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Pathogen recognition by
sensory neurons: hypotheses
on the specificity of sensory
neuron signaling

Antoine Millet1 and Nicholas Jendzjowsky1,2*

1Respiratory & Exercise Physiology, The Lundquist Institute for Biomedical Innovation at Harbor
University of California Los Angeles (UCLA) Medical Center, Torrance, CA, United States, 2Division of
Respiratory and Critical Care Medicine and Physiology, David Geffen School of Medicine, University of
California Los Angeles (UCLA), Los Angeles, CA, United States
Sensory neurons cooperate with barrier tissues and resident immune cells to

form a significant aspect of defensive strategies in concert with the immune

system. This assembly of neuroimmune cellular units is exemplified across

evolution from early metazoans to mammalian life. As such, sensory neurons

possess the capability to detect pathogenic infiltrates at barrier surfaces. This

capacity relies on mechanisms that unleash specific cell signaling, trafficking and

defensive reflexes. These pathways exploit mechanisms to amplify and enhance

the alerting response should pathogenic infiltration seep into other tissue

compartments and/or systemic circulation. Here we explore two hypotheses:

1) that sensory neurons’ potential cellular signaling pathways require the

interaction of pathogen recognition receptors and ion channels specific to

sensory neurons and; 2) mechanisms which amplify these sensing pathways

require activation of multiple sensory neuron sites. Where possible, we provide

references to other apt reviews which provide the reader more detail on specific

aspects of the perspectives provided here.

KEYWORDS

pathogen recognition receptors (PRR), pathogen associated molecular patterns
(PAMPs), transient receptor potential channel, sensory neuron, dorsal root ganglion
(DRG), vagus, nodose ganglion (NG), carotid chemoreceptors
Introduction

Without the ability to detect, combat and evade harmful pathogens, the survival of

early metazoan and, evolution to mammalian life would not have been possible (1). The

importance of pathogenic detection and mitigation is evidenced by innate systems, mostly

confined to the earliest sensory units, which originated in early multicellular organisms

such as Caenorhabditis elegans (2, 3) and Hydra (4, 5). The mammalian development of

pathogenic control was enabled by the divergence from one to two systems which evolved

in parallel but in a mutually interrelated manner (1, 3). Mammalian immune and nervous
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systems are organized in such a way that sentinel cells, with

pathogenic detecting capabilities emanate alerting signals. When

amplified chemical messengers are released to recruit combative

cells that attack and/or eliminate invading threats (1).

Layers of defenses are involved in the intricacy of the immune

system. Structural barrier cells within epithelial barrier layers

coordinate a signalling cascade to recruit additional patrolling

and cytotoxic cells, granulocytes, monocytes and lymphocytes to

act and counter the invading threat. Following the cellular signalling

posed by the epithelium, the immune system is then organized into

lymphoid and secondary lymphoid organs, which harbor

lymphoid-lineage cells that enable bi-directional communication

with myeloid lineage cells, which have multiple methods to

neutralize pathogens. Lymphoid lineage cells are triggered by

numerous signals, simultaneously deployed at any one time,

which was thought initially to be a failsafe system to back-up

disruptions to poorly performing pathways (6, 7). However, the

diversity and coordination of multiple cytokine and chemokine

release appear to mediate the specificity of immune cell activation in

response to pathogenic detection. This is due to the unique receptor

gene expression profile on any single immune cell, providing a

unique signature and the potential for differing modes of activation

(8–10). Thus, deployment of a specific cytokine and chemokine

pattern would then, presumably, activate a particular set of cells, in

an exact way, to target a specific pathogen.

Like the immune system, the nervous system is partitioned to

enable the sensing of the environment (sensory neurons within the

peripheral nervous system), integrate and process information

(medullary autonomic nervous system – and central

hypothalamic centers) and finally, carry out signalling pathways

(efferent nerves of the autonomic nervous system) to implement

reflexes to receive information regarding deviations from

homeostasis (1, 3). In the case of immediate pathogenic invasion,

sensory neurons innervate all barrier (11–13) and mucosal surfaces

(11–13) and patrol the bloodstream (14–16); interfaces which are

vulnerable to infection and can come into contact with the outside

environment. These important neural sensory clusters lie within the

dorsal root ganglion (13), trigeminal ganglion (17), nodose/jugular

ganglion (11, 18) and petrosal ganglion (14, 18), respectively. These

neurons communicate with immune (19) and neuroendocrine cells

(20, 21), either by the direct release of neurotransmitters into the

immediate vicinity (19) or by relaying more extensive neural

networks to innervate secondary lymphoid organs (22) and

recruit other cells via secondary neurotransmitter release.

As such, it is clear that the anatomical association of sensory

neurons with epithelial layers and indwelling immune cells form

“neuroimmune cell units” (23) where their bidirectional

communication between distinct neuronal and hematopoietic

lineage cell types has afforded the ability to direct specific

responses to a multitude of homeostatic disturbances. Prominent

examples of the effects of these neuroimmune cell units are the

cholinergic anti-inflammatory pathway (24, 25) or sympathetic

influence on lymphopoiesis (26, 27). These modes of neural

stimulation of immune function provide a sensory system which

can quickly act should it identify pathogenic infiltration. Notably,

the stimulation of this fast-acting sensory neuron pathogenic
Frontiers in Immunology 02
detection has been demonstrated to either assist with ‘immune’

cell recruitment (19) or provide antimicrobial protection in and of

itself through antimicrobial neuropeptides (28). If the specific

recruitment of immune cell subsets occurs due to the unique

chemokine receptor expression signature on any immune cell (5,

6), what is the mode of specific sensory neuron activation in the face

of pathogenic detection?
Early sensory systems are a blueprint
for neuroimmune cell units

Pathogen recognition in early metazoan life likely developed in

sensory neurons first (3). These sensory units acquired innate

defenses to detect and counter initial pathogenic infiltration. The

concurrent development of early PRRs and ion channels shows a

sharing of potential physiologic outcomes in response to pathogen

detection. Both pathogenic opsonization and sensory neuron

depolarization induce avoidance behaviors brought on upon

specific neurotransmitter release. This subsequent release of

neuropeptides also demonstrates microbial neutralization

properties akin to bacteriocins (29, 30); which appears to be

conserved in mammalian life (28). Neuronal cell death to

implement calcium release for both additional cell recruitment

and adjacent neuron stimulation (31, 32) was an additional

strategy of early alerting responses and, in select cases, is a last

resort for mammalian defences (33). Intriguingly, it would appear

that apoptotic signalling and not apoptosis per se, are necessary for

neuroimmune interactions as blockade of cell death does not

diminish immune cell trafficking (34). Nevertheless, these early

alerting responses occur rapidly, and it has been suggested that the

speed of the neural response may influence the speed of the

subsequent immune response (3, 34); a relationship which

appears to hold in mammalian life (19, 33). However, early

strategies evolved and gained more specificity with the increased

dispersion of duties amongst cell types. The conservation of

intracellular signalling pathways throughout the evolution of

defensive strategies is exemplified in neuroimmune cell units (11–

13, 35–39). How these signalling systems interact, and their

functional outcome are now the focus of intense investigation.
Hypotheses on the specificity
of sensory neuron PRR sensing
of microbes

In the case of sensory neuron depolarization, ion channels often

form the terminal portion of the cell signalling cascade as these

channels are phosphorylated by upstream kinases set in motion when

receptors are activated (40). The phosphorylation of ion channels on

sensory neurons then increases the probability of depolarization,

leading to neuronal excitation and neurotransmitter release (41, 42).

Neuronal ion channel expression has allowed the sorting/clustering

of neuronal subsets (11–13, 35–39). It is likely that the complexity of

neural depolarization mediated by the activation of multiple but
frontiersin.org
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sensory-specific ion channels in various ganglia would also enable a

failsafe method to carry important information to the central nervous

system (35, 43). It is equally likely that the specificity of neuronal

activation also involves the activation of multiple receptors on any

one neuron to offer specific neuron excitation. A notion carried from

specific lymphoid cell activation afforded by chemokine receptor

expression (8–10).

Furthermore, how and at which site of phosphorylation of each

channel could offer another layer of complexity to add to the

specific coding of neuronal activation by upstream receptors.

Finally, subclusters of specific sensory neurons exist in multiple

ganglia; can stimulation of neurons in multiple ganglia may

augment neuroimmune reflexes? Therefore, the perspectives

explored here are: whether the stimulation of multiple neurons

within or between sensory ganglia, are phosphorylated

differentially, and on differential phosphorylation sites, to provide

a mechanism to code specific information to engage the appropriate

neuroimmune reflex. In addition, the activation of ion channel

phosphorylation on more than one set of nerves (ganglia) could

augment these alerting reflexes.
Evidence for specificity of neuronal
sub-clusters and ion channel
phosphorylation as a means for
specific neural responses

Detection of pathogenic invasion by sensory neurons,

epithelial/barrier and innate antigen sensing/presenting immune

cells is afforded by direct and indirect means (44). The direct

recognition of pathogen-associated molecular patterns (PAMPs)

and, therefore, neural activation involves four families of PRRs,

including Toll-like receptors (TLRs), NOD-like receptors (NLRs),

retinoic acid-inducible gene I (RIG-I)-like receptors (RLRs), formyl

peptide receptors (FPRs) and C-lectin receptors (CLRs), each of

which show notable differences regarding pathogen recognition,

signal transduction, and intracellular downstream pathways (45–

51) (Figure 1). The indirect activation of sensory neurons by

pathogenic stimuli involves cytokines, chemokine, prostaglandin

and, phospholipid stimulation of sensory neurons as a result of their

release from either myeloid and lymphoid cells or, on neurons

themselves (44, 80).

The differential expression of PRRs, cytokine, chemokine,

prostaglandin and phospholipid receptors in sensory neurons has

been shown in DRGs and trigeminal ganglia, nodose/jugular

ganglia and carotid chemoreceptors using a multitude of

transcriptomic technologies including single-cell/differential

RNA sequencing (sc/dRNA-seq), in situ hybridization,

immunohistochemistry, and electrophysiology (11–13, 35–39).

This potential for neuronal activation by multiple ligands is

clearly a distinct possibility, both by direct (sensing of microbes

by PRRs) and indirect (sensing of cytokines released by immune cell

sensing of microbes and recognition of alarmins which are

produced or released by damaged and dying cells) means. Is it

possible that the composition of these molecules released upon
Frontiers in Immunology 03
initial immune cell sensing and the direct pathogenic stimulation of

neurons can code specific neuronal signalling? To test this

hypothesis would require a multitude of conditions with differing

amounts and compositions of ligands in response to different

pathogenic conditions; a difficult task which may be made easier

with new-generation bioinformatic approaches involving RNA-

protein interactions or the functional processing of neural

activity. However, this same stimulation would also activate many

other cell types with a similar receptor signature. Therefore, an

additional layer of neuronal specificity is required to allow sensory

neuron signaling specificity.

The composition of downstream ion channels is the defining

characteristic of sensory neurons (11–13, 41). Protein

phosphorylation is the most important post-translational protein

modification which regulates enzymatic and ion channel activity,

cell signalling and cellular localization (40, 81–83). Given the

prominent role of protein kinases, which are readily activated as

part of multiple signaling pathways (84–86), it is likely that their

deployment can elicit downstream post-translational modification

of ion channels to increase the probability of depolarization and/or

neurotransmitter release which, in turn, could code specific

nociceptor signals (Figure 1).

There are multiple examples of PRR receptors eliciting the

engagement of kinases, including protein kinases, tyrosine, and Syk-

family kinases as part of both PRR signalling (84–87) and indirect

signaling from phospholipid, prostaglandin and cytokine receptors

(87, 88). Further, the role phosphorylation plays in the modification

of ion channel function in regards to neuronal depolarization has

been documented in response, mainly, to GPCR mediated kinase

activation such as prostaglandins and phospholipids (89, 90), and in

response to some, but not all, neuroimmune conditions, examples

include itch (91) and pain (92, 93). Subsequent activation of kinases

in association with PRRs such as TLRs or CLRs and cytokines are

certainly evidenced (87); whether their kinase activation results in

ion channel depolarization or sensitization in these cases is not

clear (Figure 1).

An additional possibility, in terms of the specificity of neuronal

activation, appears to involve multiple phosphorylation sites per ion

channel. The most prominent examples of these, within sensory

neurons, lie with TRPV1, TRPC3 and Nav channels. Indeed,

TRPV1 has three prominent phosphorylation sites, S502, S800

and T704 (94, 95), TRPC3 is phosphorylated on T11, S263, T646

and (96–98), and sensory neuron specific Nav channels, subtypes

1.8 and 1.9 are phosphorylated on D1-DII linker sites (99, 100).

Each of these sites accepts kinases that appear to be directed in

response to specific ligands such as prostaglandins and cytokines

(40). This array of cellular signaling may be a manner in which

multiple ion channels may be simultaneously phosphorylated and

afford specificity similar to the multiple chemokine and cytokine

stimulation of immune cells (44). The wide-ranging consequences

of the multiplicity of signals contributing to ion channel

phosphorylation could result in either pro- or anti-inflammatory

responses. But an essential factor, which remains unanswered, is

how the activation of kinases by specific receptors are directed/

trafficked to particular phosphorylation sites on specific ion

channels. There are examples of apparent coupling between PRRs
frontiersin.org
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and TRPs, such as TLR4 to TRPV1 and TLR7 to TRPA1 (44). What

is a more probable cellular signalling scenario is that the dispersion

of kinases, in response to stimulation, by a multitude of receptors,

phosphorylates/post-translationally modifies the composition of

channels present within each specific neuron subset. This would

speak to the mode of specificity mentioned above. However, this

hypothesis remains to be tested.

Evidence for multiple ganglion
stimulation and alteration
of defensive reflexes

In early eukaryotic life, the capability of neural signals to recruit

cells from seemingly ‘distant’ sites (3, 101) demonstrated the

capability for early neuroimmune cell unit coordination and

broader protective capabilities. However, as eukaryotic life gained

the complexity and partitioning of organ systems, both the immune

and nervous systems organized themselves by sub-dividing specific

hubs for either the storage of cells (e.g. secondary lymphoid organs,

resident tissue cells) or to serve as a relay station for information

(e.g. neural ganglia).
Frontiers in Immunology 04
In the case of the sensory nervous system, necessary to form a

part of the neuroimmune landscape, neurons are sorted and

partitioned into different peripheral ganglia which innervate

different organ systems or components of organ systems (19,

102). For example, the dorsal root ganglia innervate the skin (13,

102). In contrast, the vagus senses internal organs, and each

neuron/neuron subset is responsible for a single organ system

(11, 35, 102) and, possibly, tissue layer (11, 103, 104).

Signals from sensory neurons travel to the nucleus tractus

solitarius and synapse onto the dorsal motor nucleus of the vagus

(to elicit immediate efferent nerve activity) and the paraventricular

nucleus within the hippocampus, amygdala and periaqueductal grey

(to carry out grander neuroendocrine signalling involving the

hypothalamic pituitary adrenal axis; HPA). Effective neural

signalling of immunity is critically dependent on adrenal cortex

release of glucocorticoids in response to a number of perturbations

(105, 106) The integration of the neuroendocrine involvement in

neuroimmune signalling is highlighted by stress responses

(involved in a wide variety of threats to homeostasis) which

signals the adrenal cortex to induce corticosteroid release which

has a wide array of immune influence (105–107). Additionally, new

and important reflexes of HPA involvement are highlighted with
FIGURE 1

Neuronal pathogenic detection and cellular signaling pathways. Do ion channels incur specificity? The pathogenic sensing capability of sensory
neurons is exemplified by the multitude of pathogenic detection receptors (51–79). These receptors appear to be linked spatially and by protein
kinase stimulation/phosphorylation of downstream ion channels. *However, as indicated by the diamond, what forces direct the specific trafficking
of protein kinases to specific phosphorylation sites on downstream ion channels? And, to which specific ion channel/set of ion channels?
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the cholinergic anti-inflammatory pathway (108) and humoral

immunity (109) in response to infection.

Intriguingly, disease and its severity can often be magnified

when it is ‘leaked’ beyond the initial site of infection into other

tissue layers, organ systems and/or the blood; examples of these lie

with infections that can quickly precipitate sepsis (16). Therefore, a

situation may arise where multiple neurons that may signal differing

ganglia could signal an alerting response should the disease spread

beyond the initial site/tissue of infection.

One such case where infection could travel beyond the initial

site of infection but remain within a single organ system, yet

stimulate multiple sensory neurons which are housed in differing

ganglia, is exemplified in the gut (103). Indeed, the colon is

partitioned into intrinsic and extrinsic sensory neurons, with cell

bodies in the intrinsic and nodose ganglia, respectively (103)

(Figure 2). It is likely that stimulation of both ganglia by the

detection of pathogenic harm by both sets of sensory neurons

may provide an increased alerting response.

Indeed, the above discussion readily acknowledges that the first

line of neuroimmune defence occurs with the release of these

sensory neurotransmitters which act to recruit the appropriate

cell to clear the pathogenic invasion. However, should disease

progress to such a state where barrier surfaces become leaky/

decoupled and allow the passage of microbial pathogens and/or

cytokines into the bloodstream, additional defenses would be

stimulated. In this regard, an additional line of defense would be

recruited if pathogenic infiltration should enter the blood stream;
Frontiers in Immunology 05
the carotid chemoreceptors (16) the main sensory organ which

patrols hemolytic homeostasis (15) would also be stimulated.

Evidence demonstrates the carotid chemoreceptors’ ability to

detect pathogenic patterns (16) as well as substances released in

response to disease states/allergy (110, 111) as their composition of

pathogenic detection is notable (38). We have demonstrated the

possibility for this biologic scenario to occur in our dual vagus and

carotid chemoreceptor preparation (43). Specifically, we showed

that when the sensory neurons within the lungs are stimulated with

either proteases or adenosine triphosphate and the carotid

chemoreceptors with their known stimulus, low oxygen tension of

their perfusate (blood), signals emanating to the efferent vagus are

augmented, likely to regulate defensive reflexes such as mucus

secretion and airway constriction (35) and/or to signal the

cholinergic anti-inflammatory pathway (24, 25). This scenario

shows that not only are subtypes of neurons within ganglia able

to regulate and code specific neural signals in response to

pathogenic stimulation but, also that augmentation of reflexes is

possible when anatomically specific and important ganglia are

stimulated at the same time. Therefore, the cascading stimulation

of sensory neurons would provide the potential to augment and/or

strengthen the neural coordination of immune cells, should

pathogenic stimuli be sensed by multiple immune capable

ganglia. In the context of specific coding of neural depolarization

by the expression of differential receptors, ion channels and their

respective phosphorylation, how would stimulation of two neuron

sets with similar receptor/ion channel composition augment
FIGURE 2

Sensory innervation of barrier tissues. The innervation of tissues by sensory neurons and the parasympathetic and sympathetic arms of the
autonomic nervous system affords constant patrol of mammalian systems. In addition, the enteric nervous system has a layered system of
innervation within the gut. These systems allow constant detection and also the possibility of dual stimulation should multiple neurons in different
locations/tissues be stimulation. Can parallel and concurrent sensory neuron pathogenic stimulation increase signaling magnitude? The potential for
this case has been examined previously (43, 103).
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neuroimmune signalling? One possibility would simply be an

increased rate of neuronal firing to elicit immunogenic

neurotransmitter release. How would dual stimulation of two

neuron sets with differing receptor/ion channel composition

augment neuroimmune signalling? Would such an instance

change the composition of neurotransmitter release and

ultimately affect the chemotaxis of immune cells?
Perspectives/conclusions

Protection and evasion of disease has required an ever-evolving

system with additive layers throughout the evolution of eukaryotic

life. With the increasing complexity of mammalian body plans, host

defence involves coordinating two defensive systems and organising

cell clusters within and between systems. This perspectives essay has

attempted to highlight how sensory neurons, an important part of

the defensive response to microbial invasion, code specific

information to either influence neuronal and immune cell

stimulation at the site of infection. Additionally, should invasion

extend beyond this site, larger reflexes which may be required to

clear the pathogenic infiltration would become activated. However,

much remains to be uncovered and, as recently posed by others

(44), information regarding what this excitation means in a (patho)

physiologic context and how it coordinates the release of

neurotransmitter to act directly on immune cells or signal the

central nervous system to coordinate grander neuro-immune

regulation requires further intense investigation.
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