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ABSTRACT OF THE DISSERTATION

Collective Phenomena in Memristive Networks: Engineering phase transitions into
computation

by

Forrest C. Sheldon

Doctor of Philosophy in Physics

University of California San Diego, 2019

Professor Massimiliano Di Ventra, Chair

This dissertation aims to address the dual goals of (1) proposing practical computing

devices that meet a growing need for alternatives to von Neumann architecture, and (2) leveraging

these to build new connections between computation and physics. As an avenue towards the

former, I have focused on dynamical systems inspired by the digital memcomputing machines

(DMMs) proposed by M. Di Ventra and F. Traversa. These are continuous dynamical systems,

embeddable directly in hardware, which can be utilized to solve discrete combinatorial problems.

Through several benchmarking studies, we have established that this approach to combinatorial

optimization can outperform standard algorithmic methods, both in time to solution, and in scaling.
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In many cases we are able to show that the time to solution of a digital memcomputing machine

scales polynomially in instance size when other approaches scale exponentially. This indicates

that the unique niche occupied by DMMs as deterministic, continuous dynamical systems solvers,

possesses features not present in traditional approaches. As an avenue towards uncovering

these features, we have worked to construct simplified models of DMMs that would facilitate

theoretical work to rigorously establish their capabilities. In navigating their configuration space,

these devices manifest a form of dynamical long-range order in which widely separated variables

transition between states collectively. The structure of the equations borrowed from a DMM

combined with the ‘heuristic’ requirement of long-range order allows us to construct a set of

equations that reproduce several features of the DMM dynamics and that are able to solve a set of

problems derived from spin-glasses. The form of these equations clarifies the essential role of

continuity in the dynamics of the solver and the role of memory in DMMs.
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Chapter 1

The Menu: From Memristors to

Optimization

The purpose of this chapter is to give a bird’s eye view of the work I have undertaken

under the supervision of Prof. Massimiliano Di Ventra at UCSD. The central player in this is the

memristor, and much of this chapter will be devoted to developing the notion of a memristor from

a circuit element based on resistive switching, to a controlled way of incorporating non-linearity

and memory in a dynamical system. Subsequent chapters are composed of papers we have written

and which are either published or in submission.

The nonlinearity introduced by memristors can lead to novel behaviors when these devices

are incorporated into networks. In particular, current sharing amongst the memristors can lead to

collective switching. As a first approach to this topic, we investigate the presence of collective

behavior in networks of memristive elements [SDV17].

Our primary interest is in leveraging this behavior in circuits that perform a useful

computation. Similar effects have been implicated in the dynamics of digital memcomputing

machines (DMMs) and are thought to play a role in accelerating their convergence to the solution

of a computational problem. Before examining the dynamics of these types of solvers, we first
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examine their performance on a class of combinatorial optimization problems known as maximum

satisfiablility (MAXSAT) which aims to find a configuration of boolean variables satisfying the

maximum number of constraints. While this is somewhat distinct from their original, intended

use on satisfiable problems, we show that they are very effective on a wide variety of benchmarks

drawn from the yearly MAXSAT competitions and that they display a marked advantage in their

scaling when producing approximate solutions [TCSD18, SCTD].

As a starting point for building a theoretical characterization of DMMs and the role of

collective behavior in their dynamics, we attempt to generalize their construction to find the

ground states of the Ising spin-glass. These systems have simple and homogeneous constraints and

are typically embedded on a lattice, facilitating the analysis of collective behavior. They are also

the native instance form for the quantum annealers manufactured by D-Wave [HJA+15, DBI+16]

making the performance of classical solvers a topic of current interest for determining quantum

speedup.

The DMM approach shows a substantial improvement in the scaling of solution time

over local annealing approaches and one combinatorial solver, scaling as N1.5 while the other

solvers tested scaled exponentially [STD]. Borrowing the general structure of equations present

in DMMs, we construct a simplified model capable of solving small instances and that proceeds

through a transient phase of avalanches, similar to those shown in memristive networks. The

avalanches derive from terms analogous to an elastic potential energy that enforce a form of

rigidity on clusters of spins within the instance. This is closely connected to the continuity of the

dynamics and gives further evidence that features of continuous dynamical systems solvers can

provide unique benefits in solving natively discrete problems.
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1.1 Resistive Switching

Examples of materials or systems that display resistive-switching (RS) stretch back to the

19th century with Sir Humphrey Davy’s studies of carbon arc lamps and Branley’s coherer [CC18].

In the first case, a potential difference is applied between two electrodes immersed in an inert

gas [PTC12]. For a sufficiently large potential difference the gas is ionized leading to a sudden

increase in the current and thus the conductivity. Once ignited, the potential difference may then be

decreased while maintaining the ionized ’arc’ of gas between the electrodes. In the coherer [FC05],

fine metal shavings which are initially disconnected will assemble into a conductive pathway

between electrodes when subjected to a sufficiently large electric field, greatly increasing the

conductivity. Once assembled the shavings would remain connected until agitated to ’decohere’

the device.

These systems exemplify several prominent features that carry over to the nanoscale [Di

08, PD11, HTTA12]: they involve the flow of ions rather than only electrons, an external field

enacts a geometrical rearrangement of the system, changes in the conductivity are observed only

for a sufficiently large applied field or current, and the effects are sufficiently non-volatile to

display hysteresis when the field/current is cycled.

As a canonical example, we consider the Ag|Ag2S|Ag metal-insulator-metal (MIM) atomic

switches [THNA05, HTTA12] examined in Chapter 2. These systems consist of a thin ( 50 nm)

layer of insulating silver sulfide (Ag2S) between two metallic layers (usually either Ag−Ag

or Ag−Pt). In the absence of an electric field, the Ag2S layer exists in its semiconducting α

acanthite phase with a 1.2 eV band-gap and low diffusivity of Ag cations [XBW+10]. This

layer undergoes an electric field induced transition to a β argentite phase in which both the

conductivity, and diffusivity of Ag+ ions is greatly enhanced. This forms a conducting filament

along which Ag cations migrate, eventually forming a bridge of pure silver between the metal

interfaces, resulting in an increase of several orders of magnitude in the conductivity between the
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metal layers [KTHA06] (the conductivity of Ag and β-argentite Ag2S are 6.3×105 1/Ω/cm and

1.6×103 1/Ω/cm respectively versus 2.5×10−3 1/Ω/cm for the α-acanthite phase [XBW+10]).

This corresponds to an initial formation step required in RS materials. After this step, the

devices may display either unipolar or bipolar resistive switching, depending on the physics of

the interfaces [HTTA12]. In unipolar switching, after the formation step the conductivity may be

reset by increasing the voltage in the same direction used during forming, effectively ‘burning

out’ the filament. In bipolar RS, a reversed bias is applied in order to dissolve part of the filament

and break the conductive pathway. The Ag|Ag2S|Ag interfaces discussed above display bipolar

switching. A reversed bias ionizes Ag at the thinnest part of the filament through Joule assisted

heating. These ions flow away from the filament following their concentration gradients and

cause the filament to dissolve back into the substrate.

This is meant to illustrate the range of physical processes at work within a material

undergoing resistive switching. The notion that a medium could show memory effects in its

conductivity should perhaps be regarded as the norm rather than an exception; in general, the

instantaneous response of a material will depend on its current state [DVP13a]. If, however the

timescale in which the material reaches steady state is short compared to the timescale of interest,

the material will display an Ohmic, or perhaps nonlinear conductance. If instead, the system

possesses degrees of freedom with slow timescales relative to the timescale of interest, we will

observe a time dependence and thus memory effects in its response function. At the nanoscale,

the presence of ionic conduction supplies timescales slow enough for us to observe memory

effects leading to resistive switching.

1.2 The Memristor

Historically, the memristor is conceptually distinct from the phenomenon of resistive-

switching, although modern usage often confuses the two. The evolution of the ideas surrounding
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this is lively enough that I’ve chosen to supply a brief historical survey of the memristor and its

various interpretations.

The notion of the memristor as an ‘ideal’ circuit element was first posed by Chua in

1971 [Chu71]. Reasoning by analogy with the fundamental circuit components, he supposed a

device characterized by a flux-charge curve, g(φ,q) = 0 which can be written as the relation,

dφ = M(q)dq, M(q) =
dφ(q)

dq
(1.1)

where M(q) has units of ohms and called the memristance. As dq = idt and dφ = vdt we must

have

v = M(q)i.

If M(q) is constant this degenerates into a linear resistor. A dependence on the charge q(t) which

has passed through the element implies a memory of the past history in contrast to a nonlinear

resistor R(i) which depends only on the instantaneous current and is characterized by a relationship

f (v, i) = 0. The memory suggested by this construction lead to the portmanteau ‘memristor.’ A

construction was given to simulate such a device using active elements and the question was left

open whether a passive device, satisfying M(q)> 0 could exist. An identical construction in term

of a dependence on the flux, M(φ) leads to a variant known as a ‘flux-controlled’ rather than

‘charge-controlled’ memristor.

The requirement that M depend only on the charge/flux is quite stringent. In 1976,

Chua and Kang published a generalization of the memristor which they called a memristive

system [CK76]. This is a dynamical element satisfying

y = g(x,u, t)u (1.2)

ẋ = f (x,u, t) (1.3)

5



where u and y are the input and output of the system and x ∈Rn denotes its state. This definition

relaxes the requirement that the device be derived from a φ−q curve and as a result is capable of

modeling a wide range of physical systems forming a useful abstraction of the original concept.

In this work they also placed a heavy emphasis on pinched hysteresis in i− v curves of the device

as a marker of memristive behavior.

Publications surrounding memristors were mostly quiescent until the 2008 paper by

Strukov et al. proclaimed ”The missing memristor found” [SSSW08], precipitating an explosion

in interest and publications. The proposed devices were titantium-oxide films which exhibit

resistive switching due to the migration of oxygen vacancies. As a model, they suggested

v(t) =
(

RON
w(t)

D
+ROFF

(
1− w(t)

D

))
i(t)

dw
dt

= µV
RON

D
i(t)

for a semiconductor of thickness D with resistivity ROFF
D containing a dopant layer of thickness

0 ≤ w(t) ≤ D with resistivity RON
D and where the dopants have mobility µV . This admits the

simplified form, for RON � ROFF

M(q) = ROFF

(
1− µV RON

D2 q(t)
)

(1.4)

which is a marker of an ideal memristor.

In addition to interest, this generated substantial controversy [Abr18, VM15, DVP13a].

The device was not new as RS in semiconducting films was well known even before Chua’s

1971 article [Arg68]. It was also clear that the model ignored several important effects in

the physical devices (such as volatility) which would require classifying them as memristive

systems. Additionally, scrutiny over the original definition called into question its consistency

with Landauer’s principle and the laws of electricity and magnetism [DVP13a], and whether its
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characterization as ‘fundamental’ is deserved or an artifact of Chua’s particular organization of

the circuit elements [Abr18, VM15].

In light of the fact that the other circuit elements R, L,C are not ‘ideally’ realized in a

physical device, aspects of this debate are difficult to understand. The notion of an ideal element

is not intended to be exactly realized in nature but that we use it as a productive abstraction

in modeling aspects of physical devices. In the course of this debate it was also pointed out

that memory in a conductive system (or capacitive/inductive system), leading to the response

function relationships (1.2) is a direct consequence of linear response theory [DVP13a] and

should perhaps be considered the norm rather than an exception. While some of the success of

the 2008 publication was thus undoubtably due to hype, its consequence has been the realization

that memristive behavior is quite ubiquitous and the popularization of the memristor as useful

abstraction apart from its physical realization.

We will make progressively heavier use of this abstraction, posing memristive systems

with desirable equations and assuming that we can realize them with a suitably designed physical

system. In this interest, we will review a few basic models for memristive systems that see regular

usage. Having cleared my conscience with this historical aside, I will now follow the modern

convention of bungling the names, using memristor and memristive system interchangably, but

reserve the term ‘ideal memristor’ for one in which the resistance is purely a function of the

charge/flux.

A unique memristor arises from the imaginary component of the superconducting re-

sponse function of a Josephson junction. This can be isolated with a properly chosen SQUID

junction [PDV14a]. While the dynamics of single physical memristors is somewhat tangential

to the primary thread of this thesis, investigations of the noise properties of this system occu-

pied a substantial portion of my time at UCSD and we have included the result of this work in

Appendix A. In this case, the dissipative component of the response function leads to a noise

correlation function that depends on the instantaneous conductance, and thus the phase of the
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junction.

1.2.1 Memristor Models

For our purposes it is more convenient to formulate things in terms of conductance. Rather

than use the unfortunate ‘memductance’, we will refer to these devices as memristors trusting that

the context will make our meaning obvious. It is sufficient to consider a time-invariant memristive

system with a scalar state variable x ∈R,

I = G(x)V

ẋ = f (x,V ).

where we may alternatively take ẋ = f (x, I) to be a function of the current rather than voltage.

There is substantial freedom in choosing the state variable, and we could in principle eliminate x

entirely by solving for x(G) and using

I = G(t)V (1.5)

Ġ = G′(x(G)) f (x(G),V ). (1.6)

The choice of conductance function is thus mostly a matter of clarity and convenience. We

will most often assume that the conductance varies between two limiting states, gon > go f f ,

interpolated by a state variable x ∈ [0,1] as,

G(x) = go f f + x(gon−go f f ). (1.7)
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If the evolution of the state variable x can be kept away from its boundary values and gon� go f f ,

then by rescaling the interval [0,1] we have the approximate form,

G(x) = ∆gx (1.8)

with x ∈ R+ and ∆g a constant. This same form, with x ∈ [0,1] is sometimes useful if the off

conductance can be cancelled with another element in the circuit.

The dynamics of the state or memory variable x are such that when current or voltage is

applied in one direction, the memristor increases its conductance and when applied in the other it

decreases its conductance. Two natural choices are

ẋ = βV w(x) or ẋ = βIw(x) (1.9)

where β is a timescale and w(x) is a windowing function such that w(x)> 0 on the interval in

which x is defined and w(x)≤ 0 outside of this interval. These correspond to voltage controlled

and current controlled memristors. The two windowing functions we will make use of are, w(x) =

rect(x− 1
2) and w(x) = x(1− x) which respectively give linear and exponential convergence to

the endpoints.

Memristors may also exhibit a threshold in their dependence on the applied voltage/current

such that they respond slowly for V <VT and rapidly past this threshold. In physical devices the

difference in timescales between these two regimes can be marked, driven by transitions in the

substrate as discussed in 1.1. This can be modelled by a piecewise linear function such as,

ẋ = w(x) ·


β2(V −VT )+β1VT V >VT

β1V VT ≥V ≥−VT

β2(V +VT )−β1VT −Vt >V

(1.10)
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with β2 > β1. This may be similarly formulated as a current controlled device and/or with

differing forward and backward thresholds.

Physical memristors also display volatility, causing them to relax to their go f f state when

not subjected to a sufficient voltage/current. This may be modeled as,

ẋ = βw(x)(V − γ) (1.11)

which will cause the memory variables to decay when subjected to a voltage V < γ, and also

introduces a threshold in the forward switching.

1.3 Collective Switching in Memristive Networks

Our eventual goal will be to utilize memristive dynamics to perform useful computations

in electric circuits. A primary feature we would like to leverage in this is their potential for

collective behavior when arranged in networks. As a first pass at understanding this phenomena,

we investigate the presence of collective switching in the simplest possible setting: a lattice

of memristors subject to a slowly ramped voltage at the boundaries, discussed in detail in

Chapter 2 [SDV17].

The memristor model we consider is the limit of (1.10) when we take β1→ 0 and β2→∞.

These limits are a consequence of the slow driving limit imposed on the voltages which renders

the individual switching time of a memristor negligible (1/β2� τVOLTAGE) and the separation

in timescales surrounding the threshold which allows for τVOLTAGE � 1/β1. In this limit the

memristors switch discretely between go f f and gon when their threshold is crossed.

Disorder is incorporated through a stochastic threshold among the memristors, drawn

from p(T ) which may be due both to some degree of randomness in the memristors themselves,

and a coarse-graining of structural disorder in the network. Within the network, the transition

of a memristor from go f f → gon diverts current from its neighbors in parallel, increasing the
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current through its neighbors in series. The increase in current can cause neighboring memristors

to transition, resulting in a series of avalanches analogous to a sandpile model. The size of

these avalanches increases as more elements have switched, leading to to a transition in which

a conducting backbone is formed, bridging the boundaries of the network. When biased in the

opposite direction, memristors switching from gon→ go f f divert current away from neighbors

in series, toward their neighbors in parallel. This can lead to a similar series of avalanches

culminating in the formation of a crack separating the lattice transverse to the direction of current

flow. The structures forme by these processes are displayed in Figure 1.1.

Figure 1.1: Examples of the ‘bolt’ and ‘crack’ formations in slowly driven memristive circuits.
As the current through the circuit is slowly increased across the top and bottom, a ‘bolt’ forms
bridging the boundaries of the circuit shown in A). When the voltage is reversed, a ‘crack’ forms,
severing the boundaries as in B).

In Chapter 2 we discuss these properties in detail, showing that when gon/go f f is small

the memristors switch independently, resulting in a percolation process bridging the lattice. For

sufficiently large gon/go f f avalanches appear leading to the transition like behavior described

above. This transition between a non-interacting percolative regime and an interacting regime is

described by a mean-field theory and cluster approximation in which the duality between the two

switching processes is manifest.

Features of this transition will survive to more complex examples of computing circuits.
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Figure 1.2: Each port of an SOLG is dressed with a dynamic correction module, consisting of a
number of memristors, resistors, capacitors and voltage/current generators. These are configured
to inject or draw current from their ports in order to impose a logical constraint amongst their
voltages). [Reproduced from [TDV17].]

Specifically, in the circuit dynamics we examine in Chapters 3 and 4, we will observe a similar set

of avalanches leading to a transition. These will arise from a slow driving limit imposed upon the

memristive variables in the system. These avalanches however will be associated with navigating

the critical points of a cost function whose minimum encodes the solution to a computational

task.

1.4 Digital Memcomputing Machines and Satisfiability

Digital Memcomputing Machines (DMMs) [TDV15, TDV17, DT18] are a prescription

for transforming a boolean circuit (composed of AND, OR, and NOT gates for example) into an

analogous electrical circuit where each logical gate is replaced with a matching dynamical circuit

element. These elements are designed to impose the intended logical relationships between their

ports and when connected, lead the networks towards a state where all constraints are satisfied.

As such, these elements are referred to as self-organizing logic gates (SOLGs) and define a

composable framework for solving logic circuits.
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Each port of an SOLG is dressed with a dynamic correction module, consisting of a

number of memristors, resistors, capacitors and voltage/current generators as shown in Figure 1.2.

These are configured to inject or draw current from their ports in order to impose a logical

constraint amongst their voltages. In contrast to the networks considered in Chapter 2, these

devices include a mixture of active and passive elements whose interplay is essential to their

functioning as computing devices.

We can regard the equations governing the network of these elements as a dynamical

system which in order to satisfy the criteria of being a DMM must satisfy 2 properties:

1. The stable equilibrium points of the system must correspond to solutions of the boolean

circuit.

2. The equations must be point dissipative which implies that in the long time limit, they will

converge to a global attractor.

In [TDV17] a set of elements satisfying these properties was described, allowing the construction

of an arbitrary logic circuit. These properties imply that the resulting circuit should yield the

solution in the long-time limit, constituting a hardware solver for this class of combinatorial

problem. As the equations governing these networks can be efficiently integrated, the convergence

of these solvers can be be assessed through simulation and the original paper also presents

simulations on small instances of factoring and subset-sum demonstrating that these do indeed

converge to the solution of the circuit.

While intended as a hardware solver, subsequent work has shown that simulations of

DMMs can compare favorably to software solvers and thus could constitute an algorithm for the

solution of combinatorial problems [TDV17, DT18]. For example, simulations of the subset-sum

circuit examining how the convergence time of the circuit scales with instance size demonstrated

far superior scaling compared with standard algorithms. This approach, based on the simulation

of a continuous dynamical system for solving natively discrete problems occupies a somewhat
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unique niche in the algorithmic landscape. Before delving deeper into an examination of the

properties of this approach, we examine its dynamics in a more general setting.

In computer science, the solution of a logical circuit is known as CircuitSAT [MM11],

and is a particular form of the boolean satisfiability problem, or SAT which asks whether a given

boolean formula admits an assignment that will evaluate to true. Any boolean formula may be

cast in a standard form known as conjunctive normal form (CNF) which consists of a conjunction

(ANDs denoted by ∧) of a collection of disjunctions (ORs denoted by ∨ also known as a clause)

between literals (a variable x or its negation x) [GJ90]. As an example, the formula

(x1∨ x2)∧ (x1∨ x2)∧ (x1∨ x2∨ x3)∧ (x1∨ x2∨ x3)∧ (x1∨ x3) (1.12)

is satisfied (uniquely) by the assignment x1 = 0, x2 = 1, x3 = 1.

If the above formula is further constrained by additional clauses, it may become unsatisfi-

able (sometimes called UNSAT). In this case we can still ask for the maximum number of clauses

that can be simultaneously satisfied, known as MAXSAT. This optimization form of satisfiability

includes the original problem as a subset and is widely utilized, with yearly competitions between

solvers and applications in chip design and scheduling, among others. In Chapter 3 we carry out

an extensive benchmarking study, comparing DMMs performance on the most recent MAXSAT

competition problems and on a class of random SAT problems we construct and extend to very

large sizes. DMMs display remarkable efficacy in solving these problems, comparing favorably

on competition problems and displaying far superior scaling on our constructed instances. For

the class of instances presented in [TCSD18, SCTD], DMMs are able to converge to a solution in

time that scales linearly with instance size, while two competition solvers we test require time that

scales exponentially. Additionally, we demonstrate that this scaling advantage holds for instance

sizes reaching to millions variables and consumes memory that scales linearly.
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1.5 Collective Behavior in DMMs

A careful examination of the dynamics of a DMM reveals a form of collective behavior

similar to that seen in the memristive networks discussed in Section 1.3 and Chapter 2 [SDV17].

The evolution of voltages in the circuit proceeds through a series of rapid transitions, with voltages

switching between limiting values, separated by periods of relative quiescence. These transitions

are interpretable as avalanches in much the same way, however in this case the separation of

timescales emerges from the slow motion of memristive variables and a rapid voltage timescale,

the reverse of the systems described in [SDV17]. Within these avalanches, correlations calculated

from simulations demonstrate a form of long-range order: the correlation functions describing

an avalanche can take finite values all the way to the edge of the system where they decay at

the fixed boundary conditions [DVTO17]. This indicates that the transitions described by these

avalanches can flip an extensive numbers of variables. While these simulations are only carried

out for small systems, analytical arguments also support this. Interpreting avalanches as motion

between critical points on a manifold, field theoretic arguments argue that correlations along these

trajectories should display this same flat structure [DVTO17].

The potential utility of collective behavior may be illustrated by considering the example

of solvers based on local search. This class generates an initial state and makes iterative improve-

ments upon it in order to locate the solution. An isolated unsatisfied constraint can sometimes

not be satisfied without affecting the states of its neighbors, forming a local minimum in which

several variables must be flipped at once in order to escape. For example, in an XORSAT problem

(boolean satisfiability with clauses formed by exclusive ORs) flipping a single variable alters the

satisfaction of all clauses that include the variable. This sets a minimum step size n that a solver

must be able to take in order to escape and continue its search.

The presence of collective transitions capable of escaping these minima thus could aid

in the search for a solution if the method of pruning the search through possible transitions is
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performed efficiently and the transitions are actually productive in locating the solution. The

deterministic dynamics of DMMs imply that the structure of transitions is determined by past

dynamics (through stored memory) and the critical points of the underlying manifold. As a first

step towards answering these questions, we attempt to simplify the system as much as possible.

In doing so, we show that collective behavior in the dynamics is a useful heuristic in constructing

local solvers.

1.6 Nonlinearity and Memory

DMMs were originally posed as hardware solvers and the constraints imposed by this

necessarily complicated their implementation. Observing the structure of an SOLG in Fig-

ure 1.2 [TDV17] more closely, each port consists of a number of memristors, resistors and

capacitors attached to voltage generators. These generators are local functions of the other

voltages in the SOLG which act to impose the logical constraint. The memristors are tasked with

increasing the influence of a particular generator when the constraint it is imposing is not satisfied.

Generally, this is accomplished by increasing its conductance when the constraint is unsatisfied

and allowing more current to flow through the port.

The primary feature that memristors add to an electrical circuit is a form of integral

memory in the dynamical equations. Considering the circuit shown in Fig. 1.3 where vM is a

voltage generator and v is the voltage across the capacitor, Kirchoff’s laws give an equation for v̇

of the form,

Cv̇ = G(x)(vM− v) (1.13)

ẋ = f (x,vM− v). (1.14)

These may be recognized an an integral memory term in the dynamical equations by
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formally eliminating the conductance,

Cv̇ =
(∫ t

0
dt

dG
dx

f (x,vM− v)+G0

)
(vM− v) (1.15)

which demonstrates that memristors are also a way of adding nonlinearity to the dynamics of the

circuit through memory. The precise form of the nonlinearity will depend on the dependence

of the conductance on the internal state variables and their evolution with the voltage. If the

memristive timescale is sufficiently slow we can interpret the dynamics as overdamped movement

in a quadratic potential with a minimum at vM and with a rate controlled by the conductance.

Figure 1.3: A simple memristor based dynamical system. The voltage generator vM influ-
ences the value voltage value at the node v through the memristor. The capacitor-memristor
combination introduces a timescale

To accommodate the form of available memristors, the port of an SOLG may contain

up to four memristor-voltage generator pairs, each contributing a term of the form (1.15) along

with an additional resistor-voltage generator pair designed to divert current when the constraint

is satisfied. In order to arrive at a simplified system we amalgamate the contributions of these

separate components into a single term with the basic structure borrowed from (1.15),

v̇ = ∆gx∆VM +gR∆VR (1.16)

ẋ = f (x,∆Vx). (1.17)

In this, ∆g and gR are constants, x is the memristive state variable and ∆VM, ∆VR and ∆Vx are

functions of the local voltages involved in the constraint, i.e. the voltages at the other ports of

the SOLG. Our goal will be to choose functions and constants such that the voltages relax to
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a state which fulfills some portion of the constraints on the system, and then the motion of the

memristive variables catalyze transitions towards a state where more are satisfied, in a way that

manifests long-range behavior. While for a single memristor f usually displays a monotonic

dependence on ∆VM (i.e. memristors are often polar), our ’coarse-graining’ of the memristive

variables means that f may display a nonlinear dependence on the voltages in the system.

1.7 Hardware Solvers and Spin-Glasses

In order to determine the functions discussed above, we must first decide on a native

problem form. In the interest of dynamical simplicity we consider the problem of finding the

ground state of an Ising spin glass. This problem is attractive as its constraints only depend on

two variables and they are homogeneous throughout the system. Compared to circuitSAT, the

complexity of the resulting system is greatly reduced.

The energy of an Ising spin glass is a quadratic form on a set of discrete spin variables

si ∈ {−1,1}, usually written [FH93, MM09],

E({si}) =−∑
〈i j〉

Ji jsis j. (1.18)

The sum runs over the edges of a graph which in physical applications is usually taken to be

a regular lattice. Spin-glasses are models of systems with quenched disorder such that Ji j are

random variables described by a distribution. The thermal properties are closely tied to the

particular distribution chosen but for many reasonable choices the resulting energy landscape

contains exponentially many local minima [FH93, MM09]. The complex structure of the energy

landscape obscures a search for the global minimum and to interesting phenomena like ergodicity

breaking and slow dynamics which makes them useful models for physical glasses.

While centrally a physics problem, there are close correlates in computer science. The

problem of finding the ground state is equivalent to finding the MAXCUT of a graph with edge
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weights given by {−Ji j}. This consists of partitioning the nodes/spins into two sets such that

edges connecting between the sets have maximum total weight [MM11]. Similarly, interaction

terms in the spin glass can be mapped to an equivalent weighted 2-SAT or 2-XORSAT expression

which is described in Chapter 4. The resulting weighted MAXSAT problems are equivalent to

finding the ground state energy of the spin-glass. This equivalence has been exploited to apply

statistical methods developed to study spin-glasses to understanding the average case hardness of

a variety of computational problems [MPZ02, BHL+02, RTWZ01, MM09].

Spin-glasses are also receiving modern attention because they are the native instance

format for the quantum annealers manufactured by D-Wave [DBI+16, HJA+15, KHZ+15]. These

devices utilize a network of physical qubits whose relaxation at low temperature will tend to yield

the ground-state [SMTC02]. Efforts to detect a ‘quantum speedup’ in these devices has produced

a lively literature examining features of their dynamics, producing benchmark instances, and

comparing their performance to various traditional algorithms. Collective effects have also been

implicated in the dynamics of D-Wave annealers in the form of collective quantum tunneling,

where groups of qubits can transition their states together as they tunnel through a barrier in

the energy landscape [DBI+16]. As dynamical systems are a little explored niche in classical

optimization, this opens the possibility of directly comparing classical hardware solvers to their

quantum analogues. The instances we utilize in Chapter 4 are derived from benchmarking studies

on D-Wave devices.

1.8 Constraints and Rigidity

A natural approach to defining the functions ∆VM,∆VR, and f (x,∆Vx) is to define a

continuous energy function and have the voltages follow the gradients with their contributions

weighted by a memristive variable. For example, defining the linearized sigmoid function from
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−1 to 1,

σ(x) =


1 1 < x

x −1 < x < 1

−1 x <−1

(1.19)

we can form the energy on the continuous variables vi ∈R,

E({vi},{xi j}) =−∑
〈i j〉

Ji jσ(vi)σ(v j). (1.20)

Having the voltages follow the negative gradient and memristors increase their influence when a

constraint is unsatisfied gives,

v̇i =−
∂E
∂vi

= ∑
j

Ji jxi jσ(v j)σ
′(vi) (1.21)

ẋi j = xi j(1− xi j)
(
−Ji jσ(vi)σ(v j)

)
. (1.22)

However, the above system fails predictably. Once a constraint is satisfied, its memristive variable

xi j decays to 0, removing its influence on the dynamics and the system is then free to violate it,

leading to oscillations.

This system also bears a close resemblance to Lagrange programming neural networks

(LPNNs) [ZC92, NY96] and the dynamical systems proposed in [ERT11]. In these works a

Lagrangian, L for a constraint satisfaction problem on variables {si} is formed from a set of

positive constraint functions Cm({si})≥ 0 with Cm({si}) = 0 holding only when the constraint is

satisfied, and a set of weights for each constraint xm, L = ∑m xmCm({si}). In the case of LPNNs,
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the equations of motion of the system are then derived as

ṡi =−∇siL =−∑
m

xm∇siCm, (1.23)

ẋm = ∇xmL =Cm. (1.24)

By construction, with xm(0) = 1 we have xm(t) ∈ [1,∞) which in our formulation (Eqs. (4.2)

and (4.3)) would correspond to an unbounded, voltage-controlled set of memristors with equal

weight. In [ERT11] the equations for the multipliers are altered to ẋm = xmCm, which has the effect

of making the system hyperbolic, and is analogous to choosing unbounded current-controlled

memristors in Eq. (4.3). When applied to MAXSAT problems, the presence of unsatisfied clauses

leads to an eventual imbalance in the clause weights xm, leading to oscillations similar to those

discussed previously. In addition, the presence of unbounded variables complicates a hardware

implementation and we would like a way to naturally embed the algorithm.

These considerations suggest amending the system in (1.21) with terms that maintain some

contribution from the constraint when xi j→ 0. A possible form for this term is suggested by the

desire for collective motion of the spins. An isolated unsatisfied constraint cannot become satisfied

without affecting the states of neighboring constraints. However, if multiple variables change

states together, it is possible to simultaneously satisfy distant constraints while not affecting the

state of their intermediaries. As an example, consider a ferromagnetic spin-glass with Ji j = 1 but

obeying,

v̇ =
(
σ(v j)−σ(vi)

)
σ
′(vi). (1.25)

If we begin the system in the state vi =−1, then subjecting a single spin to an external field h > 0

will draw the entire system to the state vi = 1. This is analogous to rigidity in a physical system

and the dynamics in (1.25) may be interpreted as being derived from an elastic potential energy

that enforces this.
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This suggests a system obeying,

v̇i = ∑
j

[
2Ji jxi jσ(v j)+(1− xi j)|Ji j|

(
σv j− sgn(Ji j)σ(vi)

)]
σ
′(vi) (1.26)

ẋi j = βxi j(1− xi j)
(
−Ji jσ(vi)σ(v j)

)
. (1.27)

where the factor of 2 has been added to control the relative contributions of the two terms. The

dynamics we hope to achieve will see satisfied constraints relax to xi j→ 0 and then transition

together.

In Chapter 4 we examine the dynamics of this model in detail, showing that in the limit of

slow memristive dynamics it proceeds through a series of avalanches. These form droplets which

steadily increase in size, closely mimicking the behavior described in chapter 2. These lead to a

transition-like event in which an avalanche can span the entire lattice and we give evidence that

this event is capable of flipping an extensive number of spins. Most importantly, the inclusion of

these ‘rigidity terms’ greatly enhances the ability of the system to locate the ground state.

Figure 1.4: A sample of detected avalanches. For the system in (1.26) Over the course of the
simulation, the average size of the avalanches grows until it reaches an extensive set of spins
which can span the entire lattice. [Reproduced from [STD].]

This system serves as a simple model that allows us to investigate the emergence and

effects of long-range order in computation. On large instances however, it can show quasi-periodic

or possibly chaotic behavior that affects its ability to locate the solution. The extent to which these

behaviors can be eliminated is the subject of current work. We also employ a full implementation

of a DMM solver [TDV17] provided by Memcomputing, Inc. in a benchmarking study on a

class of instances based on spin-glasses and employed in the quantum annealing community. We
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examine the scaling exhibited by this approach in comparison to other local annealing approaches

including simulated annealing and parallel tempering and a mixed integer programming solver.

On this instance class all other solvers tested display exponential scaling in the time to solution

while the memcomputing solver scales polynomially.
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Chapter 2

Hors D’Oeuvre: Collective Switching in

Memristive Networks

The following chapter was published as,

Forrest C. Sheldon and Massimiliano Di Ventra. Conducting-insulating transition in adiabatic

memristive networks. Phys. Rev. E, 95:012305, Jan 2017. c©1997 American Physical Society

Abstract

The development of neuromorphic systems based on memristive elements - resistors with

memory - requires a fundamental understanding of their collective dynamics when organized

in networks. Here, we study an experimentally inspired model of two-dimensional disordered

memristive networks subject to a slowly ramped voltage and show that they undergo a discontin-

uous transition in the conductivity for sufficiently high values of memory, as quantified by the

memristive ON/OFF ratio. We investigate the consequences of this transition for the memristive

current-voltage characteristics both through simulation and theory, and demonstrate the role of

current-voltage duality in relating forward and reverse switching processes. Our work sheds

considerable light on the statistical properties of memristive networks that are presently studied
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both for unconventional computing and as models of neural networks.

2.1 Introduction

Although systems that display resistive switching - also referred to as “memristive ele-

ments” (resistors with memory) - have been actively studied since the 1960s, they have recently

received renewed interest in view of their possible use in computation, both as logic and memory

components [PD11]. Of particular note is the tendency of some to display a history-dependent

decay constant, allowing a transition between a volatile and non-volatile regime of memory

[HOT+10, OHT+11]. The resulting dynamics bear a close resemblance to the short-term and

long-term potentiation observed in biological synapses which are thought to be of central im-

portance to learning and plasticity in the brain [Chi10a]. This resemblance has inspired the

realization of experimental systems that seek to combine the memory features of biological

synapses with the structural complexity of neural tissue [ASMO+12, SA14]. In fact, research

is being performed to assess the advantage of using memristive elements in non-von Neumann

architectures and is already showing that their networks dynamically organize into the solutions

of complex computational problems, thereby performing the computation directly in the memory

and avoiding the separation between logic and memory units [VP13, PD13, TRBD15, TD15].

All of these studies however, still lack a fundamental understanding of the role of time non-

locality in the dynamics of memristive networks and their statistical properties. For instance, high

density (∼ 109 elements/cm2) disordered networks of memristive Ag/Ag2S/Ag atomic switches

have been fabricated showing collective switching behavior between a low-resistance (Gon)

and high-resistance (Go f f ) state, and possible critical states potentially useful in neuromorphic

computation [Lan90a, Chi10a, SA12]. Some theoretical work has attempted to reproduce several

features observed in the experiments by performing simulations in relatively small networks but

an understanding of the dynamics of such systems is far from clear [NS11, SAS+13]. Theoretical
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investigations of one-dimensional memristive networks have shown complex temporal dynamics

and scale-invariant properties, but have not clarified whether further collective behavior might

arise in higher dimensions [DVP13a].

To fill this gap, we study the statistical properties of two-dimensional disordered memris-

tive networks subject to a slowly ramped voltage. In this ‘adiabatic’ regime, where the applied

voltage/current varies much more slowly than the memristance change of individual elements,

there is a strong analogy between the behavior of the network and an equilibrium thermal sys-

tem. Our aim is to understand the dynamics of both the disordered devices being assembled

in experiment, and the ordered (but strongly heterogeneous) networks being proposed as novel

computational architectures. To this end, we formulate a general model for networks in this

limit which is similar to those employed to describe metal-insulator transitions and electrical

failure. We thus posit that the transitions identified in these fields should also occur in memristive

networks and summarize work done to describe the dynamics in these fields. Through simulations

we obtain current-voltage (I-V) curves for various values of the Gon/Go f f ratio and discuss the

features implied by the adiabatic limit. The I-V curves found show a duality between forward

and reverse switching processes that has also been observed in several experimental systems

[IYAT08, SSFM15] and clarifies the role of boundary conditions in the network. These features

are captured by a mean-field theory and cluster approximation which clarify the internal dynamics

and account for the features of the I-V curves. These results shed considerable light on the

statistical and collective properties of networks with memristive elements that are being currently

explored for neuromorphic applications.

2.2 Model

As inspiration and as a test bed for disordered memristive networks we consider the

Ag/Ag2S/Ag gapless atomic switches experimentally fabricated in [ASMO+12, SA14, SSA+14].
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Figure 2.1: The network conductance for several values of Gon are plotted against the applied
voltage for both (a) Go f f → Gon and (b) Gon→ Go f f processes. The network conductance G
has been scaled to vary from 0 to 1 and the range of the applied voltage shortened to focus on
the point of transition. The insets show a typical network biased by a voltage V+ just following
the transition where the formation of a (a) conducting backbone and (b) crack may be observed.

The model we consider though, is quite general and can be applied to a variety of other materials

and systems [PD11].

A bipolar memristor subject to an external bias will transition to a conductive state (with

conductance Gon) in one direction and to an insulating state (with conductance Go f f ) when biased

in the other. This change is generally induced by the rearrangement of ions in the applied electric

field, as in the case of silver sulfide between two silver electrodes, where drifting ions form a

filament structure eventually bridging the insulator [XBW+10].

These switching dynamics are typically subject to a threshold in the applied bias, below

which the conductance will not vary, or will vary only slowly. When considering the dynamics

of a single memristor, such thresholds may be described interchangeably in the applied voltage

or current. However when embedded in a network, the two can lead to quite different dynamics.

When the conductivity of an element within a network is increased, its current increases while

its voltage decreases, and vice versa when its conductivity is decreased. For the electric field

driven migration of vacancies or ions [Di 08], we expect that in order to simulate the behavior

of actual devices, all elements must be subject to a current rather than voltage threshold. The

role of temperature has been emphasized by several studies, especially those focusing on the

dissolution of the filament. Such an effect may be taken into account by the explicit inclusion

27



of a temperature in the model, or by taking a threshold in the power dissipated in an element

Pt = GI2
t which gives a current threshold that changes with the device conductance It =

√
Pt
G .

In the discretely switching model we consider here, the two choices are identical, but when the

full spectrum of memristances is allowed for, as in non-adiabatic regimes, such effects may be

important.

The presence of a current threshold has immediate consequences on the dynamics of

a network. As the threshold of a device in the insulating state is crossed and its conductivity

increases, more current is diverted through the element from neighboring bonds making the

transition from Go f f to Gon unstable. On the timescale of the slowly varying applied voltage,

elements of the network will appear to switch discretely between the insulating and conducting

state. Therefore, we can effectively model the elements as switching discretely from a conductance

Go f f to a conductance Gon, when a threshold current, It > 0, is crossed

G(I) = Go f f +(Gon−Go f f )θ(I− It) , (2.1)

where I is the current through the device, and θ(·) is the Heaviside function of the argument.

Similar considerations would lead us to conclude that the reverse direction is ‘stable’,

as passing an element’s threshold leads to a decrease in the conductance and a corresponding

decrease in the current, bringing it back below the threshold. The devices would thus explore the

full continuum of memristance between Gon and Go f f leading to a gradual RESET-like behavior

on the network level. However, we find evidence both in experimental data and simulations that

this effect does not occur or is not significant in describing the behavior of the network for a wide

range of parameters. For instance, in the atomic switch networks studied by Stieg et al. [SA12]

sharp fluctuations in the network conductivity are observed in both directions, thought to be due

to the switching of individual elements (see Fig. 3c in Ref. [SA12]). Such sharp behavior may be

accounted for by assuming a nonlinear dependence of the conductance on the filament length due
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to, for example, the transition from tunneling to ballistic conductance.

Disorder at the network level can similarly render the continuum of memristive values

irrelevant to the network dynamics. If the current diverted from a switching element does not

cross another’s threshold, the increasing current from the boundaries will continue to transition

that element to Go f f . As the conductance and external voltage range in which this occurs is very

small relative to the network scale, this is the same as if that element had switched discretely from

Gon to Go f f . Simulations of networks in which the full range of memristance was accessible

have not shown a significant change in dynamics, and therefore we take the discretely switching

model to be appropriate for a wide range of networks. We thus make a similar assumption for

the reverse direction, obtaining the equations for an element by exchanging Gon with Go f f , and I

with It in Eq. (2.1) for a different threshold It < 0.

Memristive elements are also generally polar. The Ag/Ag2S/Ag atomic switches formed

in atomic switch networks [ASMO+12, SA14] are gapless type devices (see Hasegawa et al.

[HTTA12] for a review of types of atomic switches and their switching processes). Their symmet-

ric metallic configuration (typically gapless switches have two differing metallic electrodes, e.g.,

Ag/Ag2S/Pt) suggests that at the point of formation within the network, no preferred direction

within the switch has been selected. Polarity is instead instilled through a ‘formation’ step

in which a bias is applied to the network causing filament structures to form in the switches

throughout. After a joule-heating assisted dissolution of the thinnest part of the filament, the

junctions display bipolar resistive switching. The polarity of the internal switches is thus deter-

mined by the direction of current propagation from the boundaries. That this must be true in

the experimental systems is evident from the fact that the network undergoes resistive switching

as a whole. Without a majority of switching polarities coinciding with the direction of currents

from the boundaries, the network would switch between identical states with half the switches

in the Go f f state and half in Gon and not display the pinched hysteresis observed in experiment.

We thus assign the polarity of elements in the network to coincide with the direction of currents
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flowing from the boundaries.

We now turn to a network of these elements. We consider an architecture as depicted in

the insets of Fig. 2.1, where the upper and lower boundaries of the network are held to some

constant voltage or total current. The diamond lattice is chosen such that all elements participate

equally in conduction and networks are periodic in the direction transverse to the current flow to

mitigate finite size effects.

Including disorder is most directly done through random pruning of the lattice, however

the networks produced are subject to strong finite size effects, requiring the simulation of

many instances of large networks to obtain regular results. The random pruning of the lattice

imposes a current distribution over the elements that is simply scaled by the external boundary

conditions. This distribution determines the order in which elements cross their thresholds and

is thus equivalent, at a mean-field level, to assuming a distribution in the thresholds of a fully

occupied network. It is also noted in [KBR+88] that this is obtained upon coarse-graining a

randomly pruned lattice, and thus may be a better approximation to the thermodynamic limit than

simulations on structurally disordered lattices. The use of a disorder distribution also affords us

more direct control over the relationship between the disorder and the dynamics, simplifying the

search over a large parameter space of possible structural disorders.

It is worth noting that this type of model has been arrived at in several contexts involving

the interplay between conduction and disorder in 2D systems. For instance, a similar model

was first applied to the study of the random fuse model for electrical failure (Gon → Go f f =

0) [KBR+88]. A uniform distribution of thresholds on the interval [1−w,1+w] was considered

and behavior examined as a function of network size L and w. Brittle and ductile regimes of

behavior were identified, both of which culminated in the formation of a lateral ‘crack’ severing

the network. In the brittle, or narrow disorder regime, this occurred as an avalanche upon the

first bond failing, while for larger w there was a regime of diffuse failure, causing the networks

to progressively deform before the formation of a crack. In the thermodynamic limit, only the
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brittle regime survived, except for the case w→ 1 when the disorder distribution extended to

0. More recently, in metal-insulator transitions (MIT) [SPZS11] the Go f f → Gon transition was

examined for its Gon/Go f f dependence, finding that a transition occurs in which the network

conductivity exhibits a discontinuous jump, corresponding to the formation of a ’bolt’. Similarly,

a conducting backbone has been found to form along the direction of current flow in the case of

MIT and dielectric breakdown [SPZS11] for sufficiently large values of the Gon/Go f f ratio.

Interest in the dynamics of individual resistive switching (RS) devices has also led to

new models such as the Random Circuit Breaker (RCB) model [CLK+08] for unipolar devices,

capable of reproducing the conductivity dynamics of a unipolar device in the SET and RESET

operations. In the RCB model, elements of a lattice transition to a conductive state when a voltage

threshold is crossed, and back to an insulating state when another threshold is crossed in the same

direction.

In view of these previous results, we thus expect the transitions observed in MIT and

electrical failure studies to occur in memristive networks in the adiabatic limit. The Go f f → Gon

transition will correspond to the formation of a conductive backbone or ‘bolt’ through the network

along the direction of current flow and the Gon→Go f f transition will correspond to the formation

of a ‘crack’ transverse to the direction of current flow severing the network. In both directions we

anticipate a trivial brittle, or narrow disorder regime in which the transition occurs upon the first

element switching and all elements transition within a narrow range of the applied voltage, as

would be the case if all elements had the same threshold. For broad disorder we expect a ductile

regime in which there will be diffuse switching leading up to the transition and activity over a

broad range of applied voltages. While the ductile regime does not survive in the thermodynamic

limit for electrical failure, the modest size of memristive networks experimentally realized [PD11]

suggests the ductile regime is still significant in their dynamics. Of particular interest to us is

the influence of such transitions on the I-V curves of the network. From the perspective of the

experimenter such effects may be desirable, such as providing strong sensitivity across a small
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voltage range or signaling the solution of a computational problem, or undesirable, by reducing

the number of internal states accessible to the network.

Investigations of the behavior of memristive networks have been limited to date. In [NS11],

the full time integration of a memristive network was undertaken for networks of moderate size.

Elements did not include a threshold in their dynamics and the networks were investigated for

their dependence on the fraction of memristive to ohmic conductors p, and their AC response. It

was found that for poor ohmic conductors (G = Go f f ) the networks exhibited pinched hysteresis

curves only when p > pc = 0.5, the percolation threshold. For good ohmic conductors (G = Gon),

a strongly memristive phase was observed for p > pc in which the networks switched abruptly,

and for p < pc a weakly memristive phase was observed, similar to that for poor ohmic conductors

and p > pc.

Modeling performed by [SAS+13] of the “atomic switch networks” simulated small

networks including volatility and noise in their memristor model, and showed an opening of the

I-V curves as the noise term was reduced and 1/ f γ (0 ≤ γ ≤ 2) scaling of the power spectral

density for the small networks simulated (L≈ 10). While such studies reproduce phenomena seen

in experiment, little work has been done to analyze the behavior of these models and understand

how memristors in networks interact. Here, we instead focus on building an understanding of

memristive networks in the adiabatic regime, where analogies with thermodynamic systems are

strongest. By moderating the strength of interactions through the Gon/Go f f ratio, we examine

the transition that occurs in each direction and its effects on the I-V curves of the network.

The features of this transition and the resulting hysteresis curves are captured by a cluster

approximation that well approximates the behavior of the network about the point of transition.
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Figure 2.2: Simulated hysteresis curves of memristive networks for Gon = (a) 4, (b) 100, and
(c) 1000. The discrete jump in conductance becomes evident in the I-V curves for large values
of Gon The asymmetry of the curves is the result of element thresholds depending on the current,
and thus the transition occurring at a factor of 1/Gon lower voltage than the corresponding
forward transition. The insets show analytically reached I-V curves which demonstrate similar
asymmetry and the emergence of a jump in the current. The reverse branch has been rescaled
and plotted in the second row for Gon = (d) 4, (e) 100, and (f) 1000. For large Gon, the transition
appears as a noisy area near to the y-axis. Here the jumps in conductivity at a fixed voltage give
rise to sharp decreases in the current that are opposed by the subsequent increase in voltage.
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2.3 Simulations

Simulations were carried out for a diamond lattice at a variety of sizes, Gon/Go f f ratios,

and threshold distributions p(t). The network dimensions were chosen such that the conductivity

of the network varied from Go f f to Gon. Each element was assigned a current threshold It from

Uniform(0,1) in each direction, beyond which they transition from Go f f → Gon, or vice versa.

Network dimensions were chosen so that the total network conductance varied between Go f f and

Gon (Nx = Ny = 128). The initial voltage is set to the value required to cross the lowest threshold

in the network. Once that element has switched, voltages and currents are recalculated throughout

the network with the external voltage held fixed, and all other elements whose currents exceed

their thresholds are switched. This is repeated until no currents exceed the thresholds of their

elements, at which point the voltage is raised until another threshold is crossed and this process

repeated. The forward and reverse protocols are identical aside from the initial state and switching

direction of the elements.

In Fig. 2.1 we show the network conductances as a function of applied voltage for

various values of Gon (setting Go f f = 1), in both forward Go f f →Gon and backward Gon→Go f f

transitions, and for threshold distribution p(t) = Uniform(0,1). The displayed networks have

a linear size of Nx/y = 128 memristors which we found large enough to achieve regular results

over multiple realizations of the disorder. Network conductances have been scaled to lie on the

interval [0,1]. We note that for small values of Gon in both directions, the conductance is a smooth

function of the voltage. As Gon is increased, a discontinuity forms in the slope which sharpens,

appearing almost continuous until a discontinuous jump appears for large Gon analogous to a

first-order phase transition. Similar behavior was seen for a variety of other distributions of

sufficient breadth (not shown) with the point of transition, however, being distribution dependent.

In the insulating transition, we have scaled the voltage by Gon such that the current densities of

all networks are initially equal, bringing the transitions to the same scale in both polarities. While
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Figure 2.3: A demonstration of duality in forward and backward switching processes. The top
row shows hysteresis curves switching from Gon = (a) 4, (b) 100, and (c) 1000 to Go f f = 1
in a current controlled network. For a current-controlled network switching from Gon→ Go f f

the transition gives a discrete jump, as in the voltage-controlled Go f f → Gon case. After the
mapping in Eqn. (2.2), the reverse branch of the hysteresis curves (dashed) have been plotted
over the forward branch for Gon = (d) 4, (e) 100, and (f) 1000 demonstrating the duality between
the two processes. The insets show analytical IV curves resulting from a cluster approximation,
showing identical behavior to the voltage-controlled forward switching case.

the dependence on Gon/Go f f in the forward direction has been shown in MIT [SPZS11], we are

not aware of a similar demonstration in the reverse direction, possibly as most work has focused

on electrical breakdown in fuse networks in which Go f f = 0.

The insets in Fig. 2.1 each show the configuration of a network just following a transition.

In the forward transition (a), this corresponds to the emergence of a conducting backbone spanning

the network. Similarly, in the reverse transition (b) a crack forms separating the network transverse

to the direction of current flow.

The corresponding I-V curves are shown in Fig. 2.2. While the voltage scale depends only

on the geometry of the network, the current scale depends on Gon/Go f f and has been rescaled
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so that the axes coincide. The strong asymmetry of the curves is due to the use of the same

threshold distribution for Gon→ Go f f and Go f f → Gon processes. In the Gon state, an equivalent

current will be reached for a voltage which is a factor 1/Gon lower. As there is not an obvious

physical choice for how to connect the distributions for forward and reverse switching, we have

displayed the negative voltage sections of the curves separately, on their own current scales. The

discrete jump in the conductance becomes evident for sufficiently large values of Gon, but is

less apparent than in the conductivity plots due to the long tail following the transition. Past

the transition, voltage steps between thresholds become longer as current is diverted into the

conducting backbone. The transition thus has an inhibitory effect on the remaining bonds, opening

the hysteresis curves and spreading the memristive states over a wider voltage range. Thus, while

the transition reduces the number of accessible states, it increases the resolution between those

remaining.

In the second row of Fig. 2.2, the scaled reverse branches of the I-V curves are similar to

the positive branch, but with the roles of the current and voltage exchanged. This suggests the

following mapping of the reverse branch to the forward branch,

V →
INy

NxGon
, I→

V Go f f Nx

Ny
, (2.2)

where Nx and Ny are the lattice dimensions. In the region about the transition however, the jump

of the forward branch appears as a fluctuating region in the reverse branch. Here, avalanches

of transitioning elements sharply reduce the current, which is then opposed by a subsequent

increase of the externally applied voltage. If we instead run the reverse branch with current-

controlled boundary conditions, this fluctuating region becomes a discrete jump as seen in the

first row of Figure 2.3. In the second row, upon the mapping (2.2), the curves align nearly exactly.

This correspondence between the two processes is just the familiar I-V duality of electrical

circuit theory [Iye85]: the diamond lattice is dual to itself and taking G→ 1
G in all links takes a
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voltage-controlled insulator-to-metal transition to a current-controlled electrical failure process.

In the context of memristor networks, this indicates that the voltage-controlled I-V curves

are dual to the current-controlled I-V curves upon exchanging the roles of voltage and current

and the direction of the switching process. Running the model in the current controlled setting

thus gives nearly identical results, but exchanges the fluctuating region in the reverse direction for

the discrete jump in the forward direction.

It is important to note that this connection between the forward and reversed hysteresis

loops has been observed experimentally in individual memristive systems [IYAT08, SSFM15]

as well. While the applicability of I-V duality to a passive linear network is expected, that it

would hold for the dynamic non-linear elements considered here was not obvious. For our model,

this occurs because in the adiabatic limit, when elements can be considered to switch discretely,

there is no difference between a voltage and current threshold, and thus nothing to break the

duality in the dynamics. Microscopically, this leads the structures that accompany the transitions

(a backbone forming along the direction of current propagation, and a crack forming transverse to

the current flow) to be dual circuits.

In the remainder of the paper, we analytically investigate our model with the aim of

understanding the major features of the simulated I-V curves, namely the existence of a transition

for sufficiently large Gon/Go f f , and the long tail following the transition leading to the I-V curves

displayed in the insets of Figs. 2.2 and 2.3. The duality between the forward and reverse switching

processes, will carry through to relate models in each direction.

2.4 Mean-Field Theory

As a first step towards an analysis of the model, we develop its mean-field theory. The

method followed is similar to that of Zapperi et al. [ZRSV99] employed to analyze random fuse

networks. In this form, the central physical quantity considered is the power dissipated by the
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network,

P = ∑
j

g jv2
j = ∑

j

i2j
g j

(2.3)

where g j is the conductance of an element in the network and v j(i j) is its voltage drop (current).

We require that the average power dissipated match the power dissipated by the network GnetV 2 =

I2

Gnet
and assume that all elements experience a mean-field voltage VMF or current IMF leading to

the equations,

GnetV 2

I2

Gnet

=


N〈g〉V 2

MF

N〈1
g〉I

2
MF .

(2.4)

The choice of the LHS is determined by the boundary conditions applied to the network but the

choice of the RHS is not constrained. An interesting form is the ‘voltage-voltage’ choice, leading

to the mean-field voltage

VMF =

√
Gnet

〈g〉
V√
N

(2.5)

which unlike other choices displays a transition in both directions. To make progress we require

the network conductance Gnet . Below the transition, where switching of elements is primarily

driven by the threshold distribution and not by the influence of nearby switched elements, the

conductivity of the network may be well approximated by an effective medium theory, giving

Gnet ≈ Ge f f ( f ) as a function only of the fraction of the devices in the ON state.

The functions 〈g〉( f ), Ge f f ( f ), and h( f ) =
√

Ge f f ( f )
〈g〉( f ) are plotted in Figure 2.4. The

function h( f ) relates the mean-field voltage felt by an individual element to the applied voltage at

the boundaries and has the form of the network conductance divided by the average conductance

of a single element. We can understand its non-monotonic as arising from competition between

switching elements increasing 〈g〉 and concentrating current away from other elements , and the

increasing conductance of the network Ge f f ( f ) pulling more current in at the boundaries. For

small f , the average conductance of an element is increasing faster than the network conductivity,

indicating that current is concentrated away from other elements more quickly than it increases
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Figure 2.4: The ratio of effective and average conductances in the network, h( f ) =
√

G( f )
〈g〉( f ) is

plotted for several values of Gon. In the inset, 〈g〉( f ) and G( f ) are plotted for Gon = 100. Note
that when the average conductance increases more quickly than the network conductance as for
small f , h( f ) is decreasing and vice versa for large f .

at the boundaries, and the mean-field voltage decreases. For larger f , the network conductance

begins to increase more quickly than the average conductance, pulling in current faster than

switching elements can concentrate it, and the mean-field voltage increases. The increasing

regime at large f allows for a phase transition to occur from Go f f → Gon, and the decreasing

portion at low f allows for the possibility of the reverse transition when the voltage is reversed.

To determine whether a transition occurs for a particular disorder distribution, we derive a

self-consistency equation, ensemble-averaging over the number of elements that have switched

for a given mean-field voltage. For the transition from Go f f to Gon, the fraction that has switched

will approach the average fraction of elements with thresholds below the mean-field voltage,

f =
∫ h( f )v

0
p(t)dt. (2.6)

Because the applied field enters multiplicatively, the dynamics given by the mean-field theory

depend only on the conductance ratio Gon/Go f f and is independent of the length scale of the

disorder, both amounting only to a rescaling of the applied local field v. The lhs and rhs of
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Figure 2.5: Graphical solution of mean field self-consistency. The lhs (blue/dark gray) and
rhs (red/light gray) of Eq. (2.6) are plotted for several values of the applied voltage. For low
values of Gon their intersection gives a solution that is a smooth function of the voltage (panel
(a) Gon = 10). A transition develops for intermediate values that can appear continuous (panel
(b) Gon = 30). For sufficiently large values of Gon, a transition occurs where the solution jumps
discontinuously (panel (c) Gon = 60). The transition voltage is highlighted in panels (b) and (c)).

Eq. (2.6) are plotted for several values of the voltage in Figure 2.5. For the chosen distribution

and Gon/Go f f ratios a transition is evident at the point

1 = p(h( f )v)h′( f )v 0≤ f ≤ 1. (2.7)

We also note that the inflection of the curves from the RHS of Eq. (2.6) shows a trend that

looks almost like a continuous transition, corresponding to the behavior seen in simulations for

intermediate values of Gon (see Figure 2.1).

An exactly analogous treatment may be undertaken for the transition from Gon→ Go f f .

We regard fR = 1− f as the fraction of devices in their Go f f state and v = V√
N

as the positive

voltage applied in the reverse direction. The effective medium conductivity may be obtained

from the substitution f → 1− fR, Ge f f ,R( fR) = Ge f f (1− fR) and similarly with the average

conductivity 〈g〉R( fR) = 〈g〉(1− fR), giving a mean field voltage VMF = hR( fR)v =
√

Ge f f ,R( fR)
〈g〉R( fR)

v.

As the mechanisms for turning ON and OFF within the individual atomic switches are not

the same, we take a possibly different probability distribution pR(t) for the reverse switching
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Figure 2.6: Mean field hysteresis curves. Solving the self consistency equations (2.6) and (2.8)
for a uniform distribution leads to the hysteresis curves above. Here they are plotted for Gon =
(a) 10, (b) 30, (c) 50. For small values of Gon/Go f f , the networks are smooth, but as the ratio is
increased a discrete jump emerges in the forward direction. A similar jump near the end of the
reverse branch is only barely discernible.

thresholds. With these definitions we obtain the self-consistency equation as before,

fR =
∫ hR( fR)v

0
pR(t)dt. (2.8)

In Fig. 2.5 this quantity has been plotted for several values of Gon and the applied voltage.

We observe a first-order phase transition similar to that observed in the Go f f → Gon branch.

However, this transition occurs for much lower values of Gon and near the limiting value of the

conductance. As we proceed from f = 1 to 0, in the vicinity of f = 0 the average conductance

〈g〉( f ) is decreasing more rapidly than the network conductance Ge f f ( f ). This leads the internal

switches to redistribute current to their neighbors faster than the decrease of the total current at

the boundary. This increases the mean-field voltage overall, and hence promotes a transition.

Solving the self-consistency equations gives the mean-field hysteresis curves plotted in

Fig. 2.6. While these curves display a qualitative similarity to simulation, several features of the

mean-field theory are lacking. As we have already noted, the choice for the form of the mean-field

theory (voltage-voltage, current-voltage, etc.) are not prescribed a priori and each choice will
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give a slightly different account of the dynamics. All of these share the feature that transitions

occur due to competition between a changing current at the boundaries and the internal sharing of

currents within the network, as summarized by the function h( f ) which is some ratio between the

network conductance and an average conductance 〈g〉, 〈1
g〉. In both directions, the transition will

eventually proceed (as Gon→ ∞) from some critical fraction fc to a fully switched network f = 1

as opposed to the finite jump and long tail seen in simulations.

Having observed the internal form of the transition in simulation, we see that in contrast to

thermal transitions, where the phase transition occurs homogenously throughout the system, the

conductivity transitions consist only of a d = 1 dimensional conducting backbone in the forward

direction and a d = D−1 dimensional crack in the reverse. In D = 2 both of these correspond

to one dimensional subsystems of the network and so the mean-field theory which considers all

elements equally cannot model it accurately, especially in the regime following the formation of

the backbone. In the following, we consider methods for modeling the formation of the backbone.

2.5 1D Models

The mean-field assumption, that all elements experience either a voltage VMF or current

IMF , is equivalent to replacing the network with a 1D parallel or series arrangement of memristors

whose boundary conditions are then matched (through an effective medium theory) to the behavior

of the original network. In fact, the quantities

〈g〉= Go f f +
n
N
(Gon−Go f f ) (2.9)

〈
1
g

〉
=

Gon +
n
N (Go f f −Gon)

GonGo f f
(2.10)

which appear in the mean-field equations (2.4) are also the conductances Gnet/N for a series

and parallel network of N memristors with n in the ON state. Having seen that the transition is
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restricted to a small subset of the network, we do not expect that including the entire network

in the backbone will capture the behavior in the vicinity of the transition (where homogeneity,

and thus the effective medium theory, fails). We first explore the opposite extreme by ignoring

the presence of the rest of the network and considering only those elements involved in the

conducting backbone or crack.

In the forward direction, the transitioning elements are a collection of memristors in series

of length Ny held at a voltage V . Such an arrangement with a fraction f in the ON state admits a

current,

I( f ) =
GonGo f f

Gon + f (Go f f −Gon)

V
N

(2.11)

and the fraction of elements in the ON state may be determined self-consistently,

f =
∫ I( f )

0
ρ(t)dt. (2.12)

The distribution ρ(t) is the distribution of thresholds in the conducting backbone which should be

related to the distribution of thresholds across the network. While an explicit calculation of ρ

is difficult, a reasonable approximation on the diamond lattice should be ρ(t) = 2p(t)(1−F(t))

where F(t) is the cumulative distribution function of the threshold distribution, such that the

current always selects the path with lower threshold. We note that this concentrates the threshold

distribution towards its lowest values but does not strongly alter the behavior of the theory. In the

interest of simplicity, we thus maintain our use of the Uniform(0,1) distribution in illustrating the

features of the following 1D and cluster models. Equation (2.12) is plotted in Fig. 2.7 for several

values of Gon in which we observe the transition first occurring at Gon = 2, and then progressing

to a jump to f = 1 for larger values.

In the reverse direction, we consider a collection of memristors in parallel of length Nx

corresponding to the crack that will eventually sever the network. As the ‘crack’ is separated

from the boundaries, the boundary conditions are instead supplied by the network. As every strip
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Figure 2.7: Graphical solution of mean field self-consistency for a memristor chain. The lhs
(blue/dark grey) and rhs (red/light gray) of Eq. (2.12) are plotted for several values of the applied
voltage for the distribution Uniform(0,1). Here they are plotted for Gon = (a) 1.5, (b) 2, (c)
10. For a collection of memristors in series, the transition is the completion of the conducting
backbone, with all elements in the Gon state.

of memristors perpendicular to the direction of current propagation will have a current GnetV

passing through them, the reverse switching process of a voltage-controlled network should be

best described by a current-controlled strip of memristors in parallel. For the moment, we again

ignore the presence of the rest of the network and consider an isolated set of elements. The

conductance of the 1D strip of memristors in parallel with a fraction fR in the Go f f state is

N(Gon + fR(Go f f −Gon)) (2.13)

which gives the current through an element in the ON state,

I( fR) =
GonGnet

Gon + fR(Go f f −Gon)

V
N
. (2.14)

fR may be similarly found self-consistently

fR =
∫ I( fR)

0
ρ(t)dt. (2.15)

The resulting mean-field theory is just the reverse of that for the forward switching process (taking
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Figure 2.8: The systems and sub-units considered in the cluster approximations. As a model
of the conducting backbone embedded in the network we consider (a) a series ‘chain’ of
memristors in parallel subject to a slowly ramped voltage V+ composed of sub-units of (b)
pairs of memristors in parallel subject to a slowly ramped current. As a model of the crack, we
consider (c) a parallel strip of memristors in series subject to a slowly ramped current consisting
of sub-units of (d) pairs of memristors in series subject to a slowly ramped voltage.

Gnet = Gon) but with a voltage scale smaller by a factor of Gon.

Here, physical considerations from the switching processes have led us to two dual

structures: a series chain of memristors transitioning from Go f f → Gon subject to a ramped

voltage as a model of the conducting backbone, and a parallel strip of memristors transitioning

from Gon→ Go f f subject to a ramped current for the crack severing the network. Each of these

demonstrates a transition in which the networks proceed from some f = fc to f = 1 at a critical

voltage or current.

2.6 Cluster Models

In order to include the influence of the conducting backbone or crack on the rest of the

network and thus the behavior of the network past the transition, we use a cluster approach similar

to the Bethe-Kikuchi approximation in equilibrium thermodynamics [Bet35, Kik51]. To this end
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we replace each memristor in the series chain with two memristors in parallel as in Figure 2.8 A

and subject the entire chain to a slowly ramped voltage. Each pair in the chain is thus subject to

a current I slowly raised from zero (See Fig. 2.8 (b)). If the threshold of each memristor, ti is

drawn independently from a distribution p(t), the probability distribution for the conductance of

the pair G‖ is,

p(2Go f f ; I) = 2
∫

∞

I/2
dt1

∫
∞

t1
dt2 p(t1)p(t2)

p(Go f f +Gon; I) = 2
∫ I/2

Go f f I
Go f f +Gon

dt1
∫

∞

t1
dt2 p(t1)p(t2)

+2
∫ Go f f I

Go f f +Gon

0
dt1

∫
∞

Go f f I
Go f f +Gon

dt2 p(t1)p(t2)

p(2Gon; I) = 2
∫ Go f f I

Go f f +Gon

0
dt2

∫ t2

0
dt1 p(t1)p(t2).

(2.16)

A long chain of such pairs in series (Fig. 2.8 (a)), each with conductance G‖,i will possess a total

conductance close to 〈
1

Gchain

〉
= N

〈
1

G‖

〉
(2.17)

and we may determine the current through the chain self-consistently as the smallest solution of

the equation
V/Nx

I
=

〈
1

G‖

〉
(2.18)

where the I dependence of 〈 1
G‖
〉 has entered through the averaging. Using again the distribution

Uniform(0,1), the solution to this equation has been plotted in the insets of Figs. 2.2 and 2.3 for

several values of Gon.

Here, we see the finite jump in conductance observed in simulations followed by the

gradual switching of the remaining memristors. This is due to the memristor in the ON state
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diverting current away from its neighbor. While a current of only I = 2 (in units of Go f fV ) is

required to switch the first of the pair, a current of I ≈ (Gon+Go f f )/Go f f is required to guarantee

the switching of the second, which for large values of Gon/Go f f is considerable.

An analogous treatment of the reversed switching process requires replacing each element

of the parallel strip of memristors with two elements in series (Fig. 2.8 (c)) subject to a slowly

ramped current. Each pair is then subject to a slowly ramped voltage V (Fig. 2.8 (d)). Again

drawing the thresholds independently from a distribution p(t), the distribution for the conductance

of the pair is

p(
Gon

2
;V ) = 2

∫
∞

GonV/2
dt1

∫
∞

t1
dt2 p(t1)p(t2)

p(
GonGo f f

Gon +Go f f
;V ) = 2

∫ GonV/2

GonGo f f V
Go f f +Gon

dt1
∫

∞

t1
dt2 p(t1)p(t2)

+2
∫ GonGo f f V

Go f f +Gon

0
dt1

∫
∞

GonGo f f V
Go f f +Gon

dt2 p(t1)p(t2)

p(
Go f f

2
;V ) = 2

∫ GonGo f f V
Go f f +Gon

0
dt2

∫ t2

0
dt1 p(t1)p(t2).

(2.19)

A strip of Ny of these, each with conductance Gseries,i, in parallel (Fig. 2.8 (c)) will have

conductance Ny〈Gseries〉. As discussed above, such a strip embedded within a network will be

subject to a current I and thus satisfy

Ny〈Gseries〉V = I, (2.20)

where the voltage across the strip is determined self-consistently as the smallest solution of the

above equation and the voltage dependence of 〈Gseries〉 has entered through the averaging over

the voltage dependent distribution above.

The two structures considered above are again dual and while the self-consistency equation
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may be solved as before, we instead note that the exchange

V →
INy

NxGon
, I→

V Go f f Nx

Ny
(2.21)

takes the above self-consistency equation, to that of the forward switching process (we consider a

square network Nx = Ny = N to avoid dimensional factors)

N〈Gseries〉V = I→ V/N
I

=

〈
1

G‖

〉
(2.22)

The reversed switching process thus maps exactly to the forward switching process upon exchang-

ing the roles of the voltage and current and scaling appropriately, as seen in the simulated I-V

curves of Figure 2.3.

2.7 Mean-Field Dynamics

Although the avalanche dynamics of mean-field models akin to the random-field Ising

model are well known [SDK+93], we include here a brief discussion in the interest of complete-

ness.

The mean-field theories considered lead to self-consistency equations of the form

f =
∫ h( f )v

0
p(t)dt (2.23)

where v is an external field and h( f ) is some function of the fraction of switched elements f .

We consider this relation to be initially satisfied and raise the voltage until the next threshold

is passed. This takes f → f + 1
N , increasing the limit of (2.23) by h′( f )v

N . The probability that n
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memristors are switched ON by this increase is given by a Poisson distribution

pn =
µn

n!
e−µ, µ = p(h( f )v)h′( f )v. (2.24)

Each of the n memristors will cause a similar increase in the mean-field voltage, and thus will give

rise to the same distribution. Therefore, by switching a single memristor gives rise to a poissonian

branching process. This may be brought into a more useful form by calculating the total number

of memristors switched in a single branching process, or the avalanche size distribution. This

leads to the Borel distribution

pS =
(µS)S−1

S!
e−µS, S = 1,2, ... (2.25)

This distribution has mean and variance,

〈S〉= 1
1−µ

, σ
2
S =

µ
(1−µ)3 . (2.26)

and therefore the mean-field dynamics give avalanches whose size is determined by the parameter

µ.

For µ< 0, raising the voltage will cause individual memristors to switch and no avalanches

will occur, corresponding to a diffuse regime. For 0 < µ < 1, the system will display avalanches

of finite size according to the Borel distribution. At µ = 1, the system reaches a critical branching

process, at which point the probability of an infinite avalanche begins to grow and the distribution

approaches the limiting form pS ∼ S−3/2.

The conductance jumps that the system experiences for avalanches in the regime 0 <

µ < 1 should be approximately G′net( f ) S
N and thus, for a particular value of the conductance,

conductance jumps in that vicinity should follow a Borel distribution. Such jump avalanche

distributions have been well studied both numerically [SPZS11] and in experiment [SRS08] for
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Figure 2.9: Avalanche sizes binned just above the transition for randomly diluted networks (p =
0.6, Gon = 100) of size Nx/y = 32,64,128 (1000 realizations) and Nx/y = 256 (100 realizations).
As the network size increases, the avalanche size distribution approaches the asymptotic form
P(s)∼ s−3/2 given by the mean-field theory, subject to a finite size cut-off.

individual memristive elements but not yet disordered systems consisting of many memristive

elements, such as those of Stieg et al. [SA14].

In order to confirm whether this scaling law would be accessible in experiments for

physically disordered lattices, we have simulated randomly diluted lattices (by removing bonds

above percolation) without threshold disorder as the effect of spatial correlations may modify the

behavior. Avalanches were binned in the region surrounding the peak in the avalanche size for

various sizes of the networks. The histograms produced are plotted in Figure 2.9. As the system

size increases, the histograms approach the form predicted by the mean-field theory, although

clearly subject to a finite-size cutoff.

2.8 Conclusions

We have presented a simple model that captures the behavior of a disordered two-

dimensional memristive network when subject to bias in the adiabatic limit. As the memristive

Gon/Go f f ratio is increased, the conductivity changes from a smooth function of the applied
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voltage to displaying a discontinuous jump as in a first-order phase transition. Internally, this

is due to the formation of a conducting backbone or crack through the network. While the I-V

curves demonstrate such a jump, the restriction of the transition to a small subset of the network

elements moderates its size to a fraction of the network conductivity. Furthermore, the current

diverted from the rest of the network extends the voltage range of the remaining memristors,

maintaining the voltage range of the network.

The Gon↔ Go f f processes are connected by IV duality that maps the hysteresis curves of

a voltage-controlled network to those of a current-controlled network in the opposite polarity. A

cluster approximation duplicates this behavior and reveals that, in order to fully transition the

network, elements of the backbone will need to carry currents a factor Gon/Go f f larger than their

neighbors. As filament-type memristive devices have both large Gon/Go f f ratios and are sensitive

to the maximum current through them, this may limit the operating voltages of computational

devices manufactured from memristors to the neighborhood of the transition. Fortunately, this

seems to be the region in which the dynamics of the networks carry the greatest promise for the

design of computational devices, as seen in maze and shortest path solvers [PD13] where the

transition may correspond to the solution of an optimization problem. We hope this work will

provide a foundation to extend the understanding of these networks to the non-adiabatic regime

in which their behavior may be substantially more complex and interesting.
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Chapter 3

Entremet: Benchmarking Memcomputing

The following chapter has been submitted for publication and is available on ArXiV as,

Forrest Sheldon, Pietro Cicotti, Fabio L. Traversa, Massimiliano Di Ventra. Stress-testing mem-

computing on hard combinatorial optimization problems. arXiv:1807.00107.

Abstract

Memcomputing is a novel paradigm of computation that utilizes dynamical elements

with memory to both store and process information on the same physical location. Its building

blocks can be fabricated in hardware with standard electronic circuits, thus offering a path to

its practical realization. In addition, since memcomputing is based on non-quantum elements,

the equations of motion describing these machines can be simulated efficiently on standard

computers. In fact, it was recently realized that memcomputing, and in particular its digital

(hence scalable) version, when simulated on a classical machine provides a significant speed-up

over state-of-the-art algorithms on a variety of non-convex problems. Here, we stress-test the

capabilities of this approach on finding approximate solutions to hard combinatorial optimization

problems. These fall into a class which is known to require exponentially growing resources in
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the worst cases, even to generate approximations. We recently showed that in a region where state

of the art algorithms demonstrate this exponential growth, simulations of digital memcomputing

machines performed using the Falcon c© simulator of MemComputing, Inc. only require time and

memory resources that scale linearly. These results are extended in a stress-test up to 64×106

variables (corresponding to about 1 billion literals), namely the largest case that we could fit on a

single node with 128 GB of DRAM. Since memcomputing can be applied to a wide variety of

optimization problems, this stress test shows the considerable advantage of non-combinatorial,

physics-inspired approaches over standard combinatorial ones.

3.1 Introduction

The increasing demand for computational power and efficiency is driving the scientific

and industrial communities to explore new and unconventional ways to compute. In this respect,

new ideas and radically different paradigms may be the key to solve or mitigate the computational

bottlenecks that affect present computing technology.

A new computing paradigm has been recently proposed called memcomputing (which

refers to computing in and with memory) [DVP13b, TDV15], with the potential to increase the

computational efficiency of the solution of hard combinatorial/optimization problems. A mem-

computer is composed of interconnected dynamical elements called memprocessors (processors

with memory) whose dynamics and interactions result in evolving the system towards the solution

of a computational problem. These components can be fabricated in hardware and thus can

offer a substantial increase in computation speed over approaches in software. However, we

have recently shown that the digital (hence scalable) subclass of memcomputers which we call

digital memcomputing machines (DMMs) can deliver substantial benefits in the solution of hard

combinatorial/optimization problems even when simulated on a standard computer. In this sense,

the equations of motion governing the DMM may be regarded as an “algorithm” for the solution
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of the computational problem.

We have applied this approach, based on simulating DMMs to a broad array of computa-

tional benchmarks and found substantial advantages. For instance, in Ref. [DT18] we have shown

that the simulation of DMMs on a classical computer solves the search version of the subset-sum

problem in polynomial time for difficult cases. In Ref. [MTD18] we have shown how to accelerate

the pre-training of restricted Boltzmann machines using simulations of DMMs, and demonstrated

their advantage over quantum-based machines (implemented in hardware), such as those manu-

factured by D-Wave [AH15], as well as state-of-the-art supervised learning [GBB11, IS15]. In

Ref. [TCSD18], we have employed simulations of DMMs and shown substantial advantages over

traditional algorithms for a wide variety of optimization problems such as Random 2 Max-SAT,

Max-Cut, the Forced Random Binary problem, and Max-Clique [GJ90]. In some cases, the

memcomputing approach obtains the solution to problems on which the winners of the 2016

Max-SAT competition failed [TCSD18]. Finally, recent work has applied memcomputing to

the solution of integer linear programming problems [TD18] and finding the ground state of the

Ising spin-glass [STD], in both cases demonstrating significant speedup over standard methods.

Collectively, these works demonstrate the widespread applicability and advantages offered by an

approached based on specialized dynamical systems.

We have also performed scalability tests on finding approximate solutions to hard con-

structed instances of the Max-SAT problem [TCSD18]. Max-SAT possesses an inapproximability

gap [Hås01], meaning that even calculating an approximate solution beyond a certain fraction of

the optimum can require resources which grow exponentially with the input size in the worst case.

We observed this exponential growth on the tested instances with some of the best solvers from

the 2016 Max-SAT competition [MAX]. Instead, our simulations done for these hard cases, and

up to a certain problem size succeed in overcoming that gap in linear time [TCSD18].

In the present paper we approach the distinct question of determining the largest size

problem which can be approached using simulations of DMMs on current hardware. This
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necessarily requires that attention be paid both to the scaling of the computation time, and to the

memory consumed by the simulation since in many applications, memory is the more relevant

constraint. We focus again on hard combinatorial optimization problems since these arise in

nearly every industrial and scientific discipline. These problems involve the minimization or

maximization of a function of many independent variables, often called the cost function, whose

value represents the quality of a given solution [CHP98, EKPC13]. In industrial settings this

may be the wiring cost of a computer chip layout, or the length of a delivery route [KGV83].

In scientific applications it may be searching for the ground state of a spin system [STD] or

proteins [KK06].

We will show here that the simulations of DMMs on hard optimization problems can

be pushed to tens of millions of variables, corresponding to about one billion literals, using a

commercial and sequential MATLAB code (the Falcon c© simulator provided by MemComputing,

Inc.) running on a single thread of an Intel Xeon E5-2680 v3 with 128 Gb DRAM shared on 24

threads. Despite the large amount of variables (corresponding to the simulation of a substantial

number of coupled ordinary differential equations), the results still scale linearly with problem

size both in time and memory used. The latter is ultimately the limiting factor for the simulations.

These results show once more the power of physics-inspired approaches to computation over

traditional algorithmic methods.

3.2 The problem

In this work, we focus on cost functions over a set of Boolean variables x1, . . . ,xN ,

xi ∈ {0,1}, into which a large number of problems may be cast.

A common formulation of these problems is given by a set of Boolean constraints where

the cost function counts the number of constraints satisfied by an assignment. This is often

expressed in conjunctive normal form (CNF) where each constraint (also called a clause) is
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expressed as the disjunction (logical OR denoted by ∨) of a set of literals (a variable xi or its

negation xi) which are then conjoined (logical AND denoted by ∧) together, e.g., in expressions

of the type:

(x1∨ x2)∧ (x1∨ x2∨ x3)∧ (x1∨ x2∨ x3)∧ (x1∨ x2∨ x3)

∧ (x1∨ x3)∧ (x2∨ x3)∧ (x1∨ x2∨ x3).

The CNF representation may be considered general in the sense that any Boolean formula may be

expressed in this form [GJ90].

The problem of determining the assignment satisfying the maximum number of clauses is

known as Max-SAT and is NP-hard, i.e. any problem in the class non-deterministic polynomial

(NP) may be reduced to it in polynomial time [GJ90]. As a result, algorithms for obtaining the

solution will, in the worst cases, require a resources that scales exponentially with the size of

the instance, thus creating severe bottlenecks in the solution of complex industrial and scientific

problems. The ubiquity and importance of this problem is exemplified by the yearly Max-SAT

competitions, where state-of-the-art solvers are tested on a variety of benchmarks to stimulate

research and innovation [MAX].

In applications where the optimal solution is required exact algorithms must be used

[GKSS08]. These complete solvers typically proceed by first obtaining bounds on the quality

of the solution and then using these bounds to prune the search tree in a backtracking search.

This systematic approach guarantees that the resulting solution will be the optimum, but typically

scales poorly and is impractical for large instances.

In these cases, heuristic or incomplete algorithms must be used [GKSS08, KSS09, Hro10].

Rather than systematically searching the solution space, these solvers generate an initial assign-

ment and then iteratively improve upon it, using a variety of strategies to boost the efficiency of

their local search. After a specified number of steps, the algorithm returns its best assignment.
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As randomness is often used to drive the search, this procedure is referred to as stochastic local

search. While they can no longer guarantee optimatility, these solvers have proven very effective

at approximating, and sometimes solving difficult Max-SAT instances. For instance, in the 2016

Max-SAT competition [MAX], incomplete solvers performed 2 orders of magnitude faster than

complete solvers on random and crafted benchmarks.

We might hope that if we seek an approximation, rather than a solution of a Max-SAT

instance, we could avoid the exponential scaling of the run-time. Unfortunately, it turns out

that even approximating the solution of many difficult optimization problems is NP-hard. More

precisely, for a maximization problem with optimum O defined as the sum of the weights of all

satisfied clauses, obtaining an assignment better than f O for the fraction f greater than some

critical fraction, fc, is an NP-hard problem [Fei98, Hås01]. For example, obtaining an assignment

for Max-E3SAT (a version of Max-SAT in which every clause has 3 literals) better than fc = 7/8

of the optimum is NP-hard, meaning that we cannot expect a polynomial algorithm to obtain

the approximation for any instance of Max-E3SAT unless NP=P. Any algorithm thus must show

exponential scaling for a threshold past fc in the worst case. In [TCSD18] we showed a region in

which some of the best algorithms based on stochastic local search show an exponential growth

with input size, but where the memcomputing approach based on deterministic dynamical systems

requires only linearly growing time to achieve the same threshold.

3.3 Digital Memcomputing Machines

The formal description of memcomputing rests on the concept of Universal Memcom-

puting Machines (UMMs) [TDV15]. UMMs are a collection of interconnected memprocessors

able to process and store information on the same physical location and satisfying specific prop-

erties as described in [TDV15, PTDV17]. In particular, they support intrinsic parallelism, i.e.,

interconnected (mem-)processors act collectively on data using their collective state to perform
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computation[TDV15, TDV17, TRBDV15]. Moreover, memprocessors are able to exploit the

information available through the topology of their connections. Indeed, specific network topolo-

gies may be designed to embed problems in a one-to-one mapping. This last property has been

named information overhead [TDV15].

Here we focus on the digital (hence scalable) subclass of UMMs which we call digital

memcomputing machines (DMMs) [TDV17, TDV15]. DMMs can be implemented in practice as

specially-designed dynamical systems whose equilibrium (fixed) points represent the approxima-

tions to the computational problem at hand, and which can be realized with standard electrical

components and those with memory.

The DMM approach to a specific Boolean problem may be summarized as follows [TDV17,

DT18]:

1. The Boolean circuit representing the problem is constructed.

2. Traditional logic gates are replaced with self-organizing logic gates (SOLGs) [TDV17]

which are circuit elements designed to interact and collectively organize into a logically-

consistent state.

3. The resulting self-organizing logic circuit (SOLC) is fed voltages along its boundary, and

allowed to evolve until it reaches equilibrium where the results of a computation may be

read out.

A detailed account of SOLGs may be found in [TDV17] (see also Ref. [DT18]). In

essence, they may be understood as dynamical components whose equilibrium points encode the

truth table of a logic gate, and which can self-organize into a consistent logical state irrespective

of the terminal to which a given truth value (a literal) is assigned. Each terminal is equipped

with a dynamic error correcting module which reads the states of its neighbors, and sets the local

current and voltage to enforce logical constraints. These elements are specially designed so that

the resulting dynamical system is point dissipative [Hal10] (in the context of functional analysis),
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Figure 3.1: Simulation time comparison between the incomplete solver DeciLS against the
Falcon c© solver of MemComputing, Inc. for the balanced and constrained delta-Max-E3SAT. A
threshold of 1.5% of unsatisfiable clauses has been set. We have then tested how long DeciLS
and our solver Falcon c© take to overcome this limit with increasing number of variables. All
calculations have been performed on a single thread of an Intel Xeon E5-2680 v3 with 128 Gb
DRAM shared on 24 threads. The local solver requires an exponentially increasing time to reach
that limit. Our memcomputing approach instead scales linearly even up to 64×106 variables
(corresponding to about 1 billion literals), which required a little over than 105 seconds on a
single thread. We could not go beyond this limit because of memory resources (see text and
Fig. 3.2).
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avoids periodic orbits [DT17] and the chaotic behavior [DVT17] that is typical of other non-linear

dynamical systems, and utilizes components with memory to allow gates to efficiently correlate

and collectively transition between states [STD, DVTO17] (see also below).

The dynamics of the system are deterministic and, since they allow for collective transi-

tions of large numbers of variables, they are also non-local in the same sense that complete combi-

natorial solvers are. Our approach therefore contrasts sharply with those based on a stochastic local

search such as simulated annealing [KGV83], and many incomplete solvers [GKSS08, KSS09].

Of particular interest is the fact that the transient dynamics of a DMM proceeds via an instantonic

phase where the machine rids itself of logical defects [DVTO17, BMTD18]. Instantons are

families of trajectories of the non-linear equations of motion of DMMs, and connect different

critical points in the phase space that have different indexes, namely different number of unstable

directions.

In mathematical terms, if

ẋ(t) = F(x(t)) (3.1)

is the equation of motion describing a DMM, with x the set of elements (e.g., voltages, currents and

internal state variables), and F the flow vector field, then instantons are deterministic trajectories

ẋcl(t,σ) = F(xcl(t,σ)); xcl(±∞,σ) = xa,b, (3.2)

that connect two arbitrary critical points of F , say xb and xa. The parameters σ are the so-called

modulii of instantons, and encode their non-locality.

Indeed, the presence of instantons creates long-range order in the system, both in time

and in space [DVTO17]. Spatial long-range order means that logic gates can correlate at arbitrary

distances from each other. Temporal long-range order implies that the system can follow different

paths to obtain the same solution. The structure of instantons manifests this long-range order in
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collective transitions of large numbers of variables which can extend across the circuit [STD].

These transitions allow the system to navigate its state space and converge to the solution of the

problem more efficiently. In fact, recent work on finding the ground state of spin-glasses [STD]

has shown that an approach explicitly incorporating long-range order into the dynamics aids

in locating the ground state in a simplified model of a DMM. In addition, since instantons are

topological objects, the solution search is robust against noise and structural disorder, a fact that

was also shown explicitly in Ref. [BMTD18].

The procedure above may be followed to construct a hardware solver for a wide variety

of combinatorial and optimization problems. However, since memcomputing machines are

made of non-quantum elements, the resulting behavior is also captured by a set of nonlinear

ordinary differential equations describing the circuit (see Ref. [TDV17] for an example of DMMs

equations of motion). These equations can be efficiently simulated, constituting an algorithm

for the same problem. While this approach may seem indirect, as already noted, surprisingly the

simulation of these circuits using standard numerical packages [Mat17] is sufficient to outperform

the state-of-the-art combinatorial approaches on many benchmarks [TCSD18, MTD18, DT18].

In the subsequent section we demonstrate this and stress test these simulations by showing

the results of a direct comparison on the same hardware between the Falcon c© solver of Mem-

Computing, Inc. and the solver DeciLS, an improved version of one of the best solvers of the

2016 Max-SAT competition [CLZ17]. In all cases, our simulations considerably outperform

the other method tested, by orders of magnitude. Our solver indeed scales linearly in time and

memory compared to the expected exponential scaling of the other solver.

3.4 Max-SAT

As outlined above, we formulate our instances as Max-E3SATs, in which each clause

contains exactly 3 literals and which has an inapproximability gap. A particular instance of
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Figure 3.2: Memory requirements of the Falcon c© solver as a function of variables for the
delta-Max-E3SAT. We provide both the input size memory (open circles) and the RAM used
during computation.
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Max-E3SAT may be characterized by the number of variables, N, and the number of clauses,

M, or alternatively the clause density, ρ = M/N. As ρ increases, the relationships between

the variables become increasingly constrained, and it becomes less likely that an assignment

satisfying all clauses will exists, i.e., the problem is more likely UNSAT.

In the case of Random-3SAT, in which clauses are uniformly drawn from the set of possible

clauses amongst N variables, instances undergo a SAT/UNSAT transition at ρ≈ 4.3, below which

an instance is almost certainly satisfiable, and above which it is almost certainly unsatisfiable (the

transition being sharply defined as N→ ∞). Different methods of generating instances however,

will lead to different transitions: Random-3XORSAT, in which clauses of 3 literals are formed

using the exclusive OR, ⊕, undergoes a SAT/UNSAT transition at ρ ≈ 0.918 [RTWZ01] for

example.

To stress test the capabilities of simulating DMMs we utilized a set of Max-E3SAT

instances based on a variant of Random-3XORSAT introduced in [TCSD18] in which each

variable was constrained to occur the same number of times (or as nearly as possible while

satisfying the specified N and ρ). This particular set of instances were chosen for their low

inter-instance variability in difficulty due to the constraint placed on variable occurrences, and the

relevance of MAX-XORSAT to important problems in decoding [RTWZ01, JMS04, CMMS06].

The balanced structure of the resulting SAT makes them difficult for local solvers since, whenever

a variable assignment is changed, it flips the state of all XORSAT clauses in which it was included.

Thus, in order to find transitions which satisfy a larger number of clauses, the system is forced to

flip increasingly large numbers of literals concurrently.

To generate these hard instances, we first generated a random 3XORSAT instance with

ρ = 1.25 in which each variable was allowed to occur 3 or 4 times. These were then converted to

a SAT instance by replacing each XORSAT clause with 4 CNF clauses which reproduce the truth

table of the XORSAT clause. The resulting Max-E3SAT instances have a clause density of ρ = 5.

We call this problem delta-Max-E3SAT [TCSD18].
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To clearly show the superior performance of our approach compared to standard algo-

rithms, we have set a threshold of 1.5% of unsatisfiable clauses and tested how long DeciLS

and Falcon c© take to overcome this limit with increasing number of variables. DeciLS is a

compiled code that combines a unit propagation based decimation (Deci) and local search (LS)

with restarts [CLZ17]. Past useful assignments are used to break conflicts in the unit propagation

and may be considered “messages” from the past.

The solver Falcon c© is a sequential MATLAB code that integrates forward the DMMs

equations of motion using an explicit Euler method. All calculations have been performed on

a single core of an Intel Xeon E5-2680 v3 with 128 GB DRAM. As expected the local solver

requires an exponentially increasing time to reach that limit already at a few thousand variables

(see squares symbols in Fig. 3.1). Instead, the simulations of DMMs scale linearly in time up to

64×106 variables, which at a density of 5, corresponds to 320×106 clauses, or about 1 billion

literals. The largest case required a little over than 105 seconds to complete. In fact, the memory

required, rather than the time, was the primary limitation in extending the simulation further.

In Fig. 3.2 we present the memory used in the computation by Falcon c© as a function of

variables. It is clear that the memory also scales linearly up to 64×106 variables. For comparison,

we also display the memory size of the input file, showing that the MATLAB implementation of

a DMMs equations of motion has about an order of magnitude overhead in memory. Since the

memory of the Intel Xeon used for these simulations was only 128 GB DRAM, that limit has set

a hard stop to the actual size we could fit on that processor. Of course, different implementations

(e.g., using a compiled language rather than an interpreted one), different hardware, etc. may

permit execution of even larger instances.

The reason behind the linear scaling of the memory is that, because we are integrating

the state of a dynamical system towards a solution of the computational problem, at any time in

the computation only the current state of all variables in the integration must be stored. The size

of this state is, in general, larger than the input size of the original Max-SAT problem as each
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SOLG contains many independent variables. However, since the size of the circuit scales linearly

with the input size (the number of self-organizing OR gates is just 4x the number of clauses

in the XORSAT) the state which must be stored also scales linearly with the input. This slow

scaling of the memory requirements with problem size is a key feature of the approach utilizing

simulations of DMMs. Many other approaches to combinatorial optimization such as parallel

tempering [WMK15] and integer linear programming [Sch98] will require a faster than linear

memory consumption which ultimately limits the maximum size problem to which they can be

applied.

3.5 Conclusions

The performance of digital memcomputing machines on the benchmarks presented in

this paper demonstrates the substantial advantages of our approach, based on the simulation of

non-linear dynamical systems, compared to traditional combinatorial ones. In particular, we have

stress-tested this approach to hard instances of the Max-SAT and shown that the simulation time

and memory of the processor used both scale linearly with problem size. Ultimately, we observe

that it is the memory of the processor that sets a hard limit on the largest problem size we could

address.

While we have focused on the maximum-satisfiability problem, the methods we have

illustrated in which a given combinatorial problem is translated to a circuit-based dynamical

system readily generalizes to a wide variety of combinatorial optimization problems as discussed

in the introduction. In fact, we have already applied the memcomputing approach to several

of these problems [DT18, MTD18, TCSD18, TD18, STD], in each case showing a substantial

advantage over traditional algorithms. It would then seem that physics-based approaches may

offer a lot to the world of computing, and we believe these ideas may form the basis for the next

generation of computational devices.
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3.6 Appendix

In testing instances to prepare for this paper, we found that the MAX-E3SAT instances we

were using were not sufficiently difficult to show any difference between the solvers. The reason

for this turns out to be related to an interpretation in terms of spin glasses and is a pleasant bridge

to the next chapter. A random SAT instance will lead to fluctuations in the number of variable

occurrences and their negations. These fluctuations lead to ‘fields’ which a solver can follow in

order to quickly arrive at the correct solution [JMS04]. These fields appear as the coefficients in

a related spin-glass hamiltonian that we will discuss below. This mapping has been utilized to

design instances that are intentionally difficult and to study the distribution of solutions of the

SAT problem [JMS07, BHL+02, MPZ02, RTWZ01].
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3.6.1 The SAT to Spin-Glass Mapping

We wish to encode the solution of a SAT problem as the ground state of a Hamiltonian.

The simplest way to do this is to define a clause energy Eµ which is 0 if the clause is satisfied and

positive if it is not. The hamiltonian will then be

H = ∑
µ

Eµ. (3.3)

The choice of clause energy is not unique, but a choice with the nice property that Eµ = 1 if the

clause is unsatisfied is

Eµ =
k

∏
r=1

1− Jµ
r sir

2
(3.4)

where the product is across the k variables in clause µ. The indices ir ∈ {1...N} denote the variable

in position r of the clause, and the Jµ
r = ±1 are −1 if the variable is negated in clause µ and 1

otherwise. The spins take the usual assignment si = 2xi−1. If any spin agrees in sign with its Jµ
r ,

the clause is satisfied and this gives no contribution to the energy.

In the case of 3-SAT, we can multiply these factors out

Eµ =
1
8
[
1−∑

r
Jµ

r sir + ∑
r,r′>r

Jµ
r Jµ

r′sirsi′r − Jµ
1 Jµ

2 Jµ
3 si1si2si3

]
(3.5)

Then summing over clauses we get,

H =
M
8
−∑

µ
∑
r

Jµ
r sir +∑

µ
∑

r,r′>r
Jµ

r Jµ
r′sirsi′r −∑

µ
Jµ

1 Jµ
2 Jµ

3 si1si2si3. (3.6)

To transform to sums over spins, we insert resolutions of the identity for each index ∑
N
i=1 δi,ir . For

the first term

∑
µ

3

∑
r=1

N

∑
j=1

δ j,irJ
µ
r S j =

N

∑
j=1

H js j, H j = ∑
µ

3

∑
r=1

δ j,irJ
µ
r = ∑

µ
cµ, j (3.7)
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where cµ, j = 1 if x j appears in clause µ, cµ, j =−1 if x̄ j appears, and 0 otherwise. In other words

this gives some global information on variable j, H j = n j+−n j− which ‘pushes’ it towards a

value like an external magnetic field.

Similarly, the second term becomes

∑
i, j

Ti jsis j, Ti j = ∑
µ

cµ,icµ, j (3.8)

which measures the correlation between the negation of the variables in clauses (sweeping over

some index manipulation to symmetrize the coefficients). Note that this term is positive in

the energy so the variables which are highly correlated favor being assigned opposite values.

Assigning them the same value would be redundant in the SAT instance.

Lastly, the 3 spin interaction is

∑
i jk

Ji jksis jsk, Ji jk = ∑
µ

cµ,icµ, jcµ,k (3.9)

which is negative in the Hamiltonian and enforces an XOR like interaction. These fields lead to a

Hamiltonian of the form,

H({Si}) =
M
8
−∑

i
Hisi +∑

i j
Ti jsis j−∑

ik j
Ji jksis jsk. (3.10)

3.6.2 Fluctuations in Fields and XORSAT

A clause of length K will contribute to the n spin local field with probability of leading

order
(K

N

)n and so the sum determining it will contain M
(K

N

)n nonzero terms each of which is

±1. So the n-body local field is of order

Jn ≈

√
M
(

K
N

)n

(3.11)
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indicating that the size of the fields decays exponentially in order of the interaction. This is simple

reason why problems are easy on average. The higher order interactions generally are what make

problems most difficult but for most random instances the lower order interactions are dominant.

Only rarely will we come across an instance with the ’balanced’ structure to cancel out the local

fields.

Instead, we can derive the SAT instance from XORSAT clauses, which are equivalent to

linear equations modulo 2. For example, the constraint

sk⊕ sl⊕ sm = 0 (3.12)

is equivalent to an XOR clause with one variable negated, and to the set of SAT clauses,

(s̄k∨ s̄l ∨ s̄m)∧ (s̄k∨ sl ∨ sm)∧ (sk∨ s̄l ∨ sm)∧ (sk∨ sl ∨ s̄m). (3.13)

The contribution to the above mapping from this set will lead to zero contribution for the Hi and

Ti j fields. The resulting instance has only the 3-spin interaction which is itself equivalent to the

XORSAT clause and no smaller order fields for a solver to utilize.
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Chapter 4

Main Course: Simplifying Memcomputing

The following chapter has been submitted for publication and is available on ArXiV as,

Forrest Sheldon, Fabio L. Traversa, Massimiliano Di Ventra. Taming a non-convex landscape

with dynamical long-range order: memcomputing the Ising spin-glass. arXiv:1810.03712.

Abstract

Recent work on quantum annealing has emphasized the role of collective behavior in

solving optimization problems. By enabling transitions of large clusters of variables, such

solvers are able to navigate their state space and locate solutions efficiently despite having only

local connections between elements. However, collective behavior is not exclusive to quantum

annealers, and classical solvers that display collective dynamics should also possess an advantage

in navigating a non-convex landscape. Here, we propose a simple model that demonstrates

this effect, based on the recently suggested digital memcomputing machines (DMMs), which

utilize a collection of dynamical components with memory connected to represent the structure

of the underlying optimization problem. This model, when applied to finding the ground state

of the Ising spin glass, undergoes a transient phase of avalanches which can span the entire
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lattice. We then show that a full implementation of a DMM exhibits superior scaling compared to

other methods when tested on the same problem class. These results establish the advantages of

computational approaches based on collective dynamics.

Optimization problems draw their difficulty from the non-convexity of their associated

landscapes [MM11]. These landscapes are often highly corrugated, dotted with hills, valleys

and saddles of varying heights which obscure the search for a lowest (or highest) point. The

complexity of this space, combined with the ‘curse of dimensionality’ yields an exponentially

large number of potential solutions which are very difficult to prune down by any systematic

method. The innate difficulty and variety displayed by optimization problems, as well as their

widespread applications have made their study a continuously active field of research across

science and mathematics [CHP98, EKPC13].

The exponential growth of the state space with problem size often renders any exact

algorithm for locating the optimum impractical as they require an exponential amount of time to

sift through the states. As a result, practitioners must rely on incomplete or approximate methods

which will often generate better solutions in a limited time but are not guaranteed to converge to

the exact solution [KSS09, GKSS08].

Early work on approximate methods relied on analogies with the dynamics of physical

systems [KGV83] which will minimize their energy as they cool, i.e., during annealing. For

example, to find the ground state of the Ising spin glass [FH93],

E =−∑
〈i j〉

Ji jsis j, si ∈ {−1,1}, (4.1)

simulated annealing gradually improves an initial state {si}N
i=1 by stochastically exploring the

state space and steadily lowering an effective temperature [CMMS06]. The early success of this

approach on combinatorial optimization problems has led to the proliferation of solvers based on a

similar stochastic local search and their many variants [SLM+92, Sch99]. Cross pollination with
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Figure 4.1: Constraint satisfaction problem as electrical circuit. An arbitrary constraint (C)
satisfaction problem expressed as a factor graph can be translated into an electrical circuit with
memory by considering the effect of each constraint on the site i. vR is a voltage generator and
gR is the conductance of a standard resistor. vM is a voltage generator and gM is the conductance
of a resistor with memory.

physics has continued, spawning methods such as parallel tempering [WMK15], and quantum

simulated annealing [SMTC02] as well as the analytical characterizations of combinatorial

problems [MPZ02] and random energy surfaces [BD07].

Annealing has again jumped to the forefront of modern research in the form of quantum

annealing and the machines manufactured by DWave [HJA+15, DBI+16, KHZ+15]. These

machines contain 2-state quantum mechanical elements coupled together in a graph realizing a

particular energy function. During their relaxation, the quantum dynamics of the system allows

for collective tunneling of elements through high, thin barriers in the energy function, which may

provide some advantage in the search for the optimum.

Similar ideas in the context of cellular automata, neural networks and neuroscience have

already received interest [Lan90b, Chi10b]. These examples substantiate the idea that collective

behavior would offer an advantage in the convergence of a solver by allowing for a more efficient

exploration of the state space. We then expect that classical solvers which incorporate this feature

in their dynamics will have an advantage in both the quality of solutions they produce, and their

rate of convergence.

The purpose of this work is to explore the presence of collective dynamics in the context

of specific deterministic dynamical systems: Digital memcomputing machines (DMMs) [TDV15,
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TDV17, DT18]. We show that this collective behavior, in the form of dynamical long-range order

(DLRO), allows the efficient navigation of a non-convex landscape as the one provided by the

prototypical Ising spin glass (4.1).

In DMMs, a combinatorial optimization problem is first transformed into a physical

system described by differential equations whose equilibrium points correspond to solutions of

the original problem. Theoretical work [DVTO17] and simulations of DMMs [TDV17, DT18,

TCSD18, MTD18] have indicated the presence of long-range order in their dynamics. However,

as their native problem form involves several distinct dynamical elements, the complexity of the

resulting solver obscures the physical principles underlying its design and function. Here, by

drawing on the structure of the equations governing a DMM, we propose a simplified model that

captures their essential features and can be applied in a setting more familiar to physicists: finding

the ground state of an Ising spin glass [FH93].

For our purposes, this problem provides the advantage that it can be expressed in terms

of very simple homogeneous constraints leading to a concise set of equations. In addition, its

real-space lattice representation allows for a clearer demonstration of DLRO since the real-space

distance of the lattice corresponds to the distance in the constraint graph. We draw on a class

known as ‘frustrated-loop instances’ used by DWave and others to benchmark their quantum

annealers [HJA+15, KLH15]. These instances are constructed by embedding loops with a single

frustrated bond on an underlying graph which we take to be a hypercubic lattice in 2 or 3

dimensions with periodic boundary conditions. These instances are convenient for benchmarking

because, by construction, they have a known ground-state energy, and their difficulty is somewhat

tunable by choosing the density of embedded loops [HJA+15]. The construction and tuning of

these instances is detailed in the Supplemental Information. After showing DLRO in the simplified

model of DMMs, we then compare the results obtained by a full-fledged implementation of

DMMs with those from a variety of approaches, such as parallel tempering [WMK15], simulated

annealing [KGV83], as well as a commercial solver [cpl], for problem instances of increasing

73



size. We find that DMMs exhibit superior scaling compared to these other methods.

A DMM is constructed in correspondence to the logical circuit it will solve. For example,

the subset-sum problem studied in [TDV17] utilizes a circuit with the same structure as one

used to add a subset from a group of numbers. Each traditional logic gate is replaced by a

self-organizing logic gate consisting of a set of interconnected input and output terminals, each

of which is dressed with a number of memristors (resistors with memory), resistors, capacitors,

and voltage/current generators forming a dynamic correction module (DCM) [TDV17]. When

voltages are applied to the boundaries of the circuit, the dynamics of these elements are configured

to satisfy the constraints enforced by each gate, and lead the circuit to a state where no logical

contradictions are present.

We may consider the contribution of constraint C to the dynamics of site i (see Fig. 4.1)

[TDV17]. The dynamics of the circuit are constructed such that the voltage generators impose the

logical constraint on the voltage vi at site i. The memristor conductance gM, sensing a current

flowing across it due to an unsatisfied constraint, will alter its value to accelerate the convergence

of vi to the logically-consistent solution. Generally, this is accomplished by increasing the mem-

ristor conductance, thus allowing more current to flow into or out of the site. As memristors are

polar objects, complex constraints may require several memristors and generators to accomplish

this, accounting for the number of memristors in DCMs [TDV17].

A few simplifying assumptions give the general form for the contribution of constraint C

to site i as [TDV17],

v̇i = ∆gMx∆VM +gR∆VR, (4.2)

ẋ = h(∆VM,x), x ∈ [0,1], (4.3)

for the voltage vi representing the variable i and the memory state variable of the memristor

x. We can regard the first and second terms on the rhs of Eq. (4.2) as representing the total

74



memrisitive and resistive contributions from the DCM, respectively. These are weighted by the

conductances ∆gM and gR, respectively, into which we have absorbed a capacitive timescale.

We regard the memory state variable x and function h in Eq. (4.3) as an effective representation

of the state and evolution of all memristors in the DCM, giving us considerable freedom in

choosing the form of h. In order to fulfill the requirements of a DMM, the memristor equations

chosen must take on bounded values and the equations of motion of the whole system must be

point-dissipative [Hal10], which establishes that trajectories will converge to an invariant set that

is uniformly asymptotically stable.

These equations share a close resemblance to those of Lagrange programming neural

networks (LPNNs) proposed in [ZC92, NY96] and the dynamical systems proposed in [ERT11].

In these works a Lagrangian, L , for a constraint satisfaction problem on variables {si} is formed

from a set of constraint functions Cm({si}) which vary from 0 when the constraint is satisfied to 1

when unsatisfied and a set of weights for each constraint xm, L = ∑m xmCm({si}). In the case of

LPNNs, the equations of motion of the system are then derived as

ṡi =−∇siL =−∑
m

xm∇siCm, (4.4)

ẋm = ∇xmL =Cm, (4.5)

which in our formulation (Eqs. (4.2) and (4.3)) would correspond to an unbounded, voltage-

controlled set of memristors with equal weight. In [ERT11] the equations for the multipliers are

altered to ẋm = xmCm, which has the effect of making the system hyperbolic, and is analogous to

choosing unbounded current-controlled memristors in Eq. (4.3). The dynamics of both systems

are such that the variables si of the optimization problem act to minimize the energy, while the

weights xm act to increase it, forming a sort of competitive dynamics which seek out saddle

points in the Lagrangian. The weights may be re-expressed as an integral memory term in the si

equations and so may be interpreted as “memory variables.”
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The continuous constraint weighting that these Lagrangian methods perform bears a close

resemblance to DMMs, but in our investigations we do not observe DLRO in the simulations

of these Lagrangian systems nor do they reach the solution of the problem we consider here.

Instead, in order to fulfill the properties of a DMM and display the DLRO observed in these,

additional terms in the equations of motion are necessary, in particular terms that guarantee the

orbits are bounded during dynamics, and that the system manifests a form of “rigidity” in which

large groups of variables can transition together (for further discussion of rigidity in a continuous

dynamical model of the spin glass, see the Supplemental Information).

When applied to finding the ground state of the Ising spin glass, Eq. (4.1), a simple

representation of DMMs (Eqs. (4.2) and (4.3)) that satisfies these requirements is of the form,

v̇i =
1
2 ∑
〈i j〉
|Ji j|xi j

(
vi + sgn(Ji j)v j

)
−|Ji j|

(
vi− sgn

(
Ji j)v j

)
, vi ∈ [−1,1], (4.6)

ẋi j = βxi j(1− xi j)
(
|Ji j|
(
1− sgn(Ji j)viv j

)
− γ

)
, (4.7)

in which the memristive and resistive contributions are clearly visible. The voltages vi are limited

to the interval [−1,1]. From a state of the dynamical system, the spins of the original Ising spin

glass model (4.1) are assigned as si = sgn(vi) such that the spins of the Ising model undergo the

orthant dynamics of the underlying continuous voltages.

The memory state follows the simplest equation for a bounded, volatile memristor subject

to an effective voltage |Ji j|(1− sgn(Ji j)viv j). This voltage is the energy with which the constraint

is violated, and the constant γ sets a threshold below which xi j will begin to decay. The constant

β indicates that the memristive timescale is generally different from the voltage timescale (set

by the RC constant at the node) which will play an important role in our analysis of the system.

While the memory variables do not directly interact, their coupling through the voltages leads to

an effective interaction. In [CTDV17, CB18] it was shown that the network topology leads to
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pairwise interactions obeying a Lyapunov function. It is useful to re-express (4.6) in terms of the

regimes of the memory variable xi j,

v̇i = ∑
〈i j〉

Ji jxi jv j− (1− xi j)
|Ji j|

2
(vi− sgn(Ji j)v j), (4.8)

which shows that the xi j interpolate between two different interactions between the voltages.

When xi j ≈ 1 the voltages follow the fields imposed by the neighboring voltages as in an LPNN

with L = ∑〈i j〉 xi j|Ji j|(1− sgn(Ji j)viv j), causing them to take the integral values vi =±1. Once

the constraint is satisfied, xi j → 0, and the voltages follow the values of their neighbors in a

collective manner (see also the Supplemental Information). As a consequence, over the course of

the dynamics, voltages form clusters with satisfied constraints that are capable of transitioning

together under the influence of neighboring unsatisfied constraints. This has a dramatic effect on

the dynamics and inclusion of these “rigidity terms” to the gradient-like first terms in Eq. (4.6)

are essential for achieving DLRO in the dynamics and converging to the ground state.

We simulate the system described by Eqs. (4.2) and (4.3) from random initial voltages and

xi j(0) = 0.99, integrating the equations of motion until the energy (4.1) (calculated from the signs

of the voltages) has reached the planted ground state or some maximum time has elapsed. This is

typically chosen quite long, such that the system solves an instance with a probability p > 0.95

for a given initial condition. For a more detailed discussion of the numerical implementation, see

the Supplemental Information. A typical run, showing the voltages, memristances and energy of

the system is shown in Fig. 4.2 on a 2-dimensional instance, L = 15, where we also show that in

the absence of constraint weighting via the memory variables (ẋi j = 0) the system is unable to

reach the ground state (the red curve in Fig. 4.2(c)). In this case the system undergoes gradient

dynamics and converges to a local minimum of H = ∑〈i j〉−Ji jviv j, vi ∈ [−1,1]. The action of

the memory variables may be interpreted as slowly modifying this landscape to destabilize these

local minima and push the system into an avalanche. That these avalanches display DRLO, is a
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Figure 4.2: Model trajectories. When the model of Eqs. (4.6) and (4.7) is simulated for a 2-
dimensional instance (L = 15) under a separation of timescales (β = 1

400 ), the voltage trajectories
(a) evolve under a series of sharply defined avalanches due to the slow motion of the memristors
(b) modifying the clause weights. In (c) we have plotted the energy (left axis) without the
influence of memristors (red, β = 0) and with them (black, β = 1

400 , γ = 0.65) showing that the
motion of the memory variables allows the system to reach a far lower energy, and ultimately
the ground state. The sizes of the avalanches (c, right axis) are plotted as gray bars, showing
that their size grows over the course of the simulation until a large avalanche brings the system
to its ground state. The avalanches are depicted in the inset in red with the rightmost inset
corresponding to the largest avalanche in the run.
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feature of the added “rigidity terms” in Eq. (4.6).

The discussion of DLRO in continuous dynamical systems is complicated by the continuity

of the dynamics, making it difficult to clearly infer causal relationships between changes in

variables. However, we can take advantage of the timescales above to separate the dynamics

into causally related events. As shown in Fig. 4.2(a) when we slow the memristor timescale β

relative to that of the voltages (e.g, by choosing β = 1/400), after the initial transient the dynamics

progress through a series of rapid transitions interpretable as avalanches (or instantons [DVTO17]).

These are due to the gradient dynamics of the voltages rapidly seeking out saddle points in the

energy landscape. Since the memristive dynamics provide the unstable directions of the saddle

points [DT18, DVTO17], the system will rapidly shift to a new saddle point. As more constraints

become satisfied and transition to a rigid interaction, larger clusters of voltages begin transitioning

together (see Fig. 4.2(c)) until, in a manner analogous to a phase transition [DT18, SDV17],

extensive clusters of voltages/spins, spanning the entire lattice, transition collectively and the

system converges to the ground state.

We can further emphasize the long-range nature of these clusters by computing correlation

functions over the course of an avalanche. In the limit that the timescales become separated

(i.e., the slow driving limit) the points at which each avalanche occurs tend towards well defined

times as seen in Fig. 4.2(a). For small β these events may be detected as sharp spikes in the

voltage derivatives. (See Supplemental Information for a detailed discussion of the method used

to extract the structure of the avalanches.) We are interested in the voltages/spins which change

sign in the avalanche and thus will affect the energy of the system. We thus define the avalanche

configuration as ∆i = 1 for all spins which change sign during an avalanche, and ∆i = 0 otherwise.

A few typical examples of these avalanches and their sizes occurring during dynamics are plotted

in Fig. 4.2(c).

Using the avalanche configurations we are able to compute correlation functions for these

events and investigate their decay across the lattice. For each run (defined as generating a unique
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Figure 4.3: Long-range order. Spatial correlations, 〈∆〉(r), among voltages/spins calculated
from the orthant dynamics in the slow driving limit of model (4.6) and (4.7) for the largest
avalanches in 2D and 3D and for different lattice sizes. The correlations take a finite value all
the way to the lattice edge, indicating that the largest avalanches are extensive. As the system
size increases the values appear to saturate to a dimension-dependent value for this instance
class.

instance and initial conditions) the system is simulated until it reaches the ground state or a

maximum time is reached. If the instance is solved within this interval, the largest avalanche is

selected and its configuration and first flipping spin are stored. By averaging across a sample of

configurations, suitably shifted so that the initial flipping spins coincide, the probability that a

voltage a distance r from the initial spin changes sign, 〈∆〉(r), may then be calculated. In order to

achieve large distances with reasonable simulation times, we calculated these correlations both in

2- (L = 15,19,23) as well as 3-dimensional (L = 7,8) systems.

As shown in Fig. 4.3, the largest avalanches possess correlations that take finite values all

the way to the furthest corner of the lattice, confirming the presence of DLRO. Dimensionally,

this requires that the size of the largest avalanche scales as ∼ LD for a system of dimension D,

and is thus extensive. We also note that, as the system size increases the correlations appear to

saturate to a dimension (and instance class) dependent value.

Having used this simplified model to demonstrate the main physical ingredients promoting
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Figure 4.4: Time to solution. Time necessary for different solvers to reach the ground state of
the 3D frustrated-loop spin glass as a function of the total number of spins N. The sequential
memcomputing solver implemented in MATLAB is dubbed Falcon. Varying numbers of
instances were run at each size and solver depending on required computation time (See the
supplemental information for details). Comparisons with simulated annealing (SA), parallel
tempering (PT), and IBM CPlex are also shown. All calculations were performed on a single
core. The solid lines are the best fits of the 95th quantile time to solution for all four solvers.
The exponential fits have the following parameters: for IBM CPlex, b = 0.12 and c = 0.46, for
SA, b = 0.069 and c = 0.67, and for PT b = 0.32 and c = 0.46.
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DLRO, we now show that this feature also leads to superior scaling compared to other methods

that rely only on local information. Unlike the model (4.6) and (4.7), DMMs have the additional

advantage of having been engineered to have no chaotic behavior or periodic orbits [DT17].

Therefore, for this scalability test, we rely on the full implementation of the dynamical equations

of DMMs as in Ref. [TDV17], appropriately modified to handle the Ising spin glass expressed

as a maximum satisfiability problem in conjunctive normal form [GJ90] (see the Supplemental

Information for a discussion of this transformation). We then utilize a commercial sequential

MATLAB solver (dubbed Falcon) that implements such equations. In addition, we have imple-

mented two standard annealing algorithms in Python (simulated annealing (SA) and parallel

tempering (PT)), as well as used a well-known commercial mixed-integer programming solver,

IBM CPlex [cpl]. Since Falcon was implemented in interpreted MATLAB and the focus was

on scaling rather than runtime, we used only the simplest implementation of each solver but

performed substantial tuning. Details of the implementation and tuning on the instance class

for SA and PT, as well as the configuration for IBM CPlex can be found in the Supplemental

Information.

All solvers were run on frustrated-loop instances in 3 dimensions, ranging in size from

L = 6 (total number of spins N = 216) to L = 40 (N = 64,000). The sizes used for tuning were

included for the annealers (SA and PT) while CPlex and Falcon were run on sizes L≥ 10. As

is clearly visible from Fig. 4.4, Falcon converged to the exact ground state in times orders of

magnitude faster than the other methods tested, and for larger sizes than were attainable for

other solvers. (CPlex, the next fastest, is predicted to take ≈ 100 years to solve an instance

of size L = 40.) Most importantly, Falcon displays superior scaling, with the time to solution

(TTS) appearing to scale approximately as T T S ∼ N1.5, while all other instances appear to

scale exponentially, T T S ∼ exp(bNc), with b and c solver-specific constants reported in the

supplemental information and shown in Fig. 4.4. Details of the fitting procedure may be found in

the Supplemental Information.
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Conclusions – In this paper, using the Ising spin glass as a well-known benchmark, we

have shown that a solver exploiting dynamical long-range order can navigate a non-convex

landscape more efficiently than traditional methods based on annealing despite being composed

of only local connections. We have first provided a simple model of DMMs to show how to

transform the original problem into a dynamical system in which DLRO emerges naturally. We

have then shown results on the 3D Ising spin-glass as obtained by a full implementation of

DMMs. The approach based on DMMs exhibits superior scaling in reaching the solution than the

other methods tested. The results presented here further reinforce the advantages of employing

collective dynamics to compute hard problems efficiently.

Acknowledgments – F.S. and M.D. acknowledge partial support from the Center for

Memory and Recording Research at UCSD. The Falcon solver used in the reported simulations

has been provided by MemComputing, Inc. http://memcpu.com/. The authors would be delighted

to provide, upon request, all instances of the spin-glass problems used in this work.

4.1 Correspondence between statistical physics and combina-

torial optimization

The problem of finding the ground state of a system in statistical physics is an optimization

problem for which there is an extensive vocabulary in computer science [MM11]. It may be

useful for the reader familiar with physics to have some notion of this correspondence and we

include a short discussion here to that effect.

Minimizing a Hamiltonian expressed as a sum over interactions between spins may be

expressed as a constraint satisfaction problem where each term in the Hamiltonian is regarded as
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a constraint on the variables. For example, finding the ground state of the Ising Model

E =−∑
〈i j〉

Ji jsis j, si ∈ {−1,1}, (4.9)

is equivalent to a weighted constraint satisfaction problem, where each interaction is expressed as

an exclusive-OR (XOR), or sum modulo-2 between the associated binary variables, bi =(si+1)/2,

ji j = (1− sgn(Ji j))/2

−Ji jsis j ↔ 2|Ji j| bi⊕b j = ji j (4.10)

where 2|Ji j| is the weight associated with the constraint. The correspondence between these two

can also be easily seen from the fact that flipping the state of any variable changes the state of the

interaction in both cases. Transformations between other constraint satisfaction problem types

may be undertaken similarly. For example, when transforming to weighted conjunctive normal

form (CNF), each interaction may be translated to two OR constraints depending on the sign of

the interaction:

−Ji jsis j ↔


2|Ji j| bi∨b̄ j
2|Ji j| b̄i∨b j

, sgn(Ji j) = 1,

2|Ji j| bi∨b j
2|Ji j| b̄i∨b̄ j

, sgn(Ji j) =−1,

(4.11)

where each constraint carries a weight and negations are indicated with a bar, e.g., b̄. In all cases,

the factor of 2 may be dropped as a global scaling of the energy.

Constraint satisfaction instances (a particular example of the problem) may be described

as being either satisfiable (SAT), if there is an assignment of the variables which satisfies every

constraint, or unsatisfiable (UNSAT) if there is no satisfying assignment (commonly referred to

as frustrated in physical treatments).

The corresponding decision problem of determining whether such an assignment exists,

and, therefore, whether a particular instance is SAT or UNSAT is also referred to as SAT or

satisfiablity with context generally determining which meaning is intended. The optimization
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problem of determining an assignment which satisfies the maximum number of constraints (or

maximum total weight) is referred to as MAXSAT. Determining the ground state of a system in

statistical physics is thus equivalent to a MAXSAT instance.

Generally, the SAT problem on 2-variable OR and XOR constraints may be trivially

solved. In the case of the Ising model, pick the value of any spin to be +1 and propagate this

throughout the lattice where every spin value will be determined by its neighbor. If a contradiction

is reached, the instance is unsatisfiable. If not, this will construct a satisfying assignment and the

instance is equivalent to the ferromagnetic Ising model through a gauge transformation.

Despite this, the MAXSAT problem on two variable constraints may be quite difficult,

depending on the structure of the instance. It is known that instances on a planar graph may be

solved efficiently (in polynomial time) by a perfect matching algorithm [MKT17]. If the graph is

non-planar as in the chimera graphs used by DWave [DBI+16] or the 3-dimensional cubic lattice

used for benchmarking here, there is no general efficient algorithm known, and the problem of

finding an assignment is NP-Hard [Bar82]. This statement, however, only applies to the worst

cases and for any individual instance, and especially for classes of randomly generated instances,

one might hope that an efficient approach exists. Conversely, despite the fact that an efficient

algorithm exists for planar instances, they may still present meaningful difficulty for a solver which

only uses local information. Debate over these ideas have surrounded the benchmarking studies

for DWave and discussions to this effect may be found in [KHZ+15, MKT17, KLH15, HJA+15].

4.2 ‘Rigidity’ in a continuous dynamical system

The notion of ‘rigidity’ arises in several areas across physics and here we clarify what

our intended meaning is in the context of continuous dynamical systems. The continuity of these

systems can give rise to behaviors inaccessible to their discrete counterparts [DVTO17, DT18].

In particular, the presence of a continuous symmetry in the equations and its effective breakdown
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can give rise to behavior analogous to zero-modes in statistical physics/field theory [PS95]. As a

consequence, along some directions of the phase space the system can respond in a correlated, or

‘rigid’ manner in which large clusters of variables will transition together [DVTO17].

For example, in a lattice of continuous “spins” obeying,

v̇i =−|Ji j|
(
vi− sgn(Ji j)σ(v j)

)
, (4.12)

σ(x) =


1, x > 1

x, −1≤ x≤ 1

−1 −1 < x.

(4.13)

the system will exponentially relax to a state in which every variable vi takes the value sgn(Ji j)v j

for all of its neighbors v j. If the underlying lattice is ferromagnetic (Ji j = 1), then taking any spin

to its limiting value vi =±1 will cause the entire lattice to transition with it in a manner analogous

to long-range order. In contrast, for a discrete system in the ferromagnetic state si = 1, flipping a

single spin will not cause the rest of the lattice to transition as it will not change the sign of any

local fields. The ability of a local perturbation to flip large clusters of spins might benefit a solver

attempting to satisfy a constraint while maintaining the satisfaction of its neighbors. However,

the presence of unsatisfiable/frustrated constraints renders this impossible in the model above: in

this case all spins will relax to vi = 0 and pulling a single spin to ±1 will not propagate through

the lattice.

Any unsatisfiable spin-glass instance may be associated with one or several satisfiable

instances formed by removing any unsatisfied bonds in the ground state (see the preceding Sec. 4.1

for a discussion of these terms in the context of computer science). In the main text we show that

the inclusion of memory variables to the dynamical system (4.12) above restores some measure

of the long-range order. These variables come in the form of constraint weights which act to

isolate the associated satisfiable instance and bear similarities to strategies employed in discrete
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constraint satisfaction [Mor93, SK93].

4.3 Generating Instances: Frustrated Loop Instances and In-

stance Tuning

The problem of benchmarking MAXSAT solvers is generally hindered by the fact that the

problems are NP-hard, and, for an arbitrary instance, determining or even confirming a solution

will require exponential time [Bar82]. For this reason, planted solution instances are commonly

employed in which instances are generated such that they have a known solution [JMS04].

Benchmarking studies on quantum annealing have introduced the class of Frustrated Loop

Hamiltonians [HJA+15, KLH15] in which the total Hamiltonian is written as the sum of a set of

loops containing a single frustrated bond (see schematic in Fig. 4.5),

H = ∑
i

HFL,i. (4.14)

The loops are formed such that the planted solution minimizes all of the Hamiltonians HFL,i

simultaneously, and so minimizes their sum.

In order to generate these instances, we first construct an underlying lattice which we take

to be hypercubic in D-dimensions with periodic boundary conditions. Each loop is generated by

beginning at a randomly selected site and performing a random walk until it crosses itself. The

length, l, of the loop formed is generally required to be above some limit, otherwise it is rejected.

For instance, the instances used by DWave use a loop length limit of l ≥ 8 [HJA+15, DBI+16]. It

is also noted that discarding the length limit seems to lead to very difficult instances, although an

explanation for this feature is not understood. In our investigations of the instances, we found

that discarding the loop length limit leads to instances of widely varying difficulty, and that both

the uniformity of the difficulty, and the time to solution (measured with simulated annealing)
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Figure 4.5: A schematic representation of instance creation. Separate frustrated loops (blue
and red curves) are generated by random walking around the lattice until the walk crosses
itself. Each loop has its own Hamiltonian consisting of Ji j = 1 for all bonds except one with
Jkl =−1 such that the ground state of the loop will have one unsatisfied bond. When the loops
are combined, overlapping bonds (shown in black) have a coupling Ji j which is the sum of the
contributions from each separate loop.
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decreased as the length limit increased. In order to avoid the complications of a widely varying

difficulty, while generating the most difficult available instances, we chose a length limit of l ≥ 6

for our generated instances.

In order to generate a loop, we consider planting the ferromagnetic solution si = 1. After

generating an instance, any other solution may be hidden by means of a gauge transformation.

All interactions in the loop are chosen to be ferromagnetic, Ji j = 1, except one which is selected

at random to be anti-ferromagnetic Ji j = −1. The solution to the loop hamiltonian HFL,i =

−∑〈i j〉∈li Ji jsis j is thus an assignment with one unsatisfied interaction.

The number of loops, M, generated must be proportional to the number of sites N = LD

and may be characterized by a density α such that M = αN. These instances are known to

demonstrate a hardness peak in α such that the most difficult instances are generated when there

are neither too few loops, in which case they do not overlap and each may be solved separately,

nor too many, in which case the antiferromagnetic interactions tend to be canceled by the more

numerous ferromagnetic interactions [HJA+15, DBI+16, KHZ+15]. The value of α at the peak

also tends to align with the amount of frustration in the instance, as measured by the number of

unsatisfied interactions in the ground state.

In order to generate difficult instances, in D= 2 dimensions we used a simulated annealing

solver to test instances across a range of α, finding that the most difficult instances lay at

α≈ 0.2, consistent with the results on the pseudoplanar chimera graphs in [HJA+15]. For D = 3

dimensions, the optimal value of α was estimated using the amount of frustration in the instances

as suggested in [HJA+15] and found to lie at α≈ 0.3.

4.4 Avalanche Detection and Correlation Calculations

As shown in the main text, when the timescale of the memristors is sufficiently separated

from the voltage timescale, the system evolves in well defined events which may be interpreted as
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avalanches (or instantons [DVTO17]). A set of sample trajectories, calculated on different spin

glass instances (L = 15, D = 2, α = 0.2) in the slow driving limit is displayed in Fig. 4.6. Within

these trajectories avalanches are clearly discernible, but the timescales governing them seem to

grow during the simulation and additional features such as quasi-periodic behavior (as seen in

panel 4.6.c at beginning time 8000) also arise. Detecting these events in a robust manner poses a

novel problem as we must extract a discrete event from a continuous system. Here we detail the

method we used to extract these events and compute correlations during the largest avalanche.

The rate of change of the entire system may be concisely viewed through the magnitude

of the voltage derivative vector, ~̇v(t), normalized to the number of spins, |~̇v(t)|/N shown in

Fig. 4.7. Avalanches manifest as sharp spikes in the magnitude of the derivative. However, as

the simulation advances and variables begin transitioning together, the slowest timescale in the

system tends to increase, making a simple threshold ineffective at separating the later clusters.

Instead, we first find the convex lower envelop of the total derivative shown in Fig. 4.7.

This gives an estimate of how the slowest timescale in the system changes. If the slope at the end

of the envelope exceeds a bound, its slope is extrapolated from the previous point to avoid errors

due to the termination of the integration mid-avalanche.

The time interval of an avalanche is defined as a continuous period in which the magnitude

of the derivative |~̇v(t)|/N exceeds the lower envelop by a threshold. Choosing this threshold

is performed through tuning to the specific set of instances and will depend on system size,

dimension and memristor timescale β. The threshold value t used for each set of correlation

calculations are: (L = 15, D = 2, t = 1×10−4), (L = 19, D = 2, t = 2.15×10−5), (L = 23, D =

2, t = 8×10−6), and (L = 8, D = 3, t = 4×10−6) . Within an avalanche interval, we define the

variables included in the avalanche as those that changed sign and thus can affect the energy

calculated from the orthant dynamics. A few of these configurations are shown in the main text

and a more complete selection is displayed in Fig. 4.8.

Once a set of avalanches has been extracted from a simulation, we investigate the structure
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Figure 4.6: A sample of trajectories. Here we show the simulation results for the same initial
conditions on three different instances (L = 15, D = 2, α = 0.2). In (a.) we see well separated
events that maintain their separation until the instance is solved. In (b.) the longer run results in
lower memristor values and a slower voltage timescale, causing the width of the avalanches to
grow. In (c.) we see markers of quasi-periodic behavior extending from ≈ 8000 to 10000. A
scheme to detect avalanches must be robust to these effects in order to be accurate.

91



Figure 4.7: Extracting avalanches from a continuous trajectory. Avalanches display as sharp
spikes in the total voltage derivative vector of the system. Here, we have displayed the magnitude
of the total voltage derivative of the system normalized to the number of spins N for the trajectory
displayed in the main text (L = 15, D = 2α = 0.2). As the timescale of the avalanches can
slow, sometimes dramatically, over the course of the simulation, the convex lower bound of the
derivative is first calculated. An avalanche interval is defined as a continuous period in which the
system exceeds a threshold above this envelope (here chosen as 0.0001). Voltages that change
sign during an interval are included in the avalanche configuration as shown in Fig. 4.8.

Figure 4.8: A sample of detected avalanches. For the trajectory shown in the main text and the
clusters detected in Fig. 4.7 a representative sample of the detected avalanche configurations
are displayed, including the first and last avalanches in the trajectory. Over the course of the
simulation, the average size of the avalanches grows until it reaches an extensive set of spins
which can span the entire lattice.
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of the largest avalanche by calculating the probability that a spin lying a distance r away (measured

in terms of lattice steps) from the first spin to flip is included within the avalanche. To this end, we

define a cluster configuration as being vi = 1 if the spin is included in the cluster and 0 otherwise.

This acts as indicator variable which for an individual cluster allow us to calculate the probability

that a spin a distance r away was flipped (recall that the lattices we generate are periodic and

this distance is calculated as the minimum distance of a path between the two sites). This is then

averaged across randomly generated instances and initial conditions of the solver.

The probability obtained may be interpreted as a correlation in the slow driving or

instantonic limit in which the avalanche may be regarded as occurring at an instant in time, and

calculated on the orthant dynamics of the system. As shown in the main text, the largest avalanche

gives a finite probability for a spin anywhere in the lattice to change sign and is thus extensive.

4.5 Simulations and Solver Tuning

With the exception of IBM CPlex and Falcon, solvers were implemented in Python 2.7

using the NumPy and SciPy libraries [JOP+ ]. Simulated Annealing, Parallel Tempering, CPlex

and the model in the main text were run at UCSD on a single core of an Intel Xeon E5430 with

16 Gb RAM.
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4.5.1 Model Simulations

In order to limit the voltages and memristors to the allowed regions and make them robust

to numerical errors, the equations simulated were,

v̇i = Bvi,(−1,1)

(
∑
〈i j〉

Ji jxi jv j

− (1− xi j)
|Ji j|

2
(
vi− sgn(Ji j)v j

))
(4.15)

ẋi j = βBxi j,(0,1)

(
xi j
(
1− xi j

)
×
( |Ji j|

2
(
1− sgn(Ji j)viv j

)
− γ

))
(4.16)

where Bx,(l,h)(·) implements the bounds to ensure integration steps that leave the region return to

the fixed points as

Bx,(l,u)( f ) =


(u− x), x > u, f > 0

(l− x), x < l, f < 0

f , otherwise.

(4.17)

Integrations are carried out using forward Euler with parameters tuned for each set of instances

to maintain the slow driving limit, hence allowing for an easy identification of avalanches. This

tuning is not required to solve an instance, but it is in order to detect clearly defined avalanches.

First, it was determined through tuning that β = 1
400 with a maximum time of tmax = 25,000 gave

well defined avalanches for L = 15, D = 2 and usually solved instances near to t = tmax/2. In

order to maintain this limit for larger instances, the memristor timescale was slowed, scaling with

the inverse square of the number of spins. Slowing the memristor timescale requires increasing

the maximum simulation time in the same way, such that tmax was scaled with the square of the

number of spins. For L = 15, γ = 0.65 was found to give a well defined transition, but as instance

size increased this value would lead to quasi-periodic behavior more often and γ was increased to
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L = 19, γ = 0.75, L = 23, γ = 0.85 and for L = 7, D = 3 and L = 8, D = 3, γ = 0.85.

4.5.2 Simulated Annealing

Simulated annealing was implemented using a linear schedule in β̃ (the inverse temper-

ature) from β̃i = 0.01 to β̃ f = ln(N) where the low temperature was scaled such that excited

states were suppressed as 1
N [Whi84]. At each step in the annealing a sweep of metropolis

samples across the entire lattice was performed. For annealers to be most effective in a given

computational time, the number of cooling steps (i.e., number of metropolis sweeps) performed

on a single initial condition versus the number of initial conditions attempted must be optimized.

As we are working with planted solution instances, runs consisted of continued repetitions at a

fixed number of metropolis sweeps until the solution energy was encountered or some maximum

allowed time was reached. Tuning was performed by running each instance with a varying number

of temperature steps in the cooling schedule until the optimum was reached. This was performed

on 1000 frustrated loop instances (d = 3, α = 0.3, l ≥ 6) for L = 6 through 11 and the time to

solution for each run was recorded. The results of these runs are plotted in Fig. 4.9.

The time to solution for a given instance size and number of sweeps exhibited a bimodal

distribution with a secondary peak of smaller measure approximately one order of magnitude

above the primary peak. In order to estimate the optimal scaling, the 95th quantile of each

sample distribution was found and the error estimated with a bootstrapping procedure (30,000

samples). As the peaks of the distributions were approximately lognormal, these were both

calculated in logspace and the error estimated as 2σ of the sample distribution. As can be seen in

Fig. 4.9, the presence of a secondary peak leads to large uncertainties in the region surrounding

the cross-over of the 95th quantile. The optimal sweeps were found as the minimum of the upper

bound uncertainty estimate.

Since the intention of this work is to examine the scaling for very large sizes, this analysis

cannot be repeated for all sizes we intended to run. Instead, we used the values at small N to
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Figure 4.9: Tuning for simulated annealing. Simulated annealing runs were performed on 1000
3-D frustrated loop instances for L = 6,7,8,9,10,11 at varying number of metropolis sweeps.
As can be seen, if the number of sweeps is too few the ground state is only rarely encountered.
Beyond a certain amount, more sweeps will have a slightly negative effect on the runtime. We
estimated the location of this crossover across lattice sizes with the dark curve, and extracted the
scaling of the optimal runtime (inset) which was well fit by an exponential.

estimate the scaling of the optimal number of sweeps per repetition as shown by the inset curve

in Fig. 4.9. This was well fit by an exponential dependence as,

#sweepsopt = (604)exp(2.78×10−3N) (4.18)

which was used to estimate the optimal number of sweeps for the scaling figure in the main text.

4.5.3 Parallel Tempering

The parallel tempering (PT) algorithm we employed utilized a ladder of temperatures

geometrically spaced in T from Th = 10 to Tl = 1/ logN [Whi84, ED05]. One step of the

algorithm consisted of a single sweep of metropolis sampling over all replicas, followed by a

single proposed exchange where replicas at neighboring temperatures had their configurations
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Figure 4.10: Tuning for parallel tempering. Parallel tempering runs were performed on 1000
frustrated loop instances for L = 6,7,8,9,10,11 with varying numbers of replicas. For suffi-
ciently large sizes (L > 6) a clear optimum was observed in the time to solution, with the number
of replicas at the optimum growing with the number of spins. The location of these optima were
used to estimate a scaling law for the optimal number of replicas at larger sizes.

switched according to the probability,

Pexchange = min{1,exp
(
(β̃− β̃

′)(E−E ′)
)
}, (4.19)

where E and E ′ are energies of the instances. This cycle of metropolis sweeps and exchanges was

repeated until the solution was reached. As the system size increases, the extensivity of the energy

will cause exchanges to become less likely and so the density of temperatures simulated should

be increased such that the optimal temperature set will balance the extra computational work of

performing metropolis sweeps over the replicas with the diffusion of replicas across temperatures.

In order to determine this point, the time to solution was found for 1000 frustrated loop instances

(dimensions D = 3, density α = 0.3, loop length l ≥ 6) for L = 6 through 11 across a range of

different numbers of replicas, as shown in Fig. 4.10. At each number of replicas and size, the 95th

quantile of the sample was found and the error in this statistic was estimated from a bootstrap

in logspace using a 2σ confidence interval. The optimal number of replicas was found as the
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minimum of the upper bound error estimate. Across sizes these were found to be very well fit by

a linear dependence,

#replicasopt = 0.0183N +0.7. (4.20)

This leads to a quadratic iscaling in the memory footprint of the algorithm.

4.5.4 CPlex

CPlex was run using the python API within the IBM ILOG CPLEX Optimization Studio

version 12.7.1.0 under an academic license [cpl]. The QUBO (quadratic unconstrained binary op-

timization) form for the associated frustrated loop instance was found through the transformation

to binary variables, si = 2bi−1 which leads to the correspondence,

ESG =−1
2 ∑i j Ji jsis j (4.21)

= 1
2 ∑i j Qi jbib j +C (4.22)

Qi j =


−4Ji j, i 6= j

4∑ j Ji j, i = j
(4.23)

C =−4∑i j Ji j. (4.24)

Within CPlex, problems in this form are first transformed to a mixed integer programming (MIP)

form. Unlike the other solvers in this work, CPlex is a complete solver and will attempt a proof

of optimality along with solving the instance. To prevent this, a callback was employed that

terminates the search once the planted solution energy was found. Cuts were set to balance

optimality and feasibility in the search.
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4.5.5 Falcon

The memcomputing solver, Falcon, was implemented with MATLAB as specified in [TDV17]

as a Boolean satisfiability solver which accepts instances in conjunctive normal form [GJ90]. The

transformation to CNF shown in section I has been performed on the frustrated loop instances

and simulations were carried out on a single core of an Intel Xeon 6148 with 192 GB RAM. The

Falcon parameters were first tuned for the smallest size instances, and then the same parameters

have been employed to solve all instances reported in Fig. 4 of the main text. Since Falcon

integrates differential equations numerically (using forward Euler), it employs memory that scales

linearly with problem size [SCTD].

4.6 Fitting

For each solver, instances were run at a variety of sizes in order to estimate the scaling

of the 95th quantile time to solution. The annealers, SA and PT were run on 1000 instances for

lattices L≤ 11 and 200 for L > 11. CPlex was run on 200 instances from L = 10 to L = 25 and

Falcon was run on 200 instances for sizes from L = 10 to L = 30 and 100 for L = 35,40. The

error in the sample 95th quantile estimate was calculated with a 2σ estimate from a bootstrap

(30,000 samples) performed in log space to account for the lognormal distribution of the runtimes.

Fitting of each solver was performed with the SciPy optimization library’s curve fit

and polyfit functions [JOP+ ], which utilize least squares to fit a particular function. The time

to solution for instances was found to be approximately log-normally distributed, as may be

observed from the consistent standard deviations (0.5-1.5 orders of magnitude) found in log-space

in Fig. 4.11. Fitting was thus performed in log-space on the sample 95th quantile time to solution.

For each solver, fits were performed for a polynomial, T T S≈ ANB and exponential T T S≈ aebNc

trend as is displayed in Fig. 4.11. For Falcon, an exponential fit did not converge and so only a

polynomial fit is shown following T T S≈ (7.5×10−5 sec)N1.5.
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Figure 4.11: Fitting the Time to Solution. For each solver, the geometric average complexity of
the instance class was estimated by fitting the 95th quantile time to solution for a set of frustrated
loop spin glasses ranging in sizes across several orders of magnitude. Polynomial (T T S≈ ANB)
and exponential (T T S ≈ aebNc

) trends were fit to the data to assess the performance of each
approach. For Falcon, only the polynomial fit was found to converge and it demonstrated the
lowest exponent of all fits (B = 1.5). All other solvers were found to scale exponentially.
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For the other solvers, both a polynomial and exponential fit was found to converge but

in each case the exponential fit is clearly favored. For SA, the time to solution was found to

follow T T S ≈ (0.030sec)e0.069N0.67
, for PT T T S ≈ (0.022sec)e0.32N0.46

, and for CPlex T T S ≈

(3.5sec)e0.12N0.46
. It is interesting to note that the exponential coefficients for each solver are

quite close to rational values, with SA scaling close to ebN2/3
and PT and CPlex scaling close to

ebN1/2
.

Chapter 4, in full, is a reprint of the material which was submitted for publication as,

Sheldon, Forrest; Traversa, Fabio L.; Di Ventra, Massimiliano. Taming a non-convex landscape

with dynamical long-range order: Memcomputing the Ising spin-glass. The dissertation author

was the primary investigator and author of this paper.
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Chapter 5

Dessert: Concluding Remarks and Future

Directions

A primary aim of this research is to eventually leverage these systems to make interesting

statements about complexity and vice versa. At the moment, this remains an ambition, but here

I lay out an approximate roadmap towards its fulfillment. Throughout this thesis I have paid

rather incomplete attention to the notion of complexity and I will now attempt to remedy this.

For a brief review, I draw from the excellent text by Moore and Mertens [MM11] which can be

consulted for further detail.

We regard the complexity of an algorithm as the leading order scaling of the solution

time with the input size in the worst case (i.e. on the instances of the problem that scale most

slowly). We can utilize this to define the intrinsic complexity of a problem as the complexity

of the most efficient algorithm that solves it, where a problem consists of all possible instances

of the specified form (e.g. SAT instances in conjunctive normal form). Any known algorithm

provides an upper bound on this complexity but we do not generally know the most efficient

possible algorithm.

We can then define the complexity class P, as consisting of those problems for which an
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algorithm exists with complexity O(nc) for input size n and some constant c (i.e. whose solution

time scales polynomially). We can also define the class NP (or nondeterministic polynomial) as

those problem for which a proposed solution can be checked in time that scales polynomially. A

problem in P is necessarily in NP as the algorithm constitutes a check. However, for a problem

like SAT, any proposed solution can be checked in linear time, but we do not know any algorithm

that exhibits polynomial complexity.

It was also noted that for many problems in the class NP there is a polynomial time

algorithm to translate or reduce it to another problem in NP. This lead to the notion of NP-

completeness which requires for a problem A ∈ NP, that any problem B ∈ NP can be reduced

to it in polynomial time. The problems in this class have equivalent complexity in the sense

that, if a polynomial time algorithm exists for any of them, then it must exist for all of them.

In this case, the classes P and NP would be equal. Similarly, if one of these problems exhibits

exponential complexity, then they all do and P 6= NP. As discussed in Chapter 3, these notions

can be generalized to the approximation of problems.

The definitions above conspire to make these notions almost entirely irrelevant in practical

benchmarking studies. In particular, there is no notion of an NP-complete instance, although

many times the words problem and instance are used interchangeably in the literature (though

usually not in computer science). The notion of NP-completeness is better understood as a

measure of expressiveness rather than difficulty. In particular, if a problem is NP-complete than

many both ‘easy’ and ‘hard’ instances of the problem must exist.

In benchmarking, we almost never know what the worst case (i.e. hard) instances for our

algorithms are, and in order to carry out testing, we must define some measure over the space

of possible instances and draw from that (e.g. in random 3-SAT, we uniformly draw from the

space of length 3 clauses over N variables). Our results are thus not relevant to the full problem

(e.g. the complexity of 3-SAT). As discussed in Chapter 3, the structure of this measure can

profoundly affect the difficulty of instances. If we are not careful, a random instance class for an

103



NP-complete problem is possibly quite easy to solve and thus not a useful benchmark.

A useful notion in these cases is average-case complexity which characterizes the average

complexity of the most efficient algorithm over some class of instances defined by a measure.

This would be a useful tool in constructing benchmarking instances, and is where the closest

connections to physics have been found. While the most efficient algorithm for a class is still

usually unknown, there are some indications that statistical features of the cost function may

correlate to aspects of the behavior of algorithms. In some cases these are thought to be universal

across all algorithms and thus may be relevant to the intrinsic average-case complexity of the

instance class.

The current recipe for studying optimization problems using the machinery of statistical

mechanics [MM09] is, for problem defined by a configuration C ∈ χ and cost function E(C) ∈R,

to study the properties of the Boltzmann measure,

µβ(C) =
e−βE(C)

Z(β)
. (5.1)

In the limit β→∞, µβ concentrates in the configurations that minimize E, from which information

about the number and distribution of solutions may be recovered. At finite β, information about

the free energy landscape can also yield the structure of local minima and critical points in the

cost function.

A complementary and relatively recent approach is through applications of the Kac-Rice

formula [BD07, AAČ13] which calculate the density of critical points of a cost function, ρ(e,α)

at value e and with index α. Generally, these calculations show that for many problems, at high

values of the cost function e, saddle points dominate the critical points until at a transition ec, all

directions become stable and local minima emerge.

In both cases, computation hardness (interpreted as requiring O(eanb
) time) is attributed to

the proliferation of critical points in the underlying cost function, and the behavior of algorithms
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may be tied to their stability. For algorithms that operate directly on the cost function and Boltz-

mann measure, this argument is reasonable. However, for DMM type solvers the landscape they

traverse is not E({vi}), but E ′({vi},{xα}) that also includes the memory variables. Alternatively,

we can view their motion as on a cost function Ex({vi}) similar E({vi}) but where the indices of

the critical points are transformed by the motion of the memory variables xα.

That we can write down a dynamical system for the same problem but with a different

structure of its critical points calls into question whether such things may be regarded as intrinsic

to the problem, or merely to the particular description (i.e. choice of cost function). In addition, if

we trust that P 6=NP, then there must be some limitation to how far we can transform the structure

of the cost function while maintaining the features that give rise to computational hardness. While

I believe that this is the case, I see no reason for such a limitation in the language of dynamical

systems. It is my hope that by understanding the limitations of DMMs, we can also understand

how P 6= NP manifests in the context of dynamical systems and the structure of critical points on

their manifolds.

A further complication in applying these ideas to continuous dynamical systems is in

defining how complexity is measured. For a continuous set of differential equations, we can

rescale the time by an exponential and thus arbitrarily change the computation time. Reliable

measures of complexity thus must take into account other features of the trajectory such as the arc-

length [BGP17] and these may also manifest as chaos and instability in integration [ERT11]. A

notion of complexity drawn from the distribution of critical points on a manifold would inherently

incorporate these features.

In some sense, I think this is analogous to the position that thermodynamics was in during

the debate over Maxwell’s demon. P 6= NP has a similar feeling of inviolability to the second law

(at least to me), and in order to find an avenue of attack, Szilard posed simple devices that would

seem to break the second law [Szi64]. In order to save it, he was forced into the beautiful idea of

information entropy which has now become widely successful. His approach to this problem was
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quite unique in physics and leveraged the freedom to engineer any imaginable system to strike at

the proper idea.

I see some similarity in our freedom to define any equation of motion for a dynamical

system navigating a cost function and the guarantee that such a system will always require

exponential time in some cases. It is my hope that the structure of equations we have discussed

in this thesis will be a starting point for this work going forward, and can now admit that my

dedication to Szilard, who spent the end of his life around UCSD, was motivated by more than

just a shared love of pastry.
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Appendix A

Phase-dependent noise in Josephson

junctions

The following chapter was published as:

Forrest Sheldon, Sebastiano Peotta and Massimiliano Di Ventra. Phase-dependent noise in

Josephson junctions. Eur. Phys. J. App., 81 (1), 10601 (2018)

and is included with the kind permission of The European Physical Journal (EPJ).

Abstract

In addition to the usual superconducting current, Josephson junctions (JJs) support a

phase-dependent conductance related to the retardation effect of tunneling quasi-particles. This

introduces a dissipative current with a memory-resistive (memristive) character that should also

affect the current noise. By means of the microscopic theory of tunnel junctions we compute

the complete current autocorrelation function of a Josephson tunnel junction and show that this

memristive component gives rise to both a previously noted phase-dependent thermal noise, and

an undescribed non-stationary, phase-dependent dynamic noise. As experiments are approaching

ranges in which these effects may be observed, we examine the form and magnitude of these

processes. Their phase dependence can be realized experimentally as a hysteresis effect and
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may be used to probe defects present in JJ based qubits and in other superconducting electronics

applications.

A.1 Introduction

The Josephson junction (JJ) [Jos62, Jos65, BP82] is the basic circuit element of super-

conducting electronics. Formed by a tunneling barrier between two superconductors, its primary

feature is the nondissipative supercurrent IS = Ic sinγ(t) (Josephson current), where Ic is the

critical current and γ(t) is the gauge-invariant phase difference across the barrier [Tin96]. In

Josephson’s original work [Jos62] it was shown that a JJ also supports a phase-dependent and

dissipative current IM = G(γ)V with V the voltage drop across the junction.

This phase-dependent conductance (PDC) G(γ)∝ cosγ is often referred to as the ‘cos’ term

and arises from the imaginary part of the superconducting response function [Jos62, BP82, Lik86].

As such, it has been interpreted as a consequence of the retarded phase-current response [Har74,

Har75, Har76, ZKLS79], or as an interference effect between quasiparticle and Cooper pair

currents [Tin96, Jos62]. It is illustrated in fig. A.1 as the breaking of pairs into quasiparticles

which tunnel through the barrier and re-form [Ste69, BP82]. Irrespective of interpretation, it is a

memory resistive (memristive) component since it gives rise to hysteretic behavior under specific

driving conditions [PDV14b].

Initial interest in the PDC was driven by a discrepancy between the value given by BCS

theory [BCS57] and that measured in experiments [PFL72, SMP77, VD74, RD76, NW75, FPT73,

Lik79]. Several effects may account for the discrepancy (see, e.g., ref. [ZKLS79]) and most

attribute its value to a dependence on microscopic details of the junction such as the presence of

impurities.

Recently, the PDC has again attracted interest for its role in the quasiparticle-induced

decoherence of superconducting qubits [MOL+99, LG07, MSS01, MAA09, LWB+11, CSDG11,
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Figure A.1: A schematic representation of a JJ illustrating the two pair tunneling processes
and the RSJ model equivalent circuit. Pairs in the left electrode with phase φ1 may tunnel
to the second either directly as shown by the upper arrow (IS) or by breaking, tunneling as
separate quasiparticles and re-pairing with phase φ2, as shown by the lower arrow (IM). In the
low voltage/frequency limit, the TJM model is well approximated by the RSJ model given in
equation (A.6) and shown across the tunneling barrier (yellow). This consists of a displacement
current, C dV

dt , resistive current IR, supercurrent IS and a memristive component IM = εGLV cosγ.

YN05, CW08, DS13]. This has been discussed theoretically in refs. [CKF+11, LMS11] and in

an experiment on fluxonium qubits [PGC+14]. In a recent publication [PDV14b], two of us (SP

and MD) have proposed a two-junction interferometer to isolate the PDC from the nondissipative

pair current, allowing for a more detailed study of its properties and extraction of its hysteretic

features. An analogous phase-dependent term was also recently measured in the thermal current

through a JJ [GMP12].

The fluctuation-dissipation theorem suggests that the PDC should lead to a similar phase-

dependent current noise. With the possibility of isolating the PDC and the accessibility of

electronic measurements reaching into the Josephson frequency range, such non-stationary noise

processes may become important for the interpretation of experiments and technological applica-

tions. For Josephson junctions used as detectors, the action of thermal and non-Gaussian noise

sources is an area of active research [AVS10, GVS15] and the introduction of non-stationary

noise processes may have interesting dynamical consequences on the lifetime of the supercon-
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ducting state. Solitons forming in long junctions [VGS14, SGM+17] may also be affected due

to the non-uniformity of fluctuations in the vicinity of the kink/anti-kink. In the interferometer

mentioned above, measurement of phase-dependent noise would allow the determination of the

junction phase without access to the supercurrent or applying a voltage, thus providing an avenue

for nondestructive readout of the device state. As mentioned above, the magnitude of the PDC

and the resulting noise is influenced by the presence of defects in the junction. Measurement of

these effects can thus form a probe into the detailed structure of the junction.

In this article, by means of the microscopic theory of tunnel junctions we compute the

complete current autocorrelation function of a Josephson tunnel junction. The resulting function

contains a modulation which, in appropriate limits, takes a form ∝ cosγ(t). We pay particular

attention to the effects of corrections to the BCS theory on the subgap current response, and

demonstrate that the expected noise variation due to the phase-dependent dissipative current is

comparable to the averaged noise present at frequencies below the gap frequency ωg =
2∆

~ and

thus we expect it to be detectable in experiments.

That such a modulation exists has been noted previously in ref. [RS74] but in subsequent

considerations the time average of the spectrum has been taken, and the phase dependence

was assumed to vanish. However, in the thermal limit the phase of the junction may be kept

approximately stationary and does not necessarily vanish. Phase-dependent thermal noise has

also been predicted in quantum point contacts [MRLYGV96] although the form is quite different

from that expected in tunnel junctions as the dominant contribution comes from bound states

whose energies lie within the gap. We thus suspect a similar role may be played by the sub-gap

currents due to impurities in a tunnel junction. While our treatment of phase dependent noise is

restricted to the tunneling regime, we expect the phenomenon to be generic across a wide range

of JJ devices, differing somewhat in form. For example, the low transparency limit of the thermal

conductivity of a weak-link shows a cosγ dependence with the addition of a secondary phase

dependent term [ZLS03].
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Figure A.2: The Fourier transforms Im Ĩp(ω) and Im Ĩq(ω) of the pair and quasiparticle response
functions at T = 0 given by equations (A.3) and (A.4). They are plotted in units of the gap
frequency ωg = 2∆

~ and the critical current Ic for κ =
τg
2τr

= 0.03,0.1. Note that the current
response below the gap frequency is enhanced with κ.

In biased junctions, due to the unavoidable time averaging, a phase-dependent power

spectrum cannot be defined for frequencies less than the Josephson frequency, ωJ =
2e
~ V . We

demonstrate instead that a phase dependence can still be expected in the limit ω > ωJ . Here

we distinguish between the subgap, ω < ωg, and quantum noise, ω > ωg, regimes and calculate

the expected phase dependence in each. As the Josephson frequency is in the GHz range,

measurement of this phase dependence will require both high-frequency and short-time resolution.

Experimental systems designed for probing the quantum noise limit of mesoscopic systems

have reached frequency-resolved measurements on the order of 100 GHz [DOGK03] and could

potentially be adapted to the detection of such non-stationary processes.

A.2 Phase-dependent conductance

In order to demonstrate the existence of phase-dependent noise in JJs we make use of

the tunnel junction microscopic (TJM) model [Lik86, Har74, Ste69] with a phenomenological

factor which smoothes the energy gap edge. This correction may be attributed to the presence

of small metallic layers within the junction and accounts for several deviations from the BCS

approximation observed in experiments.
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The dynamics of a generic low-transparency JJ are well described by second-order

perturbation theory in the tunneling matrix elements resulting in the tunnel junction microscopic

(TJM) model [Lik86]. The total current I = Ipair + Iqp is the sum of the pair current Ipair and

quasiparticle current Iqp given by,

Ipair(t) =
∫ t

−∞

dt ′Ip(t− t ′)sin
(

γ(t)+ γ(t ′)
2

)
(A.1)

Iqp(t) =
∫ t

−∞

dt ′Iq(t− t ′)sin
(

γ(t)− γ(t ′)
2

)
. (A.2)

The time-dependent phase γ(t) results from a voltage drop across the junction, dγ

dt =
2e
~ V (t).

The material properties of the junction and superconducting electrodes are represented in

the pair and quasiparticle response functions Ip(t) and Iq(t). We choose the form given by BCS

theory at T = 0 and with superconducting energy gaps ∆1 = ∆2 = ∆. In this case, the response

functions have closed form,

Ip(t) =−
2Ic

τg
J0

(
t
τg

)
Y0

(
t
τg

)
exp
(
− t

τr

)
(A.3)

Iq(t) =
2Ic

τg
J1

(
t
τg

)
Y1

(
t
τg

)
exp
(
− t

τr

)
− ~GN

e
δ
′(t). (A.4)

where Jn,Yn are the Bessel functions of the first and second kind, δ′ is the derivative of the delta

function, τg =
~
∆

the gap timescale, GN is the normal junction conductance, and we have included

the phenomenological factor exp(−t/τr) mentioned above which cuts off the algebraic decay of

the Bessel functions at t > τr [Lik86]. This is also known as a Dynes parameter [DNG78] and is

a standard way of introducing a cutoff. Further remarks on the introduction of the cutoff may be

found in [PDV14b].

For our purposes it will be sufficient to consider a constant voltage so that the presence of

the PDC ∝ cosγ(t) may be explicitly shown. The phase advances linearly in time, γ(t) = ωJt + γ0

where we have defined the Josephson frequency ωJ =
2eV
~ . The junction current may then be
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written as

I(t) =Re Ĩp

(
ωJ

2

)
sinγ(t)

− Im Ĩp

(
ωJ

2

)
cosγ(t)+ Im Ĩq

(
ωJ

2

)
(A.5)

where Ĩp/q are the Fourier transforms of the response functions. These may be evaluated in terms

of elliptic integrals and have been plotted in fig. A.2 for several values of κ =
τg
2τr

. The range κ =

0.03−0.1 gives reasonable values of the peak broadening [Lik86] and we note that the response

for ω < ωg of Im Ĩp/q increases with κ. It is convenient to define the conductances Im Ĩq(
ωJ
2 ) =

σ0(V,T )V and Im Ĩp(
ωJ
2 ) = σ1(V,T )V from which we define the leakage conductance GL =

limV→0 σ0(V,T ) and the ratio ε = limV→0−σ1(V,T )
σ0(V,T )

. Including the effects of a finite capacitance

and fluctuations, the total junction current may then be written as,

I(t) =C
dV
dt

+GLV (1+ εcosγ(t))+ Ic sinγ(t)+ IF(t). (A.6)

The equivalent circuit to equation (A.6) is given in fig. A.1 and the TJM model is thus well

approximated by the resistively shunted junction model (RSJ) [Lik86] with the phase dependent

conductance GL(1+ εcosγ).

The ratio ε has been investigated in a number of experiments on tunnel junctions [PFL72,

SMP77], weak links [VD74, RD76], and point contacts [NW75, FPT73], consistently finding

ε ∼ −1 at low temperatures in disagreement with BCS theory which predicts ε > 0. This

discrepancy may be accounted for by including frequency broadening in the BCS result [Lik86]

as we have done with the exponential factors in equations (A.3) and (A.4). This may be physically

attributed to a finite quasiparticle lifetime, gap anisotropy and renormalization [BP82]. The

resulting sign and magnitude of ε is regularization dependent, varying from -1 to 1, indicating

that the specific microscopic details leading to the broadening exert a strong influence on the
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quasiparticle current, as can be seen in the enhanced subgap response in fig. A.2. While the

particular sign and value of ε are not essential for our results, we emphasize that both theory and

experiment place the magnitude of the phase dependence to be on par with the dissipative current

itself.

A.3 Fluctuations

The PDC should provide a contribution to the current fluctuations according to the

fluctuation-dissipation theorem. The autocorrelation function of the noise current IF(t) can be

calculated from the microscopic theory in the case of an arbitrary phase dynamics γ(t) [Zor81,

Lik86]. In the simple case of DC voltage bias the autocorrelation function of the noise current

reads

〈IF(t)IF(t ′)〉S =
e

4π

∫ +∞

−∞

dωeiω(t−t ′) coth
~(ω+ ωJ

2 )

2kBT

×
[

Im Ĩq(ω+ ωJ
2 )+ e−i(γ0+ωJt ′)Im Ĩp(ω+ ωJ

2 )

]

+

 γ0→−γ0

ωJ →−ωJ

 .

(A.7)

where we denote the symmetrized autocorrelation function,

〈IF(t)IF(t ′)〉S =
1
2
〈
IF(t)IF(t ′)+ IF(t ′)IF(t)

〉
. (A.8)

As expected, the PDC provides a contribution to the fluctuations given by the term proportional

to the Fourier transform Im Ĩp(ω) (see fig. A.2) modulated by the phase factor e−i(γ0+ωJt ′). Due to

the modulating factor, the autocorrelation function is not simply a function of the time difference

t− t ′, which means that the fluctuating current is not a stationary stochastic process [vK07].

The autocorrelation function is only invariant under discrete time translations 〈IF(t)IF(t ′)〉S =
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〈IF(t +2π/ωJ)IF(t ′+2π/ωJ)〉S.

As the noise is non-stationary, it cannot be characterized by a power spectrum. We

introduce a quadratic time frequency representation (TFR) defined by

T FR(ω, t) =
∫

∞

−∞

dτ

2π
e−iωτ〈x(t + τ)x∗(t)〉S (A.9)

which respects time and frequency shift covariance [HBB92]. The averaging of the correlation

function is performed for a fixed time t over the thermal and quantum ensemble of states of the

electrodes. The nonstationarity of the noise is reflected in the time dependence t about which the

decay of the correlation function localizes the noise statistics. This is similar to the introduction

of a windowing function in a spectrogram, except that the windowing is naturally supplied by

the correlation function and will determine in which regimes we can observe a phase dependent

noise (see sect. A.3.2). The resulting spectrum should display a phase dependence ∝ cosγ(t) for

frequencies larger than the Josephson frequency ωJ .

From (A.7) the TFR reads

T FR(ω, t) =
e

4π
coth

~(ω+ ωJ
2 )

2kBT

×
[

Im Ĩq(ω+ ωJ
2 )+ e−i(γ0+ωJt)Im Ĩp(ω+ ωJ

2 )

]

+

 γ0→−γ0

ωJ →−ωJ

 .

(A.10)

From here we examine the thermal and dynamic (“shot”) noise limits of this expression.

A.3.1 Thermal noise

The contribution to the noise power spectrum at zero bias given by the PDC is discussed

in ref. [RS74]. However, after its introduction the time-averaged autocorrelation function was
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Figure A.3: T FR(ω, t) plotted across a period of the Josephson current. The Josephson
frequency and κ have been chosen for the intermediate values ωJ = 0.005ωg, κ = 0.05. The
spectrum is plotted in units of the gap frequency ωg and the critical current times the electron
charge eIc. The inset shows the variation of the spectrum across a period at ω = 0.05ωg, in
which the cosγ(t) dependence is clearly visible. The functional form derived in eq. (A.13)
applies for ω� ωg. At frequencies above the gap, the phase dependence is strongly enhanced.

considered and, because of the modulating factor, the phase-dependent noise averages to zero at

finite bias. From our expression (A.10), we consider the limit ~ω, eV � kBT ,

T FR(ω, t) =
1

2π
2kBT GL [1+ εcosγ(t)] (A.11)

which leads to the autocorrelation function

〈
IF(t)IF(t ′)

〉
S = 2kBT GL(1+ εcosγ(t ′))δ(t− t ′) . (A.12)

This limit is appropriate for |t− t ′| � ~
kBT . We thus assume eq. (A.12) to be valid for a sufficiently

slowly varying function γ(t). This is justified since in this case the system is never driven too far

away from thermal equilibrium and the quasiparticle relaxation occurs on a small time scale of

the order of τg =
~
∆
∼ ~

kBT .
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A.3.2 Dynamic noise

We now consider the noise across a biased junction. In the thermal noise limit, the junction

retains some memory of the initial conditions but over long times, the stationary phase leads

to stationary noise. In the biased case, the averaging of the noise at low frequencies limits the

range in which we can observe a phase dependence. In particular, if we consider the typical

shot-noise limit ~ωJ � kBT,~ω we find T FR(ω, t) = 1
2π

eV GL [1+ εcosγ(t)] however, the time

averaging of the noise for ω� ωJ makes the measurement of the phase dependence impossible

at present. We instead consider the frequency range ωJ � ω� ωg where the approximate values

of ωJ ≈ 109Hz, and ωg ≈ 1012Hz place ω in the region 1010−1011Hz. Considering the limit in

which kBT → 0 we may write the TFR to lowest order in ωJ as

T FR(ω, t) =
1

2π
~ωGL [1+ εcosγ(t) ] . (A.13)

While this resembles a phase dependent quantum noise, it applies in the limit ω� ωg where the

current response is due to the regularization and this term should be reserved for the behavior

at ω� ωg where the spectral function indeed increases linearly with ~ω as we would expect

for the quantum noise limit. The full spectrum has been plotted in fig. A.3 across a period

of the Josephson current. Intermediate values have been chosen for the Josephson frequency

ωJ = 0.005ωg, and the regularization κ = 0.05. In the inset, its variation with time shows the

cosγ(t) dependence of eq. (A.13). The subgap noise amplitude shows a linear dependence on

κ in the range of interest. While the form in (A.13) applies for ω� ωg, fig. A.3 shows that in

the true quantum noise limit ω > ωg the phase dependence of the noise is strongly enhanced. In

the conclusion, we describe an experimental arrangement to detect the phase dependence in this

regime.

117



A.4 Conclusions

We have shown that the dissipative cosγ(t) term in the Josephson response gives rise to

non-stationary noise whose magnitude displays a similar cosγ(t) dependence in both a previously

noted thermal regime and a previously undescribed dynamic regime. In an unbiased junction, this

gives rise to a modulation of the normal thermal noise present at low frequencies with a magnitude

of variation comparable to that of the thermal noise itself. The presence of phase-dependent

thermal noise in the junction has not yet been observed experimentally.

In a biased junction, experimental confirmation requires fluctuation measurements at very

high frequency ω∼ 1010−1011Hz with a temporal resolution less than a period of the Josephson

phase ∆t ∼ 10−9s. While these conditions pose an experimental challenge we do not consider

them unreasonable and sketch a possible experimental approach towards their measurement.

To this end, we propose an arrangement along the lines of ref. [DOGK03] which utilizes a

superconductor-insulator-superconductor (SIS) junction as an on-chip spectrum analyzer when

capacitively coupled to the component of interest. A JJ which intentionally contains impurities

and with ∆JJ < ∆SIS, will exhibit fluctuations that dominate those of the SIS junction and which

are modulated by the cosγ(t) dependence. Through the capacitive coupling, these fluctuations

in the JJ would then subject the SIS junction to microwaves which will induce quasiparticle

tunneling.

The spectrum of these fluctuations may be read by biasing the SIS junction and measuring

the resulting quasiparticle current. As the total current is determined by the number of microwave

photons above the tunneling energy gap 2∆SIS− eVSIS the spectrum is given by the change in

the quasiparticle current as VSIS is varied. By tuning VSIS to be sensitive to photons just above

the JJ gap, ~ωg ≈ 2∆SIS− eVSIS, phase-dependent noise may be observed as a modulation of the

current through the SIS detector at the Josephson frequency of the first. By taking advantage

of the difference in the gaps, fluctuations above the JJ gap where quasiparticle currents and the
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phase dependence are enhanced, (see fig. A.3) may be measured in the range of the SIS detector.

Such an arrangement will require finite-frequency driving of the original junction, leading to

side-bands in the noise measurement.

A measurement of the phase dependent noise would provide another avenue for accessing

ε in addition to the direct measurements of the PDC. A more reliable determination of ε will allow

for a better understanding of the effects which determine its size and magnitude, giving a lens into

quasiparticle processes and disorder in these systems. Since obtaining long decoherence times is

a primary obstacle in building useful superconducting qubits, we expect quasiparticle effects to

be of increasing importance in technological applications. The presence of a phase dependent

term in the dissipative current and noise may also have consequences for the lifetime of the

superconducting state and motion of solitons in JJ used as detectors [VGS14, SGM+17] and could

lead to interesting dynamical effects. Lastly, in the interferometer mentioned previously [PDV14b]

the supercurrent is confined to the superconducting loop, and thus is not accessible to determine the

junction phase. The presence of phase-dependent thermal noise means that a noise measurement

would be sufficient to determine the device phase, allowing for nondestructive readout of a

superconducting memristor.
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[LMS11] J. Leppäkangas, M. Marthaler, and G. Schön. Phase-dependent quasiparticle tun-
neling in josephson junctions: Measuring the cosϕ term with a superconducting
charge qubit. Phys. Rev. B, 84:060505, Aug 2011.

[LWB+11] M. Lenander, H. Wang, R. C. Bialczak, E. Lucero, M. Mariantoni, M. Neeley,
A. D. O’Connell, D. Sank, M. Weides, J. Wenner, T. Yamamoto, Y. Yin, J. Zhao,
A. N. Cleland, and J. M. Martinis. Measurement of energy decay in supercon-
ducting qubits from nonequilibrium quasiparticles. Phys. Rev. B, 84:024501, Jul
2011.

[MAA09] J. M. Martinis, M. Ansmann, and J. Aumentado. Energy decay in superconducting
josephson-junction qubits from nonequilibrium quasiparticle excitations. Phys.
Rev. Lett., 103:097002, Aug 2009.

[Mat17] The Mathworks, Inc., Natick, Massachusetts. MATLAB version 9.3.0.713579
(R2017b), 2017.

[MAX] Max-sat 2016. Accessed: 2017-06-30.

[MKT17] Salvatore Mandra, Helmut G Katzgraber, and Creighton Thomas. The pitfalls
of planar spin-glass benchmarks: raising the bar for quantum annealers (again).
Quantum Science and Technology, 2(3):038501, 2017.

127



[MM09] M Mezard and A Montanari. Information, Physics, and Computation. Oxford
University Press, 2009.

[MM11] Cristopher Moore and Stephan Mertens. The Nature of Computation. Oxford
University Press, Inc., New York, NY, USA, 2011.

[MOL+99] J. E. Mooij, T. P. Orlando, L. Levitov, L. Tian, C. H. van der Wal, and S. Lloyd.
Josephson persistent-current qubit. Science, 285(5430):1036–1039, 1999.

[Mor93] Paul Morris. The breakout method for escaping from local minima. In AAAI 93,
1993.
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