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ABSTRACT OF THE DISSERTATION

Algorithms for Query-Efficient Active Learning

by
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Professor Tara Javidi, Co-Chair

Recent decades have witnessed great success of machine learning, especially for tasks

where large annotated datasets are available for training models. However, in many applications,

raw data, such as images, are abundant, but annotations, such as descriptions of images, are scarce.

Annotating data requires human effort and can be expensive. Consequently, one of the central

problems in machine learning is how to train an accurate model with as few human annotations as

possible. Active learning addresses this problem by bringing the annotator to work together with

the learner in the learning process. In active learning, a learner can sequentially select examples

and ask the annotator for labels, so that it may require fewer annotations if the learning algorithm

xiv



avoids querying less informative examples.

This dissertation focuses on designing provable query-efficient active learning algorithms.

The main contributions are as follows. First, we study noise-tolerant active learning in the

standard stream-based setting. We propose a computationally efficient algorithm for actively

learning homogeneous halfspaces under bounded noise, and prove it achieves nearly optimal label

complexity. Second, we theoretically investigate a novel interactive model where the annotator

can not only return noisy labels, but also abstain from labeling. We propose an algorithm which

utilizes abstention responses, and analyze its statistical consistency and query complexity under

different conditions of the noise and abstention rate. Finally, we study how to utilize auxiliary

datasets in active learning. We consider a scenario where the learner has access to a logged

observational dataset where labeled examples are observed conditioned on a selection policy. We

propose algorithms that effectively take advantage of both auxiliary datasets and active learning.

We prove that these algorithms are statistically consistent, and achieve a lower label requirement

than alternative methods theoretically and empirically.

xv



Chapter 1

Introduction

Recent decades have witnessed great success of machine learning in various tasks, such

as computer vision [RF17], natural language processing [VSP+17], and recommender sys-

tems [MTSVDH15]. One of the key factors to this success is the availability of large-scale

annotated datasets such as images with class labels and products with user reviews. However,

in many applications, raw data, such as DNA sequences and medical images, are abundant, but

annotating them requires domain expertise and can be expensive. Consequently, one of the central

problems in machine learning is how to train an accurate model with as few human annotations

as possible.

One solution to this problem is through active learning where the learner works together

with the annotator during the learning process. In active learning, a learner can sequentially select

examples and ask the annotator for labels, so that it may require fewer annotations if the learning

algorithm avoids querying less informative examples. It has been shown that active learning indeed

helps reduce labeling efforts effectively in many tasks in natural language processing [SYL+18],

computer vision [KSH+16, LWD+19], recommender systems [ERR16, KRG18], etc.

1
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Figure 1.1: An example of learning a threshold θ? = 0.7 with n = 10 unlabeled instances.
Left: in supervised learning, all labels are requested, and a threshold θ̂ = 0.65 is returned;
Right: in active learning, the learner sequentially queries x5, x8, x7, and returns θ̂ = 0.65. Other
instances (gray dots) are not queried.

How Active Learning Reduces Annotation Requirement

One classic example where active learning yields exponential label-efficiency improve-

ment is learning a one-dimensional threshold with binary search. Consider a binary classification

task where instances are real numbers from the unit interval [0,1], and the label can be either

positive (+1) or negative (−1). Assume there is a threshold θ? ∈ [0,1] that perfectly separates

the data, that is, any example x smaller than θ? is labeled negative and otherwise positive. To

learn θ?, in the standard supervised learning setting, as shown in Figure 1.1 (left), the learner

would first draw n instances and request labels for all of them, and then output a threshold θ̂ that

predicts correct labels for all observed instances. To guarantee |θ̂−θ?| ≤ ε, this passive learner

needs n = Ω(1
ε
) labeled instances.

However, in the active learning setting, the learner could apply the binary search algorithm

to find the threshold with much fewer labels. As shown in Figure 1.1 (right), the learner first

draws n instances, but only requests the label for the instance in the middle. If its label is negative

(resp. positive), then the learner can infer that all instances on its left (resp. right) are negative

(resp. positive) as well and only needs to recursively search for θ? in the right (resp. left) half

interval. In the end of this binary search procedure, the learner outputs a threshold θ̂ that predicts

correct labels for all observed instances. It is easy to see that to guarantee |θ̂−θ?| ≤ ε, this active

learner needs n = O(1
ε
) unlabeled instances but only O(log 1

ε
) labels, which is exponentially

smaller than the label requirement for the passive learner.

The query strategy in this example, though seems simple, shares similar ideas with many

2



general and widely used active learning algorithms, including generalized binary search [Now11]

where instances that can rapidly narrow down the version space are selected are queried, margin-

based methods [TK01, BBZ07] where examples near the current estimated boundary are queried,

and disagreement based methods [CAL94, BBL06a] where examples are queried only if their

labels cannot be confidently inferred.

How Active Learning Fails

Active learning is significantly more challenging in the nonrealizable case where no

classifier in the hypothesis class achieves 100% accuracy. In this case, an improperly designed

active learning algorithm may yield poor performance, mostly due to noisy annotations or

sampling bias.

Noisy Annotations Human annotators can make mistakes, so the feedback returned to

the learner may not always be consistent with the underlying ground truth. If handled improperly,

an incorrect label may divert the active learning algorithm from the correct boundary and lead to

a classifier with a high error rate. To illustrate this, consider again the threshold learning task in

Figure 1.1. If the annotator returns an incorrect label +1 upon the first query x5 from the active

learner, and if the learner still uses the standard binary search algorithm, then the learner would

incorrectly believe θ? ∈ [0,x5], and recursively query in this half interval. Even if the annotator

makes no more mistakes afterward, the learner will output a threshold θ̂≤ 0.5, which is far from

the ground truth θ?.

Sampling Bias An active learner often selects instances according to some criteria to

query for labels. As a result, the distribution of labeled instances observed by the learner can be

different from the actual data distribution, which can result in suboptimal solution especially in

the non-realizable case where no classifier in the hypothesis class perfectly predicts all labels. To

3
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Figure 1.2: An example of learning thresholds in the non-realizable case. The best threshold is
θ? = 0.25 with error rate 0.1. In active learning, the learner sequentially queries x5, x8, x7, x6.
Other instances (gray dots) are not queried, and a suboptimal threshold θ̂ = 0.56 with error rate
0.21 is returned.

illustrate this, consider the threshold learning task as shown in Figure 1.2. We assume unlabeled

instances are drawn uniformly from the unit interval and the corresponding ground truth labels

are shown in the figure. In this example, no threshold function is 100% accurate, but we still want

the algorithm to output a threshold as accurate as possible (in this example, the optimal threshold

is θ? = 0.25, which makes mistakes with probability 0.1). In supervised learning, the learner can

apply the Empirical Risk Minimization principle: it first draws n instances, requests labels for all

of them, and then outputs a threshold θ̂ that makes the fewest number of mistakes on observed

instances. It can be shown that this method is statistically consistent, meaning that θ̂→ θ? as

n→ ∞. However, the standard binary search algorithm for active learning is not statistically

consistent: with high probability, it first queries an instance x5 in the middle and receives a

negative label; subsequently it recursively queries in its right and finally returns a classifier around

0.55, which is far from the optimal threshold θ? no matter how many labels are queried.

Hence, one main challenge in active learning is how to design query-efficient algo-

rithms that tolerate mistakes of human annotators and guarantees statistical consistency. In

the past decades, many active learning algorithms have been proposed and analyzed [CAL94,

BBL06b, Han07, Das05, CN08, Now11, NJC15, CHK17, TD17, BBZ07, ABL14, ABHZ16,

BDL09, BHLZ10, HAH+15]. In this dissertation, we investigate three directions to advance the

research on provably query-efficient active learning: (1) designing noise-tolerant active learning
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algorithms in the standard active learning setting; (2) exploring new interactive models beyond

standard label feedback; (3) utilizing auxiliary information available to the learner.

Our Contributions

Efficient Active Learning of Halfspaces with Bounded Noise In Chapter 4, we study

noise-tolerant learning of halfspaces under the standard stream-based active learning setting. We

propose a computationally efficient Perceptron-based algorithm for actively learning homoge-

neous halfspaces under the uniform distribution over the unit sphere. We prove that under the

bounded noise condition, where each label is flipped with probability at most 1
2 , our algorithm

achieves a near-optimal label complexity.

Active Learning with Abstention Feedback In Chapter 5, we study a new interactive

model where the annotator can not only return noisy labels, but also abstain from labeling. We

consider different noise and abstention conditions of the annotator. We propose an algorithm

which utilizes abstention responses. We prove this algorithm is statistically consistent and

achieves nearly optimal query complexity under fairly natural conditions.

Active Learning with Logged Observational Data In the final two chapters, we study

how to utilize an auxiliary dataset in active learning. In particular, We consider a scenario where

the learner has access to a logged observational dataset where labeled examples are observed

conditioned on a selection policy. In Chapter 6, we apply multiple importance sampling to

utilize the logged data in active learning effectively and introduce a novel debiasing policy that

selectively avoids querying those examples that are highly represented in the logged observational

data. We prove that our algorithm is statistically consistent, and has a lower label requirement
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than alternatives both theoretically and empirically. In Chapter 7, we show how to apply variance

control techniques to obtain a more sample-efficient error estimator, and then incorporate it into

the active learning algorithm. We provably demonstrate that the new algorithm is statistically

consistent as well as more label-efficient than the prior work.
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Chapter 2

Related Work

2.1 Active Learning

In recent years, there has been extensive research in both theory and practice of active

learning; see excellent surveys by [Set10, Das11, Han14]. On the theoretical side, many active

learning algorithms have been proposed and analyzed. An incomplete list includes disagreement-

based methods [CAL94, BBL06b, Han07], generalized binary search [Das05, CN08, Now11,

NJC15, CHK17, TD17], margin-based methods [BBZ07, ABL14, ABHZ16], and importance

weighted methods [BDL09, BHLZ10, HAH+15]. There is also a considerable amount of work on

lower bounds of label complexity for active learning under various noise conditions, and refined

algorithms and analysis that approach these lower bounds [Han09, Kol10, RR11a, ZC14, HY15].

However, most of these algorithms are computationally efficient as they require either explicit

enumeration of classifiers in hypothesis classes, or solving empirical 0-1 loss minimization

problems.

On the practical side, many computationally efficient heuristics for active learning have
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been proposed, including uncertainty sampling [LG94, TK01], query by committee [SOS92,

FSST97], maximizing expected model change [SCR08], and encouraging sample diversity [NS04,

SS18]. It has been shown that these heuristics help reduce labeling efforts effectively in many tasks

in natural language processing [SYL+18], computer vision [KSH+16, LWD+19], recommender

systems [ERR16, KRG18], etc.

In this dissertation, we advance the research on provably query-efficient active learning

from three aspects: (1) we propose a label-optimal and computationally efficient active learning

algorithm for learning halfspaces with bounded noise; (2) we explore a new interactive model that

allows the annotator to abstain from labeling; (3) we show how to utilize an auxiliary observational

dataset in active learning.

2.2 Efficient Learning of Halfspaces

Efficient learning of halfspaces is one of the central problems in machine learning [CST00].

In the realizable case, it is well known that linear programming finds a consistent hypothesis over

data efficiently. In the nonrealizable setting, however, the problem is much more challenging.

A series of papers [ABSS93, FGKP06, GR09, KK14, Dan15] have shown the hardness

of learning halfspaces with agnostic noise. The state of the art result [Dan15] shows that under

standard complexity-theoretic assumptions, there exists a data distribution, such that the best linear

classifier has error o(1), but no polynomial time algorithms can achieve an error at most 1
2 − 1

dc

for every c > 0, even with improper learning. [KK14] shows that under standard assumptions

(learning k-sparse parity with noise must have time nΩ(k)), even if the unlabeled distribution is

Gaussian, any agnostic halfspace learning algorithm must run in time (1
ε
)Ω(lnd) to achieve an

excess error of ε. These results indicate that, to have nontrivial guarantees on learning halfspaces
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with noise in polynomial time, one has to make additional assumptions on the data distribution

over instances and labels.

Since it is believed to be hard for learning halfspaces in the general agnostic setting, it is

natural to consider algorithms that work under more moderate noise conditions. Despite consid-

erable efforts, there are only a few halfspace learning algorithms that are both computationally-

efficient and label-efficient. In the realizable setting, [DKM05, BBZ07, BL13] propose computa-

tionally efficient active learning algorithms which have an optimal label complexity of Õ(d ln 1
ε
).

Under the bounded noise setting [MN06], the only known algorithms that are both label-efficient

and computationally-efficient are [ABHU15, ABHZ16]. [ABHU15] uses a margin-based frame-

work which queries the labels of examples near the decision boundary. To achieve computational

efficiency, it adaptively chooses a sequence of hinge loss minimization problems to optimize as

opposed to directly optimizing the 0-1 loss. It works only when the label flipping probability

upper bound η is small (η≤ 1.8×10−6). [ABHZ16] improves over [ABHU15] by adapting a

polynomial regression procedure into the margin-based framework. It works for any η < 1/2, but

its label complexity is O(d
O( 1

(1−2η)4
)
ln 1

ε
), which is far worse than the information-theoretic lower

bound Ω( d
(1−2η)2 ln 1

ε
). Recently [CHK17] gives an efficient algorithm with a near-optimal label

complexity under the membership query model where the learner can query on synthesized points.

However, it is unclear how to transform the DC algorithm in [CHK17] into a computationally

efficient stream-based active learning algorithm where the learner can only query on points drawn

from the data distribution.

In Chapter 4, we provide a Perceptron-based algorithm that is computationally efficient

and achieves nearly optimal label complexity for learning halfspaces under the bounded noise

setting.
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2.3 Interactive Models for Active Learning

In the standard active learning setting, the learner obtains labels from an annotator. Three

interactive models between the learner and the annotator are commonly used: (1) the membership

query model, where the learner can query any instances in the instance space for labels; (2) the

stream-based query model, where the learner is presented a stream of unlabeled instances drawn

from an underlying distribution one at a time, and for each of them the learner needs to decide

whether to query for its label or not in an online fashion; (3) the pool-based query model, where

the learner is presented a pool of unlabeled examples drawn from an underlying distribution, and

it can iteratively query some of them for labels. In Chapter 5, we work with the membership

query model. In Chapters 4, 6, and 7, we work with the stream-based query model. We note that

an algorithm for the stream-based query model also works under the pool-based query model,

while converting an algorithm from the pool-based model to stream-based model is nontrivial and

there can be a significant gap with respect to label complexity under these two models [SH16].

Many novel interactive models are studied where annotators can provide information be-

yond label feedback. For example, [Ang88, Heg95] consider equivalence query where the learner

presents a classifier to the annotator, and the annotator either confirms this classifier is correct or

otherwise returns a counter-example. [BH12] considers class-conditional query where the learner

presents an unlabeled instance set U and a class label, and the annotator returns an example of

class c from U . [ZC15] considers a setting where the learner can choose to query for labels from

a cheap but noisy annotator or an expensive but accurate one. [BHLZ16] considers search query

where the learner presents a set of classifiers V , and the annotator returns a labeled example on

which all classifiers in V predict incorrectly. [XZM+17] considers pairwise comparison query

where the learner presents two unlabeled examples, and the annotator returns which one is more

likely to be positive.

10



In Chapter 5, in addition to providing possibly noisy labels, we allow the annotator to

abstain from labeling. [FZ12, KFR+15] consider learning with abstention feedback in computer

vision applications, but they only propose heuristic query strategies and do not provide any

theoretical guarantees. In our work, we rigorously show when abstention feedback helps active

learning, and provide an algorithm that achieves the nearly optimal query complexity.

2.4 Learning with Observational Data

Learning from logged observational data is a fundamental problem in machine learning

with applications to causal inference [SJS17], information retrieval [SLLK10, LCKG15, HLR16],

recommender systems [LCLS10, SSS+16], online learning [AHK+14, WAD17], and reinforce-

ment learning [Tho15, TTG15, MLBP16]. This problem is also closely related to covariate shift

[Zad04, SKM07, BDBC+10] in domain adaptation.

When the logging policy is unknown, the direct method [DLL11] finds a classifier using

observed data. This method, however, is vulnerable to the sample selection bias [HLR16, JSS16].

Existing de-biasing procedures include tree-based methods to partition the data space [AI16,

Kal17], and learning good representations with deep neural networks to align the observational

and population data [JSS16, SJS17].

When the logging policy is known, we can learn a classifier by optimizing a loss function

that is an unbiased estimator of the expected error rate. The most common estimator is the impor-

tance weighted estimator that reweights examples according to inverse propensity scores [RR83].

This method is unbiased when propensity scores are accurate, but may have a high variance when

some propensity scores are close to zero. To resolve this, [BPQC+13, SLLK10, SJ15a] propose

to truncate the inverse propensity score, [SJ15b] proposes to use normalized importance sampling,
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[MP09, SJ15a] propose to add a regularizer based on empirical variance to the loss function

to favor models with low loss variance, [JL16, DLL11, TB16, WAD17] propose doubly robust

estimators, and recently [TTG15, ABSJ17] suggest adjusting importance weights according to

data to reduce the variance further.

Most existing work on learning with observational data falls into the passive learning

paradigm, that is, they first collect the observational data and then train a classifier. To the best of

our knowledge, there is no prior work with theoretical guarantees that combines passive and active

learning with a logged observational dataset. [BDL09] considers active learning with warm-start

where the algorithm is presented with a labeled dataset prior to active learning, but the labeled

dataset is not observational: it is assumed to be drawn from the same distribution for the entire

population. [AZvdS19] and [SSS+19] consider active learning for predicting individual treatment

effects, which is similar to our task. They take a Bayesian approach which does not need to know

the logging policy, but assumes the true model is from a known distribution family. Additionally,

they do not provide label complexity bounds. A related line of research considers active learning

for domain adaptation, and they are mostly based on heuristics [SRD+11, ZJL+16], utilizing a

clustering structure [KGR+15], or non-parametric methods [KM18]. In other related settings,

[ZAI+19] considers warm-starting contextual bandits targeting at minimizing the cumulative

regret instead of the final prediction error; [KAH+17] studies active learning with bandit feedback

without any logged observational data.

In Chapter 6, we provide an active learning algorithm that utilizes the logged observational

data to reduce the number of label queries with theoretical guarantees. In Chapter 7, we improve

this algorithm by incorporating a more efficient variance-controlled importance sampling into

active learning and show that it leads to a better label complexity.
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Chapter 3

Preliminaries

3.1 Learning Scenarios

This dissertation focuses on binary classification tasks in machine learning. In this task,

we assume examples to be classified come from an instance space X , and the classification

outcome belongs to a binary label space Y . The output of a learning algorithm is a classifier (also

known as a hypothesis), which is a function h : X → Y that given an instance predicts its label.

We restrict the output of the learning algorithm to classifiers from a hypothesis class H ⊂ Y X .

We consider two active learning scenarios: stream-based active learning, and active

learning with membership queries. In the following two subsections, we explain how instances

and labels are generated, how the algorithm interacts with the annotator, and how the performance

of the learning algorithm is evaluated in each scenario.
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3.1.1 Stream-Based Active Learning

Stream-based active learning uses the Probably Approximately Correct (PAC) learning

framework [Val84]. In this setting, there is an underlying distribution D over X ×Y . At time

t = 1,2, . . . , an independent and identically distributed (i.i.d.) example (Xt ,Yt) is drawn from D,

and only Xt is presented to the learner. The learner can decide whether to query for Yt , and it

observes Yt only if it chooses to query. This decision can depend on all instances up to time t and

previously observed labels.

In this setting, the performance of a classifier h is measured by the 0-1 loss l(h) :=

PD(h(X) 6= Y ). The performance of a learning algorithm is measured by query complexity which

is the number of queries needed to guarantee a certain loss. In particular, for any algorithm A ,

excess error ε, and confidence level δ, the query complexity Λ(A ,ε,δ) is defined as the minimum

number of label queries such that A outputs a classifier h satisfying l(h)≤minh′∈H l(h′)+ε with

probability at least 1−δ after querying this number of labels.

3.1.2 Active Learning with Membership Queries

In active learning with membership queries, the learner can synthesize an instance in X to

query for the label. At time t = 1,2, . . . , the learner chooses an instance Xt ∈ X and queries the

labeler. The response of the labeler follows an underlying conditional distribution DY |X . For each

queried instance Xt , the labeler draws an i.i.d. label Yt from DY |X=Xt and returns it to the learner.

In this setting, we assume there is an underlying optimal classifier h? ∈H and a metric

d : H ×H → [0,∞). The performance of a classifier h is measured by its distance to the optimal

classifier d(h?,h). Similar to the stream-based setting, the performance of a learning algorithm is

also measured by query complexity. In the membership query setting, for any algorithm A , error
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ε, and confidence level δ, the query complexity Λ(A ,ε,δ) is defined as the minimum number of

label queries such that A outputs a classifier h satisfying d(h?,h) ≤ ε with probability at least

1−δ after querying this number of labels.

3.2 Definitions

Let 1 [A] be the indicator function: 1 [A] = 1 if A is true, and 0 otherwise. For x =

(x1, . . . ,xd) ∈ Rd (d > 1), denote (x1, . . . ,xd−1) by x̃. Define lnx := loge x, and [ln ln]+ (x) =

ln lnmax{x,ee}. Define Õ( f (·)) = O( f (·) log f (·)), and Ω̃( f (·)) = Ω( f (·)/ ln f (·)). We say

g(·) = Θ̃( f (·)) if and only if g(·) = Õ( f (·)) and g(·) = Ω̃( f (·))

Definition 3.1. Suppose γ≥ 1. A function g : [0,1]d → R is (K,γ)-Hölder smooth, if it is contin-

uously differentiable up to bγc-th order, and for any x,y ∈ [0,1]d ,
∣∣∣g(y)−∑

bγc
m=0

∂mg(x)
m! (y− x)m

∣∣∣≤
K ‖y− x‖γ. We denote this class of functions by Σ(K,γ).

Definition 3.2. For any conditional distribution DY |X , the Bayes Optimal Classifier hBayes is

defined as hBayes(x) = +1 if PD(Y =+1 | X = x)> 1
2 else −1.

Next, we introduce some standard definitions in the PAC framework for stream-based

active learning. Unless otherwise specified, all probabilities and expectations are over the

distribution D.

Define the optimal classifier h? := argminh∈H l(h), and the optimal error ν := l(h?). If

ν = 0,we are said to be in the realizable case as there is a classifier h? in H that predicts all labels

correctly. If we make no assumption on the data distribution D, we are said to be in the agnostic

case.

Recall the expected error rate l(h) = P(h(X) 6= Y ). For S = {(X1,Y1), . . . ,(Xn,Yn)} ⊂
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X ×Y , define the empirical error l(h,S) := 1
n ∑

n
i=11[h(Xi) 6=Yi]. Additionally, define ρ(h1,h2) :=

P(h1(X) 6= h2(X)) to be the disagreement probability mass between h1 and h2, and ρS(h1,h2) :=

1
n ∑

n
i=11[h1(Xi) 6= h2(Xi))] for S = {X1,X2, . . . ,Xn} ⊂ X to be the empirical disagreement mass

between h1 and h2 on S.

For any h ∈H , r > 0, define B(h,r) := {h′ ∈H | ρ(h,h′)≤ r} to be r-ball around h. For

any C⊆H , define the disagreement region DIS(C) := {x ∈ X | ∃h1 6= h2 ∈C s.t. h1(x) 6= h2(x)}.

Definition 3.3. For any r > 0, define θ(r) := supr′>r
1
r′P(DIS(B(h?,r′))) to be the disagreement

coefficient. Define θ := θ(2ν).

Finally, we introduce some definitions on distributions.

Definition 3.4. Let P,Q be two probability measures on a common measurable space and P is

absolutely continuous with respect to Q.

• The KL-divergence between P and Q is defined as DKL (P,Q) = EX∼P ln P(X)
Q(X) .

• We define dKL(p,q) = DKL (P,Q), where P,Q are distributions of a Bernoulli(p) and a

Bernoulli(q) random variables respectively.

• For random variables X ,Y,Z, define the mutual information between X and Y under P as

I(X ;Y ) = DKL
(
P(X ,Y ),P(X)P(Y )

)
= EX ,Y ln P(X ,Y )

P(X)P(Y ) , and define the mutual information

between X and Y conditioned on Z under P as I(X ;Y | Z) = EX ,Y,Z ln P(X ,Y |Z)
P(X |Z)P(Y |Z) .

• For a random variable sequence X1,X2, . . ., denote by Xn the subsequence {X1,X2, . . .Xn}.
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3.3 The Disagreement-Based Active Learning Algorithm

The Disagreement-Based Active Learning (DBAL) algorithm, shown as Algorithm 1, is a

general active learning algorithm that has rigorous theoretical guarantees and can be implemented

practically. It is first proposed by [CAL94] in the realizable case and then improved by [BBL06b]

to work in the general agnostic case. A survey can be found in [Han14].

Algorithm 1 Standard Disagreement-Based Active Learning Algorithm

1: Input: confidence δ, number of unlabeled examples n
2: Request a labeled example (X1,Y1)
3: S̃←{(X1,Y1)}; C0←H ;K← log2 n
4: for k = 1, . . . ,K do
5: ĥk−1← argminh∈Ck−1 l(h, S̃), δk← δ

k(k+1)

6: for t = 2k to 2k+1−1 do
7: Draw an unlabeled instance Xt
8: if Xt ∈ DIS(Ck−1) then
9: Query for its label Ỹt ← Yt

10: else
11: Infer its label Ỹt ← ĥk−1(Xt).
12: end if
13: S̃← S̃∪{(Xt ,Ỹt)}
14: end for
15: Update the candidate set Ck←{h ∈Ck−1 | l(h, S̃)≤ l(ĥk−1, S̃)+U(h, ĥk−1, S̃,δk)}
16: end for
17: Output ĥ = argminh∈CK l(h, S̃)

DBAL iteratively maintains a candidate set of classifiers Ck to be the confidence set of

the optimal classifier h?. At the k-th iteration, the learner draws 2k unlabeled examples. For each

instance Xt among them, if it falls into the current disagreement region DIS(Ck−1), meaning that

there are at least two classifiers in Ck−1 that predict different labels on Xt , then the algorithm

queries for its label Yt ; otherwise, it infers the label as Ỹ = ĥk−1(X). In the end of each iteration,

the queried and inferred labels are used to shrink the candidate set.

It has been shown that Algorithm 1 with a proper choice of U(·) achieves a label com-
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plexity of Õ
(

θ
ν2

ε2 d log 1
δ

)
where d is the VC dimension [Vap98] of H , which is always no worse

than the minimiax label complexity Θ̃(ν+ε

ε2 (d + log 1
δ
)) for passive learning [Han14].
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Chapter 4

Efficient Active Learning of Halfspaces

with Bounded Noise

4.1 Introduction

In this chapter, we study the problem of designing efficient noise-tolerant algorithms for

actively learning homogeneous halfspaces in the streaming setting. We are given access to a data

distribution from which we can draw unlabeled examples, and a noisy labeler O that we can query

for labels. The goal is to find a computationally efficient algorithm to learn a halfspace that best

classifies the data while making as few queries to the labeler as possible.

There has been a large body of work on the theory of active learning, showing sharp

distribution-dependent label complexity bounds [CAL94, BBL09, Han07, DHM07, Han09,

Kol10, ZC14, HAH+15]. However, most of these general active learning algorithms rely on

solving empirical risk minimization problems, which are computationally hard in the presence of

noise [ABSS93].
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On the other hand, existing computationally efficient algorithms for learning halfs-

paces [BFKV98, DV04, KKMS08, KLS09, ABL14, Dan15, ABHU15, ABHZ16] are not op-

timal in terms of label requirements. These algorithms have different degrees of noise tolerance

(e.g. adversarial noise [ABL14], malicious noise [KL93], random classification noise [AL88],

bounded noise [MN06], etc), and run in time polynomial in 1
ε

and d. Some of them naturally

exploit the utility of active learning [ABL14, ABHU15, ABHZ16], but they do not achieve the

sharpest label complexity bounds in contrast to those computationally-inefficient active learning

algorithms [BBZ07, BL13, ZC14].

Therefore, a natural question is: is there any active learning halfspace algorithm that

is computationally efficient, and has a minimum label requirement? This has been posed as

an open problem in [Mon06]. In the realizable setting, [DKM05, BBZ07, BL13, TD17] give

efficient algorithms that have optimal label complexity of Õ(d ln 1
ε
) under some distributional

assumptions. However, the challenge still remains open in the nonrealizable setting. It has been

shown that learning halfspaces with agnostic noise even under Gaussian unlabeled distribution is

hard [KK14]. Nonetheless, under the bounded noise condition, we propose a Perceptron-based

algorithm which is computationally efficient, and achieves near-optimal label complexity bound.

In addition, this algorithm can be converted to a passive learning algorithm that has near optimal

sample complexities.

4.2 Setup

We consider learning homogeneous halfspaces under uniform distribution over the

unit sphere. The instance space X is the unit sphere in Rd , which we denote by Sd−1 :={
x ∈ Rd : ‖x‖= 1

}
. We assume d ≥ 3 throughout this chapter. The label space Y = {+1,−1}.

We assume all data points (x,y) are drawn i.i.d. from an underlying distribution D over X ×Y .
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We denote by DX the marginal of D over X (which is uniform over Sd−1), and DY |X the condi-

tional distribution of Y given X . Our algorithm is allowed to draw unlabeled examples x ∈ X

from DX , and to make queries to a labeler O for labels. Upon query x, O returns a label y

drawn from DY |X=x. The hypothesis class of interest is the set of homogeneous halfspaces

H :=
{

hw(x) = sign(w · x) | w ∈ Sd−1
}

. For any hypothesis h ∈ H , we define its error rate

l(h) := PD[h(X) 6= Y ]. We will drop the subscript D in PD when it is clear from the context.

Given a dataset S =
{
(X1,Y1), . . . ,(Xm,Ym)

}
, we define the empirical error rate of h over S as

lS(h) := 1
m ∑

m
i=11

{
h(xi) 6= yi

}
.

Definition 4.1 (Bounded Noise [MN06]). We say that the labeler O satisfies the η-bounded noise

condition for some η ∈ [0,1/2) with respect to u, if for any x, P[Y 6= sign(u · x) | X = x]≤ η.

It can be seen that under η-bounded noise condition, hu is the Bayes classifier.

For two unit vectors v1,v2, denote by θ(v1,v2) = arccos(v1 · v2) the angle between them.

The following lemma gives relationships between errors and angles (see also Lemma 1 in

[ABHZ16]).

Lemma 4.2. For any v1,v2 ∈ Sd−1,
∣∣l(hv1)− l(hv2)

∣∣≤ P
[
hv1(X) 6= hv2(X)

]
= θ(v1,v2)

π
.

Additionally, if the labeler satisfies the η-bounded noise condition with respect to u, then

for any vector v,
∣∣l(hv)− l(hu)

∣∣≥ (1−2η)P
[
hv(X) 6= hu(X)

]
= 1−2η

π
θ(v,u).

Given access to unlabeled examples drawn from DX and a labeler O, our goal is to find

a polynomial time algorithm A such that with probability at least 1−δ, A outputs a halfspace

hv ∈ H with P[sign(v ·X) 6= sign(u ·X)] ≤ ε for some target accuracy ε and confidence δ. (By

Lemma 4.2, this guarantees that the excess error of hv is at most ε, namely, l(hv)− l(hu)≤ ε.)

The desired algorithm should make as few queries to the labeler O as possible.

We say an algorithm A achieves a label complexity of Λ(ε,δ), if for any target halfspace

21



hu ∈H , with probability at least 1−δ, A outputs a halfspace hv ∈H such that l(hv)≤ l(hu)+ ε,

and requests at most Λ(ε,δ) labels from labeler O.

4.3 Algorithm

Our main algorithm, Algorithm 2, works in epochs. It works under the bounded noise

model, if its sample schedule {mk} and band width {bk} are set appropriately with respect

to each noise model. At the beginning of each epoch k, it assumes an upper bound of π

2k

on θ(vk−1,u), the angle between current iterate vk−1 and the underlying halfspace u. As we

will see, this can be shown to hold with high probability inductively. Then, it calls procedure

MODIFIED-PERCEPTRON (Algorithm 3) to find an new iterate vk, which can be shown to have an

angle with u at most π

2k+1 with high probability. The algorithm ends when a total of k0 = dlog2
1
ε
e

epochs have passed.

For simplicity, we assume for the rest of the chapter that the angle between the initial

halfspace v0 and the underlying halfspace u is acute, that is, θ(v0,u)≤ π

2 ; Appendix A.2 shows that

this assumption can be removed with a constant overhead in terms of label and time complexities.

Algorithm 2 ACTIVE-PERCEPTRON

Input: Labeler O, initial halfspace v0, target error ε, confidence δ, sample schedule {mk}, band

width {bk}.

Output: learned halfspace v.

1: Let k0 = dlog2
1
ε
e.

2: for k = 1,2, . . . ,k0 do

3: vk←MODIFIED-PERCEPTRON(O,vk−1,
π

2k ,
δ

k(k+1) ,mk,bk).

4: end for

5: Return vk0 .
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Procedure MODIFIED-PERCEPTRON (Algorithm 3) is the core component of Algorithm 2.

It sequentially performs a modified Perceptron update rule on the selected new examples

(xt ,yt) [MS54, BFKV98, DKM05]:

wt+1← wt−21{ytwt · xt < 0}(wt · xt) · xt (4.1)

Define θt := θ(wt ,u). Update rule (4.1) implies the following relationship between θt+1

and θt (See Lemma 4.12 for its proof):

cosθt+1− cosθt =−21{ytwt · xt < 0}(wt · xt) · (u · xt) (4.2)

This motivates us to take cosθt as our measure of progress; we would like to drive cosθt up to

1(so that θt goes down to 0) as fast as possible.

To this end, MODIFIED-PERCEPTRON samples new points xt under time-varying distri-

butions DX |Rt and query for their labels, where Rt =
{

x ∈ Sd−1 : b
2 ≤ wt · x≤ b

}
is a band inside

the unit sphere. The rationale behind the choice of Rt is twofold:

1. We set Rt to have a probability mass of Ω̃(ε), so that the time complexity of rejection

sampling is at most Õ(1
ε
) per example. Moreover, in the adversarial noise setting, we set Rt

large enough to dominate the noise of magnitude ν = Ω̃(ε).

2. Unlike the active Perceptron algorithm in [DKM05] or other margin-based approaches

(for example [TK01, BBZ07]) where examples with small margin are queried, we query

the label of the examples with a range of margin [b
2 ,b]. From a technical perspective, this

ensures that θt decreases by a decent amount in expectation (see Lemma 4.13 for details).

Following the insight of [GCB09], we remark that the modified Perceptron update (4.1)
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on distribution DX |Rt can be alternatively viewed as performing stochastic gradient descent on a

special non-convex loss function `(w,(x,y)) = min(1,max(0,−1− 2
byw · x)). It is an interesting

open question whether optimizing this new loss function can lead to improved empirical results

for learning halfspaces.

Algorithm 3 MODIFIED-PERCEPTRON

Input: Labeler O, initial halfspace w0, angle upper bound θ, confidence δ, number of iterations
m, band width b.

Output: Improved halfspace wm.
1: for t = 0,1,2, . . . ,m−1 do
2: Define region Rt =

{
x ∈ Sd−1 : b

2 ≤ wt · x≤ b
}

.
3: Rejection sample xt ∼ DX |Rt . In other words, draw xt from DX until xt is in Rt . Query O

for its label yt .
4: wt+1← wt−21{ytwt · xt < 0} · (wt · xt) · xt .
5: end for
6: Return wm.

4.4 Analysis

We show that Algorithm 2 works in the bounded noise model, achieving computational

efficiency and near-optimal label complexity. To this end, we first establish a lower bound on the

label complexity under bounded noise, and then give computational and label complexity upper

bounds.

4.4.1 Lower Bounds

We first present an information-theoretic lower bound on the label complexity in the

bounded noise setting under uniform distribution. This extends the distribution-free lower bounds

of [RR11a, Han14], and generalizes the realizable-case lower bound of [KMT93] to the bounded
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noise setting. Our lower bound can also be viewed as an extension of [WS16]’s Theorem

3; specifically it addresses the hardness under the α-Tsybakov noise condition where α = 0

(while [WS16]’s Theorem 3 provides lower bounds when α ∈ (0,1)).

Theorem 4.3. For any d > 4, 0≤ η < 1
2 , 0 < ε≤ 1

4π
, 0 < δ≤ 1

4 , for any active learning algorithm

A , there is a u ∈ Sd−1, and a labeler O that satisfies η-bounded noise condition with respect to u,

such that if with probability at least 1−δ, A makes at most n queries of labels to O and outputs

v ∈ Sd−1 such that P[sign(v ·X) 6= sign(u ·X)]≤ ε, then n≥Ω

(
d log 1

ε

(1−2η)2 +
η log 1

δ

(1−2η)2

)
.

Theorem 4.3 is proved with techniques from information theory. We will use the following

two folklore information-theoretic lower bounds.

Lemma 4.4. Let W be a class of parameters, and {Pw : w ∈W } be a class of probability

distributions indexed by W over some sample space X . Let d : W ×W → R be a semi-metric.

Let V = {w1, . . . ,wM} ⊆W such that ∀i 6= j, d(wi,w j)≥ 2s > 0. Let V be a random variable

uniformly taking values from V , and X be drawn from PV . Then for any algorithm A that given a

sample X drawn from Pw outputs A(X) ∈W , the following inequality holds:

sup
w∈W

Pw
(
d(w,A(X))≥ s

)
≥ 1− I(V ;X)+ ln2

lnM

Proof. For any algorithm A , define a test function Ψ̂ : X →{1, . . . ,M} such that

Ψ̂(X) = arg min
i∈{1,...,M}

d(A(X),wi)

We have

sup
w∈W

Pw
(
d(w,A(X))≥ s

)
≥max

w∈V
Pw
(
d(w,A(X))≥ s

)
≥ max

i∈{1,...,M}
Pwi

(
Ψ̂(X) 6= i

)

25



The desired result follows by classical Fano’s Inequality:

max
i∈{1,...,M}

Pwi

(
Ψ̂(X) 6= i

)
≥ 1− I(V ;X)+ ln2

lnM

Lemma 4.5. [AB09, Lemma 5.1] Let γ ∈ (0,1), δ ∈ (0, 1
4), p0 =

1−γ

2 , p1 =
1+γ

2 . Suppose that

α ∼Bernoulli(1
2) is a random variable, ξ1, . . . ,ξm are i.i.d. (given α) Bernoulli(pα) random

variables. If m ≤ 2
⌊

1−γ2

2γ2 ln 1
8δ(1−2δ)

⌋
, then for any function f : {0,1}m → {0,1}, we have

P
(

f (ξ1, . . . ,ξm) 6= α
)
> δ.

Next, we present two technical lemmas.

Lemma 4.6. [Lon95, Lemma 6] For any 0 < γ ≤ 1
2 , d ≥ 1, there is a finite set V ∈ Sd−1 such

that the following two statements hold:

1. For any distinct w1,w2 ∈ V , θ(w1,w2)≥ πγ;

2. |V | ≥
√

d
2

(
1

2πγ

)d−1
−1.

Lemma 4.7. If p ∈ [0,1] and q ∈ (0,1), then dKL(p,q)≤ (p−q)2

q(1−q) .

Proof.

dKL(p,q) = p ln
p
q
+(1− p) ln

1− p
1−q

≤ p(
p
q
−1)+(1− p)(

1− p
1−q

−1)

=
(p−q)2

q(1−q)

where the inequality follows by lnx≤ x−1.
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Now, Theorem 4.3 is immediate from the following two lemmas.

Lemma 4.8. For any 0≤ η < 1
2 , d > 4, 0 < ε≤ 1

4π
, 0 < δ < 1

2 , for any active learning algorithm

A , there is a u ∈ Sd−1, and a labeler O that satisfies η-bounded noise condition with respect to u,

such that if with probability at least 1−δ, A makes at most n queries to O and outputs v ∈ Sd−1

such that P[sign(v · x) 6= sign(u · x)]≤ ε, then n≥ d ln 1
ε

16(1−2η)2 .

Proof. We will prove this Lemma using Lemma 4.4.

First, we construct W , V , d, s, and Pθ. Let W = Sd−1. Let V be the set in Lemma 4.6

with γ = 2ε. For any w1,w2 ∈W , let d(w1,w2) = θ(w1,w2), s = πε. Fix any algorithm A . For

any w ∈W , any x ∈ X , define Pw[Y = 1|X = x] =


1−η, w · x≥ 0

η, w · x < 0
, and Pw[Y = 0|X = x] =

1−Pw[Y = 1|X = x]. Define Pn
w to be the distribution of n examples

{
(Xi,Yi)

}n
i=1 where Yi is

drawn from distribution Pw(Y |Xi) and Xi is drawn by the active learning algorithm A based solely

on the knowledge of
{
(X j,Yj)

}i−1
j=1.

By Lemma 4.6, we have M =
∣∣V ∣∣ ≥ √d

2

(
1

4πε

)d−1
− 1 ≥ 1

4

(
1

4πε

)d−1
, and d(w1,w2) ≥

2πε = 2s for any distinct w1,w2 ∈ V .

Clearly, for any w∈W , if the optimal classifier is w, and the labeler O responds according

to Pw(· | X = x), then it satisfies η-bounded noise condition. Therefore, to prove the lemma, it

suffices to show that if n≤ d ln 1
ε

16(1−2η)2 , then

sup
w∈W

Pw
(
d(w,A(Xn,Y n))≥ s

)
≥ 1

2
.
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Now, by Lemma 4.4,

sup
w∈W

Pn
w
(
d(w,A(Xn,Y n))≥ s

)
≥ 1− I(V ;Xn,Y n)+ ln2

lnM
≥ 1− I(V ;Xn,Y n)+ ln2

(d−1) ln 1
4πε
− ln4

.

It remains to show if n =
d ln 1

ε

16(1−2η)2 , then I(V ;Xn,Y n)≤ 1
2

(
(d−1) ln 1

4πε
− ln4

)
− ln2.

By the chain rule of mutual information, we have

I(V ;Xn,Y n) =
n

∑
i=1

(
I
(

V ;Xi | X i−1,Y i−1
)
+ I
(

V ;Yi | X i,Y i−1
))

First, we claim V and Xi are conditionally independent given
{

X i−1,Y i−1
}

, and thus

I
(

V ;Xi | X i−1,Y i−1
)
= 0. The proof for this claim is as follows. Since the selection of Xi

only depends on algorithm A and X i−1,Y i−1, for any v1,v2 ∈ V , P
(

Xi | v1,X i−1,Y i−1
)
=

P
(

Xi | v2,X i−1,Y i−1
)

. Thus,

P
(

Xi | X i−1,Y i−1
)

= ∑
v
P
(

Xi,v | X i−1,Y i−1
)

= ∑
v
P(v)P

(
Xi | v,X i−1,Y i−1

)
=

1∣∣V ∣∣∑v
P
(

Xi | v,X i−1,Y i−1
)

= P
(

Xi |V,X i−1,Y i−1
)

Next, we show I
(

V ;Yi | X i,Y i−1
)
≤ 5(1−2η)2 ln2. On one hand, since Yi ∈ {−1,+1},

I
(

V ;Yi | X i,Y i−1
)
≤ H

(
V | X i,Y i−1

)
≤ ln2. where H(·|·) is the conditional entropy.
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On the other hand,

I
(

V ;Yi | X i,Y i−1
)

=EX i,Y i,V

ln
P
(

V,Yi | X i,Y i−1
)

P
(
V | X i,Y i−1

)
P
(
Yi | X i,Y i−1

)


=EX i,Y i,V

ln
P
(

Yi |V,X i,Y i−1
)

P
(
Yi | X i,Y i−1

)


=EX i,Y i,V

ln
P
(

Yi |V,X i,Y i−1
)

EV ′P
(
Yi |V ′,X i,Y i−1

)


≤EX i,Y i,V,V ′

ln
P
(

Yi |V,X i,Y i−1
)

P
(
Yi |V ′,X i,Y i−1

)


≤ max
xi,yi−1,v,v′

DKL

(
P
(

Yi | xi,yi−1,v
)
,P
(

Yi | xi,yi−1,v′
))

= max
xi,yi−1,v,v′

DKL

(
P
(
Yi | xi,v

)
,P
(
Yi | xi,v′

))
=max

xi,v,v′
DKL

(
Pv
(
Yi | xi

)
,Pv′

(
Yi | x′i

))
≤(1−2η)2

η(1−η)

where the first inequality follows from the convexity of KL-divergence, and the last

inequality follows from Lemma 4.7.

Combining the two upper bounds, we get I
(

V ;Yi | X i,Y i−1
)
≤ min

{
ln2, (1−2η)2

η(1−η)

}
≤

5(1−2η)2 ln2.

Therefore, I(V ;Xn,Y n)≤ 5n(1−2η)2 ln2. If n≤ d ln 1
ε

16(1−2η)2 ≤
1
2((d−1) ln 1

4πε
−ln4)−ln2

5(1−2η)2 ln2 , then

I(V ;Xn,Y n)≤ 1
2

(
(d−1) ln 1

4πε
− ln4

)
− ln2. This concludes the proof.
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Lemma 4.9. For any d > 0, 0≤ η < 1
2 , 0 < ε < 1

3 , 0 < δ≤ 1
4 , for any active learning algorithm

A , there is a u ∈ Sd−1, and a labeler O that satisfies η-bounded noise condition with respect to u,

such that if with probability at least 1−δ, A makes at most n queries to O and outputs v ∈ Sd−1

such that P[sign(v · x) 6= sign(u · x)]≤ ε, then n≥Ω

(
η ln 1

δ

(1−2η)2

)
.

Proof. We prove this result by reducing the hypothesis testing problem in Lemma 4.5 to our

problem of learning halfspaces.

Fix d,ε,δ,η. Suppose A is an algorithm that for any u ∈ Sd−1, under η-bounded noise

condition, with probability at least 1−δ outputs v ∈ Sd−1 such that P[sign(v · x) 6= sign(u · x)]≤

ε < 1
3 , which implies θ(v,u)≤ π

3 under bounded noise condition.

Let p0 = η, p1 = 1−η. Suppose that α∼Bernoulli(1
2) is an unknown random variable.

We are given a sequence of i.i.d. (given α) Bernoulli(pα) random variables ξ1,ξ2 . . . , and would

like to test if α equals 0 or 1.

Define e = (1,0,0, . . . ,0) ∈ Rd . Construct a labeler O such that for the i-th query xi, it

returns 2ξi−1 if xi ·e≥ 0, and 1−2ξi otherwise. Clearly, the labeler O satisfies η-bounded noise

condition with respect to underlying halfspace u = (2α−1)e = (2α−1,0,0, . . . ,0) ∈ Rd .

Now, we run learning algorithm A with labeler O. Let m be the number of queries A

makes, and A(ξ1, . . . ,ξm) be the normal vector of the halfspace output by the learning algorithm.

We define

f (ξ1, . . . ,ξm) =


0 if A(ξ1, . . . ,ξm) · e < 0

1 otherwise
.

By our assumption of A and construction of O, P
(

θ
(
u,A(ξ1, . . . ,ξm)

)
≤ 1

3π

)
≥ 1−δ,

so P
(

f (ξ1, . . . ,ξm) = α
)
≥ 1− δ, implying P

(
f (ξ1, . . . ,ξm) 6= α

)
≤ δ. By Lemma 4.5, m ≥
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2
⌊

4η(1−η)
(1−2η)2 ln 1

8δ(1−2δ)

⌋
= Ω

(
η ln 1

δ

(1−2η)2

)
.

4.4.2 Upper Bounds

We establish Theorem 4.10 in the bounded noise setting. The theorem implies that,

with appropriate settings of input parameters, Algorithm 2 efficiently learns a halfspace of

excess error at most ε with probability at least 1−δ, under the assumption that DX is uniform

over the unit sphere and O has bounded noise. In addition, it queries at most Õ( d
(1−2η)2 ln 1

ε
)

labels. This matches the lower bound in Theorem 4.3, and improves over the state of the art

result of [ABHZ16], where a label complexity of Õ(d
O( 1

(1−2η)4
)
ln 1

ε
) is shown using a different

algorithm.

Theorem 4.10. Suppose Algorithm 2 has inputs labeler O that satisfies η-bounded noise condition

with respect to underlying halfspace u, initial halfspace v0 such that θ(v0,u)≤ π

2 , target error ε,

confidence δ, sample schedule {mk} where mk = d (3200π)3d
(1−2η)2 (ln (3200π)3d

(1−2η)2 + ln k(k+1)
δ

)e, band width

{bk} where bk =
1

2(600π)2 ln
m2

k k(k+1)
δ

2−kπ(1−2η)√
d

. Then with probability at least 1−δ:

1. The output halfspace v is such that P[sign(v ·X) 6= sign(u ·X)]≤ ε.

2. The number of label queries is O
(

d
(1−2η)2 · ln 1

ε
·
(

ln d
(1−2η)2 + ln 1

δ
+ ln ln 1

ε

))
.

3. The number of unlabeled examples used is O
(

d
(1−2η)3 ·

(
ln d

(1−2η)2 + ln 1
δ
+ ln ln 1

ε

)2
· 1

ε
ln 1

ε

)
.

4. The algorithm runs in time O
(

d2

(1−2η)3 ·
(

ln d
(1−2η)2 + ln 1

δ
+ ln ln 1

ε

)2
· 1

ε
ln 1

ε

)
.

The theorem follows from Lemma 4.11 below. The key ingredient of the lemma is a

delicate analysis of the dynamics of the angles {θt}m
t=0, where θt = θ(wt ,u) is the angle between

the iterate wt and the halfspace u. Since xt is randomly sampled and yt is noisy, we are only able to
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show that θt decreases by a decent amount in expectation. To remedy the stochastic fluctuations,

we apply martingale concentration inequalities to carefully control the upper envelope of sequence

{θt}m
t=0.

Lemma 4.11. Suppose Algorithm 3 has inputs labeler O that satisfies η-bounded noise condition

with respect to underlying halfspace u, initial vector w0 and angle upper bound θ ∈ (0, π

2 ) such

that θ(w0,u) ≤ θ, confidence δ, number of iterations m = d (3200π)3d
(1−2η)2 (ln (3200π)3d

(1−2η)2 + ln 1
δ
)e, band

width b = 1
2(600π)2 ln m2

δ

θ(1−2η)√
d

. then with probability at least 1−δ:

1. The output halfspace wm is such that θ(wm,u)≤ θ

2 .

2. The number of label queries is O
(

d
(1−2η)2

(
ln d

(1−2η)2 + ln 1
δ

))
.

3. The number of unlabeled examples drawn is O
(

d
(1−2η)3 ·

(
ln d

(1−2η)2 + ln 1
δ

)2
· 1

θ

)
.

4. The algorithm runs in time O
(

d2

(1−2η)3 ·
(

ln d
(1−2η)2 + ln 1

δ

)2
· 1

θ

)
.

In the rest of this subsection, we provide proofs for Lemma 4.11 and Theorem 4.10.

First, we give a generic lemma for the modified Perceptron update rule (4.1).

Lemma 4.12. Suppose wt ∈ Rd is a unit vector, and (xt ,yt) is an labeled example where xt ∈ Rd

is a unit vector and yt ∈ {−1,+1}. Let θt = θ(u,wt). Then, update

wt+1← wt−21{ytwt · xt < 0}(wt · xt) · xt (4.3)

gives an unit vector wt+1 such that

cosθt+1 = cosθt−21{ytwt · xt < 0}(wt · xt) · (u · xt) (4.4)
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Proof. We first show that wt+1 is still a unit vector. If yt = sign(wt · xt), then wt+1 = wt , thus it is

still a unit vector; otherwise wt+1 = wt−2(wt · xt) · xt . This gives that

‖wt+1‖2 = ‖wt‖2−4(wt · xt)(wt · xt)+‖2(wt · xt) · xt‖2 = ‖wt‖2 = 1.

This implies that cosθt = wt ·u, and cosθt+1 = wt+1 ·u. Now, taking inner products with

u on both sides of Equation (4.3), we get

wt+1 ·u = wt ·u−21{ytwt · xt < 0}(wt · xt) · (u · xt)

which is equivalent to Equation (4.4).

Next, we show that under the bounded noise model, cosθt increases by a decent amount

in expectation at each iteration of MODIFIED-PERCEPTRON (Algorithm 3), with appropriate

settings of bandwidth b.

Lemma 4.13 (Progress Measure under Bounded Noise). Suppose 0 < c̃ < 1
288 , b = c̃(1−2η)θ√

d
,

θ ≤ 27
50π, and (xt ,yt) is drawn from D|Rt , where Rt =

{
(x,y) : x ·wt ∈ [b

2 ,b]
}

. Meanwhile, the

labeler O satisfies the η-bounded noise condition. If unit vector wt has angle θt with u such that

1
4θ≤ θt ≤ 5

3θ, then update (4.3) has the following guarantee:

E
[
cosθt+1− cosθt | θt

]
≥ c̃

100π

(1−2η)2θ2

d
.

Proof. Define random variable ξ = xt ·wt . By the tower property of conditional expectation,

E
[
cosθt+1− cosθt | θt

]
= E

[
E
[
cosθt+1− cosθt | θt ,ξ

]
| θt

]
. Thus, it suffices to show

E
[
cosθt+1− cosθt | θt ,ξ

]
≥ c̃

100π

(1−2η)2θ2

d
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for all θt ∈ [1
4θ, 5

3θ] and ξ ∈ [1
2b,b].

By Lemma 4.12, we know that

cosθt+1− cosθt =−21
{

yt 6= sign(wt · xt)
}
(wt · xt) · (u · xt).

We simplify E
[
cosθt+1− cosθt | θt ,ξ

]
as follows:

E
[
cosθt+1− cosθt | θt ,ξ

]
= E

[
−2ξu · xt1{yt =−1} | θt ,ξ

]
= E

[
−2ξu · xt(1{u · xt > 0,yt =−1}+1{u · xt < 0,yt =−1}) | θt ,ξ

]
≥ E

[
−2ξu · xt(η1{u · xt > 0}+(1−η)1{u · xt < 0}) | θt ,ξ

]
= E

[
−2ξu · xt(η+(1−2η)1{u · xt < 0}) | θt ,ξ

]
= −2ξ

(
ηE
[
u · xt | θt ,ξ

]
+(1−2η)E

[
u · xt1{u · xt < 0} | θt ,ξ

])
(4.5)

where the second equality is from algebra, the first inequality is from that P[yt =−1|u ·xt > 0]≤ η

and P[yt =−1|u · xt < 0]≥ 1−η, the last two equalities are from algebra.

By Lemma A.9 and that 0 ≤ θt ≤ 5
3θ ≤ 9

10π, we have E[u · xt1{u · xt < 0}|θt ,ξ] ≤ ξ−
θt

36
√

d
, and E[u · xt |θt ,ξ]≤ ξ.
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Thus,

E
[
cosθt+1− cosθt | θt ,ξ

]
≥ −2ξ(ξη+(ξ− θt

36
√

d
)(1−2η))

≥ 2ξ(
θt

36
√

d
(1−2η)−ξ)

≥ b
θt

72
√

d
(1−2η)

≥ c̃
100π

(1−2η)2θ2

d

where the first and second inequalities are from algebra, the third inequality is from that ξ ≤

b≤ θ(1−2η)

288
√

d
≤ θt(1−2η)

72
√

d
, and that ξ≥ b

2 . the last inequality is by expanding b = c̃(1−2η)θ√
d

and that

θt ≥ θ

4 .

In conclusion, if 1
4θ≤ θt ≤ 5

3θ, then E
[
cosθt+1− cosθt | θt ,ξ

]
≥ c̃

100π

(1−2η)2θ2

d for ξ ∈

[b
2 ,b]. The lemma follows.

Next, we present two major building blocks of Lemma 4.11.

The first building block is a technical lemma that coarsely bounds the difference between

cosθt+1 and cosθt .

Lemma 4.14. Suppose 0 < c̃,ζ < 1, b = c̃ζθ√
d
≤ 1, and (xt ,yt) is drawn from distribution D|Rt

where Rt =
{
(x,y) : x ·wt ∈ [b

2 ,b]
}

. If unit vector wt has angle θt with u such that θt ≤ 5
3θ, then

update (4.3) has the following guarantee: |cosθt+1− cosθt | ≤ 16c̃ζθ2

3
√

d
.

Proof. By Lemma 4.12,

cosθt+1− cosθt =−21
{

yt 6= sign(wt · xt)
}
(wt · xt) · (u · xt).
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Firstly, note |cosθt+1− cosθt | ≤ 2 |wt · xt | |u · xt | ≤ 2b |u · xt |.

Observe that

|u · xt |

≤ |wt · xt |+
∣∣(u−wt) · xt

∣∣
≤ b+2sin

θt

2

≤ b+θt

Thus, we have |cosθt+1− cosθt | ≤ 2b(b+θt) =
2c̃2ζ2θ2

d + 2c̃ζθθt√
d
≤ 16c̃ζθ2

3
√

d
.

The second building block is a lemma that turns per-iteration in-expectation guarantees

provided by Lemma 4.13 into high probability upper bounds on the final θm.

Lemma 4.15. Suppose 0 < ζ < 1, and the following conditions hold:

1. Initial unit vector w0 has angle θ0 = θ(w0,u)≤ θ≤ 27
50π with u;

2. Integer m = d (3200π)3d
ζ2 (ln (3200π)3d

ζ2 + ln 1
δ
)e and c̃ = 1

2(600π)2 ln m2
δ

;

3. For all t, if 1
4θ≤ θt ≤ 5

3θ, then E[cosθt+1− cosθt |θt ]≥ c̃
100π

ζ2θ2

d ;

4. For all t, if θt ≤ 5
3θ, then |cosθt+1− cosθt | ≤ 16c̃ζθ2

3
√

d
holds with probability 1.

Then with probability at least 1−δ/2, θm ≤ 1
2θ.

Proof. Define random variable Dt as:

Dt :=

(
cosθt+1− cosθt−

c̃
100π

ζ2θ2

d

)
1

{
1
4

θ≤ θt ≤
5
3

θ

}
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Note that E[Dt |θt ] ≥ 0 and from Lemma 4.14, |Dt | ≤ |cosθt+1− cosθt |+ c̃
100π

ζ2θ2

d ≤ 6c̃ζθ2
√

d
.

Therefore, {Dt} is a bounded submartingale difference sequence. By Azuma’s Inequality (see

Lemma A.5) and union bound, define event

E =

{
for all 0≤ t1 ≤ t2 ≤ m,

t2−1

∑
s=t1

Ds ≥−
6c̃ζθ2
√

d

√
2(t2− t1) ln

2m2

δ

}

Then P(E)≥ 1− δ

2 .

We now condition on event E. We break the subsequent analysis into two parts: (1)

Show that there exists some t such that θt goes below 1
4θ. (2) Show that θt must stay below 1

2θ

afterwards.

1. First, it can be checked by algebra that m≥ 200πd
ζ2c̃ . We show the following claim.

Claim 4.16. There exists some t ∈ [0,m], such that θt <
1
4θ.

Proof. We first show that it is impossible for all t ∈ [0,m] such that θt ∈
[

1
4θ, 5

3θ

]
. To

this end, assume this holds for the sake of contradiction. In this case, for all t ∈ [0,m],

Dt = cosθt+1− cosθt− c̃
100π

ζ2θ2

d . Therefore,

cosθm− cosθ0

=
m−1

∑
s=0

Ds +
c̃

100π

ζ2θ2

d
m

≥ c̃
100π

ζ2θ2

d
m− 6c̃ζθ2

√
d

√
2m ln

m2

δ

≥ θ2

100π

[
c̃ζ2m

d
−
√

c̃ζ2m
d

]
≥ θ

2

where the first inequality is from the definition of event E, the second inequality is from
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that c̃ = 1
2(600π)2 ln m2

δ

, the third inequality is from that c̃ζ2m
d ≥ 200π.

Since cosθ0 ≥ cosθ≥ 1− 1
2θ2, this gives that cosθm ≥ 1+ 1

2θ2 > 1, contradiction.

Next, define τ := min
{

t ≥ 0 : θt /∈
[

1
4θ, 5

3θ

]}
. We now know that τ≤ m by the reasoning

above. It suffices to show that θτ <
1
4θ, that is, the first time when θt goes outside the

interval [1
4θ, 5

3θ], it must be crossing the left boundary as opposed to the right one.

By the definition of τ, for all 0≤ t ≤ τ−1, θτ ∈
[

1
4θ, 5

3θ

]
. Thus,

cosθτ− cosθ0

=
τ−1

∑
t=0

Dt +
c̃

100π

ζ2θ2

d
τ

≥ c̃
100π

ζ2θ2

d
τ− 6c̃ζθ2

√
d

√
τ ln

m2

δ

≥ −900π ln
m2

δ
c̃θ

2 ≥− 1
75

θ
2 (4.6)

where the first inequality is by the definition of E; the second inequality is by minimizing

over τ ∈ [0,m]; the last inequality is from the definition of c̃.

Now, if θτ ≥ 5
3θ, then

cosθτ− cosθ0 ≤ cos
5
3

θ− cosθ

≤ 1− 1
5

(
5
3

)2

θ
2−1+

1
2

θ
2

< − 1
75

θ
2

where the first inequality follows from θτ ≥ 5
3θ and θ0 ≤ θ, and the second inequality

follows from Lemma A.3. This contradicts with Inequality (4.6).

This gives that θτ <
5
3θ. Since θτ /∈

[
1
4θ, 5

3θ

]
, it must be the case that θτ <

1
4θ.

2. We now show the following claim to conclude the proof.
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Claim 4.17. θm, the angle in the last iteration, is at most 1
2θ.

Proof. Define σ = max
{

t ∈ [0,m] : θt <
1
4θ

}
. by Claim 4.16, such σ is well-defined on

event E. We now show that θt will not exceed 1
2θ afterwards. Assume for the sake of

contradiction that for some t > σ, θt >
1
2θ.

Now define γ := min
{

t > σ : θt >
1
2θ

}
. We know by the definitions of σ and γ, for all

t ∈ [σ+1,γ−1], θt ∈ [1
4θ, 1

2θ]. Thus,

cosθγ− cosθσ+1

=
γ−1

∑
t=σ+1

Dt +
c̃

100π

ζ2θ2

d
(γ−σ−1)

≥ c̃
100π

ζ2θ2

d
(γ−σ−1)− 6c̃ζθ2

√
d

√
(γ−σ−1) ln

m2

δ

≥ −900π ln
m2

δ
c̃≥− 1

75
θ

2 (4.7)

where the first inequality is by the definition of E; the second inequality is by minimization

over γ−σ−1 ∈ [0,m]; the last inequality is from the definition of c̃.

On the other hand, θγ >
1
2θ and θσ < 1

4θ. We have

cosθγ− cosθσ+1 ≤ cosθγ− cosθσ +
6c̃ζθ2
√

d

≤ cos
θ

2
− cos

θ

4
+

6c̃ζθ2
√

d

≤ 1− 1
20

θ
2−1+

1
32

θ
2 +

6c̃ζθ2
√

d

< − 1
75

θ
2

where the first inequality follows from Lemma 4.14, the third follows from Lemma A.3,

and the last follows from algebra. This contradicts with Inequality (4.7).
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Thus, with probability at least 1−δ/2, θm ≤ 1
2θ.

Now, we are ready to present the proofs of Lemma 4.11 and Theorem 4.10.

Proof of Lemma 4.11. We show that each item holds with high probability respectively.

1. It can be verified that conditions for Lemma 4.15 are satisfied with ζ = 1−2η (item 3 in the

condition follows from Lemma 4.13, and item 4 in the condition follows from Lemma 4.14).

This shows that items 1 with probability at least 1−δ/2.

2. By the definition of m, the number of label queries is m = O
(

d
(1−2η)2 log d

δ(1−2η)2

)
.

3. As for the number of unlabeled examples drawn by the algorithm, at each iteration t ∈ [0,m],

it takes Zt trials to hit an example in [b
2 ,b], where Zt is a Geometric(p) random variable

with p = Px∼DX [wt · x ∈ [b
2 ,b]]. From Lemma A.8, p≥

√
d

8π
b = c̃(1−2η)θ

8π
= Ω( (1−2η)θ

ln d
δ(1−2η)2

).

Define event

E :=
{

Z1 + . . .+Zm ≤
2m
p

}
From Lemma A.6 and the choice of m, P[E]≥ 1− δ

2 . Thus, on event E, the total number of

unlabeled examples drawn is at most 2m
p = O( d

(1−2η)3 log2 d
δ(1−2η)2

1
θ
).

4. Observe that the time complexity for processing each example is at most O(d). This

shows that on event E, the total running time of the algorithm is at most O(d · 2m
p ) =

O( d2

(1−2η)3 log2 d
δ(1−2η)2

1
θ
).

Therefore, by a union bound, with probability at least 1−δ, items 1 to 4 hold simultane-

ously.
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Proof of Theorem 4.10. From Lemma 4.11, we know that for every k, there is an event Ek such

that P(Ek)≥ 1− δ

k(k+1) , and on event Ek, items 1 to 4 of Lemma 4.11 hold for input w0 = vk−1,

output wm = vk, θ = π

2k , δ = δ

k(k+1) .

Define event E = ∪k0
k=1Ek. By union bound, P(E)≥ 1−δ. We henceforth condition on

event E happening.

1. By induction, the final output v = vk0 is such that θ(v,u) ≤ 2−k0π ≤ επ, implying that

P[sign(v ·X) 6= sign(u ·X)]≤ ε.

2. Define the number of label queries to labeler O at iteration k as mk. On event Ek, mk is at

most O
(

d
(1−2η)2

(
ln d

(1−2η)2 + ln k
δ

))
. Thus, the total number of label queries to labeler O

is ∑
k0
k=1 mk, which is at most

k0 ·mk0 = O

(
k0 ·

d
(1−2η)2

(
ln

d
(1−2η)2 + ln

k0

δ

))
.

Item 2 is proved by noting that k0 ≤ log 1
ε
+1.

3. Define the number of unlabeled examples drawn iteration k as nk. On event Ek, nk is at

most O
(

d
(1−2η)3 ·

(
ln d

(1−2η)2 + ln k
δ

)2
· 1

ε

)
. Thus, the total number of unlabeled examples

drawn is ∑
k0
k=1 nk, which is at most

k0nk0 = O

(
k0 ·

d
(1−2η)3 ·

(
ln

d
(1−2η)2 + ln

k0

δ

)2

· 1
ε

)
.

Item 3 is proved by noting that k0 ≤ log 1
ε
+1.

4. Item 4 is immediate from Item 3 and the fact that the time for processing each example is

at most O(d).
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Table 4.1: A comparison of algorithms for active learning of halfspaces under the uniform
distribution, in the η-bounded noise model.

Algorithm Label Complexity Time Complexity

[BBZ07, BL13, ZC14] Õ( d
(1−2η)2 ln 1

ε
) superpoly(d, 1

ε
) 1

[ABHZ16] Õ(d
O( 1

(1−2η)4
) · ln 1

ε
) Õ(d

O( 1
(1−2η)4

) · 1
ε
)

Our Work Õ( d
(1−2η)2 ln 1

ε
) Õ

(
d2

(1−2η)3
1
ε

)

4.5 Discussion

4.5.1 Comparisons

We have shown that in the η-bounded noise setting, the proposed Algorithm 2 runs in

time Õ
(

d2

(1−2η)3ε

)
, and requires Õ

(
d

(1−2η)2 · ln 1
ε

)
labels. This label complexity almost matches

the information-theoretic lower bound of Ω

(
d

(1−2η)2 · ln 1
ε

)
, and thus is nearly optimal. Our time

and label complexities substantially improve over the state of the art result of [ABHZ16], which

runs in time Õ(d
O( 1

(1−2η)4
) 1

ε
) and requires Õ(d

O( 1
(1−2η)4

)
ln 1

ε
) labels.

Table 4.1 presents comparisons between our results and results most closely related to

ours.

In our algorithm and analysis, we assume the unlabeled examples are drawn uniformly

from the unit sphere. However, they can be easily generalized to any spherical symmetrical

distributions, for example, isotropic Gaussian distributions. They can also be generalized to

distributions whose densities with respect to uniform distribution are bounded away from 0.

1The algorithm needs to minimize 0-1 loss, the best known method for which requires superpolynomial time.
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4.5.2 Implications to Passive Learning

Algorithm 2 can be converted to a passive learning algorithm, Algorithm 4, for learning

homogeneous halfspaces under the uniform distribution over the unit sphere. Algorithm 4 has

PAC sample complexities close to the lower bounds under bounded noise.

The algorithmic framework is similar to Algorithm 2, except that it calls Algorithm 5

rather than Algorithm 3.

Algorithm 4 PASSIVE-PERCEPTRON

Input: Initial halfspace v0, target error ε, confidence δ, sample schedule {mk}, band width {bk}.

Output: learned halfspace v̂.

1: Let k0 = dlog2
1
ε
e.

2: for k = 1,2, . . . ,k0 do

3: vk← PASSIVE-MODIFIED-PERCEPTRON(O,vk−1,
π

2k ,
δ

k(k+1) ,mk,bk).

4: end for

5: Return vk0 .

Algorithm 5 is similar to Algorithm 3, except that it draws labeled examples from D

directly, as opposed to performing label queries on unlabeled examples drawn.

It can be seen that with the same input as Algorithm 2, Algorithm 4 has exactly the same

running time, and the number of labeled examples drawn in Algorithm 4 is exactly the same as

the number of unlabeled examples drawn in Algorithm 2. We have the following corollary which

is the immediate consequence of Theorem 4.10.

Corollary 4.18 (PASSIVE-PERCEPTRON under Bounded Noise). Suppose Algorithm 4 has inputs

distribution D that satisfies η-bounded noise condition with respect to u, initial halfspace v0,

target error ε, confidence δ, sample schedule {mk} where mk = Θ

(
d

(1−2η)2 (ln d
(1−2η)2 + ln k

δ
)
)

,
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Algorithm 5 PASSIVE-MODIFIED-PERCEPTRON

Input: Initial halfspace w0, angle upper bound θ, confidence δ, number of iterations m, band
width b.

Output: Improved halfspace wm.
1: for t = 0,1,2, . . . ,m−1 do
2: Define region Ct =

{
(x,y) ∈ Sd−1×{−1,+1} : b

2 ≤ wt · x≤ b
}

.
3: Rejection sample (xt ,yt) ∼ D|Ct . In other words, repeat drawing example (xt ,yt) ∼ D

until it is in Ct .
4: wt+1← wt−21{ytwt · xt < 0} · (wt · xt) · xt .
5: end for
6: Return wm.

Table 4.2: A comparison of algorithms for PAC learning halfspaces under the uniform distribu-
tion, in the η-bounded noise model.

Algorithm Sample Complexity Time Complexity

[ABHZ16] Õ(d
O( 1

(1−2η)4
)

ε
) Õ(d

O( 1
(1−2η)4

)

ε
)

ERM [MN06] Õ( d
(1−2η)ε) superpoly(d, 1

ε
)

Our Work Õ( d
(1−2η)3ε

) Õ( d2

(1−2η)3 · 1
ε
)

band width {bk} where bk = Θ

(
2−k(1−2η)√
d ln(kmk/δ)

)
. Then with probability at least 1− δ: (1) The

output halfspace v is such that l(hv)≤ l(hu)+ ε; (2) The number of labeled examples drawn is

Õ
(

d
(1−2η)3ε

)
. (3) The algorithm runs in time Õ

(
d2

(1−2η)3ε

)
.

In the η-bounded noise model, the sample complexity of PASSIVE-PERCEPTRON im-

proves over the state of the art result of [ABHZ16], where a sample complexity of Õ(d
O( 1

(1−2η)4
)

ε
)

is obtained. The bound has the same dependency on ε and d as the minimax upper bound of

Θ̃( d
ε(1−2η)) by [MN06], which is achieved by a computationally inefficient ERM algorithm.

Table 4.2 presents comparisons between our results and results most closely related to

ours.
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Chapter 5

Active Learning with Abstention Feedback

5.1 Introduction

In this chapter, we consider a new interactive model for active learning, where in addition

to providing a possibly noisy label, the labeler can sometimes abstain from labeling. This

scenario arises naturally in difficult labeling tasks and has been considered in computer vision

by [FZ12, KFR+15]. Our goal in this chapter is to investigate this problem from a foundational

perspective, and explore what kind of conditions are needed, and how an abstaining labeler can

affect properties such as consistency and query complexity of active learning algorithms.

We first consider a condition where the probability that the labeler abstains is upper

bounded by a monotonic function, so that the labeler can abstain with a higher probability as the

instance being queried is closer to the decision boundary. We provide an information-theoretic

query complexity lower bound for any active learning algorithms and an algorithm with a query

complexity bound that almost matches the lower bound. This nearly-optimal algorithm, however,

simply ignores abstention feedback, suggesting that in order to enable the learner to utilize
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abstention feedback, the labeler needs to satisfy stronger conditions.

Consequently, we consider a stronger condition where the probability that the labeler

abstains increases strictly monotonically close to the decision boundary. We propose an active

learning algorithm that is capable of exploiting this condition. We also prove that this algorithm

achieves nearly optimal query complexity bounds. An important property of this algorithm is

that the improvement of query complexity is achieved in a completely adaptive manner: it needs

no information whatsoever on the abstention rates or rates of label noise. This algorithm is

statistically consistent under a very mild condition — when the abstention rate is non-decreasing

as we get closer to the decision boundary. Under a slightly stronger additional condition where

the abstention rate is upper-bounded, this algorithm has the same query complexity as our former

algorithm. However, if the abstention rate of the labeler increases strictly monotonically close to

the decision boundary, then this algorithm adapts and does substantially better: it simply exploits

the increasing abstention rate close to the decision boundary, and does not even have to rely on the

noisy labels! Our result also strengthens existing results on active learning from (non-abstaining)

noisy labelers by providing an adaptive algorithm that achieves that same performance as [CN08]

without knowledge of noise parameters.

5.2 Setup

We consider active learning for binary classification. We are given an instance space

X = [0,1]d and a label space L = {0,1}. Each instance x ∈ X is assigned to a label l ∈ {0,1}

by an underlying function h∗ : X → {0,1} unknown to the learning algorithm in a hypothesis

space H of interest. The learning algorithm has access to any x ∈ X , but no access to their labels.

Instead, it can only obtain label information through interactions with a labeler, whose relation to

h∗ is to be specified later. The objective of the algorithm is to sequentially select the instances
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to query for label information and output a classifier ĥ that is close to h∗ while making as few

queries as possible.

We consider a non-parametric setting as in [CN08, Min12] where the hypothesis space

H = {hg(x) = 1
[
xd > g(x̃)

]
| g : [0,1]d−1→ [0,1] is (K,γ)-Hölder smooth} is the smooth bound-

ary fragment class (recall x̃ ∈ Rd−1 is the first d−1 coordinates of the vector x). In other words,

the decision boundaries of classifiers in this class are epigraph of smooth functions (see Figure 5.1

for example). We assume h∗(x) = 1
[
xd > g∗(x̃)

]
∈H . When d = 1, H reduces to the space of

threshold functions {hθ(x) = 1 [x > θ] : θ ∈ [0,1]}.

The performance of a classifier h(x) = 1
[
xd > g(x̃)

]
is evaluated by the L1 distance

between the decision boundaries ‖g−g∗‖=
´
[0,1]d−1

∣∣g(x̃)−g∗(x̃)
∣∣dx̃.

The learning algorithm can only obtain label information by querying a labeler who is

allowed to abstain from labeling or return an incorrect label (flipping between 0 and 1). For each

query x ∈ [0,1]d , the labeler L will return y ∈ Y = {0,1,⊥} (⊥ means that the labeler abstains

from providing a 0/1 label) according to some distribution PL(Y = y | X = x). When it is clear

from the context, we will drop the subscript from PL(Y | X). Note that while the labeler can

declare its indecision by outputting ⊥, we do not allow classifiers in our hypothesis space to

output ⊥.

In our active learning setting, our goal is to output a boundary g that is close to g∗

while making as few interactive queries to the labeler as possible. In particular, we want to

find an algorithm with low query complexity Λ(ε,δ,A ,L,g∗), which is defined as the minimum

number of queries that Algorithm A , acting on samples with ground truth g∗, should make to a

labeler L to ensure that the output classifier hg(x) = 1
[
xd > g(x̃)

]
has the property ‖g−g∗‖=

´
[0,1]d−1

∣∣g(x̃)−g∗(x̃)
∣∣dx̃≤ ε with probability at least 1−δ over the responses of L.
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5.2.1 Conditions for the Labeler

We now introduce three conditions on the response of the labeler.

Condition 1. The response distribution of the labeler P(Y | X) satisfies:

• (abstention) For any x̃ ∈ [0,1]d−1, xd,x′d ∈ [0,1], if
∣∣xd−g∗(x̃)

∣∣≥ ∣∣x′d−g∗(x̃)
∣∣ then P(⊥|

(x̃,xd))≤ P(⊥| (x̃,x′d));

• (noise) For any x ∈ [0,1]d , P(Y 6= 1
[
xd > g∗(x̃)

]
| x,Y 6=⊥)≤ 1

2 .

Condition 1 means that the closer the instance x is to the decision boundary
(
x̃,g∗(x̃)

)
,

the more likely the labeler is to abstain from labeling. This complies with the intuition that

instances closer to the decision boundary are harder to classify. The 0/1 labels can be flipped with

probability as large as 1
2 . In other words, we allow unbounded noise.

Condition 2. Let C,β be non-negative constants, and f : [0,1]→ [0,1] be a nondecreasing

function. The response distribution P(Y | X) satisfies:

• (abstention) P(⊥| x)≤ 1− f
(∣∣xd−g∗(x̃)

∣∣);

• (noise) P(Y 6= 1
[
xd > g∗(x̃)

]
| x,Y 6=⊥)≤ 1

2

(
1−C

∣∣xd−g∗(x̃)
∣∣β).

Condition 2 requires the abstention and noise probabilities to be upper-bounded, and these

upper bounds decrease as x moves further away from the decision boundary. The abstention rate

can be 1 at the decision boundary, so the labeler may always abstain at the decision boundary.

The condition on the noise satisfies the popular Tsybakov noise condition [Tsy04], and a similar

condition was considered by [CN08].
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1

0 1

x
2

x1

Figure 5.1: A classifier with boundary g(x̃) = (x1−0.4)2 +0.1 for d = 2. Label 1 is assigned
to the region above, 0 to the below (red region)

Condition 3. Let f : [0,1]→ [0,1] be a nondecreasing function such that ∃0 < c < 1, ∀0 < a≤ 1

∀0≤ b≤ 2
3a, f (b)

f (a) ≤ 1− c. The response distribution satisfies: P(⊥| x) = 1− f
(∣∣xd−g∗(x̃)

∣∣).

An example where Condition 3 holds is P(⊥| x) = 1− (x−0.3)α (α > 0).

Condition 3 requires the abstention probability P(⊥ |(x̃,xd)) to be not too flat with respect

to xd . For example, when d = 1, P(⊥| x) = 0.68 for 0.2≤ x ≤ 0.4 (shown as Figure 5.2 (left))

does not satisfy Condition 3, and abstention responses are not informative since this abstention

rate alone yields no information on the location of the decision boundary. In contrast, P(⊥| x) =

1−
√
|x−0.3| (shown as Figure 5.2 (right)) satisfies Condition 3, and the learner could infer it is

getting close to the decision boundary when it starts receiving more abstention responses.

Note that here c, f ,C,β are parameters that characterize the complexity of the learning

task. We want to design an algorithm that does not require knowledge of these parameters and

still achieves nearly optimal query complexity.

In the following two sections, we consider the one-dimensional case (d = 1) to demonstrate

the main idea. We extend the discussion to the d-dimensional instance space in the last section of

this chapter.

When d = 1, the decision boundary g∗ becomes a point in [0,1], and the corresponding

classifier is a threshold function over [0,1]. In other words the hypothesis space becomes
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Figure 5.2: Left: The distributions satisfies Conditions 1 and 2, but the abstention feedback
is useless since P(⊥| x) is flat between x = 0.2 and 0.4. Right: The distributions satisfies
Conditions 1, 2, and 3. The abstention feedback can be used to save queries.

H = { fθ(x) = 1 [x > θ] : θ∈ [0,1]}). We denote the ground truth decision boundary by θ∗ ∈ [0,1].

We want to find a θ̂ ∈ [0,1] such that |θ̂−θ∗| is small while making as few queries as possible.

5.3 Active Learning with Flat Abstention Rates

In this section, we consider active learning under Condition 2 where the abstention

probability of the labeler is upper-bounded by some monotonic function but can be flat. We first

derive an information-theoretic query complexity lower bound for any active learning algorithms.

Then, we provide an algorithm that simply ignores abstention feedback while achieving a query

complexity upper bound that almost matches the lower bound. This implies that if we would

like to improve the query complexity of the algorithm by making use of abstention feedback,

the labeler needs to satisfy stronger conditions with respect to abstention feedback beyond

Condition 2.

5.3.1 Lower Bounds

Theorem 5.1. There is a universal constant δ0 ∈ (0,1) and a labeler L satisfying Conditions 1

and 2, such that for any active learning algorithm A , there is a θ∗ ∈ [0,1], such that for small

51



enough ε, Λ(ε,δ0,A ,L,θ∗)≥Ω

(
1

f (ε)ε
−2β

)
.

Theorem 5.1 establishes an information-theoretic query complexity lower bound for

active learning with abstention: no algorithm can achieve an accuracy less than ε with less

than Ω( 1
f (ε)ε

−2β) queries. As a comparison, [CN07] studies learning thresholds with only noisy

responses, and gives a lower bound of Ω(ε−2β), which can be seen as a special case of our result.

The proof of Theorem 5.1 is similar to the one in [CN08]. We use the following formula-

tion of Le Cam’s method [Tsy08]:

Lemma 5.2. Let Θ be a class of parameters, and {Pθ : θ ∈ Θ} be a class of probability distri-

butions indexed by Θ over some sample space X . Let d : Θ×Θ→ R be a semi-metric. If there

exist θ0,θ1 ∈ Θ, such that dKL(Pθ0,Pθ1) ≤ α and d(θ0,θ1) ≥ 2s > 0, then for any algorithm θ̂

that given a sample X outputs θ̂(X), an estimation of θ, the following inequality holds:

supθ∈Θ Pθ
X∼Pθ

(
d(θ, θ̂(X))≥ s

)
≥ max

{
e−α

4 ,
1−
√

α/2
2

}

We need the following lemma in the proof of lower bounds.

Lemma 5.3. If P,Q are distributions of two Bernoulli random variables with parameter p,q

respectively and 1
4 < p,q < 1

2 , then dKL(P,Q)≤ 8(p−q)2.
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Proof.

dKL(P,Q) =

ˆ p

q

(
p
x
− 1− p

1− x

)
dx

=

ˆ p

q

p− x
x(1− x)

dx

≤ 16
ˆ p

q
p− x dx

= 8(p−q)2

The inequality in line 3 follows from the fact that x(1− x)> 1
16 when 1

4 < x < 1
2 .

Proof of the Theorem 5.1. We take Θ be [0,1], and d(θ1,θ2) = |θ1− θ2| in Lemma 5.2. We

consider two thresholds θ0 = 0 and θ1 = t where t ∈ [0,1] is to be chosen later. Next, we will

define two distributions P0 and P1 corresponding to Pθ0 and Pθ1 in Lemma 5.2 respectively.

For θ0 = 0, we define the distribution of labeler’s response as follows:

P0(Y =⊥ |x) =


1− f (t)−max{ f (x− t), f (x)− f (t)} x > t

1− f (t) x≤ t

P0(Y = 0|x,Y 6=⊥) = 1
2
(1−Cxβ)

For θ1 = t, we define the distribution of labeler’s response as follows:
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P1(Y =⊥ |x) = P0(Y =⊥ |x)

=


1− f (t)−max{ f (x− t), f (x)− f (t)} x > t

1− f (t) x≤ t

P1(Y = 0|x,Y 6=⊥) =


1
2(1−Cxβ) x > t

1
2(1+C(t− x)β) x≤ t

It can be checked these two distributions comply with Conditions 1 and 2.

Next, we consider Pn
0 and Pn

1 , the distribution of n samples
{
(Xi,Yi)

}n
i=1 where Yi is

drawn with conditional probability P0 and P1 respectively, and Xi is drawn by the active learning

algorithm.

dKL
(
Pn

1 ,P
n
0
)

= E1

log
Pn

1

({
(Xi,Yi)

}n
i=1

)
Pn

0

({
(Xi,Yi)

}n
i=1

)


= EP1

(
log

Πn
i=1P1

(
Yi|Xi

)
Πn

i=1P0
(
Yi|Xi

)∣∣∣∣∣X1, . . . ,Xn

)

≤ n max
x∈[0,1]

E1

(
log

P1
(
Y |x
)

P0
(
Y |x
)∣∣∣∣∣x
)

where the second equality follows from the fact that the active learner will draw Xi

based solely on the knowledge of
{
(X j,Y j)

}i−1
j=1, and hence P0 (Xi|X1,Y1,X2,Y2, . . . ,Xi−1,Yi−1) =

P1 (Xi|X1,Y1,X2,Y2, . . . ,Xi−1,Yi−1).
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EP1

(
log

P1(Y |x)
P0(Y |x)

∣∣∣∣x)
= P1(Y =⊥ |x) log P1(Y=⊥|x)

P0(Y=⊥|x) +P1(Y = 1|x) log P1(Y=1|x)
P0(Y=1|x)

+P1(Y = 0|x) log P1(Y=0|x)
P0(Y=0|x)

= 0+P0(Y 6=⊥ |x)dKL
(
P1(Y |x,Y 6=⊥),P0(Y |x,Y 6=⊥)

)
≤ f (t)dKL

(
P1(Y |x,Y 6=⊥),P0(Y |x,Y 6=⊥)

)

When x≥ t, dKL
(
P1(Y |x,Y 6=⊥),P0(Y |x,Y 6=⊥)

)
=0. When x < t, we apply Lemma 5.3

and have

dKL
(
P1(Y |x,Y 6=⊥),P0(Y |x,Y 6=⊥)

)
≤ 8

((
1
2(1+C(t− x)β)

)
−
(

1
2(1−Cxβ)

))2

≤ 8C2t2β

In either case, we have dKL
(
Pn

1 ,P
n
0
)
≤ 8C2n f (t)t2β.

If n ≤ 1
4C2 f (t)t

−2β, then dKL
(
Pn

1 ,P
n
0
)
≤ 16. By Lemma 5.2, for any active learning

algorithm, there is a θ ∈ [0,1], such that Pn
θ

(∣∣Ψ(Xn)−θ
∣∣> t/2

)
> e−16/4. This concludes the

proof.
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5.3.2 Algorithm and Analysis

Next, we propose an algorithm (Algorithm 6) that works under Conditions 1 and 2. We

show that this algorithm achieves an nearly optimal query complexity up to logarithmic factors

and constants.

Algorithm 6 is motivated by the algorithm discussed in [CN08] which only deals with

noisy labelers. It consists of two procedures: MWU and LearnThresholds. The MWU procedure

is an iterative method. In each iteration, it first selects a sample to query the labeler, and then

increases the weight of hypotheses that correctly label this sample and decrease the weight of

those that make a mistake. The sampling strategy is generalized binary search: the algorithm

selects the sample x that such that nearly half of the hypotheses assign x a label 0 and nearly

half assign it label 1. If the labeler abstains from labeling, then the algorithm repeatedly queries

the sample. Note that MWU only queries samples on a discrete grid Θ instead of [0,1]. In the

LearnThresholds procedure, it runs MWU on three sets of grids to ensure that θ∗ is far away from

at least two sets of grids so that labeler’s flipping adn abstention probability on these two grids is

low enough for MWU to work.

The following result is a direct corollary from [CN08].

Lemma 5.4. Suppose the labeler satisfies Condition 2 with f (x)≡ 1 (i.e., no abstention). There

is an absolute constant c such that if n≥ c
C2 ε−2β log 1

δε
and LearnThresholds(C,β,ε,n) outputs θ̂,

then with probability at least 1−δ, |θ̂−θ∗| ≤ ε.

In a general setting where the labeler can abstain, we have the following upper bound on

the estimation error that matches the lower bound in Theorem 5.1 up to logarithmic factors and

constants.

Theorem 5.5. Suppose the labeler satisfies Condition 2. There is an absolute constant c such that
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Algorithm 6 A repetitive querying learning algorithm with a multiplicative-weight-updating
subroutine.

1: procedure MWU(γ,Θ = {θ1, . . . ,θm},T )
2: pi← 1/m for i = 0 . . .m−1
3: t← 0
4: N← 0
5: while t < T do
6: xN ← argmini

∣∣∣∑i
j=0 p j−1/2

∣∣∣
7: repeat
8: Query xt and receive yt
9: t← t +1

10: until yt 6=⊥ or t > T
11: for i = 1,2, . . . ,m do

12: pi←
{

pi ∗ (1+2γ) if 1{xN ≥ θi}= yt

pi ∗ (1−2γ) if 1{xN ≥ θi} 6= yt
13: end for
14: Normalize p
15: N← N +1
16: end while
17: Output: θopt where opt = argmaxi pi
18: end procedure
19: procedure LEARNTHRESHOLDS(C,β,n,ε)
20: γ←C (6ε)β

21: for i = 0,1,2 do
22: Θi←{0+ i

3ε,ε+ i
3ε,2ε+ i

3ε,3ε+ i
3ε, . . . ,

⌊
1
ε

⌋
ε+ i

3ε}
23: θi←MWU(γ,Θi,n/3)
24: end for
25: for i, j = 0,1,2 do
26: if i 6= j and |θi−θ j|< ε/3 then
27: Output: (θi +θ j)/2
28: end if
29: end for
30: end procedure
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if n≥ c
f (ε/6)C2 ε−2β log2 1

δε
and θ̂ is the output of LearnThresholds(C,β,ε,n), then with probability

at least 1−δ, |θ̂−θ∗| ≤ ε.

Proof. It is easy to see there are at least 2 sets of grids (without loss of generality, let the 2 sets of

grids be Θ1 and Θ2) that θ−θ∗ > ε

6 for any θ ∈Θ1∪Θ2. On these two sets of grids, each query

in line 8 will return a 0/1 label with probability at least f ( ε

6). By the union bound, we will have

with probability at least 1−δ, N ≥ T/( f ( ε

6) log δ

2T ) in the MWU procedure for Θ1 and Θ2 .

Therefore, if we set the label budget

n =
3c

C2 f ( ε

6)

(
1
ε

)2β

log
1
εδ

log

(
1

C2

(
1
ε

)2β

log
1
εδ

)
,

for Θ1 and Θ2, the number of non-abstaining responses N ≥ c
C2

(
1
ε

)2β

log 1
εδ

with probability

at least 1− δ/2. Consequently by Lemma 5.4 we will have |θ1− θ∗| ≤ ε and |θ2− θ∗| ≤ ε

with probability at least 1−δ. Thus, LearnThresholds in Algorithm 6 will output a θ̂ such that

|θ̂−θ∗| ≤ ε with probability at least 1−δ. This concludes the proof.

Algorithm 6 achieves a nearly optimal query complexity of Θ̃( 1
f (ε)ε

−2β) by simply ignor-

ing abstention feedback. Therefore, if we would like to improve the query complexity of the

algorithm by making use of abstention feedback, the labeler needs to satisfy stronger conditions

with respect to abstention feedback beyond Conditions 1 and 2.

5.4 Active Learning with Monotonic Abstention Rates

In this section, we consider active learning under Conditions 1, 2, and 3 where the

abstention rate is, roughly speaking, strictly monotonic. We provide an active learning algorithm
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(Algorithm 7) that exploits the abstention feedback under these conditions. We prove that this

algorithm is statistically consistent under the very mild Condition 1. It achieves the same query

complexity as that for Algorithm 6 under Conditions 1 and 2. Under Conditions 1, 2, and 3, we

show that it achieves substantially better query complexity. More importantly, unlike Algorithm 6,

Algorithm 7 is completely adaptive to parameters of the labeler (C,β, f ).

5.4.1 Algorithm

The proposed algorithm is a binary search style algorithm shown as Algorithm 7. (For

the sake of simplicity, we assume log 1
2ε

is an integer.) Algorithm 7 takes a desired precision ε

and confidence level δ as its input, and returns an estimation θ̂ of the decision boundary θ∗. The

algorithm maintains an interval [Lk,Rk] in which θ∗ is believed to lie, and shrinks this interval

iteratively. To find the subinterval that contains θ∗, Algorithm 7 relies on two auxiliary functions

(marked in Procedure 8) to conduct adaptive sequential hypothesis tests regarding subintervals of

interval [Lk,Rk].

Suppose θ∗ ∈ [Lk,Rk]. Algorithm 7 tries to shrink this interval to a 3
4 of its length in

each iteration by repetitively querying on quartiles Uk =
3Lk+Rk

4 , Mk =
Lk+Rk

2 , Vk =
Lk+3Rk

4 . To

determine which specific subinterval to choose, the algorithm uses 0/1 labels and abstention

responses simultaneously. Since the ground truth labels are determined by 1 [x > θ∗], one can

infer that if the number of queries that return label 0 at Uk (Vk) is statistically significantly

more (less) than label 1, then θ∗ should be on the right (left) side of Uk (Vk). Similarly, from

Condition 1, if the number of non-abstention responses at Uk (Vk) is statistically significantly

more than non-abstention responses at Mk, then θ∗ should be closer to Mk than Uk (Vk).

Algorithm 7 relies on the ability to shrink the search interval via statistically comparing

the numbers of obtained labels at locations Uk,Mk,Vk. As a result, a main building block of
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Algorithm 7 The active learning algorithm for learning thresholds
1: Input: δ, ε

2: [L0,R0]← [0,1]
3: for k = 0,1,2, . . . , log 1

2ε
−1 do

4: Define three quartiles: Uk← 3Lk+Rk
4 , Mk← Lk+Rk

2 , Vk← Lk+3Rk
4

5: A(u),A(m),A(v),B(u),B(v)← Empty Array
6: for n = 1,2, . . . do
7: Query at Uk,Mk,Vk, and receive labels X (u)

n ,X (m)
n ,X (v)

n
8: for w ∈ {u,m,v} do
9: . We record whether X (w) =⊥ in A(w), and the 0/1 label (as -1/1) in B(w) if

X (w) 6=⊥
10: if X (w) 6=⊥ then
11: A(w)← A(w).append(1) , B(w)← B(w).append(21

[
X (w) = 1

]
−1)

12: else
13: A(w)← A(w).append(0)
14: end if
15: end for
16: . Check if the differences of abstention responses are statistically significant
17: if CHECKSIGNIFICANT-VAR(

{
A(u)

i −A(m)
i

}n

i=1
, δ

4log 1
2ε

) then
18: [Lk+1,Rk+1]← [Uk,Rk]; break

19: else if CHECKSIGNIFICANT-VAR(
{

A(v)
i −A(m)

i

}n

i=1
, δ

4log 1
2ε

) then
20: [Lk+1,Rk+1]← [Lk,Vk]; break
21: end if
22: . Check if the differences between 0 and 1 labels are statistically significant

23: if CHECKSIGNIFICANT(
{
−B(u)

i

}B(u).length

i=1
, δ

4log 1
2ε

) then
24: [Lk+1,Rk+1]← [Uk,Rk]; break

25: else if CHECKSIGNIFICANT(
{

B(v)
i

}B(v).length

i=1
, δ

4log 1
2ε

) then
26: [Lk+1,Rk+1]← [Lk,Vk]; break
27: end if
28: end for
29: end for
30: Output: θ̂ =

(
Llog 1

2ε

+Rlog 1
2ε

)
/2
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Procedure 8 Adaptive sequential testing
1: . D0,D1 are absolute constants defined in Proposition 5.6 and Proposition 5.7
2: . {Xi} are i.i.d. random variables bounded by 1. δ is the confidence level. Detect if EX > 0
3: function CHECKSIGNIFICANT({Xi}n

i=1 ,δ)

4: p(n,δ)← D0

(
1+ ln 1

δ
+

√
4n
(
[ln ln]+ 4n+ ln 1

δ

))
5: Return ∑

n
i=1 Xi ≥ p(n,δ)

6: end function
7: function CHECKSIGNIFICANT-VAR({Xi}n

i=1 ,δ)

8: Calculate the empirical variance Var = n
n−1

(
∑

n
i=1 Xi

2− 1
n

(
∑

n
i=1 Xi

)2
)

9: q(n,Var,δ)← D1

1+ ln 1
δ
+

√(
Var+ ln 1

δ
+1
)(

[ln ln]+
(

Var+ ln 1
δ
+1
)
+ ln 1

δ

)
10: Return n≥ ln 1

δ
AND ∑

n
i=1 Xi ≥ q(n,Var,δ)

11: end function

Algorithm 7 is to test whether i.i.d. bounded random variables Yi are greater in expectation

than i.i.d. bounded random variables Zi with statistical significance. In Procedure 8, we have

two test functions CheckSignificant and CheckSignificant-Var that take i.i.d. random variables

{Xi = Yi−Zi} (|Xi| ≤ 1) and confidence level δ as their input, and output whether it is statistically

significant to conclude EXi > 0.

CheckSignificant is based on the following uniform concentration result regarding the

empirical mean:

Proposition 5.6. Suppose X1,X2, . . . are a sequence of i.i.d. random variables with X1 ∈ [−2,2],

EX1 = 0. Take any 0 < δ < 1. Then there is an absolute constant D0 such that with probability at

least 1−δ, for all n > 0 simultaneously,

∣∣∣∣∣ n

∑
i=1

Xi

∣∣∣∣∣≤ D0

1+ ln
1
δ
+

√
4n
(
[ln ln]+ 4n+ ln

1
δ

)
In Algorithm 7, we use CheckSignificant to detect whether the expected number of queries
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that return label 0 at location Uk (Vk) is more/less than the expected number of label 1 with a

statistical significance.

CheckSignificant-Var is based on the following uniform concentration result which further

utilizes the empirical variance Vn =
n

n−1

(
∑

n
i=1 X2

i − 1
n

(
∑

n
i=1 Xi

)2
)

:

Proposition 5.7. There is an absolute constant D1 such that with probability at least 1−δ, for

all n≥ ln 1
δ

simultaneously,

∣∣∣∣∣ n

∑
i=1

Xi

∣∣∣∣∣≤ D1

1+ ln
1
δ
+

√(
1+ ln

1
δ
+Vn

)(
[ln ln]+ (1+ ln

1
δ
+Vn)+ ln

1
δ

)

The use of variance results in a tighter bound when Var(Xi) is small.

In Algorithm 7, we use CheckSignificant-Var to detect the statistical significance of the

relative order of the number of queries that return non-abstention responses at Uk (Vk) compared

to the number of non-abstention responses at Mk. This results in a better query complexity

than using CheckSignificant under Condition 3, since the variance of the number of abstention

responses approaches 0 when the interval [Lk,Rk] zooms in on θ∗.1

5.4.2 Analysis

In this subsection, we use logx = log 4
3

x for convenience since the proposed algorithm

shrinks the search interval by a factor of 3
4 at each time.

1We do not apply CheckSignificant-Var to 0/1 labels, because unlike the difference between the numbers of
abstention responses at Uk (Vk) and Mk, the variance of the difference between the numbers of 0 and 1 labels stays
above a positive constant.
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Properties of adaptive sequential testing in Procedure 8

Lemma 5.8. Suppose {Xi}∞

i=1 is a sequence of i.i.d. random variables such that EXi ≤ 0, |Xi| ≤ 1.

Let δ > 0. Then for CheckSignificant
(
{Xi}n

i=1 ,δ
)

in Procedure 8, with probability at least 1−δ,

it returns false for all n ∈ N simultaneously.

Proof. This is immediate by applying Proposition 5.6 to Xi−EXi.

Lemma 5.9. Suppose {Xi}∞

i=1 is a sequence of i.i.d. random variables such that EXi > ε > 0,

|Xi| ≤ 1. Let δ ∈ [0, 1
3 ], N ≥ ξ

ε2 ln 1
δ
[ln ln]+ 1

ε
(ξ is an absolute constant specified in the proof).

Then with probability at least 1−δ, CheckSignificant
(
{Xi}N

i=1 ,δ
)

in Procedure 8 returns true.

Proof. Let SN = ∑
N
i=1 Xi. CheckSignificant

(
{Xi}N

i=1 ,δ
)

returns false if and only if

SN ≤ D0

(
1+ ln 1

δ
+

√
N
(
[ln ln]+N + ln 1

δ

))
.

P

SN ≤ D0

1+ ln
1
δ
+

√
N
(
[ln ln]+N + ln

1
δ

)


≤P

SN ≤ D0

(
1+ ln

1
δ
+
√

N[ln ln]+N +

√
N ln

1
δ

)
≤P

SN−NEXi ≤ D0

(
1+ ln

1
δ
+
√

N[ln ln]+N +

√
N ln

1
δ

)
−Nε



Suppose N = cξ

ε2 ln 1
δ
[ln ln]+ 1

ε
for constant c ≥ 1 and ξ. ξ is set to be sufficiently large,

such that (1) ξ ≥ 4D2
0; (2) 2D0√

ξ
+D0

(
3+
√
[ln ln]+ξ

)
+D0−

√
ξ/2 ≤ −

√
1
2 ; and (3) f (x) =

D0
√
[ln ln]+x−√x/2 is decreasing when x> ξ. Here (2) is satisfiable since D0√

ξ
+D0

√
[ln ln]+ξ−
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√
ξ/2→−∞ as ξ→∞, (3) is satisfiable since f ′(x)→−∞ as x→∞. (2) and (3) together implies

2D0√
ξ
+D0

(
3+
√

[ln ln]+cξ

)
+D0−

√
cξ/2≤−

√
1
2 .

1√
N

D0

(
1+ ln

1
δ
+
√

N[ln ln]+N +

√
N ln

1
δ

)
−Nε



=

√
ln

1
δ

 D0ε(1+ ln 1
δ
)√

cξ[ln ln]+ 1
ε

ln 1
δ

+D0

√√√√ [ln ln]+
(

cξ

ε2 ln 1
δ
[ln ln]+ 1

ε

)
ln 1

δ

+D0−
√

cξ[ln ln]+
1
ε



Since [ln ln]+ 1
ε
,c, ln 1

δ
≥ 1 and ε < 1, we have

D0ε(1+ln 1
δ
)√

cξ[ln ln]+ 1
ε

ln 1
δ

≤ 2D0√
ξ
.

Since [ln ln]+x≥ 1 if x≥ 1, we have [ln ln]+ 1
ε
≤ 1

ε
, and thus

√
[ln ln]+

(
cξ

ε2 ln
1
δ
[ln ln]+

1
ε

)
=

√√√√ln

[
max

{
e,2ln

1
ε
+ lncξ+ ln ln

1
δ
+ ln[ln ln]+

1
ε

}]

≤

√√√√ln

[
max

{
e,3ln

1
ε
+ lncξ+[ln ln]+

1
δ

}]

(a)
≤

√√√√ln

[
max

{
e,9ln

1
ε

lncξ[ln ln]+
1
δ

}]

≤
√

3+[ln ln]+
1
ε
+[ln ln]+cξ+ ln[ln ln]+

1
δ

(b)
≤
√

3+
√
[ln ln]+cξ+

√
[ln ln]+

1
ε
+

√
ln[ln ln]+

1
δ

where (a) follows by a+b+c≤ 3abc if a,b,c≥ 1, and (b) follows by
√

∑i xi ≤ ∑i
√

xi if

xi ≥ 0.
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Thus, we have

1√
N

D0

(
1+ ln

1
δ
+
√

N[ln ln]+N +

√
N ln

1
δ

)
−Nε


≤
√

ln
1
δ

2D0√
ξ
+D0

√
3+
√
[ln ln]+cξ+

√
[ln ln]+ 1

ε
+
√

ln[ln ln]+ 1
δ√

ln 1
δ

+D0−
√

cξ[ln ln]+
1
ε


(c)
≤
√

ln
1
δ

(
2D0√

ξ
+D0

(
3+
√

[ln ln]+cξ

)
+D0−

√
cξ/2

)
(d)
≤ −

√
ln

1
δ
/2

(c) follows by
√

ln 1
δ
≥max

{
1,
√

ln[ln ln]+ 1
δ

}
, D0≥ 1, and

√
[ln ln]+ 1

ε
( D0√

ln 1
δ

−
√

cξ)≤

D0−
√

cξ≤−
√

cξ/2 if cξ≥ 4D2
0. (d) follows by our choose of ξ.

Therefore,

P

SN−NEXi ≤ D0

(
1+ ln

1
δ
+
√

N[ln ln]+N +

√
N ln

1
δ

)
−Nε


≤P
(

SN−NEXi ≤−
√

N ln
1
δ
/2

)

which is at most δ by Hoeffding Bound.

Lemma 5.10. Suppose {Xi}∞

i=1 is a sequence of i.i.d. random variables such that EXi ≤ 0,

|Xi| ≤ 1. Let δ > 0. Then with probability at least 1−δ, for all n simultaneously CheckSignificant-

Var
(
{Xi}n

i=1 ,δ
)

in Procedure 8 returns false.

Proof. Define Yi = Xi−EXi. It is easy to check n
n−1(∑

n
i=1Y 2

i − 1
n(∑

n
i=1Yi)

2) = n
n−1(∑

n
i=1 X2

i −
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1
n(∑

n
i=1 Xi)

2). The result is immediate from Proposition 5.7.

Lemma 5.11. Suppose {Xi}∞

i=1 is a sequence of i.i.d. random variables such that EXi > τε,

|Xi| ≤ 1, Var(Xi)≤ 2ε where 0 < ε≤ 1, τ > 0. Let δ < 1, N = ξ

τε
ln 2

δ
(ξ is a constant specified in

the proof). Then with probability at least 1−δ, CheckSignificant-Var
(
{Xi}N

i=1 ,δ
)

in Procedure 8

returns true.

Proof. Let Yi = Xi−EXi, η be the constant η in Lemma B.9. Set ξ = max(η, 16
τ
+ 8

3).

CheckSignificant-Var
(
{Xi}N

i=1 ,δ
)

returns false if and only if ∑
N
i=1 Xi ≤ q(N,Var,δ).

By applying Lemma B.9 to Xi,
q(N,Var,δ)

N −EXi ≤−τε/2 with probability at least 1−δ/2.

Applying Bernstein’s inequality to Yi, we have

P

(
1
N

N

∑
i=1

Yi ≤−τε/2

)
≤ exp

(
−N (−τε)2 /4

4ε+2τε/3

)

= exp

(
− ξ ln 2

δ

16/τ+8/3

)
≤ δ/2
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Thus, by a union bound,

P

(
N

∑
i=1

Xi ≤ q(N,Var,δ)

)

≤P
(

q(N,Var,δ)
N

−EXi ≥−τε/2
)

+P

(
q(N,Var,δ)

N
−EXi ≤−τε/2 and

1
N

N

∑
i=1

Xi ≤
q(N,Var,δ)

N

)

≤δ/2+P

(
q(N,Var,δ)

N
−EXi ≤−τε/2 and

1
N

N

∑
i=1

Yi ≤
q(n,Var,δ)

N
−EXi

)

≤δ/2+P

(
1
N

N

∑
i=1

Yi ≤−τε/2

)

≤δ

Consistency

For Algorithm 7 to be statistically consistent, we only need Condition 1.

Theorem 5.12. Let θ∗ be the ground truth. If the labeler L satisfies Condition 1 and Algorithm 7

stops to output θ̂, then
∣∣∣θ∗− θ̂

∣∣∣≤ ε with probability at least 1− δ

2 .

Proof. Since θ̂ =
(

Llog 1
2ε

+Rlog 1
2ε

)
/2 and Rlog 1

2ε

− Llog 1
2ε

= 2ε,
∣∣∣θ̂−θ∗

∣∣∣ > ε is equivalent to

θ∗ /∈ [Llog 1
2ε

,Rlog 1
2ε

]. We have

P
(∣∣∣θ̂−θ

∗
∣∣∣> ε

)
= P

(
θ
∗ /∈ [Llog 1

2ε

,Rlog 1
2ε

]
)

= P
(
∃k : θ

∗ ∈ [Lk,Rk] and θ
∗ /∈ [Lk+1,Rk+1]

)
≤

log 1
2ε
−1

∑
k=0

P
(
θ
∗ ∈ [Lk,Rk] and θ

∗ /∈ [Lk+1,Rk+1]
)
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For any k = 0, . . . , log 1
2ε
−1, define Qk =

{
(p,q) : p,q ∈Q∩ [0,1] and q− p =

(
3
4

)k
}

where Q is the set of rational numbers. Note that Lk,Rk ∈Qk, and Q is countable. So we have

P
(
θ
∗ ∈ [Lk,Rk] and θ

∗ /∈ [Lk+1,Rk+1]
)

= ∑
(p,q)∈Qk:p≤θ∗≤q

P
(
Lk = p,Rk = q and θ

∗ /∈ [Lk+1,Rk+1]
)

= ∑
(p,q)∈Qk:p≤θ∗≤q

P
(
θ
∗ /∈ [Lk+1,Rk+1]|Lk = p,Rk = q

)
P(Lk = p,Rk = q)

Define event Ek,p,q to be the event Lk = p,Rk = q. To show P
(∣∣∣θ̂−θ∗

∣∣∣> ε

)
≤ δ

2 ,

it suffices to show P
(
θ∗ /∈ [Lk+1,Rk+1]|Ek,p,q

)
≤ δ

2log 1
2ε

for any k = 0, . . . , log 1
2ε
− 1, (p,q) ∈

Qk and p≤ θ∗ ≤ q.

Conditioning on event Ek,p,q, event θ∗ /∈ [Lk+1,Rk+1] happens only if some calls of

CheckSignificant and CheckSignificant-Var between Line 16 and 27 of Algorithm 7 return true

incorrectly. In other words, at least one of following events happens for some n:

• O(1)
k,p,q: θ∗ ∈ [Lk,Uk] and CheckSignificant-Var(

{
A(u)

i −A(m)
i

}n

i=1
, δ

4log 1
2ε

) returns true;

• O(2)
k,p,q: θ∗ ∈ [Vk,Rk] and CheckSignificant-Var(

{
A(v)

i −A(m)
i

}n

i=1
, δ

4log 1
2ε

) returns true;

• O(3)
k,p,q: θ∗ ∈ [Lk,Uk] and CheckSignificant(

{
−B(u)

i

}n

i=1
, δ

4log 1
2ε

) returns true;

• O(4)
k,p,q: θ∗ ∈ [Vk,Rk] and CheckSignificant(

{
B(v)

i

}n

i=1
, δ

4log 1
2ε

) returns true;

Note that since [Uk,Vk] ⊂ [Lk+1,Rk+1] for any k by our construction, if θ∗ ∈ [Uk,Vk] then θ∗ ∈

[Lk+1,Rk+1]. Besides, event θ∗ ∈ [Lk,Uk] and event θ∗ ∈ [Vk,Rk] are mutually exclusive.
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Conditioning on event Ek,p,q, suppose for now θ∗ ∈ [Lk,Uk].

P
(

O(1)
k,p,q | Ek,p,q

)
=P

(
∃n : CheckSignificant-Var(

{
D(u,m)

i

}n

i=1
,

δ

4log 1
2ε

) returns true | θ∗ ∈ [Lk,Uk],Ek,p,q

)

On event θ∗ ∈ [Lk,Uk] and Ek,p,q, the sequences
{

A(u)
i

}
and

{
A(m)

i

}
are i.i.d., and

E
[

A(u)
i −A(m)

i | θ∗ ∈ [Lk,Uk],Ek,p,q

]
≤ 0. By Lemma 5.10, the probability above is at most

δ

4log 1
2ε

.

Likewise,

P
(

O(3)
k,p,q | Ek,p,q

)
=P

(
∃n : CheckSignificant(

{
−B(u)

i

}n

i=1
,

δ

4log 1
2ε

) returns true | θ∗ ∈ [Lk,Uk],Ek,p,q

)

On event θ∗ ∈ [Lk,Uk] and Ek,p,q, the sequence
{

B(u)
i

}
is i.i.d., and E[−B(u)

i | θ∗ ∈

[Lk,Uk],Ek,p,q]≤ 0. By Lemma 5.8, the probability above is at most δ

4log 1
2ε

.

Thus, P
(
θ∗ /∈ [Lk+1,Rk+1] | Ek,p,q

)
≤ δ

2log 1
2ε

when θ∗ ∈ [Lk,Uk]. Similarly, when θ∗ ∈

[Vk,Rk], we can show P
(
θ∗ /∈ [Lk+1,Rk+1] | Ek,p,q

)
≤ P

(
O(2)

k,p,q | Ek,p,q

)
+P

(
O(4)

k,p,q | Ek,p,q

)
≤

δ

2log 1
2ε

.

Therefore, P
(
θ∗ /∈ [Lk+1,Rk+1] | Ek,p,q

)
≤ δ

2log 1
2ε

, and thus P
(∣∣∣θ̂−θ∗

∣∣∣> ε

)
≤ δ/2.
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Query Complexity Upper Bounds

Under additional Conditions 2 and 3, we can derive upper bounds of the query complexity

for our algorithm. (Recall f and β are defined in Conditions 2 and 3.)

Theorem 5.13. Let θ∗ be the ground truth, and θ̂ be the output of Algorithm 7. Under Conditions 1

and 2, with probability at least 1−δ, Algorithm 7 makes at most Õ
(

1
f ( ε

2 )
ε−2β

)
queries.

Proof. Define Tk to be the number of iterations of the loop at Line 6, T = ∑
log 1

2ε
−1

k=0 Tk. For any

numbers m1,m2, . . . ,mlog 1
2ε
−1, we have:

P(T ≥ m) ≤ P
(∣∣∣θ̂−θ

∗
∣∣∣> ε

)
+P

∣∣∣θ̂−θ
∗
∣∣∣< ε and T ≥

log 1
2ε
−1

∑
k=0

mk


≤ δ

2
+P

T ≥
log 1

2ε
−1

∑
k=0

mk and
∣∣∣θ̂−θ

∗
∣∣∣< ε

 (5.1)

≤ δ

2
+

log 1
2ε
−1

∑
k=0

P
(

Tk ≥ mk and
∣∣∣θ̂−θ

∗
∣∣∣< ε

)

≤ δ

2
+

log 1
2ε
−1

∑
k=0

P
(
Tk ≥ mk and θ

∗ ∈ [Lk,Rk]
)

The first and the third inequality follows by union bounds. The second follows by

Theorem 5.12. The last follows since
∣∣∣θ̂−θ∗

∣∣∣ < ε is equivalent to θ∗ ∈ [Llog 1
2ε

,Rlog 1
2ε

], which

implies θ∗ ∈ [Lk,Rk] for all k = 0, . . . , log 1
2ε
−1.

We define Qk as in the previous proof. For all k = 0, . . . , log 1
2ε
−1,
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P
(
Tk ≥ mk and θ

∗ ∈ [Lk,Rk]
)

= ∑
(p,q)∈Qk:p≤θ∗≤q

P(Tk ≥ mk,Lk = p,Rk = q)

= ∑
(p,q)∈Qk:p≤θ∗≤q

P
(
Tk ≥ mk|Lk = p,Rk = q

)
P(Lk = p,Rk = q)

Thus, in order to prove the query complexity of Algorithm 7 is O
(

∑
log 1

2ε
−1

k=0 mk

)
, it

suffices to show that P
(
Tk ≥ mk | Lk = p,Rk = q

)
≤ δ

2log 1
2ε

for any k = 0, . . . , log 1
2ε
−1, (p,q) ∈

Qk and p≤ θ∗ ≤ q.

For each k, p,q, define event Ek,p,q to be the event Lk = p,Rk = q. Define lk = q− p =(
3
4

)k
, Nk to be Θ̃

(
1

f (lk/4) l
−2β

k

)
. The logarithm factor of Nk is to be specified later. Define S(u)n

and S(v)n to be the size of array B(u) and B(v) before Line 16 respectively.

To show P
(
Tk ≥ Nk | Ek,p,q

)
≤ δ

2log 1
2ε

, it suffices to show that on event Ek,p,q, with proba-

bility at least 1− δ

2log 1
2ε

, if n = Nk then at least one of the two calls to CheckSignificant between

Line 22 and Line 27 will return true.

On event Ek,p,q, if θ∗ ∈ [Lk,Mk] (note that on event Ek,p,q, Lk and Mk are deterministic),

then |Vk−θ∗| ≥ lk
4 . We will show

p1 := P

CheckSignificant

({
B(v)

i

}S(v)Nk

i=1
,

δ

4log 1
2ε

)
returns false | Ek,p,q

≤ δ

2log 1
2ε

To prove this, we will first show that S(v)Nk
, the length of the array B(v), is large with high

probability, and then apply Lemma 5.9 to show that CheckSignificant will return true if S(v)Nk
is
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large.

By definition, S(v)Nk
= ∑

Nk
i=1 A(v)

i . By Condition 2, we have E[A(v)
i | Ek,p,q] = P(Y 6=⊥| X =

Vk,Ek,p,q)≥ f ( lk
4 ).

On event Ek,p,q,
{

A(v)
i

}
is a sequence of i.i.d. random variables. By the multiplicative

Chernoff bound, P
(

S(v)Nk
≤ 1

2Nk f
(

lk
4

)
| Ek,p,q

)
≤ exp

(
−Nk f

(
lk
4

)
/8
)

.

Now,

p1 ≤P

CheckSignificant

({
B(v)

i

}S(v)Nk

i=1
,

δ

4log 1
2ε

)
returns false,S(v)Nk

≥ 1
2

Nk f
(

lk
4

)
| Ek,p,q


+P

(
S(v)Nk

<
1
2

Nk f
(

lk
4

)
| Ek,p,q

)

By Condition 2 and |Vk−θ∗| ≥ lk
4 , E

[
B(v)

i | Ek,p,q

]
≥C

(
lk
4

)β

. On event Ek,p,q,
{

B(v)
i

}
is a sequence of i.i.d. random variables. Thus, On event Ek,p,q, by Lemma 5.9, with probability

at least 1− δ

4log 1
2ε

, CheckSignificant will return true if 1
2Nk f

(
lk
4

)
= Θ

(
1

l2β

k

ln ln1/ε

δ
[ln ln]+ 1

l2β

k

)
.

We have already proved P
(

S(v)Nk
≤ 1

2Nk f
(

lk
4

)
| Ek,p,q

)
≤ exp

(
−Nk f

(
lk
4

)
/8
)

. By setting Nk =

Θ

(
1

f (lk/4) l
−2β

k ln ln1/ε

δ
[ln ln]+ 1

l2β

k

)
, we can ensure p1 is at most δ/2log 1

2ε
.

Now we have proved on event Ek,p,q, if θ∗ ∈ [Lk,Mk], then

P

CheckSignificant

({
B(v)

i

}S(v)Nk

i=1
,

δ

4log 1
2ε

)
returns true | Ek,p,q

≥ 1− δ

2log 1
2ε
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Likewise, on event Ek,p,q, if θ∗ ∈ [Mk,Rk], then

P

CheckSignificant

({
−B(u)

i

}S(u)Nk

i=1
,

δ

4log 1
2ε

)
returns true | Ek,p,q

≥ 1− δ

2log 1
2ε

Therefore, we have shown P
(
Tk ≥ Nk | Ek,p,q

)
≤ δ

2log 1
2ε

for any k, p,q. By (5.1), with

probability at least 1−δ, the number of samples queried is at most

log 1
2ε
−1

∑
k=0

O

 1

f (
(

3
4

)k
/4)

(
3
4

)−2βk

ln
ln1/ε

δ
[ln ln]+

(
3
4

)−2kβ


=O

(
ε−2β

f (ε/2)
ln

1
ε

(
ln

1
δ
+ ln ln

1
ε

)
[ln ln]+

1
ε

)

Theorem 5.14. Let θ∗ be the ground truth, and θ̂ be the output of Algorithm 7. Under Conditions 1

and 3, with probability at least 1−δ, Algorithm 7 makes at most Õ
(

1
f ( ε

2 )

)
queries.

Proof of Theorem 5.14. For each k in Algorithm 7 at Line 3, Let lk = Rk − Lk. Let Nk =

η
1

f (lk/4) ln 4log 1
2ε

δ
, where η is a constant to be specified later. As with the previous proof, it

suffices to show P
(
Tk ≥ Nk | Ek,p,q

)
≤ δ

2log 1
2ε

where event Ek,p,q is defined to be Lk = p,Rk = q,

Tk is the number of iterations at the loop at Line 6.

On event Ek,p,q, we will show that the loop at Line 6 will terminate after n = Nk with

probability at least 1− δ

2log 1
2ε

.

Suppose for now θ∗ ∈ [Mk,Rk]. Let Zi = A(u)
i −A(m)

i , ζ = θ∗−Mk. Clearly, |Zi| ≤ 1. On

event Ek,p,q, sequence {Zi} is i.i.d.. By Condition 3, E
[
Zi | Ek,p,q

]
= f (ζ+ lk

4 )− f (ζ)≥ c f (ζ+ lk
4 )

since ζ≤ 2
3(ζ+

lk
4 ). Var

[
Zi|Ek,p,q

]
= Var

[
A(u)

i | Ek,p,q

]
+Var

[
A(m)

i | Ek,p,q

] (a)
≤ E

[
A(u)

i | Ek,p,q

]
+
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E
[
A(m)

i | Ek,p,q

]
= f (ζ+ lk

4 )+ f (ζ)
(b)
≤ 2 f (ζ+ lk

4 ) where (a) follows by Ai ∈ {0,1} and (b) fol-

lows by the monotonicity of f . Thus, on event Ek,p,q, by Lemma 5.11, if we set η suffi-

ciently large (independent of lk,ε,δ), then with probability at least 1− δ

4log 1
2ε

CheckSignificant-

Var
(
{Zi}Nk

i=1 ,
δ

4log 1
2ε

)
in Procedure 8 returns true.

Similarly, we can show that on event Ek,p,q, if θ∗ ∈ [Lk,Mk], by Lemma 5.11, with

probability at least 1− δ

4log 1
2ε

, CheckSignificant-Var
({

A(v)
i −A(m)

i

}Nk

i=1
, δ

4log 1
2ε

)
returns true.

Therefore, the loop at Line 6 will terminate after n = Nk with probability at least 1− δ

4log 1
2ε

on event Ek,p,q. Therefore, with probability at least 1−δ, the number of samples queried is at

most ∑
log 1

2ε
−1

k=0
1

f (( 3
4)

k
/4)

ln ln1/ε

δ
= O

(
1

f (ε/2) ln 1
ε

(
ln 1

δ
+ ln ln 1

ε

))
.

The query complexity given by Theorem 5.14 is independent of β that decides the flipping

rate, and consequently smaller than the bound in Theorem 5.13. This improvement is due to the

use of abstention responses, which become much more informative under Condition 3.

5.4.3 Lower Bounds

In this subsection, we give lower bounds of query complexity in the one-dimensional case

and establish near optimality of Algorithm 7. We will give corresponding lower bounds for the

high-dimensional case in the next section.

First, we introduce some notations for this section. Given a labeler L and an active

learning algorithm A , denote by Pn
L,A the distribution of n samples

{
(Xi,Yi)

}n
i=1 where Yi is drawn

from distribution PL(Y |Xi) and Xi is drawn by the active learning algorithm based solely on the

knowledge of
{
(X j,Yj)

}i−1
j=1. We will drop the subscripts from Pn

L,A and PL(Y |X) when it is clear

from the context.
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We will use Fano’s method shown as below to prove the lower bounds.

Lemma 5.15. Let Θ be a class of parameters, and {Pθ : θ ∈ Θ} be a class of probability

distributions indexed by Θ over some sample space X . Let d : Θ×Θ→ R be a semi-metric. Let

V = {θ1, . . . ,θM}⊆Θ such that ∀i 6= j, d(θi,θ j)≥ 2s> 0. Let P̄= 1
M ∑θ∈V Pθ. If dKL

(
Pθ ‖ P̄

)
≤

δ for any θ ∈V , then for any algorithm θ̂ that given a sample X drawn from Pθ outputs θ̂(X) ∈Θ,

the following inequality holds:

sup
θ∈Θ

Pθ

(
d(θ, θ̂(X))≥ s

)
≥ 1− δ+ ln2

lnM

Proof. For any algorithm θ̂, define a test function Ψ̂ : X → {1, . . . ,M} such that Ψ̂(X) =

argmini∈{1,...,M} d(θ̂(X),θi). We have

sup
θ∈Θ

Pθ

(
d(θ, θ̂(X))≥ s

)
≥max

θ∈V
Pθ

(
d(θ, θ̂(X))≥ s

)
≥ max

i∈{1,...,M}
Pθi

(
Ψ̂(X) 6= i

)

Let V be a random variable uniformly taking values from V , and X be drawn from PV .

By Fano’s Inequality, for any test function Ψ : X →{1, . . . ,M}

max
i∈{1,...,M}

Pθi

(
Ψ(X) 6= i

)
≥ 1− I(V ;X)+ ln2

lnM

The desired result follows by the fact that I(V ;X) = 1
M ∑θ∈V dKL

(
Pθ ‖ P̄

)
.

Our query complexity (Theorem 5.14) for the algorithm is also almost tight under Condi-

tions 1 and 3 with a polynomial abstention rate.
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Theorem 5.16. There is a universal constant δ0 ∈ (0,1) and a labeler L satisfying Conditions 1,

2, and 3 with f (x) =C′xα (C′ > 0 and 0 < α≤ 2 are constants), such that for any active learning

algorithm A , there is a θ∗ ∈ [0,1], such that for small enough ε, Λ(ε,δ0,A ,L,θ∗)≥Ω
(
ε−α
)
.

Proof of Theorem 5.16. 2 Without lose of generality, let C =C′ = 1 (C is defined in Condition 2).

Let ε≤ 1
4 min

{(
1
2

)1/β

,
(

4
5

)1/α

, 1
4

}
. We will prove the desired result using Lemma 5.15.

First, we construct V and Pθ. For any k ∈ {0,1,2,3}, let PLk(Y | X) be the distribution of

the labeler Lk’s response with the ground truth θk = kε:

PLk

(
Y =⊥ |x

)
= 1−

∣∣∣∣x− 1
2
− kε

∣∣∣∣α

PLk

(
Y = 0|x

)
=


(

x− 1
2 − kε

)α
(

1−
(

x− 1
2 − kε

)β
)
/2 x > 1

2 + kε(
1
2 + kε− x

)α
(

1+
(

1
2 + kε− x

)β
)
/2 x≤ 1

2 + kε

PLk

(
Y = 1|x

)
=


(

x− 1
2 − kε

)α
(

1+
(

x− 1
2 − kε

)β
)
/2 x > 1

2 + kε(
1
2 + kε− x

)α
(

1−
(

1
2 + kε− x

)β
)
/2 x≤ 1

2 + kε

Clearly, PLk complies with Conditions 1, 2 and 3.

Define Pn
k to be the distribution of n samples

{
(Xi,Yi)

}n
i=1 where Yi is drawn from distri-

bution PLk(Y |Xi) and Xi is drawn by the active learning algorithm based solely on the knowledge

of
{
(X j,Y j)

}i−1
j=1.

Define P̄L = 1
4 ∑ j PL j and P̄n = 1

4 ∑ j Pn
k . We take Θ to be [0,1], and d(θ1,θ2) = |θ1−θ2|

2Actually we can use Le Cam’s method to prove this one-dimensional case (which only needs to construct 2
distributions instead of 4 here), but this proof can be generalized to the multidimensional case more easily.
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in Lemma 5.15. To use Lemma 5.15, we need to bound dKL
(
Pn

k ‖ P̄n) for k ∈ {0,1,2,3}.

For any k ∈ {0,1,2,3} ,

dKL
(
Pn

k ‖ P̄n
0
)

=EPn
k

ln
Pn

k

({
(Xi,Yi)

}n
i=1

)
P̄n
({

(Xi,Yi)
}n

i=1

)


=EPn
k

(
ln

Pn
k (X1)Pn

k

(
Y1 | X1

)
Pn

k

(
X2 | X1,Y1

)
· · ·Pn

k

(
Yn | X1,Y1, . . . ,Xn

)
P̄n (X1) P̄n

(
Y1 | X1

)
P̄n
(
X2 | X1,Y1

)
· · · P̄n

(
Yn | X1,Y1, . . . ,Xn

))
(a)
=EPn

k

(
ln

Πn
i=1PLk

(
Yi|Xi

)
Πn

i=1P̄L
(
Yi|Xi

) ) (5.2)

=
n

∑
i=1

EPn
k

EPn
k

(
ln

PLk

(
Yi|Xi

)
P̄L
(
Yi|Xi

) | Xn

)
≤n max

x∈[0,1]
dKL

(
PLk(Y | x) ‖ P̄L(Y | x)

)

(a) follows by the fact that Pn
k

(
Xi+1 | X1,Y1, . . .Xi,Yi

)
= P̄n (Xi+1 | X1,Y1, . . . ,Xi,Yi

)
since

Xi+1 is drawn by the same algorithm based solely on the knowledge of
{
(X j,Yj)

}i
j=1 re-

gardless of the labeler’s response distribution, and that Pn
k

(
Yi | X1,Y1, . . . ,Xi

)
= PLk

(
Yi|Xi

)
and

P̄n (Yi | X1,Y1, . . . ,Xi
)
= P̄L

(
Yi|Xi

)
by definition.

For any k ∈ {1,2,3},x ∈ [0,1],

P̄L(· | x)≥
PL0(· | x)+PLk(· | x)

4
(5.3)

For any k ∈ {0,1,2,3},x ∈ [0,1], y ∈ {1,−1,⊥}
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(
P̄L(Y = y | x)−PLk(Y = y | x)

)2

=

∑
j

1
4

(
PL j(Y = y | x)−PL0(Y = y | x)

)
+
(
PL0(Y = y | x)−PLk(Y = y | x)

)2

≤

 5
16 ∑

j>0

(
PL j(Y = y | x)−PL0(Y = y | x)

)2
+5
(
PL0(Y = y | x)−PLk(Y = y | x)

)2


≤6 ∑

j>0

(
PL j(Y = y | x)−PL0(Y = y | x)

)2
(5.4)

where the first inequality follows by
(

∑
4
i=0 ai

)2
≤ 5∑

4
i=0 a2

i by letting a j =
1
4(PL j(Y =

y | x)−PL0(Y = y | x)) for j = 0, . . . ,3 and a4 = PL0(Y = y | x)−PLk(Y = y | x), and noting that

a0 = 0 under this setting.

Thus,

dKL
(
PLk(Y | x) ‖ P̄L(Y | x)

)
≤∑

y

1
P̄L(Y = y | x)

(
PLk(Y = y | x)− P̄L(Y = y | x)

)2

≤24 ∑
j>0

∑
y

1
PL j(y | x)+PL0(y | x)

(
PL j(Y = y | x)−PL0(Y = y | x)

)2

≤O(εα)

The first inequality follows from Lemma B.5. The second inequality follows by (5.3)

and (5.4). The last inequality follows by applying Lemma B.6 to PL0(· | x) and PL j(· | x) and the

assumption α≤ 2.
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Therefore, we have dKL
(
Pn

k ‖ P̄n
0
)
= nO(εα). By setting n = ε−α, we get dKL

(
Pn

k ‖ P̄n
0
)
≤

O(1), and thus by Lemma 5.15,

sup
θ

Pθ

(
d(θ, θ̂(X))≥Ω(ε)

)
≥ 1− O(1)+ ln2

ln4
= O(1)

5.4.4 Remarks

Our results confirm the intuition that learning with abstention is easier than learning

with noisy labels. This is true because a noisy label might mislead the learning algorithm, but

an abstention response never does. Our analysis shows, in particular, that if the labeler never

abstains, and outputs completely noisy labels with probability bounded by 1− |x−θ∗|γ (i.e.,

P(Y 6= 1 [x > θ∗] | x)≤ 1
2

(
1−|x−θ∗|γ

)
), then the near optimal query complexity of Õ

(
ε−2γ

)
is

significantly larger than the near optimal Õ
(
ε−γ
)

query complexity associated with a labeler who

only abstains with probability P(Y =⊥| x)≤ 1−|x−θ∗|γ and never flips a label. More precisely,

while in both cases the labeler outputs the same amount of corrupted labels, the query complexity

of the abstention-only case is significantly smaller than the noise-only case.

Note that the query complexity of Algorithm 7 consists of two kinds of queries: queries

which return 0/1 labels and are used by function CheckSignificant, and queries which return

abstention and are used by function CheckSignificant-Var. Algorithm 7 will stop querying when

the responses of one of the two kinds of queries are statistically significant. Under Condition 2,

our proof actually shows that the optimal number of queries is dominated by the number of

queries used by CheckSignificant function. In other words, a simplified variant of Algorithm 7

which excludes use of abstention feedback is near optimal. Similarly, under Condition 3, the

optimal query complexity is dominated by the number of queries used by CheckSignificant-Var
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function. Hence the variant of Algorithm 7 which disregards 0/1 labels would be near optimal.

5.5 The Multidimensional Case

We follow [CN08] to generalize the results from one-dimensional thresholds to the d-

dimensional (d > 1) smooth boundary fragment class Σ(K,γ).

5.5.1 Lower bounds

Theorem 5.17. There are universal constants δ0 ∈ (0,1), c0 > 0, and a labeler L satisfying

Conditions 1 and 2, such that for any active learning algorithm A , there is a g∗ ∈ Σ(K,γ), such

that for small enough ε, Λ(ε,δ0,A ,L,g∗)≥Ω

(
1

f (c0ε)ε
−2β− d−1

γ

)
.

Again, we will use Lemma 5.15 to prove the lower bounds for d-dimensional cases. We

first construct {Pθ : θ ∈Θ} using a similar idea with [CN08], and then use Lemma B.7 to select a

subset Θ̃⊂Θ to apply Lemma 5.15.

Proof of Theorem 5.17. Again, without lose of generality, let C = 1. Recall that we have defined

x̃ to be (x1, . . . ,xd−1) for x = (x1, . . . ,xd) ∈ Rd . Define m =
(

1
ε

)1/γ

. L =
{

0, 1
m , . . . ,

m−1
m

}d−1
,

h(x̃) =Π
d−1
i=1 exp

(
− 1

1−4x2
i

)
1
{
|xi|< 1

2

}
, φl(x̃) =Km−γh(m(x̃− l)− 1

2) where l ∈L . It is easy to

check φl(x̃) is (K,γ)-Hölder smooth and has bounded support [l1, l1 + 1
m ]×·· ·× [ld−1, ld−1 +

1
m ],

which implies that for different l1, l2 ∈ L , the support of φl1 and φl2 do not intersect.

Let Ω = {0,1}md−1
. For any ω ∈Ω, define gω(x̃) = ∑l∈L ωlφl(x̃). For each ω ∈Ω, define

the conditional distribution of labeler Lω’s response as follows:
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For xd ≤ A, PLω
(y =⊥ |x) = 1− f (A), and PLω

(y 6= 1(xd > gω(x̃))|x,y 6=⊥) = 1
2(1−∣∣xd−gω(x̃)

∣∣β);
For xd ≥ A, PLω

(y =⊥ |x) = 1− f (xd), and PLω
(y 6= 1(xd > gω(x̃))|x,y 6=⊥) = 1

2(1−xβ

d).

Here, A = cmaxφ(x̃) = c′ε for some constants c,c′.

It can be easily verified that PLω
satisfies Conditions 1 and 2. Note that gω(x̃) can be seen

as the underlying decision boundary for labeler PLω
.

Define Pn
ω to be the distribution of n samples

{
(Xi,Yi)

}n
i=1 where Yi is drawn from distri-

bution PLω
(Y |Xi) and Xi is drawn by the active learning algorithm based solely on the knowledge

of
{
(X j,Y j)

}i−1
j=1.

By Lemma B.7, when ε is small enough so that md−1 is large enough, there is a subset{
ω(1), . . . ,ω(M)

}
⊂ Ω such that

∥∥∥ω(i)−ω( j)
∥∥∥

0
≥ md−1/12 for any 0 ≤ i < j ≤ M and M ≥

2md−1/48. Define Pn
i = Pn

ω(i), P̄
n = 1

M ∑
M
i=1 Pn

i .

Next, we will apply Lemma 5.15 to
{

ω(1), . . . ,ω(M)
}

with d(ω(i),ω( j)) =
∥∥g

ω(i)−g
ω( j)

∥∥.

We will lower-bound d(ω(i),ω( j)) and upper-bound dKL
(
Pn

i ‖ P̄n
)
.

For any 1≤ i < j ≤M ,

∥∥g
ω(i)−g

ω( j)

∥∥
= ∑

l∈{1,...,m}d−1

∣∣∣ω(i)
l −ω

( j)
l

∣∣∣Km−γ−(d−1) ‖h‖

≥md−1/12∗Km−γ−(d−1) ‖h‖

=Km−γ ‖h‖/12

=Θ(ε)
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By the convexity of KL-divergence, dKL
(
Pn

i ‖ P̄n)≤ 1
M ∑

M
j=1 dKL

(
Pn

i ‖ Pn
j

)
, so it suffices

to upper-bound dKL

(
Pn

i ‖ Pn
j

)
for any i, j.

For any 1 < i, j ≤M ,

dKL

(
Pn

i ‖ Pn
j

)
≤n max

x∈[0,1]d
dKL

(
Pn

L
ω(i)

(Y | x) ‖ Pn
L

ω( j)
(Y | x)

)
=n max

x∈[0,1]d
Pn

L
ω(i)

(Y 6=⊥| x)dKL

(
Pn

L
ω(i)

(Y | x,Y 6=⊥) ‖ Pn
L

ω( j)
(Y | x,Y 6=⊥)

)

The inequality follows as (5.2) in the proof of Theorem 5.16. The equality follows since

Pω(y =⊥ |x) is the same for all ω ∈Ω.

If xd ≥ A, then Pn
L

ω(i)
(Y | x,Y 6=⊥) = Pn

L
ω( j)

(Y | x,Y 6=⊥), so

dKL

(
Pn

L
ω(i)

(Y | x,Y 6=⊥) ‖ Pn
L

ω( j)
(Y | x,Y 6=⊥)

)
= 0.

If xd < A, then Pn
L

ω(i)
(Y 6=⊥| x) = f (A). Therefore,

dKL

(
Pn

i ‖ Pn
j

)
≤ n f (A) max

x∈[0,1]d
dKL

(
Pn

L
ω(i)

(Y | x,Y 6=⊥) ‖ Pn
L

ω( j)
(Y | x,Y 6=⊥)

)

.

Apply Lemma B.5 to Pn
L

ω(i)
(Y | x,Y 6=⊥) and Pn

L
ω(i)

(Y | x,Y 6=⊥), and noting they are

bounded above by a constant, we have maxx∈[0,1]d dKL(Pn
L

ω(i)
(Y | x,Y 6=⊥) ‖ Pn

L
ω( j)

(Y | x,Y 6=⊥

)) = O
(

A2β

)
. Thus,

dKL

(
Pn

i ‖ Pn
j

)
≤ n f (A)O

(
A2β

)
= n f (c′ε)O(ε2β)
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By setting n = 1
f (c′ε)ε

−2β− d−1
γ , we get dKL

(
Pn

i ‖ Pn
j

)
≤ O

(
ε
− d−1

γ

)
. The desired results

follows by Lemma 5.15.

Theorem 5.18. There is a universal constant δ0 ∈ (0,1) and a labeler L satisfying Conditions 1,

2, and Condition 3 with f (x) =C′xα (C′> 0 and 0<α≤ 2 are constants), such that for any active

learning algorithm A , there is a g∗ ∈ Σ(K,γ), such that for small enough ε, Λ(ε,δ0,A ,L,g∗)≥

Ω

(
ε
−α− d−1

γ

)
.

The proof of Theorem 5.18 follows the same structure.

Proof of Theorem 5.18. As in the proof of Theorem 5.17, let C =C′ = 1, and define m =
(

1
ε

)1/γ

.

L =
{

0, 1
m , . . . ,

m−1
m

}d−1
, h(x̃) = Π

d−1
i=1 exp

(
− 1

1−4x2
i

)
1
{
|xi|< 1

2

}
, φl(x̃) = Km−γh(m(x̃− l)−

1
2) where l ∈ L . Let Ω = {0,1}md−1

. For any ω ∈Ω, define gω(x̃) = 1
2 +∑l∈L ωlφl(x̃), which can

be seen as a decision boundary. A = maxφ(x̃) = c′ε for some constants c′.

Let g+(x̃) = g(1,1,...,1)(x̃) = ∑l∈L φl(x̃), g−(x̃) = g(0,0,...,0)(x̃) = 0. In other words, g+ is

the “highest” boundary, and g− is the “lowest” boundary.

For each ω ∈Ω, define the conditional distribution of labeler Lω’s response as follows:

PLω
(y =⊥ |x) = 1−

∣∣xd−gω(x̃)
∣∣α

PLω
(y 6= 1(xd > gω(x̃))|x,y 6=⊥) =

1
2

(
1−
∣∣xd−gω(x̃)

∣∣β)

It can be easily verified that PLω
satisfies Conditions 1, 2, and 3.

Let P+(· | x) = PL(1,1,...,1)(· | x), P−(· | x) = PL(0,0,...,0)(· | x). By the construction of g, for any
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x ∈ [0,1]d , any ω ∈Ω, PLω
(· | x) equals either P+(· | x) or P−(· | x).

Define Pn
ω to be the distribution of n samples

{
(Xi,Yi)

}n
i=1 where Yi is drawn from distri-

bution PLω
(Y |Xi) and Xi is drawn by the active learning algorithm based solely on the knowledge

of
{
(X j,Y j)

}i−1
j=1.

By Lemma B.7, when ε is small enough so that md−1 is large enough,, there is a subset

Ω′ =
{

ω(1), . . . ,ω(M)
}
⊂Ω such that (i) (well-separated)

∥∥∥ω(i)−ω( j)
∥∥∥

0
≥md−1/12 for any 0≤

i < j≤M, M ≥ 2md−1/48; and (ii) (well-balanced) for any j = 1, . . . ,md−1, 1
24 ≤ 1

M ∑
M
i=1 ω

(i)
j ≤ 3

24

.

Define Pn
i = Pn

ω(i), P̄
n = 1

M ∑
M
i=1 Pn

i . Define PLi = PL
ω(i)

, P̄L = 1
M ∑

M
i=1 PLi . By the well-

balanced property, for any x ∈ [0,1]d , P̄L(· | x) is between 1
24P+(· | x)+ 23

24P−(· | x) and 3
24P+(· |

x)+ 21
24P−(· | x). Therefore

P̄L(· | x)≥
1

24
(
P+(· | x)+P−(· | x)

)
(5.5)

Moreover, since PLi(· | x) can only take P+(· | x) or P−(· | x) for any x,

∣∣PLi(· | x)− P̄L(· | x)
∣∣≤ ∣∣P+(· | x)−P−(· | x)

∣∣ (5.6)

Next, we will apply Lemma 5.15 to
{

ω(1), . . . ,ω(M)
}

with d(ω(i),ω( j)) =
∥∥g

ω(i)−g
ω( j)

∥∥.

We already know from the proof of Theorem 5.17
∥∥g

ω(i)−g
ω( j)

∥∥= Ω(ε).

For any 0 < i ≤ M , dKL
(
Pn

i ‖ P̄n
0
)
≤ nmaxx∈[0,1]d dKL

(
PLi(Y | x) ‖ P̄L(Y | x)

)
. For any
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x ∈ [0,1]d ,

dKL
(
PLi(Y | x) ‖ P̄L(Y | x)

)
≤∑

y

1
P̄L(Y = y | x)

(
PLi(Y = y | x)− P̄L(Y = y | x)

)2

≤∑
y

24
P+(y | x)+P−(y | x)

(
P+(Y = y | x)−P−(Y = y | x)

)2

≤O(Aα)

The first inequality follows from Lemma B.5. The second inequality follows by (5.5) and

(5.6). The last inequality follows by applying Lemma B.6 to P+(· | x) and P−(· | x), setting the ε

in Lemma B.6 to be gω(x̃), and using gω(x̃)≤ A and the assumption α≤ 2.

Therefore, we have

dKL
(
Pn

i ‖ Pn
0
)
≤ nO

(
Aα
)
= nO(εα)

By setting n = ε
−α− d−1

γ , we get dKL
(
Pn

i ‖ Pn
0
)
≤ O

(
ε
− d−1

γ

)
. Thus by Lemma 5.15,

sup
θ

Pθ

(
d(θ, θ̂(X))≥Ω(ε)

)
≥ 1−

O
(

ε
− d−1

γ

)
+ ln2

ε
− d−1

γ /48
= O(1)

, from which the desired result follows.
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Algorithm 9 The active learning algorithm for the smooth boundary fragment class
1: Input: δ, ε, γ

2: M←Θ

(
ε−1/γ

)
. L ←

{
0
M , 1

M , . . . , M−1
M

}d−1

3: For each l ∈ L , apply Algorithm 7 with parameter (ε, δ/Md−1) to learn a threshold gl that
approximates g∗(l)

4: Partition the instance space into cells
{

Iq
}

indexed by q ∈
{

0,1, . . . , M
γ
−1
}d−1

, where

Iq =

[
q1γ

M
,
(q1 +1)γ

M

]
×·· ·×

[
qd−1γ

M
,
(qd−1 +1)γ

M

]
5: For each cell Iq, perform a polynomial interpolation: gq(x̃) = ∑l∈Iq∩L glQq,l(x̃), where

Qq,l(x̃) =
d−1

∏
i=1

γ

∏
j=0, j 6=Mli−γqi

x̃i− (γqi + j)/M
li− (γqi + j)/M

6: Output: g(x̃) = ∑
q∈
{

0,1,...,M
γ
−1
}d−1 gq(x̃)1 [x̃ ∈ q]

5.5.2 Algorithm and Analysis

Recall the decision boundary of the smooth boundary fragment class can be seen as the

epigraph of a smooth function [0,1]d−1→ [0,1]. For d > 1, we can reduce the problem to the

one-dimensional problem by discretizing the first d− 1 dimensions of the instance space and

then perform a polynomial interpolation. The algorithm is shown as Algorithm 9. For the sake of

simplicity, we assume γ, M/γ in Algorithm 9 are integers.

We have similar consistency guarantee and upper bounds as in the one-dimensional case.

Theorem 5.19. Let g∗ be the ground truth. If the labeler L satisfies Condition 1 and Algorithm 9

stops to output g, then ‖g∗−g‖ ≤ ε with probability at least 1− δ

2 .

Theorem 5.20. Let g∗ be the ground truth, and g be the output of Algorithm 9. Under Conditions 1

and 2, with probability at least 1−δ, Algorithm 9 makes at most Õ
(

d
f(ε/2)

ε
−2β− d−1

γ

)
queries.

Theorem 5.21. Let g∗ be the ground truth, and g be the output of Algorithm 9. Under Conditions 1
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and 3, with probability at least 1−δ, Algorithm 9 makes at most Õ
(

d
f(ε/2)

ε
− d−1

γ

)
queries.

To prove the d-dimensional case, we only need to use a union bound to show that with high

probability all calls of Algorithm 7 succeed, and consequently the output boundary g produced

by polynomial interpolation is close to the true underlying boundary due to the smoothness

assumption of g∗.

Proof of Theorem 5.19. For q ∈
{

0,1, . . . , M
γ
−1
}d−1

, define the “polynomial interpolation” ver-

sion of g∗ as

g∗q(x̃) = ∑
l∈Iq∩L

g∗(l)Qq,l(x̃)

Recall that we choose M = O
(

ε−1/γ

)
.

By Theorem 5.12, each run of Algorithm 7 at the line 3 of Algorithm 9 will return a gl

such that
∣∣∣gl−g∗q(l)

∣∣∣≤ ε with probability at least 1−δ/2Md−1.

∥∥g−g∗
∥∥

= ∑
q∈{0,...,M/γ−1}d−1

∥∥(gq−g∗
)
1{x̃ ∈ Iq}

∥∥
≤ ∑

q∈{0,...,M/γ−1}d−1

∥∥∥(gq−g∗q
)
1{x̃ ∈ Iq}

∥∥∥+∥∥∥(g∗q−g∗
)
1{x̃ ∈ Iq}

∥∥∥
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∥∥∥(g∗q−g∗
)
1{x̃ ∈ Iq}

∥∥∥ =

ˆ
Iq

∣∣∣g∗q(x̃)−g∗(x̃)
∣∣∣dx̃

= O

(ˆ
Iq

M−γdx̃

)
= O

(
M−γ−d+1

)

The second equality follows from Lemma 3 of [CN08] that
∣∣gq(x̃)−g∗(x̃)

∣∣= O
(
M−γ

)
since g∗ is γ-Hölder smooth.

∥∥∥(gq−g∗q
)
1{x̃ ∈ Iq}

∥∥∥
= ∑

l∈Iq∩L

∣∣∣gl−g∗q(l)
∣∣∣∥∥Qq,l

∥∥
≤ ∑

l∈Iq∩L
ε
∥∥Qq

∥∥
=O(εM−d+1)

Therefore, overall we have ‖g−g∗‖ ≤ O
(

M−γ−d+1 + εM−d+1
)(

M
γ

)d−1
= O(ε).

Proof of Theorem 5.20. By Theorem 5.13, each run of Algorithm 7 at the line 3 of Algorithm 9

will make Õ
(

d
f (ε/2)ε

−2β

)
queries with probability at least 1−δ/Md−1, thus by a union bound,

the total number of queries made is Õ
(

d
f (ε/2)ε

−2β− d−1
γ

)
with probability at least 1−δ.

Proof of Theorem 5.21. The proof is similar to the previous proof.
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Chapter 6

Active Learning with Logged

Observational Data I: An Importance

Sampling Solution

6.1 Introduction

In this chapter, we consider active learning with an auxiliary observational dataset. Coun-

terfactual learning from observational data is an emerging problem that arises naturally in many

applications. In this problem, the learner is given observational data – a set of examples selected

according to some policy along with their labels – as well as access to the policy that selects the

examples, and the goal is to construct a classifier with high performance on an entire population,

not just the observational data distribution.

An example is predicting the efficacy of a treatment as a function of patient characteristics

based on observed data. Doctors may assign the treatment to patients based on some predeter-
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mined rule; recording these patient outcomes produces a logged dataset where outcomes are

observed conditioned on the doctors’ assignment. A second example is recidivism prediction,

where the goal is to predict whether a convict will re-offend. Judges use their own predefined

policy to grant parole, and if parole is granted, then an outcome (reoffense or not) is observed.

Thus the observed data records outcomes conditioned on the judges’ parole policy, while the

learner’s goal is to learn a predictor over the entire population.

A major challenge in learning from logged data is that the logging policy may leave

large areas of the data distribution under-explored. Consequently, empirical risk minimization

(ERM) on the logged data leads to classifiers that may be highly suboptimal on the population.

When the logging policy is known, a second option is to use a weighted ERM, that reweighs

each observed labeled data point to ensure that it reflects the underlying population. However,

this may lead to sample inefficiency if the logging policy does not adequately explore essential

regions of the population. A final approach, typically used in clinical trials, is controlled random

experimentation – essentially, ignore the logged data, and record outcomes for fresh examples

drawn from the population. This approach is expensive due to the high cost of trials, and wasteful

since it ignores the observed data.

Motivated by these challenges, we propose active learning to combine logged data with

a small amount of strategically chosen labeled data that can be used to correct the bias in the

logging policy. This solution has the potential to achieve the best of both worlds by limiting

experimentation to achieve higher sample efficiency, and by making the most of the logged data.

Specifically, we assume that in addition to the logged observational data, the learner has some

additional unlabeled data that he can selectively ask an annotator to label. The learner’s goal is to

learn a highly accurate classifier over the entire population by using a combination of the logged

data and with as few label queries to the annotator as possible.

How can we utilize logged data for better active learning? Prior work in this problem has
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looked at both probabilistic inference [SSS+19, AZvdS19], and here we consider the standard

classification setting. A naive approach is to use the logged data to come up with a warm start and

then do standard active learning. In this work, we show that we can do even better. In addition

to the warm start, we show how to use multiple importance sampling estimators to utilize the

logged data more efficiently. Additionally, we introduce a novel sample selection bias correction

technique that selectively avoids label queries for those examples that are highly represented in

the logged data.

Combining these three approaches, we provide a new algorithm. We prove that our

algorithm is statistically consistent, and has a lower label requirement than simple active learning

that uses the logged data as a warm start. Finally, we evaluate our algorithm experimentally on

various datasets and logging policies. Our experiments show that the performance of our method

is either the best or close to the best for a variety of datasets and logging policies. This confirms

that active learning to combine logged data with carefully chosen labeled data may indeed yield

performance gains.

6.2 Setup

We are given a instance space X , a label space Y = {−1,+1}, and a hypothesis class

H ⊂ Y X . Let D be an underlying data distribution over X ×Y . For simplicity, we assume H is

a finite set, but our results can be generalized to VC-classes by standard arguments [VC71].

In the passive setting for learning with observational data, the learner has access to a

logged observational dataset generated from the following process. First, m examples {(Xt ,Yt)}m
t=1

are drawn i.i.d. from D. Then a logging policy Q0 : X → [0,1] that describes the probability of

observing the label is applied. In particular, for each example (Xt ,Yt) (1≤ t ≤m), an independent
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Bernoulli random variable Zt with expectation Q0(Xt) is drawn, and then the label Yt is revealed

to the learner if Zt = 11. We call T0 = {(Xt ,Yt ,Zt)}m
t=1 the logged dataset. We assume the

learner knows the logging policy Q0, and only observes instances {Xt}m
t=1, indicators {Zt}m

t=1,

and revealed labels {Yt | Zt = 1}m
t=1.

In the active learning setting, in addition to the logged dataset, the learner has access to a

stream of online data. In particular, there is a stream of additional n examples {(Xt ,Yt)}m+n
t=m+1

drawn i.i.d. from distribution D. At time t (m < t ≤ m+n), the learner applies a query policy to

compute an indicator Zt ∈ {0,1}, and then the label Yt is revealed if Zt = 1. The computation

of Zt may in general be randomized, and is based on the observed logged data T0, previously

observed instances {Xi}ti=m+1, decisions{Zi}t−1
i=m+1, and observed labels {Yi | Zi = 1}t−1

i=m+1.

We focus on the active learning setting, and the goal of the learner is to learn a classifier

h ∈ H from observed logged data and online data. Fixing D, Q0, m, n, the performance is

measured by: (1) the error rate l(h) := PD(h(X) 6= Y ) of the output classifier, and (2) the number

of label queries on the online data. Note that the error rate is over the entire population D instead

of conditioned on the logging policy, and that we assume the labels of the logged data T0 come at

no cost. In this work, we are interested in the situation where n, the size of the online stream, is

smaller than m.

Notation Unless otherwise specified, all probabilities and expectations are over the

draw of all random variables {(Xt ,Yt ,Zt)}m+n
t=1 . Define q0 = infx Q0(x). Define the optimal

classifier h? = argminh∈H l(h), ν = l(h?). For any r > 0,h ∈ H , define the r−ball around h

as B(h,r) =
{

h′ ∈H : P(h(X) 6= h′(X))≤ r
}

. For any C ⊆ H , define the disagreement region

DIS(C) = {x ∈ X : ∃h1 6= h2 ∈C,h1(X) 6= h2(X)}.
1This generating process implies the standard unconfoundedness assumption in the counterfactual inference

literature: P(Yt ,Zt | Xt) = P(Yt | Xt)P(Zt | Xt). In other words, the label Yt is conditionally independent with the
action Zt (indicating whether the label is observed) given the instance Xt .
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6.3 Key Ideas

Our algorithm employs the disagreement-based active learning framework (Algorithm 1),

but modifies the main DBAL algorithm in three key ways.

Key Idea 1: Warm-Start

Our algorithm applies a straightforward way of making use of the logged data T0 inside

the DBAL framework: to set the initial candidate set C0 to be the set of classifiers that have a low

empirical error on T0.

Key Idea 2: Multiple Importance Sampling

Most learning algorithms, including DBAL, require estimating the error rate of a classifier.

A good error estimator should be unbiased and of low variance. When instances are observed

with different probabilities, a commonly used error estimator is the standard importance sampling

estimator that reweighs each observed labeled example according to the inverse probability of

observing it.

Consider a simplified setting where the logged dataset T0 = (Xi,Yi,Zi)
m
i=1 and P(Zi = 1 |

Xi) = Q0(Xi). On the online dataset T1 = (Xi,Yi,Zi)
m+n
i=m+1, the algorithm uses a fixed query policy

Q1 to determine whether to query for labels, that is, P(Zi = 1 | Xi) = Q1(Xi) for m < i≤ m+n.

Let S = T0∪T1.

In this setting, the standard importance sampling (IS) error estimator for a classifier h is:

lIS(h,S) :=
1

m+n

m

∑
i=1

1{h(Xi) 6= Yi}Zi

Q0(Xi)
+

1
m+n

m+n

∑
i=m+1

1{h(Xi) 6= Yi}Zi

Q1(Xi)
. (6.1)
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lIS is unbiased, and its variance is proportional to supi=0,1;x∈X
1

Qi(x)
. Although the learning

algorithm can choose its query policy Q1 to avoid Q1(Xi) to be too small for i > m, Q0 is the

logging policy that cannot be changed. When Q0(Xi) is small for some i≤ m, the estimator in

(6.1) have a high variance such that it may be even better to just ignore the logged dataset T0.

An alternative is the multiple importance sampling (MIS) estimator with balanced heuris-

tic [VG95]:

lMIS(h,S) :=
m+n

∑
i=1

1{h(Xi) 6= Yi}Zi

mQ0(Xi)+nQ1(Xi)
. (6.2)

It can be proved that lMIS(h,S) is indeed an unbiased estimator for l(h). Moreover, as

proved in [OZ00, ABSJ17], (6.2) always has a lower variance than both (6.1) and the standard

importance sampling estimator that ignores the logged data.

Thus, in our work, we use multiple importance sampling estimators instead of standard

importance sampling estimators to which obtain a better performance guarantee.

We remark that the main purpose of using multiple importance sampling estimators here

is to control the variance due to the predetermined logging policy. In the classical active learning

setting without logged data, standard importance sampling can give satisfactory performance

guarantees [BDL09, BHLZ10, HAH+15].

Key Idea 3: A Sample Selection Bias Correction Query Strategy

The logging policy Q0 introduces bias into the logged data: some examples may be

underrepresented since Q0 chooses to reveal their labels with lower probability. Our algorithm

employs a sample selection bias correction query strategy to neutralize this effect. For any

instance x in the online data, the algorithm would query for its label with a lower probability if

Q0(x) is relatively large.
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It is clear that a lower query probability leads to fewer label queries. Moreover, we

claim that our sample selection bias correction strategy, though queries for less labels, does not

deteriorate our theoretical guarantee on the error rate of the final output classifier. To see this, we

note that we can establish a concentration bound for multiple importance sampling estimators

that with probability at least 1−δ, for all h ∈H ,

l(h)− l(h?)≤2(l(h,S)− l(h?,S))+ γ1 sup
x∈X

1{h(x) 6= h?(x)} log |H |
δ

mQ0(x)+nQ1(x)

+γ1

√√√√sup
x∈X

1{h(x) 6= h?(x)} log |H |
δ

mQ0(x)+nQ1(x)
l(h?) (6.3)

where m,n are sizes of logged data and online data respectively, Q0 and Q1 are query policy

during the logging phase and the online phase respectively, and γ1 is an absolute constant (see

Corollary C.12 in Appendix for proof).

This concentration bound implies that for any x ∈ X , if Q0(x) is large, we can set Q1(x)

to be relatively small (as long as mQ0(x)+nQ1(x) ≥ infx′mQ0(x′)+nQ1(x′)) while achieving

the same concentration bound. Consequently, the upper bound on the final error rate that we

can establish from this concentration bound would not be impacted by the sample selection bias

correction querying strategy.

One technical difficulty of applying both multiple importance sampling and the sample

selection bias correction strategy to the DBAL framework is adaptivity. Applying both methods

requires that the query policy and consequently the importance weights in the error estimator

are updated with observed examples in each iteration. In this case, the summands of the error

estimator are not independent, and the estimator becomes an adaptive multiple importance

sampling estimator whose convergence property is still an open problem [CMMR12].

To circumvent this convergence issue and establish rigorous theoretical guarantees, in
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Algorithm 10 Active learning with logged data
1: Input: confidence δ, size of online data n, logging policy Q0, logged data T0.
2: K← dlogne.
3: S̃0← T (0)

0 ; C0←H ; D0← X ; ξ0← infx∈X Q0(x).
4: for k = 0, . . . ,K−1 do

5: δk← δ

(k+1)(k+2) ; σ(k,δ)← log |H |
δ

mkξk+nk
; ∆k(h,h′)← γ0σ(k, δk

2 )+ γ0

√
σ(k, δk

2 )ρS̃k
(h,h′).

6: . γ0 is an absolute constant defined in Lemma C.13.
7: ĥk← argminh∈Ck l(h, S̃k).
8: Define the candidate set

Ck+1←{h ∈Ck | l(h, S̃k)≤ l(ĥk, S̃k)+∆k(h, ĥk)}

and its disagreement region Dk+1← DIS(Ck+1).
9: Define ξk+1← infx∈Dk+1 Q0(x), and Qk+1(x)← 1{Q0(x)≤ ξk+1 +1/α}.

10: Draw nk+1 samples {(Xt ,Yt)}m+n1+···+nk+1
t=m+n1···+nk+1, and present {Xt}m+n1+···+nk+1

t=m+n1+···+nk+1 to the algo-
rithm.

11: for t = m+n1 + · · ·+nk +1 to m+n1 + · · ·+nk+1 do
12: Zt ← Qk+1(Xt).
13: if Zt = 1 then
14: If Xt ∈ Dk+1, query for label: Ỹt ← Yt ; otherwise infer Ỹt ← ĥk(Xt).
15: end if
16: end for
17: T̃k+1←{Xt ,Ỹt ,Zt}m+n1+···+nk+1

t=m+n1+···+nk+1.

18: S̃k+1← T (k+1)
0 ∪ T̃k+1.

19: end for
20: Output ĥ = argminh∈CK l(h, S̃K).

each iteration, we compute the error estimator from a fresh sample set. In particular, we partition

the logged data and the online data stream into disjoint subsets, and we use one logged subset and

one online subset for each iteration.

6.4 Algorithm

The Algorithm is shown as Algorithm 10. Algorithm 10 runs in K iterations where

K = dlogne (recall n is the size of the online data stream). For simplicity, we assume n = 2K−1.
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As noted in the previous subsection, we require the algorithm to use a disjoint sample set

for each iteration. Thus, we partition the data as follows. The online data stream is partitioned

into K parts T1, · · · ,TK of sizes n1 = 20, · · · ,nK = 2K−1. We define n0 = 0 for completeness. The

logged data T0 is partitioned into K +1 parts T (0)
0 , · · · ,T (K)

0 of sizes m0 = m/3,m1 = αn1,m2 =

αn2, · · · ,mK = αnK (where α = 2m/3n and we assume α≥ 1 is an integer for simplicity. m0 can

take other values as long as it is a constant factor of m). The algorithm uses T (0)
0 to construct an

initial candidate set, and uses Sk := T (k)
0 ∪Tk in iteration k.

Algorithm 10 uses the disagreement-based active learning framework. At iteration k

(k = 0, · · · ,K− 1), it first constructs a candidate set Ck+1 which is the set of classifiers whose

training error (using the multiple importance sampling estimator) on T (k)
0 ∪ T̃k is small, and its

disagreement region Dk+1. At the end of the k-th iteration, it receives the (k+1)-th part of the

online data stream {Xi}m+n1···+nk+1
i=m+n1···+nk+1 from which it can query for labels. It only queries for

labels inside the disagreement region Dk+1. For any example X outside the disagreement region,

Algorithm 10 infers its label Ỹ = ĥk(X). Throughout this chapter, we denote by Tk, Sk the set

of examples with original labels, and by T̃k, S̃k the set of examples with inferred labels. The

algorithm only observes T̃k and S̃k.

Algorithm 10 uses aforementioned sample selection bias correction query strategy, which

leads to fewer label queries than the standard disagreement-based algorithms. To simplify our

analysis, we round the query probability Qk(x) to be 0 or 1.

6.5 Analysis

In this section, we establish theoretical guarantees for the proposed algorithm. All proofs

are deferred to Appendix.
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6.5.1 Consistency

We first introduce some additional quantities.

Define h? := minh∈H l(h) to be the best classifier in H , and ν := l(h?) to be its error rate.

Let γ2 to be an absolute constant to be specified in Lemma C.14 in Appendix.

We introduce some definitions that will be used to upper-bound the size of the dis-

agreement sets in our algorithm. Let DIS0 := X . Recall K = dlogne. For k = 1, . . . ,K, let

ζk := supx∈DISk−1

log(2|H |/δk)
mk−1Q0(x)+nk−1

, εk := γ2ζk + γ2
√

ζkl(h?), DISk := DIS(B(h?,2ν + εk)). Let

ζ := supx∈DIS1
1

αQ0(x)+1 .

The following theorem gives statistical consistency of our algorithm.

Theorem 6.1. There is an absolute constant c0 such that for any δ > 0, with probability at least

1−δ,

l(ĥ)≤l(h?)+ c0 sup
x∈DISK

log K|H |
δ

mQ0(x)+n
+ c0

√√√√ sup
x∈DISK

log K|H |
δ

mQ0(x)+n
l(h?).

6.5.2 Label Complexity

We first introduce the adjusted disagreement coefficient, which characterizes the rate of

decrease of the query region as the candidate set shrinks.

Definition 6.2. For any measurable set A⊆ X , define S(A,α) to be

⋃
A′⊆A

(
A′∩

{
x : Q0(x)≤ inf

x∈A′
Q0(x)+

1
α

})
.
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For any r0 ≥ 2ν, α≥ 1, define the adjusted disagreement coefficient θ̃(r0,α) to be

sup
r>r0

1
r
P(S(DIS(B(h?,r)),α)).

The adjusted disagreement coefficient is a generalization of the standard disagreement

coefficient [Han07] which has been widely used for analyzing active learning algorithms. The

standard disagreement coefficient θ(r) can be written as θ(r) = θ̃(r,1), and clearly θ(r)≥ θ̃(r,α)

for all α≥ 1.

The following lemma is immediate from definition.

Lemma 6.3. For any r ≥ 2ν, any α≥ 1, P(S(DIS(B(h?,r)),α))≤ rθ̃(r,α).

We can upper-bound the number of labels queried by our algorithm using the adjusted

disagreement coefficient. (Recall that we only count labels queried during the online phase, and

that α = 2m/3n≥ 1)

Theorem 6.4. There is an absolute constant c1 such that for any δ > 0, with probability at least

1−δ, the number of labels queried by Algorithm 10 is at most:

c1θ̃(2ν+ εK,α)(nν+ζ logn log
|H | logn

δ
+ logn

√
nνζ log

|H | logn
δ

).

6.5.3 Remarks

As a sanity check, note that when Q0(x)≡ 1 (i.e., all labels in the logged data are shown),

our results reduce to the classical bounds for disagreement-based active learning with a warm-start.
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Next, we compare the theoretical guarantees of our algorithm with some alternatives.

We fix the target error rate to be ν+ ε, assume we are given m logged data, and compare upper

bounds on the number of labels required in the online phase to achieve the target error rate. Recall

ξ0 = infx∈X Q0(x). Define ξ̃K := infx∈DISK Q0(x), θ̃ := θ̃(2ν,α), θ := θ(2ν).

From Theorem 6.1 and 6.4 and some algebra, the number of labels required by our

algorithm is Õ
(

νθ̃ · (ν+ε

ε2 log |H |
δ
−mξ̃K)

)
.

The first alternative is passive learning that requests all labels for {Xt}m+n
t=m+1 and finds an

empirical risk minimizer using both logged data and online data. If standard importance sampling

is used, the upper bound is Õ
(

1
ξ0
(ν+ε

ε2 log |H |
δ
−mξ0)

)
. If multiple importance sampling is used,

the upper bound is Õ
(

ν+ε

ε2 log |H |
δ
−mξ̃K

)
. Both bounds are worse than ours since νθ̃≤ 1 and

ξ0 ≤ ξ̃K ≤ 1.

A second alternative is standard disagreement-based active learning with naive warm-

start where the logged data is only used to construct an initial candidate set. For standard

importance sampling, the upper bound is Õ
(

νθ

ξ0
(ν+ε

ε2 log |H |
δ
−mξ0)

)
. For multiple importance

sampling (i.e., out algorithm without the sample selection bias correction step), the upper bound is

Õ
(

νθ · (ν+ε

ε2 log |H |
δ
−mξ̃K)

)
. Both bounds are worse than ours since νθ̃≤ νθ and ξ0 ≤ ξ̃K ≤ 1.

A third alternative is to merely use past policy to label data – that is, query on x with

probability Q0(x) in the online phase. The upper bound here is Õ
(
E[Q0(X)]

ξ0
(ν+ε

ε2 log |H |
δ
−mξ0)

)
.

This is worse than ours since ξ0 ≤ E[Q0(X)] and ξ0 ≤ ξ̃K ≤ 1.

101



6.6 Experiments

We now empirically validate our theoretical results by comparing our algorithm with a

few alternatives on several datasets and logging policies. In particular, we confirm that the test

error of our classifier drops faster than several alternatives as the expected number of label queries

increases. Furthermore, we investigate the effectiveness of two key components of our algorithm:

multiple importance sampling and the sample selection bias correction query strategy.

6.6.1 Methodology

Algorithms

To the best of our knowledge, no algorithms with theoretical guarantees have been

proposed in the literature. We consider the overall performance of our algorithm against two

natural baselines: standard passive learning (PASSIVE) and the disagreement-based active learning

algorithm with warm start (DBALW). To understand the contribution of multiple importance

sampling and the sample selection bias correction query strategy, we also compare the results with

the disagreement-based active learning with warm start that uses multiple importance sampling

(DBALWM). We do not compare with the standard disagreement-based active learning that

ignores the logged data since the contribution of warm start is clear: it always results in a smaller

initial candidate set, and thus leads to less label queries.

Precisely, the algorithms we implement are:

• PASSIVE: A passive learning algorithm that queries labels for all examples in the online

sequence and uses the standard importance sampling estimator to combine logged data and

online data.
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• DBALW: A disagreement-based active learning algorithm that uses the standard importance

sampling estimator, and constructs the initial candidate set with logged data. This algorithm

only uses only our first key idea – warm start.

• DBALWM: A disagreement-based active learning algorithm that uses the multiple impor-

tance sampling estimator, and constructs the initial candidate set with logged data. This

algorithm uses our first and second key ideas, but not the sample selection bias correction

query strategy. In other words, this method sets Qk ≡ 1 in Algorithm 10.

• REWEIGHTEDDBAL: The method proposed in this chapter: improved disagreement-based

active learning algorithm with warm start that uses the multiple importance sampling

estimator and the sample selection bias correction query strategy.

Data

Due to lack of public datasets for learning with logged data, we convert datasets for

standard binary classification into our setting. Specifically, we first randomly select 80% of the

whole dataset as training data and the remaining 20% is test data. We randomly select 50% of

the training set as logged data, and the remaining 50% is online data. We then run an artificial

logging policy (to be specified later) on the logged data to determine whether each label should

be revealed to the learning algorithm or not.

Experiments are conducted on synthetic data and 11 datasets from UCI datasets [Lic13]

and LIBSVM datasets [CL11]. The synthetic data is generated as follows: we generate 6000

30-dimensional points uniformly from hypercube [−1,1]30, and labels are assigned by a random

linear classifier and then flipped with probability 0.1 independently. Table 6.1 summarizes the

information of datasets used in this work.
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Table 6.1: Dataset information.

Dataset # of examples # of features

synthetic 6000 30
letter (U vs P) 1616 16
skin 245057 3
magic 19020 10
covtype 581012 54
mushrooms 8124 112
phishing 11055 68
splice 3175 60
svmguide1 4000 4
a5a 6414 123
cod-rna 59535 8
german 1000 24

We use the following four logging policies:

• IDENTICAL: Each label is revealed with probability 0.005.

• UNIFORM: We first assign each instance in the instance space to three groups with (ap-

proximately) equal probability. Then the labels in each group are revealed with probability

0.005, 0.05, and 0.5 respectively.

• UNCERTAINTY: We first train a coarse linear classifier using 10% of the data. Then, for

an instance at distance r to the decision boundary, we reveal its label with probability

exp(−cr2) where c is some constant. This policy is intended to simulate uncertainty

sampling used in active learning.

• CERTAINTY: We first train a coarse linear classifier using 10% of the data. Then, for an

instance at distance r to the decision boundary, we reveal its label with probability cr2

where c is some constant. This policy is intended to simulate a scenario where an action

(i.e. querying for labels in our setting) is taken only if the current model is certain about its

consequence.
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6.6.2 Implementation

All algorithms considered in our experiments require empirical risk minimization. Instead

of optimizing the 0-1 loss which is known to be computationally hard, we approximate it by

optimizing a squared loss. We use the online gradient descent method in [KL11] for optimizing

importance weighted loss functions.

For ReweightedDBAL, recall that in Algorithm 10, we need to find the empirical

risk minimizer ĥk ← argminh∈Ck l(h, S̃k), update the candidate set Ck+1← {h ∈Ck | l(h, S̃k) ≤

l(ĥk, S̃k)+∆k(h, ĥk)}, and check whether x ∈ DIS(Ck+1).

In our experiment, we approximately implement this following Vowpal Wabbit [vw].

More specifically,

1. Instead of optimizing 0-1 loss which is known to be computationally hard, we use a

surrogate loss l(y,y′) = (y− y′)2.

2. We do not explicitly maintain the candidate set Ck+1.

3. To solve the optimization problem minh∈Ck l(h, S̃k) = ∑(X ,Ỹ ,Z)∈S̃k

1{h(X)6=Ỹ}Z
mkQ0(X)+nkQk(X) , we ig-

nore the constraint h ∈ Ck, and use online gradient descent with stepsize
√

η

t+η
where

η is a parameter. The start point for gradient descent is set as ĥk−1 the ERM in the last

iteration, and the step index t is shared across all iterations (i.e. we do not reset t to 1 in

each iteration).

4. To approximately check whether x ∈ DIS(Ck+1), when the hypothesis space H is linear

classifiers, let wk be the normal vector for current ERM ĥk, and a be current stepsize.

We claim x ∈ DIS(Ck+1) if |2w>k x|
ax>x ≤

√
C·l(ĥk,S̃k)
mkξk+nk

+ C log(mk+nk)
mkξk+nk

(recall |S̃k| = mk + nk and

ξk = infx∈DIS(Ck)Q0(x)) where C is a parameter that captures the model capacity. See

[KL11] for the rationale of this approximate disagreement test.
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5. ξk = infx∈DIS(Ck)Q0(x) can be approximately estimated with a set of unlabeled samples.

This estimate is always an upper bound of the true value of ξk.

DBALw and DBALwm can be implemented similarly.

Metrics and Parameter Tuning

The experiments are conducted as follows. For a fixed policy, for each dataset d, we repeat

the following process 10 times. At time k, we first randomly generate a simulated logged dataset,

an online dataset, and a test dataset as stated above. Then for i = 1,2, · · · , we set the horizon of

the online data stream ai = 10×2i (in other words, we only allow the algorithm to use first ai

examples in the online dataset), and run algorithm A with parameter set p (to be specified later)

using the logged dataset and first ai examples in the online dataset. We record n(d,k, i,A, p) to be

the number of label queries, and e(d,k, i,A, p) to be the test error of the learned linear classifier.

Let n̄(d, i,A, p) = 1
10 ∑k n(d,k, i,A, p), ē(d, i,A, p) = 1

10 ∑k e(d,k, i,A, p). To evaluate the

overall performance of algorithm A with parameter set p, we use the following area under the

curve metric (see also [HAH+15]):

AUC(d,A, p) = ∑
i

ē(d, i,A, p)+ ē(d, i+1,A, p)
2

· (n̄(d, i+1,A, p)− n̄(d, i,A, p)).

A small value of AUC means that the test error decays fast as the number of label queries

increases.

The parameter set p consists of two parameters:

• Model capacity C. In our theoretical analysis there is a term C := O(log H
δ
) in the bounds,
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which is known to be loose in practice [Hsu10]. Therefore, in experiments, we treat C as a

parameter to tune. We try C in {0.01×2k | k = 0,2,4, . . . ,18}

• Learning rate η. We use online gradient descent with stepsize
√

η

t+η
. We try η in

{0.0001×2k | k = 0,2,4, . . . ,18}.

For each policy, we report AUC(d,A) = minp AUC(d,A, p), the AUC under the parameter

set that minimizes AUC for dataset d and algorithm A.

6.6.3 Results and Discussion

We report the AUCs for each algorithm under each policy and each dataset in Tables 6.2

to 6.5, and test error curves in Figures 6.1 to 6.4.

Overall Performance The results confirm that the test error of the classifier output by

our algorithm (REWEIGHTEDDBAL) drops faster than the baselines PASSIVE and DBALW: as

demonstrated in Tables 6.2 to 6.5, REWEIGHTEDDBAL achieves lower AUC than both PASSIVE

and DBALW for a majority of datasets under all policies. We also see that REWEIGHTEDDBAL

performs better than or close to DBALWM for all policies other than Identical. This confirms

that among our two key novel ideas, using multiple importance sampling consistently results

in a performance gain. Using the sample selection bias correction query strategy over multiple

importance sampling also leads to performance gains, but these are less consistent.

The Effectiveness of Multiple Importance Sampling As noted previously, multiple

importance sampling estimators have lower variance than standard importance sampling es-

timators, and thus can lead to a lower label complexity. This is verified in our experiments
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Table 6.2: AUC under Identical policy

Dataset Passive DBALw DBALwm ReweightedDBAL

synthetic 121.77 123.61 111.16 106.66
letter 4.40 3.65 3.82 3.48
skin 27.53 27.29 21.48 21.44
magic 109.46 101.77 89.95 83.82
covtype 228.04 209.56 208.82 220.27
mushrooms 19.22 25.29 18.54 23.67
phishing 78.49 73.40 70.54 71.68
splice 65.97 67.54 65.73 65.66
svmguide1 59.36 55.78 46.79 48.04
a5a 53.34 50.8 51.10 51.21
cod-rna 175.88 176.42 167.42 164.96
german 65.76 68.68 59.31 61.54

that DBALWM (DBAL with multiple importance sampling estimators) has a lower AUC than

DBALW (DBAL with standard importance sampling estimator) on a majority of datasets under

all policies.

The Effectiveness of the Sample Selection Bias Correction Query Strategy Under

Identical policy, all labels in the logged data are revealed with equal probability. In this case, our

algorithm REWEIGHTEDDBAL queries all examples in the disagreement region as DBALWM

does. As shown in Table 6.2, REWEIGHTEDDBAL and DBALWM achieves the best AUC on

similar number of datasets, and both methods outperform DBALW over most datasets.

Under Uniform, Uncertainty, and Certainty policies, labels in the logged data are revealed

with different probabilities. In this case, REWEIGHTEDDBAL’s sample selection bias correction

query strategy takes effect: it queries less frequently the instances that are well-represented in

the logged data, and we show that this could lead to a lower label complexity theoretically. In

our experiments, as shown in Tables 6.3 to 6.5, REWEIGHTEDDBAL does indeed outperform

DBALWM on these policies empirically.
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synthetic letter skin magic

covtype mushrooms phishing splice

svmguide1 a5a cod-rna german

Figure 6.1: Test error vs. number of labels under the Identical policy

109



Table 6.3: AUC under Uniform policy

Dataset Passive DBALw DBALwm ReweightedDBAL

synthetic 113.49 106.24 92.67 88.38
letter 1.68 1.29 1.45 1.59
skin 23.76 21.42 20.67 19.58
magic 53.63 51.43 51.78 50.19
covtype 262.34 287.40 274.81 263.82
mushrooms 7.31 6.81 6.51 6.90
phishing 42.53 39.56 39.19 37.02
splice 88.61 89.61 90.98 87.75
svmguide1 110.06 105.63 98.41 96.46
a5a 46.96 48.79 49.50 47.60
cod-rna 63.39 63.30 66.32 58.48
german 63.60 55.87 56.22 55.79

synthetic letter skin magic

covtype mushrooms phishing splice

svmguide1 a5a cod-rna german

Figure 6.2: Test error vs. number of labels under the Uniform policy
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Table 6.4: AUC under Uncertainty policy

Dataset Passive DBALw DBALwm ReweightedDBAL

synthetic 117.86 113.34 100.82 99.1
letter 0.65 0.70 0.71 1.07
skin 20.19 21.91 18.89 19.10
magic 106.48 101.90 99.44 90.05
covtype 272.48 274.53 271.37 251.56
mushrooms 4.93 4.64 3.77 2.87
phishing 52.96 48.62 46.55 46.59
splice 62.94 63.49 60.00 58.56
svmguide1 117.59 111.58 98.88 100.44
a5a 70.97 72.15 65.37 69.54
cod-rna 60.12 61.66 64.48 53.38
german 62.64 58.87 56.91 56.67

synthetic letter skin magic

covtype mushrooms phishing splice

svmguide1 a5a cod-rna german

Figure 6.3: Test error vs. number of labels under the Uncertainty policy
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Table 6.5: AUC under Certainty policy

Dataset Passive DBALw DBALwm ReweightedDBAL

synthetic 114.86 111.02 92.39 88.82
letter 2.02 1.43 2.46 1.87
skin 22.89 17.92 18.17 18.11
magic 231.64 225.59 205.95 202.29
covtype 235.68 240.86 228.94 216.57
mushrooms 16.53 14.62 17.97 11.65
phishing 34.70 37.83 35.28 33.73
splice 125.32 129.46 122.74 122.26
svmguide1 94.77 91.99 92.57 84.86
a5a 119.51 132.27 138.48 125.53
cod-rna 98.39 98.87 90.76 90.2
german 63.47 58.05 61.16 59.12

synthetic letter skin magic

covtype mushrooms phishing splice

svmguide1 a5a cod-rna german

Figure 6.4: Test error vs. number of labels under the Certainty policy
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Chapter 7

Active Learning with Logged

Observational Data II: A Solution with

Reduced Variance

7.1 Introduction

In this chapter, we continue studying learning with logged observational data. In the

previous section, we propose a modified version of disagreement-based active learning [CAL94,

DHM07, BBL09, Han14], along with an importance weighted empirical risk to account for the

population. However, a problem with this approach is that the importance weighted risk estimator

can have extremely high variance when the importance weights – that reflect the inverse of how

frequently an instance in the population is selected by the policy – are high; this may happen if,

for example, certain patients are rarely given the treatment. This high variance in turn results in

high label requirement for the learner.
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The problem of high variance in the loss estimator is addressed in the passive case by

minimizing a form of counterfactual risk [SJ15a] – an importance weighted loss that combines a

variance regularizer and importance weight clipping or truncation to achieve low generalization

error. A plausible solution is to use this risk for active learning as well. However, this cannot be

readily achieved for two reasons. The first is that the variance regularizer itself is a function of

the entire dataset, and is therefore challenging to use in interactive learning where data arrives

sequentially. The second reason is that the minimizer of the (expected) counterfactual risk depends

on n, the data size, which again is inconvenient for learning in an interactive manner.

In this work, we address both challenges. To address the first, we use, instead of a

variance regularizer, a novel regularizer based on the second moment; the advantage is that

it decomposes across multiple segments of the dataset as which makes it amenable for active

learning. We provide generalization bounds for this modified counterfactual risk minimizer, and

show that it has almost the same performance as counterfactual risk minimization with a variance

regularizer [SJ15a]. The second challenge arises because disagreement-based active learning

ensures statistical consistency by maintaining a set of plausible minimizers of the expected risk.

This is problematic when the minimizer of the expected risk itself changes between iterations as

in the case with our modified regularizer. We address this challenge by introducing a novel variant

of disagreement-based active learning which is always guaranteed to maintain the population

error minimizer in its plausible set.

Additionally, to improve sample efficiency, we then propose a third novel component –

a new sampling algorithm for correcting sample selection bias that selectively queries labels of

those examples which are underrepresented in the observational data. Combining these three

components gives us a new algorithm. We prove this newly proposed algorithm is statistically

consistent – in the sense that it converges to the true minimizer of the population risk given

enough data. We also analyze its label complexity, show it is better than the algorithm we derive
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in Chapter 6, and demonstrate the contribution of each component of the algorithm to the label

complexity bound.

7.2 Variance-Controlled Importance Sampling

In the passive setting, the standard method to overcome sample selection bias is to optimize

the importance weighted (IW) loss l(h,T0) =
1
m ∑t

1{h(Xt)6=Yt}Zt
Q0(Xt)

. This loss is an unbiased estimator

of the population error P(h(X) 6=Y ), but its variance 1
mE(

1{h(X)6=Y}Z
Q0(X) − l(h))2 can be high, leading

to poor solutions. Previous work addresses this issue by adding a variance regularizer [MP09,

SJ15a, ND17] and clipping/truncating the importance weight [BPQC+13, SJ15a]. However, the

variance regularizer is challenging to use in interactive learning when data arrives sequentially,

and it is unclear how the clipping/truncating threshold should be chosen to yield good theoretical

guarantees.

In this chapter, as an alternative to the variance regularizer, we propose a novel second

moment regularizer which achieves a similar error bound to the variance regularizer [ND17]; and

this motivates a principled choice of the clipping threshold.

7.2.1 Second-Moment-Regularized Empirical Risk Minimization

Intuitively, between two classifiers with similarly small training loss l(h,T0), the one

with lower variance should be preferred, since its population error l(h) would be small with a

higher probability than the one with higher variance. Existing work encourages low variance

by regularizing the loss with the estimated variance V̂ar(h,T0) =
1
m ∑i(

1{h(Xi)6=Yi}Zi
Q0(Xi)

)2− l(h,T0)
2.

Here, we propose to regularize with the estimated second moment V̂(h,T0) =
1
m ∑i(

1{h(Xi)6=Yi}Zi
Q0(Xi)

)2,
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an upper bound of V̂ar(h,T0). We have the following generalization error bound for regularized

ERM.

Theorem 7.1. Let ĥ = argminh∈H l(h,T0)+

√
4log |H |

δ

m V̂(h,T0). For any δ > 0, then with proba-

bility at least 1−δ, l(ĥ)− l(h?)≤ 28log |H |
δ

3mq0
+

√
4log |H |

δ

m E1{h?(X)6=Y}
Q0(X) +

√
4log |H |

δ

m
3
2 q2

0

.

Theorem 7.1 shows a error rates similar to the one for the variance regularizer [ND17].

However, the advantage of using the second moment is the decomposability: V̂(h,S1∪ S2) =

|S1|
|S1|+|S2|V̂(h,S1)+

|S2|
|S1|+|S2|V̂(h,S2). This makes it easier to analyze for active learning that we

will discuss later.

Recall for ĥIW = argminh∈H l(h,T0), the unregularized importance sampling loss mini-

mizer , the error bound is Õ( log |H |
mq0

+
√

log |H |
m min( l(h?)

q0
,E 1

Q0(X))) [CMM10, YCJ18]. In Theo-

rem 7.1, the extra 1

m
3
2 q2

0

term is due to the deviation of
√

V̂(h,T0) around
√
E1{h?(X)6=Y}

Q0(X) , and is

negligible when m is large. In this case, learning with a second moment regularizer gives a better

generalization bound.

This improvement in generalization error is due to the regularizer instead of tighter

analysis. Similar to [MP09, ND17], we show in Theorem 7.2 that for some distributions, the

error bound in Theorem 7.1 cannot be achieved by any algorithm that simply optimizes the

unregularized empirical loss.

Theorem 7.2. For any 0 < ν < 1
3 , m≥ 49

ν2 , there is a sample space X ×Y , a hypothesis class H ,

a distribution D, and a logging policy Q0 such that ν

q0
> E1{h?(X)6=Y}

Q0(X) , and that with probability

at least 1
100 over the draw of S = {(Xt ,Yt ,Zt)}m

t=1, if ĥ = argminh∈H l(h,S), then l(ĥ)≥ l(h?)+

1
mq0

+
√

ν

mq0
.

Proof. (of Theorem 7.2) For any 0 < ν < 1
3 , m > 49

ν2 , set q0 =
1
40ν, c = 1

3 , ε =
c2+
√

c4+4c2q0νm
2q0m .

It can be checked that ε < ν and m = c2 ν+ε

q0ε2 . Let X = {x1,x2,x3}, and define P(X = x1) = ν,
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P(X = x2) = ν+ε, P(X = x3) = 1−2ν−ε, and P(Y = 1) = 1. Let H = {h1,h2} where h1(x1) =

−1, h1(x2) = h1(x3) = 1, and h2(x2) = −1, h2(x1) = h2(x3) = 1. Define the logging policy

Q0(x1) = Q0(x3) = 1, Q0(x2) = q0. Let S = {(Xt ,Yt ,Zt)}m
t=1 be a dataset of size m generated

from the aforementioned distribution. Clearly, we have l(h1) = ν and l(h2) = ν+ ε. We next

prove that P(l(h1,S) > l(h2,S)) ≥ 1
100 . This implies that with probability at least 1

100 ,h2 is the

minimizer of the importance weighted loss l(h,S), and its population error P(h2(X) 6= Y ) =

ν+ ε = ν+ 1
q0m +

√
ν

q0m .

We have

P(l(h1,S)> l(h2,S))≥ P(l(h1,S)> ν− ε

2
and l(h2,S)< ν− ε

2
)

= 1−P(l(h1,S)≤ ν− ε

2
or l(h2,S)≥ ν− ε

2
)

≥ 1−P(l(h1,S)≤ ν− ε

2
)−P(l(h2,S)≥ ν− ε

2
)

= P(l(h2,S)< ν− ε

2
)−P(l(h1,S)≤ ν− ε

2
)

Observe that by our construction, ml(h1,S) = ∑
m
i=11{Xi = x1} follows the binomial

distribution Bin(m,ν). By a Chernoff bound, P(l(h1,S)≤ ν− ε

2)≤ e−
1
2 mε2

. Since ε≥
√

c2ν

q0m ≥√
40c2

m , e−
1
2 mε2 ≤ e−20c2

= e−
20
9 .

By our construction, we also have that q0ml(h2,S) = ∑
m
i=11{Xi = x2,Zi = 1} which

follows the binomial distribution Bin(m,q0(ν+ε)). Thus, P(l(h2,S)≤ ν− ε

2) = P(q0ml(h2,S)≤

q0m(ν+ ε)− 3
2q0mε)≥ 1√

2π

3c
9c2+1e−

9
2 c2

= 1
2
√

2π
e−

1
2 where the inequality follows by Lemma D.9.

Therefore, P(l(h1,S)> l(h2,S))≥P(l(h2,S)< ν− ε

2)−P(l(h1,S)≤ ν− ε

2)≥ 1
2
√

2π
e−

1
2−

e−
20
9 ≥ 1

100 .

Remark 7.3. A similar result for general cost-sensitive empirical risk minimization is proved
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in [MP09, ND17]. In [MP09, ND17], they construct examples where Var(h?) = 0 and learning

h? with unregularized ERM gives Ω̃(
√

1
m) error, while regularized ERM gives Õ( 1

m) error.

However, their construction does not work in our setting because the bound for unregularized

ERM (Chapter 6) also gives Õ( 1
m) error when Var(h?) = 0 (since Var(h?) = 0 implies l(h?) = 0),

so more careful construction and analysis are needed.

7.2.2 Clipped Importance Sampling

The variance and hence the error bound for second-moment regularized ERM can still be

high if 1
Q0(x)

is large. This 1
Q0(X) factor arises inevitably to guarantee the importance weighted

estimator is unbiased. Existing work alleviates the variance issue at the cost of some bias by

clipping or truncating the importance weight. In this chapter, we focus on clipping, where the loss

estimator becomes l(h;T0,M) := 1
m ∑

m
i=1

1{h(Xi)6=Yi}Zi
Q0(Xi)

1[ 1
Q0(Xi)

≤M]. This estimator is no longer

unbiased, but as the weight is clipped at M, so is the variance. Although studied previously

[BPQC+13, SJ15a], to the best of our knowledge, it remains unclear how the clipping threshold

M can be chosen in a principled way.

We propose to choose M0 = inf{M′ ≥ 1 | 2M′ log |H |
δ

m ≥ PX(
1

Q0(X) > M′)}. This choice of

M0 is chosen to minimize the following error bound for the clipped second-moment regularized

ERM (proved in Theorem D.20 in Appendix):

l(ĥM)− l(h?)≤2λM
m

+
16M
3m

log
|H |

δ
+

M2

m
3
2

√
4log

|H |
δ

+

√
λ

m
E
1{h?(X) 6= Y}

Q0(X)
1[

1
Q0(X)

≤M]+PX(
1

Q0(X)
> M).

In particular, to choose M that minimizes the RHS,we set λ= 4log |H |
δ

, focus on the low or-
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der terms with respect to m, and minimize e(M) :=

√
4log |H |

δ

m E 1
Q0(X)1[

1
Q0(X) ≤M]+PX(

1
Q0(X) >

M) instead since 1{h?(X) 6= Y} could not be determined with unlabeled samples. In this sense,

the following proposition shows that our choice of M is nearly optimal.

Proposition 7.4. Suppose random variable 1
Q0(X) has a probability density function, and there

exists M0 ≥ 1 such that
2log |H |

δ

m M0 = PX(
1

Q0(X) > M0). Then e(M0)≤
√

2infM≥1 e(M).

Proof. Define f1(M) =
4log |H |

δ

m E 1
Q0(X)1[

1
Q0(X) ≤M], and f2(M) = PX(

1
Q0(X) > c). We first show

that f1(M0)+ f2(M0)
2 ≤ infM>1 f1(M)+ f2(M)2.

Let g(x) be the probability density function of random variable 1/Q0(X). We have

f1(M) =
4log |H |

δ

m

´ M
0 xg(x)dx and f2(M) =

´
∞

M g(x)dx, so f ′1(M) =
4log |H |

δ

m Mg(M), and f ′2(M) =

−g(M). Define f (M) = f1(M)+ f2(M)2. We have

f ′(M) = f ′1(M)+2 f ′2(M) f2(M)

= 2g(M)(
2log |H |

δ

m
M− f2(M)).

Recall we assume there exists M0 ≥ 1 such that
2log |H |

δ

m M0 = f2(M0). Since
2log |H |

δ

m M is

strictly increasing w.r.t. M and f2(M) is non-increasing w.r.t. M, it follows that f (M) achieves its

minimum at M0, that is, for any c≥ 1, f1(M0)+ f 2
2 (M0)≤ f1(M)+ f 2

2 (M).

Now,
√

f1(M0)+ f 2
2 (M0)≥ 1√

2
(
√

f1(M0)+ f2(M0)) since
√

a+b≥ 1√
2
(
√

a+
√

b) for

any a,b≥ 0, and
√

f1(M)+ f 2
2 (M)≤

√
f1(M)+ f2(M) since

√
a+b≤√a+

√
b for any a,b≥ 0.

Thus 1√
2
(
√

f1(M0)+ f2(M0))≤
√

f1(M)+ f2(M) for all M > 0, which concludes the proof.

Remark 7.5. Since 1
MPX(

1
Q0(X) > M) is monotonically decreasing with respect to M and its range

is (0,1), the existence and uniqueness of M0 are guaranteed if 2
m log |H |

δ
< 1.
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The choice of M0 implies that the clipping threshold should be larger as the sample size

m increases, which confirms the intuition that with a larger sample size the variance becomes less

of an issue than the bias. We have the following generalization error bound.

Theorem 7.6. Let ĥ = argminh∈H l(h;T0,M0) +

√
4log |H |

δ

m V̂(h;T0,M0). For any δ > 0, with

probability at least 1−δ,

l(ĥ)− l(h?)≤ 34log |H |
δ

3m
M0 +

√
4log |H |

δ

m
3
2

M2
0 +

√
4log |H |

δ

m
E
1{h?(X) 6= Y}

Q0(X)
1[

1
Q0(X)

≤M0].

We always have M0 ≤ 1
q0

as PX(
1

Q0(X) >
1
q0
) = 0. Thus, this error bound is always no

worse than that without clipping asymptotically.

The following example shows that our choice of M indeed avoids outputting suboptimal

classifiers.

Example 7.7. Let X = {x0,x1,x2,x3,x4}, H = {h1,h2,h3,h4}. Suppose P(Y = 1) =−1, ν < 1
10 ,

α < 0.01, and ε = ν

1+1/100α
. The marginal distribution on X , the prediction of each classifier, and

the logging policy Q0 is defined in Table 7.1.

Table 7.1: An example for clipping

x0 x1 x2 x3 x4

h1(·) 1 1 -1 -1 -1

h2(·) 1 -1 1 -1 -1

h3(·) 1 -1 -1 1 -1

h4(·) -1 -1 -1 -1 1

PX(·) ν− ε ε 4ε 16ε 1−ν−20ε

Q0(·) 1 α α 4α 4α

We have l(h1) = ν, l(h2) = ν+ 3ε, l(h3) = ν+ 15ε, l(h4) = 1− ν− 20ε. Next, we
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consider when examples with Q0 equals α, i.e. examples on x1 and x2, should be clipped. We set

the failure probability δ = 0.01.

If m≥ 28
αε
, without clipping our error bound guarantees that (by minimizing a regularized

training error) learner can achieve an error of less than ν+ 3ε, so it would output the optimal

classifier h1 with high probability. On the other hand, if M < 1
α

, then all examples on x1 and x2

are ignored due to clipping, so the learner would not be able to distinguish between h1and h2, and

thus with constant probability the error of the output classifier is at least l(h2) = ν+ 3ε. This

means if m≥ 28
αε

, examples on x1 and x2 should not be clipped.

If m≥ 2
αε

and examples on x1 and x2 are clipped, our error bound guarantees learner can

achieve an error of less than ν+16ε, which means the learner would output either h1 or h2 and

achieve an actual error of at most ν+3ε. However, without clipping, the learner would require

m≥ 4
αε

to achieve an error of less than ν+16ε. Thus, if m≤ 4
αε

, examples on x1 and x2 should

be clipped.

To sum up, examples with Q0 equals α (i.e. x1 and x2) should be clipped if m≤ 4
αε

and

not be clipped if m≥ 28
αε

. Our choice of the clipping threshold clips x1 and x2 whenever m≤ 24
5αε

,

which falls inside the desired interval.

7.3 Active Learning

Next, we consider active learning where in addition to a logged observational dataset the

learner has access to a stream of unlabeled samples from which it can actively query for labels.

The main challenges are how to control the variance due to the observational data with active

learning, and how to leverage the logged observational data to reduce the number of label queries

beyond simply using them for warm-start.
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To address these challenges, we first propose a nontrivial change to the Disagreement-

Based Active Learning (DBAL) so that the variance-controlled importance sampling objective can

be incorporated. This modified algorithm also works in a general cost-sensitive active learning

setting which we believe is of independent interest. Second, we show how to combine logged

observational data with active learning through multiple importance sampling (MIS). Finally, we

propose a novel sample selection bias correction technique to query regions under-explored in

the observational data more frequently. We provide theoretical analysis demonstrating that the

proposed method gives better label complexity guarantees than previous work (Chapter 6) and

other alternative methods.

Key Technique 1: Disagreement-Based Active Learning with Variance-Controlled Impor-

tance Sampling

The DBAL framework, presented in Algorithm 1, is a widely-used general framework

for active learning The classical DBAL framework only considers the unregularized 0-1 loss. As

discussed in the previous section, with observational data, unregularized loss leads to suboptimal

label complexity. However, directly adding a regularizer breaks the statistical consistency of

DBAL, since the proof of its consistency is contingent on two properties: (1) the minimizer of

the population loss l(h) stays in all candidate sets with high probability; (2) the loss difference

l(h1,S)− l(h2,S) for any h1,h2 ∈ Ct does not change no matter how examples outside the

disagreement region Dt are labeled.

Unfortunately, if we add a variance based regularizer (either estimated variance or second

moment), the objective function l(h,S)+
√

λ

n V̂(h,S) has to change as the sample size n increases,

and so does the optimal classifier w.r.t. regularized population loss h̃n = argmin l(h)+
√

λ

nV (h).

Consequently, h̃n may not stay in all candidate sets. Besides, the difference of the regularized
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loss l(h1,S)+
√

λ

n V̂(h1,S)− (l(h2,S)+
√

λ

n V̂(h2,S)) changes if labels of examples outside the

disagreement region Dt are modified, breaking the second property.

To resolve the consistency issues, we first carefully choose the definition of the candidate

set and guarantee the optimal classifier w.r.t. the prediction error h? = argmin l(h), instead of the

regularized loss h̃n, stays in candidate sets with high probability. Moreover, instead of the plain

variance regularizer, we apply the second moment regularizer and exploit its decomposability

property to bound the difference of the regularized loss for ensuring consistency.

Key Technique 2: Multiple Importance Sampling

MIS addresses how to combine logged observational data with actively collected data

for training classifiers [ABSJ17, YCJ18]. To illustrate this, for simplicity, we assume a fixed

query policy Q1 is used for active learning. To make use of both T0 = {(Xi,Yi,Zi)}m
i=1 collected

by Q0 and T1 = {(Xi,Yi,Zi)}m+n
i=m+1 collected by Q1, one could optimize the unbiased importance

weighted error estimator lIS(h,T0∪T1) = ∑
m
i=1

1{h(Xi)6=Yi}Zi
(m+n)Q0(Xi)

+∑
m+n
i=m+1

1{h(Xi)6=Yi}Zi
(m+n)Q1(Xi)

which can have

high variance and lead to poor generalization error. Here, we apply the MIS estimator lMIS(h,T0∪

T1) := ∑
m+n
i=1

1{h(Xi)6=Yi}Zi
mQ0(Xi)+nQ1(Xi)

which effectively treats the data T0 ∪T1 as drawn from a mixture

policy mQ0+nQ1
m+n . lMIS is also unbiased, but has lower variance than lIS and thus gives better error

bounds.

Key Technique 3: Active Sample Selection Bias Correction

Another advantage to consider active learning is that the learner can apply a strategy to

correct the sample selection bias, which improves label efficiency further. This strategy is inspired

from the following intuition: due to sample selection bias caused by the logging policy, labels

124



for some regions of the sample space may be less likely to be observed in the logged data, thus

increasing the uncertainty in these regions. To counter this effect, during active learning, the

learner should query more labels from such regions.

We formalize this intuition as follows. Suppose we would like to design a single query

strategy Q1 : X → [0,1] that determines the probability of querying the label for an instance

during the active learning phase. For any Q1, we have the following generalization error bound

for learning with n logged examples and m unlabeled examples from which the learner can select

and query for labels (for simplicity of illustration, we use the unclipped estimator here)

l(h1)− l(h2)≤ l(h1,S)− l(h2,S)+
4log 2|H |

δ

3(mq0 +n)
+

√
4E

1{h1(X) 6= h2(X)}
mQ0(X)+nQ1(X)

log
2|H |

δ
.

We propose to set Q1(x) = 1{mQ0(x) < m
2 Q0(x)+ n} which only queries instances if

Q0(x) is small. This leads to fewer queries while guarantees an error bound close to the one

achieved by setting Q1(x)≡ 1 that queries every instance. Example 7.8 shows the sample selection

bias correction strategy indeed improves label complexity.

Example 7.8. Let λ > 1 be any constant. Suppose X = {x1,x2}, Q0(x1) = 1, Q0(x2) = α,

P(x1) = 1−µ, P(x2) = µ and assume µ≤ 1
4λ

and α≤ µ2

2λ
. Assume the logged data size m is greater

than twice as the online stream size n. Without the sample selection bias correction strategy, after

seeing n examples, the learner queries all n examples and achieves an error bound of
4log 2|H |

δ

3(mα+n) +√
4( cµ

m+n +
µ

mα+n) log 2|H |
δ

by minimizing the regularized MIS loss. With the sample selection

bias correction strategy, the learner only queries x2, so after seeing n examples, it queries only µn

examples in expectation and achieves an error bound of
4log 2|H |

δ

3(mα+n) +

√
4(cµ

m + µ
mα+n) log 2|H |

δ
. With

some algebra, it can be shown that to achieve the same error bound, if λα

µ m≤ n≤ µ
2m, then the

number of queries requested by the learner without the sample selection bias correction correction

strategy is at least λ times more than the number of queries for the learner with the bias correction
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strategy. Since this holds for any λ≥ 1, the decrease of the number of label queries due to our

sample selection bias correction strategy can be significant.

The sample selection bias correction strategy is complementary to the DBAL technique.

We note that a similar query strategy is proposed in Chapter 6, but the strategy here stems from a

tighter analysis and can be applied with variance control techniques discussed in Section 7.2, and

thus gives better label complexity guarantees as to be discussed in the analysis section.

7.3.1 Algorithm

Putting things together, our proposed algorithm is shown as Algorithm 11. It takes the

logged data and an epoch schedule as input. It assumes the logging policy Q0 and its distribution

f (x) = P(Q0(X) ≤ x) are known (otherwise, these quantities can be estimated with unlabeled

data).

Algorithm 11 uses the DBAL framework that recursively shrinks a candidate set C and

its corresponding disagreement region D to save label queries by not querying examples outside

D. In particular, at iteration k, it computes a clipping threshold Mk (step 5) and MIS weights

wk(x) := m+nk
mQ0(Xi)+∑

k
j=1 τiQi(Xi)

which are used to define the clipped MIS error estimator and two

second moment estimators

l(h; S̃k,Mk) :=
1

m+nk

m+nk

∑
i=1

wk(Xi)Zi1{h(Xi) 6= Ỹi}1{wk(Xi)≤Mk},

V̂(h1,h2; S̃k,Mk) :=
1

m+nk

m+nk

∑
i=1

w2
k(Xi)Zi1{h1(Xi) 6= h2(Xi)}1{wk(Xi)≤Mk},

V̂(h; S̃k,Mk) :=
1

m+nk

m+nk

∑
i=1

w2
k(Xi)Zi1{h(Xi) 6= Ỹi}1{wk(Xi)≤Mk}.

The algorithm shrinks the candidate set Ck+1 by eliminating classifiers whose estimated error
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is larger than a threshold that takes the minimum empirical error and the second moment into

account (step 7), and defines a corresponding disagreement region Dk+1 = DIS(Ck+1) as the set

of all instances on which there are two classifiers in the candidate set Ck+1 that predict labels

differently. It derives a query policy Qk+1 with the sample selection bias correction strategy

(step 9). At the end of iteration k, it draws τk+1 unlabeled examples. For each example X with

Qk+1(X)> 0, if X ∈ Dk+1, the algorithm queries for the actual label Y and sets Ỹ = Y , otherwise

it infers the label and sets Ỹ = ĥk(X). These examples {X} and their inferred or queried labels

{Ỹ} are then used in subsequent iterations. In the last step of the algorithm, a classifier that

minimizes the clipped MIS error with the second moment regularizer over all received data is

returned.

Algorithm 11 Disagreement-Based Active Learning with Logged Observational Data
1: Input: confidence δ, logged data T0, epoch schedule τ1, . . . ,τK , n = ∑

K
i=1 τi.

2: S̃0← T0; C0←H ; D0← X ; n0 = 0
3: for k = 0, . . . ,K−1 do
4: σ1(k,δ,M)← ( M

m+nk
+ M2

(m+nk)
3
2
) log |H |

δ
;σ2(k,δ) = 1

m+nk
log |H |

δ
;δk← δ

2(k+1)(k+2)

5: Choose Mk = inf{M ≥ 1 | 2M
m+nk

log |H |
δk
≥ P( m+nk

mQ0(X)+nk
> M/2)}

6: ĥk← argminh∈Ck l(h; S̃k,Mk)

7: Define the candidate set Ck+1←{h ∈Ck | l(h; S̃k,Mk)≤ l(ĥk; S̃k,Mk)+ γ1σ1(k,δk,Mk)+

γ1

√
σ2(k,δk)V̂(h, ĥk; S̃k,Mk)}

8: Define the Disagreement Region Dk+1←{x ∈ X | ∃h1,h2 ∈Ck+1 s.t. h1(x) 6= h2(x)}
9: Qk+1(x)← 1{mQ0(x)+∑

k
i=1 τiQi(x)< m

2 Q0(x)+nk+1};
10: nk+1← nk + τk+1
11: Draw τk+1 samples {(Xt ,Yt)}m+nk+1

t=m+nk+1, and present {Xt}m+nk+1
t=m+nk+1 to the learner.

12: for t = m+nk +1 to m+nk+1 do
13: Zt ← Qk+1(Xt)
14: if Zt = 1 then
15: If Xt ∈ Dk+1, query for label: Ỹt ← Yt ; otherwise infer Ỹt ← ĥk(Xt).
16: end if
17: end for
18: T̃k+1←{Xt ,Ỹt ,Zt}m+nk+1

t=m+nk+1, S̃k+1← S̃k∪ T̃k+1;
19: end for
20: Output ĥ = argminh∈CK l(h; S̃K,Mk)+ γ1

√
1

m+n log |H |
δK

V̂(h; S̃K,Mk).
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7.3.2 Analysis

We have the following generalization error bound for Algorithm 11. Despite not querying

for all labels, our algorithm achieves the same asymptotic bound as the one that queries labels for

all online data.

Theorem 7.9. Let M = inf{M′ ≥ 1 | 2M′
m+n log |H |

δK
≥ P( m+n

mQ0(X)+n ≥M′/2)} be the final clipping

threshold used in step 20. There is an absolute constant c0 > 1 such that for any δ > 0, with

probability at least 1−δ,

l(ĥ)≤l(h?)+ c0

√
E
1{h?(X) 6= Y}
mQ0(X)+n

1{ m+n
mQ0(X)+n

≤M} log
|H |

δ

+ c0
M log |H |

δ

m+n
+ c0

M2
√

log |H |
δ

(m+n)
3
2

.

Next, we analyze the number of labels queried by Algorithm 11 with the help of following

definitions.

Definition 7.10. For any t ≥ 1,r > 0, define the modified disagreement coefficient θ̃(r, t) :=

1
rP
(

DIS(B(h?,r))∩
{

x : Q0(x)≤ 1
t

})
. Define θ̃ := supr>2ν θ̃(r, 2m

n ).

The modified disagreement coefficient θ̃(r, t) measures the probability of the intersection

of two sets: the disagreement region for the r-ball around h? and where the propensity score

Q0(x) is smaller than 1
t . It characterizes the size of the querying region of Algorithm 11. Note

that the standard disagreement coefficient [Han07], which is widely used for analyzing DBAL

in the classical active learning setting, can be written as θ(r) := θ̃(r,1). Here, the modified dis-

agreement coefficient modifies the standard definition to account for the reduction of the number

of label queries due to the sample selection bias correction strategy: Algorithm 11 only queries

examples on which Q0(x) is lower than some threshold, hence θ̃(r, t) ≤ θ(r). Moreover, our
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modified disagreement coefficient θ̃ is always smaller than the modified disagreement coefficient

of Chapter 6 (denoted by θ′) which is used to analyze their algorithm.

Additionally, define α = m
n to be the size ratio of logged and online data, let τk = 2k,

define ξ = min1≤k≤K{Mk/
m+nk

mq0+nk
} to be the minimum ratio between the clipping threshold Mk

and maximum MIS weight m+nk
mq0+nk

(ξ ≤ 1 since Mk ≤ m+nk
mq0+nk

by the choice of Mk), and define

M̄ = max1≤k≤K Mk to be the maximum clipping threshold. Recall q0 = infX Q0(X).

The following theorem upper-bounds the number of label queries by Algorithm 11.

Theorem 7.11. There is an absolute constant c1 > 1 such that for any δ > 0, with probability at

least 1−δ, the number of labels queried by Algorithm 11 is at most:

c1θ̃ · (nν+

√
nνξ

αq0 +1
log
|H | logn

δ
+

M̄ξ logn√
nα

√
log
|H | logn

δ
+

ξ logn
αq0 +1

log
|H | logn

δ
).

7.3.3 Discussion

In this subsection, we compare the performance of the proposed algorithm and some

alternatives to understand the effect of proposed techniques. The theoretical performance of

learning algorithms is captured by label complexity, which is defined as the number of label

queries required during the active learning phase to guarantee the test error of the output classifier

to be at most ν+ ε (here ν = l(h?) is the optimal error , and ε is the target excess error). This can

be derived by combining the upper bounds on the error (Theorem 7.9) and the number of queries

(Theorem 7.11).

• The label complexity is Õ
(

νθ̃ log |H | ·
(

M
ε(1+α) +

1
ε2E

1{h?(X)6=Y}
1+αQ0(X) 1{ 1+α

1+αQ0(X) ≤M}
))

for
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Algorithm 11. This is derived from Theorem 7.9, 7.11.

• The label complexity is Õ
(

νθ̃ log |H | ·
(

1
ε(1+αq0)

+ 1
ε2E

1{h?(X)6=Y}
1+αQ0(X)

))
without clipping.

This is derived by setting the final clipping threshold MK = 1+α

1+αq0
. It is worse since

1+α

1+αq0
≥M.

• The label complexity is Õ
(

νθ̃ log |H | · (1
ε
+ ν

ε2 )
1

1+αq0

)
if regularizers are removed further.

This is worse since ν

1+αq0
≥ E1{h?(X)6=Y}

1+αQ0(X) .

• The label complexity is Õ
(

νθ log |H | · (1
ε
+ ν

ε2 )
1

1+αq0

)
if we further remove the sample

selection bias correction strategy. Here the standard disagreement coefficient θ is used

(θ≥ θ̃).

• The label complexity is Õ
(

νθ log |H | ·
(

1
ε(1+αq0)

+ ν(q0+α)
ε2(1+α)2q0

))
if we further remove the

MIS technique. It can be shown q0+α

(1+α)2q0
≥ 1

1+αq0
, so MIS gives a better label complexity

bound.

• The label complexity is Õ
(

log |H | ·
(

1
ε(1+αq0)

+ ν(q0+α)
ε2(1+α)2q0

))
if DBAL is further removed.

Here, all n online examples are queried. This demonstrates that DBAL decreases the label

complexity bound by a factor of νθ which is at most 1 by definition.

• Finally, the label complexity is Õ
(

νθ′ log |H | · ν+ε

ε2
1

1+αq0

)
for Chapter 6, the only known

algorithm in our setting. Here, θ′ ≥ θ̃, ν

1+αq0
≥ E1{h?(X)6=Y}

1+αQ0(X) , and 1
1+αq0

≥ M
1+α

. Thus, the

label complexity of the proposed algorithm is better than Chapter 6. This improvement is

made possible by the second moment regularizer, the principled clipping technique, and

thereby the improved sample selection bias correction strategy.
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Appendix A

Omitted Proofs for Chapter 4

A.1 Basic Lemmas

In this section, we present a few useful lemmas that serve as the basis of the proofs.

A.1.1 Basic Facts

We first collect a few useful facts for algebraic manipulations.

Lemma A.1. If 0≤ x≤ 1− 1
e , then for any d ≥ 1, (1− x

d )
d
2 ≥ e−x ≥ 1

2 .

Lemma A.2. Given a ∈ (0,π), if x ∈ [0,a], then sina
a x≤ sinx≤ x.

Lemma A.3. If x ∈ [0,π], then 1− x2

2 ≤ cosx≤ 1− x2

5 .

Lemma A.4. Let B(x,y) =
´ 1

0 (1− t)x−1ty−1 dt be the Beta function. Then 2√
d−1
≤B(1

2 ,
d
2 )≤ π√

d
.
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A.1.2 Probability Inequalities

Lemma A.5 (Azuma’s Inequality). Let {Yt}m
t=1 be a bounded submartingale difference sequence,

that is, E[Yt |Y1, . . . ,Yt−1]≥ 0, and |Yt | ≤ σ. Then, with probability at least 1−δ,

m

∑
t=1

Yt ≥−σ

√
2m ln

1
δ

Lemma A.6 (Concentration of Geometric Random Variables). Suppose Z1, . . . ,Zn are iid geo-

metric random variables with parameter p. Then,

P[Z1 + . . .+Zn >
2n
p
]≤ exp(−n

4
)

Proof. Since Z1 + . . .+Zn >
2n
p implies that Z1 + . . .+Zn ≥ d2n

p e (as Z1 + . . .+Zn is an integer),

the left hand side is at most P[Z1 + . . .+Zn ≥ d2n
p e].

Let X1, . . . ,Xd 2n
p e

be a sequence of iid Bernoulli(p) random variables. By standard rela-

tionship between Bernoulli random variables and geometric random variables, we have that

P[Z1 + . . .+Zn ≥ d
2n
p
e] = P[X1 + . . .+Xd 2n

p e−1 ≤ n−1]

Note that P[X1 + . . .+Xd 2n
p e−1 ≤ n− 1] ≤ P[X1 + . . .+Xd 2n

p e
≤ n] since Xd 2n

p e
≤ 1. Applying

Chernoff bound, the above probability is at most exp(−d2n
p e · p · 1

8)≤ exp(−n
4).
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A.1.3 Properties of the Uniform Distribution over the Unit Sphere

Lemma A.7 (Marginal Density and Conditional Density). If (x1,x2, . . . ,xd) is drawn from the

uniform distribution over the unit sphere, then:

1. (x1,x2) has a density function of p(z1,z2), where p(z1,z2) =
(1−z2

1−z2
2)

d−4
2

2π

d−2
.

2. Conditioned on x2 = b, x1 has a density function of pb(z), where pb(z) =
(1−b2−z2)

d−4
2

(1−b2)
d−3

2 B( d−2
2 , 1

2 )
.

3. x1 has a density function of p(z), where p(z) = (1−z2)
d−3

2

B( d−1
2 , 1

2 )
.

Lemma A.8. Suppose x is drawn uniformly from the unit sphere, and b≤ 1
10
√

d
. Then, P(x1 ∈

[b
2 ,b])≥

√
d

8π
b.

Proof.

P(x1 ∈ [
b
2
,b])

=

´ b
b/2(1− t2)

d−3
2 dt

B(d−1
2 , 1

2)

≥
b
2(1−b2)

d−3
2

π√
d−1

≥
√

d
8π

b

where the first equality is from item 3 of Lemma A.7, giving the exact probability density

function of x1, the first inequality is from that (1− t2)
d−3

2 ≥ (1−b2)
d−3

2 when t ∈
[
b/2,b

]
, and

Lemma A.4 giving upper bound on B(d−1
2 , 1

2), and the second inequality is from Lemma A.1 and

that d−1≥ d
2 .

Lemma A.9. Suppose x is drawn uniformly from unit sphere restricted to the region
{

x : v · x = ξ
}

,

and u,v are unit vectors such that θ(u,v) = θ ∈ [0, 9
10π] and 0≤ ξ≤ θ

4
√

d
. Then,
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1. E[u · x]≤ ξ.

2. E[(u · x)2]≤ 5θ2

d .

3. E[(u · x)1{u · x < 0}]≤ ξ− θ

36
√

d
.

Proof. By spherical symmetry, let v = (0,1,0, . . . ,0) and u = (sinθ,cosθ,0, . . . ,0) without loss

of generality. Let x = (x1, . . . ,xd).

1.

E[u · x]

= E[x1 sinθ+ x2 cosθ|x2 = ξ]

= E[x1|x2 = ξ]sinθ+ξcosθ

≤ ξ

where the first two equalities are by algebra, the inequality follows from cosθ ≤ 1 and

E[x1|x2 = ξ] = 0 since the conditional distribution of x1 given x2 = ξ is symmetric around

the origin.
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2.

E[(u · x)2]

= E[(x1 sinθ+ x2 cosθ)2|x2 = ξ]

≤ E[2x2
1 sin2

θ+2x2
2 cos2

θ|x2 = ξ]

≤ 2E[x2
1|x2 = ξ]sin2

θ+2ξ
2

≤ 2θ
2

´ 1
−1 z2(1− z2)

d−4
2 dz

B(d−2
2 , 1

2)
+2ξ

2

= 2θ
2 B(d−2

2 , 3
2)

B(d−2
2 , 1

2)
+2ξ

2

≤ 5θ2

d

where the first equality is by definition of u, the first inequality is from algebra that

(A+B)2 ≤ 2A2 +2B2, the second inequality is from that |cosθ| ≤ 1, the third inequality is

from item 2 of Lemma A.7 and that sinθ≤ θ, and the last inequality is from the fact that
B( d−2

2 , 3
2 )

B( d−2
2 , 1

2 )
= 1

d−1 ≤ 2
d , and ξ2 ≤ θ2

16d .
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3.

E[(u · x)1{u · x < 0}]

= E[(x1 sinθ+ x2 cosθ)1
{

x1 <−ξcotθ
}
|x2 = ξ]

≤ E[x11
{

x1 <−ξcotθ
}
|x2 = ξ]sinθ+ξ

= ξ+ sinθ

ˆ −ξcotθ

−
√

1−ξ2

(1−ξ2− x2
1)

d−4
2 x1

(1−ξ2)
d−3

2 B(d−2
2 , 1

2)
dx1

= ξ− sinθ

2
d−2

(
1−
(

ξ

sinθ

)2
) d−2

2

(1−ξ2)
d−3

2 B(d−2
2 , 1

2)

≤ ξ− sinθ
2

π
√

d−2

(
1−
(

ξ

sinθ

)2
) d−2

2

≤ ξ− sinθ

π
√

d

≤ ξ− θ

36
√

d

where the first inequality is by algebra and |cosθ| ≤ 1, the second equality is by item 2 of

Lemma A.7, the third equality is by integration, the second inequality is from (1−ξ2)
d−3

2 ≤

1 and Lemma A.4 that B(d−2
2 , 1

2)≤ π√
d−2

, the third inequality follows by Lemma A.1 that(
1−
(

ξ

sinθ

)2
) d−2

2

≥ 1
2 , since ξ≤ θ

4
√

d
, and the last inequality follows from Lemma A.2

that sinθ≥ 5θ

18π
when θ ∈ [0, 9

10π] and algebra.
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Algorithm 12 Master Algorithm in the Bounded Noise Setting

Input: Labeler O, confidence δ, noise upper bound η, sample schedule {mk}, band width {bk}.
Output: a halfspace v̂ such that θ(v̂,u)≤ π

4 .
1: v0← (1,0, . . . ,0).
2: v+← ACTIVE-PERCEPTRON(O,v0,

(1−2η)
16 , δ

3 ,{mk} ,{bk}).
3: v−← ACTIVE-PERCEPTRON(O,−v0,

(1−2η)
16 , δ

3 ,{mk} ,{bk}).
4: Define region R :=

{
x : sign(v+ · x) 6= sign(v− · x)

}
.

5: S← Draw 8
(1−2η)2 ln 6

δ
iid examples from D|R and query their labels.

6: if lS(hv+)≤ lS(hv−) then
7: Return v+
8: else
9: Return v−

10: end if

A.2 Acute Initialization

We show in this section that the angle between the initial vector v0 and the underlying

halfspace u can be assumed to be acute under the bounded noise model without loss of generality.

To this end, we present Algorithm 12 that returns a halfspace that has angle at most π

4 with u,

with constant overhead in label and time complexities. The techniques here are due to Appendix

B of [ABL14]. This fact, in conjunction with Theorem 4.10, yields an active learning algorithm

that learns the target halfspace unconditionally with a constant overhead of label and time

complexities.

For the bounded noise setting, we construct Algorithm 12 as an initialization procedure. It

runs Algorithm 2 ACTIVE-PERCEPTRON twice, taking a vector v0 and its opposite direction −v0

as initializers. Then it performs hypothesis testing using Õ( 1
(1−2η)2 ) labeled examples to identify

a halfspace that has angle at most π

4 with u.

Theorem A.10. Suppose Algorithm 12 has inputs labeler O that satisfies η-bounded noise

condition with respect to u, confidence δ, sample schedule mk = Θ

(
d

(1−2η)2 (ln d
(1−2η)2 + ln k

δ
)
)

,

band width {bk} where bk = Θ̃

(
2−k(1−2η)√

d

)
. Then, with probability at least 1−δ, the output v̂ is
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such that θ(v̂,u)≤ π

4 . Furthermore, (1) the total number of label queries to labeler O is at most

Õ
(

d
(1−2η)2

)
; (2) the total number of unlabeled examples drawn is Õ

(
d

(1−2η)3

)
; (3) the algorithm

runs in time Õ
(

d2

(1−2η)3

)
.

Proof. Note that one of θ(v0,u), θ(−v0,u) is at most π

2 . From Theorem 4.10 and union bound,

we know that with probability at least 1− 2δ

3 , either θ(v+,u)≤ (1−2η)π
16 , or θ(v−,u)≤ (1−2η)π

16 .

Suppose without loss of generality, θ(v+,u)≤ (1−2η)π
16 . We consider two cases.

Case 1: θ(v+,v−)≤ π/8. By triangle inequality, θ(v−,u)≤ θ(v+,u)+θ(v+,v−)≤ π/4.

In this case, θ(v+,u)≤ π

4 and θ(v−,u)≤ π

4 holds simultaneously. Therefore, the returned vector

v̂ satisfies θ(v̂,u)≤ π

4 .

Case 2: θ(v+,v−)> π/8. In this case, P[x ∈ R]≥ 1/8, thus,

PR[sign(v+ · x) 6= sign(u · x)]≤ P[sign(v+ · x) 6= sign(u · x)]
P[x ∈ R]

≤ 1−2η

8
=

1
4
(
1
2
−η).

Meanwhile, PR[sign(v+ ·x) 6= y]≤ ηPR[sign(v+ ·x) = sign(u ·x)]+PR[sign(v+ ·x) 6= sign(u ·x)].

Therefore,

1
2
−PR[sign(v+ · x) 6= y]

≥ (
1
2
−η)PR[sign(v+ · x) = sign(u · x)]− 1

2
PR[sign(v+ · x) 6= sign(u · x)]

≥ (
1
2
−η) · 1

2
− (

1
2
−η) · 1

4

≥ 1
4
(
1
2
−η)
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Since v+ disagrees with v− everywhere on R, PR[sign(v+ ·x) 6= y]+PR[sign(v− ·x) 6= y] = 1. Thus,

lD|R(hv+) ≤ 1
2 − (1

2 −η)1
4 and lD|R(hv−) ≥ 1

2 +(1
2 −η)1

4 . Therefore, by Hoeffding’s Inequality,

with probability at least 1−δ/3,

lS(v+)<
1
2
< lS(v−)

therefore v+ will be selected for v̂. This shows that θ(v̂,u)≤ π/4.

In conclusion, by union bound, we have shown that with probability 1−δ, θ(v̂,u)≤ π

4 .

The label complexity, unlabeled sample complexity, and time complexity of the algorithm follows

immediately from Theorem 4.10.
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Appendix B

Omitted Proofs for Chapter 5

B.1 Technical lemmas

B.1.1 Concentration bounds

In this subsection, we define Y1,Y2, . . . to be a sequence of i.i.d. random variables. Assume

Y1 ∈ [−2,2], EY1 = 0, Var(Y1) = σ2 ≤ 4. Define Vn =
n

n−1

(
∑

n
i=1Y 2

i − 1
n

(
∑

n
i=1Yi

)2
)

. It is easy to

check EVn = nσ2.

We need following two results from [RB16]

Lemma B.1. ([RB16], Theorem 2) Take any 0 < δ < 1. Then there is an absolute constant D0

such that with probability at least 1−δ, for all n simultaneously,

∣∣∣∣∣ n

∑
i=1

Yi

∣∣∣∣∣≤ D0

(
1+ ln

1
δ
+

√
nσ2 [ln ln]+ (nσ2)+nσ2 ln

1
δ

)
Lemma B.2. ([RB16], Lemma 3) Take any 0 < δ < 1. Then there is an absolute constant K0
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such that with probability at least 1−δ, for all n simultaneously,

nσ
2 ≤ K0

(
1+ ln

1
δ
+

n

∑
i=1

Y 2
i

)

We note that Proposition 5.6 is immediate from Lemma B.1 since Var(Yi)≤ 4.

Lemma B.3. Take any 0 < δ < 1. Then there is an absolute constant K3 such that with probability

at least 1−δ, for all n≥ ln 1
δ

simultaneously,

nσ
2 ≤ K3

(
1+ ln

1
δ
+Vn

)

Proof. By Lemma B.2, with probability at least 1−δ/2, for all n,

nσ
2 ≤ K0

(
n

∑
i=1

Y 2
i + ln

2
δ
+1

)
= K0

n−1
n

Vn +
1
n

(
n

∑
i=1

Yi

)2

+ ln
2
δ
+1



By Lemma B.1, with probability at least 1−δ/2, for all n,

1
n

(
n

∑
i=1

Yi

)2

<
1
n

D0

(
1+ ln

2
δ
+

√
nσ2 [ln ln]+ (nσ2)+nσ2 ln

2
δ

)2

=
D2

0
n

(
1+ ln

2
δ

)2

+D2
0σ

2 [ln ln]+ (nσ
2)+D2

0σ
2 ln

2
δ

+2D2
0

(
1+ ln

2
δ

)√
σ2 [ln ln]+ (nσ2)+σ2 ln 2

δ

n

≤ K1

(
1+ ln

1
δ
+[ln ln]+ (nσ

2)

)

for some absolute constant K1. The last inequality follows by n≥ ln 1
δ
.
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Thus, by a union bound, with probability at least 1−δ, for all n, nσ2 ≤ K0Vn +K0(K1 +

2) ln 1
δ
+K0K1 [ln ln]+ (nσ2)+K0(K1 +3).

Let K2 > 0 be an absolute constant such that ∀x≥ K2, K0K1 [ln ln]+ x≤ x
2 .

Now if nσ2 ≥ K2, then nσ2 ≤ K0Vn +K0(K1 +2) ln 1
δ
+ nσ2

2 +K0(K1 +3), and thus

nσ
2 ≤ 2K0Vn +2K0(K1 +2) ln

1
δ
+2K0(K1 +3)+K2 (B.1)

If nσ2 ≤ K2, clearly (B.1) holds. This concludes the proof.

We note that Proposition 5.7 is immediate by applying above lemma to Lemma B.1.

Lemma B.4. Take any δ,n > 0. Then with probability at least 1−δ,

Vn ≤ 4nσ
2 +8ln

1
δ

Proof. Applying Bernstein’s Inequality to Y 2
i , and noting that Var(Y 2

i )≤ 4σ2 since |Yi| ≤ 2, we

have with probability at least 1−δ,

n

∑
i=1

Y 2
i ≤ 4

3
ln

1
δ
+nσ

2 +

√
8nσ2 ln

1
δ

≤ 4ln
1
δ
+2nσ

2

The last inequality follows by the fact that
√

4ab≤ a+b.

The desired result follows by noting that Vn =
n

n−1

(
∑

n
i=1Y 2

i − 1
n

(
∑

n
i=1Yi

)2
)
≤ 2∑

n
i=1Y 2

i .
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B.1.2 Bounds of distances among probability distributions

Lemma B.5. If P,Q are two probability distributions on a countable support X , then

dKL
(
P ‖ Q

)
≤∑

x

(
P(x)−Q(x)

)2

Q(x)

Proof.

dKL
(
P ‖ Q

)
= ∑

x
P(x) ln

P(x)
Q(x)

≤ ∑
x

P(x)
(

P(x)
Q(x)

−1
)

= ∑
x

(
P(x)−Q(x)

)2

Q(x)

The first inequality follows by lnx≤ x−1. The second equality follows by

∑
x

P(x)
(

P(x)
Q(x)

−1
)
= ∑

x

(
P2(x)−P(x)Q(x)

Q(x)
−P(x)+Q(x)

)
= ∑

x

(
P(x)−Q(x)

)2

Q(x)
.
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Define

P0
(
Y =⊥ |x

)
= 1−

∣∣∣∣x− 1
2

∣∣∣∣α

P0
(
Y = 0|x

)
=


(

x− 1
2

)α
(

1−
(

x− 1
2

)β
)
/2 x > 1

2(
1
2 − x

)α
(

1+
(

1
2 − x

)β
)
/2 x≤ 1

2

P0
(
Y = 1|x

)
=


(

x− 1
2

)α
(

1+
(

x− 1
2

)β
)
/2 x > 1

2(
1
2 − x

)α
(

1−
(

1
2 − x

)β
)
/2 x≤ 1

2

and

P1
(
Y =⊥ |x

)
= 1−

∣∣∣∣x− ε− 1
2

∣∣∣∣α

P1
(
Y = 0|x

)
=


(

x− ε− 1
2

)α
(

1−
(

x− ε− 1
2

)β
)
/2 x > ε+ 1

2(
ε+ 1

2 − x
)α
(

1+
(

ε+ 1
2 − x

)β
)
/2 x≤ ε+ 1

2

P1
(
Y = 1|x

)
=


(

x− ε− 1
2

)α
(

1+
(

x− ε− 1
2

)β
)
/2 x > ε+ 1

2(
ε+ 1

2 − x
)α
(

1−
(

ε+ 1
2 − x

)β
)
/2 x≤ ε+ 1

2

Lemma B.6. Let P0, P1 be the distributions defined above. If x∈ [0,1], ε≤min{(1
2)

1/β,(4
5)

1/α, 1
4},

then

∑
y

(
P0(Y = y|x)−P1(Y = y|x)

)2

P0(Y = y|x)+P1(Y = y|x) = O
(

ε
α + ε

2
)

(B.2)

Proof. By symmetry, it suffices to show for 0≤ x≤ 1+ε

2 . Let t = 1
2 + ε− x.

145



We first show (B.2) holds for ε

2 ≤ t ≤ ε (i.e. 1
2 ≤ x≤ 1+ε

2 ).

We claim miny
(
P0(Y = y|X = t)+P1(Y = y|X = t)

)
≥ 1

2

(
ε

2

)α. This is because:

• P0(Y =⊥ |X = t)+P1(Y =⊥ |X = t) = 1− (ε− t)α+1− tα ≥ 2−2εα ≥ 1
2

(
ε

2

)α where the

last inequality follows by ε≤
(

4
5

)1/α

;

• 2(P0(Y = 0|X = t)+P1(Y = 0|X = t)) = (ε− t)α(1− (ε− t)β)+ tα(1+ tβ)≥ tα(1+ tβ)≥

( ε

2)
α. Therefore, P0(Y = 0|X = t)+P1(Y = 0|X = t)≥ 1

2(
ε

2)
α.

• Similarly, P0(Y = 1|X = t)+P1(Y = 1|X = t)≥ 1
2

(
ε

2

)α.

Besides,

∑
y

(
P0(Y = y|X = t)−P1(Y = y|X = t)

)2

=
(
tα− (ε− t)α

)2
+

1
4

(
tα

(
1− tβ

)
− (ε− t)α

(
1+(ε− t)β

))2

+
1
4

(
tα

(
1+ tβ

)
− (ε− t)α

(
1− (ε− t)β

))2

=
(
tα− (ε− t)α

)2
+

1
4

(
tα− (ε− t)α− tα+β− (ε− t)α+β

)2

+
1
4

(
tα− (ε− t)α + tα+β +(ε− t)α+β

)2

(a)
≤
(
tα− (ε− t)α

)2
+

1
2
(
tα− (ε− t)α

)2
+

1
2

(
tα+β +(ε− t)α+β

)2

+
1
2
(
tα− (ε− t)α

)2
+

1
2

(
tα+β +(ε− t)α+β

)2

=2
(
tα− (ε− t)α

)2
+
(

tα+β +(ε− t)α+β
)2

≤2ε
2α +4ε

2α+2β

≤6ε
2α

where (a) follows by the inequality (a+b)2 ≤ 2a2 +2b2 for any a,b.
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Therefore, we get ∑y
(P0(Y=y|x)−P1(Y=y|x))2

P0(Y=y|x)+P1(Y=y|x) ≤
∑y(P0(Y=y|x)−P1(Y=y|x))2

miny(P0(Y=y|x)+P1(Y=y|x)) ≤ 12∗2αεα when

1
2 ≤ x≤ 1+ε

2 .

Next, We show (B.2) holds for ε≤ t ≤ 1
2 +ε (i.e. 0≤ x≤ 1

2 ). We will show for Y =⊥,1,0,
(P0(Y=y|x)−P1(Y=y|x))2

P0(Y=y|x)+P1(Y=y|x) = O
(

εα + ε2
)

.

For Y =⊥, for the denominator,

P0(Y =⊥ |X = t)+P1(Y =⊥ |X = t) = 2− tα− (t− ε)α ≥ 2−
(

3
4

)α

−
(

1
2

)α

For the numerator,

(
P0(Y =⊥ |X = t)−P1(Y =⊥ |X = t)

)2
=
(
tα− (t− ε)α

)2
= t2α

(
1−
(

1− ε

t

)α
)2

By Lemma B.8, if α ≥ 1, t2α

(
1−
(

1− ε

t

)α
)2

≤ t2α

(
α

ε

t

)2
= t2α−2 (αε)2 = O

(
ε2
)

. If 0 ≤

α≤ 1, t2α

(
1−
(

1− ε

t

)α
)2

≤ t2α

(
ε

t

)2
= t2α−2ε2 ≤ ε2α.

Thus, we have (P0(Y=⊥|x)−P1(Y=⊥|x))
2

P0(Y=⊥|x)+P1(Y=⊥|x) = O
(

ε2α + ε2
)

.

For Y = 1, for the denominator,

2
(
P0(Y = 1|X = t)+P1(Y = 1|X = t)

)
= tα

(
1− tβ

)
+(t− ε)α

(
1− (t− ε)β

)
≥ tα

(
1− tβ

)
≥ tα

(
1−
(

3
4

)β
)
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For the numerator,

(
P0(Y = 1|X = t)−P1(Y = 1|X = t)

)2

=
1
4

(
tα

(
1− tβ

)
− (t− ε)α

(
1− (t− ε)β

))2

≤1
2
(
tα− (t− ε)α

)2
+

1
2

(
tα+β− (t− ε)α+β

)2

=
1
2

t2α

(
1− (1− ε

t
)α

)2

+
1
2

t2α+2β

(
1− (1− ε

t
)α+β

)2

≤1
2

t2α

(
1− (1− ε

t
)α

)2

+
1
2

t2α

(
1− (1− ε

t
)α+β

)2

If α≥ 1, by Lemma B.8, 1
2t2α

(
1− (1− ε

t )
α

)2
+ 1

2t2α

(
1− (1− ε

t )
α+β

)2
≤ 1

2t2α

(
α

ε

t

)2
+

1
2t2α

(
(α+β) ε

t

)2
=
(

1
2α2 + 1

2 (α+β)2
)

t2α−2ε2. Thus,

(
P0(Y = 1|x)−P1(Y = 1|x)

)2

P0(Y = 1|x)+P1(Y = 1|x) ≤
(

1
2

α
2 +

1
2
(α+β)2

)
tα−2

ε
2/

(
1−
(

3
4

)β
)

which is O(ε2) if α≥ 2 and O(εα) if α≤ 2.

If α≤ 1 and α+β≥ 1, by Lemma B.8, 1
2t2α

(
1− (1− ε

t )
α

)2
+ 1

2t2α

(
1− (1− ε

t )
α+β

)2
≤

1
2t2α

(
ε

t

)2
+ 1

2t2α

(
(α+β) ε

t

)2
=
(

1
2 +

1
2 (α+β)2

)
t2α−2ε2 ≤

(
1
2 +

1
2 (α+β)2

)
t2α−2ε2. Thus,

(P0(Y=1|x)−P1(Y=1|x))2

P0(Y=1|x)+P1(Y=1|x) ≤
(

1
2 +

1
2 (α+β)2

)
tα−2ε2/

(
1−
(

3
4

)β
)
= O(εα).

If α ≤ 1, α+β ≤ 1, by Lemma B.8, 1
2t2α

(
1− (1− ε

t )
α

)2
+ 1

2t2α

(
1− (1− ε

t )
α+β

)2
≤

1
2t2α

(
ε

t

)2
+ 1

2t2α

(
ε

t

)2
= t2α−2ε2. Thus, (

P0(Y=1|x)−P1(Y=1|x))2

P0(Y=1|x)+P1(Y=1|x) ≤ tα−2ε2/

(
1−
(

3
4

)β
)
= O(εα).

Therefore, we have (P0(Y=1|x)−P1(Y=1|x))2

P0(Y=1|x)+P1(Y=1|x) = O
(

εα + ε2
)

.

Likewise, we can get (
P0(Y=0|x)−P1(Y=0|x))2

P0(Y=0|x)+P1(Y=0|x) = O
(

εα + ε2
)

.
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Thus, we prove ∑y
(P0(Y=y|x)−P1(Y=y|x))2

P0(Y=y|x)+P1(Y=y|x) = O
(

εα + ε2
)

when x≤ 1
2 . This concludes the

proof.

B.1.3 Other lemmas

Lemma B.7. ([RR11b], Lemma 4) For sufficiently large d > 0, there is a subset M ⊂ {0,1}d

with following properties: (i) |M| ≥ 2d/48; (ii)
∥∥v− v′

∥∥
0 >

d
12 for any two distinct v,v′ ∈M; (iii)

for any i = 1, . . . ,d, 1
24 ≤ 1

M ∑v∈M vi ≤ 3
24 .

Lemma B.8. If x≤ 1,r ≥ 1, then (1− x)r ≥ 1− rx and 1− (1− x)r ≤ rx.

If 0≤ x≤ 1,0≤ r ≤ 1, then (1− x)r ≥ 1−x
1−x+rx and 1− (1− x)r ≤ rx

1−(1−r)x ≤ x.

Inequalities above are know as Bernoulli’s inequalities. One proof can be found in [LY13].

Lemma B.9. Suppose ε,τ are positive numbers and δ ≤ 1
2 . Suppose {Zi}∞

i=1 is a sequence

of i.i.d random variables bounded by 1, EZi ≥ τε, and Var(Zi) = σ2 ≤ 2ε. Define Vn =

n
n−1

(
∑

n
i=1 Zi− 1

n

(
∑

n
i=1 Zi

)2
)

, qn = q(n,Vn,δ) as Procedure 8. If n ≥ η

τε
ln 1

δ
for some suffi-

ciently large number η (to be specified in the proof), then with probability at least 1− δ ,

qn
n −EZi ≤−τε/2.

Proof. By Lemma B.4, with probability at least 1−δ, Vn ≤ 4nσ2 +8ln 1
δ
, which implies

qn ≤ D1

1+ ln
1
δ
+

√(
4nσ2 +9ln

1
δ
+1
)(

[ln ln]+ (4nσ2 +9ln
1
δ
+1)+ ln

1
δ

)
We denote the RHS by q.

On this event, we have
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qn

n
−EZi ≤

q
n
− τε

= τε

(
q

nτε
−1
)

(a)
≤ τε

2D1

η
+

D1

η ln 1
δ

√
9η

τ
ln

1
δ

(
[ln ln]+ (

9η

τ
ln

1
δ
)+ ln

1
δ

)
−1


= τε

2D1

η
+D1

√
9

ητ ln 1
δ

[ln ln]+ (
9η

τ
ln

1
δ
)+

9
ητ
−1



where (a) follows from q
n being monotonically decreasing with respect to n. By choosing η

sufficiently large, we have 2D1
η

+D1

√
9

ητ ln 1
δ

[ln ln]+ (9η

τ
ln 1

δ
)+ 9

ητ
−1≤−1

2 , and thus qn
n −EZi ≤

−τε/2.
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Appendix C

Omitted Proofs for Chapter 6

C.1 Preliminaries

C.1.1 Summary of Key Notations

Data Partitions Tk = {(Xt ,Yt ,Zt)}t=m+n1+···+nk
t=m+n1+···+nk−1+1 (1≤ k ≤ K) is the online data col-

lected in k-th iteration of size nk = 2k−1. n = n1 + · · ·+ nK , α = 2m/3n. We define n0 = 0.

T0 = {(Xt ,Yt ,Zt)}t=m
t=1 is the logged data and is partitioned into K +1 parts T (0)

0 , · · · ,T (K)
0 of sizes

m0 = m/3,m1 = αn1,m2 = αn2, · · · ,mK = αnK . Sk = T (k)
0 ∪Tk.

Recall that S̃k and T̃k contain inferred labels while Sk and Tk are sets of examples with

original labels. The algorithm only observes S̃k and T̃k.

For (X ,Z) ∈ Tk (0≤ k ≤ K), Qk(X) = P(Z = 1 | X).
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Disagreement Regions The candidate set Ck and its disagreement region Dk are defined

in Algorithm 10. ĥk = argminh∈Ck l(h, S̃k). ν = l(h?).

B(h,r) := {h′ ∈H | ρ(h,h′)≤ r}, DIS(C) := {x ∈ X | ∃h1 6= h2 ∈C s.t. h1(x) 6= h2(x)}.

S(A,α) =
⋃

A′⊆A

(
A′∩

{
x : Q0(x)≤ infx∈A′Q0(x)+ 1

α

})
.

θ̃(r0,α) = supr>r0
1
rP(S(DIS(B(h?,r)),α)).

DIS0 = X . For k = 1, . . . ,K, DISk = DIS(B(h?,2ν+ εk)), and

εk = γ2 sup
x∈DISk−1

log(2|H |/δk)

mk−1Q0(x)+nk−1
+ γ2

√
sup

x∈DISk−1

log(2|H |/δk)

mk−1Q0(x)+nk−1
l(h?).

Other Notations ρ(h1,h2)=P(h1(X) 6= h2(X)), ρS(h1,h2)=
1
|S|∑X∈S1{h1(X) 6= h2(X)}.

For k≥ 0, σ(k,δ)= supx∈Dk

log(|H |/δ)
mkQ0(x)+nk

, δk =
δ

(k+1)(k+2) . ξk = infx∈Dk Q0(x). ζ= supx∈DIS1
1

αQ0(x)+1 .

C.1.2 Elementary Facts

Proposition C.1. Suppose a,c≥ 0,b ∈ R. If a≤ b+
√

ca, then a≤ 2b+ c.

Proof. Since a≤ b+
√

ca,
√

a≤
√

c+
√

c+4b
2 ≤

√
c+c+4b

2 =
√

c+2b where the second inequality

follows from the Root-Mean Square-Arithmetic Mean inequality. Thus, a≤ 2b+ c.

C.1.3 Facts on Disagreement Regions and Candidate Sets

Lemma C.2. For any k= 0, . . . ,K, any x∈X , any h1,h2 ∈Ck, 1{h1(x)6=h2(x)}
mkQ0(X)+nkQk(X) ≤ supx′

1{x′∈Dk}
mkQ0(x′)+nk

.

Proof. The k = 0 case is obvious since D0 = X and n0 = 0.
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For k > 0, since DIS(Ck) = Dk, 1{h1(x) 6= h2(x)} ≤ 1{x ∈ Dk}, and consequently
1{h1(x)6=h2(x)}

mkQ0(X)+nkQk(X) ≤
1{x∈Dk}

mkQ0(X)+nkQk(X) .

For any x, if Q0(x) ≤ ξk + 1/α, then Qk(x) = 1, so 1{x∈Dk}
mkQ0(X)+nkQk(X) =

1{x∈Dk}
mkQ0(x)+nk

≤

supx′
1{x′∈Dk}

mkQ0(x′)+nk
.

If Q0(x) > ξk + 1/α, then Qk(x) = 0, and consequently 1{x∈Dk}
mkQ0(X)+nkQk(X) =

1{x∈Dk}
mkQ0(x)

≤
1{x∈Dk}
mkξk+nk

≤ supx′
1{x′∈Dk}

mkQ0(x′)+nk
where the first inequality follows from the fact that Q0(x)> ξk +1/α

implies mkQ0(x)> mkξk +nk

Lemma C.3. For any k = 0, . . . ,K, if h1,h2 ∈Ck, then l(h1,Sk)− l(h2,Sk) = l(h1, S̃k)− l(h2, S̃k).

Proof. For any (Xt ,Yt ,Zt) ∈ St that Zt = 1, if Xt ∈ DIS(Ck), then Yt = Ỹt , so 1{h1(Xt) 6= Yt}−

1{h2(Xt) 6= Yt} = 1{h1(Xt) 6= Ỹt}−1{h2(Xt) 6= Ỹt}. If Xt /∈ DIS(Ck), then h1(Xt) = h2(Xt), so

1{h1(Xt) 6= Yt}−1{h2(Xt) 6= Yt}= 1{h1(Xt) 6= Ỹt}−1{h2(Xt) 6= Ỹt}= 0.

The following lemma is immediate from definition.

Lemma C.4. For any r ≥ 2ν, any α≥ 1, P(S(DIS(B(h?,r)),α))≤ rθ̃(r,α).

C.1.4 Facts on Multiple Importance Sampling Estimators

We recall that {(Xt ,Yt)}n0+n
t=1 is an i.i.d. sequence. Moreover, the following fact is immedi-

ate by our construction that S0, · · · ,SK are disjoint and that Qk is determined by S0, · · · ,Sk−1.

Fact C.5. For any 0≤ k ≤ K, conditioned on Qk, examples in Sk are independent, and examples

in Tk are i.i.d.. Besides, for any 0 < k ≤ K, Qk, T (k)
0 , . . . ,T (K)

0 are independent.

Unless otherwise specified, all probabilities and expectations are over the random draw of

all random variables (including S0, · · · ,SK , Q1, · · · ,QK).
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The following lemma shows multiple importance estimators are unbiased.

Lemma C.6. For any h ∈H , any 0≤ k ≤ K, E[l(h,Sk)] = l(h).

The above lemma is immediate from the following lemma.

Lemma C.7. For any h ∈H , any 0≤ k ≤ K, E[l(h,Sk) | Qk] = l(h).

Proof. The k = 0 case is obvious since S0 = T (0)
0 is an i.i.d. sequence and l(h,Sk) reduces to a

standard importance sampling estimator. We only show proof for k > 0.

Recall that Sk = T (k)
0 ∪Tk, and that T (k)

0 and Tk are two i.i.d. sequences conditioned Qk.

We denote the conditional distributions of T (k)
0 and Tk given Qk by P0 and Pk respectively. We

have

E[l(h,Sk) | Qk]

= E

 ∑
(X ,Y,Z)∈T (k)

0

1{h(X) 6= Y}Z
mkQ0(X)+nkQk(X)

| Qk

+E

 ∑
(X ,Y,Z)∈Tk

1{h(X) 6= Y}Z
mkQ0(X)+nkQk(X)

| Qk


= mkEP0

[
1{h(X) 6= Y}Z

mkQ0(X)+nkQk(X)
| Qk

]
+nkEPk

[
1{h(X) 6= Y}Z

mkQ0(X)+nkQk(X)
| Qk

]

where the second equality follows since T (k)
0 and Tk are two i.i.d. sequences given Qk with sizes

mk and nk respectively.

Now,

EP0

[
1{h(X) 6= Y}Z

mkQ0(X)+nkQk(X)
| Qk

]
= EP0

[
EP0

[
1{h(X) 6= Y}Z

mkQ0(X)+nkQk(X)
| X ,Qk

]
| Qk

]

= EP0

[
EP0

[
1{h(X) 6= Y}Q0(X)

mkQ0(X)+nkQk(X)
| X ,Qk

]
| Qk

]

= EP0

[
1{h(X) 6= Y}Q0(X)

mkQ0(X)+nkQk(X)
| Qk

]
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where the second equality uses the definition PP0(Z | X) = Q0(X) and the fact that T (k)
0 and Qk

are independent.

Similarly, we have EPk

[
1{h(X)6=Y}Z

mkQ0(X)+nkQk(X) | Qk

]
= EPk

[
1{h(X)6=Y}Qk(X)
mkQ0(X)+nkQk(X) | Qk

]
.

Therefore,

mkEP0

[
1{h(X) 6= Y}Z

mkQ0(X)+nkQk(X)
| Qk

]
+nkEPk

[
1{h(X) 6= Y}Z

mkQ0(X)+nkQk(X)
| Qk

]
= mkEP0

[
1{h(X) 6= Y}Q0(X)

mkQ0(X)+nkQk(X)
| Qk

]
+nkEPk

[
1{h(X) 6= Y}Qk(X)

mkQ0(X)+nkQk(X)
| Qk

]
= EP0

[
1{h(X) 6= Y}mkQ0(X)+nkQk(X)

mkQ0(X)+nkQk(X)
| Qk

]
= ED

[
1{h(X) 6= Y}

]
= l(h)

where the second equality uses the fact that distribution of (X ,Y ) according to P0 is the same as

that according to Pk, and the third equality follows by algebra and Fact C.5 that Qk is independent

with T (k)
0 .

The following lemma will be used to upper-bound the variance of the multiple importance

sampling estimator.

Lemma C.8. For any h1,h2 ∈H , any 0≤ k ≤ K,

E

 ∑
(X ,Y,Z)∈Sk

(
1{h1(X) 6= h2(X)}Z
mkQ0(X)+nkQk(X)

)2

| Qk

≤ ρ(h1,h2) sup
x∈X

1{h1(x) 6= h2(x)}
mkQ0(x)+nkQk(x)

.

Proof. We only show proof for k > 0. The k = 0 case can be proved similarly.

We denote the conditional distributions of T (k)
0 and Tk given Qk by P0 and Pk respectively.
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Now, similar to the proof of Lemma C.7, we have

E

 ∑
(X ,Y,Z)∈Sk

(
1{h1(X) 6= h2(X)}Z
mkQ0(X)+nkQk(X)

)2

| Qk


= ∑

(X ,Y,Z)∈Sk

E

 1{h1(X) 6= h2(X)}Z(
mkQ0(X)+nkQk(X)

)2 | Qk


=mkEP0

 1{h1(X) 6= h2(X)}Z(
mkQ0(X)+nkQk(X)

)2 | Qk

+nkEPk

 1{h1(X) 6= h2(X)}Z(
mkQ0(X)+nkQk(X)

)2 | Qk


=mkEP0

1{h1(X) 6= h2(X)}Q0(X)(
mkQ0(X)+nkQk(X)

)2 | Qk

+nkEPk

1{h1(X) 6= h2(X)}Qk(X)(
mkQ0(X)+nkQk(X)

)2 | Qk


=EP0

[
1{h1(X) 6= h2(X)} mkQ0(X)+nkQk(X)

(mkQ0(X)+nkQk(X))2 | Qk

]
=EP0

[
1{h1(X) 6= h2(X)}

mkQ0(X)+nkQk(X)
| Qk

]
≤EP0

[
1{h1(X) 6= h2(X)} | Qk

]
sup
x∈X

1{h1(x) 6= h2(x)}
mkQ0(x)+nkQk(x)

=ρ(h1,h2) sup
x∈X

1{h1(x) 6= h2(x)}
mkQ0(x)+nkQk(x)

.

C.2 Deviation Bounds

In this section, we demonstrate deviation bounds for our error estimators on Sk. Again,

unless otherwise specified, all probabilities and expectations in this section are over the random

draw of all random variables, that is, S0, · · · ,SK , Q1, · · · ,QK .

We use following Bernstein-style concentration bound:

Fact C.9. Suppose X1, . . . ,Xn are independent random variables. For any i = 1, . . . ,n, |Xi| ≤ 1,
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EXi = 0, EX2
i ≤ σ2

i . Then with probability at least 1−δ,

∣∣∣∣∣ n

∑
i=1

Xi

∣∣∣∣∣≤ 2
3

log
2
δ
+

√
2

n

∑
i=1

σ2
i log

2
δ
.

Theorem C.10. For any k = 0, . . . ,K, any δ> 0, with probability at least 1−δ, for all h1,h2 ∈H ,

the following statement holds:

∣∣(l(h1,Sk)− l(h2,Sk)
)
−
(
l(h1)− l(h2)

)∣∣≤ 2 sup
x∈X

1{h1(x) 6= h2(x)}2log 4|H |
δ

3
mkQ0(x)+nkQk(x)

+

√√√√2 sup
x∈X

1{h1(x) 6= h2(x)} log 4|H |
δ

mkQ0(x)+nkQk(x)
ρ(h1,h2). (C.1)

Proof. We show proof for k > 0. The k = 0 case can be proved similarly. When k > 0, it suffices

to show that for any k = 1, . . . ,K, δ > 0, conditioned on Qk, with probability at least 1−δ, (C.1)

holds for all h1,h2 ∈H .

For any k = 1, . . . ,K, for any fixed h1,h2 ∈ H , define A := supx∈X
1{h1(x)6=h2(x)}

mkQ0(x)+nkQk(x)
. Let

N := |Sk|, Ut := 1{h1(Xt)6=Yt}Zt
mkQ0(Xt)+nkQk(Xt)

− 1{h2(Xt)6=Yt}Zt
mkQ0(Xt)+nkQk(Xt)

, Vt := (Ut−E[Ut |Qk])/2A.

Now, conditioned on Qk, {Vt}N
t=1 is an independent sequence by Fact C.5. |Vt | ≤ 1, and

E[Vt |Qk] = 0. Besides, we have

N

∑
t=1

E[V 2
t |Qk] ≤

1
4A2

N

∑
t=1

E[U2
t |Qk]

≤ 1
4A2

N

∑
t=1

E
(
1{h1(Xt) 6= h2(Xt)}Zt

mkQ0(Xt)+nkQk(Xt)

)2

≤ ρ(h1,h2)

4A
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where the second inequality follows from |Ut | ≤ 1{h1(Xt)6=h2(Xt)}Zt
mkQ0(Xt)+nkQk(Xt)

, and the third inequality follows

from Lemma C.8.

Applying Bernstein’s inequality (Fact C.9) to {Vt}, conditioned on Qk, we have with

probability at least 1−δ,

∣∣∣∣∣ m

∑
t=1

Vt

∣∣∣∣∣≤ 2
3

log
2
δ
+

√
ρ(h1,h2)

2A
log

2
δ
.

Now, ∑
m
t=1Ut = l(h1,Sk)− l(h2,Sk), and ∑

m
t=1E[Ut | Qk] = l(h1)− l(h2) by Lemma C.7,

so ∑
m
t=1Vt =

1
2A(l(h1,Sk)− l(h2,Sk)− l(h1)+ l(h2)). (C.1) follows by algebra and a union bound

over H .

Theorem C.11. For any k = 0, . . . ,K, any δ> 0, with probability at least 1−δ, for all h1,h2 ∈H ,

the following statements hold simultaneously:

ρSk(h1,h2)≤ 2ρ(h1,h2)+
10
3

sup
x∈X

1{h1(x) 6= h2(x)} log 4|H |
δ

mkQ0(x)+nkQk(x)
; (C.2)

ρ(h1,h2)≤ 2ρSk(h1,h2)+
7
6

sup
x∈X

1{h1(x) 6= h2(x)} log 4|H |
δ

mkQ0(x)+nkQk(x)
. (C.3)

Proof. Let N = |Sk|. Note that for any h1,h2 ∈H , ρSk(h1,h2) =
1
N ∑t 1{h1(Xt) 6= h2(Xt)}, which

is the empirical average of an i.i.d. sequence. By Fact C.9 and a union bound over H , with

probability at least 1−δ,

∣∣ρ(h1,h2)−ρSk(h1,h2)
∣∣≤ 2

3N
log

4|H |
δ

+

√
2ρ(h1,h2)

N
log

4|H |
δ

.

On this event, by Proposition C.1, ρ(h1,h2)≤ 2ρSk(h1,h2)+
4

3N log 4|H |
δ

+ 2
N log 4|H |

δ
≤

2ρSk(h1,h2)+
10
3N log 4|H |

δ
.
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Moreover,

ρSk(h1,h2) ≤ ρ(h1,h2)+
2

3N
log

4|H |
δ

+

√
2ρ(h1,h2)

N
log

4|H |
δ

≤ ρ(h1,h2)+
2

3N
log

4|H |
δ

+
1
2
(2ρ(h1,h2)+

1
N

log
4|H |

δ
)

≤ 2ρ(h1,h2)+
7

6N
log

4|H |
δ

where the second inequality uses the fact that ∀a,b > 0,
√

ab≤ a+b
2 .

The result follows by noting that ∀x ∈ X , N = |Sk|= mk +nk ≥ mkQ0(x)+nkQk(x).

Corollary C.12. There are universal constants γ0,γ1 > 0 such that for any k = 0, . . . ,K, any δ> 0,

with probability at least 1−δ, for all h,h1,h2 ∈H , the following statements hold simultaneously:

∣∣(l(h1,Sk)− l(h2,Sk)
)
−
(
l(h1)− l(h2)

)∣∣≤γ0 sup
x∈X

1{h1(x) 6= h2(x)} log |H |2δ

mkQ0(x)+nkQk(x)

+ γ0

√√√√sup
x∈X

1{h1(x) 6= h2(x)} log |H |2δ

mkQ0(x)+nkQk(x)
ρS(h1,h2);

(C.4)

l(h)− l(h?)≤2(l(h,Sk)− l(h?,Sk))+ γ1 sup
x∈X

1{h(x) 6= h?(x)} log |H |
δ

mkQ0(x)+nkQk(x)

+ γ1

√√√√sup
x∈X

1{h(x) 6= h?(x)} log |H |
δ

mkQ0(x)+nkQk(x)
l(h?). (C.5)

Proof. Let event E be the event that (C.1) and (C.3) holds for all h1,h2 ∈ H with confidence

1− δ

2 respectively. Assume E happens (whose probability is at least 1−δ).

(C.4) is immediate from (C.1) and (C.3).
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For the proof of (C.5), apply (C.1) to h and h?, we get

l(h)− l(h?)≤l(h,Sk)− l(h?,Sk)+2 sup
x∈X

1{h(x) 6= h?(x)}2log 4|H |
δ

3
mkQ0(x)+nkQk(x)

+

√√√√2 sup
x∈X

1{h(x) 6= h?(x)} log 4|H |
δ

mkQ0(x)+nkQk(x)
ρ(h,h?).

By triangle inequality, ρ(h,h?) = PD(h(X) 6= h?(X)) ≤ PD(h(X) 6= Y ) +PD(h?(X) 6=

Y ) = l(h)− l(h?)+2l(h?). Therefore, we get

l(h)− l(h?) ≤ l(h,Sk)− l(h?,Sk)+2 sup
x∈X

1{h(x) 6= h?(x)}2log 4|H |
δ

3
mkQ0(x)+nkQk(x)

+

√√√√2 sup
x∈X

1{h(x) 6= h?(x))} log 4|H |
δ

mkQ0(x)+nkQk(x)
(l(h)− l(h?)+2l(h?))

≤ l(h,Sk)− l(h?,Sk)+

√√√√2 sup
x∈X

1{h(x) 6= h?(x)} log 4|H |
δ

mkQ0(x)+nkQk(x)
(l(h)− l(h?))

+2 sup
x∈X

1{h(x) 6= h?(x)}2log 4|H |
δ

3
mkQ0(x)+nkQk(x)

+

√√√√4 sup
x∈X

1{h(x) 6= h?(x)} log 4|H |
δ

mkQ0(x)+nkQk(x)
l(h?)

where the second inequality uses
√

a+b≤√a+
√

b for a,b≥ 0.

(C.5) follows by applying Proposition C.1 to l(h)− l(h?).

C.3 Technical Lemmas

For any 0 ≤ k ≤ K and δ > 0, define event Ek,δ to be the event that the conclusions of

Theorem C.10 and Theorem C.11 hold for k with confidence 1− δ/2 respectively. We have
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P(Ek,δ)≥ 1−δ, and that Ek,δ implies inequalities (C.1) to (C.5).

We first present a lemma which can be used to guarantee that h? stays in candidate sets

with high probability by induction..

Lemma C.13. For any k = 0, . . .K, any δ > 0. On event Ek,δ, if h? ∈Ck then,

l(h?, S̃k)≤ l(ĥk, S̃k)+ γ0σ(k,δ)+ γ0

√
σ(k,δ)ρS̃k

(ĥk,h?).

Proof.

l(h?, S̃k)− l(ĥk, S̃k)

=l(h?,Sk)− l(ĥk,Sk)

≤γ0 sup
x

1{h?(x) 6= ĥk(x)} log |H |
δ

mkQ0(x)+nkQk(x)
+ γ0

√
sup

x

1{h?(x) 6= ĥk(x)} log |H |
δ

mkQ0(x)+nkQk(x)
ρSk(ĥk,h?)

≤γ0σ(k,δ)+
√

γ0σ(k,δ)ρS̃k
(ĥk,h).

The equality follows from Lemma C.3. The first inequality follows from (C.4) of

Corollary C.12 and that l(h?) ≤ l(ĥk). The last inequality follows from Lemma C.2 and that

ρS̃k
(ĥk,h?) = ρSk(ĥk,h?).

Next, we present two lemmas to bound the probability mass of the disagreement region of

candidate sets.

Lemma C.14. For any k = 0, . . . ,K, any δ > 0, let Ck+1(δ) := {h ∈ Ck | l(h, S̃k) ≤ l(ĥk, S̃k)+

γ0σ(k,δ)+ γ0

√
σ(k,δ)ρS̃k

(ĥk,h)}. Then there is an absolute constant γ2 > 1 such that for any

0, . . . ,K, any δ > 0, on event Ek,δ, if h? ∈Ck, then for all h ∈Ck+1(δ),

l(h)− l(h?)≤ γ2σ(k,δ)+ γ2
√

σ(k,δ)l(h?).
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Proof. For any h ∈Ck+1(δ), we have

l(h)− l(h?)

≤2(l(h,Sk)− l(h?,Sk))+ γ1σ(k,
δ

2
)+ γ1

√
σ(k,

δ

2
)l(h?)

=2(l(h, S̃k)− l(h?, S̃k))+ γ1σ(k,
δ

2
)+ γ1

√
σ(k,

δ

2
)l(h?)

=2(l(h, S̃k)− l(ĥk, S̃k)+ l(ĥk, S̃k)− l(h?, S̃k))+ γ1σ(k,
δ

2
)+ γ1

√
σ(k,

δ

2
)l(h?)

≤2(l(h, S̃k)− l(ĥk, S̃k))+ γ1σ(k,
δ

2
)+ γ1

√
σ(k,

δ

2
)l(h?)

≤(2γ0 + γ1)σ(k,
δ

2
)+2γ0

√
σ(k,

δ

2
)ρS̃k

(h, ĥk)+ γ1

√
σ(k,

δ

2
)l(h?)

≤(2γ0 + γ1)σ(k,
δ

2
)+2γ0

√
σ(k,

δ

2
)(ρSk(h,h?)+ρSk(ĥk,h?))+ γ1

√
σ(k,

δ

2
)l(h?) (C.6)

where the first inequality follows from (C.5) of Corollary C.12 and Lemma C.2, the first

equality follows from Lemma C.3, the third inequality follows from the definition of Ck(δ), and

the last inequality follows from ρS̃k
(h, ĥk) = ρSk(h, ĥk)≤ ρSk(h,h

?)+ρSk(ĥk,h?).

As for ρSk(h,h
?), we have ρSk(h,h

?)≤ 2ρ(h,h?)+ 16
3 σ(k, δ

8)≤ 2(l(h)− l(h?))+4l(h?)+

16
3 σ(k, δ

8) where the first inequality follows from (C.2) of Theorem C.11 and Lemma C.2, and the

second inequality follows from the triangle inequality.

162



For ρSk(ĥk,h?), we have

ρSk(ĥk,h?) ≤ 2ρ(ĥk,h?)+
16
3

σ(k,
δ

8
)

≤ 2(l(ĥk)− l(h?)+2l(h?))+
16
3

σ(k,
δ

8
)

≤ 2(2(l(ĥk,Sk)− l(h?,Sk))+ γ1σ(k,
δ

2
)+ γ1

√
σ(k,

δ

2
)l(h?)+2l(h?))+

16
3

σ(k,
δ

8
)

≤ (2γ1 +
16
3
)σ(k,

δ

8
)+2γ1

√
σ(k,

δ

2
)l(h?)+4l(h?)

≤ (4+ γ1)l(h?)+(3γ1 +
16
3
)σ(k,

δ

8
)

where the first inequality follows from (C.2) of Theorem C.11 and Lemma C.2, the second follows

from the triangle inequality, the third follows from (C.5) of Theorem C.12 and Lemma C.2, the

fourth follows from the definition of ĥk, the last follows from the fact that 2
√

ab ≤ a+ b for

a,b≥ 0.

Continuing (C.6) and using the fact that
√

a+b≤√a+
√

b for a,b≥ 0, we have:

l(h)− l(h?)≤(2γ0 + γ1 +2γ0

√
3γ1 +

32
3
)σ(k,

δ

8
)

+(2γ0
√

8+ γ1 + γ1)

√
σ(k,

δ

8
)l(h?)+2

√
2γ0

√
σ(k,

δ

8
)(l(h)− l(h?)).

The result follows by applying Proposition C.1 to l(h)− l(h?).

Lemma C.15. On event
⋂K−1

k=0 Ek,δk/2, for any k = 0, . . .K, Dk ⊆ DISk.

Proof. Recall δk =
δ

(k+1)(k+2) . On event
⋂K−1

k=0 Ek,δk/2, h? ∈Ck for all 0≤ k≤ K by Lemma C.13

and induction.

The k = 0 case is obvious since D0 = DIS0 = X . Now, suppose 0≤ k < K, and Dk ⊆DISk.
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We have

Dk+1 ⊆ DIS

({
h : l(h)≤ ν+ γ2

(
σ(k,δk/2)+

√
σ(k,δk/2)ν

)})

⊆ DIS

(
B
(

h?,2ν+ γ2

(
σ(k,δk/2)+

√
σ(k,δk/2)ν

)))

where the first line follows from Lemma C.14 and the definition of Dk, and the second line follows

from triangle inequality that P(h(X) 6= h?(X))≤ l(h)+ l(h?) (recall ν = l(h?)).

To prove Dk+1 ⊆ DISk+1 it suffices to show γ2

(
σ(k,δk/2)+

√
σ(k,δk/2)ν

)
≤ εk+1.

Note that σ(k,δk/2) = supx∈Dk

log(2|H |/δk)
mkQ0(x)+nk

≤ supx∈DISk

log(2|H |/δk)
mkQ0(x)+nk

since Dk ⊆DISk. Con-

sequently, γ2

(
σ(k,δk/2)+

√
σ(k,δk/2)ν

)
≤ εk+1.

C.4 Proof of Consistency

Proof. (of Theorem 6.1) Define event E (0) :=
⋂K

k=0 Ek,δk/2. By a union bound, P(E (0))≥ 1−δ.

On event E (0), by induction and Lemma C.13, for all k = 0, . . . ,K, h? ∈ Ck. Observe that

ĥ = ĥK ∈CK+1(δK/2). Applying Lemma C.14 to ĥ, we have

l(ĥ)≤ l(h?)+ γ2

 sup
x∈DK

log(2|H |/δK)

mKQ0(x)+nK
+

√
sup

x∈DK

log(2|H |/δK)

mKQ0(x)+nK
l(h?)

 .

The result follows by noting that supx∈X
1{x∈DK}

mKQ0(x)+nK
≤ supx∈X

1{x∈DISK}
mKQ0(x)+nK

by Lemma C.15.
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C.5 Proof of Label Complexity

Proof. (of Theorem 6.4) Recall that ξk = infx∈Dk Q0(x) and ζ = supx∈DIS1
1

αQ0(x)+1 .

Define event E (0) :=
⋂K

k=0 Ek,δk/2. On this event, by induction and Lemma C.13, for all

k = 0, . . . ,K, h? ∈Ck, and consequently by Lemma C.15, Dk ⊆ DISk.

For any k = 0, . . .K − 1, let the number of label queries at iteration k to be Uk :=

∑
n0+···+nk+1
t=n0+···+nk+1 Zt1{Xt ∈ Dk+1}.

Zt1{Xt ∈ Dk+1} = 1{Xt ∈ Dk+1∧Q0(Xt)≤ inf
x∈Dk+1

Q0(x)+
1
α
}

≤ 1{Xt ∈ S(Dk+1,α)}

≤ 1{Xt ∈ S(DISk+1,α)}.

Thus, Uk ≤∑
n0+···+nk+1
t=n0+···+nk+11{Xt ∈ S(DISk+1,α)}, where the RHS is sum of i.i.d. Bernoulli

random variables with mean P(S(DISk+1,α)), so a Bernstein inequality implies that on an event

E (1,k) of probability at least 1−δk/2,

n0+···+nk+1

∑
t=n0+···+nk+1

1{Xt ∈ S(DISk+1,α)} ≤ 2nk+1P(S(DISk+1,α))+2log
4
δk

.

Therefore, it suffices to show that on event E (2) := ∩K
k=0(E

(1,k) ∩Ek,δk/2), for some

absolute constant c1, ∑
K−1
k=0 nk+1P(S(DISk+1,α)) is at most

c1θ̃(2ν+ εK,α)(nν+ζ logn log
|H | logn

δ
+ logn

√
nνζ log

|H | logn
δ

).
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Now, on event E (2), for any k < K, P(S(DISk+1,α)) = P(S(DIS(B(h?,2ν+εk+1)),α))≤

(2ν+ εk+1)θ̃(2ν+ εk+1,α) where the last inequality follows from Lemma C.4.

Therefore,

K−1

∑
k=0

nk+1P(S(DISk+1,α))

≤n1 +
K−1

∑
k=1

nk+1(2ν+ εk+1)θ̃(2ν+ εk+1,α)

≤1+ θ̃(2ν+ εK,α)(2nν+
K−1

∑
k=1

nk+1εk+1)

≤1+ θ̃(2ν+ εK,α)

2nν+2γ2

K−1

∑
k=1

( sup
x∈DIS1

log |H |
δk/2

(αQ0(x)+1)
+

√√√√nkν sup
x∈DIS1

log |H |
δk/2

(αQ0(x)+1)
)


≤1+ θ̃(2ν+ εK,α)(2nν+2γ2ζ logn log

|H |(logn)2

δ
+2γ2 logn

√
nνζ log

|H |(logn)2

δ
).
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Appendix D

Omitted Proofs for Chapter 7

D.1 Preliminaries

D.1.1 Summary of Key Notations

Data T0 = {(Xt ,Yt ,Zt)}m
t=1 is the logged data. T̃k = {(Xt ,Ỹt ,Zt)}m+nk

t=m+nk−1+1 (1≤ k≤K)

is the online data collected in the k-th iteration of size τk = nk−nk−1, and Ỹt equals either the

actual label Yt drawn from the data distribution D or the inferred label ĥk−1(Xt) according to the

candidate set Ck−1at iteration k−1. S̃k = T0∪ T̃1∪·· ·∪ T̃k.

For convenience, we additionally define Tk = {(Xt ,Yt ,Zt)}m+nk
t=m+nk−1+1 to be the data set

with the actual labels Yt drawn from the data distribution, and Sk = T0∪T1∪·· ·∪Tk. The algorithm

only observes S̃k and T̃k, and Sk,Tk are used for analysis only.

For 1 ≤ k ≤ K,nk = τ1 + · · ·+ τk, and we define n0 = 0, n = nK , τ0 = m. We assume

τk ≤ τk+1 for 1≤ k < K.
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Recall that {(Xt ,Yt ,Zt)}m+n
t=1 is an independent sequence, and furthermore {(Xt ,Yt)}m+n

t=1

is an i.i.d. sequence drawn from D. For (X ,Z) ∈ Tk (0≤ k ≤ K), Qk(X) = P(Z = 1 | X). Unless

otherwise specified, all probabilities and expectations are over the random draw of all random

variables {(Xt ,Yt ,Zt)}m+n
t=1 .

Loss and Second Moment The test error l(h) = P(h(X) 6= Y ), the optimal classifier

h? = argminh∈H l(h), and the optimal error ν = l(h?). At the k-th iteration, the Multiple Im-

portance Sampling (MIS) weight wk(x) =
m+nk

mQ0(Xt)+∑
k
i=1 τiQi(Xt)

. The clipped MIS loss estimator

l(h;Sk,M) = 1
m+nk

∑
m+nk
i=1 wk(Xi)Zi1{h(Xi) 6= Yi}1{wk(Xi)≤M}. The (unclipped) MIS loss esti-

mator l(h;Sk) = l(h;Sk,∞).

The clipped second moment V(h;k,M) = E
[
wk(X)1{h(X) 6= Y}1{wk(X)≤M}

]
, and

V(h1,h2;k,M) = E
[
wk(X)1{h1(X) 6= h2(X)}1{wk(X)≤M}

]
.

The clipped second-moment estimators V̂(h;Sk,M) = 1
m+nk

∑
m+nk
i=1 w2

k(Xi)Zi1{h(Xi) 6=

Yi}1{wk(Xi)≤M}, V̂(h1,h2;Sk,M) = 1
m+nk

∑
m+nk
i=1 w2

k(Xi)Zi1{h1(X) 6= h2(X)}1{wk(Xi)≤M}.

The unclipped second moments (V(h;k), V(h1,h2;k)) and second moment estimators

(V̂(h;Sk), V̂(h1,h2;Sk)) are defined similarly.

Disagreement Regions The r-ball around h is defined as B(h,r) := {h′ ∈H | P(h(X) 6=

h′(X))≤ r}. The disagreement region of C⊆H is DIS(C) := {x ∈ X | ∃h1 6= h2 ∈C s.t. h1(x) 6=

h2(x)}.

The candidate set Ck and its disagreement region Dk are defined in Algorithm 11. The

empirical risk minimizer (ERM) at k-th iteration ĥk = argminh∈Ck l(h, S̃k).

The modified disagreement coefficient θ̃(r,α) := 1
rP
(

DIS(B(h?,r))∩
{

x : Q0(x)≤ 1
α

})
.
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θ̃ = supr>2ν θ̃(r, 2m
n ).

Other Notations q0 = infx Q0(x). Qk+1(x) = 1{mQ0(x) +∑
k
i=1 τiQi(x) < m

2 Q0(x) +

nk+1}. Mk = inf{M ≥ 1 | 2M
m+nk

log |H |
δk
≥ P( m+nk

mQ0(X)+nk
> M/2)}. ξ = min1≤k≤K{Mk/

m+nk
mq0+nk

}.

M̄ = max1≤k≤K Mk.

D.1.2 Elementary Facts

Proposition D.1. Suppose a,c≥ 0, b ∈ R. If a≤ b+
√

ca, then a≤ 2b+ c.

Proof. Since a≤ b+
√

ca,
√

a≤
√

c+
√

c+4b
2 ≤

√
c+c+4b

2 =
√

c+2b where the second inequality

follows from the Root-Mean Square-Arithmetic Mean inequality. Thus, a≤ 2b+ c.

D.1.3 Facts on Disagreement Regions and Candidate Sets

Lemma D.2. For any k = 0, . . . ,K, M ≥ 0, if h1,h2 ∈ Ck, then l(h1;Sk,M)− l(h2;Sk,M) =

l(h1; S̃k,M)− l(h2; S̃k,M) and V̂(h1,h2;Sk,M) = V̂(h1,h2; S̃k,M).

Proof. For any (Xt ,Yt ,Zt) ∈ Sk that Zt = 1, if Xt ∈ DIS(Ck), then Yt = Ỹt , so 1{h1(Xt) 6= Yt}−

1{h2(Xt) 6= Yt} = 1{h1(Xt) 6= Ỹt}−1{h2(Xt) 6= Ỹt}. If Xt /∈ DIS(Ck), then h1(Xt) = h2(Xt), so

1{h1(Xt) 6= Yt}−1{h2(Xt) 6= Yt}= 1{h1(Xt) 6= Ỹt}−1{h2(Xt) 6= Ỹt}= 0. Thus, l(h1;Sk,M)−

l(h2;Sk,M) = l(h1; S̃k,M)− l(h2; S̃k,M).

V̂(h1,h2;Sk,M) = V̂(h1,h2; S̃k,M) holds since V̂(h1,h2;Sk,M) and V̂(h1,h2; S̃k,M) do

not involve labels Y or Ỹ .
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The following lemmas are immediate from the definition.

Lemma D.3. For any 1≤ k≤K, if h∈Ck, then l(h; S̃k,M)≤ l(h;Sk,M)≤ l(h;Sk) and V̂(h; S̃k,M)

≤ V̂(h;Sk,M)≤ V̂(h;Sk).

Remark D.4. The inequality on the second moment regularizer V̂, which will be used to

prove the error bound (Theorem 7.9) of Algorithm 11, is due to the decomposition property

V̂(h;Sk,M) = |Sk∩DIS(Ck)|
m+nk

V̂(h;Sk∩DIS(Ck),M)+ |Sk∩DIS(Ck)
c|

m+nk
V̂(h;Sk∩DIS(Ck)

c,M). It does not

hold for estimated variance V̂ar(h;Sk,M) := V̂(h;Sk,M)− l(h;Sk,M)2. This explains the necessity

of introducing the second moment regularizer.

Lemma D.5. For any r ≥ 2ν, any α≥ 1, P(DIS(B(h?,r)∩{x : Q0(x)≤ 1
α
})≤ rθ̃(r,α).

D.1.4 Facts on Multiple Importance Sampling Estimators

Proposition D.6. Let f : X ×Y → R. For any k, the following equations hold:

E[
1

m+nk
∑

(X ,Y,Z)∈Sk

wk(X)Z f (X ,Y )] = E[ f (X ,Y )],

E[
1

m+nk
∑

(X ,Y,Z)∈Sk

w2
k(X)Z f (X ,Y )] = E[wk(X) f (X ,Y )].
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Proof.

E[ ∑
(X ,Y,Z)∈Sk

wk(X)Z f (X ,Y )] =
k

∑
i=0

E[ ∑
(X ,Y,Z)∈Ti

E[wk(X) f (X ,Y )Z | X ,Y ]]

=
k

∑
i=0

E[ ∑
(X ,Y,Z)∈Ti

wk(X) f (X ,Y )E[Z | X ,Y ]]

(a)
=

k

∑
i=0

E[ ∑
(X ,Y,Z)∈Ti

wk(X) f (X ,Y )E[Z | X ]]

=
k

∑
i=0

E[ ∑
(X ,Y,Z)∈Ti

wk(X) f (X ,Y )Qi(X)]

(b)
=

k

∑
i=0

τiE[wk(X) f (X ,Y )Qi(X)]

= E[wk(X) f (X ,Y )
k

∑
i=0

τiQi(X)]

(c)
= (m+nk)E[ f (X ,Y )]

where (a) follows from E[Z | X ] = E[Z | X ,Y ] as Z,Y are conditionally independent given X ,

(b) follows since Ti is a sequence of i.i.d. random variables, and (c) follows from the definition

wk(X) = m+nk
∑

k
i=0 τiQi(X)

.

The proof for the second equality is similar and skipped.

D.1.5 Facts on the Sample Selection Bias Correction Query Strategy

The query strategy Qk can be simplified as follows.

Proposition D.7. For any 1≤ k ≤ K, x ∈ X , Qk(x) = 1{2nk−mQ0(x)> 0}.

Proof. The k = 1 case can be easily verified. Suppose it holds for Qk, and we next show it holds

for Qk+1. Recall by definition Qk+1(x) = 1{mQ0(x)+∑
k
i=1 τiQi(x)< m

2 Q0(x)+nk+1}.
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If Qk(x) = 1, then mQ0(x)+∑
k−1
i=1 τiQi(x)< m

2 Q0(x)+nk, so

mQ0(x)+
k

∑
i=1

τiQi(x)<
m
2

Q0(x)+nk + τk

≤ m
2

Q0(x)+nk+1

where the last inequality follows by the assumption on the epoch schedule τk ≤ τk+1 = nk+1−nk.

This implies Qk+1(x) = 1. In this case, 1{2nk+1−mQ0(x) > 0} = 1 as well, since nk+1 ≥ nk

implies 2nk+1−mQ0(x)≥ 2nk−mQ0(x)> 0.

The above argument also implies if Qk(x) = 0, then Q1(x) = Q2(x) = · · ·= Qk−1(x) = 0.

Thus, if Qk(x)= 0, then Qk+1(x)=1{mQ0(x)< m
2 Q0(x)+nk+1}=1{2nk+1−mQ0(x)> 0}.

The following proposition gives an upper bound of the multiple importance sampling

weight, which will be used to bound the second moment of the loss estimators with the sample

selection bias correction strategy.

Proposition D.8. For any 1≤ k ≤ K, wk(x) =
m+nk

mQ0(x)+∑
k
i=1 τiQi(x)

≤ m+nk
1
2 mQ0(x)+nk

.

Proof. The k = 1 case can be easily verified. Suppose it holds for wk, and we next show it holds

for wk+1.

Now, if Qk+1(x) = 0, then by Proposition D.7, 2nk+1−mQ0(x) ≤ 0, and consequently

mQ0(x)+∑
k+1
i=1 τiQi(x)≥ mQ0(x)≥ 1

2mQ0(x)+nk+1.

If Qk+1(x) = 1, then by the induction hypothesis, mQ0(x)+∑
k+1
i=1 τiQi(x) ≥ 1

2mQ0(x)+

nk + τk+1 =
1
2mQ0(x)+nk+1.

In both cases, mQ0(x)+∑
k+1
i=1 τiQi(x)≥ 1

2mQ0(x)+nk+1, so wk+1(x)≤ m+nk+1
1
2 mQ0(x)+nk+1

.
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D.1.6 Lower Bound Techniques

We present a lower bound for binomial distribution tails, which will be used to prove

generalization error lower bounds.

Lemma D.9. Let 0 < t < p < 1/2, B ∼ Bin(n, p) be a binomial random variable, and δ =√
4n (t−p)2

p . Then, P(B < nt)≥ 1√
2π

δ

δ2+1 exp(−1
2δ2).

This Lemma is a consequence of following lemmas.

Lemma D.10. Suppose 0 < p,q < 1, KL(p,q) = p log p
q +(1− p) log 1−p

1−q . Then KL(p,q) ≤
(p−q)2

q(1−q) .

Proof. Since logx≤ x−1, p log p
q +(1− p) log 1−p

1−q ≤ p( p
q−1)+(1− p)(1−p

1−q−1) = (p−q)2

q(1−q) .

Lemma D.11. ([BS79]) Suppose X ∼ N(0,1), and define Φ(t) = P(X ≤ t). If t > 0, then

Φ(−t)≥ 1√
2π

t
t2+1 exp(−1

2t2).

Lemma D.12. ([ZS13]) Let B∼ Bin(n, p) be a binomial random variable and 0 < k < np. Then,

P(B < k)≥Φ(−
√

2nKL( k
n , p)).

D.2 Deviation Bounds

In this section, we demonstrate deviation bounds for our error estimators on Sk.

We use following Bernstein-style concentration bound:

Fact D.13. Suppose X1, . . . ,Xn are independent random variables such that |Xi| ≤M. Then with
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probability at least 1−δ,

∣∣∣∣∣1n n

∑
i=1

Xi−
1
n

n

∑
i=1

EXi

∣∣∣∣∣≤ 2M
3n

log
2
δ
+

√
2
n2

n

∑
i=1

EX2
i log

2
δ
.

Theorem D.14. For any k = 0, . . . ,K, any δ > 0, if
2M log |H |

δ

m+nk
≥ P( m+nk

mQ0(X)+nk
≥ M

2 ), then with

probability at least 1−δ, for all h1,h2 ∈H , the following statements hold simultaneously:

∣∣(l(h1;Sk,M)− l(h2;Sk,M)
)
−
(
l(h1)− l(h2)

)∣∣≤ 10log 2|H |
δ

3(m+nk)
M+

√
4log 2|H |

δ

m+nk
V(h1,h2;k,M);

(D.1)

∣∣l(h1;Sk,M)− l(h1)
∣∣≤ 10log 2|H |

δ

3(m+nk)
M+

√
4log 2|H |

δ

m+nk
V(h1;k,M).

(D.2)

Proof. We show proof for k > 0. The k = 0 case can be proved similarly.

First, define the clipped expected loss l(h;k,M) = E[1{h(X) 6= Y}1{wk(X)≤M}]. We

have

∣∣(l(h1)− l(h2)
)
−
(
l(h1;k,M)− l(h2;k,M)

)∣∣
=
∣∣E[(1{h1(X) 6= Y}−1{h2(X) 6= Y})1{wk(X)> M}

]∣∣
≤E
[
1[wk(X)> M]

]
≤E[1{ m+nk

mQ0(X)+nk
>

M
2
}]

≤ 2M
m+nk

log
|H |

δ
(D.3)

where the second inequality follows from Proposition D.8, and the last inequality follows from

the assumption on M.
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Next, we bound
(
l(h1;Sk,M)− l(h2;Sk,M)

)
−
(
l(h1;k,M)− l(h2;k,M)

)
.

For any fixed h1,h2 ∈ H , define N := |Sk|, Ut := wk(Xt)Zt1{wk(Xt) ≤M}(1{h1(Xt) 6=

Yt}−1{h2(Xt) 6= Yt}).

Now, {Ut}N
t=1 is an independent sequence. 1

N ∑
N
t=1Ut = l(h1;Sk,M)− l(h2;Sk,M), and

E 1
N ∑

N
t=1Ut = l(h1;k,M)− l(h2;k,M) by Proposition D.6. Moreover, since (1{h1(Xt) 6= Yt}−

1{h2(Xt) 6= Yt})2 = 1{h1(Xt) 6= h2(Xt)}, we have 1
N ∑

N
t=1U2

t = V̂(h1,h2;Sk,M) and by Proposi-

tion D.6 E 1
N ∑

N
t=1U2

t = V(h1,h2;k,M). Applying Bernstein’s inequality (Fact D.13) to {Ut}, we

have with probability at least 1− δ

2 ,

∣∣∣∣∣ 1
N

N

∑
t=1

Ut−E
1
N

N

∑
t=1

Ut

∣∣∣∣∣≤ 2M
3N

log
4
δ
+

√
2
N

V(h1,h2;k,M) log
4
δ
,

and consequently |
(
l(h1;Sk,M)− l(h2;Sk,M)

)
−
(
l(h1;k,M)− l(h2;k,M)

)
| ≤ 2M

3(m+nk)
log 4

δ
+√

2
m+nk

V(h1,h2;k,M) log 4
δ
.

By a union bound over H , with probability at least 1− δ

2 for all h1,h2 ∈H ,

∣∣(l(h1;Sk,M)− l(h2;Sk,M)
)
−
(
l(h1;k,M)− l(h2;k,M)

)∣∣
≤ 4M

3(m+nk)
log

2|H |
δ

+

√
4

m+nk
V(h1,h2;k,M) log

2|H |
δ

. (D.4)

(D.1) follows by combining (D.3) and (D.4).

The proof for (D.2) is similar and skipped.

We use following bound for the second moment which is an immediate corollary of
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Lemmas B.1 and B.2 in [ND17]:

Fact D.15. Suppose X1, . . . ,Xn are independent random variables such that |Xi| ≤M. Then with

probability at least 1−δ,

−
√

2M2

n
log

1
δ
−M2

n
≤
√

1
n

n

∑
i=1

X2
i −

√
E

1
n

n

∑
i=1

X2
i ≤

√
2M2

n
log

1
δ
.

Recall that by Lemma D.6, E[V̂(h1,h2;Sk,M)] = V(h1,h2;k,M) and E[V̂(h1;Sk,M)] =

V(h1;k,M). The following Corollary follows from the bound on the second moment.

Corollary D.16. For any k = 0, . . . ,K, any δ,M > 0, with probability at least 1− δ, for all

h1,h2 ∈H , the following statements hold:

∣∣∣∣√V̂(h1,h2;Sk,M)−
√

V(h1,h2;k,M)

∣∣∣∣≤
√

4M2

m+nk
log

2|H |
δ

+
M2

m+nk
, (D.5)

∣∣∣∣√V̂(h1;Sk,M)−
√

V(h1;k,M)

∣∣∣∣≤
√

4M2

m+nk
log

2|H |
δ

+
M2

m+nk
. (D.6)

Corollary D.17. There is an absolute constant γ1, for any k = 0, . . . ,K, any δ > 0, if
2M log |H |

δ

m+nk
≥

P( m+nk
mQ0(X)+nk

≥ M
2 ), then with probability at least 1−δ, for all h1,h2 ∈H , the following statements
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hold:

∣∣(l(h1;Sk,M)− l(h2;Sk,M)
)
−
(
l(h1)− l(h2)

)∣∣≤γ1
M

m+nk
log
|H |

δ
+ γ1

M2

(m+nk)
3
2

√
log
|H |

δ

(D.7)

+ γ1

√
log |H |

δ

m+nk
V̂(h1,h2;Sk,M);

l(h1;Sk,M)≤ 2l(h1)+ γ1
M

m+nk
log
|H |

δ
. (D.8)

Proof. Let event E be the event that (D.1), (D.2), and (D.5) hold for all h1,h2 ∈H with confidence

1− δ

3 respectively. Assume E happens (whose probability is at least 1−δ).

(D.7) is immediate from (D.1) and (D.5).

For the proof of (D.8), apply (D.2) to h1, we get

l(h1;Sk,M)≤ l(h1)+
10log 6|H |

δ

3(m+nk)
M+

√
4log 6|H |

δ

m+nk
V(h1;k,M).

Now, V(h1;k,M) = E
[
wk(X)1{h1(X) 6= Y}1{wk(X)≤M}

]
≤ME[1{h1(X) 6= Y}], so√

4log 6|H |
δ

m+nk
V(h1;k,M) ≤

√
4M log 6|H |

δ

m+nk
l(h1) ≤ l(h1)+

M log 6|H |
δ

(m+nk)
where the last inequality follows

from
√

ab≤ a+b
2 for a,b≥ 0, and (D.8) thus follows.
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D.3 Technical Lemmas

For any 0 ≤ k < K and δ > 0, define event Ek,δ to be the event that the conclusions of

Theorem D.14 and Corollary D.16 hold for k with confidence 1− δ/2 respectively. We have

P(Ek,δ)≥ 1−δ, and that Ek,δ implies inequalities (D.7) and (D.8).

Recall that σ1(k,δ,M) = M
m+nk

log |H |
δ

+ M2

(m+nk)
3
2

√
log |H |

δ
;σ2(k,δ) = 1

m+nk
log |H |

δ
;δk =

δ

2(k+1)(k+2) .

We first present a lemma which can be used to guarantee that h? stays in candidate sets

with high probability by induction.

Lemma D.18. For any k = 0, . . .K, any δ> 0, any M≥ 1 such that
2M log |H |

δ

m+nk
≥P( m+nk

mQ0(X)+nk
≥ M

2 ),

on event Ek,δ, if h? ∈Ck, then,

l(h?; S̃k,M)≤ l(ĥk; S̃k,M)+ γ1σ1(k,δ,M)+ γ1

√
σ2(k,δ)V̂(h?, ĥk; S̃k,M).

Proof.

l(h?; S̃k,M)− l(ĥk; S̃k,M)

=l(h?;Sk,M)− l(ĥk;Sk,M)

≤γ1σ1(k,δ,M)+ γ1

√
σ2(k,δ)V̂(h?, ĥk;Sk,M)

=γ1σ1(k,δ,M)+ γ1

√
σ2(k,δ)V̂(h?, ĥk; S̃k,M)

The first and the second equalities follow by Lemma D.2. The inequality follows by

Corollary D.17.

Next, we present a lemma to bound the probability mass of the disagreement region of
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candidate sets.

Lemma D.19. Let ĥk,M = argminh∈Ck l(h; S̃k,M), and Ck+1(δ,M) := {h ∈ Ck | l(h; S̃k,M) ≤

l(ĥk,M; S̃k,M) + γ1σ1(k,δ,M) + γ1

√
σ2(k,δ)V̂(h, ĥk,M; S̃k,M)}. There is an absolute constant

γ2 > 1 such that for any k = 0, . . . ,K, any δ > 0, any M ≥ 1 such that
2M log |H |

δ

m+nk
≥ P( m+nk

mQ0(X)+nk
≥

M
2 ), on event Ek,δ, if h? ∈Ck, then for all h ∈Ck+1(δ,M),

l(h)− l(h?)≤ γ2σ1(k,δ,M)+ γ2
√

σ2(k,δ)Ml(h?).

Proof. For any h ∈Ck+1(δ,M), we have

l(h)− l(h?)

≤l(h;Sk,M)− l(h?;Sk,M)+
10M log 4|H |

δ

3(m+nk)
+

√
4

V(h?,h;k,M)

m+nk
log

4|H |
δ

=l(h; S̃k,M)− l(h?; S̃k,M)+
10M log 4|H |

δ

3(m+nk)
+

√
4

V(h?,h;k,M)

m+nk
log

4|H |
δ

=l(h; S̃k,M)− l(ĥk,M; S̃k,M)+ l(ĥk,M; S̃k,M)− l(h?; S̃k,M)

+
10M log 4H |

δ

3(m+nk)
+

√
4

V(h?,h;k,M)

m+nk
log

4|H |
δ

≤γ1σ1(k,δ,M)+ γ1

√
σ2(k,δ)V̂(h, ĥk,M; S̃k,M)+

10M log 4|H |
δ

3(m+nk)
+

√
4

V(h?,h;k,M)

m+nk
log

4|H |
δ

(D.9)

where the first equality follows from Lemma D.2, the first inequality follows from Theorem D.14,

and the second inequality follows from the definition of Ck(δ,M) and that l(ĥk,M; S̃k,M) ≤

l(h?; S̃k,M).
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Next, we upper bound
√

V̂(h, ĥk,M; S̃k,M). We have

√
V̂(h, ĥk,M; S̃k,M)≤

√
V̂(h,h?; S̃k,M)+ V̂(h?, ĥk,M; S̃k,M)

≤
√

V̂(h,h?; S̃k,M)+

√
V̂(h?, ĥk,M; S̃k,M)

where the first inequality follows from the triangle inequality V̂(h, ĥk,M; S̃k,M)≤ V̂(h,h?; S̃k,M)+

V̂(h?, ĥk,M; S̃k,M) and the second follows from the fact that
√

a+b≤√a+
√

b for a,b≥ 0.

For the first term, we have
√

V̂(h,h?; S̃k,M) =
√

V̂(h,h?;Sk,M) ≤
√

V(h,h?;k,M) +√
4M2

m+nk
log 4|H |

δ
+ M2

m+nk
by Corollary D.16.

For the second term, we have

√
V̂(h?, ĥk,M; S̃,M)≤

√
M(l(h?; S̃k,M)+ l(ĥk,M; S̃k,M))

≤
√

2Ml(h?; S̃k,M)

≤
√

2Ml(h?;Sk,M)

≤
√

2M(2l(h?)+ γ1
M

m+nk
log
|H |

δ
)

≤
√

2γ1M2

m+nk
log
|H |

δ
+2
√

Ml(h?)

where the first inequality follows from the inequality w2
k(X)Z1{h?(X) 6= ĥk,M(X)}1[wk(X)≤M]

≤ M(wk(X)Z1{h?(X) 6= Y}+wk(X)Z1{ĥk,M(X) 6= Y}), the second inequality follows since

l(ĥk,M; S̃k,M)≤ l(h?; S̃k,M), the third follows by Lemma D.3 since we assume h? ∈Ck, the fourth

follows by Corollary D.17, and the last follows by
√

a+b≤√a+
√

b.

Therefore,
√

V̂(h, ĥk,M; S̃k,M)≤
√

V(h,h?;k,M)+(2+
√

2γ1)
√

M2

m+nk
log 4|H |

δ
+ M2

m+nk
+
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2
√

Ml(h?). Continuing (D.9), we have

l(h)− l(h?)≤ (
10
3
+3γ1 +2

√
2γ

3
2
1 )

M
m+nk

log
4|H |

δ
+ γ1

M2

(m+nk)
3
2

√
log

4|H |
δ

+(γ1 +2)

√
V(h?,h;k,M)

m+nk
log

4|H |
δ

+2γ1

√
Ml(h?)
m+nk

log
4|H |

δ
.

Now, because w2
k(X)Z1{h?(X) 6= ĥk(X)}1[wk(X) ≤ M] ≤ Mwk(X)Z1{h?(X) 6= Y}+

Mwk(X)Z1{ĥk(X) 6= Y}, we have that
√

V(h?,h;k,M)
m+nk

log 4|H |
δ
≤
√

M(l(h)−l(h?)+2l(h?))
m+nk

log 4|H |
δ
≤√

M(l(h)−l(h?))
m+nk

log 4|H |
δ

+
√

2Ml(h?)
m+nk

log 4|H |
δ

where the second follows by
√

a+b≤√a+
√

b for

a,b≥ 0.

Thus, l(h)− l(h?) ≤ (10
3 + 3γ1 + 2

√
2γ

3
2
1 )

M
m+nk

log 4|H |
δ

+ γ1
M2

(m+nk)
3
2

√
log 4|H |

δ
+ (2γ1 +

√
2γ1 +2

√
2)
√

Ml(h?)
m+nk

log 4|H |
δ

+(γ1 +2)
√

M(l(h)−l(h?))
m+nk

log 4|H |
δ

.

The result follows by applying Lemma D.1 to l(h)− l(h?).

D.4 Proofs for Section 7.3.2

Proof. (of Theorem 7.9) Define event E (0) :=
⋂K

k=0 Ek,δk . By a union bound, P(E (0))≥ 1−δ/2.

On event E (0), by induction and Lemma D.18, for all k = 0, . . . ,K, h? ∈Ck.
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l(ĥ)− l(h?)≤l(ĥ;SK,MK)− l(h?;SK,MK)+ γ1σ1(K,δK,MK)+ γ1

√
σ2(K,δK)V̂(ĥ,h?;SK,MK)

=l(ĥ; S̃K,MK)− l(h?; S̃K,MK)+ γ1σ1(K,δK,MK)+ γ1

√
σ2(K,δK)V̂(ĥ,h?; S̃K,MK)

≤l(ĥ; S̃K,MK)+ γ1

√
σ2(K,δK)V̂(ĥ; S̃K,MK)

− l(h?; S̃K,MK)− γ1

√
σ2(K,δK)V̂(h?; S̃K,MK)

+ γ1σ1(K,δK,MK)+2γ1

√
σ2(K,δK)V̂(h?; S̃K,MK)

≤γ1σ1(K,δK,MK)+2γ1

√
σ2(K,δK)V̂(h?; S̃K,MK)

≤γ1σ1(K,δK,MK)+2γ1

√
σ2(K,δK)V̂(h?;SK,MK)

≤3γ1σ1(K,δK,MK)+2γ1
√

σ2(K,δK)V(h?;K,MK)

where the equality follows from Lemma D.2, the first inequality follows from Corollary D.17, the

second follows since
√

V̂(ĥ,h?; S̃K,MK)≤
√

V̂(ĥ; S̃K,MK)+ V̂(h?; S̃K,MK)≤
√

V̂(ĥ; S̃K,MK)+√
V̂(h?; S̃K,MK), the third follows from the definition of ĥ, the forth follows from Lemma D.3,

and the last follows from Corollary D.16.

Proof. (of Theorem 7.11) Define event E (0) :=
⋂K

k=0 Ek,δk . On this event, by induction and

Lemma D.18, for all k = 0, . . . ,K − 1, h? ∈ Ck, and consequently by Lemma D.19, Dk+1 ⊆

DIS(B(h?,2ν+ εk)) where εk = γ2σ1(k,δk,Mk)+ γ2
√

σ2(k,δk)Mkν.

For any k = 0, . . .K− 1, define the number of label queries at iteration k to be Uk :=

∑
m+nk+1
t=m+nk+1 Zt1{Xt ∈ Dk+1} where the RHS is a sum of i.i.d. Bernoulli random variables with ex-

pectation E[Zt1{Xt ∈Dk+1}] = P(Dk+1∩{x : Q0(x)<
2nk+1

m }) since Zt = Qk+1(x) = 1{2nk+1−

mQ0(x) > 0} by Proposition D.7. A Bernstein inequality implies that on an event E (1,k) of

probability at least 1−δk/2, Uk ≤ 2τk+1P(Dk+1∩{x : Q0(x)<
2nk+1

m })+2log 4
δk

.

Define E (1) :=
⋂K−1

k=0 E (1,k), and E (2) := E (0) ∩E (1). By a union bound, we have
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P(E (2)) ≥ 1− δ. Now, on event E (2), for any k < K, Dk+1 ⊆ DIS(B(h?,2ν + εk)), so by

Lemma D.5 P(Dk+1 ∩{x : Q0(x) <
2nk+1

m }) ≤ (2ν+ εk)θ̃(2ν+ εk,
2nk+1

m ). Therefore, the total

number of label queries

K−1

∑
k=0

Uk ≤τ1 +
K−1

∑
k=1

2τk+1P(Dk+1∩{x : Q0(x)<
2nk+1

m
})+2K log

4
δK

≤1+2
K−1

∑
k=1

τk+1(2ν+ εk)θ̃(2ν+ εk,
2nk+1

m
)+2K log

4
δK

≤1+2K log
4

δK
+2θ̃(2ν+ εK−1,

2n
m
) ·

2nν

+γ2

K−1

∑
k=1

(
τk+1Mk

m+nk
log
|H |
δk

+
τk+1M2

k

(m+nk)
3
2

√
log
|H |
δk

+ τk+1

√
Mk

m+nk
ν log

|H |
δk

)

 .

Recall that α = m
n ,τk = 2k, ξ = min1≤k≤K{Mk/

m+nk
mq0+nk

}, M̄ = max1≤k≤K Mk. We have

∑
K−1
k=1

τk+1Mk
m+nk

≤∑
K−1
k=1

ξτk
mq0+nk

≤∑
K
k=1

ξnk
αnkq0+nk

≤ Kξ

αq0+1 where the first inequality follows as Mk
m+nk

≤
ξ

mq0+nk
, and the second follows by m = nα≥ nkα. Besides, ∑

K−1
k=1

τkM2
k

(m+nk)
3
2
≤∑

K−1
k=1

τkMkξ√
m+nk(mq0+nk)

≤∑
K−1
k=1

M̄ξ√
m+nk

≤ KM̄ξ√
nα

where the first inequality follows as Mk
m+nk

≤ ξ

mq0+nk
, and the second follows

as Mk ≤ M̄ and τk ≤ mq0 + nk. Finally, ∑
K
k=1 τk

√
Mk

m+nk
≤ ∑

K
k=1

√
τkξ

αq0+1 ≤
√

nξ

αq0+1 where the

first inequality follows as Mk
m+nk

≤ ξ

mq0+nk
and mq0 +nk ≥ τk(αq0 +1).

Therefore,
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K−1

∑
k=0

Uk ≤1+2K log
4

δK
+2θ̃(2ν+ εK−1,

2n
m
)

2nν

+γ2(
Kξ

αq0 +1
log

K2|H |
δ

+
KM̄ξ√

nα

√
log

K2|H |
δ

+

√
nξν

αq0 +1
log

K2|H |
δ

)

 .

D.5 Proofs for Sections 7.2

Theorem 7.1 and Corollary 7.6 are immediate from the following theorem.

Theorem D.20. Let ĥM = argminh∈H l(h;S,M)+
√

λ

m V̂(h;S,M). For any δ > 0, M ≥ 1, λ ≥

4log |H |
δ

, with probability at least 1−δ over the choice of S,

l(ĥM)− l(h?)≤2λM
m

+
16M
3m

log
|H |

δ
+

M2

m
3
2

√
4log

|H |
δ

(D.10)

+

√
λ

m
E
1{h?(X) 6= Y}

Q0(X)
1[

1
Q0(X)

≤M]+PX(
1

Q0(X)
> M).

Proof. The proof is similar to the proofs for Theorem 7.9 and D.14, and is omitted.
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