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Abstract

Opisthorchis viverrini is a major public health concern in Southeast Asia. Various reports have 

suggested that this parasite may represent a species complex, with genetic structure in the region 

perhaps being dictated by geographical factors and different species of intermediate hosts. We 

used four microsatellite loci to analyze O. viverrini adult worms originating from six species of 

cyprinid fish in Thailand and Lao PDR. Two distinct O. viverrini populations were observed. In 

Ban Phai, Thailand, only one subgroup occurred, hosted by two different fish species. Both 

subgroups occurred in fish from That Luang, Lao PDR, but were represented to very different 

degrees among the fish hosts there. Our data suggest that, although geographical separation is 

more important than fish host specificity in influencing genetic structure, it is possible that two 

species of Opisthorchis, with little interbreeding, are present near Vientiane in Lao PDR.
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Introduction

Opisthorchis viverrini is one of the most important food-borne trematodes (Sithithaworn et 

al. 2014). It is endemic in several Southeast Asian countries. The highest prevalence is seen 

in Thailand (eight million people infected) followed by the Lao People’s Democratic 

Republic (Lao PDR) (two million people infected) (Andrews et al. 2008; Sithithaworn et al. 

2012). The life-cycle involves freshwater Bithynia snail species as the first intermediate 

hosts, cyprinid fish as second intermediate hosts and humans as definitive hosts. Cats and 

dogs act as reservoir hosts (Saijuntha et al. 2014). Humans are exposed by eating raw or 

partially cooked fish infected with viable metacercariae of O. viverrini (Grundy-Warr et al. 

2012; Sithithaworn and Haswell-Elkins 2003). Early human infection is commonly 

asymptomatic but chronic infection can lead to hepatobiliary disease and subsequent 

cholangiocarcinoma (CCA) (Chamadol et al. 2014; Sithithaworn et al. 2014). CCA has a 

very poor prognosis with death typically occurring within a few months of diagnosis (Sripa 

et al. 2007). Based on human and experimental studies, O. viverrini is classified as a group 1 

carcinogen along with Clonorchis sinensis and Schistosoma haematobium (IARC 2012).

Studies using multilocus enzyme electrophoresis (MEE) have shown that O. viverrini is a 

species-complex comprising of at least two cryptic sibling species, one in Thailand and the 

other in Lao PDR, with subgroups associated with major river wetlands in those countries 

(Kiatsopit et al. 2011; Saijuntha et al. 2007). Additionally, independent biological evidence 

has revealed significant differences in body size, fecundity and infectivity of O. viverrini that 

occur in different wetlands in Thailand and Lao PDR. From this biological evidence, in 

conjunction with molecular genetic data, Laoprom et al. (2009) suggested that O. viverrini 
from the Songkram wetland (Sakon Nakhon and Nakhon Phanom) is a morphologically, 

genetically and biologically distinct species. A high level of genetic diversity, population-

genetic differentiation between geographical regions and frequent deviations from Hardy-

Weinberg equilibrium were also found using microsatellite markers (Laoprom et al. 2010). 

Suggestions put forward to explain these findings involve various factors such as geography, 

influence of different species of first and second intermediate hosts, founder effects and 

mating system of the parasite (Criscione et al. 2005; Prugnolle et al. 2005).

Further work using MEE of individual worms from naturally infected fish found no 

population-genetic differentiation of parasites among four species of fish at one locality in 

Thailand, nor between years (n = 4) in one of these fish species (Saijuntha et al. 2009). A 

very similar study in Vientiane Province, Lao PDR reached similar conclusions (Kiatsopit et 

al. 2014). However, numerous species of cyprinid fish can act as second intermediate hosts 

for O. viverrini, and there has been no subsequent study, using more sensitive markers such 

as microsatellites, to confirm these observations. The original intention of this study was to 

use microsatellite markers to test the hypothesis that different fish species affect the 

population genetics of O. viverrini in endemic areas across Thailand and Lao PDR. 
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However, the data indicated something unexpected, which is now the focus of this paper: 

that two distinct genetic groups of O. viverrini occur in Vientiane Province, Lao PDR, and 

one of these is the one found in Khon Kaen, Thailand.

Materials and methods

Parasite samples

Six species of cyprinid fish known to act as second intermediate hosts of O. viverrini were 

sampled for this study during the peak transmission season between December 2012 and 

February 2013. Four species, Cyclocheilichthys armatus, Henicorhynchus siamensis, 
Barbonymus gonionotus and Puntius brevis were from That Luang Lake, Vientiane, Lao 

PDR, and two species, Cyclocheilichthys apogon and Hampala dispar, were from Kang 

Lawa Lake, Ban Phai, Khon Kaen, Thailand (Fig. 1). That Luang Lake is a part of the Nam 

Ngum River wetland (Kiatsopit et al. 2014) and is located approximately 240 km from Kang 

Lawa Lake of the Chi River wetland (Saijuntha et al. 2007).

The fish were caught by local fishermen in nets left overnight at several locations in the 

lakes. Between 48 and 587 fish were sampled depending on species. The fish samples were 

kept in ice and brought to the laboratory for determination of metacercarial infection. 

Screening for O. viverrini infection and determination of prevalence and intensity of 

infection in each species of fish were accomplished using pepsin digestion of a subsample 

(15−20 randomly selected fish) of specimens as previously described (Sithithaworn et al. 

1997). For each fish species, prevalence and intensity of O. viverrini infection were 

determined using these randomly selected individuals (Pitaksakulrat et al. 2013) (Table 1).

Since the metacercariae did not have a sufficient quantity of DNA, adult worms were used 

for microsatellite analysis (Laoprom et al. 2012). The O. viverrini metacercariae were 

carefully sorted and removed from the residue of fish tissue after pepsin digestion, 

identified, counted, pooled by host fish species, and fed to 3−5 hamsters/fish species via 

gastric intubation (50 metacercariae/animal). This yielded sufficient adult worms for 

analysis, but not so many as to injure the hamsters: all animal procedures were classified as 

‘mild’. The hamsters were maintained in group-cages with food and water ad lib. Four 

months after infection, when the worms were fully developed, the hamsters were humanely 

sacrificed using a standard euthanasia protocol approved by the Animal Ethics Committee of 

Khon Kaen University (AEKKU 74/2555). After the hamsters were killed, the livers were 

dissected to recover adult worms from within the biliary system. The worms were washed 

three times with sterile 0.85% NaCl, pooled per fish species and subsequently frozen at 

−80 °C until used.

Preparation of genomic DNA

Adult worms for analysis (about 30 per fish species) were randomly selected from those 

recovered from hamsters. Genomic DNA (gDNA) was extracted from individual worms 

using the DNeasy blood and tissue kit (QIAGEN Ltd., Crawley, West Sussex, UK) according 

to the manufacturer’s instructions. The gDNA, eluted in a total of 100 μl elution buffer, was 

then used as a template for PCR.
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Microsatellite genotyping

Four loci (Ovms1, Ovms6, Ovms10 and Ovms15-Table 2) from Laoprom et al. (2010) were 

selected based on their known polymorphism, and DNA was amplified using previously 

described methods (Schuelke 2000). We used three primers per reaction, a sequence-specific 

forward primer with M13 (−21) sequence tail, a sequence-specific reverse primer and a 

fluorescently labeled M13 (−21) primer (HEX and NED, Applied Biosystems) to avoid the 

requirement for individual dye-labeling of each set of primers. All loci were individually 

amplified in 25 μl reactions containing 1 μl of template DNA (approximately 20−30 ng), 0.5 

μM of each primer and 0.125 μM of forward primer with an M13 tail in 2.5 μl of PCR buffer 

(10 mM Tris-HCl [pH 8.4], 50 mM KCl, 2 mM Mg2+), 0.25 mM each deoxynucleoside 

triphosphate, 0.06 U Taq DNA polymerase (Intron Biotechnology Inc.). PCR conditions 

were an initial denaturing step at 94 °C for 1 min, followed by 29 cycles (94 °C 1 min, 55 °C 

1 min, 72 °C 3 min), then by 8 cycles (94 °C 30 s, 53 °C 45 s, 72 °C 45 s), and a final 

extension at 72 °C for 10 min. PCR products were run on an Applied Biosystems Genetic 

Analyzer and loci analyzed using the GeneMapper® version 4.0 analysis software.

Data analysis

The number of alleles per locus and the observed and expected heterozygosity were 

calculated (Nei 1987). Each microsatellite locus, both by fish host and overall, was 

examined for departure from the Hardy–Weinberg equilibrium (HWE) using the exact test 

(Rousset and Raymond 1995). FIS statistics (Wright 1978) were calculated to assess whether 

deviations from HWE were due to deficient or excessive heterozygosity. Genetic 

differentiation between populations (defined by fish host-species) was determined using FST 

statistics (Weir and Cockerham 1984). All analyses were performed using Genepop Version 

3.4 software (Rousset and Raymond 1995) and GDA version 1.0 (Lewis and Zaykin 2001).

The life-cycle of trematodes includes a phase of asexual reproduction in the snail host, 

yielding many identical or near-identical cercariae. Several sibling cercariae may enter the 

same individual fish and become genetically identical metacercariae. The discovery of 

worms with identical genotypes might indicate that clonal siblings had been sampled. For 

analysis, only a single representative of each clone should be included. Identical genotypes 

may also occur in unrelated individuals purely by chance. Given that we only had available 

four microsatellite loci, the possibility of chance identity might be quite high. GenAlEx v6.5 

(Peakall and Smouse 2012) was used to look for identical genotypes and to assess the 

probability of unrelated individual worms sharing the same genotype.

Assignment tests are an excellent way to assess whether discrete genetic clusters occur. Two 

approaches were used. GENALEX 6.5 was used to create principal coordinate analysis 

(PCoA) for all populations using the covariance-standardized method. This multivariate 

technique uses distance estimates (Nei et al. 1983) and FST to discover patterns of genetic 

variation in multiple samples across loci, where patterns are proportioned to different axes 

based on their variation. Groups who share similar genetic patterns will thus group more or 

less together along the axes. The first axis has the highest explanatory power, with 

successive axes explaining proportionally less. The second was the Bayesian approach 

implemented in STRUCTURE version 2.3.4 (Pritchard et al. 2000). This analysis uses a 
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model-based clustering algorithm that identifies subgroups with distinctive allele frequencies 

and places individuals into K series or clusters (where K must be specified by the user a 
priori). Identifying the true value of K is not a trivial task (Breunig et al. 2000; 

Papadimitriou et al. 2003). Ten replicates were run for each value of K from 1 to 10. The 

locprior model was used. The first 100,000 steps were discarded as burn in, and a further 106 

steps run thereafter. Results were analyzed using Structure Harvester (Earl and Vonholdt 

2012) and Clumpak (Jakobsson and Rosenberg 2007). The method of Evanno et al. (2005) 

was used to find the best-supported value of K.

Results

Prevalences and intensities of infection with O. viverrini in each fish species are given in 

Table 1. Both were highest in C. armatus from Lao PDR and lowest in H. siamensis, also 

from Lao PDR.

Within the worms sampled from C. armatus, there were three pairs of identical genotypes. 

One example of each was removed prior to further analysis. In two cases, genotypes were 

shared between a fish from Thailand and a fish from Lao PDR. Both pairs were left in the 

analyses. One genotype was shared between a worm from C. armatus and one from H. 
siamensis, both from Lao PDR. Again, both were left in the analyses.

Allele frequencies of O. viverrini by locus and host are shown in Table 3. The allele 

distribution patterns at the four polymorphic microsatellite loci varied greatly among worms 

from the six different species of fish.

Analyses in Structure and Structure Harvester using the Evanno method, suggest that the 

optimal value of K is two (Fig. 2). A bar-plot of the data based on K = 2 is shown in Fig. 3. 

The two subpopulations seem to be strongly differentiated. Assignment tests in GenAlEx 

(Table 4) always failed to assign more than 50% of individuals back to the fish-host of 

origin. With one exception, all worms from the two Thai fish hosts were assigned back to 

one of the Thai hosts, or to Pb from Lao PDR. The majority of worms from the remaining 

three Lao fish hosts were assigned to one of these hosts, and a minority to the Thai fish hosts 

or to Pb.

The assignment tests indicate two different subpopulations (here termed A and B) of O. 
viverrini in Vientiane Province, Lao PDR, only one of which (A) occurs at Ban Phai, 

Thailand, some 240 km distant. The two subpopulations are not equally represented in fish 

species in Lao PDR. In three species, subpopulation B is numerically dominant, but in one, 

only A is represented. A common measure of population differentiation, FST, found no 

significant difference between two subpopulations in Thailand and one in Laos.

Significant departures from HWE due to homozygote excess were seen in the worms from 

C. armatus, (at loci Ovms10 and 15), H. siamensis (loci Ovms6 and 15) and B. gonionotus 
(loci Ovms1, 6 and 15), P. brevis (locus Ovms15), C. apogon (locus Ovms15) and H. dispar 
(locus Ovms10) (Table 5). Significant departure due to heterozygote excess was found for O. 
viverrini from C. armatus (loci Ovms1 and 6), H. siamensis (locus Ovms10) and B. 
gonionotus (locus Ovms10). Across the data set, estimates of FIS showed heterozygote 
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deficiency in 17 cases and heterozygote excess in 7 cases. Heterozygote deficiency is less 

apparent in worms from the three fish species harbouring only subpopulation A.

Significant genetic differentiation (pairwise FST values) was observed in O. viverrini 
between four fish species (p < 0.05) (Table 6) with the two Thai samples significantly 

different to three of the four Lao PDR samples, but not significantly different to P. brevis or 

to each other.

Discussion

The main findings are the apparent presence of two strongly divergent subpopulations (A 

and B) in Lao PDR (only one of which – A – occurred in Thailand), and a tendency towards 

heterozygote deficiency, especially in three of the Lao hosts. In addition, there appeared to 

be no significant restriction to gene flow between Pb in Lao PDR and the two fish species 

from Ban Phai in Thailand (Table 6). This latter point suggests that geography alone is not 

an explanation for the findings: different fish species on opposite sides of the Mekong 

contained the same subpopulation of worms. Nor is it clear that different fish hosts may be 

more or less susceptible to different subpopulations of O. viverrini, unless the differences in 

proportions of these subpopulations between Ca, Hs and Bg on one hand and Pb on the 

other, can be taken as evidence for this. The heterozygote deficiency, more marked among 

worms from Lao fish hosts than in Thai ones, may be evidence of a Wahlund effect. This is 

seen when data from at least two different, non-interbreeding, (sub) populations are 

mistakenly analyzed under the assumption that a single population is present. The two fish 

species from Thailand (and Pb from Lao PDR) contained only members of a single 

subpopulation. These exhibited fewer heterozygote deficits. By contrast, a recent study on 

Schistosoma japonicum in China reported no evidence of a Wahlund effect and clonal 

expansion of small or fragmented population as a result of control programs may counteract 

heterozyote deficiency (Huo et al. 2016).

Important questions for future work are raised here. If indeed genetically and biologically 

different subpopulations/cryptic species of O. viverrini exist, this is of considerable 

epidemiological importance. This study was initially conceived with a different question in 

mind, and used only a small number of loci, locations and fish species. More systematic 

sampling, investigating areas thought to be inhabited by different cryptic liver fluke species 

(see introduction), should be undertaken. Earlier studies that raised the possibility of cryptic 

species assumed a single cryptic species at any given locality. It might be that two such 

species, with little interbreeding, are present near Vientiane in Lao PDR. This would 

indicate that geography alone is not a sufficient explanation for the findings.

Previous studies utilizing the same four polymorphic loci (Laoprom et al. 2010, 2012) 

showed that the majority of O. viverrini populations (60–65%) examined had significant 

deviations (positive FIS) from HWE. Similar results were found in our study. Highly 

significant deviations from HWE due to O. viverrini homozygote excess were found in 11 

cases (71%) across all species of fish and loci. We also found similar levels of heterozygote 

deficiency to that reported previously for spatially separated O. viverrini populations from 

Thailand and Lao PDR, and which were sampled at different times and from different fish 
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host species (Kiatsopit et al. 2014; Saijuntha et al. 2009). Our FIS results trended towards 

heterozygote deficiency, supporting previous studies that the predominant mode of 

reproduction in O. viverrini is selfing rather than cross-fertilization. However, with our 

sample sizes we cannot be definitely sure whether this is due to lack of partner, or due to 

positive worm-driven selfing.

Despite our parasite genetic diversity measures being potentially affected by sibling 

infection, our results revealed high levels of genetic differentiation of O. viverrini (FST 

ranging between 0.002–0.134) from B. gonionotus, H. dispar, C. armatus and H. siamensis, 

as well as high levels of polymorphism. STRUCTURE analysis revealed two main genetic 

clusters, one containing O. viverrini from C. armatus, H. siamensis and B. gonionotus and 

the other containing O. viverrini from P. brevis, C. apogon and H. dispar. With the two fish 

sampling locations being from two distinct watersheds, this potential mix of parasite 

genotypes between these locations could be due to human as well as fish movement and an 

introduction of a specific genotype from one country to another. Further studies, drawing a 

larger sample from both study regions, would indicate whether this is likely to be a founder 

effect from Lao PDR to Thailand, or a new introduction from Thailand into Lao PDR.

Host preference has been reported in other trematodes, for example, for S. japonicum 
similarly high levels of polymorphisms were detected identifying two main genetic clusters, 

one in water buffalo, cattle and humans and the other in goats, pigs, dogs and cats (Wang et 

al. 2006). O viverrini has three hosts: the snail intermediate host, the fish intermediate hosts 

and the definitive mammalian hosts, and host-parasite compatibility at each of these life 

stages may play significant roles in the population genetics of O. viverrini. For example, the 

first intermediate snail host, Bithynia siamensis goniomphalos, has recently been shown to 

consist of a species complex of at least 11 cryptic species that occur in the same wetlands as 

the cryptic species of O. viverrini in Thailand and Lao PDR (Kiatsopit et al. 2013; Saijuntha 

et al. 2007). In particular, self-fertilization usually occurs in O. viverrini because of a low 

parasite burden in an infected definitive host, including humans (Gorton et al. 2012). This is 

likely to influence and enhance the complexity of the host selection process within each 

wetland. Since the six species of fish have distributions throughout the region, O. viverrini 
from the same species of fish in Thailand and Lao PDR could have different or the same 

population structure, which is a key limitation of this study and remains to be determined in 

future work (e.g. O. viverrini in P. brevis from Lao PDR compared with O. viverrini in P. 
brevis from Thailand).

In this study, the use of adult worms from experimentally infected animal may create host-

selection bias. We are currently pursuing methods that will allow direct analysis of life 

stages such as metacercariae or cercariae, without the need for laboratory passage. Another 

limitation is that an existence and effect of genetic cluster as a result of clonal structure as 

observed in another trematode (Lecithochirium fusiforme) hence creating Wahlund effect 

(Criscione et al. 2011) was not examined. This is because adult worm analyzed were pooled 

from several fish of the same species. Future analysis using metacercaria directly should 

help to solve this limitation as well as allowing us to evaluate O. viverrini infrapopulations 

in individual fish host.
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In conclusion, the main findings of this study are the presence of two divergent 

subpopulations of O. viverrini in Lao PDR and only one of which occurred in Thailand. 

There is a tendency towards heterozygote deficiency, particularly in three fish host species 

from Lao PDR which may due to Wahlund effect. The high gene flow between parasite in 

Pb in Lao PDR and the two fish species from Ban Phai in Thailand suggests that geography 

alone is not an explanation for the findings since the same subpopulation of worms occurred 

in two distant localities. Whether host factors i.e. fish compatibility, snail intermediate hosts, 

mammal reservoir hosts and human contribute in the occurrence of subpopulation of O. 
viverrini remain to be investigated.
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Fig.1. 
The localities in Thailand and the Lao PDR where cyprinid fish were collected for 

determination of Opisthorchis viverrini
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Fig. 2. 
Analyses of the optimal value of K in Structure from Structure Harvester using the Evanno 

method to indicate that two is the optimal value of K
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Fig. 3. 
Structure model-based clustering showing segregation of Opisthorchis viverrini samples into 

two main subgroups (K = 2). In Ban Phai, Thailand, only one subgroup occurred, hosted by 

C. apogon and H. dispar. Both subgroups occurred in fish from That Luang, Lao PDR, but 

were represented to very different degrees among the fish hosts
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Table 2

Primer sequences and characteristics of Opisthorchis viverrini sensu lato microsatellite loci

Locus name Repeat Primer sequence 5′–3′ Tab (°C)

Ovms1 (GT)11
F: M13a(−21) +GGTCTGATGCAAGTAGACATCC 55

R: GGCACATGAACGCGCATTGGTAAG

Ovms6 (GT)5GA(GT)4
F: M13(−21) +TTTATGGATTCAACGGAAC 55

R:CCCCAAGAAACCTGATTCAA

Ovms10 (GT)5GC(GT)8
F: M13(−21) +TTGCTTTACTGCTGTTTTTCG 60

R: GCTTCGGTCACAGTTCCTAA

Ovms15 (TG)10
F: M13(−21) +GGAGGAGTTTCCCTGAAAGG 60

R: TACGGGGTGTGCACAAATAAA

a
M13(−21) sequence: 5′-TGT AAA ACG ACG GCC AGT-3′ (18 bp)

b
PCR annealing temperature
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