
UC Berkeley
UC Berkeley Previously Published Works

Title
On quantifying the apparent temperature sensitivity of plant phenology

Permalink
https://escholarship.org/uc/item/6dh242gw

Journal
New Phytologist, 225(2)

ISSN
0028-646X

Authors
Keenan, Trevor F
Richardson, Andrew D
Hufkens, Koen

Publication Date
2020

DOI
10.1111/nph.16114
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/6dh242gw
https://escholarship.org
http://www.cdlib.org/


On quantifying the apparent temperature sensitivity of plant 
phenology

Trevor F. Keenan1,2, Andrew D. Richardson3,4 and Koen Hufkens5,6

1 Department of Environmental Science, Policy and Management, UC 
Berkeley, Berkeley, CA 94720, USA; 2 Earth and Environmental Science Area, 
Lawrence Berkeley National Lab., Berkeley, CA 94720, USA; 3 School of 
Informatics, Computing and Cyber Systems, Northern Arizona University, 
Flagstaff, AZ 86004, USA; 4 Center for Ecosystem Science and Society, 
Northern Arizona University, Flagstaff, AZ 86004, USA; 5 Department of 
Applied Ecology and Environmental Biology, Ghent University, Ghent, 
Belgium; 6 INRA Aquitaine, UMR ISPA, Villenave d’Ornon, France

Author for correspondence: Trevor F. Keenan Email: 
TrevorKeenan@berkeley.edu

Summary

Many plant phenological events are sensitive to temperature, leading to 
changes in the seasonal cycle of ecosystem function as the climate warms. 
To evaluate the current and future implications of temperature changes for 
plant phenology, researchers commonly use a metric of temperature 
sensitivity, which quantifies the change in phenology per degree change in 
temperature.

Here, we examine the temperature sensitivity of phenology, and highlight 
conditions under which the widely used days‐per‐degree sensitivity approach
is subject to methodological issues that can generate misleading results. We 
identify several factors, in particular the length of the period over which 
temperature is integrated, and changes in the statistical characteristics of 
the integrated temperature, that can affect the estimated apparent 
sensitivity to temperature.

We show how the resulting artifacts can lead to spurious differences in 
apparent temperature sensitivity and artificial spatial gradients. Such issues 
are rarely considered in analyses of the temperature sensitivity of 
phenology.

Given the issues identified, we advocate for process‐oriented modelling 
approaches, informed by observations and with fully characterised 
uncertainties, as a more robust alternative to the simple days‐per‐degree 
temperature sensitivity metric. We also suggest approaches to minimise and 
assess spurious influences in the days‐per‐degree metric.

Introduction

Changes in the timing of plant phenological events have long held the 
fascination of ecologists (de Reaumur, 1735; Leopold & Jones, 1947). Events 
such as bud‐burst, flowering and leaf senescence play an important role in 
global ecosystems, affecting multiple aspects of ecosystem function in 



addition to feedbacks to the atmosphere and climate system (Richardson et 
al., 2013). Phenological events are inherently sensitive to changes in 
weather, and recent climate warming has caused an appreciable extension 
of the growing season (Linderholm, 2006). Accurately characterising the 
controls of phenology is therefore a necessity in order to predict phenological
responses to climate variability and future change.

Temperature is widely recognised as the dominant control of spring 
phenology (P) in temperate and boreal ecosystems (de Reaumur, 1735; 
Leopold & Jones, 1947; Leith, 1974). The nature of the temperature response
(Parmesan, 2007; Morin et al., 2010; Hänninen et al., 2011; Clark et al., 
2014) is known with less certainty, however. There is indeed no known global
response, with large differences apparent between species, locations and 
populations (Parmesan, 2007; Zohner & Renner, 2014). The response to 
temperature is also modulated by a host of factors such as photoperiod, 
latitude, humidity, chilling and dormancy requirements, and the timing of 
warming (Murray et al., 1989; Myking & Heide, 1995; Morin et al., 2009; 
Basler & Korner, 2012; Friedl et al., 2014; Laube et al., 2014).

In order to study the response of phenology to spatial and temporal changes 
in temperature, researchers have used a metric referred to as the 
temperature sensitivity (e.g. Wolkovich et al., 2012; Chapman, 2013; Wang 
et al., 2014, 2018; Fu et al., 2015; Keenan, 2015; Thackeray et al., 2016; 
Güsewell et al., 2017), defined simply as the change in the date of a 
phenological event per change in temperature over a given period:

(Eqn 1)

where ΔP is the anomaly in the date of a specific phenological transition, and
ΔT is the anomaly in temperature over some integrating period (e.g. mean 
spring temperatures). The ST metric is convenient and intuitive, and widely 
used due to its simplicity and apparent tractability. The simplicity of ST allows
it to be applied to any dataset for which a metric of temperature change 
exists, for example for large datasets for which only highly temporally 
aggregated weather data have been historically available (e.g. Miller‐Rushing
& Primack, 2008; Primack et al., 2009). It is tractable in the sense that more 
detailed analytical methods such as process‐oriented models (e.g. Chuine et 
al., 1999; Migliavacca et al., 2012; Melaas et al., 2013) require multiple 
parameters to be estimated, and often involve multiple interacting 
processes. Despite the appeal of the ST metric, however, its simplicity could 
potentially hide important caveats. Here we examine potential statistical and
methodological issues, and show how they can lead to biased results.

ST is estimated as the slope of the linear regression between observed 
phenology dates (P) and some metric of temperature (T), most commonly 
mean temperature calculated across different years, along spatial gradients 



or between experimental treatments. Mathematically, ST can therefore be 
expressed as:

(Eqn 2)

(Eqn 3)

ST is therefore determined by the covariance between P and T, and by the 
variance of T (Eqn Eqn 2), or alternatively expressed, by the correlation 
between P and T, the standard deviation of P, and the standard deviation of 
T (Eqn Eqn 3). In this paper we examine issues affecting the estimation of a 
temporal and spatial ST metric using both ground and remote sensing 
observations, and simulated data. We show that var(T) can and does change 
independently of P, an observation that has implications for the derived ST 
values. Temporally, we show that var(T), and therefore ST, are highly 
dependent on the length of the integration period, due to the nature of year‐
to‐year variability in weather patterns, which tends to be lower over longer 
time periods. Spatially, we show that var(T) can vary over latitudinal 
gradients due to a relationship with mean temperature. This means that any 
investigation into the nature of variation in ST in relation to both temperature
variance and mean temperatures could be subject to the common statistical 
fallacy of spurious ratio, or ‘part of whole’, correlations (Pearson, 1897; 
Chayes, 1971), so termed because var(T) is a function of mean temperature, 
leading to ST being examined as a function of the part (viz. T). This implies 
that all terms in Eqn Eqn 3 must be examined in order to properly interpret 
spatial changes. In addition, we examine how another common statistical 
issue, termed ‘error in variables’, due to unaccounted for uncertainty in T, 
can affect estimates of ST. Each of these issues can lead to biases in the 
estimated temporal and spatial changes in apparent ST. Finally, we suggest 
methods to more accurately quantify the sensitivity of phenological events 
to environmental drivers.

Materials and Methods

We use ground observations of phenology, obtained from the Hubbard Brook
Experimental Forest long‐term measurement site in the northeastern USA, 
where ongoing meteorological and phenological observations have been 
made for the past two decades (1989–2012, 
http://hubbardbrook.org/data/dataset.php?xml:id=51)). We used data from 
the three dominant tree species (Sugar Maple, American Beech and Yellow 
Birch). Each year, individual trees were visited every 3−5 d throughout 
spring, and their phenological status recorded. We estimated the mean date 
of spring phenology as the date at which leaves reach ½ of final length 
(database flag ≥ 3).



The temporal sensitivity of spring phenology to changes in mean integrated 
temperature (ST) was quantified (Eqn Eqn 1), by comparing the anomalies in 
observed spring phenology dates (relative to the mean phenology date over 
the examined period), with the corresponding anomalies in mean 
temperature (T) for different temperature integration periods.

To illustrate the potential influence of latitudinal gradients in temperature 
variance, we used global gridded temperature data obtained from the 
European Center for Medium Range Weather Forecasting reanalysis product 
ERA‐ Interim, a global four‐dimensional reanalysis product that provides daily
2 m air temperature to the present day at a resolution of 79 km ((Dee et al., 
2011) http://www.ecmwf.int/). We selected pixels identified as deciduous 
broadleaved forest, according to satellite observations from the MODIS 
(Moderate Resolution Imaging Spectroradiometer) Land Cover Dynamics 
phenology product (MCD12Q2 Collection 5 (Ganguly et al., 2010)). The 
product, which is based on nadir bidirectional reflectance distribution 
function‐corrected MODIS surface reflectance data (MCD43A4 (Schaaf et al., 
2002)) with an 8‐d temporal resolution and a 500‐m spatial resolution, 
estimates phenological transitions based on temporal changes in surface 
vegetation as characterised by the enhanced vegetation index and a logistic 
model approach (Ganguly et al., 2010). We selected all MODIS Land Cover 
(MCD12Q1) pixels that were classified consistently as International 
Geosphere‐Biosphere Program type deciduous broadleaved forest (MCD12Q1
class 4) between 2001 and 2012 (Supporting Information Fig. S1). To merge 
the two datasets (ERA, MODIS), we scaled the MODIS phenology pixels to the
coarser resolution of the gridded climate cells by taking the median spring 
onset date over all pixels within a cell, for each year. Cells that contained 
fewer than 100 MODIS pixels (0.5% of potential) were discarded. We use the 
ERA and MODIS data in an illustrative analysis focused on the winter 
deciduous forests of Europe (42°:55°N, 10°W:60°E). We used the ERA and 
MODIS data to calculate the relationship between temperature variance and 
latitude, and between latitude and the covariance of temperature and spring 
phenology.

Results and Discussion

The influence of the length of the period of temperature integration

Examining the temperature sensitivity of phenology via ST (Eqn Eqn 1) 
requires specifying a period of time over which to integrate temperatures. 
Some studies relate observed variability in phenology to the mean annual 
temperature (e.g. Wolkovich et al., 2012) or mean meteorological spring 
temperature (i.e. March, April, May in the northern hemisphere) (e.g. Keenan
et al., 2014), whilst others use an optimisation approach to identify the 
period of time that is most correlated to the observed variability in 
phenology (e.g. Fu et al., 2015). The period over which temperatures are 
integrated invariably has a defined length. The length of the integration 
period is of crucial importance, due to the fact that longer integration periods



tend to have lower interannual variability in aggregated temperature. For 
example, year‐to‐year variability on a particular day or week of the year is 
typically much higher than year‐to‐year variability of monthly, seasonal or 
annual temperatures. In addition, the covariance between P and T is 
dependent on the length of the integration period used, and inversely related
to the relevance of the integration period to the phenological event. The 
timing and length of the chosen integration period affect the relevance of the
integration period to the phenological event, and could therefore affect the 
derived apparent ST, through its influence on both var(T) and cov(T, P) (Eqn 
Eqn 2).

To illustrate the potential impact of varying integration lengths on the 
derived ST, we use 20 yr of phenological and meteorological observations 
from the Hubbard Brook Experimental Forest, for three deciduous forest 
species. For each species, we use temperatures from all periods of length ≥ 
2 wk within the first 150 d of each year that show a significant correlation 
with observed bud‐burst (P < 0.01), and examine how the derived ST varies 
in dependence of the effect of integration length on var(T). As expected, 
var(T) declined with increasing integration period length, from 9°C2 for 
integration periods of 2 wk (as used in, e.g. Gunderson et al., 2012; Shen et 
al., 2014; Fu et al., 2015; Zhang et al., 2015b; Güsewell et al., 2017), to 
between 1–2°C2 for integration periods of over 2 months (Fig. 1a). Over the 
same range of period lengths, the covariance between temperature and bud‐
burst also declined, but much less than the variance in temperature (Fig. 1a).
The combined changes in temperature variance and 
temperature−phenology covariance resulted in a large change in the derived
apparent ST, which increased from c. −1.5 d per °C when using a 
temperature integration period of 2 wk, to a range of −3.2 to −6 d °C−1 over 
longer time periods (Fig. 1a,b), representing a greater than three‐fold 
difference in the apparent sensitivity of spring bud‐burst to temperature 
change. Although the derived ST was least sensitive to period length for 
longer period lengths, the correlation between phenology dates and 
integrated temperature was distributed across a range of period lengths, 
start dates and ST values (Figs 1c, S2). Studies often use the period with the 
highest correlation between phenology and integrated temperature as 
reference period, but these results suggest that a high correlation (Fig. 1c) 
can be obtained across a range of period start date–length combination, and 
therefore ST values (Fig. 1b). The influence of the integration period on the 
derived ST complicates the interpretation of results across studies, across 
sites, or even within a site for species that may be sensitive to temperatures 
during different periods (Friedl et al., 2014).





The potential for spurious correlations due to changes in temperature 
variance

The ST metric is often used to examine spatial and temporal changes in the 
temperature sensitivity of phenology (e.g. Shen et al., 2014; Fu et al., 2015; 
Zhang et al., 2015a). There are, however, potential spatial and temporal 
changes in var(T) that could lead to the identification of spurious 
relationships. For example, spring (March, April, May) temperature variance 
is a strong function of latitude, and varies from 4.3 to 2.2°C2 over the extent 
of the deciduous forests of northern Europe (Fig. S3). Examining changes in 
ST in space or time therefore potentially constitutes a special case of a well 
studied statistical phenomenon known as ‘ratio correlations’ (Pearson, 1897; 
Chayes, 1971). Ratio correlations arise when a ratio (in this case Eqn Eqn 2) 
is compared with the denominator of the ratio, or to some quantity of which 
the denominator is a function. As we have shown above, ∂var(T) can be 
much larger than ∂cov(T, P). In addition, as phenology is not responding 
exactly to the integrated temperature being used, there can be variance in T
that is unrelated to P. Although the covariance will also be influenced, the 
fact that P is not an exact function of T implies that ∂var(T) > ∂cov(T,P). 
Strong correlations (e.g. between ST and var(T) (Wang et al., 2014)) could 
therefore potentially emerge due to the large changes in temperature 
variance even in the absence of any causal relationship. Latitudinal changes 
in var(T) could also result in changes in cov(T, P), however. This implies that 
changes in all terms of Eqn Eqn 3 need to be assessed in order to interpret 
derived changes in ST.

To illustrate this point, we consider the scenario in which the covariance 
between phenology and spring temperature is independent of latitude, but 
where spring temperature variance increases with increasing latitude (Fig. 
2), based on observed spatial patterns for winter deciduous forests over a 
European latitudinal gradient from 42.5° to 55°N (Figs S2, S3). We generate 
10 000 covariance values from a normal distribution, randomly distributed 
along the European latitudinal gradient (Fig. 2a). The increasing temperature
variance (Fig. 2b) and constant covariance (Fig. 2a) across the latitudinal 
gradient inevitably leads (Eqn Eqn 3) to a decline in the apparent ST with 
increasing latitude (Fig. 2c). A logical conclusion would be that forest 
phenology is less sensitive to temperature where temperature variance is 
high, as has been reported (Wang et al., 2014). ST is a function of corr(T, P) 
and sd(P), however (Eqn Eqn 3), so ST could be declining due to a change in 
either, with important implications for the interpretation of the apparent 
change in ST. For instance, in this example, we know that var(T) increases 
with latitude, and cov(T, P) is constant (Figs 2, S3). As cov(T, P) = corr(T, 
P)×(var(T).var(P))1/2, a constant cov(T, P) and increasing var(T) implies a 
decrease in var(P) and/or a decrease in corr(T, P). This is important, as a 
latitudinal gradient in corr(T, P) could be indicative that the chosen 
integrated temperature is not equally relevant to the observed phenology 
dates across latitudes, and that the change in ST might be an artifact of a 



spatial gradient in the appropriateness of the chosen reference temperature.
The relationship between ST and var(T) should only be considered valid if 
there is no spatial gradient in corr(T, P). Spatial and temporal changes in ST 
are commonly reported in the literature (Shen et al., 2014; Fu et al., 2015; 
Wang et al., 2018), without consideration for how changes in the different 
terms of Eqn Eqn 3 could affect the derived sensitivity of phenology to 
temperature independently of changes in phenology. This illustration does 
not aim to claim that all reported latitudinal differences in ST are due to 
independent changes in var(T), as sd(P) and cov(T, P) may also vary, 
depending on the study region in question, reflecting real changes in 
phenological sensitivity. It does however show that the relative change in 
each term of ST (Eqn Eqn 3) needs to be assessed to fully understand the 
implied spatial changes in the response of phenology to temperature.





The temperature on which phenology depends is not known with accuracy

Although it is a widely accepted fact that phenology responds to 
temperature, there is no broad consensus how exactly that dependence 
manifests. For example, the timing of warming matters (Clark et al., 2014; 
Friedl et al., 2014), as do other moderating factors such as winter chilling, 
dormancy requirements, photoperiod, humidity and leaf longevity (Murray et
al., 1989; Myking & Heide, 1995; Morin et al., 2009; Basler & Korner, 2012; 
Laube et al., 2014). The representativeness of the chosen temperature 
metric is therefore difficult to quantify. In addition, studies commonly include
temperatures that happen after the phenological event, such as when using 
annual or even spring integrals, or when trends or interannual variability lead
to an encroachment of phenological dates into the period of temperature 
integration. Co‐located meteorological and phenological observations are 
also often lacking, with researchers forced to use gridded meteorological 
data or observations from the nearest station (e.g. Olsson & Jönsson, 2014). 
There are also potential nonlinear relationships between temperature and 
phenology. The integrated temperature used is therefore always only a proxy
to the real integrated temperature to which plants respond.

The fact that the integrated temperature being used is often a rough 
estimate is important, as it means that the predictor used to define ST 
inherently has an associated but unquantified uncertainty. Unacknowledged 
uncertainty in predictors represents a common ‘error in variables’ scenario 
that unequivocally leads to a phenomenon known as regression dilution or 
attenuation bias (Pindyck & Rubinfeld, 1991). This implies a likely 
underestimation of ST in the presence of unaccounted for error in T. We 
demonstrate this by considering the hypothetical case of a 1 : 1 relationship 
between the date of leaf phenology (P) and an unknown temperature metric 
(T), with an arbitrary ‘true’ ST of 5 d per degree change in temperature. To 
this relationship we add varying degrees of random error (e ~ N(0)). Adding 
random error to the integrated temperature metric leads to an 
underestimation of the true ST, with the bias increasing as random error in T 
increases (Fig. 3). The effect of the unknown error in T can be reduced by 
estimating ST using regression approaches that account for unknown errors 
in both axes, such as reduced major axis (or Type‐2) regression (e.g. White 
et al., 2009; Fu et al., 2015; Yang et al., 2018). Even with such approaches, 
however, sensitivity to the error in variables problem remains. The fact that 
the true temperature signal to which phenology is sensitive is not known 
therefore complicates the interpretation of between‐species differences in ST 
values at a given site, or between individuals of the same species at different
sites.



Implications and solutions

The issues raised above have implications for the detection and attribution of
spatial and temporal changes in ST. Temporally, ST has been reported to have
changed over the past few decades (Fu et al., 2015). Spatially, ST has been 
reported to change in dependence of latitude (Shen et al., 2014), altitude 
(Piao et al., 2011; Zohner & Renner, 2014), and in response to the 
temperature variance of a region (Wang et al., 2014). Differences between 
species are commonly reported (Marchin et al., 2015), between populations 
(Parmesan, 2007), and between experiments and natural observations 
(Wolkovich et al., 2012). But such changes in ST are difficult to assess 
without consideration of the issues highlighted above. For example, a recent 
study reported that experiments underpredict the sensitivity of spring 
phenology to warming, when compared with natural observations (Wolkovich
et al., 2012). But the observation‐based sensitivity was calculated using 
annual temperatures, which have a much lower variance than, say, spring 
temperatures. Due to this lower variance, the temperature sensitivity 
derived from observations using annual temperatures would be over‐
estimated, and also poorly estimated because annual ΔT is a poor proxy for 



the actual temperature signal to which plant phenology responds. Using 
spring temperature instead could lead to a lower apparent ST in 
observations, but no change in the apparent ST of experiments (due to the 
fact that the experimental change in temperature is typically applied evenly 
throughout the year), and greatly reduce the difference between the two. 
Similarly, studies using ST to compare differences in the response of co‐
located species to temperature would have difficulty discerning whether the 
differences between the species’ ST values were due to an inherently 
different temperature sensitivity, or a difference in the representativeness of 
the chosen integration period for a particular species. Unfortunately, 
analyses rarely control for such effects, or test the statistical characteristics 
and representativeness of the integrated temperature metric used.

Fundamentally, the above issues exist because the representativeness of an 
integrated temperature metric to the observed phenological event can rarely
be quantified (e.g. integration lengths from 2 wk to 2 months can have a 
statistically equivalent relationship with the observed dates (Fig. 1)). In 
reality, T is a noisy proxy for the true temperature signal to which P 
responds, and can contain significant variation that is not associated with 
changes in P. As the true integrated temperature signal is unknown, the 
derived ST can be assumed to always be inaccurate, and can lead to results 
that are influenced by statistical artifacts.

We advocate for improvements in the application and reporting of the ST 
metric. Statistical methods such as Type‐II regression should be used (as in, 
e.g. White et al., 2009; Fu et al., 2015) to help minimise the influence of 
unaccounted for uncertainty in T (Fig. 3). Studies should also incorporate 
analyses of the potential effect of changes in temperature variance due to 
integration length, or spatial/temporal differences. This will help attribute the
apparent differences in ST, and inform the interpretation of results. In 
addition, clearly reporting integration periods would improve reproducibility, 
and using multiple integration periods would help assess the robustness of 
results.

One promising alternative to the ST metric lies in the use of data‐informed 
process‐oriented models to characterise the response of phenology to 
temperature change along with other potential modifiers such as 
photoperiod (e.g. Migliavacca et al., 2012). Such an approach could be used, 
based on both natural and experimental observations (Hänninen et al., 
2019), in tandem with a range of climate scenarios to rigorously characterise
the potential response to climate variability and long‐term change. A key 
strength of a model‐based analysis is that model projection uncertainty can 
be directly quantified, and used to inform the interpretation of results. A 
model, parameterised from the data, could also be used in ‘experiment 
mode’, in which warming is applied (either uniformly or following climate 
projections) throughout the year to quantify the model's implicit temperature
sensitivity. Not only can the combination of models with observations aid 
researchers better interpret the observations, it will also inevitably lead to 



the development of new state‐of‐the‐art models and fundamental theory. 
Although models too have their pitfalls (Hänninen et al., 2019), and can be 
subject to structural error, ensembles can be used to quantify uncertainties 
and test competing hypotheses (Hufkens et al., 2018). A full consideration 
and propagation of measurements and their associated uncertainties, for 
example through using model–data fusion techniques, would both allow for 
the identification of weak model components and the design of more 
effective experimental strategies (Keenan et al., 2011).

The ST metric is subject to multiple issues that undermine its credibility, in 
particular for natural observations, and can generate misleading results. 
Although we focus here on the temperature sensitivity of phenology, some of
the issues raised could also apply to the temperature sensitivity of other 
ecological phenomena, or indeed the sensitivity of phenology to other 
factors, such as precipitation in water limited regions (Moore et al., 2016). 
We therefore advocate for more rigorous statistical assessments of potential 
underlying biases, and the use of data‐informed modelling approaches for 
the interpretation and projection of phenological changes.
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