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ABSTRACT OF THE DISSERTATION 

Modeling of Magnetoelatic Nanostructures with a Fully-coupled Mechanical-Micromagnetic 

Model and Its Applications 

 

by 

Cheng-Yen Liang 

Doctor of Philosophy in Mechanical Engineering 

University of California, Los Angeles, 2016 

Professor Gregory P. Carman, Chair 

 

Micromagnetic simulations of magnetoelastic nanostructures traditionally rely on either the 

Stoner-Wohlfarth model or the Landau-Lifshitz-Gilbert (LLG) model assuming uniform strain 

(and/or assuming uniform magnetization). While the uniform strain assumption is reasonable 

when modeling magnetoelastic thin films, this constant strain approach becomes increasingly 

inaccurate for smaller in-plane nanoscale structures. In this dissertation, a fully-coupled finite 

element micromagnetic method is developed. The method deals with the micromagnetics, 

elastodynamics, and piezoelectric effects. The dynamics of magnetization, non-uniform strain 

distribution, and electric fields are iteratively solved.  
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This more sophisticated modeling technique is critical for guiding the design process of the 

nanoscale strain-mediated multiferroic elements such as those needed in multiferroic systems. In 

this dissertation, we will study magnetic property changes (e.g., hysteresis, coercive field, and 

spin states) due to strain effects in nanostructures. in addition, a multiferroic memory device is 

studied. The electric-field-driven magnetization switching by applying voltage on patterned 

electrodes simulation in a nickel memory device is shown in this work. The deterministic control 

law for the magnetization switching in a nanoring with electric field applied to the patterned 

electrodes is investigated. Using the patterned electrodes, we show that strain-induced anisotropy 

is able to be controlled, which changes the magnetization deterministically in a nano-ring. 
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1.   ! Introduction and Literature Review 

Recently, multiferroics is becoming an attractive field and stimulating many new research 

interests which are driven by the complex physics of these materials. Ferromagnetic, ferroelectric, 

and elastic effects are coupled in multiferroics[1][2]. This opens a new way for developing novel 

technologies based on these multifunctional materials, such as sensors[3], transducers[3], 

memory devices[4], and spintronic devices[5]. 

Multiferroic materials are being studied for use in magnetic random access memory 

(MRAM) with higher efficiency, lower energy consumption, and lower heating effects than 

traditional memory devices[4]. Traditional methods use external magnetic fields[6]; however, the 

switching field increases as the size of the device decreases, which requires high power 

consumption in high-density magnetic memories. An alternative method is spin-transfer torque 

approach[37], which uses a spin-polarized current to switch the magnetization in magnetic layers; 

the current reduces when the device size reduces. However, the current used for reorienting the 

magnetization is still too high for commercial applications. Using multiferroics for memory 

applications is a promising approach for controlling the magnetization eliminating the use of 

currents. In this approach, the magnetization is manipulated by applying electric fields to 

ferromagnetic/ferroelectric composites. These composites couple the electric field and the 

magnetization in ferromagnetic/ferroelectric heterostructures, enabling the magnetoelectric (ME) 

effect. Based on this magnetoelectric coupling effect, new devices can be designed, which reduce 

power consumption and operate at room temperature since the magnetization is manipulated 

through electric fields instead of external magnetic fields and currents.  
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Three main works have been studied to achieve the magnetoelectric effect[63]. The first 

is the exchange bias method, in which the magnetization is pinned in a reference direction at the 

interface between antiferromagnetic/ferromagnetic layers[7]. The second is the charge-mediated 

approach, in which charges are induced at the interface of FM/FE thin films when the electric 

field is applied. This produces magnetization changes due to the spin-dependent screening of an 

electric field[8]. The third is to use strains to control the magnetization in the FM/FE 

heterostructures[9]. The strain is produced by applying an electric field in the ferroelectric layer 

and the piezoelectric effect. This induced strain is transferred to the ferromagnetic layer, altering 

the magnetization via magnetostriction. This last method is a novel technique in developing 

strain-mediated magnetization control for information technologies. The goal of this dissertation 

is to develop a model, which is able to be used for strain-mediated multiferroic device design and 

analysis[30][32][42][62]. 

The organization of this dissertation is as follows. In chapter 1.   , previous works will be 

reviewed. In chapter 2.   , a three dimensional numerical method based on finite elements for 

micromagnetic-elastodynamics coupled simulations will be developed. The analytical results on 

single domain nanostructures are compared to both conventional analytical methods and 

experimental results to validate the model. In chapter 3.   , magnetization switching dynamics in 

a multiferroic single domain memory bit will be predicted. The response of this multiferroic 

nanoscale structure and thick substrate clamping problem will be discussed. In chapter 5.   , 

deterministic electric field control of 360o domain wall motion in a nano-ring is demonstrated 

using patterned electrodes and two alternative electrode architectures are studied. In chapter 6.   , 

we conclude the work in this dissertation and future works are provided at the end of the chapter. 
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1.1! Stoner-Wolhfarth Model 

Micromagnetic theory is to analyze magnetization processes and domain structures and to 

calculate the spin structures of domain wall in on sub-micrometer length scales. In 

micromagnetics, Stoner–Wohlfarth theory was proposed by Stoner and Wohlfarth in 1948[10]. It 

is the simplest static model for calculating the magnetization in small particles and for MRAM 

and computer storage applications[11]. The Stoner–Wohlfarth model assumes that the 

magnetization in a small particle behaves as single magnetic domain and the rotation of the 

magnetization is coherent. The exchange energy is assumed constant and has no influence on the 

rotation of the magnetization since the particle is assumed single domain. The energy terms 

considered in the model are the Zeeman energy and the anisotropic energy. Those energy terms 

compete with each other, causing the magnetization changes. Types of the anisotropic energy 

include magnetocrystalline anisotropy, strain-induced anisotropy, and shape anisotropy 

(demagnetization)[10]. Therefore, the energy in the Stoner–Wohlfarth model can be expressed as 

# = #% + #' + #( + #)

= *% sin
. / − 1 +

3

2
456 sin

. / − 1 + 7895 :; − :∥ sin. / − 1

− 7895=>?@ 1  

where #% is the uniaxial anisotropic energy, #'!is the strain-induced anisotropic energy, , #(!is 

the shape (demagnetization) anisotropic energy, and #) is the Zeeman energy from applied fields. 

Ku is the uniaxial magnetocrystalline anisotropic constant, 45 is the magnetostriction, 6  is the 

uniaxial stress applied to the small particle,  Ms is the saturation magnetization,  :;,:∥ are the 
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demagnetization factor perpendicular and parallel to the easy axis, and µ0 is the permeability of 

free space.  

 Previously, influences of stress in the coercive force behavior and hysteresis curves in 

thin films have been done by using the Stoner–Wohlfarth model. Callegaro et al. constructed a 

model based on bi-dimensional Stoner–Wohlfarth model in which the magnetostriction, intrinsic 

anisotropy, and applied field interactions between electroplated nickel film grains was 

considered[13]. Sablik et al. used a modified the Stoner–Wohlfarth model and a domain wall 

pinning model[58] for the magnetic hysteresis and coercivity of a ferromagnetic material 

consisting with single domain grains under torsion[14]. Szaboet al. studied the magnetization 

behavior of the Stoner–Wohlfarth particle with linear excitation and in a rotational magnetic 

field[15]. This work showed that the variation of the magnetization vector can have jumps and 

that these jumps correspond to the Barkhausen effect[59]. Peng et al. demonstrated that the 

applied stress on the thin film has a significant effect on the shapes of the hysteresis curves[16]. 

They also found that the coercivity increases as the longitudinal tensile stress increases. The 

magnetostriction of the amorphous thin film is strongly influenced by the applied stress.  

The stress effect was not only studied in the thin films, but also in bulk ferromagnetic 

materials. When a ferromagnetic bulk material is subjected to stresses, the magnetic domains in 

the material change. The mechanism is that an anisotropic energy is induced in the ferromagnetic 

body by stresses and is called the stress-induced anisotropy. IZAWA et al. analyzed the stress-

induced anisotropy in ferromagnetic materials. They found that the magnetization reversal can 

take place for small stresses if a sufficient demagnetizing field exists[17]. Sablik et al. studied 

the effect of biaxial stress on magnetoelastic processed polycrystalline bulk steels. They used the 

effective stress equal to one of the deviatoric normal stress components in the Schneider-



 

5 
 

Cannell-Watts model for stress-induced hysteresis curves changes[18]. Jiles et al. proposed a 

new theoretical model in which the mechanism in the change of magnetization is the unpinning 

of domain walls when subjected to an applied uniaxial stress[19]. Callegaro showed that the 

effect of stress on the coercive force is completely different for thin and thick films. The 

magnetic properties of the thick nickel film behave like bulk nickel, whereas results on lower 

thicknesses show a continuous transition from thin film to bulk-like behavior[20]. Chen and Jiles 

et al. studied the magneto-mechanical effect in magnetic materials under torsional stress and the 

relationship. They investigated the change of magnetization as a function of applied torque for 

cylindrical ferromagnetic rods. They showed substantial changes in surface field at remanence 

under torsion[21]. Bulte et al. presented a hypothesis to explain the mechanism that externally 

applied stresses can affect the magnetic properties of ferromagnetic materials. They explained 

that the magneto-mechanical effect results from the spin–spin and spin–orbit coupling 

interactions with magnetic moments, which in turn alters the magnetocrystalline anisotropy and 

exchange energies in ferromagnetic materials[22]. Mudivarthi et al. derived the relationship for 

magnetoelastic, elastic, and mechanical work. They showed that the magnetoelastic, elastic, and 

mechanical energies are identical to the stress-induced anisotropy with magnetostriction-induced 

fourth order anisotropy, which is able to be used in the analysis of the change in magnetization 

due to stress in magnetostrictive materials. They also provided an expression for energy density 

which is suitable for 3-dimensional magneto-mechanical coupling magnetization dynamics[23]. 
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1.2! Micromagnetics (Landau-Lifshitz-Gilbert Equation, LLG) 

The Stoner–Wohlfarth model is based on the minimization of the free energy for a 

ferromagnetic material. These approaches allow us to predict the equilibrium configurations for 

the material. The assumptions of this approach are single domain particles and coherent 

magnetization behaviors. However, challenges appear when using these concepts for memory 

applications, estimation of time response, and design of multiferroic devices. Therefore, 

magnetization dynamics becomes the most important topic in micromagnetic analysis. Recently, 

the dynamics of magnetization analysis is based on the phenomenological equation, the Landau-

Lifshitz-Gilbert equation, developed by Landau and Lifshitz in 1935[24]. They proposed a 

dynamical model for the precessional motion of the magnetization. This model was based on a 

continuum precession equation and quantum-mechanical effects. The anisotropy and dissipation 

in the approach were introduced phenomenologically by means of the effective field.  

T. L. Gilbert successively modified the phenomenological Landau-Lifshitz equation[25], 

which could not account for the large noneddy-current damping in thin Permalloy sheets. The 

problem undertaken in this study was to reform Landau-Lifshitz equation with the theory of 

damping in physical systems such that large damping is able to be taken into consideration. 

Gilbert started the phenomenological theory of an un-damped and uncoupled magnetization, 

which is based on a classical variational principle. The equations of motion are derived from the 

potential energy of the magnetization field via this variation procedure. Furthermore, he 

introduced a damping term by using a Lagrangian formulation for the equations of motion and 

added a velocity-dependent term derived from the Rayleigh’s dissipation function. The modified 

Landau-Lifshitz equation was derived with the damping term and can be used with large 
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damping conditions. He also mentioned that the damping terms in the Landau-Lifshitz equation 

and the modified equation are identical. 

Using a modified Landau-Lifshitz equation, Kikuchi found that the minimum 

magnetization reversal time corresponds to a critical value of the damping constant in a single-

domain sphere and an infinitely-wide thin single-domain sheet of ferromagnetic material[26]. 

Visintin incorporated Maxwell’s equations, mechanical equations of motion, and constitutive 

equations into the Landau-Lifshitz’s equation. In addition, He provided magnetic energy 

functionals for the anisotropic energy and exchange energy in the equation. Finally, he proved 

that the Landau-Lifshitz’s equation has a solution but it is not unique[27]. Mallinson discussed 

the relationship between the Landau-Lifshitz equation and the modified Landau-Lifshitz-Gilbert 

equation[28]. He showed that the underlying physics is different even though the equations have 

the identical mathematical form. He found that the Landau-Lifshitz equation cannot be strand for 

a lager damping condition, it is only valid in the small damping case. On the other hand, the 

Gilbert-modified Landau-Lifshitz equation is valid in the large damping case. 
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1.3! LLG + Elastodynamics 

Currently, since the applications for strain-mediated multiferroic devices are increasing. 

The stress/strain effects on the dynamics of magnetization have become a popular topic in 

micromagnetics. In addition, with the development of the computer technology, complex 

micromagnetic problems can be solved by the use of numerical methods. 

Voltairas et al. presented a simple micromagnetic model to study the inverse 

magnetoelastic effect on the coercivity and remanence magnetization in ferromagnetic thin films. 

The method was constrained to be a one-dimensional plane strain model with an external 

magnetic field applied parallel or perpendicular to the stress direction[29]. Zhu et al. studied the 

effect of stress on the magnetic properties of thin films. In this study, they found that due to the 

inverse magnetoelastic effect, a negative strain decreases the coercivity while a positive strain 

increases in a nickel film[30]. Shu et al. proposed a two-dimensional framework to deal with the 

issues of loss of strain compatibility and negligence of intrinsic stresses[31]. Their framework 

was based on micromagnetics in order to explore the effects of stress on the magnetostrictive 

behavior in thin films. The simulation had good prediction domain patterns an hysteresis in small 

magnetostrictive materials (nickel) while crude prediction for magnetostrictive 

materials(Terfenol-D). Zhang and Chen used a phase-field microelasticity theory of 

Khachaturyan[61] coupled with the micromagnetic model to predict the magnetic domain 

structures and temporal evolution in giant magnetostrictive materials[32]. They studied the 

effects of elastic energy and magnetostatic energy on magnetic domain structures. Mechanical 

equilibrium is included in their model in order to take into account strains inside the domain 

structures. Banas et al. provided a numerical 2D scheme for modeling the Landau-Lifshitz-
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Gilbert equation (LLG) coupled with the equation of elastodynamics. The model describes the 

behavior of ferromagnetic materials when mageto-mechanical coupling is taken into account[33]. 

Hu et al. carried out a micromagnetic simulation to study the stress effects on hysteresis curves 

and magnetization dynamics. In this article, they used the fast Fourier transform method in 

reciprocal space for solving the temporal Landau-Lifshitz-Gilbert equation. Simulations were 

performed to study the effect of uniaxial stress on the magnetic hysteresis in a magnetic 

material[34]. Dean et al. developed a method, in which they implemented complex 

deformational changes for magnetoelastic effects in micromagnetic simulations. The Cauchy 

stress tensor was taken into account in their approach. Stress variations were calculated and 

implemented in the micromagnetic simulations[35]. Bur Et al. reported strain-induced induce 

coercive field changes in patterned single-domain nickel nanostructures deposited on Si/SiO2 

substrate. Experimental data is compared with micromagnetic simulations with uniform and non-

uniform strain conditions. The strain conditions were calculated using finite element method and 

the results were fed to a micromagnetic simulator code with effective magnetoelastic 

anisotropy[36].  

Dynamics of magnetization due to spin torque transfer effects and eddy currents have also 

been studied recently. Slonczewski proposed a new mechanism for exciting the magnetic state of 

a ferromagnet, he predicted that transfer of vectorial spin accompanies an electric current 

flowing perpendicular to two parallel magnetic films connected by a normal metallic spacer with 

the assumption ballistic conditions[37]. Berger et al. studied the spin torque transfer effect. In his 

work, the interaction between spin waves and itinerant electrons is considerably enhanced in the 

vicinity of an interface between normal and ferromagnetic layers in metallic thin films[38]. 

Bertotti et al. presented an analytical technique to predict the effect of eddy currents on the 
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magnetization dynamics in metallic thin films. Due to eddy current effects, the magnetization is 

no longer uniform across the conducting film thickness. With the effective damping constant 

approximation and neglecting the exchange effects, the magnetization dynamics in metallic films 

can be predicted by using LLG equation[39]. Monk et al. proposed an eddy-current 

micromagnetic model to describe the eddy current magnetization behavior in ferromagnetic films 

due to field. The existence and uniqueness of a weak solution of the eddy current-LL model are 

proven in this work[40]. Iyer et al. studied the modified Landau-Lifshitz-Gilbert (LLG) equation 

for a conducting, magnetic body. They derived a well-defined expression for the magnetic field 

due to eddy current losses. They showed that the work done by eddy currents is a Rayleigh type 

dissipation function opposing the change in magnetization[41].   

1.4! LLG + Piezoelectric Constitutive Equations  

W. Eerenstein et al. demonstrated electrically induced giant magnetic changes at a single 

epitaxial interface in LSMO films on BTO substrates. In this study, the switching of BTO 

domains alters in LSMO the local strain, magnetic anisotropy and thus the magnetization. The 

magnetoelectric coupling at the interface of magnetic/ferroelectric thin film over a wide range of 

temperatures is obtained and it is able to inspire further study with single epitaxial interfaces[42]. 

Pertsev et al. presented a theoretical model for magnetization rotation induced by electric field 

applied to the substrate in nickel/CFO epitaxial heterostructure. They showed that magnetization 

reorientation occurs at small strains and also predicted a large magnetoelectric susceptibility in 

the ferromagnetic/ferroelectric heterostructures[43]. Atulasimha et al. showed that magnetization 

rotation in a multiferroic nickel/PZT nanomagnet can be controlled by applying the electric field 

on the piezoelectric layer. In addition, Bennett clocking is presented in nanomagnetic logic 
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arrays resulting in unidirectional propagation of logic bits from one stage to another. 

Micromagnetic simulations are performed for this multiferroic nanomagnet chain. Results show 

that The stress-induced anisotropy generated in the nickel layer due to strain can rotate the 

second magnet out of the initial state upon removal of the stress. The energy dissipated in this 

method is lower than that in spin-transfer torque for magnetization rotation[44]. Roy et al. 

studied the switching dynamics of a single-domain magnetostrictive/piezoelectric nanomagnet 

subjected to in-plane stress. The voltage was applied through the piezoelectric thickness, 

generating mechanical strains. The strain is assumed fully-transferred to the magnetostrictive 

layer by elastic coupling. Since the strain is generated in the magnetostrictive layer, the easy axis 

changes due to the stress-induced uniaxial anisotropy, causing 90o magnetization rotation. The 

effect of the voltage ramp rate on the reversal time, response time magnetization rotation and the 

switching time due to stress and material properties have also been discussed[45]. Fashami and 

Roy et al. studied the magnetization dynamics of a multiferroic Terfenol-D/PZT logic chain with 

nearest-neighbor dipole coupling using the LLG equation. Low-energy dissipation nanomagnetic 

logic (NML) bits was designed in their work[46]. Livesey et al. derived the magnetoelectric 

coupling term in piezoelectric/magnetostrictive thin film heterostructures using Landau-

Ginzburg free energy expansion in terms of strain, magnetization, and electric polarization. The 

FMR frequency shift in the in BTO/NFO superlattice is calculated and may result from the 

geometry and strain boundary conditions[47]. Hu et al. used the phase-field model, coupled with 

the time-dependent Ginzberg-Landau equation (TDGL) and the Landau-Lifshitz-Gilbert equation 

(LLG) to study the magnetic domain switching in CoFeB/BTO heterostructures grown on a 

substrate. In this article, they presented the 90o perpendicular domain can be switched in the 

magnetic layer due to electromechanical strains originating from the FE layer[48]. Zavaliche et 
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al. presented the magnetization reversal induced by an electric field in the BFO/CFO vertical 

heterostructure. In the article, they showed that an electric field applied to the piezoelectric 

matrix leads to a change in its shape during switching, which dynamically alters the magnetic 

anisotropy of the ferrimagnetic pillars via their magnetostriction. Therefore, magnetization 

reversal is induced through the application of an electric field to the columnar 

ferroelectric/ferrimagnetic epitaxial nanocomposite. Magnetization has shown to be a function of 

temperature, strain and magnetic field work[49]. Thiele investigated the influence of a reversible 

biaxial strain on the magnetization M of epitaxial LSMO manganite films deposited on a PMN-

PT single crystal substrate[50]. Moutis et al. studied the electric-field modulation of coercive 

field Hc through the inverse piezoelectric (PE) effect in a periodic array of CoFe stripes 

patterned on a commercial PZT substrate. They showed that the coercive field Hc is dependent 

on the piezo-strain of the ferroelectric substrate applied under the electric field[51]. Brandlmaier 

et al. showed that the ferromagnetic anisotropy of a thin magnetic crystalline film can be 

manipulated in situ via the application of stress. They experimentally demonstrated that the 

magnetic anisotropy of the magnetic thin film can be reoriented with the piezo-actuator[52]. 

Chung et al. studied the magnetic domain change using an electric field in a nickel/PZT thin film 

due to the magnetoelectric effects. They experimentally demonstrated magnetic domain changes 

when the electric field was applied to the PZT thin film[53][54]. Brintlinger et al. reported direct 

observation controlled and reversible switching of magnetic domains using static electric fields 

applied in situ during Lorentz microscopy. The strain in this study is assumed fully-transferred 

from the BTO layer to the FeGa layer. Domain wall motion was observed when the mechanical 

strain was applied to the magnetic thin film. Simulations based on the object-oriented micro-

magnetic framework (OOMMF) were performed for comparison[55]. Tuomas et al. reported an 
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approach to electrically control local magnetic properties, including the writing and erasure of 

regular ferromagnetic domain patterns and the motion of magnetic domain walls, in CoFe-BTO 

heterostructures. It is shown that domain correlations and strong inter-ferroic domain wall 

pinning persist in an applied electric field[56]. Geprags et al.  used a ferromagnetic/PZT actuator 

composite with mechanical strain effect to show the nonvolatile switching for the remanent 

magnetization in single-crystalline ferromagnets. They demonstrated that the voltage-induced 

strain causes nonvolatile 900 remanent magnetization rotation[57].  

Previous literatures have been shown to obtain the magnetization equilibrium state with 

Stoner-Wolhfarth model and OOMMF. Those methods assumed small single domain elements, 

uniaxial shape anisotropy with one anisotropy constant. In addition, to deal with strain-mediated 

magnetization dynamics, strain is assumed to be uniformly distributed within the magnetic 

elements. Effective strain-induced anisotropy is the term implemented in those methods. Strain 

and magnetization state are not iteratively simulated in the models. This is sufficient to describe 

highly symmetric cases like a prolate spheroid of revolution or ferromagnetic/ferroelectric thin 

film heterostructures. However, real systems are often more complex, and strain variations in 

FM/FE heterostructures and the effects in micromagnetics with elastodynamics and 

piezoelectrics are coupled.  

In this dissertation, a fully-coupled finite element micromagnetic method is developed. 

The method deals with the micromagnetics, elastodynamics, and piezoelectric effects. The 

dynamics of magnetization, non-uniform strain distribution, and electric fields are iteratively 

solved. Initial conditions for magnetization starts arbitrarily. For every configuration (time step) 

a new demagnetization field, strain state and magnetic fields are solved. New fields and strain 

states are used for calculating the effective field, which in turn yields a new magnetic moment 
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state through micromagnetics. These steps are iterated until equilibrium state is achieved. This 

model is validated by experimental data and the simulated results are also compared with the 

experiments.  
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2.   ! Modeling of Magnetoelastic Nanostructures with a Fully-
Coupled Mechanical-Micromagnetic Model 

 

Micromagnetic simulations of magnetoelastic nanostructures traditionally rely on either the 

Stoner-Wohlfarth model or the Landau-Lifshitz-Gilbert (LLG) model assuming uniform strain 

(and/or assuming uniform magnetization). While the uniform strain assumption is reasonable 

when modeling magnetoelastic thin films, this constant strain approach becomes increasingly 

inaccurate for smaller in-plane nanoscale structures. This chapter presents analytical work to 

significantly improve simulation of finite structures by fully coupling LLG with elastodynamics, 

i.e. the partial differential equations are intrinsically coupled. The coupled equations developed 

in this manuscript along with Stoner-Wohlfarth model and LLG (constant strain) are compared 

to experimental data on nickel nanostructures. The nickel nanostructures are 100x300x35 nm 

single domain elements fabricated on a Si/SiO2 substrate, which are mechanically strained while 

experiencing an applied magnetic field to generate M vs. H curves. Results reveal that this 

chapter’s fully-coupled approach is significantly superior regarding agreement with experimental 

data on coercive field changes. This more sophisticated modeling technique is critical for guiding 

the design process of future nanoscale strain-mediated multiferroic elements such as those 

needed in memory systems.  
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2.1! Introduction 

Electrical control of ferromagnetic elements represents an important and emerging area of 

study in multiferroics. Magnetic control has conventionally been accomplished using an applied 

magnetic field rather than an electric field. Recently a number of relatively newer methods for 

controlling magnetization have been studied including carrier-mediated ferromagnets[64][65], 

exchange coupled multiferroic interfaces[66][67], and spin-transfer torque[68][69][70]. While 

these areas represent important topics, electrically induced strain-mediated control of magnetic 

properties may represent a more promising approach in the near term. This statement is based on 

the relative maturity of both piezoelectric and magnetostrictive materials required for the strain 

mediated multiferroics approach, i.e. new materials are unnecessary. One application for strain-

mediated multiferroics is in magnetic random access memory (MRAM) where substantial 

reduction in write energies are possible[71][72]. However, a robust modeling approach that 

accurately predicts the nanoscale structures magnetic response is presently unavailable. 

The strain-mediated multiferroic approach consists of mechanically coupling 

magnetoelastic elements onto ferroelectric substrates[73][74][75], e.g. sputter deposition of 

composite heterostructures[78][79][80]. In these composites, an electric field applied to the 

ferroelectric/piezoelectric substrate induces an anisotropic strain in the magnetoelastic material. 

The anisotropic stain induces a magnetic anisotropy via the converse magnetoelastic 

effect[76][77]. There exist fairly extensive studies containing both theoretical and experimental 

work on strain-mediated magnetization changes, coercivity changes[81], and strain-induced 

anisotropy in continuous magnetic thin films[82]. In all of the continuous film studies the strain 

is appropriately assumed to be fully-transferred from the ferroelectric to ferromagnetic layer by 
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treating the magnetoelastic energy as a pure uniaxial anisotropy applied to the magnetic media. 

For example, T. Brintlinger et al. reported both experimental and analytical predictions using 

OOMMF and constant strain assumptions to show reversible switching in FeGa/BTO thin 

film[55]. In recent years several additional studies, such as ferroelectric/ferromagnetic film 

coupling by Lahtinen et al.[56] and magnetic thin film stress modeling by Bai et al.[84], have 

demonstrated that this constant strain methodology works reasonably well for continuous thin 

films[86]. 

A relatively less studied area is the strain-mediated effect in multiferroic 

nanostructures[87]. For example, Bur et al. reported strain-induced coercive field changes in 

patterned single-domain nickel nanostructures deposited on Si/SiO2 substrates[36]. Bur’s study 

showed that the coercive field is a direct function of applied strain due to the magnetoelastic 

effect. In this work, experimental data was compared to micromagnetic simulations with uniform 

and non-uniform strain conditions[36]. However, the strain states were calculated before 

performing the micromagnetic simulation, thus the governing equations were not fully coupled. 

A few studies also exist on uniform strain transfer and strain-induced change of magnetization in 

nanostructures[44][45] [87]; however, as the thickness of the nanostructures increases or in-plane 

dimensions decrease, the validity of the fully-transferred strain assumption becomes increasingly 

compromised[35][85] [90]. Therefore, more sophisticated modeling is required. 

Recently, researchers have begun to investigate more sophisticated modeling techniques 

for coupling LLG with elastodynamics. These approaches include mathematical 

[33][91][92][93]and numerical methods[30][31][32][34][94]for the solutions of coupled 

micromagnetic and elastodynamic equations. The mathematical approach includes showing the 

existence and convergence of the coupled solutions, such as those presented by Banas et al.[33] 
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and Alouges et al.[91] Numerical approaches have also been presented by Y.C.Shu et al.[31] 

using a numerical framework to explore stress effects on magnetoelastic thin film behavior, and 

by Mieche and Ethiraj for describing magnetic and mechanically effects on micron size magnetic 

domains structures[94]. More recently, Zhang and Chen used a phase-field method to combine 

micromagnetic and elastodynamic equations for predicting magnetic domain structures and their 

temporal evolution in magnetoelastic materials[32]. Micromagnetic coupled models have also 

been previously used to analyze the magnetic domain switching behavior in 

ferromagnetic/ferroelectric heterostructures when an electric field is applied to the ferroelectric 

layer[32][87][95][96]. While a few sophisticated solutions have been presented, these 

presentations do not compare their data directly with experimental results and thus leaves the 

modeling approaches questionable. 

In this chapter, we develop a numerical method based on finite elements to fully-coupled 

micromagnetic simulations with elastodynamics in finite size 3D structures. The analytical 

results are compared to both conventional analytical methods and experimental results. The new 

coupled model provides an approach to simultaneously solve the full strain and micromagnetic 

spin distribution in the finite composite system as a function of position and time. In this chapter, 

the strain-induced coercive changes in a nickel nanostructure elastically coupled to a Si/SiO2 

substrate is investigated. Displacements are applied to the substrate producing strain and 

magnetic spin variations in the nickel nanostructure. Magnetic hysteresis curves at constant 

strain are predicted and compared to the Stoner-Wohlfarth (SW) [97][98]and the Landau-

Lifshitz-Gilbert (LLG) model [24][25] assuming uniform strain. Comparing these analytical 

results with the experimental data by Bur et al.[36] revealed that the strain distribution 

significantly influences the magnetic hysteresis curves and the coercive fields. We demonstrate 



 

19 
 

that the new coupled model results are in significantly better agreement with the experimental 

data when contrasted with the Stoner Wohlfarth or LLG model assuming uniform strain. 

2.2! Theory 

In this section, we derive the theoretical magnetoelastic framework for a problem between 

micromagnetics and elastodynamics. The methodology, in differential form, reduces to seven 

coupled PDEs, which in turn are formulated in their weak form. Assumptions include small 

elastic deformations, linear elasticity, magnetostatics, and negligible electrical current 

contributions. In this work we have not included the piezoelectric relations which would be 

trivial to add into the formulations; the test data used by Bur et al.[36] relied on mechanical 

loading rather than electric field loading.  

The equilibrium for magnetic systems is characterized by local minima of the total free energy 

density totE , written as[24][25] [32] 

tot ext ex anis d elE E E E E E= + + + +     (2-1) 

which consists of the external energy density extE  in an applied external field, the exchange 

energy density exE , the magnetocrystalline anisotropy energy density anisE , the demagnetization 

energy density dE , and the elastic energy density elE .  

The extE  is produced by the applied magnetic field extH  and is expressed as 

( )0 extext sE M m Hµ= − ⋅
     

(2-2) 
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where m  is the magnetization normalized by the saturation magnetization sM , and 0µ is the 

permeability of free space. exE  is defined by the magnetization gradient and the exchange 

stiffness constant exA  as [24][25] 

( )2ex exE A m= ∇
      

(2-3) 

The anisotropy energy density anisE  for a cubic crystal is defined as [25][31][32] 

( ) ( )2 2 2 2 2 2 2 2 2
1 1 2 2 3 3 1 2 1 2 3anisE K m m m m m m K m m m= + + +

   
(2-4) 

where K1 and K2 are cubic anisotropy constants. Equation (2-4) must be modified to account for 

hexagonal or uniaxial crystals. The demagnetization energy density dE  is given by[25][97] 

( )0
1
2 dd sE M m Hµ= − ⋅

     
(2-5) 

where dH  is the demagnetization field. dH  is determined from Ampere’s law ( 0dH∇× = ), 

Gauss’s law (∇ ∙ D = 0), and the relation between the magnetic induction B and magnetization 

m  as[99]  

d sB H M m= +       (2-6) 

dH  is related to the gradient of a magnetic potential φ  by using Ampere’s law,  

dH φ= −∇        (2-7) 

The elastic energy density term ( elE ) in Eq.(2-1) can be written as[31][32][33] 
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1 : : ( )
2

el el
elE Cε ε=

     
(2-8) 

where C  is the elastic stiffness tensor and elε  is the elastic strain tensor of the material. 

In magnetostrictive materials, magnetic moments and displacements are coupled. Therefore, the 

total strain ε  in a ferromagnetic material is composed of magnetic ( ( )m mε ) and elastic ( elε ) 

contributions as [33] 

( )m elmε ε ε= +       (2-9) 

where m m Tmmε λ= is the strain associated with local magnetization changes and mλ  is the 

magneto-mechanical coupling tensor. In the case of a cubic crystal, mε  is given by [31][32][33] 

100

111

3 1
2 3
3
2

i j
m
ij

i j

m m i j

mm i j

λ
ε

λ

# $ %− =' ()) * += ,
) ≠).

    (2-10) 

where 100λ  and 111λ  are the magnetostriction constants along the 100  and 111 directions. For 

hexagonal or uniaxial crystals, equation (2-10) would need to be modified. 

The total strain ε  is related to the displacement u  by [31][32][33] 

( )( )1
2

Tu uε = ∇ + ∇
     

(2-11) 

and the stress tensor σ  is related to the strains as 
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( )el mC C mσ ε ε ε# $= = −& '     
(2-12) 

where the stress distribution is governed by the elastodynamic equation 

2

2 0u
t

ρ σ
∂

−∇⋅ =
∂      

(2-13) 

and ρ  is the mass density. 

The effective magnetic field effH  is obtained by differentiating the total energy density (Eq.2-1) 

with respect to magnetization [24][31][32][33][97] 

( )
0

1 ,tot
eff ext ex anis d me

S

EH H H H H H m u
M mµ

∂
= − = + + + +

∂    
(2-14) 

where dH  is defined in Eq. (2-7), extH  is the applied external field, and [24][25][31][32][33] 

0

2 ex
ex

s

AH m
Mµ

= Δ
 

( ) ( )2 2 2 2
1 2

0

2i i
anis j k j k

S

mH K m m K m m
Mµ

! "= − + +$ %
   

(2-15) 

( )( ) ( )
0

1
m

m
me

S

m
H C m

M m
ε

ε ε
µ

∂
= − − ⋅

∂
 

The effective field effH  term is used in the phenomenological Landau-Lifshitz-Gilbert (LLG) 

micromagnetic relation [24] 

( )0 eff
m mm H m
t t

µ γ α
∂ ∂$ %= − × + ×( )∂ ∂* +     

(2-16) 
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where γ  is the Gilbert gyromagnetic ratio and α  is the Gilbert damping constant.  

Equations (2-1) - (2-16) represent a system of equations describing the magnetoelastic response 

of a coupled micromagnetic-mechanical system. This set of equations can be reduced further; 

using Gauss’s law ( 0B∇⋅ = ) and Eqs. (2-6) and (2-7), the magnetic potential φ  satisfies the 

Poisson equation  

( )2
sM mφ∇ =∇⋅       (2-17) 

Substituting Eqs. (2-11) and (2-12) with the expression for ( )m mε  into Eq. (2-13) which reduces 

to modified a partial differential equation relating to the displacements u  and the magnetization 

m : 

 

( )( ) ( )
2

2

1 0
2

T m Tu C u u C mm
t

ρ λ
∂ $ %−∇⋅ ∇ + ∇ +∇⋅ =) *∂ + ,   

 (2-18) 

Combining Eqs. (2-14) and (2-16) produces the final three partial differential equations as a 

function of the displacement u , the magnetic potential φ , and the magnetization m : 

( )( )0 ( ) ( ) ( ) ( , )ext ex d anis me
m mm H H m H H m H m u m
t t

µ γ φ α
∂ ∂% &= − × + + + + + ×) *∂ ∂+ ,  

(2-19) 

Equations (2-17), (2-18), and (2-19) are a system of the seven coupled partial differential 

equations for the seven unknown variables represented by u , φ , and m . To solve this system of 
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coupled equations, the PDEs are formulated in their weak forms. The weak form of Eq. (2-17) is 

obtained by multiplying with a test functions ζ , which satisfies boundary conditions and the 

governing equation with this set integrated over the volumeΩ . After integrating by parts and 

using the divergence theorem, we obtain [99][101] 

( )( ) 0sd M m d
x x
ζ ζ

φ
Ω Ω

∂ ∂
− ∇ Ω+ Ω =

∂ ∂∫ ∫     (2-20) 

with prescribed magnetic potential boundary conditions[99], 

( )

in out

in out
sM m n

n n

φ φ

φ φ

="
#
∂ ∂%

− = − ⋅# ∂ ∂(

 on S     (2-21) 

where inφ  and outφ  are the inner and outer magnetic potentials and n  is the unit normal to the 

surface S . 

Similarly, the weak formulation for Eq. (2-18) is obtained by multiplying with a test vector 

function (η ) and integrating over the volume Ω . After integrating by parts and applying the 

divergence theorem, we obtain[31] 

( )( ) ( ) ( )( )
2

2

1 1
2 2

T Tm T

S

u d C u u d C mm d C u u ndS
t

ρ η η λ η η
Ω Ω Ω

% &∂ % &( ) ( )⋅ Ω+ ∇ ⋅ ∇ + ∇ Ω+ ∇⋅ ⋅ Ω = ⋅ ∇ + ∇ ⋅, - , -. / . /∂ 0 1 0 12 32 3
∫ ∫ ∫ ∫  

(2-22) 

with prescribed displacements and prescribed tractions on boundaries, 

0u u=   on 1S  

  σ ⋅ n! = t   on 2S      (2-23) 
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where 1S  and 2S  are sub-boundaries on S  ( 1 2S S S∪ = ).  

Finally, to construct the weak form of Eq. (2-19), we multiply the test vector functions ψ  and 

integrate over the volume Ω . After integrating exH  by parts, the weak form is [100] 

m mm d
t t

α ψ
Ω

$ ∂ ∂ &$ &− × ⋅ Ω =* +* +∂ ∂, -, -
∫  

( )( )0
2 ex l

ext d anis me
ls l l

A mm H H H H d m d
M x x
γ ψ

µ γ ψ
Ω Ω

$ % ∂∂
− × + + + ⋅ Ω+ × ⋅ Ω* +

∂ ∂, -
∑∫ ∫  (2-24) 

with the boundary condition 

0m
n

∂
=

∂   
on S

    
(2-25) 

and subject to the constraint by definition 

1m =   on Ω     (2-26)
 

Equations (2-20), (2-22), and (2-24) are subject to the boundary conditions given in Eqs. (2-21), 

(2-23), and (2-25), representing a well-posed problem that can be solved using finite element 

methods. 
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2.3! Simulation 

The weak forms of Eqs. (2-20), (2-22), and (2-24) [99][100][101] are solved using finite 

element methods with an implicit time stepping scheme and the backward differentiation formula 

(BDF)[102]. In order to decrease solution time, the system of equations with φ , m , u  is solved 

using a segregated solution approach, which splits the solution process into substeps using a 

damped Newton’s method[102]. In this chapter we have implemented the mathematical model 

(see flowchart in Figure 2-1) in a commercially available partial differential equation solver 

COMSOL (i.e. commercial code has graphical user interfaces) [102]. In general, as shown in 

Figure 2-1, initial conditions are first applied followed by a Newton iteration approach to 

converge for a given time step. Once converged, the time step is advanced and the process is 

repeated. The mathematical model described in this chapter can be similarly implemented in 

other finite element or numerical analysis packages that provide platforms to solve partial 

differential equations. For all numerical problems, convergent studies (i.e., mesh size and time 

steps) were conducted to ensure accuracy. The model was validated by comparing with 

experimental data. 
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Figure 2-1  (Color) Flowchart of the fully-coupled FEM simulation. 
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Experimental tests have been previously conducted by Bur et al.[36] on 100 nm!× 300 

nm × 35 nm nickel nanostructures attached to a SiO2 substrate subjected to mechanical loads. In 

their study, the change of the M vs. H curve as a response to applied mechanical loads was 

reported. An illustration of the finite element model used to analyze the experimental data is 

shown in Figure 2-2(a). The nickel nanostructure was assumed to be perfectly bonded to the 

substrate. The structure shown in Figure 2-2(a) is discretized using tetrahedral elements with a 

size on the order of nickel’s exchange length. The nickel properties used were[24][97][102]

54.8 10 ( / )sM A m= × ; 111.05 10 ( / )exA J m−= × ; 6
100 46 10λ −= − × , 6

111 24 10λ −= − × ,

11 2
11 2.5 10 ( / )c N m= × , 11 2

12 1.6 10 ( / )c N m= × , and 11 2
44 1.18 10 ( / )c N m= × . The exchange 

length, defined as
 

2
0

2

s

A
Mµ

, is 8.5 nm for nickel. The Gilbert damping constant was set as 

0.5α =  to improve stability and process time. The Young’s modulus and Poisson’s ratio of the 

isotropic substrate (SiO2) used were 
2
70( )SiOE Gpa=  and 0.2υ = , respectively. 

Figure 2-2(b) illustrates the magnetic field direction and boundary conditions. The 

external magnetic field was applied along the y-direction. Displacements were applied on the 

SiO2 boundaries at x=1000 nm and y=1000 nm to induce relative strains ( yy xxε ε− ) of -1210, -

671, 260, 0, 235, 645, and 1060 µε , where xx yyε νε= − in the effective substrate. Roller 

conditions were used along the planes at x=0 and y=0. The displacement conditions were 

initially applied and the magnetization states for all elements were allowed to reach equilibrium. 

Subsequently, an external magnetic field (Hext) was first varied from 0 to 1250 Oe followed by a 

reduction to -1250 Oe and finally back to 0 Oe. In the applied field region of -750~-250 Oe and 

250~750 Oe which represents values near the coercive field Hc, the field values were 
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incremented by 15 Oe while for all other field regions the increments were 250 Oe. The 

magnetization of the nickel nanostructure in the y direction at each applied field was determined 

by volume averaging the y-component of magnetization throughout the Ni nanostructure.  

 

Figure 2-2 (Color) Schematic diagram of the model and boundary conditions. 
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2.4! Results and Discussion 

In this section, experimental data[36] is compared to three different analytical models. The 

three models are the SW model[10][98], assuming cooperative spin and constant strain; the LLG 

micromagnetic model assuming spatially (homogeneous) uniform strain (ɛ=constant) [25][76][77] 

and the proposed model of LLG with equations of elastodynamics (LLG/EQ) derived in the 

analytical section of this document. This section makes use of the term “magnetostrictive strain” 

to describe the local strain experienced by the magnetic nanostructure as a response to the 

applied displacement (i.e. effective yy xxε ε−  in the substrate). The following paragraphs provide 

results for strain distribution, magnetic hysteresis curves, coercive field values, and 

magnetostrictive strains as a function of magnetic field. 

In Figure 2-3, experimental results and analytical results for the volume-averaged 

normalized magnetization M vs. applied H in the nickel nanostructure are plotted for the SW 

model, the LLG model, and the LLG/EQ model. Each figure is evaluated for seven different 

applied displacements/strains ( yy xxε ε− ). In general, the area of all three hysteresis predictions 

(including experiments) decreases as the applied strains ( yy xxε ε− ) increase. This trend is 

expected since nickel is a negative magnetostrictive material. The SW model is a single-

domain/spin model to approximate M vs. H hysteresis curves and describe basic micromagnetic 

phenomena. As can be seen in Figure 2-3(b), the SW model does not accurately predict the 

experimental results depicted in Figure 2-3 (a)[36]. The SW hysteresis area is much larger than 

the experimental data (i.e. over 50% larger than experimental results). In addition, SW predicts 

sharp coercive field changes while experiments are considerably smoother near coercive fields. 

The LLG model and the LLG/EQ model provide much closer approximations to experimental 
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data when compared to SW. The LLG hysteresis curves are different than those from the 

LLG/EQ model with non-uniform strains, as shown in Figure 2-3 (c) and Figure 2-3 (d). This is 

because the LLG model assumes constant strains and increases the amount of magnetoelastic 

energy input to the Ni nanostructures. In general, the SW model for coherent spin behavior and 

the LLG model have significant disagreement with the experimental results, which cannot be 

used to design more complicated magnetic nanostructures, while the LLG/EQ model curves 

provides more accurate predictive results. 
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(a)"  

 

(b)" 
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(c)"  

 

(d)" 

Figure 2-3 (Color) Hysteresis curves of external fields acting on the 100 nm!× 300 nm × 35 
nm Ni nanostructure generated using (a) experimental data (longitudinal MOKE), (b) 



 

34 
 

Stoner-Wolhfarth (SW) model, (c) LLG, and (d) LLG/EQ models for comparison, using 
volume-averaged values. The SW model displays impractically sharp hysteretic behavior 
due to its perfectly spin-oriented single domain assumption, and both the SW and 
traditional LLG models clearly show coercivity overestimation when compared to 
experimental data. 

 

 

  



 

35 
 

Figure 2-4(a) compares the coercive fields cH  as a function of applied strain ( yy xxε ε− ) 

for the SW model, the LLG model, the LLG/EQ model, and the experimental data. All curves 

show both a relatively linear relationship between cH  and the applied strains ( yy xxε ε− ) with a 

decreasing cH  as the applied relative strain ( yy xxε ε− ) increases. The SW model shows 

significant disagreement with the experimental data by as much as 2350 Oe, while the LLG 

model and LLG/EQ model results have relatively better agreement but still differing by as much 

as 200 Oe. Such inconsistencies in the analytical results are attributed to thermal issues, surface 

roughness, aspect ratio, or geometric smoothing in the nanostructure, which are not adequately 

represented in the simulations. In Figure 2-4(b), the change in coercive field values (i.e.,

0
c c cH H HΔ = − ) for the SW model ( ( )3 /c s yy xx sH E Mλ ε εΔ = − ), the LLG model, the LLG/EQ 

model, and experiments are provided. The LLG/EQ model shows very good agreement with 

experiment data (less than 2% deviation) while the SW model and the LLG model both relatively 

poor agreement with errors as large as 60%. These set of comparisons clearly indicate that non-

uniform strain distributions must be considered when predicting and understanding the strain-

mediated magnetic anisotropic effect in nanostructures. Therefore, caution should be taken when 

using SW or LLG simulations in these finite size structures. 
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(a)"   

 

(b)"  

Figure 2-4 (Color) Comparison of experimental values with LLG/EQ, LLG, and Stoner-
Wohlfarth models for (a) coercive field cH  and coercive difference cHΔ , as a function of 

yy xxε ε− (b). 
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Figure 2-5 shows analytical LLG/EQ results of the relative strain distribution in the Ni 

nanostructure with an effective applied strain 671yy xxε ε µε− = −  and zero applied magnetic field. 

Figure 2-5(a) shows the surface plot for strains ( 671yy xxε ε µε− = − ) in the nickel nanostructure. 

The simulation results clearly show that the strain distribution is non-uniform throughout the 

nanostructure. The relative strain values vary substantially between 700µε−  and 80µε− . 

Figure 2-5(b) plots the relative strain ( yy xxε ε− ) as a function of y at x = 50 nm for four different 

z values. Large strain variations are observed near the nanostructure ends (y = 0 nm and y = 300 

nm), while the strain in the middle (y = 150 nm) is relatively uniform. The volume-averaged 

strain yy xxε ε−  for the nickel nanostructure is 322µε−  and is 50% less than the applied strain. 

The strain variation as a function of position occurs due to a well-known phenomenon, 

classically referred to as shear lag in the mechanics community. Therefore, one can clearly see 

that the assumption of constant strain present in SW and LLG is inappropriate for this structure. 
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(a) 

 

(b) 

Figure 2-5 (Color) The non-uniform relative strain distributions in a 100 nm!× 300 nm × 
35 nm Ni nanostructure subjected to a strain of 671yy xxε ε µε− = − , expressed as a surface 
plot of the non-uniform strain distribution in the nickel nanostructure (a) and relative 
strain yy xxε ε−  as a function of y at different z values and x = 50 nm (b). 
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The LLG/EQ model is also able to predict the influence of magnetic field on 

magnetostrictive output strains which once again requires a fully coupled solution to accurately 

represent the response of a nanoscale structure. Figure 2-6 shows analytical results for the 

normalized magnetization M vs. applied H along the geometric hard y-axis (along the short width 

of the nanostructure) with an applied 1210yy xxε ε µε− = − . Figure 2-6 shows the spin states and 

the surface strain plots for the magnetostrictive strain ( 111
2

00 1
3
2

1
3

m mε λ # $−& '
( )

= ) under different 

applied H in the y-axis. The complete hysteresis loop follows a chronological number sequence 

(1 5→ ) as shown in Figure 2-6. The hysteresis loop begins at point 1 with zero applied field. 

When the applied field increases, the magnetization increases, saturating when the applied field 

is ~937 Oe (point 2). When the applied field is reversed, the normalized magnetization decreases 

to 0.1 at H = 0. The normalized magnetization is nonzero because remnant magnetic spins persist 

along the hard geometric axis of the nickel nanostructure. As the applied field becomes negative, 

the magnetization response asymmetrically mirrors the positive H as expected. Figure 2-7 plots 

magnetic spin states under the five applied fields (points 2 to 5) indicated in Figure 2-6. Without 

an applied field, the spins point along the geometric easy axis of the nanostructure. When a 

sufficiently large positive or negative field is applied along the x-axis, the spins form a flower 

state, fanning out along the x-axis to accommodate the demagnetization effect at the corners. 

Figure 2-7 shows the magnetostrictive strain ( 11
mε ) distribution in the nickel nanostructure. When 

the applied field is zero, the magnetostrictive strain ( 11
mε ) is fairly uniformly distributed through 

the nanostructure. When the applied field is large, the magnetostrictive strain ( 11
mε ) is large in 

the middle of the nanostructure and is small at the corners, once again showing that constant 

strain assumptions are invalid. 
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Figure 2-6 (Color) Hysteresis along the y-axis (y-axis) of the nanostructure under -1210µε . 

 

 

Figure 2-7 (Color) Spin states corresponding to hysteresis points in Figure 5 (top) and 
illustration of magnetostrictive strain ( 11

mε ) in the nanostructure (bottom).  
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Figure 2-8 shows four ( 122
2

00 2
3
2

1
3

m mε λ # $−& '
( )

= ) magnetostrictive strain states and their 

corresponding applied field results for nickel nanostructure. As shown in Figure 2-8(a), the 

complete magnetization loop follows a chronological sequence ( 1 12→ ). Without the 

application of a magnetic field (point 1), the spin state is a single domain aligned along the long 

axis of the structure. The spins are uniformly pointing along the y-axis at the center of the 

nanostructure, which then fan outwards along the nanostructure toward the corners due to 

demagnetization effects. The magnetostrictive strain is 44µε−  in this initial state. When the 

magnetic field increases (1 3→ ), the spins at the corners are forced to saturate along the easy 

axis, and the magnetostrictive strain decreases to 46µε− . When reversing the magnetic field 

(3 7→ ) to -560 Oe, there is a peak showing that the spin state forms an ordered ‘S’ shaped state 

within the structure. This is the critical field strength where the spins begin flipping to the 

opposite direction. The magnetostrictive strain is approximately 10µε− in this state. As the field 

decreases ( 7 9→ ), the spins begin pointing along the negative y-axis. This presentation 

illustrates the complex states that the magnetic spins take and are strongly influenced by finite 

size or shear lag effects in the nanostructure, i.e. inhomogeneous strains.  
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Figure 2-8 (Color) Magnetostrictive strain (vs.) applied magnetic fields (a), and 
nanostructure spin state at four distinct points of the graph (b, top) and their 
corresponding magnetostrictive strain states (b, bottom). 
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In conclusion, we have developed a numerical approach based on finite element for 

simulating magnetization states, magnetic hysteresis curves, and strain-induced coercive field 

changes in magnetic nanostructures by coupling the spatially-dependent strain state with 

micromagnetic simulation (LLG/EQ model) with elastodynamics. This model provides 

substantially better predictive results than the LLG model and the conventional Stoner-Wohlfarth 

(SW) model and in some cases must be used to accurately predict the response of a nanoscale 

structure. The LLG/EQ coupled model was verified with existing experimental data validating its 

predictive capabilities. In general, this work strongly encourages researchers to use coupled 

solutions when modeling the magnetoelastic response of finite size structures to accurately 

predict the magnetoelastic response. This is important in a wide range of fields, including 

memory, motors, and spin wave propagation.  
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3.   ! Electrical Control of a Single Magnetoelastic Domain 
Structure on a Clamped Piezoelectric Thin Film – Analysis 

 

This chapter presents an analytical model coupling Landau-Lifshitz-Gilbert 

micromagnetics with elastodynamics and electrostatics to model the response of a single domain 

magnetoelastic nano-element attached to a piezoelectric thin film (500 nm). The thin film 

piezoelectric is mounted on a Si substrate, globally clamping the film from in-plane extension or 

contraction. Local strain transfer to the magnetoelastic element is achieved using patterned 

electrodes. The system of equations is reduced to eight coupled partial differential equations as a 

function of voltage (V), magnetic potential φ , magnetic moments (m), and displacements (u), i.e. 

fully coupled material. The weak forms of the partial differential equations are solved using a 

finite element formulation. The problem of a Ni single domain structure (i.e. 150nm x 120nm x 

10 nm) on a thin film (500nm) PZT-5H attached to an infinite substrate is studied. Discretization 

in the single domain structure is on the order of the exchange length (8.5nm), providing spatial 

and temporal information on the local mechanical and magnetic fields. A -0.5 V potential is 

applied to a pair of surface electrodes, producing out-of-plane deformation and in turn straining 

the magnetoelastic single domain nanostructure in-plane. This strain is sufficient to reorient a 

single domain structure representative of an idealized memory element. 
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3.1! Introduction and Background 

For the past decade, researchers have focused on developing a magnetic memory element 

using a multiferroic material[103]. One approach uses a strain-mediated composite approach 

consisting of layered piezoelectric and magnetoelastic materials strain coupled 

together[42][104][105]. Researchers have analytically shown that the energy required to 

reorient/write a single magnetic domain structure can be very small, i.e. considerably smaller 

than conventional approaches to writing bits of memory[45][87][106][107]. However, the 

multiferroic composite memory element is typically fabricated on a fairly thick substrate system, 

e.g. silicon. This thick substrate clamps the piezoelectric/magnetoelastic material, limiting the 

amount of strain that can be generated, posing a significant challenge for the implementation of a 

strain-mediated memory element. In this analytical work we demonstrate a concept to overcome 

the substrate clamping issue and show reorientation of a magnetic single domain between two 

stable states by simply pulsing the voltage. 

Previous researchers have demonstrated the control of the magnetization states in thin 

film magnetoelastic material deposited on a thick piezoelectric substrate[53][54] [108][109][110]. 

This effect has been used to alter magnetic domains [42][53][54] [104] and to shift the magnetic 

coercive field[109][110]. As an alternative to using in-plane polarized piezoelectric material, 

some researchers such as Wu used the auxetic piezoelectric strain produced by [011] cut PMN-

PT, while others have used the same effect in PZN-PT single crystals[111][112]. These single 

crystal approaches resulted in a proposed design of a magnetoelectric memory system, but once 

again still required bulk piezoelectric material[73][87]. Moutis et al. in 2008 reported electric-

field modulation of coercive field Hc using periodic arrays of ferromagnetic (FM) Co50Fe50 
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stripes[51]. Bur et al. in 2011 reported strain-induced coercive field changes in patterned single-

domain nickel nanostructures deposited on a thick Si/SiO2 substrate using external mechanical 

loads[36], while Nan et al. suggested single domain reorientation on bulk PMN-PT single 

crystal[87]. Regarding piezoelectric materials deposited onto a substrate, out-of-plane magnetic 

reorientation has been achieved with magnetic BFO/CFO vertical nanoscale structures embedded 

in a ferroelectric thin film, as described by Zavaliche et al. in 2005[49], but this approach is non-

deterministic. Chung et al. studied single domain elements on a thin film piezoelectric[53][54], 

but did not demonstrate reorientation of the magnetic domain. None of these studies provides an 

acceptable approach to reorient a single domain structure deterministically using strain-mediated 

approach on a constrained substrate. 

The development of a strain-mediated multiferroic memory device requires the 

magnetization of each element to be individually controllable using a ferroelectric thin film 

grown on a substrate (e.g. Si wafer). The problem with this concept it that the thin film 

piezoelectric is clamped by the thick substrate and prevents strain transfer. Cui et al. suggested 

the use of patterned electrodes to overcome substrate clamping and obtain highly localized strain 

in both the thin film piezoelectric and the magnetic material[113]. The general concept was 

demonstrated on a bulk piezoelectric ceramic, but did not include detailed analysis (or 

experiments) for a thin film piezoelectric.  

The analysis of single domain switchable magnetoelectric heterostructures requires the 

use of the Landau-Lifshitz-Gilbert LLG micromagnetic approaches developed in the 

1950s[24][25]. An important addition to micromagnetics was the inclusion of strain (or stress) 

for magnetostrictive materials by Zhu et al. in 2001[30]. This was used by Hu in 2006 to model 

the effect of stress on hysteresis curves and magnetization dynamics, showing the interaction of 
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stress with coercivity and the easy axis of magnetoelastic materials[34]. Building on these 

advancements, Hu et al. used stability conditions and proposed an electric field read and write 

MERAM device[106]. A balance of both shape and strain anisotropy was used to describe an 

elliptical nanomagnet that could be switched under stress by Roy et al[45]. In most of these 

studies, however, magnetization and strain were assumed to be spatially homogeneous and thus 

the clamping issues produced by the substrate were not addressed. D’Souza et al. in 2011 

proposed and analyzed a low-power 4-state universal logic gate using a linear array of 

multiferroic nanomagnets[114], but did not consider the substrate clamping issue. Tiercelin et al. 

described and analyzed a magnetoelectric memory cell that balanced strain anisotropy, shape 

anisotropy, and a bias field[107]. In this later work the elastic contribution was modeled 

separately and the piezoelectric film was not attached to a substrate.  

In this chapter, a single domain magnetoelastic elliptical nanostructure deposited onto a 

thin film piezoelectric wafer attached to a thick substrate is modeled by coupling micromagnetics 

(LLG), elastodynamic, and electrostatics partial differential equations. The nickel magnetoelastic 

ellipse (150 nm x 120 nm x 10 nm) has shape anisotropy and an applied magnetic field along the 

minor axis to shift the energy wells, as described originally by Tiercelin in 2011[107]. The thin 

film (500 nm) piezoelectric is attached to a thick substrate that clamps and prevents relative in-

plane motion of the piezoelectric at the interface of the film with the substrate. Four electrodes 

are placed around the Ni magnetoelastic element similar to Tiercelin[107]; however, these 

electrodes produce out-of-plane electric fields rather than in-plane electric fields[113], and the 

thin film is mounted onto a substrate. The intrinsic coupling of the piezoelectric response with 

the magnetoelastic response through strain is modeled by coupled partial differential equations 

(i.e. electrostatics tied to micromagnetics while solving elastodynamics). The numerical 
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formulation uses tetrahedral finite elements with a maximum size equal to the exchange length of 

nickel (~8.5 nm), providing spatially varying strains, electric fields, and magnetic spins 

throughout the structure. Therefore, the model captures all the relevant physics required to 

accurately predict the response of this multiferroic nanoscale structure and demonstrates single 

domain magnetic reorientation in a strain-mediated structure attached to a thick clamped 

substrate.   
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3.2! Theory for Computational Model 

Strain-mediated multiferroic composites consist of both piezoelectric and magnetoelastic 

materials. Thus, the fundamental governing equations for predicting the dynamic response are 

based on electrostatics, micromagnetics (LLG), and elastodynamics. In this chapter, the general 

governing equations for a strain-mediated electro-mechanical and magnetoelastic materials are 

derived as in the previous chapter, from which individual phases represent limiting cases. The 

following derivation presents a general approach for developing the governing equations in weak 

forms, which are then implemented into a finite element formulation. Assumptions include small 

elastic deformations, linear elasticity, linear piezoelectricity, electrostatics, and negligible 

electrical current contributions. The single general derivation presented can be subsequently 

decoupled to predict the response of an electro-mechanical or magnetoelastic material.  

The strain for a multiferroic (magneto-electric-elastic) material is given by 

( )el PE m mε ε ε ε= + +      (3-1) 

where ε  is the total strain with contributions from the elastic strain 1el Cε σ−= , the 

piezoelectric strain 
PE dEε =  , and the magnetostriction strain m m Tmmε λ=  . Here C is 

the elastic stiffness tensor, σ  is the stress tensor, d is the piezoelectric strain tensor, E  is the 

electric field vector, λ is the magneto-mechanical coupling tensor, and 
s

Mm
M

=  is the 

normalized local magnetization vector with sM
 
representing saturation magnetization. For a 

cubic crystal, the components of mε  in a cubic referenced coordinate system are given by  
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100

111

3 1
2 3
3
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i j
m
ij

i j

m m i j

mm i j

λ
ε

λ

# $ %− =' ()) * += ,
) ≠).

    (3-2) 

where 100λ  and 111λ  are magnetostriction constants along the 100  and 111

directions[25][31][32][33][97][115]. For hexagonal or uniaxial crystals, equation (3-2) would 

have a different form that can easily be implemented in the approach[97], and for an isotropic 

polycrystalline the two coefficients have the same value.  

The electrical portion of the constitutive equation, assuming negligible magnetic and electric 
field coupling, is given by 

T
sD d Eσ ε= +

    
(3-3) 

where sε is the dielectric tensor and D  is the electric displacement. For a general multiferroic 

material, an additional term would appear in equation (3-3) representing the coupling between 

magnetic and electric fields, but for this derivation we have assumed this component is 

negligible. The coupling between magnetic and electric fields in the material modeled in this 

chapter arises due to the stress term in equation (3-3) and its coupling to magnetic strain 

presented in equation (3-1). The electrostatic governing equations are  

fD
E V

ρ∇⋅ =

= −∇
     (3-4) 

where V  is the electric potential and fρ  is density of free charges. The electric potential V is 
obtained by combining equations (3-3) and (3-4) for electrostatic behavior ( 0fρ = ): 

( ) 0T
sd Vσ ε# $∇⋅ + −∇ =

( )     (3-5) 

The magnetic response of the multiferroic media is governed by the phenomenological 

Landau-Lifshitz-Gilbert (LLG) micromagnetic relation[25] 
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( )0 eff
m mm H m
t t

µ γ α
∂ ∂$ %= − × + ×( )∂ ∂* +     

(3-6) 

where 0µ  is the permeability in the vacuum, γ  is the Gilbert gyromagnetic ratio, and α  is the 

Gilbert damping constant. effH  is the effective magnetic field, which is obtained from the total 

energy density and is given by[24][25] 

( )
0

1 , ( )tot
eff ext ex anis d me

S

EH H H H H H m u E
M mµ

∂
= − = + + + +

∂   
(3-7) 

where totE  is the total energy density, which includes the Zeeman energy density due to an 

applied external field, the exchange energy density, the magnetocrystalline anisotropy energy 

density, the demagnetization energy density, and the elastic energy density[25][31][32]. extH  is 

the applied external field, exH  is the exchange field, anisH  is the anisotropic field, dH  is the 

demagnetization field and meH  is the magnetoelastic field. Expressions for these terms follow  

2

0

2 ex
ex

s

AH m
Mµ

= ∇       (3-8.1)
 

( ) ( )2 2 2 2
1 2

0

2i i
anis j k j k

S

mH K m m K m m
Mµ

! "= − + +$ %
   

(3-8.2) 

where K1 and K2 are cubic anisotropy constants[25][31][32][33]. The equation for the anisotropy 

field i
anisH  will take a different form for other crystal symmetries. The demagnetization field 

dH  is determined from Ampere’s law ( 0dH∇× = ), Gauss’s law ( 0B∇⋅ = ), and the relation 

between the magnetic induction B and magnetization m [99]: 

d sB H M m= +       (3-9) 

dH  is expressed as the gradient of a magnetic potential φ by using Ampere’s law[99]:  
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dH φ= −∇        (3-10) 

Using Gauss’s law with equations (3-9) and (3-10), the magnetic potential φ  satisfies the 

Poisson equation[33][99]: 

( )2
sM mφ∇ =∇⋅       (3-11) 

The magnetoelastic field is obtained by differentiating the elastic energy density in equation (3-7) 
[31][33]: 

( ) ( )( ) ( )
0

1
m

m PE
me

S

m
H C m E

M m
ε

ε ε ε
µ

∂
= − − − ⋅

∂    
(3-12) 

The mechanical response of the is governed by the elastodynamic equation [33] 
2

2 0u
t

ρ σ
∂

−∇⋅ =
∂      

(3-13) 

where ρ  is the mass density. The total strain ε  from equation (3-1) is related to the 

displacement u  vector as 

( )( )1
2

Tu uε = ∇ + ∇
     

(3-14) 

and the stress tensor σ  is related to the strains as[33]: 

( ) ( )el m PEC C m Eσ ε ε ε ε# $= = − −& '    
(3-15) 

Equations (3-1) - (3-15) represent a system of equations describing the electro-magneto-

mechanical response. Substituting equations (3-14) and (3-15) and the expression for ( )m mε  

into equation (3-13) results in a modified elastodynamic partial differential equation in terms of 

displacements u , electric field E  and magnetization m [32]: 

( )( ) ( ) ( )
2

2

1 0
2

T m Tu C u u C mm C dE
t

ρ λ
∂ $ %−∇⋅ ∇ + ∇ +∇⋅ +∇⋅ =) *∂ + ,  

(3-16) 
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where the electric field E is obtained from equation (3-4). Note that the partial differential 

equation is fully coupled with electric (E(V)), magnetic (m), and mechanical displacement fields 

(u); thus a fully coupled multiferroic material is modeled. Combining equations (3-6) and (3-7) 

produces the modified LLG equation in terms of displacements ( u ), electric field ( E ) and 

magnetization (m ): 

( )( )0 ( ) ( ) ( ) ( , ( ))ext ex d anis me
m mm H H m H H m H m u E m
t t

µ γ φ α
∂ ∂% &= − × + + + + + ×) *∂ ∂+ ,  

(3-17) 

Equations (3-5), (3-11), (3-16) and (3-17) represent eight fully coupled partial differential 

equations for the eight unknown variables represented by V , u , φ  and m . In this chapter, the 

coupled PDEs are formulated in their weak forms. The weak form of equation (3-5) is obtained 

by multiplying it by test functions β  which satisfy boundary conditions, and then integrating 

over the volume Ω . Using the divergence theorem gives 

( ) ( )( )

( ) ( )( )

1( )
2

1( )
2

TT T m T
s

TT T m T
sS S

dCd V d d C u u mm d
x x

dCd V ndS d C u u mm ndS

β β
ε λ

ε β λ β

Ω Ω

∂ & ' ∂& '− −∇ Ω+ ∇ + ∇ − Ω =* +* +∂ ∂, -, -

& '& '− −∇ + ∇ + ∇ −* +* +
, -, -

∫ ∫

∫ ∫
  

(3-18) 

 

with the following prescribed electric potential boundary conditions 

0V V=   on S      (3-19) 

where 0V  is the electric potential on the surface S . The weak form of equation (3-11) is obtained 

by using a test functions ζ  giving[99] 

( ) ( )( ) 0s sS
d M m d M m ndS
x x
ζ ζ

φ φ ζ
Ω Ω

∂ ∂
− ∇ Ω+ Ω+ −∇ + =

∂ ∂∫ ∫ ∫
  

(3-20) 

With the following prescribed magnetic potential boundary conditions[99], 
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( )

in out

in out
sM m n

n n

φ φ

φ φ

="
#
∂ ∂%

− = − ⋅# ∂ ∂(

 on S     (3-21) 

where inφ  and outφ  are the inner and outer magnetic potentials and n  is the unit normal to the 

surface S . Similarly, the weak formulation for equation (3-16) is obtained by using test vector 

functions η , producing  

ρ
∂2u
∂t2

"

#
$

%

&
'

Ω∫ ⋅ηdΩ+ ∇η ⋅ C 1
2
∇u+ ∇u( )

T"
#
$

%
&
'

,

-
.

/

0
1

"

#
$

%

&
'

Ω∫ dΩ+ C λ
mmmT( )+C d(−∇V )( ),

-.
/
01Ω∫ ∇ηdΩ

= η ⋅C 1
2
∇u+ ∇u( )

T"
#
$

%
&
'− λ

mmmT( )− d(−∇V )( )
,

-
.

/

0
1S∫ ⋅n!dS

   
(3-22)

 

             

with prescribed displacements and prescribed tractions on the corresponding boundaries[31], 

0u u=   on 1S      (3-23.1) 

  σ ⋅ n! = t   on 2S      (3-23.2) 

where 1S  and 2S  are sub-boundaries on S  ( 1 2S S S∪ = ). Finally, to construct the weak form of 

equation (3-17), the vector test function ψ  is used to produce 

m mm d
t t

α ψ
Ω

$ ∂ ∂ &$ &− × ⋅ Ω =* +* +∂ ∂, -, -
∫  

( )( )0
2 ex l

ext d anis me
ls l l

A mm H H H H d m d
M x x
γ ψ

µ γ ψ
Ω Ω

$ % ∂∂
− × + + + ⋅ Ω+ × ⋅ Ω* +

∂ ∂, -
∑∫ ∫  (3-24) 

with the boundary condition [24][25] [91][101]  

0m
n

∂
=

∂   
on S

    
(3-25) 

and subject to the constraint [24][25] [91][101] 

1m =   on Ω     (3-26)
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which is a direct consequence of the LLG equation [24][25] [91][101]. Finally, equations (3-18), 

(3-20), (3-22), and (3-24) in addition to the boundary conditions given in equations (3-19), (3-

21), (3-23), and (3-25), represent a well-posed problem that can be solved using finite element 

methods. 

The weak forms are solved using the finite element method with an implicit time stepping 

scheme and backward differentiation formula (BDF)[102]. To decrease solution time, the system 

of equations is solved using a segregated solution approach, which splits the solution process 

into substeps using a damped Newton’s method[102]. For all numerical problems, convergence 

studies (i.e., mesh size and time steps) were conducted to ensure accuracy. The time step is 5 x 

10-11 s and duration is 2 x 10-12 s[102].  
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3.3! Results 

Prior to showing analytical results, we first describe the physical mechanism of 

deterministically reorienting the magnetization in a single domain element by 90 degrees using 

magnetoelastic properties[107]. Figure 3-1 shows the energy profiles as a function of the 

magnetization angle for two different nanoscale geometries (~100 nm, in-plane 10 nm thick), i.e. 

a circular.  Figure 3-1(a) or elliptical disk Figure 3-1(b). For a circular disk, as shown in Figure 

1a, there are no preferential magnetic energy wells, thus the in-plane magnetization direction is 

independent of angle. For an elliptical disk, as shown in Figure 3-1(b), there are two energy 

minima aligned along the major axis at 0 and 180 degrees. By introducing a magnetic bias field 

(Hb) aligned along the ellipse’s minor axis (see Figure 3-1(c)), the angle between the energy 

wells decreases, i.e. from 0/180 in Figure 3-1(b) to 45/135 in Figure 1c with Hb applied. The 

simultaneous application of a magnetic field and a mechanical strain to the magnetoelastic 

ellipse (e.g. negative magnetostriction), as shown in Figure 3-1(d) and Figure 3-1(e), modifies 

the two energy wells magnitude relative to each other rather than substantially change the angle 

(i.e. 45/135). This approach, i.e. application of a constant magnetic bias field with the application 

and removal of a mechanical strain, allows deterministic strain-mediated switching between two 

stable states[107].  
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Figure 3-1 (Color) An energetic diagrammatic description of the proposed memory element. 

(a) Circular disk: Isotropic shape in-plane. 

(b) Elliptical disk: shape anisotropic induced easy direction along the major axis of the 
ellipse (0 or 180). 

(c) Bias field effect: two stable states are generated by a bias field Hb. Energy barrier 
between two states is lowered by bias field Hb. 

(d) and (e) Interaction of shape anisotropy, bias field, and applied tensile strain, changing 
the energy profile (+θ or –θ). 
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Figure 3-2 shows an illustration of the analytical model to demonstrate reorientation of a 

Ni magnetoelastic ellipse. The 500 nm PZT-5H thin film has a Pt bottom ground electrode 

deposited onto a 0.5mm thick Si substrate. The PZT-5H is represented with linear piezoelectric 

elements (i.e., subset of derived model) for this region. While not shown in Figure 3-2(a), an 

exchange layer could be used between the Pt and Ni structures for applying the bias field in-situ  

(i.e. following the concept introduced in Figure 3-1(d) & Figure 3-1(e))[117]. Figure 3-2(a) 

shows the 150nm x 120 nm x 10 nm Ni ellipse surrounded by four 125 nm x 125 nm x 10 nm Au 

electrodes. The Ni is represented with nonlinear magnetoelastic elements, while the Au is 

represented with linear mechanics elements (i.e. both subsets of the derived model). The two 

electrodes A-A are at a 45-degree angle, and the two electrodes B-B are at a 135 degree angle 

relative to the major axis of the ellipse (i.e. x-direction). The PZT-5H film is poled through the 

thickness in the z direction. The model presented in Figure 3-2 for the Ni ellipse, the electrodes, 

and the PZT-5H film thickness have not been optimized for a given objective function and are 

only presented to demonstrate the concept of single domain switching by 90 degrees on a thin 

film PZT mounted to a Si substrate. Rather than model the entire substrate, the interface of the 

PZT with the Pt/Si interface is clamped to prevent displacement. As shown in the cross-section 

of Figure 3-2(b), the in-plane x-y dimensions have been reduced to 1000 x 1000 nm, and these 

boundaries along the x- and y-directions are also clamped to prevent displacements. In this 

model voltage is always applied to two top Au electrode sets (i.e. either A-A or B-B sets) with 

the bottom Pt electrode grounded; that is, the electric field is applied through the thickness of the 

PZT-5H. Figure 3-2(c) illustrates the deformation generated with the application of a voltage to 

produce a positive electric field. The d33 out-of-plane extension under the two sets of electrodes 

(e.g. A-A) generates an in-plane anisotropic tensile strain in the Ni nanodot, as illustrated with 
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the dashed line. This local anisotropic strain switches the magnetic spin state of the Ni ellipse (or 

energy wells) between the two stable energy wells, as shown in Figure 3-1(d) and Figure 3-1(e). 

The strain produced with this geometric configuration has been previously demonstrated on a 

bulk PZT sample, as described by Cui[113]. When the A-A electrodes are energized, the spins 

align along 45 degree direction; while if the B-B electrodes are energized, the spins align along 

135 degree. Both angles represent stable equilibrium positions without a voltage/electric field 

applied.  
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Figure 3-2 (Color) Schematic of the bi-stable memory bit. 

(a)!The memory bit consists of an elliptical ferromagnetic element deposited on a 
ferroelectric layer with patterned electrodes around the ferromagnetic element. 

(b)!Schematic of top view, showing all four boundaries of the PZT thin film clamped by the 
Si substrate. 

(c) Cross-section view, showing mechanical response to applied electric field. By applying a 
positive voltage to the two electrode pairs (A-A), mechanical stretching is induced between 
the electrodes. 
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The finite element model for Figure 3-2(a) is constructed as follows. The nickel 

properties are 
54.8 10 ( / )sM A m= × ;

111.05 10 ( / )exA J m−= × ;
6

100 46 10λ −= − × , 

6
111 24 10λ −= − × ,

11 2
11 2.5 10 ( / )c N m= × ,

11 2
12 1.6 10 ( / )c N m= × , and 

11 2
44 1.18 10 ( / )c N m= × [97]. 

The magnetocrystalline anisotropy energy term is an order of magnitude smaller than the 

magnetoelastic energy (i.e. soft ferromagnetic material) and is assumed negligible. The Gilbert 

damping constant was set as 0.5α =  to improve stability and process time. The PZT-5H material 

properties are [102] 
10

33  5.93 10 ( / )d C N−= × ;
10

31  2.74 10 ( / )d C N−= − × ,

11
11 22 1.27205 10 ( )c c Pa= = ×  ,

10
12 8.02122 10 ( )c Pa= × ,

10
13 23 8.46702 10 ( )c c Pa= = × ,

11
33 1.17436 10 ( )c Pa= × , 

10
44 55 2.29885 10 ( )c c Pa= = × , and

37500( )/kg mρ = . The Young’s 

modulus and Poisson’s ratio for Au are
10 27 10 ( / )AuE N m= × and 0.44Auν = , respectively[102]. 

The exchange length, defined as
2

0

2 ex

s

A
Mµ , is 8.5 nm for nickel[97][115]. The nickel nanoellipse 

is discretized using tetrahedral elements with a size on the order of nickel’s exchange length. The 

remainder of the structure (i.e. PZT-5H thin film, Au electrodes) is discretized using tetrahedral 

elements with graded element sizes dependent upon local geometry. The voltage used during this 

study is -0.5 V applied as a step function for 6 x 10-11 s on either electrodes A-A or B-B 

(electrical field through the thickness is 1 MV/m). That is, a voltage is applied for a period of 

time sufficiently long to allow spin equilibrium to be obtained, and the voltage is then removed. 

All simulations include a magnetic bias field applied along the minor axis of the nano-ellipse. 

Prior to application of the bias magnetic field or voltage, all magnetic spins are uniformly canted 

out of the x-y plane at 45 degrees and allowed to precess toward an equilibrium state.  
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The first study determines the influence of magnitude bias field (Figure 3-1(b)-(c)) on the 

location of the magnetic energy wells. In this study, the same boundary conditions as described 

above were used, but the applied voltage is zero. Figure 3-3 plots the magnetic energy well 

location (see insert for angle definition) as a function of applied bias magnetic field. Figure 3-3 

also includes results from a Stoner-Wohlfarth model [10][98]with the finite element model. As 

the results show, as the magnetic field increases, the angle of the stable energy well increases and 

approaches 90 degrees. While the Stoner-Wohlfarth and the finite element model are in good 

agreement when determining the location of the energy wells, the Stoner-Wohlfarth model does 

a poor job of predicting the combined magnetic/elastic response of this structure. To approach 

the angle pictorially represented in Figure 3-1(c), a constant bias field (Hb) of 9000 A/m is 

required to orient the magnetic energy wells at ~45 and ~135 degrees. This value can be 

achieved using an antiferromagnetic exchange coupling layer[117]. The following simulations 

incorporate an Hb= 9000 A/m. 
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Figure 3-3 (Color) The angle of the energy minima and energy barrier, comparing values 
obtained from Stoner-Wohlfarth (SW) calculation and present FEA simulation work, as a 
function of applied bias field. 
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Figure 3-4 shows results for Hb= 9000 A/m and -0.5 V applied to the A-A electrode pair. 

In Figure 3-4(a), a three-dimensional deformation plot along with relative strain contour plots 

(
' '
AA BBε ε−  ) are presented. The terms 

'
AAε  and 

'
BBε  represent the normal strains along A-A and B-

B axes, respectively. The contour plot indicates that the strain is limited to the region between 

electrodes A-A and does not significantly influence the surrounding region. Figure 3-4(b) 

provides a 2-D deformation plot along with relative strain contour plots for section A-A. The 

deformation is very similar to that presented in Figure 3-2(c). That is, the PZT beneath the 

electrodes expands out-of-plane. This expansion, in turn, generates tensile strain in the center 

region along the A-A direction. The contour strain plot shows that the anisotropic strain 

(
' '
AA BBε ε−  ) in the Ni nanoellipse is on the order of 450 µɛ but is spatially distributed. To more 

closely examine the strain distribution, Figure 3-4(c) provides the anisotropic strain (
' '
AA BBε ε−  ) 

as a function of position along the A-A direction (see insert). The five curves in the figure 

represent five different z locations through the thickness in the Ni nanoellipse. In general, the 

anisotropic strain decreases from the bottom (i.e. interface of PZT with Ni) to the top of the Ni 

nanoellipse. Also there is a significant reduction in strain near the edges of the Ni nanoellipse, x 

= 40 nm and 175 nm due to the shear lag effect. Shear lag effects become important and must be 

taken into account as the thickness of the magnetic layer increases relative to the minor axis 

dimension. At the top of the Ni (t = 10 nm), the strain near the edge (axis = 40nm and 175nm) is 

about 100 µɛ, while the relative strain at the center (axis=100nm) is about 400 µɛ. At the bottom 

of the Ni (t = 2 nm), the strain near the edge (x = 40nm and 175nm) is about 300 µɛ while the 

relative strain at the center (x = 100nm) is about 500 µɛ, which shows that the strain decreases 

through the thickness. The average strain transferred to the nanoellipse is approximately 450 µɛ, 
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representing a ~60% decrease in strain magnitude compared to material near the electrodes 

(~1000µɛ). The strain also decreases significantly in the Ni nanoellipse between two neighbors.  



 

66 
 

 

(a) 

 

(b) 
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(c) 

Figure 3-4 (Color) Simulation results (displacement scale exaggerated) 

(a) Voltage applied on A-A electrode pair. Two electrodes expand out-of-plane and tensile 
strain is induced in the middle region. 

(b) Cross-section 2D plot along A-A. Tensile strain is induced in the middle (~800 µɛ). The 
strain transferred to the nano-ellipse is ~450 µɛ. Non-uniform strain distribution exists 
between the substrate and the nano-ellipse. 

(c) Strain for different layers in the nanoellipse along A-A. 
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Figure 3-5 shows the magnetic response of the structure when either electrodes A-A 

(Figure 3-5(a)) or B-B (Figure 3-5(b)) are energized. The magnetization is initially in an 

equilibrium state at ~45 degrees with respect to the x-axis. Electrodes A-A are initially energized 

as shown in Figure 3-5(a). The top figure shows the voltage applied and the magnetic dipole 

orientations in the Ni nanoellipse after equilibrium is reached. The larger arrow on the Ni 

nanoellipse is used to inform the reader of the magnetic spin states of each element. The bottom 

Figure 3-5(a) shows an exaggerated in-plane (x-y plane) deformation plot along with a relative 

strain contour plot (
' '
AA BBε ε−  ). The deformation plot in this figure illustrates the stretching of the 

ellipse along the A-A direction that is consistent with the results shown in Figure 3-4. This 

stretching causes the magnetic spins in a negative magnetic material like Ni to rotate toward the 

stable equilibrium position located at ~135 degrees (see Figure 3-1(d) and Figure 3-1(e)) as 

shown in Figure 3-5(a). When the voltage is removed (not shown), the magnetic spins are stable 

at ~135 degree and do not return to ~45 degrees. Following this voltage loading sequence, 

electrodes B-B are energized with results shown in Figure 3-5(b). As can be seen in the bottom 

of Figure 3-5(b), the displacement of the Ni nanoellipse is now along the B-B axis rather than 

along the A-A axis as shown in Figure 3-5(a). This stretching of the ellipse along B-B causes the 

magnetic spins to reorient along the A-A axis as shown in Figure 3-5(b) top with the large red 

arrow. Once the voltage is removed, the magnetic spins remain along the B-B axis since this is a 

stable equilibrium position (see Figure 3-1(d)). 
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Figure 3-5 (Color) Top view of strain intensity plot from the fully-coupled simulation 
results. 

(a)!(top) Magnetization rotates due to the application of strain from electrode pair (A-A). 
(bottom) Applied voltage on A-A creating 45-degree tensile principle strain. 

(b)!(top) Magnetization rotates due to the application of strain from electrode pair (B-B). 
(bottom) Applied voltage to B-B creating 135-degree tensile principle strain. 
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Figure 3-6 shows magnetization and voltage applied as a function of time for the case 

presented in Figure 3-5. The blue dashed line is the voltage applied to A-A, the green dashed line 

is the voltage applied to B-B and the red line is the average magnetization state. The left vertical 

axis corresponds to the magnetization direction (i.e. angle measured from x-axis) while the right 

vertical axis represents voltage. Initially the stable magnetic equilibrium is at ~45 degree when a 

voltage is applied to A-A at time = 1.5 ns and held until 3.5 ns. The magnetization responds at 

approximately 2 ns and switches from 45 to ~135 at 3ns. The magnetization response time is 

approximately 1.5 ns. When the voltage (A-A) is removed, the magnetization remains in this 

new state, since it represents a stable equilibrium well. When the second pair (B-B) is energized 

at 4.5 ns, the magnetization rotates back to ~45 degrees, and remains there following removal of 

the voltage to B-B. The electrical energy required to “write” (switch) this magnetic single 

domain can be calculated from the surface charge on the electrodes and the applied voltage. For 

the mechanism shown in Figure 3-5 and Figure 3-6, the switching energy is approximately 8 fJ. 

This energy is associated with deformation of the PZT, strain in the electrodes, and strain in the 

Ni structure. This value is considered a conservative value, given that the structure has not been 

optimized with respect to PZT thickness or electrode size.  
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Figure 3-6 (Color) Time response of the memory bit. The magnetization starts at zero and 
voltage is applied to electrode pair A-A, switching M to the “1” state; voltage on B-B 
switches M to the “0” state. The magnetization is bi-stable. The dashed blue line represents 
voltage applied to A-A; the dash green line represents voltage applied to B-B; and the red 
line represents the response of the magnetization. 
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3.4! Conclusion 

This chapter presented a robust analytical model combining micromagnetics with 

elastodynamics and electrostatics to solve a strain-mediated composite multiferroic problem. The 

solution was implemented in a finite element code providing both spatial and temporal 

information on the magnetic, electric, and mechanical fields. The problem of a single magnetic 

domain structure attached to a clamped piezoelectric thin film was studied. Analytical results 

demonstrate that out-of-plane deformations produce sufficient strain to reorient the magnetic 

structure, overcoming the classical substrate clamping problem. Work remains to be conducted 

on other magnetoelastic materials and optimizing the various structural geometries to minimize 

the required electrical energy to reorient or write this domain structure. 
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4.   ! Deterministic switching of a magnetoelasitc single-domain 

nano-ellipse using bending 

In this chapter, a fully coupled analytical model between elastodynamics with 

micromagnetics is used to study the switching energies using voltage induced mechanical 

bending of a magnetoelastic bit. The bit consists of a single domain magnetoelastic nano-ellipse 

deposited on a thin film piezoelectric thin film (500 nm) attached to a thick substrate (0.5mm) 

with patterned electrodes underneath the nano-dot. A voltage applied to the electrodes produces 

out of plane deformation with bending moments induced in the magnetoelastic bit modifying the 

magnetic anisotropy.  To minimize the energy two design stages are used. In the first stage, the 

geometry and bias field (Hb) of the bit are optimized to minimize the strain energy required to 

rotate between two stable states. In the second stage, the bit’s geometry is fixed and the electrode 

position and control mechanism is optimized. The electrical energy input is about 200 (aJ) which 

is approximately two orders of magnitude lower than spin transfer torque approaches 
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4.1! Introduction 

The use of multiferroic systems for development of low energy memory applications has 

received considerable attention in the past few years. The main concept is to use a multilayered 

composite material system consisting of piezoelectric and magnetoelastic layers and control the 

magnetization by induced strain[42][43][104][108]. The actuation mechanism consists of 

applying voltage to a piezoelectric substrate creating deformation which in turns transfers to a 

ferromagnetic nano-dot placed on top. However, the multiferroic composite memory elements 

intrinsically reside on a fairly thick substrate system. This thick substrate clamps the 

piezoelectric/magnetoelastic material limiting the amount of strain that can be generated and 

poses a significant problem for this area of study[53][54][68][110].  In this paper we present a 

mechanism to overcome this limitation and, more importantly, we show that local strain profiles 

can be used to reorient the magnetization vector between two stable equilibrium points. 

Researchers have demonstrated the feasibility of the magnetization control between 

stable states in thin film magnetoelastic material deposited on a thick piezoelectric substrate.This 

voltage induced strain  mediation effect to manipulate the magnetization is generally referred to 

as the converse magnetoelectric effect[110]. There have been extensive studies that contain both 

theoretical and experimental work on strain-mediated magnetization changes, coercivity changes 

and strain-induced anisotropy in continuous magnetic thin films[111]. In all of the continuous 

film studies, the strain is appropriately assumed to be fully transferred from the ferroelectric to 

the ferromagnetic layer by treating the magnetoelastic energy as a pure uniaxial anisotropy to be 

applied to the magnetic media. For example, T. Brintlinger et al.[55] reported both experimental 

and analytical predictions, using OOMMF and constant strain assumptions that show reversible 
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switching in FeGa/BTO thin film. In recent years, several additional studies, such as 

ferroelectric/ferromagnetic film coupling by Lahtinen et al.[104] and magnetic thin film stress 

modeling by Bai et al[84], have demonstrated that this constant strain methodology works 

reasonably well for continuous thin films. 

The strain-mediated effect in multiferroic nanostructures has been used to alter magnetic 

domains[128][129][130] and to shift the  magnetic coercive field. Bur et al.[36] reported strain-

induced coercive field changes in patterned single-domain nickel nanostructures deposited on a 

thick Si/SiO2 substrate using external mechanical loads. Moutis et al.[51] reported electric-field 

modulation of coercive field Hc using a piezoelectric on a periodic array of ferromagnetic (FM) 

Co50Fe50 stripes but once again this was on an entire substrate. Out of plane magnetic 

reorientation has also been achieved with magnetic BFO/CFO vertical heterostructures 

embedded into a ferroelectric described by Zavaliche et al.[49]  While demonstrating the concept 

this approach produced excitation in all the magnetic elements simultaneously and thus, the 

mechanism does not lend itself to individual element control nor could it be used for 

deterministic reorientation of the magnetic moment. Brandlmaier et al.[52] used the biaxial strain 

difference produced on the side of a piezoelectric stack actuator to control the magnetic 

anisotropy of a thin crystalline Fe3O4 film on bulk material.  As an alternative to using in plane 

polarized piezoelectric material, some researchers such as Wu used the auxetic piezoelectric 

strain produced by [011] cut PMN-PT while others have used PZN-PT single crystals.  These 

single crystal approaches resulted in a proposed design of a magnetoelectric memory system but 

once again required bulk piezoelectric material, which is not amenable to memory fabrication 

processes.  In a device proposed by Hu et al.,[87] they suggested individual magnetic elements 
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could be controlled by very small single crystal PMN-PT elements, a configuration that presents 

significant fabrication challenges.   

The development of a strain mediated multiferroic memory device requires that the 

magnetization to be individually controllable for each nano-dot and the ferroelectric thin film be 

grown on a substrate (e.g. Si wafer).  The main difficulty here is that the thin film piezoelectric is 

clamped by the thick substrate and prevents strain transfer.   Cui et al.[113] suggested the use of 

patterned electrodes to overcome substrate clamping and obtain highly localized strain in a thin 

film piezoelectric and the magnetic material.  The concept was demonstrated on a bulk ceramic 

and relatively large magnetic elements and did not include detailed analysis (or experiments) for 

thin film piezoelectric on a thick substrate controlling a single magnetic domain element.[137] In 

addition to single-bit multiferroic memory devices, nanomagnetic-based Boolean logic circuit 

also attracts research attention because of its non-volatile and energy-efficient properties. 

D’Souza et al.[140] experimentally demonstrated strain-induced switching of single-domain 

magnetostrictive nanomagnets (lateral dimensions�200 nm) fabricated on a bulk PMN–PT 

substrates can implement a nanomagnetic Boolean NOT gate and steer bit information 

unidirectionally in dipole-coupled nanomagnet chains. From their estimation, the energy 

dissipation for logic operations using thin film is only about �1 aJ/bit.  

The design of single domain switchable magnetoelectric heterostructures requires the use 

of Landau-Liftshitz-Gilbert equation.  The micromagnetics tools used today are largely based on 

phenomenological approaches developed in the 1950s that have been refined considerably in 

recent years[25]. An important addition to micromagnetics was the inclusion of strain (or stress) 

for magnetostrictive materials by Zhu et al.[30] as an extra term in the effective magnetic field. 
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This was then used by Hu[34] to model the effect of stress on hysteresis curves and 

magnetization dynamics, showing the interaction of stress with coercivity and the easy axis of 

magnetoelastic materials.  Based on these results, Hu et al.[106] used stability conditions and 

proposed an electric field read and write MERAM device. A balance of shape anisotropy and 

strain anisotropy was used to describe an elliptical nanomagnet that could be switched under 

stress by Roy et al[45]. However, in most of these studies magnetization and strain was assumed 

to be spatially uniform and thus did not consider the clamping issue or the effects of a properly 

tailored strain field profile.  D’Souza et al[114]. proposed and analyzed a low-power 4-state 

universal logic gate using a linear array of multiferroic nanomagnets but did not consider the 

substrate clamping issue. Tiercelin et al[107]. described and analyzed a magnetoelectric memory 

cell that balanced strain anisotropy, shape anisotropy, and a bias field. In this later work the 

elastic contribution was modeled separately and the piezoelectric film was not attached to a 

substrate. Liang et al[137]. a design based on four patterned electrodes was introduced. In this 

work a fully coupled model was used to analyze the design and is was shown that, by applying 

an electric field thru the thickness of the piezoelectric substrate, the clamping effect can be 

overcome. Also, in this work, it was concluded that the effect of shear lag produces localized 

strain profiles (70%).  Biswas et al[141]. proposed a scheme that can flip the magnetization of 

the soft layer (complete 180° rotation) in MTJ multiferroic memory bit with stress alone and 

without the need for any feedback circuitry that undermines the energy-efficiency and reliability 

of the bit writing scheme.  

In this chapter, the system consists of a nanoscale single domain magnetoelastic ellipse 

deposited on a thin film piezoelectric wafer attached to a thick substrate. This composite is 

modeled by analytically coupling electrostatics, micromagnetics (LLG), and elastodynamic 
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partial differential equations.  The piezoelectric thin film (500nm) is attached and clamped to a 

thick substrate which prevents relative in-plane motion of the piezoelectric film.  In order to 

induce localized strains, two electrodes are placed under the Ni ellipse with an insulation layer. 

When a voltage is applied to these electrodes, bending deformation is exited, producing 

compression on the Ni dot. Furthermore, unlike Tiercelin’s work, the piezoelectric clamping 

effect is fully captured by the model.  The intrinsic coupling of the piezoelectric response with 

the magnetoelastic response through strain is modeled by coupled partial differential equations 

(i.e. electrostatics, micromagnetics, elastodynamics).  The numerical formulation uses tetrahedral 

finite elements with a maximum size equal to the exchange length of Ni (~8.5 nm) providing 

both spatially varying strains, electric fields, and magnetic spins throughout structure.  Therefore, 

the model captures all the relevant physics required to accurately predict the response of this 

multiferroic nanoscale structure. 
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4.2! Theory 

In this section a fully-coupled micromagnetic elastodynamic simulation with 

piezoelectrics for finite size 3D structures is described.  The coupled partial differential equations 

to be solved as well as the numerical method to simulate a wide range of shape and geometries 

are provided below.  For a more detailed derivation the readers are referred to Ref.[137] 

The model consists of magnetization dynamics using the Landau-Lifschitz-Gilbert (LLG) 

equations coupled with the mechanical strains and stresses via the equations of elastodynamics.  

The piezoelectric response of the thin film is modeled with linear constitutive equations relating 

strain with the electric field using a quasi-static electric field approximation. Other modeling 

assumptions include small elastic deformations, linear elasticity, electrostatics, and negligible 

electrical current contributions. The coupled governing equations used in this work are as 

follows. The elastodynamics governing equation for mechanical stresses and displacements is 

F
(%G

(HG
= ∇ ∙ 6      (4-1) 

where ρ is the mass density, 6 is the stress tensor, u is the displacement vector, and t is time. 

The dynamics of magnetization is defined by the phenomenological LLG equation, 
 

IJ

IH
= −78K L×=MNN + O L×

IJ

IH
    (4-2) 

Where µ0 is the permeability of free space, γ is the Gilbert gyromagnetic ratio, α is the Gilbert 

damping constant, and m is the normalized magnetization vector. The effective magnetic field, 

Heff, includes the external field (Hext), exchange field (Hex), demagnetization field (Hd), 

magnetocrystalline anisotropy field (Hanis), and magnetoelastic field (Hme) effects.  Detailed 
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expressions for these terms can be found in recent literatures[25][30][31][32][33][34] [137]. The 

demagnetization field is calculated by using the quasi-static Ampere’s law. This leads to =( =

−P/  where Hd is the demagnetization field vector and /! is the potential. Combining this 

equation with the divergence of magnetic induction equal to zero and the constitutive relation,  

D = Q8 = +9 , produces the equation for the magnetic potential, φ, in terms of the 

magnetization (see Equation 4-5). The magnetization is coupled with the effective magnetic field 

through this demagnetization term.  

Substituting the piezoelectric constitutive relations into the elastodynamics equation (4-1) 

and LLG equations (equation 4-2) produces a cross-coupled set of non-linear equations 

containing displacements, magnetization, electrical field, and magnetic potential as follows 

(Detail derivation in Ref. [137]):
 

F
(%G

(HG
− ∇ ∙ R !

S

.
∇T + ∇T

U
+ ∇ ∙ R ! 4JLLU + ∇ ∙ R ! V# = 0 (4-3) 

 

IJ

IH
= −78K L× =MWH + =MW L + =( / + =XYZ L + =JM L, T # + O L×

IJ

IH
(4-4)

     

            ∇./ = 95 ∇ ∙ L      (4-5) 

where is the stiffness tensor and 4J  is the magnetostriction tensor. !#  is the electric field 

vector, and V is the piezoelectric coupling tensor.   

 

C
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In a similar fashion to magnetic potential, the quasi-static Faraday’s Law implies 

that!# = −∇[, where V is the electric potential. This equation coupled with Gauss’s Law and 

provides the piezoelectric coupling within the model. These coupled systems of partial 

differential equations are solved for the mechanical displacement (u, v, w), electric potential (V), 

magnetic potential (φ), and magnetization (mx, my, mz).  

The numerical solution of micro-magneto-electro-mechanical coupled equations is 

obtained by using a finite element formulation (COMSOL) with an implicit backward 

differentiation (BDF) time stepping scheme[100] [101][102]. In order to decrease solution time, 

the system of equations is solved simultaneously but using a segregated method, which splits the 

solution process into sub-steps using a damped Newton’s method. This coupled model provides 

dynamic results for the full strain and micromagnetic spin distribution in the magnetoelastic 

component coupled with a piezoelectric layer.  For all numerical problems, convergence studies 

(i.e., mesh size and time steps) were evaluated to ensure accuracy.  
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4.3! Simulation Setup 

Figure 4-1 shows the configuration studied in this paper. The design variables to be 

determined are the geometry of the ellipse (aaxis, baxis, caxis), position of electrodes (dist) and 

time history for the applied voltage V(t). A detailed description on determined these quantities in 

given in Section 4.4. 

The material properties for the MRAM element system are as follows. The material 

properties for the nickel nano-dot are[102] 95 = 4.8×10`(b/L) , bMW = 1.05×10fSS(g/L) , 

4S88 != −46×10fi , 4SSS = −24×10fi , >SS = 2.5×10SS(:/L.) , >S. = 1.6×10SS(:/L.) , 

>jj = 1.18×10SS(:/L.) . The nickel nano-dot is assumed polycrystalline; therefore, the 

magnetocrystalline anisotropy is neglected. The Gilbert damping ratio is set as α=0.5 to improve 

stability and process time. Using the high Gilbert damping ratio would cause the overdamped 

precessional motion in the magnetization response. When using realistic (lower) value of Gilbert 

damping, more precessional motion will be shown in the magnetization response (Figure 4-6a).  

The magnetization precesses with the amplitude gradually decreasing to equilibrium. For both 

Gilbert damping ratios, the final equilibrium state is the same. The PZT-5H material properties 

are Vkk = 5.93×10fS8(R/:),!VkS = −2.74×10fS8(R/:), >SS = >.. = 1.27205×10SS(:/L.), 

>S. = 8.02×10S8(:/L.) , >Sk = >.k = 8.46×10S8(:/L.) , >kk = 1.17×10SS(:/L.) , >jj =

!>`` = 2.29885×10S8(:/L.), and F = 7500(no/Lk). The Young’s modulus and Poisson’s 

ratio for Au are #p% = 7×10S8(:/L.), and qp% = 0.44, respectively. The exchange constant 

for nickel is .prs
tuvw

G ~8.5(yL). The nickel nano-dot is discretized using tetrahedral elements 

with a size on the order of nickel's exchange length. The remainder of the structure (i.e., PZT-5H 
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thin film, Au electrodes) is discretized using tetrahedral elements with graded element sizes 

dependent upon local geometry. 

The boundary conditions of the piezoelectric film are the four sides and the bottom surface 

of the film are clamped. The bottom surface is also grounded. The top surface is free to deform. 

The piezoelectric film is poling in –Z-direction. Two electrodes (electrodes A and B) are 

underneath the nano-dot. 
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4.4! Nano-dot Design 

The objective in this memory applications is to design the elliptical nano-dot and 

actuation mechanism for minimum magnetization switching energy. In order to have 

deterministic rotation the stable states are offset by 5o. This condition is not really required, but it 

was included here to show how this requirement can be incorporated to the design process. Also 

the energy barrier between stable states is constrained to be at least 40kT for thermal stability (T 

= 300 K room temperature). Geometric design variables for the ellipse are the major axis (aaxis), 

eccentricity (e, b=e*aaxis) and thickness (caxis) as well as the magnitude of the Hb to achive the 

offset of 5 degrees. Control design variables are the position of the electrodes (dist), amplitude 

and duration of the voltage pulse. The main difficulty in solving this optimization problem is that 

the numerical solution of the system equations (in particular the LLG equation) is extremely 

heavy computationally and therefore the approach of using and off the shelf optimizer linked to 

the finite element code in impractical as a design tool. The method adopted in this paper is to 

solve the problem in two steps. First the plant (ellipse geometry, Hb) is optimized with no control 

system and then the control system (actuator, voltage) is optimized for a fixed plan. The 

followings are the details of these two optimization procedures 

Plant Design 

In this first stage, the geometry of the ellipse and bias field (Hb) are optimized for 

minimum strain magnetization rotation between stable states. This design can be done neglecting 

the magnetization dynamics to avoid the solution of the LLG equation each time we change a 

dimension. Thus, we pose the problem as minimizing the average strain (εxx-εyy) required for a 90 

degree rotation (the reason to use 90 instead of 180 will become evident in the next section) 
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subject to the conditions that the energy barrier is at least 40kT and that the stable states are 

offset by 5 degrees relative to the x-axis. The design variables are aaxis, e, caxis, Hb . The 

resultant optimal dimensions are aaxis= 130nm, e=0.9, c=10nm, Hb=492 A/m. The optimum 

strain, which actually corresponds to an estimate of the amplitude required by the dynamic strain, 

is 1000µε. Also, it is important to mention that with the resultant optimal dimensions a full 

dynamic analysis was performed to verify that the nano-dot design satisfies the design 

requirements 

Actuation and Control system design 

In this second stage we keep the geometry of the ellipse fixed and optimized design for 

the control mechanism. There are two parts to it, first is the position of the electrodes and second 

the control law for the applied voltage (magnitude and duration of the pulse). For this 

optimization we run the complete fully coupled dynamic model. Due to the symmetry of the 

configuration, by applying the same voltage to both electrodes the magnetization will rotate 90 

degrees at the most. Then, for the full rotation the symmetry has to be broken. Saying this first 

step was to determine the distance (dist) and the magnitude of the voltage for a 90 degree 

rotation. This is done for a minimum switching energy criterion. The result of this design phase 

is dist=52nm and Vmax=1V (electrical field through the thickness is 2 (MV/m)).  With this values 

we determined the proper duration of the pulses and finalize the control law for the voltage (how 

it is applied) First, the voltage is applied on electrodes A and B simultaneously at z{L| = 0. At 

z{L| = 4 (that is when the magnetization has rotated 90 degrees), voltage is removed from 

electrode B, returning to ground state. Following this, at z{L| = 6, voltage on electrode A is 

removed and since this longer pulse on electrode A makes the magnetization cross the energy 

maximum, the process will make the magnetization to settle at the second energy well. Total 
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time duration for the cycle is 15. All the simulations for this second optimization phase consider 

the solution for the fully coupled dynamic model. Also, prior to application of the bias magnetic 

field and/or voltage, all magnetic spins are uniformly canted out of the x-y plane at 5° and 

allowed to precess toward an equilibrium state. 
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4.5! Simulation Results and Discussion 

Figure 4-2 shows the deformation and strain distribution (}~~) results for a bias field 

=� = 492!(b/L) and voltage 1V is applied on both electrodes A and B with bottom surface 

grounded. In Figure 4-2(a), a three-dimensional deformation plot with bending strain along x-

direction (}~~) is presented. The strain (}~~) represents the internal bending strain along the x-

direction in the nano-dot. A 2D cross-sectional strain distribution plot is shown in Figure 4-2(b). 

This shows internal strain (}~~) in the nano-dot and the deformation when the voltage is applied 

on both electrodes A and B. When positive voltage is applied, a local bending deformation is 

produced in the nickel nano-dot that causes stresses and strains. The magnitude of the strain is on 

the order of 1000!7Ä in the middle region of the nano-dot.  

Figure 4-3 shows the mechanism of the bi-stable elliptical MRAM bit. Figure 4-3(a) 

shows the magnetization in the nano-dot with a bias field (=� = 492!(b/L)) before applying a 

voltage. The equilibrium magnetization was initially tilted with respect to the +x-direction by 5o. 

Both electrodes A and B are initially energized as shown in Figure 4-3(b). When a positive 

voltage is applied, a tensile strain is produced below the neutral axis of the nano-dot and a 

compressive strain above the neutral axis, i.e. a bending strain. A voltage is applied for a time 

period (time period~4) until the magnetization rotates close to 90o. When the magnetization 

rotates to 90o, the voltage on electrode B is removed and voltage on electrode A remains on 

(during time=4~6). The removal of the voltage from electrode A causes the magnetization to 

rotate pass 90 degrees in this process. Once the magnetization rotates pass 90 degrees (at time~6), 

the voltage on electrode A is switched off and subsequently, the magnetization falls into the 

other stable energy well positioned at 170o with respect to +x-direction as shown in Figure 4-3(d). 
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When all voltages are removed from electrodes, the magnetization remains at 170o. By selecting 

a similar process of applying voltage to electrodes A and B, the magnetization can be switched 

back to  5o , i.e. the other stable state.  Therefore, the magnetization can be switched 

deterministically between these two states. 

Figure 4-4(a) shows the strain distribution ( }~~ ) and Figure 4-4(b)-(d) show 

magnetization components (mx, my, mz) for different layers in the nano-dot along x-direction 

when voltage is applied to both electrodes A and B. Due to the bending effect in the nano-dot, 

internal strains result from lateral deformation. Note that the strain distribution are symmetric in 

both electrode regions. As shown in the Figure 4-4(a), the neutral axis is in the middle region of 

the nano-dot (at z=5nm), where the stress/strain induced by bending vanishes. Tensile strain is 

induced below the neutral axis and compressive strain is induced above the neutral axis near the 

electrode region. This bending strain develop from the localized out-of-plane bending effect near 

the electrodes when the voltage is applied on both electrodes A and B. These bending strains 

create a new strain-induced easy axis which causes the magnetization to rotate in the nickel 

nano-dot.  Figure 4-4(b)-(d) show that the magnetization components (mx, my, mz) in each layer 

do not rotate coherently. Furthermore, due to the non-uniform strain distribution, magnetization 

components also have non-uniform distribution. This is important and suggests that single spin 

models are inappropriate for evaluating the response of this design.   
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Figure 4-5(a) shows the strain distribution ( }~~ ) and Figure 4-5(b)-(d) show 

magnetization components (mx, my, mz) for different layers in the nano-dot along x-direction 

when voltage is applied to electrodes A only. Due to the one-sided bending effect in the nano-dot, 

internal asymmetric strains result from lateral deformation. The strain distribution near the 

electrode A region is shown in Figure 4-5(a). As can be seen a one-side tensile strain is induced 

below the neutral axis and compressive strain is induced above the neutral axis near the electrode 

region. This is because the localized out-of-plane bending effect arises near region A when the 

voltage is applied on electrode A. Similar to the case of both electrodes being activated, the 

magnetization rotation in each layer is induced by symmetry breaking, when the voltage is 

applied only on electrode A, and affected by the shear lag effect resulting in non-uniform 

reorientation in each layer as shown in Figure 4-5(b)-(d). 

Figure 4-6(a) shows the temporal response of the magnetization when a voltage is applied. 

The magnetization was initially in an equilibrium position, pointing to the +x-direction with 5 

degrees tilt, which defines the “0” state in a representative memory device. The voltage is 

applied at time=0 on both electrodes A and B until time=4ns. The magnetization switches from 

5o to 90o as approaches time=6ns. The magnetization has a relative response time of 

approximately 2.5 ns which is influenced by choice of damping coefficient α=0.5.  This value 

was chosen to expedite the computation time and does not alter the results with the exception of 

the temporal response.  When using a smaller more realistic damping coefficient α, the 

magnetization response is substantially faster.   When the voltage is removed from electrode B 

while the voltage on A remains, the magnetization continues to rotate past 90o. Once the 

magnetization passes 90o, the voltage on A is removed (at time=6ns) and magnetization rotates 

to 170 at time=10ns, which is defined as the “1” state in a representative memory device. The 
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magnetization can be rotated back and forth deterministically between 5 and 170 using the 

appropriate voltage sequence. To determine the energy to rotate the bit the following process was 

used.  

Figure 4-6(b) shows the temporal mechanical strain (ÄWW) changes in the nano-ellipse. 

Volume average strain response (blue line), middle point strain response (red line), and strain 

responses at points +-50nm from the center (green and purple lines, respectively). Three zones 

are shown in the strain curves. The first zone (0~4ns), when both electrodes A and B are on, 

shows negative average strain, negative strain for the points at +-50nm and positive strain at the 

middle point, therefore, symmetric bending. In the second zone (4~6ns), when the voltage is 

turned off from electrode B, shows negative average strain, negative strain for the points at 

+50nm, and positive strain at point -50nm, and positive at the middle point, therefore, 

unsymmetrical bending. 

The write energy for this bending switching mechanism is the energy required to generate 

voltage on the electrodes. This energy is equivalent to amount of charge delivered to the 

electrodes on the PZT film, i.e., capacitor charging. This energy is called the “CV2” energy, 

where C and V represent the the capacitance of the piezoelectric film and the applied voltage, 

and is equivalent to QV/2.  The total charge (Q) supplied to the electrodes is determined from the 

simulations. Using this approach for the results presented in Figure 4-3 the write energy is 

calculated to be 0.2fJ.  Here it is important to point out that the thickness of the PZT was not 

optimized in this study and that reduction in PZT film thickness should reduce the write energy 

further.  
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4.6! Conclusion 

In this chapter, an analytical model was used to determine the optimal nanodot 

dimensions, electrode placement, and voltage control mechanism to cause 170o magnetization 

rotation of a magnetoelastic single domain. The design consisted of two stages where the first 

stage determined the major and minor axis lengths to ensure thermal stability of a single domain 

nanodot as well as electrode overlap resulting in maximum localized strain with bending effect. 

The second stage optimized the input voltage control scheme to produce 170o magnetization 

rotation.  A physical description of the mechanism to produce the voltage induced magnetization 

was presented.  The energy to reorient the single domain was 200 (aJ) in this particular design. 
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Figure 4-1  Schematic plot and Design arrangements 
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Figure 4-2 Simulation results (displacement scale exaggerated) 

(a) Voltage applied on both electrodes A and B. Two electrodes expand out-of-plane and 

bending effect is induced in the nano-dot.  

(b) Cross-section 2D plot along x-direction.  
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Figure 4-3 Response of the bi-stable elliptical memory bit. (Time in nanosecond) 

(color: Voltage. arrow: magnetization) 

(a) Starting position.  The magnetization stays one of the stable states at 5 degrees with respect to 
x-axis. 

(b) A positive voltage is applied on both electrodes A and B, the magnetization switches to 90 
degrees.  

(c) Switch off voltage on B and keep voltage on electrode A. The magnetization switches pass to 
90 degrees.  

(d) Switch off voltage on electrode A. the magnetization rotates to 170 degrees with respect to x-
axis. 

By applying appropriate voltage to the electrodes, the magnetization can be switched back and 
forth between the two bi-stable state.  
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Figure 4-4 Strain and Magnetization component in different layers 

Voltage applied on both electrodes A and B. Two electrodes expand out-of-plane and bending 
effect is induced in the nano-dot.  

(a) Strain for different layers in the nano-dot along x-direction. Direct compressive strain is 
induced above the neutral axis of the nano-dot (z=6, 8,10nm), and direct tensile strain below the 
neutral axis of the nano-dot (z=0, 2,4nm). 

(b) –(d) magnetization components (mx, my, mz) for different layers in the nano-dot along x-
direction.  
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Figure 4-5 Strain and Magnetization component in different layers 

Voltage applied on electrodes A. Electrode A expands out-of-plane and bending effect is induced 
in the nano-dot.  

(a) Strain for different layers in the nano-dot along x-direction. Asymmetric strain is induced at 
electrode A region.  

Direct compressive strain is induced above the neutral axis of the nano-dot (z=6, 8,10nm), and 
direct tensile strain below the neutral axis of the nano-dot (z=0, 2,4nm). 

(b) –(d) magnetization components (mx, my, mz) for different layers in the nano-dot along x-
direction.  
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Figure  4-6(a) The magnetization starts at zero and a positive voltage is applied to both 
electrodes A and B, in which magnetization rotates from 5 degrees to 90 degrees. The voltage on 
electrode B is removed at time = 4 and the voltage remains on electrode A. The magnetization 
keeps rotating pass 90 degrees. Once the magnetization passes 90 degrees, the voltage on 
electrode A is removed and the magnetization rotates the other state (170 degrees with respect to 
x-axis). By applying appropriate timing application of voltages on electrodes A and B, the 
magnetization is able to be switched by 170 degrees. 

 

(a) 
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Figure 4-6(b) The temporal mechanical strain (exx) changes in the nano-ellipse. Volume average 
strain response (blue line), middle point strain response (red line), and strain responses at points 
+-50nm from the center (green and purple lines, respectively). 

Figure 4-6  Time response of magnetization(a) and strain(b) for the memory bit. 
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5.   ! Strain-mediated Deterministic Control of 360o Domain Wall 
Motion in Magnetoelastic Nanorings 

 

This study provides numerical simulations for deterministic 360o magnetization rotation of 

the transverse domain walls in a nickel nano-ring (outer diameter: 500nm, inner diameter: 300nm, 

and thickness: 10nm) on a PZT thin film (500nm) deposited onto a Si substrate with surface 

patterned electrodes. Two alternative electrode architectures are studied, namely, a 4-electrode 

and a 6-electrode configuration.  The 4-electrode configuration relies on magnetization dynamics 

to produce an overshoot coupled with proper timing control of the voltage applied to achieve 

360o magnetization rotation.  In contrast, the 6-electrode configuration only requires sequential 

voltage application to successive pairs of electrodes and thus can be operated at quasi-static 

speeds and does not rely on magnetization dynamics to achieve 360o magnetization rotation. 

These analytical models provide support for developing new devices such as nanoscale 

multiferroic driven electromagnetic motors.  
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5.1! Introduction 

Considerable research has focused on the control of domain wall (DW) motion for 

various applications including those related to spintronics devices. Use of external magnetic 

fields[118] or spin-polarized[119] currents have been experimentally shown to move domain 

walls in a wide range of devices. More recently, researchers have become interested in 

multiferroics for controlling/moving DWs/spins due to substantially lower energy requirements 

(i.e. orders of magnitude lower[120]).  However, a rigorous approach to deterministically move a 

DW has remained elusive due to the symmetry present in magnetoelastic control, i.e. 90o domain 

wall movement. Furthermore, rotating a domain wall 360o in a structure, such as those required 

in motor applications, has not yet been presented in the literature.  If 360o domain wall motion is 

possible, this could open several new avenues of study including those related to nanoscale 

electromagnetic motors that presently do not exist.  

Researchers have long understood that magnetic fields move domain walls. For example, 

Kunz simulated the dynamics of domain wall motion in Permalloy nanowires[121], showing that 

the domain wall velocity is a function of the external magnetic field. Bryan et al.[122][123] used 

three dimensional micromagnetics simulations to demonstrate the propagation of transverse 

domain walls in magnetic nanowires under axial and transverse magnetic fields. S. Glathe et 

al[124][125]. reported the real time study of field driven DW motion in giant magnetoresistant 

nanostrips under the influence of both longitudinal and transverse magnetic fields, showing clear 

evidence that transverse fields influence the DW dynamics below and above the Walker 

field[126]. While these results are very informative, the generation of a local magnetic field the 

size of a nanoscale ring is problematic as well as very inefficient in the small scale.  
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To avoid the use of external magnetic fields spin current controlled domain wall motion has also 

been experimentally demonstrated in variety of materials including Permalloy and CoFe nano-

structures. M. Tsoi et al[127]. measured current-induced domain wall propagation in CoFe 

stripes by both electrical transport measurements and magnetic force microscopy imaging. 

Furthermore, Klaui et al[128][129][130]. demonstrated that by injecting a DC current, the 

magnetic field to displace a head to head domain wall in a nanoscale ferromagnetic permalloy 

ring structure is decreased or increased depending on the direction of the dc current with respect 

to the propagation direction of the domain wall. While spin currents can be used to control 

domain walls this method is also very inefficient and new mechanisms need to be explored. 

More recently, researchers have begun to explore multiferroics for moving DW. Strain-

mediated multiferroic structures require substantially lower energy compared to spin current 

methods[45][116]. Roy and Atulasimha[45][116] showed with stochastic Landau-Lifshitz-

Gilbert equations that switching can be carried with as little as 1.5&aJ of energy, i.e. orders of 

magnitude smaller (e.g. 100 fJ) than required in spin current methods. Hu et al[131]. analytically 

showed strain-induced magnetic domain switching in epitaxial (CFO) thin films. Wang et 

al[132]. introduced a method for magnetization reversals with electric fields relying on in-plane 

piezo-strains, magnetic shape anisotropy, and dynamics of ferromagnetic precision to achieve 

180o switching. Tiercelin et al[107]. proposed a memory cell concept based on a 

magnetostrictive element coupled to a piezoelectric substrate and actuated with a two electrodes. 

Biswas et al[133]. also proposed a low-power writing (~850kT) approach using a similar 

multiferroic element with two pairs of electrodes similar to a design presented in Cui[113]. Liang 

et al[134]. numerically demonstrated electric field controlled magnetization switching in a nickel 

nano-ellipse on a PZT thin film with patterned electrodes showing that substrate clamping can be 



 

104 
 

overcome. This work followed the experimental efforts of Cui et al[113]. suggesting the use of 

patterned electrodes to control the magnetic anisotropy in a Ni island on a piezoelectric substrate. 

There is also experimental data from Hockel et al[135]. and Hyunmin et al[136]. that 

demonstrate control of transverse domain wall rotation in nickel ring nanostructures with an 

electric field on a PMN-PT substrate. However, none of these studies demonstrated 360o rotation 

of a domain wall that is requirement in many futuristic nanoscale applications such as 

electromagnetic motors.   

   In this work, numerical simulations are presented for 360o deterministic domain wall 

motion in a nickel nano-ring on a PZT 500nm thin film with patterned electrodes. Two electrode 

configurations are presented, i.e., 4-electrode and 6-electrode patterns. The magnetization 

rotation for both configurations is demonstrated using a fully-coupled micromagnetics and 

elastodynamics numerical simulation. Results show that with the proper voltage application on 

the patterned electrodes, the domain wall rotates 360o in the nano-ring.  
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5.2! Theory 

In this section a fully-coupled micromagnetic elastodynamic simulation with 

piezoelectrics for finite size 3D structures is described.  The coupled partial differential equations 

to be solved as well as the numerical method to simulate a wide range of shape and geometries 

are provided below.  For a more detailed derivation the readers are referred to Ref [137]. 

The model consists of magnetization dynamics using the Landau-Lifschitz-Gilbert (LLG) 

equations coupled with the mechanical strains and stresses via the equations of 

elastodynamics[137]. The piezoelectric response of the thin film is modeled with linear 

constitutive equations relating strain with the electric field using a quasi-static electric field 

approximation. Other modeling assumptions include small elastic deformations, linear elasticity, 

electrostatics, and negligible electrical current contributions. The coupled governing equations 

used in this work are as follows. The elastodynamics governing equation for mechanical stresses 

and displacements is [25][31][32][33][97][115] 

F
(%G

(HG
= ∇ ∙ 6     (5-1)

 
 

where ρ is the mass density, 6 is the stress tensor, u is the displacement vector, and t is time. 

The dynamics of magnetization is defined by the phenomenological LLG equation[25], 
 

IJ

IH
= −78K L×=MNN + O L×

IJ

IH
   (5-2)

 
 

Where µ0 is the permeability of free space, γ is the Gilbert gyromagnetic ratio, α is the Gilbert 

damping constant, and m is the normalized magnetization vector. The effective magnetic field, 

Heff, includes the external field (Hext), exchange field (Hex), demagnetization field (Hd), 

magnetocrystalline anisotropy field (Hanis), and magnetoelastic field (Hme) effects.  Detailed 

expressions for these terms can be found in the previous chapter[137]. The demagnetization field 
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is calculated by using the quasi-static Ampere’s law. This leads to =( = −P/ where Hd is the 

demagnetization field vector and /!is the potential. Combining this equation with the divergence 

of magnetic induction equal to zero and the constitutive relation,  D = Q8 = +9 , produces the 

equation for the magnetic potential, φ, in terms of the magnetization[24]. The magnetization is 

coupled with the effective magnetic field through this demagnetization term.  

Substituting the piezoelectric constitutive relations into the elastodynamics equation (4-1) 

and LLG equations (equation (4-2)) produces a cross-coupled set of non-linear equations 

containing displacements, magnetization, electrical field, and magnetic potential as follows 

[25][31][32][33][97][115] (Detail derivation in Chapter 3.    [137].):
 

F
(%G

(HG
− ∇ ∙ R !

S

.
∇T + ∇T

U
+ ∇ ∙ R ! 4JLLU + ∇ ∙ R ! V# = 0 (5-3)
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= −78K L× =MWH + =MW L + =( / + =XYZ L + =JM L, T # + O L×
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(5-4)    

        ∇./ = 95 ∇ ∙ L      (5-5)
 

 

where C is the stiffness tensor and 4J  is the magnetostriction tensor. !#  is the electric field 

vector, and V is the piezoelectric coupling tensor[25][31][32][33][97][115]. 

In a similar fashion to magnetic potential, the quasi-static Faraday’s Law implies 

that!# = −∇[, where V is the electric potential. This equation coupled with Gauss’s Law and 

provides the piezoelectric coupling within the model. These coupled systems of partial 

differential equations are solved for the mechanical displacement (u, v, w), electric potential (V), 

magnetic potential (φ), and magnetization (mx, my, mz). 
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 The numerical solution of micro-magneto-electro-mechanical coupled equations is 

obtained by using a finite element formulation (COMSOL) with an implicit backward 

differentiation (BDF) time stepping scheme[100][102]. In order to decrease solution time, the 

system of equations is solved simultaneously but using a segregated method, which splits the 

solution process into sub-steps using a damped Newton’s method[102]. This coupled model 

provides dynamic results for the full strain and micromagnetic spin distribution in the 

magnetoelastic component coupled with a piezoelectric layer.  For all numerical problems, 

convergence studies (i.e., mesh size and time steps) were evaluated to ensure accuracy. 

Additionally, this model has been experimentally validated for ring structures on the thick PMN-

PT substrate[136] as well as on nanoscale structure[134].  
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5.3! Simulation Setup 

Figure 5-1 shows the two magnetoelastic nickel nano-ring configurations studied in this 

chapter, i.e. a 4-electrode pattern and a 6-electrode pattern.  The Ni nano-ring dimensions are 

outer diameter 500 nm, inner diameter 300 nm and 10 nm thickness.  The nano-ring is perfectly 

adhered to a 500 nm PZT-5H deposited onto a Platinum ground electrode on top of a 0.5mm 

thick Si/SiO2 Substrate. The PZT-5H is poled vertically downward.  Each of the two 

configurations contains Au electrodes with dimensions of 330 nm x 330 nm x 10 nm. The 

electrodes are 500nm apart from the center of the nano-ring.  The entire model containing the 

ring, electrodes, piezoelectric, and air has X-Y-Z dimensions of 2500nm x 2500nm x1000nm.   

Figure 5-1 (a) shows the 4-electrode configuration consists of two pairs (A-A and B-B) of 

electrodes 90o apart from each other. Figure1 (b) shows the 6-electrode configuration with three 

sets of electrode pairs A-A, B-B, and C-C that are 60o apart from each other. The objective of 

this simulation is to apply a positive voltage to a set of electrode pairs (e.g. A-A, B-B or C-C) to 

produce rotation of the transverse domain walls in the Ni nano-ring using the principle of 

magnetoelasticity, i.e. strain-mediated multiferroics. To represent the Si substrate, the bottom 

surface of the PZT film is clamped with zero displacement.  The four sides defining the 

boundary of the modeled structure (i.e. 2500nmx2500nm) are also clamped representing an 

infinite in-plane structure. The bottom surface is electrically grounded and a 1V signal is applied 

to the Au electrodes; that is the electric field is applied through the PZT-5H film thickness. A 

d33-related out-of-plane deformation is generated with the application of voltage on the electrode 

pair.  This out-of plane deformation produces in-plane anisotropic strain in the nickel nano-ring 

as shown in Figure 5-2. This anisotropic strain mechanism to control magnetic spin states has 
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been experimentally demonstrated on a bulk PZT sample, as described by Cui[113]. For this 

electrode/PZT film geometry the capacitance for each electrode can be calculated using the finite 

element program.  The amount of charge required to produce a 1V potential on each electrode, 

shown in Figure 5-3 and Figure 5-4, is approximately 40x10-15 (Coulomb).  This yields a 

capacitance of approximately 40 (femtoFarad). In this chapter the voltage is applied in 3 nano-

seconds which is appropriate charging time to reach the 1V for this capacitance.  
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Figure 5-1 (Color) Schematic plot. 

(a)"Schematic plot of the electric control nano-ring with 4 patterned electrodes and the 
boundary conditions.  

(b)"Schematic plot of the electric control nano-ring with 6 patterned electrodes and the 
boundary conditions.  
(Boundary conditions: All four boundary conditions around the PZT film for both 
configurations are fixed) 
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Figure 5-2 (Color) Deformation of the PZT film when voltage is applied. 
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The material properties used follows. The material properties for the nickel nano-ring 

are[97] 95 = 4.8×10`(b/L) , bMW = 1.05×10fSS(g/L) ,  4S88 = −46×10fi , 4SSS =

−24×10fi , >SS = 2.5×10SS(:/L.), >S. = 1.6×10SS(:/L.), >jj = 1.18×10SS(:/L.). The 

nickel nano-ring is assumed polycrystalline with weak magnetocrystalline anisotropy compared 

to the other magnetic anisotropies and is thus neglected. The Gilbert damping ratio is set as 

α=0.08 to improve stability and process time. The PZT-5H material properties are[102] Vkk =

5.93×10fS8(R/:) , !VkS = −2.74×10fS8(R/:) , >SS = >.. = 1.27205×10SS(:/L.) , >S. =

8.02×10S8(:/L.) , >Sk = >.k = 8.46×10S8(:/L.) , >kk = 1.17×10SS(:/L.) , >jj = ! >`` =

2.29885×10S8(:/L.), and F = 7500(no/Lk). The Young’s modulus and Poisson’s ratio for 

Au are #p% = 7×10S8(:/L.) , and !qp% = 0.44 , respectively[102]. The nickel nano-ring is 

discretized using tetrahedral elements with a size on the order of nickel's exchange length 

calculated as .prs
tuvw

G ~8.5(yL). The remainder of the structure (i.e., PZT-5H thin film, Au 

electrodes, and Air) is discretized using tetrahedral elements with graded element sizes 

dependent upon local geometry[102].  
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5.4! Simulation Results 

The voltage control mechanism to produce 360o domain wall motion in the 4-electrode 

pattern and the 6-electrode pattern are described below. Results demonstrate deterministic 

control in both cases however the 6-electrode pattern provides a more robust control approach as 

compared to the 4-electrode pattern.  That is the 4-electrode pattern relies on domain wall 

dynamics to produce a deterministic 360o rotation which is not required in the 6-electrode pattern.     

Figure 5-3(a)-(o) show results from the 4-electrode pattern producing a 360o rotation of 

the magnetic transverse domain walls with the application of voltage on electrode pairs. The first 

column of figures, Figure 5-3(a)-(e), provide color contour plots of the voltage applied to 

electrode pairs either A-A or B-B at different times. The second column of figures, Figure 5-3 

(f)-(j), show the ring’s magnetic state via contour plots and arrows.  The in-plane components 

(mx and my) are represented by the surface arrows while the out-of-plane magnetization 

component (mz) is represented by the color scale. These figures were generated from their 

corresponding sequence position shown in the first column, i.e.  Figure 5-3(a)-(e). The third 

column of figures, Figure 5-3(k)-(o), provide color contour plots of the relative strains (ԑ’AA -

ԑ’BB) in the ring and substrate during voltage application while the large red and blue arrows 

provide average principle strain directions over the entire Ni ring structure. The first row of 

figures, i.e. Figure 5-3(a), (f) and (k), represent the magnetization/strain state at the moment the 

voltage is applied to electrodes A-A, i.e. prior to the domain wall responding to the applied 

electric field. The magnetization is initially in an onion state along the +x-direction and 

transverse domain walls form at 0o/180o in the nano-ring.  Here it is important to point out that 

the onion state is shifted 10o with respect to the A-A electrodes.  This offset is required to 
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produce deterministic clockwise rotation. When electrode A-A pair is energized as shown in 

Figure 5-3(a), a tensile in-plane principle strain is induced along the A-A direction and a 

compressive principle strain is generated along the B-B direction (shown in Figure 5-3 (k)). 

These strains provide the driving force for the magnetization which moves the onion state to a 

new more energetically favorable state at approximately -80o relative to the x axis as shown in 

Figure 5-3 (g). The two transverse domains that define the onion state, shown in Figure 5-3 (a) 

and Figure 5-3 (f), are driven by the strains (Figure 5-3 (k)) and these two transverse domains 

rotate simultaneously clockwise to -80o and +100o respectively where they align to the 

compressive principle strain direction as shown in Figure 5-3 (g) and Figure 5-3 (l). The key 

issue for this mechanism to work in a continuous manner is to properly choose the timing at 

which the first pair of electrodes A-A is turned off and the second pair of electrodes B-B is 

turned on. This timing is accomplished by allowing the onion state to dynamically overshoot the 

compressive principle strain (at ~ -80o and +100o) as shown in Figure 5-3 (l) and will be 

described in more detail in the next paragraph[138]. When electrodes B-B is turned on, tensile 

principle strains are induced along the B-B direction and compressive principal strains along the 

A-A direction as shown in Figure 5-3 (m).  The elastic energy induces an easy axis at ~ -170o 

and +10o which drives the two transverse domain walls to rotate toward ~ -170o/+10o (shown in 

Figure 5-3 (h) and (m)), which is the energetic favorable direction.  If the voltage applications 

described above is now repeated for A-A, the corresponding induced strain will drive the two 

domains from ~ -170o/+10o to -260o /+80 as shown in Figure 5-3 (n), with the caveat that timing 

must be considered when applying the electric field (see next paragraph).  Finally, when voltage 

is applied to electrode pairs B-B (as shown Figure 5-3 (e)), the two domain wall rotates from -
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260o /+80 to -350o/170o as shown in Figure 5-3 (j) and (o) and thus produce transverse domain 

wall motion around the entire periphery of the ring.  
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Figure 5-3 (Color) Mechanism of the 360o rotation with 4 patterned electrodes 

(a)-(e) Voltage applied on electrode pairs A-A and B-B.  
(f)-(j) In-plane transverse domain wall (arrows) and magnetization (mz) component (color). 
(k)-(o)  Principle strain directions due to the sequential voltage application  on A-A and B-B. 
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Figure 5-4 shows the voltage applied to the electrodes (A-A or B-B) as well as the 

average magnetization angle as a function of time for the results described in Figure 5-3. The 

average in-plane magnetization angle � is defined by ! = #$%&' ()
(*

 where mx and my are 

averaged over the entire nano-ring volume.  At time zero the magnetization angle is along the 0o 

direction and the positive voltage of 1V is applied to electrode A-A at #+,- = 0 sec.  This time 

is representative of Figure 5-4 (a) where the voltage is applied but the initial magnetization is 

along the 0o direction. The positive voltage (1V) is applied to electrode A-A for 3.5×10&4 sec 

which causes the magnetization to rotate to ~-83o. This represents approximately ~3o  overshoot 

from the magnetoelasetically driven domain motion which is attributed to spin precession 

previously used for 180o switching. As can be seen in Figure 5-4, the magnetization rotational 

speed is variable during this time period. The magnetization angle initially accelerates during the 

initial 2×10&46sec and slows down during the remainder 1.5×10&4  sec. This is because an easy 

axis is generated perpendicular to the A-A direction (shown in Figure 5-3 (l)) and the domain 

wall is falling down the slope of the energy gradient when A-A is energized producing non-

uniform rotational speeds. Sequentially, at #+,- = 3.5×10&4 sec, the voltage on electrode A-A 

is removed and the voltage on B-B is turned on.  Here it is important to point out that the 

magnetization angle overshoots the compressive principle strain direction by approximately ~3 

degree.  To better see this overshoot Figure 5-4 (b) shows the magnetization rotation between 

#+,- = 2.5×10&47-86$%96#+,- = 4.5×10&467-8 in an expanded scale. The red line represents 

the magnetization rotation when the voltage is properly energized on electrode pair B-B while 

the gray dash line shows the magnetization rotation when the voltage on A-A is turned off and 

voltage is not applied to electrode pair B-B. First as can be seen in Figure 5-4, the magnetization 

overshoots the angle to approximately ~-83o and begins to return to ~-80o due to spin precession 
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to the energy minimum.   If voltage is not applied to B-B, one can see from the gray curve that 

the magnetization precesses about ~-80o where only one precession is presented.  However, if 

electrode pair B-B is energized at the appropriate overshoot time interval (between #+,- =

3×10&47-86#;6#+,- = 4×10&467-8) following voltage removal from electrode pair A-A, the 

magnetization continues to rotate deterministically toward ~-170o. Returning to Figure 4, if this 

process is repeated and also that the timing of the voltage is properly applied; the magnetization 

rotates the entire 360o clockwise around the ring.  However, if the voltage applied to a successive 

pair of electrodes is not timed appropriately deterministic 360o rotation will not be achieved in 

this 4-electrode design.   
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(a) 

 

(b) 

Figure 5-4 (Color) Time response of the domain wall reorientation for 4-electrode 
configuration. 

(a)!Total time period 
(b)!Zoom in from figure 4(a) (black box).Time period between 2.5ns and 4.5ns.  
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Figure 5-5 shows the results for the magnetic transverse domain wall rotation in the nano-

ring with a 6-electrode pattern. The arrows, colors, and principle strain direction were previously 

defined in Figure 5-3 discussions and are not repeated here. Figure 5-5 (a)(e)(i) show the initial 

state right before the voltage is applied. The magnetization is an onion state with a 20o shift of 

the electrode pair relative to A-A direction (10o shift with respect to x-direction). Figure 5-5 (b)-

(d) and Figure 5-5 (f)-(h) show the voltage application process and domain rotation when voltage 

is applied on electrode pairs A-A or B-B. When the electrode A-A pair is energized, due to out-

of-plane expansion, tensile strain is induced along the A-A direction and compressive strain is 

generated perpendicular to A-A direction (shown in Figure 5-5 (j)), which produces energetic 

favorable direction between A-A and B-B. The two transverse domains rotate simultaneously 

clockwise to ~-75o/105o as shown in Figure 5-5 (c) and (g). Now, electrode pair A-A is turned 

off and electrode pair B-B is energized, tensile strain is induced along the B-B direction and 

compressive strain is generated perpendicular to B-B direction (shown in Figure 5-5 (k)) and 

spins are reoriented by the strain. The two domains then rotate to ~-125o/55o, which is the 

energetic favorable direction as shown in Figure 5-5 (d), (h) and (l). By sequentially applying 

voltage on electrode pairs (A-A >> B-B >> C-C>>A-A…and so on.), the domains will rotate 

360o clockwise around the ring. Moreover, by applying voltage on the specific electrode pairs, 

the domain wall motion can be rotated deterministically (i.e., counterclockwise or clockwise). 
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Figure 5-5 (Color) Mechanism of domain reorientation with 6 patterned electrode design.  

(a)-(d) Sequential Voltage application to A-A and B-B. (a) Initial state in the nano-ring right at 
the voltage (A-A) is applied. 
(e)-(h) domain wall (arrow) and magnetization component (mz) reorientation plot (in color) due 
to electrode pair A-A or B-B energized. 
(i)-(l) Principle strain directions when voltage is applied to A-A or B-B. 
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Figure 5-6 shows the temporal response of the magnetization angle �� for the 6-

electrode configuration and the first two voltage cycles. The transverse domain wall starts at -20o 

offset with respect to the x-direction (20o shift with respect to A-A) and a positive voltage (1V) is 

applied to electrode pair A-A at #+,- = 0 sec and the voltage is applied for 5.5×10&4 sec. Note 

that this time period is longer than that presented for the 4-electrode pattern shown in Figure 5-4. 

The magnetization in Figure 5-6 starts to rotate to -75o at #+,- = 0 sec. The speed of rotation is 

not constant and we observe a similar behavior as in the 4-electrode case. The rotation 

accelerates in the first 1×10&4 sec period and slows down in the following 4.5×10&4 sec period. 

Here it is important that the precsssion at this time period has completed such that the -75 angle 

represents the minimum energy well rather than that presented in Figure 5-4.  The voltage on 

electrode A-A is removed at #+,- = 5.5×10&4 sec and then the voltage on B-B is turn on at 

#+,- = 6×10&4  sec. Here note that there is a purposely designed longer delay time (i.e. 

0.5×10&4 sec demonstrating that timing is unimportant in this design.  The voltage period for B-

B is again 5.5×10&4 sec. The magnetization rotates from -75o to about -125o. Therefore, these 

results show that it is unnecessary to time the application of the voltage to produce continuous 

rotation of the transverse domain walls around the rings periphery as was required in the 4-

electrode pattern.  
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Figure 5-6 (Color) Time response of the domain wall reorientation for 6-electrode pattern. 
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5.5! Conclusion 

In conclusion, this study presents a mechanism to deterministically rotate transverse 

domain 360o in a nickel nano-ring on a PZT thin film with patterned electrodes. Two electrode 

configurations were presented, 4-electrode and 6-electrode configurations. The 4-electrode 

pattern configuration relies on proper voltage control and overshoot while 6-electrode pattern 

does not. The magnetization control for both configurations is demonstrated using a fully-

coupled numerical simulations. Analytical results show that with the sequential application of 

voltage on the patterned electrodes, the transverse domain is able to be rotated 360o in the nano-

ring. This represents a potential nano-motor application. In this study the electrode 

configurations and voltage applications were not optimized. From Figure 5-4 and Figure 5-6, we 

observe that a better control law is needed to achieve smooth 360o rotation or to obtain a given 

torque and/or angular speed. The non-uniform angular speed of the domain wall can be improved 

in an open loop on/off type of control for the electrode pairs by optimizing the switching time for 

the control law as well as the shape of the pulse. The main drawback of the open loop control 

law is that any uncertainty present in that actual device cannot be taken into account in the 

control voltage law. In particular, the presence of geometry imperfections and roughness due to 

manufacturing will have a significant impact on the angular speed and cause magnetization 

pinning. For a more robust control of the rotational speed, a feedback control approach may be 

required. In particular, this feedback control approach could help overcome imperfections or 

other disturbances at the cost of implementing a sensing mechanism.  
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6.   ! Conclusion and Future Works 

6.1! Conclusion 

In summary, a theoretical methodology for micromagnetic-mechanical-electric modeling 

was developed in this dissertation. With accurate models, we were able to study multiferroic 

devices. Optimized design parameters and material properties were validated by experimental 

results. Some devices which were accurately modeled include strain-mediated magnetic random-

access memory (MeRAM), and nano-motors. 

In Chapter 1.   , a brief introduction was given for current literature. Some of the work 

that was reviewed include the Stoner–Wohlfarth model for single domain small particles, the 

Landau-Lifhsitz-Gilbert (LLG) Equation for magnetization equilibrium states, and the stress-

induced anisotropy analysis method (LLG+Elastodynamics), among other works. From these 

studies, the idea to develop a fully-coupled micromagnetic model was a driving force behind this 

dissertation.  

In Chapter 2.   , an analytical work was presented to significantly improve simulation of 

finite structures by fully coupling LLG with elastodynamics, i.e. the seven partial differential 

equations were intrinsically coupled. Material properties influenced by mechanical 

strains/stresses (e.g., M-H hysteresis curves, coercivity, and magnetic domains) were initially 

investigated with a magnetic-mechanical-electric fully-coupled model. The simulated results had 

good agreement with the experimental data as compared to the conventional Stoner–Wohlfarth 

model. This model was also validated by experiments, showing that it can be used in designing 

multiferroic devices. 



 

126 
 

In Chapter 3.   , the robust analytical model combining micromagnetics with 

elastodynamics and electrostatics was applied to design a strain-mediated, bi-stable state 

multiferroic memory (MeRAM). The solution was implemented in a finite element code 

providing both spatial and temporal information on the magnetic, electric, and mechanical fields. 

A single domain magnetoelastic elliptical nano-structure, bonded to a clamped piezoelectric thin 

film with patterned electrodes, was studied. By applying electric field to patterned electrodes, 

out-of-plane deformations produced sufficient in-plane strain to overcome the classical substrate 

clamping and to switch magnetization between two stable states. 

In Chapter 4.   , a fully coupled analytical model between elastodynamics with 

micromagnetics is used to study the switching energies using voltage induced mechanical 

bending of a magnetoelastic bit. The bit consists of a single domain magnetoelastic nano-ellipse 

deposited on a thin film piezoelectric thin film (500 nm) attached to a thick substrate (0.5mm) 

with patterned electrodes underneath the nano-dot. A voltage applied to the electrodes produces 

out of plane deformation with bending moments induced in the magnetoelastic bit modifying the 

magnetic anisotropy.  To minimize the energy two design stages are used. In the first stage, the 

geometry and bias field (Hb) of the bit are optimized to minimize the strain energy required to 

rotate between two stable states. In the second stage, the bit’s geometry is fixed and the electrode 

position and control mechanism is optimized. The electrical energy input is about 200 (aJ) which 

is approximately two orders of magnitude lower than spin transfer torque approaches. 

In Chapter 5.   , a novel mechanism to deterministically control of magnetization 360o 

rotation was demonstrated. The device was a nickel nano-ring on a PZT thin film with patterned 

electrodes. Two electrode configurations were shown, then 4-electrode and 6-electrode 

configurations were also tested. The 4-electrode pattern configuration relies on proper voltage 
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control and overshoot while 6-electrode pattern does not. The magnetization rotation for both 

configurations was demonstrated in this chapter. With the proper voltage application on the 

patterned electrodes, the magnetic domain rotates 360o in the nano-ring, giving a potential 

multiferroic nano-motor application. 
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6.2! Future Works 

In this dissertation, a fully-coupled micromagnetic with elastodynamics model was 

developed. This opens new research areas in strain-mediated multiferroic devices. There are 

several research areas arising from this study using the fully-coupled micromagnetic model.  

First, we have deeply studied nickel-based memory devices. The energy dissipation in 

these devices is about 1fJ. The goal for those multiferroic In this work, we have deeply studied 

nickel-based memory devices. The energy dissipation in those devices is about 1fJ. The goal 

energy dissipation for strain-mediated multiferroic devices is down to 10aJ. Other materials, such 

as Terfenol-D, CoFe, FeGa, have relatively higher magnetoelastic coefficients than nickel, which 

help to improve the power consumption and efficiency. While using new materials, other issues 

may occur, for example, the electric control of magnetization, residual strain effects, and 

equilibrium states will change, thus, the physics needs to be studied deeply in the future. 

Second, we have already figured out a way to reversibly rotate the magnetization in ring 

nanostructures with 4 or more patterned electrodes. However, problems rise when we are trying 

to fabricate the nanostructures. Therefore, we can take advantages of shape anisotropy, surface 

anisotropy, and strain-induced anisotropy to optimize the design using the fully-coupled model 

in order to reduce the complexity of the patterned electrodes and successfully fabricate a device. 

Third, the model is able to capture the strain-induced dynamics of magnetization in 

ferromagnetic materials. In addition, the model is built on a customizable software, new physics 

can be added in the model to study the strain-mediated spin wave interactions, skyrmions, and 

strain-assist spin-transfer torque. Thus, this model can be easily modified in the future to 

accommodate the changes in physics for multiferroic devices of the future. 
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