
UCSF
UC San Francisco Previously Published Works

Title
A deep learning digital biomarker to detect hypertension and stratify cardiovascular 
risk from the electrocardiogram.

Permalink
https://escholarship.org/uc/item/6dp6w537

Journal
npj Digital Medicine, 8(1)

Authors
Al-Alusi, Mostafa
Friedman, Samuel
Kany, Shinwan
et al.

Publication Date
2025-02-22

DOI
10.1038/s41746-025-01491-8
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/6dp6w537
https://escholarship.org/uc/item/6dp6w537#author
https://escholarship.org
http://www.cdlib.org/


npj | digitalmedicine Article
Published in partnership with Seoul National University Bundang Hospital

https://doi.org/10.1038/s41746-025-01491-8

Adeep learningdigital biomarker todetect
hypertension and stratify cardiovascular
risk from the electrocardiogram

Check for updates

Mostafa A. Al-Alusi1,2,3,11, Samuel F. Friedman 3,4,11, Shinwan Kany3,5, Joel T. Rämö3,6, Daniel Pipilas1,2,3,
Pulkit Singh 3,4, Christopher Reeder 3,4, Shaan Khurshid1,2,3,7, James P. Pirruccello3,8,9,
Mahnaz Maddah 3,4, Jennifer E. Ho 3,10 & Patrick T. Ellinor 1,2,3,7

Hypertension is a major risk factor for cardiovascular disease (CVD), yet blood pressure is measured
intermittently and under suboptimal conditions. We developed a deep learning model to identify
hypertension and stratify risk ofCVDusing12-lead electrocardiogramwaveforms. HTN-AIwas trained
to detect hypertension using 752,415 electrocardiograms from 103,405 adults at Massachusetts
General Hospital. We externally validated HTN-AI and demonstrated associations between HTN-AI
risk and incident CVD in 56,760 adults at Brigham and Women’s Hospital. HTN-AI accurately
discriminated hypertension (internal and external validation AUROC 0.803 and 0.771, respectively). In
Fine-Gray regression analyses model-predicted probability of hypertension was associated with
mortality (hazard ratio per standard deviation: 1.47 [1.36-1.60], p < 0.001), HF (2.26 [1.90-2.69],
p < 0.001), MI (1.87 [1.69-2.07], p < 0.001), stroke (1.30 [1.18-1.44], p < 0.001), and aortic dissection or
rupture (1.69 [1.22-2.35], p < 0.001) after adjustment for demographics and risk factors. HTN-AI may
facilitate diagnosis of hypertension and serve as a digital biomarker of hypertension-associated CVD.

Hypertension affects over 1 billion individuals worldwide1 and is a major
modifiable risk factor for cardiovascular disease (CVD)2–7. Although mea-
surement of blood pressure (BP) is considered straightforward, many
patient- and measurement-related factors can influence BP measurements,
contributing to high inter-visit variability in measured BP1,8–10. Society
guidelines for accurate BPmeasurement are extensive and include requiring
patients to rest for 5minutes, ensuring thepatient has emptied their bladder,
avoiding exercise and caffeine prior to measurement, and averaging BP
readings over multiple visits, among other recommendations1,8,9. However,
these recommendations can be difficult to rigorously implement in busy
clinical settings11.

Despite the high variability of BP measurement, clinicians typically
diagnose and manage hypertension using office BP readings. In doing so,
they must use clinical judgment to estimate a patient’s ambulatory blood
pressure from sparse measurements taken in settings that are

unrepresentative of the patient’s daily life. A further complication is that an
estimated 10–15%of patients havemaskedhypertension, inwhich office BP
is lower than ambulatory BP, with reported prevalence as high as 50% in
African Americans1,12. While guidelines recommend 24-hour ambulatory
BP monitoring to evaluate masked hypertension1,8,9, ambulatory BP mon-
itoring is used infrequently13 and requires clinicians to suspect ambulatory
hypertension justify the test. There is therefore a need for a convenient
biomarker for ambulatory hypertension that integrates the effects of highly
dynamic BPs over time, just as the hemoglobin A1C does for blood glucose.

One modality that provides information about ambulatory hyperten-
sion is the 12-lead electrocardiogram (ECG). Chronic hypertension is well-
known to cause changes in cardiac structure and conduction that are
reflected in ECG features such as increased QRS voltages, prolonged QT
interval, prolonged P wave duration and PR interval, and abnormal
repolarization14. However, outside of extreme features such as high voltages
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meeting criteria for left ventricular hypertrophy, the ECG features of
hypertension are subtle and difficult to use in routine clinical practice.

In this study we aimed to train and validate a deep learning model,
named HTN-AI, that identifies signals within the 12-lead ECG waveform
associated with changes in cardiac structure and conduction caused by
hypertension. We demonstrate 2 applications of HTN-AI. First, we show
that HTN-AI can be used to identify hypertension using only the 12-lead
ECGwaveformas input. Second, because the adverse effects of hypertension
aremediated inpart byhypertension’s effect on themyocardiumwhichmay
manifest in the ECG,we show thatHTN-AI can serve as digital biomarker15

of hypertension-associated cardiovascular risk which can be used to stratify
risk of CVD including mortality, heart failure (HF), myocardial infarction
(MI), stroke, and aortic dissection or rupture.

Results
Population characteristics
Figure 1 depicts an overview of the study. The Massachusetts General
Hospital (MGH) sample comprised 121,720 patients which were divided
into training, development, and internal validation samples (Table 1). There
were 752,415ECGs in the training anddevelopment samples,withmedian3
(1–6)ECGsperpatient andamedian timedifferencebetweenECGand start
of followup of−121 (−561 to 409) days.Mean age in theMGHsamplewas
57.3 (16.8) years and 76,499 (62.8%) patients had known hypertension.
Among those with office BP measurements (n = 36,718 [30.2%] missing

systolic BP [SBP]; n = 36,725 [30.2%] missing diastolic BP [DBP]), 18,835
(22.2%) had SBP ≥ 140mmHg, and 8,680 (10.2%) had DBP ≥ 90mmHg.
Prevalence of baseline cardiovascular comorbidities is shown inTable 1, and
disease definitions are provided in Supplementary Table 1.

The Brigham and Women’s Hospital (BWH) external validation and
outcomes sample included 56,760 patients with mean age 55.1 (16.2) years.
The prevalence of hypertension (31,014 [54.6%]) was lower, though the
rates of elevated SBP (12,494 [23.4%]; n = 3339 [5.9%] missing) and DBP
(6,240 [11.7%];n = 3340 [5.9%]missing)were similar.Only the closest ECG
before the start of follow up was used during external validation, with a
median time difference of−533 (−723 to−279) days.

A digital biomarker for hypertension
We validated the use of the “HTN-AI score” (i.e. model predicted prob-
ability of hypertension, range 0–1) as a digital biomarker for hypertension
diagnosis in 3 ways: (1) by validating model performance for identification
of prevalent hypertension, (2) by demonstrating associations between the
HTN-AI score and short-term incidence of hypertension diagnosis, and (3)
by testing associations between the HTN-AI score and mean 24-hour
ambulatory blood pressure.

First, we examined model performance in identifying prevalent
hypertension using only the 12-lead ECG waveform. The HTN-AI score
discriminated patients with baseline hypertension or elevated BP with an
AUROCof 0.803 (0.796–0.810) in theMGH internal validation sample and

Fig. 1 | Overview of study design. The HTN-AI model is a 3-dimensional con-
volutional neural network that was trained to identify hypertension using only 12-
lead ECG waveforms in longitudinal primary care and cardiology patients at
Massachusetts General Hospital. HTN-AI was validated in a sample of primary care
patients from Brigham andWomen’s Hospital. We also tested associations between
the HTN-AI score (i.e. predicted probability of hypertension) and incident

outcomes including all-cause mortality, heart failure, myocardial infarction, stroke,
and aortic dissection and rupture in the Brigham and Women’s Hospital sample.
BWH Brigham and Women’s Hospital, C3PO Community Care Cohort Project,
ECG electrocardiogram, EWOC Enterprise Warehouse of Cardiology, MGH
Massachusetts General Hospital.
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0.771 (0.767–0.775) in the BWH validation sample (Supplementary Fig. 2).
Average precision was 0.865 (0.858–0.872; prevalence 0.655) in the MGH
internal validation sample and 0.811 (0.806–0.816; prevalence 0.597) in the
BWH external validation sample. At a HTN-AI score threshold of 0.85,
which was defined to achieve 90% specificity in the model development
sample to simulate an opportunistic screening use case, HTN-AI achieved
internal validation sensitivity of 0.412 (specificity 0.908) and external vali-
dation sensitivity of 0.329 (specificity 0.917). Other performance metrics
andmodel sensitivity analyzes are shown in Supplementary Table 2. Model
performance metrics for model outputs other than the HTN-AI score is
shown in Supplementary Table 3.

Second, we tested associations between the HTN-AI score and short-
term incidence of new hypertension diagnosis as a proxy for the ability of the
HTN-AI score to detect undiagnosed hypertension. Among 2282 patients in
the high-risk HTN-AI group without baseline hypertension (i.e. HTN-AI
“false positives”) therewere 1,261 incident hypertensiondiagnoses (estimated
1-year cumulative incidence of 17.3% [15.7–18.9]) compared to 7351 diag-
noses among 23,043 patients in the HTN-AI low-risk group (i.e. “true
negatives”; estimated1-year cumulative incidenceof 7.1%[6.8–7.4];p < 0.001;
Supplementary Table 4), suggesting that the HTN-AI score has prognostic
value fordetectionofhypertensionamongpatientswith suspectednormalBP.

Third, we examined the relationship between HTN-AI risk and gold-
standardmeasurement of mean 24-hour ambulatory BP.We identified 243
patients in the BWH sample who had both 24-hour ambulatory BP mon-
itoring and a 12-lead ECG performed <1 year apart. Within this sample,
mean systolic BP was 130.6 ± 15.4mmHg and mean diastolic BP was
73.9 ± 10.7mmHg. A total of 177/243 (72.8%) patients had elevated
24-hour average BP (i.e. average systolic BP ≥ 125mmHg or average dia-
stolic BP ≥ 75mmHg). High HTN-AI risk was associated with an increase
in mean 24-hour systolic blood pressure of 11.0 (6.6–15.4) mmHg as
compared to low HTN-AI risk, after adjustment for age, sex, and anti-
hypertensivemedication use.HighHTN-AI riskwas also associatedwith an
odds ratio of 3.03 (1.47–6.64) for elevated 24-hour ambulatory BP after
adjustment for age, sex, and antihypertensive medication use (p = 0.004).

Risk stratification of hypertension-associated cardiovascular
disease
We explored whether HTN-AI can be used as a digital biomarker of
hypertension-associated cardiovascular risk by investigating associations
between theHTN-AI score andfive sequelaeof hypertension:mortality,HF,
MI, stroke, and aortic dissection or rupture. HTN-AI risk significantly
stratified incidenceof all examinedoutcomes (Fig. 2 andSupplementaryFig.
3). For example, among 12,945 patients with high HTN-AI risk, 4181 died
overmedian follow up of 5.6 years (estimated 10-year cumulative incidence
21.0% [20.2–21.7]). In comparison, among 43,225 patients at low HTN-AI
risk, 4125 patients died over median follow up of 7.8 years (10-year
cumulative incidence 5.4% [5.2–5.6]; p < 0.001). Event rates for other out-
comes are shown in Supplementary Table 5.

To understand whether the HTN-AI score provides additional infor-
mation about cardiovascular risk in patients with known hypertension, we
examined CVD incidence stratified by both HTN-AI risk and baseline
hypertension status. HTN-AI risk stratified cumulative incidence of mor-
tality among both patients with and without a baseline diagnosis of
hypertension (Fig. 3a and Supplementary Table 6). Among 30,771 patients
with known hypertension, 10,627 had high predicted HTN-AI risk and
20,144 had lowpredictedHTN-AI risk. Over amedian follow up time of 5.7
years, therewere3480/10,627 (32.7%)deaths in thehighHTN-AI risk group
and 2622/20,144 (13.0%) deaths in the low HTN-AI risk group (estimated
10-year cumulative incidence 39.9% [38.7–41.1] for high HTN-AI risk vs
13.8% [13.3–14.4] for low HTN-AI risk). The pattern was similar among
patients without baseline hypertension and for outcomes other than mor-
tality (Supplementary Table 6).

Table 1 | Patient characteristics

Massachusetts
General Hospital
Model Development

Brigham and
Women’s Hospital
External
Validation and
Outcomes

N 121,720 56,760

Age (y), mean ± standard
deviation

57.3 ± 16.8 55.1 ± 16.2

Sex, n (%)

Female 58,970 (48.4) 33,755 (59.5)

Male 62,750 (51.6) 23,005 (40.5)

Race or Ethnicity, n (%)

Asian or Pacific Islander 4481 (3.7) 1488 (2.6)

Black 6523 (5.4) 7407 (13.0)

Hispanic or Latino 4850 (4.0) 4494 (7.9)

Multiple/Other 3989 (3.3) 2149 (3.8)

Unknown 3299 (2.7) 2609 (4.6)

White 98,578 (81.0) 38,613 (68.0)

Atrial Fibrillation, n (%) 21,307 (17.5) 5588 (9.8)

Chronic Kidney Disease, n (%) 14,346 (11.8) 5824 (10.3)

Coronary Artery Disease, n (%) 41,783 (34.3) 15,320 (27.0)

Diabetes Mellitus, n (%) 23,679 (19.5) 9750 (17.2)

Heart Failure, n (%) 7124 (5.9) 2305 (4.1)

Hyperlipidemia, n (%) 71,911 (59.1) 25,679 (45.2)

Hypertension, n (%)a 76,499 (62.8) 31,014 (54.6)

Stroke, n (%) 7948 (6.5) 1957 (3.4)

Myocardial Infarction, n (%) 17,198 (14.1) 6892 (12.1)

Antihypertensive Medication
Use, n (%)

68,751 (56.5) 31,154 (54.9)

Systolic Blood Pressure (mmHg)

Mean ± standard deviation 126.6 ± 17.7 127.6 ± 18.0

Unknown 36,718 (30.2) 3339 (5.9)

Systolic Blood Pressure
≥140mmHg, n (%)

18,835 (22.2) 12,494 (23.4)

Diastolic Blood Pressure (mmHg)

Mean ± standard deviation 75.5 ± 10.6 75.8 ± 11.2

Unknown 36,725 (30.2) 3340 (5.9)

Diastolic Blood Pressure ≥
90mmHg, n (%)

8680 (10.2) 6240 (11.7)

Hypertension Diagnosis or High
Baseline Blood Pressure, n (%)

79,751 (65.5) 33,906 (59.7)

Body Mass Index (kg/m2)

Mean ± standard deviation - 28.7 (6.6)

Unknown - 11,644 (20.5)

Smoking Status

Current Smoker - 2648 (4.7)

Not Current Smoker - 26,464 (46.6)

Unknown - 27,648 (48.7)

Source Population, n (%)

Cardiology Cohort 40,723 (33.5) 0 (0.0)

Primary Care Cohort 80,997 (66.5) 56,760 (100.0)
aBy ICD-9 or ICD-10 code.
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We also examined cumulative incidence of CVD stratified byHTN-AI
risk and age, finding that HTN-AI risk stratified cumulative incidence of all
outcomes within age strata (Fig. 3b and Supplementary Table 7). We
additionally stratified cumulative incidence by the quintile of HTN-AI
score, finding that events were concentrated among patients in the top
quintilewith a gradient of risk at lower quintiles (Fig. 3c, and Supplementary
Table 8).

In regressionmodels accounting for competing risk of death, theHTN-
AI score was significantly associated with mortality (HR per SD: 1.47
[1.36–1.60], p < 0.001), HF (2.26 [1.90–2.69], p < 0.001), MI (1.87
[1.69–2.07], p < 0.001), stroke (1.30 [1.18–1.44], p < 0.001), and aortic dis-
section or rupture (1.69 [1.22–2.35], p < 0.001), after adjustment for age, sex,
baseline hypertension status, baseline hypertension medication use,
diabetes, hyperlipidemia, body mass index, and current smoking status.
Figure 4 compares adjusted HRs per SD of HTN-AI score, SBP, and pulse
pressure, demonstrating that effect sizes were higher for HTN-AI than for
SBP or pulse pressure across all outcomes.

Finally, we assessed discriminative performance of the HTN-AI score
as a digital biomarker for incident CVD using Harrell’s C-statistic

(Supplementary Table 9). The HTN-AI score significantly discriminated
incidence of all CVD outcomes (C-statistic range 0.704–0.804). Dis-
crimination for theHTN-AI scorewashigher than the discrimination of age
for HF (HTN-AI score C-statistic 0.804 [0.796–0.813] vs age C-statistic
0.725 [0.713–0.736]) andMI (HTN-AI scoreC-statistic 0.733 [0.725–0.742]
vs age C-statistic 0.665 [0.656–0.675]).We also compared discrimination of
theHTN-AI score to discrimination of established clinical risk scores forHF
and atheroscleroticCVD.HTN-AIdiscrimination ofHFwas comparable to
the Pooled Cohort Equation to Prevent Heart Failure (PCP-HF) score16

(HTN-AI score C-statistic 0.804 [0.796–0.813] vs PCP-HF C-statistic 0.806
[0.773–0.839]). HTN-AI also demonstrated superior discrimination com-
pared the Pooled Cohort Equation (PCE)17 for MI (HTN-AI score
C-statistic 0.733 [0.725–0.742] vs PCE C-statistic 0.681 [0.670–0.693]) and
stroke (HTN-AI score C-statistic 0.704 [0.693–0.714] vs PCE C-statistic
0.683 [0.669–0.698]).

Model interpretability
TounderstandhowHTN-AI is influencedby standardECGmeasurements,
we examined theproportionof variability in theHTN-AI score explainedby

Fig. 2 | Cumulative incidence of mortality, heart failure, myocardial infarction,
and ischemic stroke stratified by HTN-AI risk. In the Brigham and Women’s
Hospital external validation sample, we assessed cumulative incidence of cardio-
vascular outcomes including (a) all-cause mortality, b heart failure, c myocardial
infarction, and d ischemic stroke, stratified by HTN-AI risk. Cumulative incidence

of aortic dissection or rupture is shown in Supplementary Fig. 3. HTN-AI risk was
able to significantly stratify cumulative incidence of each outcome. Our findings
suggest that HTN-AI does not only identify patients at risk of hypertension, but also
of downstream sequelae of hypertension.
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ECG measurements among the 56,760 patients in the BWH external vali-
dation sample using linear regression. The examined ECG measurements
included the heart rate; PR, QRS, and QT intervals; P-wave, R-wave, and
T-wave axes; S-wave amplitudes in leadsV1andV3; andR-wave amplitudes
in aVL, V5, andV6. The greatest variability inHTN-AI score was explained
by the R wave amplitude in aVL (R2 = 0.175), R-wave axis (R2 = 0.163), and
QRS interval (R2 = 0.077). The adjusted R2 for a multivariable model
including all ECGmeasurementswas 0.358. Intuitively, longer PR,QRS and
QT intervals, higher aVLR-wave amplitude, andmore leftwardR-wave axis
were associated with higher HTN-AI scores (Supplementary Table 10).
However, we also noted that lowerV1 S amplitude, V5R amplitude, andV6
R amplitude were associated with higher HTN-AI scores (Supplementary
Table 10), suggesting thatHTN-AIpredictions donot correlate linearlywith
conventional voltage criteria for left ventricular hypertrophy.

We also sought to explain HTN-AI predictions by generating saliency
maps and median ECG waveforms for 1024 randomly selected patients
from the top and bottom deciles of HTN-AI score in the BWH sample
(Supplementary Fig. 4,5) to visualize which areas of the ECG contribute to

HTN-AI predictions. Saliency maps highlight regions of the ECG that are
influential on model outputs, and qualitatively demonstrated that the most
salient regions of the ECG vary from lead to lead, though generally areas of
the ECG that do not correspond to atrial or ventricular depolarization or
repolarization (i.e. the T–P segment) do not contribute significantly to
model predictions. Qualitative comparison of median waveforms of high
and low risk patients demonstrates that higher voltages, wider QRS com-
plexes, and wider and flatter P- and T-waves are associated with higher
HTN-AI scores.

Finally, we also assessed whether associations between the HTN-AI
score and CVD are sensitive to presence of other ECG abnormalities by
examining the associations betweenHTN-AI score and incidentCVD in the
subset of patientswithECGs interpretedby a cardiologist asnormal.Among
patients in the BWH sample with normal ECGs, the association with the
HTN-AI score remained significant for all outcomes except aortic dissection
or rupture (p = 0.300; p < 0.05 for other outcomes; Supplementary Fig. 6),
suggesting that HTN-AI retains prognostic value even when there are no
overt ECG abnormalities.

Fig. 3 | Cumulative incidence of all-causemortality stratified byHTN-AI risk and
baseline hypertension status, HTN-AI risk and age, and quintile of HTN-
AI score. The figure depicts cumulative incidence of all-cause mortality stratified by
aHTN-AI risk and baseline hypertension status, bHTN-AI risk and age, and c quintile
of HTN-AI risk. a To determine the additional clinical utility of HTN-AI over baseline
hypertension status, we assessed cumulative incidence of cardiovascular outcomes
stratified by bothHTN-AI risk and baseline hypertension status.HighHTN-AI riskwas
associated with increased risk of adverse outcomes regardless of baseline hypertension

status, suggesting that HTN-AI detects electrocardiographic features of hypertension
that are relevant to downstream risk of adverse sequelae of hypertension. bWe also
assessed cumulative incidence of cardiovascular outcomes stratified by age, demon-
strating that the HTN-AI score stratified risk of adverse outcomes independent of age.
cWe stratified cumulative incidence of cardiovascular outcomes by quintile of HTN-AI
score. The HTN-AI score represents a gradient of cardiovascular risk that is most
concentrated in the top quintile, suggesting that the HTN-AI score may be especially
useful to identify patients at the highest risk of downstream cardiovascular disease.
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Discussion
Here we present HTN-AI, a deep learning-based digital biomarker that
was trained to identify hypertension exclusively from signals contained
within the 12-lead ECG waveform. HTN-AI was trained using over
750,000 ECGs from over 100,000 patients, and externally validated in a
sample of over 56,000 patients from a second hospital. In this work we
demonstrate that HTN-AI accurately identifies prevalent hypertension,
stratifies risk of short-term incidence of hypertension diagnosis, and is
associated with elevated BP as measured by gold-standard 24-hour
ambulatory BP monitoring. We further demonstrate that HTN-AI stra-
tifies risk of hypertension-associated CVD regardless of baseline hyper-
tension status or presence of overt ECG abnormalities, suggesting that it
may be useful as a digital biomarker of hypertension-associated cardio-
vascular risk.

Deep learning applied to 12-lead ECGs has previously been used to
classify prevalent18 and incident19 atrial fibrillation, left ventricular systolic
dysfunction20, valvular disease21, and mortality22, among other CVD states,
demonstrating the feasibility of disease prediction from 12-lead ECG sig-
nals.While small non-clinical studies23,24 have used deep learning to classify
prevalent hypertension from ECGs, our work does so at scale using clinical
data and demonstrates the associations of model-predicted probability of
hypertension with incident CVD.

Office BP is often used to diagnose andmanage hypertension but does
not always reflect ambulatory BP, leading to potential underdiagnosis of
ambulatory hypertension1,10. In contrast, HTN-AI detects electrocardio-
graphic features of hypertension which result from the cumulative effect of
high ambulatory BP on the myocardium, which is well-known to cause
changes in cardiac structure and conduction. HTN-AI may therefore be
useful to screen for ambulatory hypertension evenwhen office BP is normal
by identifying patients with subclinical ECG features of hypertensionwhich
could prompt confirmatory testing with ambulatory BP monitoring.

As an example, HTN-AI could be deployed to opportunistically screen
formasked hypertension in the primary care setting using the 12-lead ECG.
Patientswithout hypertensionbutwithhighECG-basedHTN-AI risk could
be screened with 24-hour ABPM. Assuming a 10% prevalence of masked
hypertension as previously estimated1, HTN-AI would have an estimated
positive predictive value of approximately 0.3 based on our validation
sensitivity and specificity, suggesting that for every 3-4 high HTN-AI risk
patients screened with ABPM 1 would be diagnosed with hypertension.

However, further work is needed to validate HTN-AI specifically for
detection of masked hypertension.

Though HTN-AI was only trained to identify hypertension from the
ECG it also stratifies risk of hypertension-related CVD and does so
regardless of baseline hypertension status. Our findings suggest that HTN-
AI can serve as a digital biomarker for hypertension-associated cardiovas-
cular risk bydetecting electrocardiographic features of hypertension that are
also associated with incident CVD. In fact, we observed greater normalized
effect sizes for the HTN-AI score than for baseline BP across all CVD
outcomes, suggesting that HTN-AI is a better marker of cardiovascular risk
than convenience office BPmeasurements. Additionally, forHF andMI the
HTN-AI score achieved comparable or superior discrimination to estab-
lished clinical risk scores without requiring any prior knowledge about the
patient aside froma12-leadECG.Notably, it remains unknownwhether the
HTN-AI score represents accumulated non-modifiable cardiovascular
damage or modifiable risk that can be reversed with treatment.

Deep learning methods are well-suited to learning from high-
dimensional inputs such as the ECG. We demonstrate that despite sig-
nificant correlations between the HTN-AI score and standard ECG mea-
surements, when combined thesemeasurements still only explain a fraction
of the variability captured by our model, which is able to learn highly non-
linear interactions betweenvarious regions of the ECGwaveform.However,
the strong performance afforded by the non-linearity of deep learning
methods comes at the cost of limited interpretability. To mitigate this
limitation, we provide saliency maps and median waveforms that suggest
HTN-AI focuses on ECG regions that are known to exhibit hypertension-
related changes. Furthermore, the strong associations between HTN-AI
predictions and CVD suggest that the model detects biologically relevant
signal in ECG waveforms that correlate with the physiological effects of
hypertension.

Our study should be interpreted in the context of its limitations. Given
the size of our sample which exceeded 150,000 patients, hypertension status
for model training was by necessity determined using office BPs and diag-
nosis codes rather than gold-standard ambulatory BP monitoring, creating
potential for misclassification. However, weminimizedmisclassification by
employing study cohorts that were purpose-built to limit missingness and
ascertainment bias, and our outcomes cohort was previously validated with
respect to established cardiovascular risk models including BP
measurements25. Furthermore, the scale of our training sample allows the

Fig. 4 | Associations between HTN-AI and incident cardiovascular outcomes
compared to baseline blood pressure. To compare the associations of blood
pressure measurements and the HTN-AI score with incidence cardiovascular
outcomes, we performed cause-specific hazard regression of five cardiovascular
outcomes (mortality, heart failure, myocardial infarction, ischemic stroke, and
aortic dissection or rupture) against each of HTN-AI, baseline systolic blood
pressure, and baseline pulse pressure, with adjustment for age, sex, baseline
hypertension status, baseline hypertension medication use, diabetes, hyperlipide-
mia, body mass index, and current smoking status. Pulse pressure was included in

place of diastolic blood pressure due to the non-linear relationship between diastolic
blood pressure and age. The figure depicts a forest plot of the results, with each
hazard ratio representing the adjusted subdistribution hazard ratio per standard
deviation of the covariate. Error bars represent 95% confidence intervals. Across all
outcomes, the effect size per standard deviation of the HTN-AI score is greater than
the corresponding effect size per standard deviation of each blood pressure metric.
Our results suggest that the HTN-AI score captures more information about risk of
hypertension-associated cardiovascular disease than does office blood pressure
measurement. BP: blood pressure. HR: hazard ratio. SD: standard deviation.
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model to identify electrocardiographic patterns associated with hyperten-
sion aggregated across 750,000 training ECGs, despite the noise introduced
by potential misclassification of individual patients. We also compare the
HTN-AI score to gold-standard 24-hour ambulatory BP monitoring,
showing that high HTN-AI risk is associated with higher mean 24-hour
systolic BP and greater odds of abnormal 24-hour ambulatory BP mon-
itoring results. Finally, HTN-AI predictions are strongly associated with
incident CVD, indicating that the model identifies a physiological ECG
signature of hypertension despite learning from training labels derived from
electronic health records. Nevertheless, prior to implementation in clinical
practice it will be necessary to prospectively validate the HTN-AI score
against gold-standard measures of hypertension such as 24-hour ABPM.
Additionally, though we trained and validated our model in distinct
populations from 2 hospitals, both are large academic centers within one
hospital system representing a single geographic region of theUnited States.

HTN-AI is a deep learningmodel that identifies hypertension from12-
leadECGsignals and stratifies risk of incidentmortality,HF,MI, stroke, and
aortic dissection or rupture. Our work demonstrates the potential of a deep
learning model to facilitate the diagnosis of hypertension and serve as a
novel digital biomarker for the risk of hypertension-associated cardiovas-
cular disease.

Methods
Study population
The study protocol was approved by the MGH Institutional Review Board
(Protocol #2017P001650) and complied with the Declaration of Helsinki.
The requirement for informed consent was waived by the institutional
review board given the low-risk retrospective nature of the study and
privacy-protecting measures implemented by the investigators. The study
samples were derived from 2 longitudinal electronic health record (EHR)-
based cohorts of ambulatory patients within the Mass General Brigham
(MGB)healthcare system(Fig. 1).Thefirst cohortwas theCommunityCare
Cohort Project, a cohort of 520,868 patients aged 18 to 89 years with
multiple visits to MGB primary care clinics between 2001 and 2018. The
cohort was designed to ensure accurate ascertainment of baseline comor-
bidities by capturing only patients receiving longitudinal primary care
within the MGB system, and to minimize missingness by using natural
language processing to recover missing data from clinical notes25. Com-
parison of the Community Care Cohort Project to a convenience EHR
sample demonstrated better calibration for established risk models
including the Pooled Cohort Equation and Cohorts for Heart and Aging
Research in Genomic Epidemiology Atrial Fibrillation (CHARGE-AF) risk
score25. The second cohort was the EnterpriseWarehouse of Cardiology, an
analogously designed cohort of 99,252 longitudinal cardiology patients
between the ages of 18 and 89 years with multiple visits to MGB cardiology
clinics between 2000 and 201926. Start of follow up in each cohort was the
date of the second clinic visit that determined cohort inclusion.

The HTN-AI model was trained in patients in either cohort with 1 or
more 12-lead ECG performed at MGH within 3 years of the start of follow
up. Internal validity was assessed in a hold-out MGH validation sample
using the most recent ECG performed within the 3 years before the start of
follow up. Patients missing data for age or sex were excluded. External
validation and time-to-event analyzes were performed in patients in the
primary care cohort with 12-lead ECGs done at BWH within the 3 years
before the start of follow up (BWH external validation sample). Patients
with bothMGHandBWHECGswere included only in the training sample,
andpatientsmissingdata for age, date of last followup, or sexwere excluded.

Patient characteristics and outcomes
Age, sex, race, ethnicity, comorbidities, and outcomeswere determined using
EHR data. Race and ethnicity were extracted from a combined EHR field.
Baseline comorbidities, including atrial fibrillation, chronic kidney disease,
coronary artery disease, diabetes mellitus, HF, and hypertension, were
determined by presence of a single International Classification of Diseases
(ICD)-9 or ICD-10 code corresponding to the comorbidity (see

Supplementary Table 1) by the start of cohort follow up, except for atrial
fibrillation and HF. Atrial fibrillation was defined using a previously pub-
lished algorithm that uses diagnostic and procedural codes and ECG
reports27.HFwasdefinedusingdiagnosis codes for aprimarydiagnosis ofHF
for inpatient encounters. Hypertensionmedication usewas determined from
EHRmedication records. Baseline BP, body mass index, and smoking status
was defined using the most recent values within the 3 years prior to start
follow up and was obtained using structured EHR data and natural language
processing of clinical notes25. Bodymass index was filtered to a range of 5 kg/
m2 to 150 kg/m2. If body mass index data was unavailable, it was calculated
from height and weight data, if available. Height was filtered to a range of
121.92 cm (4 feet) to 304.8 cm (10 feet). Weight was filtered to a range of
13.6 kg (30 lbs) to454.5 kg (1000 lbs).Within theBWHvalidation sample,we
identified patientswho underwent 24-hour ambulatory BPmonitoring using
Current Procedural Terminology codes (93784, 93786, 93788, 93790, and
A4670) and manually reviewed ambulatory BP monitoring results to obtain
24-hour average systolic and diastolic BP.

CVDoutcomes includedall-causemortality,HF,MI, stroke, and aortic
dissection or rupture. Dates of death were determined using EHR records.
Dates of incident HFwere defined as the date of the first inpatient diagnosis
code for HF in the primary position. Dates of incidence of other outcomes
were the date of the first corresponding diagnosis code after the start of
follow up.

Electrocardiogram acquisition and preprocessing
ECGsandmetadatawere obtained from theMUSECardiology Information
System (GE Healthcare). Prior to presentation to the model, voltages for
each ECG are normalized to have mean zero and standard deviation of 1.
ECGs recorded at 250 Hz are bilinearly upsampled to 500Hz and leadswith
missing data are zero-padded such that all 12 leads contain 5000 voltages.
ECGs without abnormalities were identified via text matching using phy-
sician interpretations.

Model development and training
Patients were considered to have prevalent hypertension if they had (1) a
baseline diagnosis of hypertension by diagnosis code, (2) baseline
SBP ≥ 140mmHg, if available, or (3) baselineDBP ≥ 90mmHg, if available.
Multiple ECGswere used per patient during training includingECGsbefore
and after the start of follow up. During validation and time-to-event ana-
lyzes, only the most recent ECG before the start of follow up was used.
Training, development, and internal validation samples were generated
using a 70/15/15 percent split at the patient level.

The HTN-AI model takes as input a 12-lead ECG waveform and pro-
vides 4 outputs: probability of hypertension, probability of antihypertensive
medication use, probability of male sex, and estimated age. No clinical risk
factors or non-ECG data is provided to the model. The model architecture
consists of a series of 1-dimensional convolutions followed by nonlinear
activation functions and downsampling operations which transform the
input froma5000×12 tensor (i.e. a 10 secondECGsampled at 500Hzwith12
leads) to a 256-dimension embedding, which is used by output layers to
generate predictions. The cross entropy loss for the categorical tasks and the
logarithmic hyperbolic cosine loss for age regression were summed and
minimized using the Adam stochastic gradient descent algorithm28.

Model hyper-parameters including depth, width, convolutional kernel
size, and activation function were selected through Bayesian hyperpara-
meter optimization. The resulting architecture contains 15,072,839 para-
meters organized into 3 blocks of densely-connected parallel convolutions
with kernel size of 71, which pass through the swish activation function and
aremerged together and down-sampled bymax-pooling, as in theDensenet
architecture29,30. A dropout rate of 0.5 on dense layers and spatial dropout
rate of 0.2 on convolutional layers are used during training to stochastically
sample from the space of architectures andmitigate overfitting30,31.Weights
are updated using the Adam optimizer with batch size of 24, initial learning
rate of 5e-4. The learning rate decays by a factor of 0.5 after 32 epochs
without an improvement in validation loss32. Early stopping is used to
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checkpoint the model parameters with minimum validation loss during
training, and it is those model parameters which are used for all subsequent
evaluation. Training takes approximately 5 hours until convergence on a
NVidia V-100 GPU.

Deep learning model sensitivity analysis
Tobetter understandwhat drives the performance ofHTN-AIwe conducted
ablation studies using different definitions of hypertension and different sets
of auxiliary tasks in model training. The primary model defined prevalent
hypertension as any combination of (1) a baseline diagnosis of hypertension
by ICD-9 or ICD-10 codes, (2) baseline SBP≥140mmHg, or (3) baseline
DBP≥ 90mmHg. The primary model was trained using this hypertension
labelwith auxiliary tasks of age regression, sex classification, and classification
of baseline antihypertensive medication use. We tested three other combi-
nations of hypertension definitions and tasks:
• A single-task model using the same definition of prevalent hyperten-

sion without simultaneous age regression, sex classification, or
classification of baseline antihypertensive medication use.

• A single-task model that also incorporated use of anti-hypertensive
medication into the definition of prevalent hypertension. For this
model anti-hypertensive medication use was not used as an auxiliary
training task.

• A single-task model that included only ICD-9 or ICD-10 code
diagnosis of hypertension without consideration of baseline BP.

Formodels that incorporatedbaselineBPmeasurements, if baselineBP
measurements were not available they were not used in determining the
training label. Supplementary Table 2 details performance of the primary
model and sensitivity analysis models in both the MGH and BWH test
samples.

Statistical analyses
We report normally distributed data as means (standard deviation [SD]),
non-normally distributed data as median (interquartile range) and cate-
gorical data as counts (%). High and low HTN-AI risk groups were deter-
mined using a HTN-AI score cutoff of 0.85, defined to achieve 90%
specificity in the model development sample. Model performance for
hypertension classification is reported as area under the receiver operating
characteristicor curve (AUROC), sensitivity/recall, specificity, precision,
average precision, and F1 score.

We tested the association betweenHTN-AI risk group and elevated 24-
hour ambulatory BP using logistic regression with adjustment for age, sex,
and use of an antihypertensive medication prior to ambulatory BP mon-
itoring and report 2-sided Wald p-values. For incident disease analyzes, we
show cause-specific cumulative incidence curves for each outcome with
2-sided p-values for equivalence between groups calculated by Gray’s test,
accounting for competing risk of death for outcomes other than mortality.
Cause-specific Fine-Gray regression was performed accounting for com-
peting risk of death for outcomes other than mortality, with adjustment for
age, sex, body mass index, and baseline hypertension, diabetes mellitus,
hyperlipidemia, smoking status, and antihypertensive medication use. Sub-
distributionhazard ratios (HRs) and95%confidence intervalswith2-sidedp-
values are reported. Patientswere right-censored at the lastEHRencounter or
on 8/31/19. We included only cases with complete covariate data and with
available BP data (n= 23,705 [41.8%]) to facilitate comparison between
models using HTN-AI score, SBP and pulse pressure. To assess dis-
crimination of the HTN-AI score for incident CVD we calculated Harrell’s
C-statistic.Weassessedassociationsbetween theHTN-AI score and standard
ECG measurements using linear regression and report beta statistics, 95%
confidence intervals, and univariable and adjusted multivariable R2.

We also performed a sensitivity analysis examining the association of
HTN-AI with incident cardiovascular disease in patients with normal
ECGs, to assess whether the association is sensitive to the presence of
abnormal ECG findings. We obtained the text of cardiologist ECG reads
from the MUSE ECG database. The text of cardiologist ECG reads was

searched for the phrase “Normal Sinus Rhythm Normal ECG” which is a
common phrase, entered using a text macro, used by cardiologists in our
system for ECGs that contain no abnormalities. This was intended to be a
specific rather than sensitive search for ECGs without clinically significant
abnormal features. ECGs in the BWH test sample that contained the phrase
were considered normal, and this subset of ECGs was used in an identical
cause-specific cumulative incidence regression as described above. The
results are depicted in Supplementary Fig. 6.

Data availability
MGBpatient data is protectedhealth informationand is unable to be shared.

Code availability
The model was implemented with the ML4H Python library33 (version
0.0.4) using the Tensorflow34 (version 2.9.1) framework. TheML4HPython
library is available at https://github.com/broadinstitute/ml4h. Statistical
analyzes were done using R (version 4.2.1) with packages cmprsk (version
2.2-11), survival (version 3.4-0), survminer (version 0.4.9), and yardstick
(version 1.1.0).
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