting eCLIP

binding sites by leveraging the explicit prior knowledge in the orthogonal RNAcompete

experiments. More concretely, the RNAcompete information provides guidance to decode and
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annotate the convolutional feature maps in the multitask learning eCLIP model. In return,

the interpretable eCLIP model can uncover novel knowledge in living cells to supplement the

incomplete RNAcompete knowledge outside living cells.

We first compiled the training labels and genomic sequences from ENCODE eCLIP

data (Methods). In total we had n = 538955 sequences for training and n = 59883 for

validation (Methods). Then a large model space with 9 layers and in total 1,166,400 possible

architectures was compiled for BioNAS to search for target model architectures (Table 3.2).

As the training of controller progressed and the number of generated models increased, the

loss and knowledge dissimilarity values decreased (Figure 3.5a,b), indicating the controller

was generating better child models for both predictive power and interpretability over time.

Using the orthogonal RNAcompete experiment knowledge, we decoded the BioNAS-optimal

model trained using eCLIP into corresponding motifs that had small knowledge dissimilarities

to existing RNAcompete motifs. Four of the top model decoded motifs and their matching

RNAcompete motifs were visualized in Figure 3.5c,d. The feature maps of these convolutional

filters trained from eCLIP data were highly similar to RNAcompete motifs of known RBP

genes, therefore could be interpreted and annotated to specific genes, facilitating downstream

analyses and interpretation of the decision logics in the trained eCLIP model [23].

Of particular interest, the decoded model weights of U2AF2 not only matched the known

motif, but also captured the 3’-splice site pattern AG (top row; Figure 3.5c,d). The AG

splice site is a well-established pattern for RNA splicing, and the binding of U2AF2 upstream

to 3’-splice sites is essential for splicing to take place [9]. Biologically, U2AF2 is part of

the core spliceosome constituted of several subunit genes in living cells; in particular, its

interacting partner U2AF1 recognizes and binds to the 3’-splice sites. Together with other

RBPs, U2AF1/2 maintains the fidelity of RNA splicing. This splice site pattern was not

present in the prior RNAcompete knowledge due to the in vitro nature of the RNAcompete

experiment - the lack of U2AF2’s interacting partners outside living cells. Within living cells,

despite the fact that there are many sequence instances across the genome that satisfy this

in vitro motif, only a small fraction of them near the 3’-splice site are bona fide binding sites

of U2AF2. Utilizing the existing partial knowledge, the BioNAS-optimal model uncovered
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Table 3.2: Model space for searching ENCODE eCLIP multi-tasking model architectures.

Layer Type Candidate Layers No. of choices

Layer 1 conv1d filters={100,300,500};size={20,14,8} 9

Layer 2 feature-pooling identity; maxpool1d; avgpool1d 3

Layer 3 conv1d/identity identity|filters={100,300,500};size={20,14,8} 10

Layer 4 feature-pooling identity; maxpool1d; avgpool1d 3

Layer 5 conv1d/identity identity|filters={100,300,500};size={20,14,8} 10

Layer 6 feature-pooling identity; maxpool1d; avgpool1d 3

Layer 7 channel-pooling flatten; globalmaxpool; globalavgpool; sfc 4

Layer 8 regularization identity; sparsek; dropout 3

Layer 9 dense/identity identity|units={100,300,500} 4

Total 1,166,400

this full motif plus splice-site pattern from the eCLIP data, which otherwise will not be

annotated without RNAcompete data nor discovered without eCLIP data. Similarly, for

proteins QKI, RBFOX2 and RBM5, the model decoded motif matched the partial knowledge,

while also uncovered additional flanking patterns from eCLIP (Figure 3.5c,d). These patterns

potentially represent additional sequence preferences of the specific RBP genes and/or their

interacting partner genes; however, the detailed experimental and functional validations for

the flanking motif patterns were beyond the scope of this work.

Collectively, we demonstrated how BioNAS optimized the knowledge consistency to

existing RNAcompete knowledge and led to the discovery of novel knowledge in the eCLIP

models. By augmenting eCLIP CNN model training with information from RNAcompete,

we annotated the feature maps of the convolutional filters with biological semantics. These

interpretable feature maps potentially shed new lights on the regulatory patterns of RBP

genes in living cells.
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CTCF Masked

IRF Masked

Figure 3.6: BioNAS performance when masking CTCF and IRF in the knowledge function.

The loss and knowledge distributions were analyzed and plotted following the identical steps

as in Figure 3.5.
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CHAPTER 4

Conclusion

An urgent need to open the "black-box" of deep learning applications currently exists in

biomedicine and genomics. We propose to resolve this challenge by searching the model

architecture space for joint optimization of predictive power and biological knowledge. The

introduction of knowledge functions that measure the dissimilarity between existing knowledge

with the decoded trained model knowledge is powered by ongoing efforts in two fields: in life

sciences, knowledge encoders are developed for encoding experimental results; in machine

learning, model decoders are developed for understanding the trained model decision rules.

Understanding the decision logics in a deep learning model for biomedicine application is

not only vital for practitioners to trust the model’s predictions, but also serves as a potentially

powerful tool to uncover novel biological knowledge. In biomedicine studies, domain experts

usually have strong prior information about how the biological systems tend to work. If a in

silico system functions largely in concordance with the existing knowledge, deciphering its

decision rules is more likely to shed new lights in the unknown realm.

Using the proposed framework BioNAS, domain experts can automatically deploy deep

learning for biological applications, and easily find deep learning model architectures that are

both high predictive and interpretable for their specific data and questions. Furthermore,

BioNAS uncovers novel knowledge by optimizing the model consistency to the existing

knowledge, as demonstrated in both simulated and real data of functional genomics.

Thanks to the development of next-generation sequencing machines, genomic sequences

have become the standard practice to elucidate the molecular regulatory patterns. Convolu-

tional neural networks provide an end-to-end framework from genomic sequences to predicting

diverse sequence and molecular properties. In this work, we focused on applying BioNAS to
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analyze genomic sequences and interpret the first-layer convolutional feature maps. When

altering the model architectures conditioned on the same predictive powers, the likelihood

of obtaining interpretable feature maps still varies. Hence, it’s necessary to consider the

knowledge consistency/dissimilarity jointly with the predictive power when searching for

neural architectures of a given target task.

The interpretability brought by knowledge function should not be confused with that from

a vanilla regularization (e.g. regularization of model complexity). The underlying idea of

BioNAS is illustrated in Figure 1.1c. Neural networks are perhaps "too powerful" in learning

patterns that there are many different local modes with comparable predictive powers. While

vanilla regularizations encourages simple model with fewer parameters and complexities,

the knowledge function seeks for model parameters that are more consistent with existing

knowledge representations, in which case a simple model may not be the most expressive for

knowledge representation.

With the continuing accumulation of genomics and biomedical data, deep learning-based

methods provide an essential workhorse for various tasks. We anticipate BioNAS will be a

valuable contribution in adopting deep learning to the life science research communities.
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