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SIMULATING THE 
LUMINOUS AND THERMAL 

PERFORMANCE OF 
FENESTRATION SYSTEMS 

K.M. Papamichael and S.E. Selkowitz 
Introduction 

During the last ten years, daylighting has become an in­
creasingly important consideration for lighting designers, 
architects, and building owners. Besides the amenities that 
daylight offers,'" it may significantly contribute to the re­
duction of electric lighting loads, especially in commercial 
buildings, where the largest portion of the lighting require­
mentsoccurs during the day. However, it is important that 
daylight admittance is controlled to prevent glare and nega­
tive impacts on cooling loads.6 

As with electric lighting design, successful daylighting 
design requires means for predicting the luminous perfor­
mance of fenestration systems. In other words, we need to 
predict daylight's contribution to the illuminance and lumi­
nance of interior surfaces. Daylight must be of sufficient 
quantity and quality for building occupants' visual comfort, 
visual performance, and aesthetic needs. Consideration of 
additional design criteria, such as thermal comfort and ener­
gy/cost implications, requires means for predicting the ther­
mal performance of fenestration systems, so designers can 
balance and optimize the contribution of fenestration sys­
tems to lighting and thermal loads. 

Background 
There are two major methodologies for predicting the ef­

fects of fenestration systems on interior illuminance distri­
butions. One is based on experimental techniques using 
scale models and the other is based on mathematical model­
ing through computer simulation. While experimental 
techniques with scale models have proven very effective for 
the prediction of the luminous performance of fenestration 
systems, they are time consuming and inflexible for the 
purposes of parametric studies. Also, high quality photo­
metric measurements require significant investment in ap­
propriate instrumentation. Moreover, such techniques do 
not allow the prediction of the thermal performance of fen­
estration systems. This is because they can only provide 
information about the illuminance and luminance of interi­
or surfaces, and not on the total radiant flux ttansmitted and 
absorbed by the fenestration system. Mathematical model­
ing through computer simulation can be very fast and flexi­
ble, limited by the assumptions included in the theoretical 
models and the availability of suitable computer facilities. 
The accuracy of these assumptions is critical for the case of 

fenestration systems that incorporate optically-complex 
components, such as various shading devices, which scatter 
the incoming radiation and distribute it over the entire out­
going hemisphere. 

Ideally, we could combine the strengths of experimental 
procedures and mathematical modeling for accurate, fast, 
and flexible prediction of both the luminous and thermal 
performance of fenestration systems. In this paper we de­
scribe such a methodology, which can be applied for the 
prediction of the luminous and thermal performance of any 
fenestration system. Also, we partially demonstrate the 
usefulness and the potential of our methodology using ex­
perimentally determined transmittance coefficients of com­
monly used Venetian blinds to compare the total transmit­
ted luminous flux under various sky and ground conditions 
for horizontal and vertical orientation of the slats. 

Methodology 
The major innovation of our methodology is the repres­

entation of fenestration systems as electric lighting fixtures 
of varying output This representation is achieved through 
detailed analysis of the radiant behavior of fenestration sys­
tems, encoded in the form of detailed solar-optical proper­
ties. We then treat each fenestration system as a "black 
box" of known radiant behavior; that is, we ignore the radi­
ative phenomena within the fenestration system since we 
know the patterns of alteration at its borders. II 

Solar-optical properties 
In general, the radiant behavior of any object can be de­

scribed as a function of the incoming and the outgoing di­
rections of radiation and the wavelength of the radiation. 
While a complete spectral analysis would be most appro­
priate for describing the radiant behavior of fenestration 
systems, at this stage of the development of our methodol­
ogy we are considering only the visible and the total solar 
spectra. 

Definitions of solar-optical properties 
Considering the possible combinations of single incom­

ing and outgoing directions, and of the incoming and out­
going hemispheres, we derme several solar-optical proper­
ties [Figure 1]:4 

Directional hemispherical transmittance, t(9i ,CJ (or re­
flectance, p(9i ,CJ), is defined as the ratio of ttansmitted (or 



reflected) flux collected over the entire hemisphere to essen­
tially collimated incident flux incoming from the direction 
specified by the angles ei and ~i' 

Bihemispherical transmittance, t (or reflectance, p), is 
defmed as the ratio of transmitted (or reflected) flux collect­
ed over the entire hemisphere to the incident flux from the 
entire hemisphere. . 

Bidirectional transmittance, t(eo,~,ei,~J (or reflectance, 
p(eo,~,ei,~J), is defmed as the ratio of transmitted (or re­
flected) flux collected over an element of solid angle sur­
rounding the outgoing direction specified by the angles eo 
and ~o to essentially collimated incident flux incoming 
from the direction specified by the angles ei and ~. 

Hemispherical-directional transmittance, t(eo'~ (or re­
flectance, p(eo'~)' is defmed as the ratio of transmitted (or 
reflected) flux collected over an element of solid angle sur­
rounding the outgoing direction specified by the angles eo 
and ~ to the incident flux from the entire hemisphere. 

The bidirectional solar-optical properties provide the 
most detailed description of the radiant behavior of fenestra­
tion systems. All of the other solar-optical properties can 
be calculated from the bidirectional ones, by integration of 
the directional coefficients over the incoming and/or out­
going hemispheres. 

Determination of solar-optical properties 
To detennine the thennal perfonnance of a fenestration 
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system it is necessary to know its bihemispherical trans­
mittance and absorptance. To detennine the luminous per­
fonnance of a fenestration systems it is necessary to know 
its hemispherical-directional transmittance and reflectance. 
Since these properties involve the entire fenestration-facing 
hemisphere, they are functions of its luminance distribu­
tion which changes continuously during the day. Thus, it 
is appropriate to detennine the directional-hemispherical 
and bidirectional solar-optical properties of fenestration sys­
tems and then integrate them over the luminance distribu­
tion of the fenestration-facing hemisphere. To measure 
such solar-optical properties we have developed two meas­
uring facilities: an integrating sphere that measures direc­
tional-hemispherical transmittance7 and a scanning radiome­
ter that measures bidirectional transmittance and reflec­
tance. I

' 

For fenestration systems that incorporate more than one 
component (layer), for example a glazing layer and a shad­
ing device layer, we detennine the total system properties 
from the properties of their layers, through appropriate 
computation. 13 This approach eliminates the need for 
measuring the solar-optical properties of all possible com­
binations of layers and, most important, it provides infor­
mation about the absorbed radiation by layer, which cannot 
be detennined from the bidirectional solar-optical properties 
of the whole fenestration system. . 
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Figu~ I-The concepts of the di~ctional·hemispheric.al (A), bihemispheric.al (B), bidi~ctional (e), and hemispheric.al-di~ctional (D) transmittance. 
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Figure 2-The experimental and computational process of simulating !he luminous and !hennal perfonnance of fenestration syslems. 

Simulation of performance 
Once the bidirectional solar-optical properties of a fenes­

tration system are known, they can be integrated over the 
fenestration-facing hemisphere to yield the total transmitted 
and absorbed radiation as well as the outgoing candlepower 
distribution for the particular luminous distribution of the 
fenestration-facing hemisphere. 

For operable fenestration components, such as Venetian 
blinds, we measure the solar-optical properties for many 
different setups, such as different slat angles for Venetian 
blinds, since each device setup has unique radiant behavior. 
To simulate the hourly luminous and thennal perfonnance 
of an operable fenestration system throughout a full daily 
cycle, we select the properties for each hour that correspond 
to the appropriate device position based on its operational 
strategy. 

A daylight analysis computer modellD and a thennal anal­
ysis computer model14 then produce the appropriate input 
for an energy analysis computer model l

.2. The entire exper­
imental and computational process, shown in Figure 2, 
includes validation stages using our sky simulator" and our 
Mobile Window Thennal Test (MoWiTI) facility.' 

Application Example 
In order to partially test and demonstrate the usefulness 

and the potential of our methodology, we applied it to de­
tennine the total transmitted luminous flux through an op­
erable slat-type shading device under various sun, sky and 
ground conditions. 

Slat-type shading devices are among the most popular in 
commercial buildings. Previous simulations of their radi­
ant performance have been based on geometrical model­
ing. II

•
1
2.16.S.17 Such modeling incorporates assumptions 

about the slats' geometry and reflectance. Usually, slats 
are assumed to be flat with perfectly diffusing finish, while 
in reality they are usually curved, like Venetian blinds, and 
most commercially available slat finishes have a substan­
tial specular component to their reflectance. 

The slat-type shading device that we used was a Venetian 
blind system composed of 1 inch wide aluminum slats 
with a semi-specular grey finish of approximately 40 per­
cent reflectance. The distance between the slats was 0.75 
inches. We measured the directional-hemispherical trans­
mittance of the Venetian blinds and then used the measured 
coefficients to simulate the total transmitted flux during 
typical winter and summer days for several window orienta­
~ons. To further demonstrate the importance and the ne­
cessity of detailed solar-optical properties for perfonnance 
simulation, we used the same measured data in two differ­
ent simulations, to examine the perfonnance differences be-

3 
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0° 150 30° 45° 60° 

The slat angles of the \T;netian Blinds that were considered for the directional­
hemispherical transmittance measurements. 

tween blinds with horizontal slats and blinds with vertical 
slats_ 

Experimental procedures 
Using our large integrating sphere,' we measured the di­

rectional-hemispherical transmittance of a 2 ft x 2 ft sam­
ple of the Venetian blinds_ Measurements were taken for 
five slat angles downwards from the fully open position_ 
These were 0 degrees (fully open position), 15 degrees, 30 
degrees, 45 degrees, and 60 degrees [Figure 3] _ The in­
coming directions covered were at intervals of 15 degrees in 
both the relative azimuth, ~, and the incident angle, e 
[Figures 4 and 5]_ 

The results from the measurements are shown in Figure 
6_ From these figures we can see that the transmittance 
can vary significantly (between approximately 0.1 and 0.9), 
depending on the direction of the incoming radiation and, of 
course, on the slat angle of the Venetian blinds. 

The same transmittance coefficients were used to model 
the performance of both horizontally and vertically oriented 
slats, for vertical windows. With horizontal orientation of 
the slats, the sky directions correspond to relative azimuths 
o degrees through 90 degrees and 270 degrees through 360 
degrees, while the ground directions correspond to relative 
azimuths 90 degrees through 270 degrees. With vertical or­
ientation of the slats, the sky directions correspond to rela­
tive azimuths 0 degrees through 180 degrees or 180 degrees 
through 360 degrees (values are symmetrical), the rest cor­
responding to the ground directions. 

Computational procedures 
For the purposes of this study we assumed that the shad­

ing devices would be adjusted to always block direct sun­
light penetration with slats as open as possible. We consi­
dered both continuous and stepped tilting of the slats at 15 
degrees increments. Two kinds of comparisons were made 
for horizontal and vertical orientations of the slats: 

• comparison of the slat angles for solar blocking and 
• comparison of the total transmitted daylight flux. 
The angle of the slats gives information about the poten-

tial of the shading system to provide view. The total day­
light flux transmitted indicates the potential for daylight 
contribution to lighting needs and the impact of solar heat 
gain on heating and cooling loads. 

The simulation was performed for every daytime hour of 
a typical winter day (February 12th) and a typical summer 
day (July 2nd). For the winter day we examined two differ­
ent ground reflectance values, one for grass/soil (0.2) and 
one for snow (0.8). The weather data were from Madison, 
Wisconsin. Since we assumed that shading systems are 
used to control direct solar radiation, only clear-sky lumi­
nance distributions were considered, and the slats were re­
tracted when the sun was not in the fenestration-facing 
hemisphere. Five different orientations were examined: 
north, northeast, east, southeast and south. The southwest, 
west and northwest orientations were not examined, be­
cause they are symmetrical to the southeast, east and north­
east, with respect to the relative positions of the sun and 
the fenestration system. 

For the hourly performance simulation, the transmitted 

1 

luminous source 

" / -0----------... 
/1 

Figure .. -The incident angle, e and the a%imuth angle, r. 

Figure 5-Projection of the positions of the luminous source that were con­
sidered for the directional-hemispherical transmittance measurements. 
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Figure 6-Direcrional-hemispherical transmittance coefficients of the 
Venetian blinds for 0° (A), 15° (B), 30° (C), 45° (D), and 60° (E) slat angle 
downwards from the fully open position. 

flux from sky and ground was determined by integration 
over the sky and the ground. using 15 degree intervals for 
both relative azimuth and incident angle. During the inte­
gration we applied directly the measured transmittance coef­
ficients for each angle-dependent sky and ground elemenL 
The transmittance coefficients to be used for the specific 
slat angle for each hour were determined by interpolating 
between the closest slat angles considered in the measure­
ments. The direct solar illuminance -and the luminance dis­
tribution of the sky were calcUlated according to the proce­
dures followed in the DOE-2.1B energy analysis program.20 

Simulation results 
Some of the results from the performance simulations 

considering continuous tilting of the slats are shown in 
Figures 7 and 8. for east and south orientation respec­
tively. where the bar charts show the total luminous flux 
transmitted through horizontal and vertical slats (left scales) 
and the line charts show the angle of the slats from the ful­
ly open position (right scales). 

It should be noted that the results of these simulations 
are for the purposes of demonstrating our methodology and 
have not been validated with measurements of the actual 
performance under real sky and ground conditions. This 
was our first attempt to combine detailed solar-optical 
properties with analytical procedures and it was not meant 
to provide a complete. accurate analysis of the perfonnance 
of Venetian blinds. . 

The results from the simulation show that the total 
transmitted flux through a fenestration system indeed de­
pends strongly on the combined consideration of the lumi­
nance distribution of the fenestration-facing hemisphere and 
the radiant behavior of the fenestration system. This be­
comes obvious especially for the cases where both vertical 
and horizontal slats are fully open. transmitting different 
luminous flux. In some cases. as. for example. during the 
summer midday hours for south orientation. the signifi­
cantly tilted vertical slats transmit more daylight than the 
fully open horizontal slats. This emphasizes the impact of 
the luminance distribution of the fenestration-facing hemi­
sphere. combined with the directional transmittance of the 
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Figure 7-Transmitted flWlts and slat angles for an cast-facing window during a typical winter day (A). 
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fenestration system. 
Another powerful feature of our ap­

proach is the capability of differentiat­
ing between the various radiation 
sources, in this case between the sun, 
the sky, and the ground. This capabili­
ty contributes greatly to our under­
standing of the fenestration system's 
perfonnance. Figure 9, for example, 
contributes to our understanding of the 
summer midday differences for south 
orientation, indicating that these are 
mainly due to the transmitted direct 
sunlight, through interreflections be­
tween the slats. The high-altitude 
midday summer sun cannot contribute 
significantly to the transmitted flux' 
through the horizontal slats, since it 
directly illuminates only a small frac­
tion of the width of each slat. Howev­
er, for the case of the vertical slats, the 
operation strategy that tilts the slats 
for solar blocking, while trying to 
maintain maximum openness, means 
that the whole width of each slat con­
tributes to the transmission of direct 
sunlight. 

Our approach allows for easy deter­
mination of the effects not only of 
context parameters, such as ground re­
flectance, but of design parameters as 
well, such as the the operation strategy 
for operable shading devices. Figure 
10 shows the south orientation results 
for the stepped tilting of the slats at 15 
degree increments, which are almost 
identical to the corresponding results 
for continuous tilting during the sum­
mer day, but significantly different 
from the corresponding results for con­
tinuous tilting during the winter day. 

Conclusions and 
Future Directions 

We described our methodology for 
the detennination of the luminous and 
thermal performance of fenestration 
systems of arbitrary complexity, treat­
ing them as electric lighting flxtures of 
continuously varying output. We 
demonstrated the usefulness and the po­
tential of our methodology using 
measured directional-hemispherical 
transmittance of commonly used Vene­
tian blinds to detennine the totallumi­
nous flux transmitted for vertical and 
horizontal orientation of the blinds' 
slats, throughout typical winter and 
summer days. Although we intend to 
use the total flux properties of fenestra-
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tion systems for the determination of 
solar heat gain, the total transmitted 
luminous flux can also be used with 
coefficient-of-utilization methods for 
determining work-plane illuminance. 

Currently, we are fine-tuning the 
measurement and calculation process to 
determine bidirectional solar-optical 
properties and transmitted candlepower 
distributions under any sun, sky and 
ground conditions. Using these new 
facilities we will create libraries of 
measured solar-optical properties for a 
large variety of commonly used fenes­
tration components. We will then be 
able to simulate the performance of 
any combination of fenestration com­
ponents for any application, geograph­
ic location, and orientation of fenestra­
tion. 

Although the process of measuring 
and organizing such detailed properties 
is long, especially for bidirectional 
properties, these properties, once deter­
mined, can be used for any daylight ap­
plication. Moreover, the computation 
time involved in the analytical routines 
is very short, since it involves only 
the selection of the appropriate trans­
mittance, reflectance, or absorptance 
coefficients, rather than time­
consuming calculation of the radiant 
phenomena within the fenestration sys­
tem. Most important, our methodolo­
gy can be used to simulate the lumi­
nous and thermal performance of any 
fenestration system, in an accurate and 
consistent way. 
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