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ART ICLE Open Ac ce s s

ADGRL3 (LPHN3) variants predict
substance use disorder
Mauricio Arcos-Burgos1,2,3, Jorge I. Vélez 1,4, Ariel F. Martinez 1, Marta Ribasés 5,6,7, Josep A. Ramos-Quiroga5,6,7,8,
Cristina Sánchez-Mora5,6,7, Vanesa Richarte6,7,8, Carlos Roncero 6,7,8,9, Bru Cormand 10,11,12,13,
Noelia Fernández-Castillo10,11,12,13, Miguel Casas5,6,7,8, Francisco Lopera14, David A. Pineda14, Juan D. Palacio14,
Johan E. Acosta-López15, Martha L. Cervantes-Henriquez4,15, Manuel G. Sánchez-Rojas15, Pedro J. Puentes-Rozo15,16,
Brooke S. G. Molina17, MTA Cooperative Group, Margaret T. Boden18, Deeann Wallis19, Brett Lidbury20,
Saul Newman 20, Simon Easteal 20, James Swanson21,22, Hardip Patel23, Nora Volkow 24, Maria T. Acosta1,
Francisco X. Castellanos 25,26, Jose de Leon 18, Claudio A. Mastronardi2,27 and Maximilian Muenke1

Abstract
Genetic factors are strongly implicated in the susceptibility to develop externalizing syndromes such as attention-
deficit/hyperactivity disorder (ADHD), oppositional defiant disorder, conduct disorder, and substance use disorder
(SUD). Variants in the ADGRL3 (LPHN3) gene predispose to ADHD and predict ADHD severity, disruptive behaviors
comorbidity, long-term outcome, and response to treatment. In this study, we investigated whether variants within
ADGRL3 are associated with SUD, a disorder that is frequently co-morbid with ADHD. Using family-based, case-control,
and longitudinal samples from disparate regions of the world (n= 2698), recruited either for clinical, genetic
epidemiological or pharmacogenomic studies of ADHD, we assembled recursive-partitioning frameworks
(classification tree analyses) with clinical, demographic, and ADGRL3 genetic information to predict SUD susceptibility.
Our results indicate that SUD can be efficiently and robustly predicted in ADHD participants. The genetic models used
remained highly efficient in predicting SUD in a large sample of individuals with severe SUD from a psychiatric
institution that were not ascertained on the basis of ADHD diagnosis, thus identifying ADGRL3 as a risk gene for SUD.
Recursive-partitioning analyses revealed that rs4860437 was the predominant predictive variant. This new
methodological approach offers novel insights into higher order predictive interactions and offers a unique
opportunity for translational application in the clinical assessment of patients at high risk for SUD.

Introduction
Substance use disorders (SUD) and addiction represent

a global public health problem of substantial socio-
economic implications1,2. In 2010, 147.5 million cases of

alcohol and drug abuse were reported (Whiteford et al.,
2015), and SUD prevalence is expected to increase over
time. Genetic factors have been implicated in SUD etiol-
ogy, with genes involved in the regulation of several
neurobiological systems (including dopaminergic and
glutamatergic) found to be important (for a review see
Prom-Wormley et al., 20173). However, limitations
intrinsic to most genetic epidemiological studies support
the search for additional risk genes.
Attention-deficit/hyperactivity disorder (ADHD), the

most common neurodevelopmental behavioral dis-
order4,5, is frequently co-morbid with disruptive behaviors
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such as oppositional defiant disorder (ODD), conduct
disorder (CD), and SUD6,7. The close association between
ADHD and disruptive behaviors is summarized by long-
itudinal observations in ADHD cohorts6,8,9. Children
diagnosed with ADHD monitored during the transition
into adolescence exhibit higher rates of alcohol, tobacco,
and psychoactive drug use than control groups of children
without ADHD10,11. It has been estimated that the life-
time risk for SUD is ~50% in subjects with childhood
ADHD persisting into adulthood12,13. Reciprocally, the
prevalence of ADHD is high in adolescents with
SUD9,14,15 and the presence of an ADHD diagnosis affects
SUD prognosis, with ADHD being associated with both
earlier and more frequent alcohol-related relapses16 and
lower likelihood of cannabis-dependence treatment
completion17.
Strong evidence from family, twin, and genome-wide

linkage and association studies suggests that genetic fac-
tors play a crucial role in shaping the susceptibility to both
ADHD and SUD18–21. During the last 15 years, we have
collected families clustering individuals affected with
ADHD and disruptive behaviors from disparate regions
around the world6,18,22,23. Although the prevalence of
ADHD co-morbid with disruptive behaviors is variable
across populations, we found a higher frequency of CD,
ODD, and SUD (mainly nicotine dependence and alcohol
abuse) in ADHD individuals than in unaffected rela-
tives6,22,24. Using genome-wide data from extended mul-
tigenerational families, we found evidence of linkage of
ADHD to markers in chromosomes 4q13.2, 5q33.3,
8q11.23, 11q22, and 17p1125, and co-segregation of
ADHD and disruptive behaviors with loci at 2p21-22.3,
4q13.2, 5p13.1-p13.3, 8q24, 8q15, 11q22, 12p11.23-13.3,
and 14q21.1-22.28. Fine mapping of the 4q13.2 region
identified variants in the adhesion G-protein-coupled
receptor L3 gene (ADGRL3, also known as latrophilin 3 or
LPHN3) that predispose to ADHD22,24,26–30.
Characterization of the association between ADHD and

ADGRL3 has provided key information to better predict
the severity of ADHD, the long-term outcome, the pat-
terns of brain metabolism, and the response to stimulant
medication24,27,29,31–34. To the best of our knowledge,
ADGRL3 linkage and association results represent some
of the most robustly replicated genetic and pharmaco-
genetic findings in ADHD genetic research. While
ADGRL3 has also shown association with disruptive
behaviors in the context of ADHD18,24,35, a direct link to
SUD has not been systematically investigated. In this
manuscript we tested the hypothesis that ADHD risk
variants harbored at the ADGRL3 locus interact with
clinical, demographic, and environmental variables
associated with SUD.

Subjects and methods
Subjects
We used independent populations from disparate

regions of the world (n= 2698) ascertained through
patients affected with ADHD co-morbid with disruptive
behaviors (Paisa, Spanish and MTA samples) or SUD
(Spanish and Kentucky samples).

Paisa sample
This population isolate is unique in that it was used to

identify ADHD susceptibility genes by linkage and asso-
ciation strategies. Detailed clinical and demographic
information on this sample has been published else-
where23,25,29. The sample consists of 1176 people (adults,
adolescents, and children), mean age 28 ± 17 years,
ascertained from 18 extended multigenerational and 136
nuclear Paisa families inhabiting the Medellin metropo-
litan area in the State of Antioquia, Colombia. Initial
coded pedigrees were obtained through a fixed sampling
scheme from a parent or grandparent of an index proband
after having collected written informed consent from all
subjects or their parent/guardian, as approved by the
University of Antioquia and the NIH Ethics Committees,
and in accordance with the Helsinki Declaration. Patients
were recruited under NHGRI protocol 00-HG-0058
(NCT00046059).
Exclusion criteria for ADHD participants were IQ < 80,

or any autistic or psychotic disorders. Parents underwent
a full psychiatric structured interview regarding their
offspring (Diagnostic Interview for Children and Adoles-
cents—Revised—Parents version (DICA-IV-P, Spanish
version translated with permission from Dr. Wendy Reich
(Washington University, St. Louis). All adult participants
were assessed using the Composite International Diag-
nostic Interview (CIDI), as well as the Disruptive Behavior
Disorders module from the DICA-IV-P modified for ret-
rospective use. The interview was conducted by a “blind”
rater (either a psychologist, a neuropsychologist, or a
psychiatrist) at the Neurosciences Clinic of the University
of Antioquia, or during home visits. ADHD status was
defined by the best estimate method. Specific information
regarding clinical diagnoses and co-morbid disruptive
disorders, affective disorders, anxiety, and substance use
has been published elsewhere3.
From the 1176 individuals in this cohort, only founder

members were included in analyses (n= 472). This was
done to avoid kinship relatedness bias and to exclude
children and adolescents, as they may have not been
exposed to substances of abuse yet. Of these 472 indivi-
duals, 17% (n= 79) fulfilled criteria for ADHD, 17% (n=
78) for ODD, 18% (n= 84) for CD, 22% nicotine depen-
dence (n= 102), 27% alcohol dependence (n= 124), 3%
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drug dependence (n= 12), 37% social/simple phobia (n=
156), 13% any other anxiety disorder (n= 58), and 25%
major depressive disorder (n= 117) (Table 1).

Spanish sample
The ADHD sample consisted of 670 adult ADHD

patients, mean age 33 ± 10 years, 69% males (n= 461),
recruited and evaluated at the Psychiatry Department of
the Hospital Universitari Vall d’Hebron (Barcelona, Spain)
according to DSM-IV TR criteria. ADHD diagnosis was
based on the Spanish version of the Conners Adult
ADHD Diagnostic Interview for DSM-IV (CAADID)36.
Comorbidity was assessed by Structured Clinical Inter-
view for DSM-IV Axis I and Axis II Disorders (SCID-I
and SCID-II). ODD during childhood and adolescence
was retrospectively evaluated with the Schedule for
Affective Disorders and Schizophrenia (SADS) for

Table 1 A concise description of the cohorts’ principal
demographic and clinical data.

Paisa

sample

Spanish

sample

MTA

sample

Kentucky

sample

n % n % n % n %

Sex

Males 231 49% 1193 72% 287 76% 285 53%

Females 241 51% 454 28% 89 24% 248 47%

Total 472 100% 1647 100% 376 100% 533

ADHD

Affected 79 17% 670 41% 140 37% a a

Unaffected 249 53% 486 29% 236 63% a a

Unknown 144 30% 491 30% 376 100% a a

ODD

Affected 78 17% 81 5% a a a a

Unaffected 250 53% 391 24% a a a a

Unknown 144 30% 1175 71% a a a a

CD

Affected 84 18% 102 6% a a a a

Unaffected 244 52% 357 22% a a a a

Unknown 144 30% 1188 72% a a a a

Nicotine

Affected 102 22% 646 39% 97 26% 372 70%

Unaffected 226 48% 613 37% 40 11% 161 30%

Unknown 144 30% 388 24% 239 63% 0 0%

Alcohol

Affected 124 27% 396 24% 120 32% 342 64%

Unaffected 204 43% 637 39% 106 28% 191 36%

Unknown 144 30% 614 37% 150 40% 0 0%

Cannabis

Affected a a a a 94 25% a a

Unaffected a a a a 71 19% a a

Unknown a a a a 211 56% a a

Other drugs

Affected 12 3% a a a a 147 28%

Unaffected 197 56% a a a a 386 72%

Unknown 263 41% a a a a 0 0%

SUD

Affected a a 768 47% a a 452 85%

Unaffected a a 879 53% a a 81 15%

Unknown a a 0 0% a a a a

Table 1 continued

Paisa

sample

Spanish

sample

MTA

sample

Kentucky

sample

n % n % n % n %

Phobias

Affected 156 37% 50 3% a a a a

Unaffected 172 33% 584 36% a a a a

Unknown 144 30% 1013 61% a a a a

Anxiety

Affected 58 13% 107 6% a a a a

Unaffected 270 57% 818 50% a a a a

Unknown 144 30% 722 44% a a a a

Depression

Affected 117 25% 143 9% a a a a

Unaffected 211 45% 490 30% a a a a

Unknown 144 30% 1014 61% a a a a

Mood

Affected a a a a a a 157 29%

Unaffected a a a a a a 376 71%

Unknown a a a a a a 0 0%

Schizophrenia

Affected a a a a a a 253 47%

Unaffected a a a a a a 280 53%

Unknown a a a a a a 0 0%

For the Paisa cohort, only information for founder members (adults) used in the
ARPA-based predictive model for SUD is shown. See Methods section for more
details
ADHD attention-deficit/hyperactivity disorder, CD conduct disorder, ODD
oppositional defiant disorder, SUD substance use disorders
aData not available
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School-Age Children, Present and Lifetime Version (K-
SADS). Thirty-nine percent of ADHD patients (n= 263)
fulfilled diagnostic criteria for SUD, 21% for disruptive
behavior disorders (CD and/or ODD; n= 142), 21% for
depression (n= 143), 13% for anxiety (n= 89), and 8% for
phobias (n= 50). The level of impairment was measured
with the Clinical Global Impression (CGI) included in the
CAADID Part II and the Sheehan Disability Inventory.
Exclusion criteria for ADHD patients were IQ < 80; per-
vasive developmental disorders; schizophrenia or other
psychotic disorders; presence of mood, anxiety or per-
sonality disorders that might explain ADHD symptoms;
birth weight ≤ 1.5 kg; and other neurological or systemic
disorders that might explain ADHD symptoms.
The SUD sample consisted of 494 adults (mean age

37 ± 9 years and 76% males, n= 376) recruited and eval-
uated at the Addiction and Dual Diagnosis Unit of the
Psychiatry Department at the Hospital Universitari Vall
d’Hebron with the Structured Clinical Interview for DSM-
IV Axis I Disorders (SCID-I). All patients fulfilled DSM-
IV criteria for drug dependence beyond nicotine depen-
dence. None were evaluated for ADHD.
The control sample consisted of 483 blood donors

(mean age 42 ± 20 years, 74% males) in which DSM-IV
lifetime ADHD symptomatology was excluded under the
following criteria: (1) not having been diagnosed with
ADHD and (2) answering negatively to the lifetime pre-
sence of the following DSM-IV ADHD symptoms: (a)
often has trouble keeping attention on tasks, (b) often
loses things needed for tasks, (c) often fidgets with hands
or feet or squirms in seat, and (d) often gets up from seat
when remaining in seat is expected. Individuals affected
with SUD were excluded from this sample. None of them
had self-administered drugs intravenously. It is important
to mention that the exposure criterion was not applied;
therefore, this set cannot be classified as “pure” controls.
All patients and controls were Spanish of Caucasian

descent. This study was approved by the ethics committee
of the Hospital Universitari Vall d’Hebron and informed
consent was obtained from all subjects in accordance with
the Helsinki Declaration.

MTA sample
The Multimodal Treatment Study of Children with

ADHD (MTA) was designed to evaluate the relative effi-
cacy of treatments for childhood ADHD, combined sub-
type, in a 14-month randomized controlled trial of 579
children assigned to four treatment groups: medication
management, behavior modification, their combination,
and treatment as usual in community care. After the 14-
month treatment-by-protocol phase, the MTA continued
as a naturalistic follow-up in which self-selected use of
psychoactive medication was monitored. A local norma-
tive comparison group of 289 randomly selected

classmates group-matched for grade and sex was added
when the ADHD participants were between 9–12 years of
age. The outcomes in childhood (14, 24, and 36 months
after baseline), and adolescence (6 and 8 years after
baseline) and into adulthood (12, 14, and 16 years after
baseline) have been reported10,11,37–43. Substance use was
assessed with a child/adolescent-reported questionnaire
adapted for the MTA11,43. The measure included items
for lifetime and current (previous 6 months) use of
alcohol, cigarettes, tobacco, cannabis, and other recrea-
tional drugs. Also included were items for non-prescribed
use or misuse of psychoactive medications, including
stimulants. The measure was modeled after similar sub-
stance use measures in longitudinal or national survey
studies of alcohol and other drug use that also rely on
confidential youth self-report as the best source of
data44,45. A National Institutes of Health (NIH) Certificate
of Confidentiality further strengthened the assurance of
privacy. Substance use was coded positive if any of the
following behaviors, selected after examining distribu-
tions, were endorsed as occurring in the participant’s
lifetime up to 8 years post-baseline: (1) alcohol con-
sumption (more than just a sip) more than five times or
drunk at least once; (2) cigarette smoking or tobacco
chewing more than a few times; (3) cannabis use more
than once; or (4) use of inhalants, hallucinogens, cocaine,
or any of amphetamines/stimulants, barbiturates/seda-
tives, and opioids/narcotics without a prescription or
misused a prescription (used in greater quantity or more
often than prescribed). Each of the four types of sub-
stances, as well as daily use of tobacco and the number of
substance use classes endorsed (0, 1, 2, or more), were
explored in secondary analyses.
DSM-IV abuse or dependence was based on a positive

parent or child report with the Diagnostic Interview
Schedule for Children version 2.3/3.0 (DISC)46 at the 6-
and 8-year follow-up assessments. The DISC includes
both lifetime and past year diagnoses. The Diagnostic
Interview Schedule-IV47 was used at the 8-year follow-up
for 18+ year-olds (n= 111). SUD was defined as the
lifetime presence of any abuse or dependence (excluding
tobacco dependence, due to differences in the meaning of
abuse/dependence for tobacco versus other substances).
Additional analyses explored SUD for alcohol, tobacco,

and cannabis/other drugs (recreational or misused pre-
scription medications) separately10. All patients in this
study provided informed written consent as approved by
the NIH Ethics Committee.

Kentucky sample
A sample of 560 inpatients and outpatients with severe

SUD from Central Kentucky psychiatric facilities was
collected during a pharmacogenetics investigation48.
Patient interviews and medical record information

Arcos-Burgos et al. Translational Psychiatry            (2019) 9:42 Page 4 of 15



(including urine drug screens and substance abuse
counselor notes) were used by the research nurse to assess
the Clinician Rating of Alcohol (CRAUD) and Drug Use
Disorder (CRDUD)49,50 that provides a score from 1=
abstinence (not used in the assessed period) to 5= severe
dependence. Scores of 3 and higher are pathological and
were considered positive in our analyses. All drugs were
combined into one rating48. Descriptions of the training
provided to research nurses to assess the CRAUD and
CRDUD were published elsewhere48,51.
DNA was available from 533 of 560 study subjects. Of

the 533 subjects with available DNA, 53% (n= 285) were
male, 82% (n= 436) were Caucasian, 16% (n= 87) were
African American, and 2% (n= 10) were from other
ethnicities. Additional clinical information for this sample
has been described elsewhere48,51 and included: (1) clin-
ical diagnosis obtained from medical records, (2) prior
psychiatric history, (3) history of daily smoking, (4)
reviews of current and psychiatric medication use, and (5)
body mass index (Supplemental Table 2). All participants
in the Kentucky study provided informed written consent
as approved by the University of Kentucky IRB.

Genotyping
DNA was extracted from whole blood (Paisa, Spanish

and MTA sample) or buccal swabs (Kentucky sample)
using standard protocols. The Paisa sample was geno-
typed using the service provided by Illumina (San Diego,
CA). The Spanish, MTA, and Kentucky samples were
genotyped for select variants using pre-designed TaqMan®

SNP genotyping assays (Thermo Fisher Scientific, Wal-
tham, MA). Allelic discrimination real-time PCR reac-
tions were performed in a 384-well plate format for each
individual sample according to the manufacturer’s
instructions. Briefly, 20 ng of genomic DNA were mixed
with 2.5 μL of 2X TaqMan Universal PCR Master Mix and
0.25 μL of 20X SNP Genotyping Assay in a total volume of
5 μL per reaction. Assays were run in an ABI 7900HT Fast
Real-Time PCR System (Thermo Fisher Scientific). Allele
calling was made by end-point fluorescent signal analysis
using the ABI’s SDS2.3 software. In addition, we had
previously collected exome genotype data from the MTA
sample26 using the Infinium® HumanExome-12 v1.2
BeadChip kit (Illumina), which covers putative functional
exonic variants selected from over 12,000 individual
exome and whole-genome sequences. Processed and raw
intensity signals for the array data can be accessed at GEO
(GSE112652). SNP markers harbored at the ADGRL3
gene were filtered in from this dataset and added to those
genotyped using TaqMan® assays.

Dataset quality control and preparation for analysis
Genotype data were imported into Golden Helix® SVS

8.3.1 (Golden Helix, Bozeman, MT) for quality control

analysis. Markers with a minor allele frequency (MAF) <
0.01 (rare variants), significant deviation from
Hardy–Weinberg equilibrium (P-values < 0.0001), and a
genotyping success rate < 90%, were excluded. For the
Paisa and Spanish samples, a subset of variants in the
ADGRL3 minimal critical region (MCR), 5′UTR and 3′
UTR were selected based on a previous ADHD associa-
tion study30. Because the Paisa sample is a family-based
cohort and recursive-partitioning analysis does not cor-
rect for kinship relatedness, only founder members from
the pedigrees were included in the analyses. For the MTA
sample, a total of 8568 markers with a MAF ≥ 1.0 % from
the 244,414 markers genotyped with the exome chip were
filtered out using linkage disequilibrium (LD) pruning,
and variants within ADGRL3 were selected for analyses.
For the Kentucky sample, only four ADGRL3 variants
were selected for analyses after LD pruning of a list of
markers located within the ADGRL3 5′UTR and MCR
regions that was available to us. Variants rs7659636 and
rs5010235 had been imputed from ADHD genome-wide
association data funded through the Genetics Analysis
Information Network (GAIN) initiative, a public-private
partnership between the NIH and the private sector
(https://www.genome.gov/19518664/genetic-association-
information-network-gain/#al-4). ADGRL3 variants used
in this study for each cohort are presented in Supple-
mental Table 3.

Advanced recursive-partitioning (tree-based) approach
(ARPA)
Association studies of ADGRL3 variants with ADHD,

ODD, CD, response to stimulant treatment and severity
outcome have been published elsewhere for the Paisa and
Spanish populations24,29,32,52. We used ARPA to build a
predictive framework to forecast the behavioral outcome
of children with ADHD, suitable for translational appli-
cations. Our goal was to test the hypothesis that ADGRL3
variants predisposing to ADHD also increase the risk of
co-morbid disruptive symptoms, including SUD.
ARPA is a tree-based method widely used in predictive

analyses because it accounts for non-linear and interac-
tion effects, offers fast solutions to reveal hidden complex
substructures and provides truly non-biased statistically
significant analyses of high-dimension, seemingly unre-
lated data53. In a visionary manuscript, D.C. Rao sug-
gested that recursive-partitioning techniques could be
useful for genetic dissection of complex traits54. ARPA
accounts for the effect of hidden interactions better than
alternative methods, and is independent of the type of
data (i.e., categorical, continuous, ordinal, etc.) and of the
type of data distribution (i.e., fitting or not fitting nor-
mality)54. Furthermore, results supplied by tree-based
analytics are easy to interpret visually and logically53.
Therefore, to generate the most comprehensive and
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parsimonious classificatory model to predict the sus-
ceptibility to disruptive behaviors, we applied ARPA using
a set of different modules implemented in the Salford
Predictive Modeler® (SPM) software, namely, Classifica-
tion and Regression Trees (CART), Random Forest, and
TreeNet (http://www.salford-systems.com). One impor-
tant advantage of SPM when compared to other available
data mining software is its ability to use raw data with
sparse or empty cells, a problem frequently encountered
in genetic data.
Briefly, CART is a non-parametric approach whereby a

series of recursive subdivisions separate the data by
dichotomization55. The aim is to identify, at each partition
step, the best predictive variable and its best corre-
sponding splitting value while optimizing a splitting sta-
tistical criterion, so that the dataset can be successfully
split into increasingly homogeneous subgroups55. We
used a battery of different statistical criteria as splitting
rules (e.g., GINI Index, Entropy, and Twoing) to deter-
mine the splitting rule, maximally decreasing the relative
cost of the tree while increasing the prediction accuracy of
target variable categories55. The best split at each
dichotomous node was chosen by either a measure of
between-node dissimilarity or iterative hypothesis testing
of all possible splits to find the most homogeneous split
(lowest impurity). Similarly, we used a wide range of
empirical probabilities (priors) to model numerous sce-
narios recreating the distribution of the targeted variable
categories in the population55. Following this iterative
process, each terminal node was assigned to a class out-
come. To avoid finishing with an over-fitted CART pre-
dictive model (a common problem in CART analyses),
and to ensure that the final splits were well substantiated,
we applied tree pruning. During the procedure, predictor
variables that were close competitors (surrogate pre-
dictors with comparable overall classification error to the
optimal predictors) were pruned to eliminate redundant
commonalities among variables, so the most parsimo-
nious tree would have the lowest misclassification rate for
an individual not included in the original data55.
Additionally, we applied the Random Forest (RF)

methodology using a bagging strategy to exactly identify
the most important set of variables predicting disruptive
behaviors56. The RF strategy differs from CART in the use
of a limited number of variables to derive each node while
creating hundreds to thousands of trees. This strategy has
proved to be immune to the over fitting generated by
CART56. In RF, variables that appeared repeatedly as
predictors in the trees were identified. The misclassifica-
tion rate was recorded for each approach.
The TreeNet strategy was used as a complement to the

CART and RF strategies because it reaches a level of
accuracy that is usually not attainable by single models

such as CART or by ensembles such as bagging (i.e.,
RF)57. The TreeNet algorithm generates thousands of
small decision trees built in a sequential error-correcting
process converging on an accurate model57. The number
of variables considered to derive each node with RF was
ffiffiffi

n
p

, where n is the number of independent variables
(either 3 or 4).
To derive honest assessments of the derived models and

have a better view of their performance on future unseen
data, we applied a cross-validation strategy where both
training with all the data and then indirectly testing with
all the data were performed. To do so, we randomly
divided the data into separate partitions (folds) of differ-
ent sizes. This strategy allowed us to review the stability of
results across multiple replications55. We used a 10-fold
cross-validation as implemented in the SPM software.
A fixed-effects meta-analysis of the overall fraction of

correctly classified individuals (accuracy) using the
derived models from each of the four samples was applied
to derive a general perspective of the SUD predictive
capacity of this demographic-clinical-genetic framework.

Results
A series of predictive models were built on our data

using combinations of the following criteria: (i) the rules
of splitting (GINI index, twoing, order twoing, and
entropy); (ii) the priors; (iii) the size of the terminal nodes;
(iv) the costs; (v) the depth of branching; and (vi) the size
of the folds for cross-validation, to maximize the accuracy
of the derived classification tree while considering class
assignment, tree pruning, testing and cross-validation.
A parsimonious and informative reconstructed pre-

dictive tree derived from CART for the Paisa sample
revealed demographic (age), clinical (CD), and genetic
variables (rs5010235 and rs4860437) (Fig. 1a). The
importance of these variables was corroborated, and their
potential over fitting discarded by the TreeNet analyses
that revealed a set of predictors for SUD containing those
derived by CART (Fig. 1b). This predictive model displays
good sensitivity and specificity as shown by areas under
the receiver-operating characteristic (ROC) curve (0.954
and 0.87 for the learning and the test data, respectively)
during TreeNet cross-validation using folding (Fig. 1c).
The proportions of misclassification for SUD cases in the
cross-validation experiment for the learning and testing
data were 0.124 and 0.177, respectively (Fig. 1d).
In the case of the Spanish sample, a parsimonious and

informative tree was reconstructed with CART revealing
demographic (sex), clinical (CD, ODD, depression, and
ADHD), and genetic variables (rs4860437 and rs1868790)
(Fig. 2a). The TreeNet analysis revealed a set of predictors
for SUD containing those derived by CART (Fig. 2b). This
predictive model displayed good sensitivity and specificity
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as shown by areas under the ROC curve (AUC) of 0.911
and 0.897 for learning and testing samples, respectively,
during TreeNet cross-validation using folding (Fig. 2c).
The proportions of misclassification for SUD cases
obtained by TreeNet analysis for learning and testing data
were 0.151 and 0.175, respectively (Fig. 2d).
As in the previous cohorts, for the MTA sample we

derived a parsimonious and informative predictive tree
with CART depicting demographic (site of ascertain-
ment), and genetic variables (rs2172802, rs61747658,
rs12509110, and rs6856328) (Fig. 3a). The TreeNet ana-
lyses revealed a set of predictors for SUD containing those

derived by CART (Fig. 3b). This predictive model displays
good sensitivity and specificity as showed by AUC of 0.808
and 0.643 for learning and testing samples, respectively,
during TreeNet cross-validation using folding (Fig. 3c).
The proportions of misclassification for SUD cases
obtained by TreeNet analysis for learning and testing data
were 0.314 and 0.358, respectively (Fig. 3d).
Finally, for the Kentucky sample, we derived a parsi-

monious and informative predictive tree with CART
involving demographic (sex), clinical (high body mass
index (HBMI) and schizophrenia diagnosis), and genetic
variables (rs4860437 and rs7659636) (Fig. 4a). The

Fig. 1 Advanced Recursive Partitioning Analysis (ARPA) for the Paisa sample. a Derived Classification and Regression Tree (CART) for SUD status
as categorical target variable (disjunctive affection status, i.e., substance use of either alcohol, or nicotine, or other drugs). Only founder individuals
were included in the analysis to avoid kinship relatedness bias. Class 0 (unaffected) is indicated in red and class 1 (affected) in blue. This derived tree
for the Paisa sample included demographic (age), clinical (conduct disorder (CD)), and genetic variables (markers rs5010235 and rs4860437). The T
allele of the rs4860437 variant (node 4) generates a highly discriminant split in combination with age (45.5 years) to terminal node 3 of ADHD
individuals without CD (see root node 1). b Variable importance scores derived by Random Forest and TreeNet analysis were compatible with the
variables included in the tree derived by CART. c, d TreeNet analysis to maximize the ROC area and minimize the classification error using 200 trees.
The areas under the ROC curve (AUC) were 0.954 and 0.87 for learning and testing samples (blue and red curves and values, respectively), while the
proportions of misclassification for SUD cases in the cross-validation experiment were 0.124 and 0.177 for learning and testing data sets, respectively
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TreeNet analyses revealed a set of predictors for SUD
containing those derived by CART (Fig. 4b). This pre-
dictive model displays good sensitivity and specificity as
showed by AUC of 0.811 and 0.744 for learning and
testing samples, respectively, during TreeNet cross-
validation using folding (Fig. 4c). The proportions of
misclassification for SUD cases obtained by TreeNet
analysis for learning and testing data were 0.285 and
0.252, respectively (Fig. 4d). The results from the RF
analysis were consistent with those produced by TreeNet
cross-validation using folding.
A fixed-effects meta-analysis for overall accuracy

returned a value of 0.727 (95% CI= 0.710–0.744) (Fig. 5),
suggesting potential eventual clinical utility of predictive

values. Overall, ADGRL3 marker rs4860437 was the most
important variant predicting susceptibility to SUD, a
commonality suggesting that these networks may be
accurate in predicting the development of SUD based on
ADGRL3 genotypes.
We conducted independent analyses for alcohol or

nicotine dependence and compared these results with
those of our composite SUD phenotype, as defined by the
disjunctive presence of substance use phenotypes and
explained by likely common neuropathophysiological
mechanisms. In general, across cohorts, we found sig-
nificant alcohol and nicotine risk variants, some of which
have reasonably high odd ratios (OR). For instance, in the
Spain sample, marker rs2271339 conferred significant risk

Fig. 2 ARPA for the Spanish sample. a Derived tree by CART for SUD status as categorical target variable (disjunctive affection status, i.e., substance
use of either alcohol, or nicotine, or other drugs). This derived tree for the Spanish sample included demographic (sex), clinical (CD, ODD, depression,
and ADHD), and genetic variables (markers rs677642, rs4860437, rs1868790). b Variable importance scores derived by Random Forest and TreeNet
analysis were compatible with the variables included in the tree derived by CART. c, d TreeNet analysis to maximize the AUC and minimize the
classification error using 200 trees. The AUC were 0.911 and 0.897 for learning and testing samples while the proportions of misclassification for SUD
cases in the cross-validation experiment were 0.151 and 0.175 for learning and testing data sets, respectively. Conventions as in Fig. 1
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to nicotine use: the heterozygote genotype A/G confers
43% increased risk of being diagnosed with nicotine use
(OR= 1.43, 95% CI= 1.12–1.82). In the same vein, we
found in the Paisa sample that the heterozygote A/T
genotype for rs1456862 confers 83% increased risk to
nicotine use (corrected OR= 1.84, 95 CI%= 1.03–3.38)
than the A/A genotype. Regarding alcohol use, we found
in the Paisas that the heterozygote C/T genotype for
rs2159140 confers susceptibility, whereas the C/C geno-
type does not (corrected OR= 1.64, 95 CI%= 1.01–2.72).
Supplemental Fig. 1 shows the ROC curves of nicotine
and alcohol use prediction in the Paisa sample. Note that

the AUC is greater than 0.7 in both cases, which suggests
a straight performance of markers rs1456862 and
rs2159140 in predicting nicotine and alcohol use,
respectively.
To determine the significance of improvement of pre-

diction when genetic markers are introduced in the
ARPA-based predictive model for SUD, we compared the
performance measures (i.e., sensitivity, specificity, classi-
fication rate, and lift) across all cohorts under two dis-
junctive scenarios: inclusion of genetic markers or not.
We found that including genetic markers improved the
performance measures of the resulting ARPA-based

Fig. 3 ARPA for the MTA sample. a Derived tree by CART for the SUD status as categorical target variable (disjunctive affection status, i.e., substance
use of either alcohol, or nicotine, cannabis, or other drugs). As the MTA is a longitudinal study, we used SUD status at 96 and 120 month follow-ups
and applied a lag analysis of SUD emergence. The derived tree included demographic (site of ascertainment), and genetic variables (markers
rs2172802, rs61747658, rs12509110, and rs6856328). The combination of variants rs61747658 and rs2172802 generated an important discriminant
splitting of SUD affected and unaffected classes. b Variable importance scores derived by Random Forest and TreeNet analysis were compatible with
the variables included in the tree derived by CART. c, d TreeNet analysis to maximize ROC area and minimize classification error using 200 trees. The
AUC were 0.808 and 0.643 for learning and testing samples, while the proportions of misclassification for SUD cases in the cross-validation
experiment, for learning and testing data were 0.314 and 0.358, respectively. Conventions as in Fig. 1
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predictive model of SUD, regardless of cohort (Supple-
mental Fig. 2 and Supplemental Table 1). For instance, the
AUC for the Spain sample was 81.6% (95% CI=
79.8–83.4) when genetic information was included, and

77.5 (95% CI= 75.9–79.1) when it was excluded. A
bootstrap-based test with 10,000 replicates revealed that
the former AUC was statistically greater than the latter (P
< 0.0001, Supplemental Table 1). Similar results were

Fig. 4 ARPA for the Kentucky sample. a Derived CART tree for SUD status as categorical target variable (disjunctive affection status, i.e., substance
use of either alcohol, or nicotine, or other drugs). This derived tree for the Kentucky sample included demographic (sex), clinical (high Body Mass
index [HBMI], and schizophrenia diagnosis), and genetic variables (markers rs4860437 and rs7659636). Notably, the T allele of the rs4860437 variant
generated a split in the same direction as occurred for the derived tree in the Paisa and in the Spain samples. b Variable importance scores derived by
Random Forest and TreeNet analysis were compatible with the variables included in the tree derived by CART. c, d TreeNet analysis to maximize ROC
area and minimize classification error using 200 trees. The AUC were 0.811 and 0.744 for learning and testing samples, respectively, while the
proportions of misclassification for SUD cases in the cross-validation experiment, for learning and testing data were 0.285 and 0.252, respectively.
Conventions as in Fig. 1

Fig. 5 Fixed-effects meta-analysis for the prediction accuracy of the ARPA-based predictive model for SUD derived in each cohort. The
overall SUD correct classification rate is ~73%. CI Confidence Interval, SE Standard Error, Z test statistic, P P-value
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obtained for the Paisa sample: the AUC was 90% (95% CI
= 86.6–93.0) when genetic information was included
versus 78.8% (95% CI= 75.8–81.7) when it was not (P <
0.0001, Supplemental Table 1). Improvements were also
observed in the correct classification rate for the Spanish
and Paisa samples, the sensitivity values in all samples, the
specificity in the Spanish and Paisa samples, and the lift in
the Paisa sample (Supplemental Table 1). Similar results
were observed for the MTA and Kentucky samples, where
including genetic information in the predictive model for
SUD drastically improved these performance measures
(Supplemental Table 1).

Discussion
SUD genetic epidemiological studies across multiple

substances have been plagued with inconsistency in the
replication of genetic association results. This may be due
to reasons such as: (i) small effect size of variants expected
to influence the SUD phenotype, as with any complex
disease;58 (ii) insufficient power to detect significant
associations due to small sample size;59 (iii) phenotypic
heterogeneity of SUD across samples that may reflect
different disease stages or multiple subtypes (i.e., single-
drug versus poly-drug dependence/use); (iv) genetic het-
erogeneity arising from distinct risk genes sets; (v) eth-
nicity inconsistencies between discovery and replication
samples;60,61 and (vi) comorbidity with other psychiatric
conditions (e.g., ADHD) with shared genetic and envir-
onmental architecture62,63. Consequently, additional stu-
dies are required to identify new SUD candidate genes
and to help dissect genetic contributions in the context of
complex interactions with co-morbid conditions.
In this study, we present a demographic, clinical and

genetic framework generated using ARPA that is able to
predict the risk of developing SUD. Interestingly, marker
rs4860437 showed a differential splitting pattern in the
Paisa, Spain, and Kentucky cohorts. For instance, in Fig.
1a, rs4860437 splits into (G/G, G/T) and T/T; in Fig. 2a,
the same variable splits into (G/G, T/T) and G/T; and in
Fig. 4a, it splits into (G/T, T/T) and G/G. The most
parsimonious and plausible explanation of this splitting
pattern is the presence of genomic variability surrounding
this proxy marker, reflecting ancestral composition.
Future studies of genomic regions surrounding rs4860437
might reveal a cryptic mechanism. It is particularly
compelling that ADGRL3 marker rs4860437, which is a
major predictor variable component in the trees for SUD,
is in complete LD with ADHD susceptibility markers
rs6551665 and rs1947274 in Caucasians28,30,52, suggesting
that the phenotype underpinning SUD is under the
pleiotropic effect of ADGRL3 variants. Unfortunately,
rs4860437 was not included in the exome chip used to
genotype the MTA sample and, therefore, could not be

included in the analyses for this sample. Given the limited
overlap of markers across datasets and possible stratifi-
cation differences among study populations, a gene-
rather than a marker-level approach has been
advocated64.
Adopting such a perspective, our results suggest that

genetic variants harbored in the ADGRL3 locus confer
susceptibility to SUD in populations from disparate
regions of the world. These populations are from three
different countries and involve different investigators,
diverse inclusion criteria, and different clinical assess-
ments, which suggests that our results may replicate in
other settings and are likely to be clinically relevant. Of
particular interest is the generalization of our findings to a
longitudinal study (the MTA sample), where adding
genetic information to baseline data predicted the devel-
opment of SUD at later ages, as determined from infor-
mation gathered over a period of more than 10 years.
Additionally, our results generalized to a sample of
patients with severe SUD from Kentucky (U.S.) that were
not ascertained on the basis of ADHD diagnosis.
The first genome-wide significant ADHD risk loci were

published recently65. Marker rs4860437 is not represented
in this dataset; however, this study was not aimed at
identifying loci shared between ADHD and SUD. In any
case, while genome-wide association studies are a useful
tool for discovering novel risk variants—as it involves a
hypothesis-free interrogation of the entire genome—the
lack of genetic association may be a reflection of the
polygenic, multifactorial nature of ADHD, with both
common and rare variants likely contributing small effects
to its etiology66–68. In addition, an important factor may
be the genetic heterogeneity of ADHD subtypes, which
may have different underlying genetic mechanisms.
Therefore, genome-wide significance may identify loci
with larger genetic effects, while others with smaller
effects remain undetected for a given population size.
Variation in ADGRL3 has been implicated in ADHD in

diverse populations24,27–29,31–34,69. ADGRL3 is a member
of the latrophilin subfamily of G-protein-coupled recep-
tors (GPCR)70 and is most strongly expressed in brain
regions implicated in the neurophysiological basis of
ADHD32,52,71. Mouse and zebrafish knockout models also
support ADGRL3 implication in ADHD pathophysiol-
ogy72,73. More recently, Martinez et al35. identified a
brain-specific transcriptional enhancer within ADGRL3
that contains an ADHD risk haplotype associated with
reduced ADGRL3 mRNA expression in the thalamus.
This haplotype was associated not only with ADHD, but
also with disruptive behaviors, including SUD35. A
member of the family of leucine-rich repeat transmem-
brane (FLRT) proteins has been identified as an endo-
genous postsynaptic ligand for latrophilins74. Interference
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with this interaction reduces excitatory synapse density in
cultured neurons and decreases afferent input strength
and dendritic spine number in dentate granule cells,
which implicates ADGRL3 and FLRT3 in glutamatergic
synapse development74. Similarly, convergent evidence
from a network analysis of a gene set significantly asso-
ciated and/or linked to ADHD and SUD revealed path-
ways involved in axon guidance, regulation of synaptic
transmission, and regulation of transmission of nerve
impulse18. These data altogether suggest that ADGRL3
may be an important SUD susceptibility gene.
Strong evidence from clinical and genetic association

studies suggests that genetic factors play a crucial role in
shaping the susceptibility to both ADHD and SUD75–81.
More strikingly, ADHD treatment has been shown to
reduce the risk of SUD82–84. Though the neurobiological
basis for this association remains unclear, a variety of
causal pathways from ADHD to SUD have been proposed
that involve conduct problems77,79. Clinical studies have
suggested that the link between SUD and ADHD dis-
appears after controlling for co-morbid CD84–86. In
agreement with these studies, the presence of CD was a
major predictor of SUD in the ARPA-based predictive
models for SUD in the Paisa and Spanish cohorts (both
assessed first for ADHD) (Figs. 1 and 2).
Some researchers implicate genetically mediated per-

sonality traits, such as impulsivity and lack of inhibitory
control (common to ADHD and disruptive behaviors) as a
link between ADHD and SUD resulting from common
neurological substrates87. Some investigators have pro-
posed that patients with ADHD use addictive substances
to self-medicate88 and that the differential response to
drugs of abuse and atypical behavioral regulation in
response to social cues (e.g., social modeling and peer
selection) may fuel substance use77,89. Others suggest that
the poor judgment and impulsivity associated with ADHD
contribute to the development of substance depen-
dence79. Clinical variables from childhood have also been
associated with SUD in patients with ADHD, such ADHD
subtype, temper characteristics (fear, accident propensity),
sexual abuse, suspension from school, and a family history
of ADHD13.
In summary, our results support a possible functional

role for ADGRL3 in modulating drug seeking behavior.
Regardless of the type of abused substance, longitudinal
studies generally find that the onset of ADHD precedes
that of SUD, suggesting that the psychopathology of
ADHD is not secondary to SUD in most patients79.
Accordingly, it is reasonable to consider that timely
diagnosis and treatment of ADHD with stimulant medi-
cation may reduce the occurrence and/or severity of SUD.
Based on the relationship with medication response30, we
speculate that ADGRL3 variants may underlie a

differential genetic susceptibility not only to SUD, but also
to the long-term protective effects of medication treat-
ment. Confirmation of such hypothesis would have sub-
stantial public health implications. Inasmuch as ADGRL3
participates in synaptic formation and function, its
involvement in SUD could be mediated by either influ-
encing brain development or moderating drug-induced
changes in synaptic strength. Molecular studies are
required to elucidate the pathogenic mechanism(s) asso-
ciated with ADGRL3 dysfunction in SUD.
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