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Abstract  

Bioprinting is a growing field with significant potential for developing engineered tissues 

with compositional and mechanical properties that recapitulates healthy native tissue. Much of 

the current research in tissue and organ bioprinting has focused on complex tissues that require 

vascularization. Cartilage tissue engineering has been successful in developing de novo tissues 

using homogenous scaffolds. However, as research moves towards clinical application, 

engineered cartilage will need to maintain homogeneous nutrient diffusion in larger scaffolds and 

integrate with surrounding tissues. Bioprinting techniques have provided promising results to 

address these challenges in cartilage tissue engineering. The purpose of this review was to 

evaluate 3D extrusion-based bioprinting research for developing engineered cartilage. 

Specifically, we reviewed the potential impact of 3D bioprinting on nutrient diffusion in larger 

scaffolds, development of scaffolds with spatial variation in cell distribution or mechanical 

properties, and cultivation of more complex tissues using multiple materials. Finally, we discuss 

current limitations and challenges in using 3D bioprinting for cartilage tissue engineering and 

regeneration.  

 

Keywords: three-dimensional bioprinting; articular cartilage; extrusion printing; tissue 
engineering; regenerative medicine   
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Introduction 

Damaged or degenerated articular cartilage is the leading cause for disability in 

Americans, resulting in over $30 billion (2009 dollars) in medical costs each year and lost 

economic productivity1. Cells comprise of less than 1% of the tissue volume2, and the lack of 

blood supply limits its ability to self heal, making it more challenging to develop regenerative 

medicine repair strategies3. The current gold standard for treating painful osteoarthritic cartilage 

is a total joint arthroplasty, where the diseased cartilage and the underlying healthy bone are 

removed and replaced with metal and plastic components. Over a million total joint 

arthroplasties are performed each year4, and younger patients (< 45 years) account for 17% of 

patients with arthritis-attributed activity limitation5. However, due to the limited lifespan of 

implant materials, younger patients delay receiving their first joint replacement, resulting in 

multiple physician visits for more conservative treatment options, and increasing the overall 

costs related to treating painful osteoarthritis total6. Moreover, as life expectancy has increased, 

more patients need revision surgeries to replace worn and damaged implants7.  

More recently, biological repair strategies, including autografts or allografts, have 

provided potential repair strategies for younger patients8. Autografts and allografts have been 

successful in reducing joint pain, maintaining tissue structure, and improving joint functionality; 

however, both strategies are limited by tissue availability (e.g., donor site morbidity and donor 

matching)9. Alternatively, developing de novo tissues in the laboratory through tissue 

engineering approaches has led to significant advances in potential repair strategies10. However, 

these approaches have been limited to developing simplified smaller analogs of the native tissue.  

Additive manufacturing through three-dimensional (3D) printing has gained increasing 

popularity in many engineering fields, due to the relative ease in acquiring the necessary 
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equipment and rapid prototyping capabilities11. Additive manufacturing techniques have been 

used for many years to develop acellular scaffolds with macropores for cartilage tissue 

engineering (Figure 2)12. Early studies have used extrusion-based 3D printing without cells to 

create large scaffolds and full organs, which were seeded with cells after printing. Cell 

infiltration into these scaffolds is limited to the interstitial spaces and may be limited to the 

periphery of the scaffold without further modifications to the scaffold material or use of 

bioreactor13. Recently there has been new research in using additive manufacturing techniques 

for developing engineered tissues and organs with cells encapsulated within the printing 

material12a, 14. Bioprinting is the combination of using additive manufacturing through 3D 

printing with biocompatible materials and cells. Moreover, using additive manufacturing 

eliminates the need for developing a solid material throughout the scaffold.  Newer approaches 

aim to encapsulate cells within the biomaterial during the printing process, which provides its 

own set of advantages and limitations.  

To date, bioprinting has been more widely applied to cardiovascular, bone, and skin 

engineering15. However, the advantages in developing larger complex tissue structures through 

bioprinting are worth investigating for addressing the challenges currently faced by the cartilage 

tissue-engineering field. The purpose of this review was to evaluate 3D extrusion-based 

bioprinting research for developing engineered cartilage. Specifically, we reviewed the potential 

impact of 3D bioprinting on nutrient diffusion in larger scaffolds, development of scaffolds with 

spatial variation in cell distribution or mechanical properties, and cultivation of more complex 

tissues using multiple materials. Finally, we discuss current limitations and challenges in using 

3D bioprinting for cartilage tissue engineering and regeneration.   
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Mechanics of Native and Engineered Tissues 

The primary function of articular cartilage is to withstand and absorb large complex loads 

placed on the joint during daily activities. In cell-based tissue engineering approaches, cells are 

either self-assembled or seeded within a scaffold to cultivate engineered tissues with biochemical 

and mechanical properties towards healthy native tissues. Scaffold-less approaches rely on a high 

cell density to develop extracellular matrix over time16, resulting in a construct with tensile 

mechanical properties that are comparable to native values and biochemical composition within 

the range of native cartilage (Table 1)17. However, the final construct thickness of self-assembled 

engineered cartilage is approximately 1.5 mm, which is thinner than many defect sites 17a, 18. 

Scaffold based approaches for articular cartilage often relies on soft hydrogels to provide 

the initial mechanical strength, a base structure for three-dimensional (3D) tissue deposition, to 

maintain cell morphology, and to encapsulate both the cells and de novo tissue19. Furthermore, 

the scaffold can be fabricated to control matrix deposition by altering the scaffold’s stiffness or 

chemical composition20. Manufacturing of hydrogel-based scaffolds often includes thermoset 

casting or ultraviolet light curing. The successes of these approaches has lead to clinical trails of 

cell-based tissue engineering approaches, with promising early stage results for eliminating pain 

and reducing the need for total joint replacement. While hydrogel-based scaffolds maintains the 

round chondrocyte morphology, this approach over simplifies the complex structure of healthy 

native cartilage, where collagen fiber architecture, mechanical properties, cell mechanics, and 

biochemical composition varies significantly through the depth of the tissue (Figure 1; Table 1)3, 

21. This complex architecture has important implications on stress distribution, sliding 

mechanics, and load transfer to the underlying bone22.  
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The superficial zone is important for the low friction coefficient between articulating 

cartilage surfaces23 (Table 1 – friction coefficient) and is the first region to experience tissue 

remodeling or damage from osteoarthritis24 or excessive wear25. Superficial zone collagen fibers 

are aligned parallel to the direction of sliding and are important for transferring loads during 

daily activities26. Interestingly, the superficial zone thickness is similar across animal species 

(i.e., from rat to human), suggesting that the superficial zone is critical for cartilage function. 

Moreover, the mechanical properties of the superficial zone (Table 1 – Surface) differ from the 

mechanical properties of the deep zone, due to differences in collagen fiber orientation. 

Therefore, the lack of a superficial zone in engineered cartilage will likely have significant 

impact on the friction coefficient of engineered cartilage18a and the long-term success of 

engineered cartilage in vivo. 

As tissue-engineering approaches advance towards clinical applications, there is a 

growing need for developing subject-specific scaffolds that recapitulates the native mechanical 

strength, collagen architecture, surface contour, geometry, and morphology of the patient’s 

native joint. It is not clear whether all aspects of cartilage tissue development should be 

recapitulated in biological repair strategies27. However, recent research has suggests that the 

mechanical strength (Table 1) and collagen architecture are important for stress distribution 

during physiological loading, such as compression and sliding21a. Moreover, implant size, 

geometry, and morphology of casted scaffolds are limited by the mold itself (e.g., glass slides or 

3D printed molds). As the construct size increases, nutrient diffusion becomes a greater issue 

resulting in non-uniform matrix deposition and mechanical properties, and cell death closer to 

the center of the construct28. Current solutions for improving nutrient diffusion focus on 

modifying casted scaffolds, resulting in a lot of wasted engineered tissue, and more importantly, 

Page 6 of 37

ACS Paragon Plus Environment

ACS Biomaterials Science & Engineering

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Bioprinting engineered cartilage: a review 

 7 

a loss of cells during the fabrication process. Moving towards clinical repair strategies with 

human chondrocytes or mesenchymal stem cells will be a significant challenge due to the slower 

proliferation rate of human cells. Therefore, cartilage-engineering strategies will need to be 

highly efficient with cell usage.  

Towards subject-specific geometry and topography 

Cartilage tissue engineering has progressed towards developing patient-specific scaffolds. 

Differences between the thickness of implanted engineered cartilage and the surrounding native 

tissue will cause stress raisers and alter the stress distribution in the surrounding cartilage, which 

may lead to degenerative changes29. Scaffolds developed from biocompatible materials can be 

fabricated to match the defect site thickness and geometry.  

Cultivation of clinically relevant tissues has been proposed by converting medical images 

into steriolithography (STL) files, which can be modified in computer aided design (CAD) 

software8a, 30. For example, the underlying boney contour can be acquired through high-

resolution magnetic resonance (MR) imaging or micro-computed tomography (µCT) imaging31. 

The images provide boundary and surface contour information about the bone-cartilage interface, 

as well as cartilage thickness information (MR images). To create a 3D solid model, images are 

converted to a solid part (i.e., STL file) by either using commercially available software (e.g., 

Materialise) or freeware offered through various research groups (e.g., SimVascular). Briefly, a 

3D volume is created by selecting the cross sectional area of interest in each image slice. The 

selected areas are connected through the depth of the imaged tissue through linear or spline 

interpolation (Figure 3A). Finally, the volume can be converted into a solid part that can be 

further modified using computer-aided design (CAD) software (Figure 3B). Once a 3D solid is 

imported into CAD software, complex tissue and organ geometries can be developed for 
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bioprinting31d. There are some limitations in using clinical images due to the assumption that the 

contour of the underlying bone is equivalent to the surface contour of the healthy cartilage (µCT 

images) and image resolution (MR images). However, alternative methods using laser point 

imaging to create a 3D scan of a surface32, is limited for clinical application because the joint 

would need to be fully exposed for imaging.  

Materials used for cartilage tissue engineering 

An ideal material for tissue-engineering purposes is biocompatible and provides 

structural support for cells. Synthetic and natural hydrogels have been widely used for cartilage 

tissue engineering. Common hydrogel materials include alginate33, agarose34, hyaluronic acid 

(HA)35, collagen36, and poly(ɛ-caprolactone) (PCL)13d, poly(ethylene) glycol (PEG), gelatin37, 

and their combinations38. These hydrogels are highly tunable with regards to mechanical 

properties39, thermal setting conditions40, and nano-porosity41. Moreover, biomaterials can be 

modified to deliver chemical stimuli to promote matrix production42. Unfortunately, translating 

past research in tissue engineering with hydrogels is not necessarily transferable to bioprinting, 

due to the need for shear-thinning properties43. For an in-depth review on modifying hydrogel 

properties for cartilage tissue engineering purposes, the reviewer is directed to other reviews 

available in the literature12a, 35a, 44.  

In order to effectively print, hydrogels should exhibit non-Newtonian behavior. 

Thixotropic gels that exhibit shear-thinning properties as they are extruded through a nozzle are 

ideal for printing. Since not all gels shear-thin, materials must first be evaluated though rheology 

to determine their behavior when exposed to stresses associated with printing within narrow 

thermal ranges. Previous studies have shown that materials that exhibit a linear relationship 

between viscosity and shear rate improves print quality45. Therefore, shear thinning behavior will 
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be another tunable property to consider when deciding on a material for tissue engineering 

purposes46. Furthermore, gels must exhibit stability to temperature ranges for printing, and in 

some cases reactions within the gels can occur during the printing process. 

Currently, PCL and alginate are the most widely used printable materials for cartilage 

tissue engineering purposes (e.g., 47). Alginate seeded with chondrocytes or stem cells act to 

develop de novo tissues, while PCL fibers act as a mechanical support for the scaffold. To 

improve solidification rates during printing, chemical factors have been added to the material 

either shortly after extrusion from the nozzle or to the hydrogel mixture, modifying material 

properties after solidification. For example, work by Costantini and coworkers demonstrated 

large (15 mm thick) scaffolds can be fabricated using alginate combined with a photocurable 

polymer48. Gel solidification during the printing process was performed by exposing recently 

extruded material to Ca2+ ions at the tip of a coaxial-nozzle (Figure 4A). Work by Cui and 

coworkers demonstrated that polymerization during printing also acts to improve cell viability 

compared to polymerization after printing is completed49. The bulk compressive modulus of 

these alginate composites ranged from 50-100 kPa, which is much lower than native cartilage, 

but has been shown to be preferable over stiffer substrates for encouraging cartilage-like matrix 

production 20. Similarly, nanocelulose has been added to alginate to increase its viscosity up to 7-

fold and improve bioprintability43, 50. These studies demonstrate that new materials or hybrid 

materials will need to be developed to improve bioprinting capabilities.  

Photocurable biomaterials are often used for cartilage tissue engineering approaches51; 

however, the approach for printing these materials differs significantly from hydrogels that are 

printed with extrusion. The majority of 3D bioprinters use extrusion-based approaches that rely 

on a thermal-based curing; however, newer printer designs, such as the Carbon3D52, print with 
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materials that require a photoinitiator. These printers have the advantage of being faster than 

extrusion based printers, because the entire layer is cured simultaneously before moving onto the 

next layer. Due to the significant differences in printing processes between extrusion-based 

bioprinters and ultraviolet light-based printers, we have focused this review paper on engineered 

cartilage with thermoset biomaterials.  

Improving nutrient diffusion through macro-porosity 

There has been significant effort in developing new biomaterials with mechanical 

properties closer to native tissue properties, or to increase the macro-porosity of the scaffold 

itself to improve nutrient diffusion12a. Developing honeycombed structures allow the use of 

stronger base materials while improving the overall scaffold porosity, which is important for 

facilitating de novo matrix deposition. Macro-pores, on the order of micrometers, can be 

included in the scaffold design using 3D printing techniques, which provides an increase in 

porosity that is 1000-fold greater than the porosity of the material itself (e.g., agarose porosity = 

200-400 nm)15k, 31d, 53.  

Previous studies have decreased the nutrient path length by adding macro-channels 

(millimeter length scale) after casting, and this method has been shown to improve matrix 

deposition and greatly increase the size of engineered cartilage tissues that can be cultivated in 

vitro
28, 31a, 54. However, including macro-pores or macro-channels within a scaffold significantly 

decreases the apparent bulk modulus, which is a significant limitation for repair strategies that 

aim to implant cell-seeded scaffolds shortly after fabrication55. A porous structure will need to 

withstand large compressive stresses before cells produce functional extracellular matrix, which 

may likely require stiffer biomaterials. For example, the bulk modulus of 2%/wet weight per 

Page 10 of 37

ACS Paragon Plus Environment

ACS Biomaterials Science & Engineering

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Bioprinting engineered cartilage: a review 

 11

volume (wv) agarose (13.5 kPa) with macro-pores may be comparable to the bulk modulus of 

solid 2%/wv alginate (7.5 kPa)56. 

Adding macro-channels to a scaffold requires removal of ‘excess material’; therefore, 

these techniques require more cells to be cultivated than necessary for the final construct 

formation. The need for large cell numbers for 3D tissue development increases the time 

between procedures and increases the cost of treatment (tissue culture related costs). Nowicki 

and coworkers used a mixed approach between 3D printing and casting to create osteochondral 

scaffolds with anisotropic macro-pores53b. Their work demonstrated that including macro-pores 

within a scaffold (~100 µm diameter) improved cell adhesion, matrix production, and functional 

properties. Furthermore, pore anisotropy has been shown to decrease crack propagation, 

especially if pores are not aligned with the direction of applied load57. Bioprinting with sufficient 

resolution allows for researchers to create macro-channels during the scaffold manufacturing 

process, decreasing the amount of cells and material needed, which is important for clinical 

application, where human cells have a slower expansion rate. However, clinical success of 

engineered cartilage will depend on the long-term stability of biological implants with or without 

macro-pores58. 

Connecting soft and hard tissues 

Focal defects in the joint may only affect the cartilage tissue (chondral defect) or may 

include damage to the cartilage layer and underlying bone (osteochondral defects). A major 

challenge of tissue engineering is integrating engineered tissues within the joint space and with 

surrounding tissues59. Engineered osteochondral tissues include a layer of cartilage tissue with a 

region of boney tissue, providing additional tissue for integration with the native tissue after 

implantation60. However, mechanical properties and biochemical composition of articular 
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cartilage changes rapidly from the deep zone to the underlying bone, resulting in a significant 

challenge in the field (Figure 1)61. Building upon the clinical successes observed with autograft 

and allograft osteochondral units, 3D bioprinting of engineered tissues has the potential to 

develop complex tissues with location dependent mechanical properties.  

Successful bioprinting for bone tissue engineering has been performed using alginate 

with PCL-embedded fibers32b as well as PEG in combination with HA or gelain methacrylate62. 

Printed bi-layered acellular scaffolds have been developed with a transition region consisting of 

an overlapping region of materials rather than a transition between two materials59c. To date, 

there are few studies that used bioprinting techniques to develop a single scaffold with 

mechanical properties that transition through the thickness to encourage bone growth on one end 

and cartilage growth at the opposite end53b. Studies that have created bioprinted osteochondral 

constructs have printed materials in close proximity with a clear demarcation between layers, 

rather than having a graded transition zone49, 63, which may be due to current printing limitations. 

However, Shim and coworkers showed that osteochondral scaffolds, created with a PCL 

structure and bilayered regions for cartilage and bone growth, improves tissue formation and 

integration with the surrounding tissue63c. For in-depth review on current strategies for 

developing osteochondral scaffolds for tissue engineering (i.e., including non-bioprinting 

methods), the reader is directed to other reviews available in the literature64.  

Increasing complexity of engineered cartilage 

Chondrocytes in the superficial zone are flat and elongated, and are more aligned with the 

top surface. Chondrocyte morphology and density changes decreases through the thickness of the 

articular cartilage, where chondrocytes in the middle and deep zones tend to be rounder than 

chondrocytes in the superficial zone (Figure 1). Bioprinting provides a platform for designing 
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scaffolds that aim to recapitulate zonal variability in cell density and cell properties65. Recent 

work by Ren et al. and Cui et al. developed bioprinted scaffolds with spatial variation in cell 

density36b, 66. These studies showed that increasing cell density increased total matrix deposition; 

however, the rate of extracellular matrix production was higher for cells seeded at a lower 

density66. Similar to bulk material casting, bioprinted hydrogels can be encapsulated with micro- 

or nano-particles to allow for spatial control of drug and nutrient delivery and increase matrix 

production62b, 67. 

Printing resolutions range between 5 µm and 100 µm48, which suggests that a secondary 

material with stiffer mechanical properties can be incorporated into the printing process to create 

collagen fiber-like architecture throughout the scaffold thickness. For example, the concentration 

of Ca2+ used to initiate crosslinking in alginate can be modified during printing to alter scaffold 

stiffness48, 68. This strategy may be valuable for developing thicker scaffolds with variability in 

mechanical properties through the scaffold thickness, similar to differences observed from the 

superficial zone to the deep zone69. Alternatively, multiple materials can be printed where the 

secondary material is printed within a support structure that is washed away or solidified through 

a secondary method separate from the support material (Figure 5)46. 

Improving print resolution will need to be balanced with the need to maintain cell 

viability during printing. Electrospinning techniques have allowed researchers to develop 

scaffolds with tunable fiber architecture70, porosity, and stiffness13a. However, electrospinning 

techniques have demonstrated significant challenges in cell encapsulation during printing and 

with cell infiltration after printing13a. Cell encapsulation within hydrogels has been successful; 

however, printing fibers with a diameter on the micro- or nano-scale will required improved print 

resolution from current extrusion-based bioprinters. As the nozzle size decreases, the shear stress 
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on cells passing through the nozzle will increase and may lead to cell apoptosis or inhibit cell 

behavior71.  

Bioprinting has the potential for increasing complexity of engineered tissues, which will 

be important for engineered tissue strategies for complex cartilaginous tissues. For example, the 

intervertebral disc consists of a gelatinous nucleus pulposus surrounded by the annulus fibrosus, 

which contains alternating layers of highly aligned collagen fibers. Axial compression is the 

primary loading condition experienced by the disc72; therefore, tissue engineering strategies will 

require materials with similar properties that have been used for cartilage tissue engineering73. 

However, to date, there has been little work in using bioprinting strategies to develop engineered 

discs or its subcomponents15k. A Pubmed search for ‘bioprinting’ and ‘nucleus pulposus’, 

‘intervertebral disc’, or ‘annulus fibrosus’, resulted in only two original research articles using 

bioprinting techniques to develop an engineered nucleus pulposus15k or to create a patient-

specific bone insert for spinal fusion74. Current tissue engineering approaches cultivate nucleus 

pulposus implants separate from the annulus fibrosus implant75. Modular fabrication results in an 

abrupt boundary between tissues, which is not representative of the native tissue, and will likely 

result in inhomogeneous stress distributions76. More research is needed to understand how 

angled ‘fibers’ can be printed; however, research in bioprinting has demonstrated a great 

potential for advancing disc tissue engineering, in addition to other cartilaginous tissues.  

Current limitations and challenges 

As new biomaterials are developed controlling the nozzle head and output speed requires 

significant tuning, as the rate, nozzle size, and nozzle distance all contribute to print quality and 

the ability of each additional layer to fuse to the previous layer. Recent work by He and 

coworkers demonstrated the ability to ejection-print hydrogel material (sodium alginate) with 
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fibroblasts77. Their findings demonstrated a relationship between nozzle height, nozzle pressure, 

and flow rate on printing accuracy. Future studies that investigate new materials for biomaterial 

purposes should provide these important parameters, including nozzle temperature, nozzle 

diameter, and applied pressure, to improve consistency and repeatability of findings across the 

field (e.g., 77 and 47b).  

Scaffold printing is primarily performed in air; therefore, total printing time is an 

important consideration for the success of this technique to develop tissue and organs with 

clinically relevant dimensions. Previous studies have demonstrated that cell viability during and 

shortly after printing remains high (average construct viability > 85%)47a, 48, 62a. He and 

coworkers demonstrated that bioprinting techniques are capable of creating 15 mm thick 

scaffolds, but a significant loss in cell viability was noted with printing and may be exacerbated 

as scaffold geometry increases towards large clinically relevant dimensions77. There is 

conflicting data on whether the initial decrease in cell viability will result in long-term decreases 

in cell viability and proliferation47a, 48. In contrast, cell proliferation in engineered cartilage 

developed using casting has been shown to increase over time with culture34a. Regardless, there 

has been promising data showing matrix deposition over time and that chondrogenesis of bone-

marrow derived mesenchymal stem cells can be achieved in bioprinted scaffolds48.  

Accuracy and printing resolution difficult to control due to the hydrogel material 

spreading during printing, before solidification is complete (Figure 4B). A recent study by 

Adamkiewicz and coworkers demonstrated that printing hydrogels in liquid nitrogen reduces 

thermal stresses during printing, allowing for fabrication of scaffolds with more precisely 

defined dimensions (Figure 4B)78. Printing directly into liquid nitrogen may allow for complex 

macroporous structures with soft hydrogel materials, but it would limit the ability to print with 
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cells. It is possible that dimethyl sulfoxide (DMSO) may act as a cryoprotectant to preserve cell 

viability during printing79. However, much of the work on cryopreservation through vitrification 

has involved methods closer to droplet-based bioprinting than extrusion printing, where freezing 

characteristics of a droplet are different from a long continuous line. It remains to be seen 

whether this technique can be transferred over to extrusion-based bioprinting.  

Many of the early studies in tissue bioprinting created custom-built printers36b or created 

modifications to commercially available 3D printers46, 78. Low-cost ommercially available 

printers mostly limited to printing with ABS (acrylonitrile butadiene styrene) or PLA by heating 

the material to very high temperatures (200 - 240oC) before extrusion80. For bioprinting, 

materials that can be printed at temperatures less than 40oC are ideal to prevent cell death during 

the printing process36b, 81. There has been an increase in companies offering commercially 

available 3D printers for tissue engineering purposes; however, the cost of these printers can 

exceed $100,000, increasing the total cost related to developing a clinically-relevant biological 

repair strategy (e.g., BioAssemblyBot by Advanced Solutions ~$160,000 in 2016 dollars)82. 

Newer 3D printers are being developed to print ultraviolet light-curable materials (e.g., 

Carbon3D, ~$120,000)52, which have been widely used for cartilage tissue engineering purposes 

and increases the types of materials that can be used. As demand for these printers increases the 

prices for alternative 3D bioprinters has already dropped dramatically and will likely continue to 

decrease (e.g., BioBot Printer; ~$10,000)83.  

Other limitations of 3D bioprinting are limitations shared with tissue engineering 

approaches, including the risk of cell death during or shortly after implantation84, obtaining 

sufficient cell numbers to create subject-specific implants85, and the amount of time needed to 

cultivate functional engineered tissue. Furthermore, subject specific repair strategies will likely 
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require two clinical procedures, where the first one is used to obtain cells and images for scaffold 

production and the second procedure is used for implantation. It is likely that these procedures 

will be separated by a period of months as cells are expanded in monolayer culture and used to 

develop engineered tissues. Techniques, such as priming cells during expansion culture will 

likely be necessary to increase cell division and de novo matrix production34b, 86.  

Conclusions 

Bioprinting is a new emerging field with exciting potential to develop engineered tissues 

with biomimetic properties of healthy native tissues. As with all new emerging technologies 

there are limitations and challenges that will need to be addressed to increase widespread use of 

this technology. The early challenges in cartilage bioprinting include developing printable 

materials that encourage de novo cartilage production, printing resolution, maintaining cell 

viability of large scaffolds, and maintaining scaffold mechanical integrity during printing. In 

conclusion, bioprinting has the potential to improve engineered tissue complexity and integration 

to neighboring tissues, spatial dependent properties for cell distribution, substrate stiffness, and 

scaffold porosity.  
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Table and Figure Legends 

Table 1. Mechanical properties of articular cartilage. Bovine cartilage is often used as an animal 

analog for healthy human cartilage due to limited tissue availability. Compression mechanical 

properties for bovine cartilage and human cartilage from references 87 and 69b, 88, respectively. 

Tensile mechanical properties for bovine cartilage from 87a and for human cartilage from 69b. 

Shear mechanical properties for bovine cartilage from 89 and for human cartilage from 69b. 

Friction coefficients are from references 23. 

 

Figure 1. (Left) Schematic of cell morphology and collagen fiber orientation from the superficial 

zone to the deep zone. (Middle) Hematoxylin & Eosin (H&E) stain for cell distribution, and 

(Right) alcian blue stain for glycosaminoglycan (GAG) distribution demonstrating a transition 

zone between cartilage and the underlying bone. Figure reprinted with permission from Elsevier 

35a. 

 

Figure 2. Scaffolds printed with various macro-porosity and pore geometry. Scale bars represent 

1 mm. For scaffold created with cubic pores, the porosity of the scaffold increased from 50% (a) 

to 68% (b) and 75% (c). Similar increases in macro-porosity are demonstrated for the triangle 

based pore structure (50% for (d), 68% for (e), and 75% for (f)). Figure adapted from 12a with 

permission from Elsevier. 

 

Figure 3. (A) High-resolution micro-computed tomography (µCT) of a human cadaveric tibia 

plateau. The cross sectional area is manually selected for each slice, and then sections are 

digitally connected through linear or spline interpolation (SimVascular freeware). (B) The 
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reconstructed volume was exported from SimVascular as a steriolithography file (STL), which 

was imported into SolidWorks as a 3D part. The part can be further modified in SolidWorks to 

identify different material regions or exported for 3D printing. Figure adapted from 31a with the 

authors permission.  

 

Figure 4. (A) Coaxial nozzle design to deliver Ca2+ during printing for alginate crosslinking. 

(B) (Left) 3D cryoprinting setup, where the printing surface is super-cooled with liquid nitrogen. 

(Right) Printing hydrogels results in a loss of mechanical integrity during the solidification 

process (asterisks). Printing in liquid nitrogen improves mechanical integrity of the scaffold, 

allowing for thicker constructs to be printed with increased accuracy in the final dimensions 

(right corner). Figures adapted from 78 with the author’s permission.  

 

Figure 5. Developing more complex tissue structures by injecting a bioink into a support 

structure. (A) Confocal images of a filament and spiral printed within an unlabeled support gel 

(black background). (B) (Left) Degradable support gels can be used to create complex self-

supporting structures. A covalently crosslinkable bioink was printed within a support gel and 

solidified with UV crosslinking. Finally, the support gel was dissolved to leave the 3D 

tetrahedron (Right). Scale bar represents 500 µm. Figure adapted from 46.  
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Mechanical properties of articular cartilage. Bovine cartilage is often used as an animal analog for healthy 
human cartilage due to limited tissue availability. Compression mechanical properties for bovine cartilage 

and human cartilage from references 87 and 69b, 88, respectively. Tensile mechanical properties for bovine 

cartilage from 87a and for human cartilage from 69b. Shear mechanical properties for bovine cartilage from 
89 and for human cartilage from 69b. Friction coefficients are from references 23.  
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Figure 1. (Left) Schematic of cell morphology and collagen fiber orientation from the superficial zone to the 
deep zone. (Middle) Hematoxylin & Eosin (H&E) stain for cell distribution, and (Right) alcian blue stain for 
glycosaminoglycan (GAG) distribution demonstrating a transition zone between cartilage and the underlying 

bone. Figure reprinted with permission from Elsevier 33a.  
Figure 1  
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Figure 2. Scaffolds printed with various macro-porosity and pore geometry. Scale bars represent 1 mm. For 
scaffold created with cubic pores, the porosity of the scaffold increased from 50% (a) to 68% (b) and 75% 
(c). Similar increases in macro-porosity are demonstrated for the triangle based pore structure (50% for 

(d), 68% for (e), and 75% for (f)). Figure adapted from 25a with permission from Elsevier.  
Figure 2  
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Figure 3. (A) High-resolution micro-computed tomography (µCT) of a human cadaveric tibia plateau. The 
cross sectional area is manually selected for each slice, and then sections are digitally connected through 
linear or spline interpolation (SimVascular freeware). (B) The reconstructed volume was exported from 

SimVascular as a steriolithography file (STL), which was imported into SolidWorks as a 3D part. The part can 
be further modified in SolidWorks to identify different material regions or exported for 3D printing. Figure 

adapted from 30a with the authors permission.  
Figure 3  

82x38mm (300 x 300 DPI)  

 

 

Page 33 of 37

ACS Paragon Plus Environment

ACS Biomaterials Science & Engineering

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



  

 

 

Figure 4. (A) Coaxial nozzle design to deliver Ca2+ during printing for alginate crosslinking. (B) (Left) 3D 
cryoprinting setup, where the printing surface is super-cooled with liquid nitrogen. (Right) Printing hydrogels 

results in a loss of mechanical integrity during the solidification process (asterisks). Printing in liquid 

nitrogen improves mechanical integrity of the scaffold, allowing for thicker constructs to be printed with 
increased accuracy in the final dimensions (right corner). Figures adapted from 65 with the author’s 

permission.  
Figure 4  
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Figure 5. Developing more complex tissue structures by injecting a bioink into a support structure. (A) 
Confocal images of a filament and spiral printed within an unlabeled support gel (black background). (B) 
(Left) Degradable support gels can be used to create complex self-supporting structures. A covalently 

crosslinkable bioink was printed within a support gel and solidified with UV crosslinking. Finally, the support 
gel was dissolved to leave the 3D tetrahedron (Right). Scale bar represents 500 µm. Figure adapted from 

41.  
Figure 5  
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