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ABSTRACT OF THE THESIS

Two-Layer Radix Sorter Architecture for a Power-Efficient FPGA Bloom Filter

By

Tarun Sai Ganesh Nerella

Master of Science in Computer Science

University of California, Irvine, 2022

Assistant Professor Sang-Woo Jun, Chair

Bloom filters are a very important tool for many applications including genomics, where

they are used as a compact data structure for counting k-mers, represent de Bruijn graphs,

and more. However, their performance is often bound by the large filter size requirement in

genomics, and their random-access nature. Although accelerators such as FPGAs and GPUs

can easily remove the computation overhead of the multiple hash functions, the random ac-

cess performance of off-chip memory is still a bottleneck, calling for costly high-performance

memory. The solution we propose is BunchBloomer, which improves the cost-effectiveness of

FPGA Bloom filter accelerators by making better use of cheaper, lower-power DDR memory.

As a part of this project, I work on creating the architecture of a two-layer radix sorter to

group table updates into bursts directed to the same 8 KiB memory region, which can be

efficiently cached in on-chip memory. The sorters can sustain high performance data inges-

tion by processing four 32-bit tuples at once, while still utilizing a reasonable amount of chip

space. The overall BunchBloomer device achieves much better power efficiency compared to

a traditional multicore server or even a conventional FPGA Bloom filter accelerator equipped

with Hybrid Memory Cubes.

vii



Chapter 1

Introduction

Genome sequencing and applications continue to become more and more important in today’s

world. The information obtained from the sequencing is useful to scientists in a lot of ways

such as understanding how the genes work together and help in the growth and development

of the organism. However, the processing requirements of these applications are very huge

and as a result it is extremely important to to keep up with these requirements so that

approaches such as predictive medicine [2] and personalized healthcare [18] within the

reach of the general public.

The Bloom filter is a space efficient probabilistic data structure that can quickly test whether

and element is (possibly) present in a large set. It uses a fixed size bitmap and a set of

Hash functions to map data elements to certain bit positions in the bitmap, which can

be accessed in O(1) time. Bloom filters are an important tool that are used in several

genomics applications such as k-mer counting [15, 12, 13], genome sequencing, de Brujin

graph construction [16, 14, 3], etc. These applications utilize the probabilistic nature of the

Bloom filter to speed the look up process, which would have been impractically slow had a

deterministic data structure or approach been used.
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Even though the Bloom filter theoretically has a fast lookup and is space efficient, it is

still both computationally and memory intensive data structure. In most of its software

implementations, the Hash function computation becomes a prominent bottleneck [10, 8].

Further, although the computation overhead of Hashing can be easily removed by using high-

performance accelerators such as FPGAs, as they can typically achieve sufficient hashing

performance, the memory, even a good DRAM, becomes a bottleneck in these cases [4]

and undermine the processing capacity of the accelerator. As a result, FPGA Bloom filter

accelerators typically focused on having small tables which can fit in the fast on-chip memory

[7, 11, 4]. This is not a good idea as our target application typically work which very

tables which are multiple GiB in size [3]. The other typical solution is to use a fast and

power-hungry off-chip memory such a Hybrid Memory Fabric [12, 8]. However, the fabric

itself consumes significant power thereby undermining the power efficiency benefits using an

FPGA.

The Memory bottleneck is caused due to the Random Access nature of the memory accesses.

DRAM (or any other memory) have a fixed row buffer size (say b) which is the lowest

granularity at which data and be read/written to the memory. Whenever a memory address

is accessed, the DRAM retrieves and returns the entire line of size b. However, because

DRAM address space is typically in the order of GiBs, complete random accesses patterns

means that there is negligible chance for adjacent memory accesses to belong to the same

DRAM access line (or row buffer). Therefore, every random memory access requires the

DRAM to retrieve a new access line and wasting the rest of the data that is retrieved apart

from the one requested.

To solve this problem, we propose the BunchBloomer, an FPGA accelerator that removes

the computation overhead (as previously described) by performing the all Hashing on the

chip. In addition, we address the memory bottleneck problem by using Hardware

Radix-Sorters, the part on which I worked on, to efficiently remove the random access
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patterns. The sorters bucket the incoming stream of addresses using a fixed set of 8 (level-

1)/7 (level-2) bits and send out the requests to the DRAM in bursts which are directed to

the same 8KiB region in memory. The burst size (8KiB) chosen matches the size of the row

buffer on our target DDR3 DRAM and, therefore, by making use of good temporal locality,

it dramatically reduces the performance impact of the random accesses. We implemented

the Radix-Sorter in two layers, to optimize the design due to chip constraints, by connecting

the two sorters using an array bucket buffers in DRAM.

We implemented our prototype on the Xilinx KC705 chip that uses a Kintex-7 FPGA and is

equipped with 1 GiB of DDR3 DRAM memory. Results have shown that our BunchBloomer

is able to outperform a costlier 12-core server based software implementation by over 2x in

terms of Throughput achieved and consuming much less power, thereby demonstrating 10x

better power efficiency. BunchBloomer also demonstrates competitive performance compared

to a published FGPA Bloom filter accelerator equipped with power-hungry Hybrid Memory

Cubes, resulting in a 4x better power efficiency.

The rest of the report will proceed as follows:

• Chapter 2 motivates the problem by introducing a target application, and provides

necessary background regarding the memory bottleneck and Bloom filters in general.

• Chapter 3 introduces the BunchBloomer and briefly outline the various components

used on the chip.

• Chapter 4 details the Radix-Sorter’s architecture on which I worked on and outlines the

various design tradeoffs that helps us in reaching the final optimized implementation.

• Chapter 5 presents our results and throughput evaluations, both Radix-Sorter specific

and overall. Comparisons to software and other implementations are also presented.

• Chapter 6 concludes the report.
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Chapter 2

Motivation & Background

In this chapter, we introduce one such target application, genome sequencing, and reason as

to why it is computationally expensive and why Bloom filters would be useful in such a case.

2.1 What is Genome sequencing?

Genome sequencing is the process of figuring out the order of the DNA Nucleotides (or bases)

such as Adenine (A), Guanine (G), Thymine (T), etc in a human genome. The data obtained

from the sequencing is useful to the scientists in a lot of ways. Some of these include:

• Obtaining clues about where the genes are

• Understanding how the genes work together and help in the growth and development

of the organism.

• Identify the regulatory part of the genome (outside the genes) which control how the

genes are turned on and off.
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The following diagram (Fig 2.1) shows an example of a human RNA sequence, consisting

of the Nucleotides Guanine (G), Cytosine (C), Uracil (U), Adenine (A), and so on in that

order.

Figure 2.1: An example RNA strand showing the Nucleotides present.

Source: https://en.wikipedia.org/wiki/Nucleic acid sequence

2.2 Why is sequencing difficult?

A whole genome is very large to be sequenced all at once and the available DNA sequencing

methods can only handle short stretches at a time. Therefore, the large genomes are first

broken into small pieces which can be handled by the existing sequencers. The whole process

can be divided into two steps:

• Sequencing: The small pieces obtained after breaking the long original genome are

sequenced individually to obtain the order of the Nucleotides within them. Several

techniques, such as Electrophoresis, Capillary sequencing, etc are used to obtain these
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individual sequences. Earlier, this process was done manually by hand, however, auto-

matic sequencers are now available can now process more than 50,000 Nucletodies in

a few hours.

Figure 2.2: The Assembling finds overlapping regions and requires millions of comparisons.

Source: http://www.genomenewsnetwork.org/resources/whats a genome/Chp2 3.shtml

• Assembly: This compute heavy step consists of putting all the pieces in the proper order

by comparing the overlaps at the end (as shown in Fig 2.2). For this, the assembler

compares every read with every other read and methodically place the pieces next to

each other to reconstruct back the genome. For a human genome, the comparisons

required run into the order of trillions, thereby requiring requiring high performance

machines having a lot of memory and consuming a lot of power.

Apart from the use cases mentioned above, genome sequencing is becoming more and more

important in this today’s world, for example, to identify the new variants of COVID-19.

As a result, it is increasingly important to make cheaper and accessible high throughput

genomics analysis available to everyone.
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2.3 Background

In order to overcome the massive computation requirements and to bring predictive medicine

[2] and personalized healthcare [18] within the reach of the general public, performance

improvements are being sought in many fronts. These include hardware acceleration using

GPUs [5], by creating a software implemented k-mer counting tools and using CUDA GPU

programming and algorithm engineering to accelerate the counting step. as well as more

effective algorithms and data structures [17] [20]. We will discuss the Bloom filter approach

below.

The Bloom filter: A more efficient data structure

The Bloom filter is a space efficient probabilistic data structure that can quickly test whether

an element is (possibly) present in a large set. It is extremely useful in many high-throughput

analytics applications which would require practically infinite amount of memory if we were

to use the deterministic techniques to search for elements.

Bloom filter uses a fixed size bitmap and a set of hash functions to map every element in the

set to some particular locations in the bitmaps. The following diagram (Fig 2.3) illustrates

the working of a bloom filter.

Figure 2.3: Hash function mapping in a Bloom filter

Source: https://www.kdnuggets.com/2016/08/gentle-introduction-bloom-filter.html
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In the above example, there are three elements x, y, z in the set, and the bitmap is of 18-bits.

The hash functions map each of the elements in the set to 3 out of the possible 18 positions,

with x being mapped to bits 2, 6, and 14, y mapped to bits 5, 12, and 17, and z mapped to

bits 4, 6, and 12. To search if the element w is present in the set or not, it is passed through

the same hash functions and the positions it gets mapped to are checked to see if they are

set to 1.

The probabilistic nature of the filter arises from the fact that although we can definitely say

that an element is not present in the set if one of the bits is not set to 1, we cannot definitely

say if the element is present even if all the bits it maps to are set to 1. Therefore, the results

may have a lot of false positives, but cannot have any false negatives.

The bits in the bitmap can be accessed in O(1) time. As a result, Bloom filters are widely

used to represent complicated data structures in genomics analytics such as sparse histograms

for genome sequencing, k-mer counting [15] or de Bruijn graph construction [16]. In such

a use case, Bloom filters for a genome dataset is constructed, and the constructed table is

given to downstream analytics software as an analytics tool.

Although Bloom filters can speed up the lookup process significantly, they themselves are

a very computationally and memory-intensive data structure during both construction and

querying. In software implementations, computing good, non-trivial hash functions is a

prominent bottleneck [10, 8].

The computation overhead of Hashing can be easily removed by using high-performance

accelerators such as FPGAs. However, memory bottleneck still exists and therefore, although

such FPGA accelerators can typically achieve sufficient hashing performance, they become

memory-bound [4].

The above diagram (Fig 2.4) illustrates how even a high speed memory such as a DRAM

cannot catch up with the speed of processing thereby undermining the processing capability

8



Figure 2.4: Variation of Throughput with the Performance Acceleration (number of threads)
demonstrates the Memory bottleneck

of the accelerator. To illustrate, the variation of the throughput is observed as the number

of threads is increased using a software implementation on a Desktop machine and a high

performance Server. It is observed that initially when the thread count is low, the throughput

is limited because of the computation limitation of the system. As the thread count is

increased, the system how can achieve sufficient hashing performance. However, after a

certain point (thread count of 6), the throughput doesn’t scale anymore because memory

becomes a bottleneck. To extract useful performance from an accelerator, addressing the

memory bottleneck problem is extremely critical.

As a result, FPGA Bloom filter accelerators have typically focused on small tables which

can fit in fast on-chip memory [7, 11, 4], or provision fast and power-hungry off-chip mem-

ory fabric [12, 8]. For genomics applications such as de Bruijn graph construction which

require large tables which are multiple GiB in size [3], the only way to avoid under-utilizing

accelerator performance is to couple it with fast memory, potentially undermining the power

efficiency benefits of FPGA acceleration. We will address this problem in this project.
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Chapter 3

Overview of BunchBloomer

3.1 Approach

We address the memory performance problem of Bloom filter construction with Bunch-

Bloomer, which uses hardware radix sorters to efficiently remove random accesses. The

bursting radix sorter accelerator design collects bit update requests into bursts directed to

the same 8 KiB memory region, which is same the size of the row buffer on our target DDR3

DRAM. Each 8 KiB region can be cached in on-chip BRAM with good temporal locality,

dramatically reducing the costly performance impact of random access into DRAM.

The following diagram (Fig 3.1) illustrates the significant performance improvement that can

be achieved as the memory accesses become more and more localized. 64B is the complete

random access case, and the 8KB is the maximum line size that can be accessed at once from

DDR3 memory. There is almost a 10x improvement in the DRAM bandwidth by increasing

the burst size from 64B to 8KiB. That certainly indicates that Sorting would help, but of

course at the cost of increased computation overhead. So, our solution as we stated is to

FPGA sorting. We experiment by varying the burst size and observing the bandwidth of

10



the DRAM.

Figure 3.1: Variation of the DDR3 DRAM Bandwidth with the Burst size.

Due to chip resource constraints, the radix sorter is implemented in two layers, connected

over an array of bucket buffers in DRAM. The second layer sorter emits bursts of up to two

thousands update requests targeting the same memory region. The maximum burst length is

the result of available on-chip BRAM resources, and BunchBloomer can create longer bursts

if instantiated on a larger FPGA chip.

3.2 Architecture

The overall architecture of the BunchBloomer system is shown in the diagram below (Fig

3.2). There are roughly four sub-parts that the whole system can be divided into. All the

components in the system are connected via a 128-bit datapath.

• The Hashing: The input to the system is a stream of genome encodings, which are

passed through a set of hash functions (for the reasons described in the Background &

Motivation section. There are 8 hash functions implemented on the chip each with a

fully pipelined implementation. These hash functions emit four 32-bit hash values in

11



Figure 3.2: Architecture of the Bunch Bloomer.

one cycle thereby fully utilizing the available bandwidth.

• The Radix Sorting: The radix sorters on which I mainly work on are an important

intermediary in the pipeline to bucket and store the incoming requests so that they

processed together in bursts. The system consists of 2 radix sorters. The level 1 radix

sorter is an 8-bit sorter, which uses the top 8 bits to sort/bucket the stream. Since the

range of an 8-bit mapping is from 0 to 255, the sorter uses 256 buckets to store the

addresses.

Likewise, the second radix sorter uses the next 7-bits to sort the stream further on the

data received from the level-1 sorter. This sorter uses 128 buckets (because the 7-bit

maps to 0-127). Once the top 16-bits have been sorted (the reason why the remaining

1 bit is not used is explained later), bursts emitted from the level-2 sorter are sent to

the table updater.

• Table Updates: The table updater receives the buckets of adjacent memory addresses

and updates them in the table present in the DRAM. There are two table updaters

present on the chip to speed up the process and the bursts are diverted to one of the

table updaters based on the value of the 1 unused bit.

• The Memory: The target chip (KC705 FPGA) has 1 GB of DDR-3 memory available.

The entire memory is divided into two parts, using half of it for storing buffers, and

the remaining 512MB memory to store the table. As discussed later, the buffers act

as the communication between the two radix sorters.

12



Chapter 4

Radix Sorter Architecture

The radix sorter buckets the incoming stream of 32-bit addresses by separating them based

on the value of certain 7/8 bits. The first radix sorter uses bits 31 to 24, bucketing them into

256 buckets whereas the second radix sorter uses bits 23 to 17 and buckets them further into

128 buckets. The architecture and the design choices that went into each of the radix-sorters

are designed below.

4.1 How does Radix Sorting work?

As discussed earlier, the input to a radix-sorter is an incoming stream of 32-bits hashed

memory addresses. Although there is an occasional skew in the data, these memory addresses

can be technically completely random in nature. The following diagram shows a 32-bit

address map.

Lets consider the unsorted stream of such addresses. Since the number of bits in the address

is 32, the value variation that the bits can map to is from 0 to 232 − 1. Therefore the value

corresponds to an address space variation of 4 GB.

13



Figure 4.1: Bitwise breakdown for sorting of the 32-bit Memory Address

DRAM Row Buffer: The DDR3 memory present on the chip has row buffer size of 8KB.

That means that whenever an element on a line is accessed, the entire 8KB row is read from

the DRAM memory into the DRAM row buffer in the controller.

However, because of the random access nature of these addresses and the range of the address

space it maps to, it can be safely assumed that no two adjacent memory accesses will belong

to the same line in the DRAM. That effectively means that every such memory access will

pull out a new line, of which only 1 bit data is used and the rest of data is discarded

(eventually).

However, consider grouping these accesses based on the bits shown in the above diagram

(Fig 4.1). The level-1 radix sorter uses the top eight bits to store the memory addresses into

8 buckets. The level-2 radix sorter further sorts them using the next 7 bits and stores them

into 128 buckets.

What does the extra bit do? There are two table updaters on the chip, and the bit

shown in green is used to direct the the bursts coming from the radix sorters to one of the

two updaters. Therefore, the bit won’t be counted as a random access bit (because it doesn’t

contribute to the address space variation from the point of view of one updater).

Now let us consider the sorted address stream. Since the top 8 bits are sorted by level-1

sorter, the next 7 bits are sorted by level-2 sorter, and the extra bit is used to decide the

table updater, the address space variation now arises only due to the lower 16-bits. This

14



maps to a value of 216 which equals 64Kb or 8KB.

This perfectly matches the line size of the DRAM. Hence, if the sorted addresses are processed

in bursts, each of these bursts will map to the same 8KB region and there is a very high

chance of using only entire access line, and without the need to access one line for every

memory access as in the previous unsorted case. Hence the throughput of the system will

be significantly improved.

4.2 Architecture

There are several design details that had to be addressed and decisions that had to be taken.

They are outlined one by one in this report.

Design Tradeoff 1: First was the data width, which is the number of incoming bits that

could be processed at once. Processing every 32-bit number sequentially would lead to a

very low throughput. Although the peak memory bandwidth for the chip is 512-bit, the

data pipeline bandwidth of 512-bit isn’t feasible because the logic for such a radix sorter was

too large to fit on the chip we are targeting. Also, the peak bandwidth would be available

only in the ideal case. In reality, multiple components would be accessing the memory

simultaneously and the memory bandwidth is split between them. Therefore, after some

experimentation and to be in line with the requirements of the rest of the architecture, we

found a middle ground of 128-bit bandwidth so that each of the radix sorter occupies decent

amount of space.

Design Tradeoff 2: The second design choice was about the number of sub-sorters within

in the radix sorter. This logic determines the appropriate queue or bucket (numbered from

0 to 128) into which the 32-bit element has to be inserted. The simplest choice was to

independently implement the circuit for each of the buckets, each of which just checking

15



whether the given element belongs to the particular queue or not. However, again, the

amount of chip space required to implement 128 such units was too large to fit onto the chip.

Therefore, we decided to use only 8 such units, each of which handles data going into 16 of

the queues

Also, since the input arrives in a sequential manner as a stream of 128-bits (with 4 hash

addresses), we have implemented a network of input queues with a single point of ingestion.

Each of these queues then propagate the data element forward until it reaches the the last

buffer.

The following diagram (Fig 4.2) shows the entire internal architecture of a single radix sorter.

Figure 4.2: Internal Structure of a 7-bit Radix Sorter.

The structure can be divided into 3 different parts, the input part where the sorting happens,

the storage part where addresses in the same bucket are stored together, and the output

16



part which merges all the outgoing streams together. As shown in the diagram, the unsorted

incoming 128-bit stream enters the lowest-ordered input forwarding queue, and the outgoing

sorted 128-bit stream exits from the lowest-ordered output forwarding queue.

Each of these parts are discussed in detail in the chapter.

Step 1: Input Bucketing

The components used in the input sorting part are the input forwarding queues, and the

128-bit buffers. The following diagram (Fig 4.3) shows this part of the circuit. We discuss

the utility of these parts below:

• Input Forwarding Queues: The sorter consists of 8 input forwarding queues into

stream the incoming 128-bit elements. Once a 128-bit element is inserted into the

lowest forwarding queue, the element is checked if any of its 4 32-bit addresses belong

to this particular sub-sorter or it. For instance, in the first forwarding queue it is

checked if any of the 4 elements belong to the range 0-15 (indices handled by the first

sub-sorter). If yes, a copy of the entire 128-bit is sent into the 128-bit buffer for further

processing. Additionally, the element is also forwarded to the next forwarding queue.

This process is repeated until the element reaches the last input forwarding queue.

• 128-bit Buffers: There are 8 128-bit buffers present in the radix sorter, each corre-

sponding to a particular Whenever an element is inserted into a particular buffer, it

means that atleast one out of the four 32-bit addresses present in the element belong to

that particular sub-sorter. For example, an element (128-bit) in the buffer of the first

sub-sorter contains atleast one (32-bit) address whose bits map to 0 to 15. Each of the

four addresses are processed sequentially, one per cycle, and if matched are sent to the

appropriate FIFO storage queues. Although processed sequentially, these buffers op-
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erate separately from the input forwarding queues, and therefore it is ensured that the

original pipeline is not stopped (unless there is a local skew in data, which is discussed

later in the results section).

Figure 4.3: Input circuit showing the Sorting and Buckets
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Step 2: Storage and Flushing

The components used in the storage and the output stream handling are the 32-bit buffer

queues, 128-bit buffer queues, and the output forwarding queues. The following diagram

(Fig 4.4) shows this part of the circuit. We discuss the utility of these parts below:

Figure 4.4: Output Circuit for merging the Bursts emitted

• Storage FIFO Queues: The entire sorter has a total of 128 32-bit FIFO storage

queues to store the addresses and process them in bursts. For the efficient usage of

the chip, the the design had been modelled as a 2-Dimensional structure, consisting

of 8 sub-sorters each of which contain 16 storage queues. Addresses are stored in each

queue until the size of the queue reaches 1024B or 1KB. Once the size is reached, the

addresses are burst out at once into the 32-bit buffer queues.

• 32-bit and 128-bit Buffer Queues: There are 8 32-bit buffer queues and 8 128-bit

buffer queues present in the output. Each 32-bit buffer queue receives bursts of size
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1KB from the 16 storage queues that are present in that particular sub-sorter. These

addresses are de-serialized back into 128-bit elements using and stored in the 128-bit

buffer queues so that the output doesn’t get interleaved.

• Output Forwarding Queues: Output queues use locking mechanism for synchrony

between the different sub-sorters. During idle state, every forwarding queue (say Oi)

checks if the Buffer (Bi) or the next forwarding queue (Oi+1) to see if there is any data

bursts are present. If any of them contains data to be cleared, lock is applied on Oi

so that all the data in Bi is first cleared into Oi. Likewise, if Oi+1 contains data, then

the lock on Oi is held by Oi+1 to drain all its data.

This process is repeated until all the data reaches the lowest forwarding queue (O0)

which drains out the data from the Radix Sorter.
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4.3 2D vs 1D Architecture

Design Tradeoff 3: A second major design choice was to implement a 1-Dimensional

system of Storage queues as opposed to the Hierarchical 2D structure described before. The

following diagram (Fig 4.5) illustrates such an architecture. In this design, every storage

queue is processed independently and, although it eliminates the need for a 128-bit Buffer

on the input side, it requires a separate Input Forwarding Queue on the input side and

separate 32-bit and 128-bit Buffer Queues and Output Forwarding queues on the output

side.

Figure 4.5: The one-dimensional 7-bit Radix Sorter architecture

Although the sorting/bucketing logic is simpler to implement in this case, such an architec-

ture will be take up more space because of the presence of 128 meta-queues (Forwarding

Queues and Buffering Queues) where as in the 2D architecture, they are just 8 in number.
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The following are some of the parameters that were measured, which deemed this design

impractical for our target application.

• Chip space: Because of the presence of independent meta-queues for every Storage

Queue (Bucket), this Radix Sorter Design takes up more than 60% of the chip space.

Therefore, it wouldn’t be possible to fit two Radix-Sorters on the chip along with the

other components which were described in the Overall Architecture section.

• Latency: Since the forwarding queues forward elements one by one every cycle, the

maximum latency of an to reach a Bucket or Storage queue is 128 cycles, whereas the

2D Hierarchical architecture would only need 8 cycles. Considering a similar delay

due to the output forwarding, the worst case ejection latency would be 256 cycles as

compared to just 16 indicating that 2D approach would be much better.

• Rule conflicts: Although the 1D architecture can be optimized by using only 8 for-

warding and buffer queues, this leads to rule conflicts in BlueSpec because multiple

rules will be trying to access the same Storage queue simultaneously.
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4.4 Connecting the Radix Sorters

The two Radix Sorters are connected back to back using buffers in the memory as illustrated

in the diagram below (Fig 4.6).

Figure 4.6: Bucket Buffers in the memory for connecting the two Radix Sorters

The available 1GB DDR3 DRAM memory is partitioned into two parts, and the first part is

used to create 128 identical buffers of 1 MB each. The remaining part of the memory is used

for storing the actual table. These buffers are used to store the sorted burst of addresses that

are received from the first radix sorter temporarily before they are ingested by the second

Radix-Sorter.

The first radix sorter maintains an offset for each of the memory buffers. As the bursts are

sent out from the storage queues, they are stored in the corresponding Memory buffers and

the offset is updated accordingly. The second radix sorter is signalled periodically so as to

ensure that the buffers don’t overflow.

Once the offset of a buffer reaches the midway point (512KB), the second radix sorter is

signalled to ingest the first half of the buffer simultaneously as the first radix sorter writes

to the later half of the buffer. Likewise, when the offset reaches the end of the buffer, it

wraps around to the start of the buffer again and the second radix sorter is now signalled
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to clear the later part of the buffer. Signalling at the half way point ensures that the data

is not overwritten by the first radix sorter before it can be ingested by the second sorter,

which otherwise would require the first sorter to wait until the second radix sorter ingests

the entire data effectively stopping the entire pipeline.

4.5 Single Level vs Two level Sorting

Consider an architecture design in which a single radix-sorter is capable of sorting all the

16-bits at once, instead of the 2-level approach that was described earlier. In such a case,

the number of buckets that would be required be 216 = 65k. Since the number of FIFOs and

the extra meta-buffers (on the input side and the output side) proportionally increase with

the number of buckets, this design would drastically increase the chip occupancy making

it impossible for other components to fit on the chip. Further, as explained earlier, such a

design would also have a very large latency (in the worst case, an element would require 65k

cycles to reach its corresponding storage queue).

Considering all the design tradeoffs that very were described so far, the final decision was

to split the sorting part into two-levels, each store sorting half of the bits, and having a

Hierarchical 2D structure of sub-sorters to optimize it further.
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4.6 DRAM Arbiter

The DRAM present on the chip exposes a common interface to read and write data into

the memory. This is achieved by inserting read/write requests into the request queue of the

DRAM, which are then processed in order by the DRAM controller.

However, when multiple components use the DRAM simultaneously, the requests from them

get interleaved in the DRAM request queue and therefore every component ends up with

incorrect data. To resolve this issue, we use a DRAM Arbiter which segregates the requests

per user by buffering their requests. The following diagram (Fig 4.7) illustrates the func-

tioning of the Arbiter when three users, the Sorter, Updater 1, and Updater 2 are accessing

the DRAM simultaneously.

Figure 4.7: Internal structure of the DRAM Arbiter

The requests from each user are buffered in queues and are burst/sent together to the DRAM

interface through a series of Buffers and Routers. Once the requests are processed, they are

redirected back through the same set of Router + Buffer chains to the user. The bursting

operation can be visualized very similar to what happens inside the radix sorter. This

operation ensures that the requests of different users don’t get interleaved anymore.
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Chapter 5

Evaluation & Results

The sorted data coming out of the radix sorters arrives in bursts of size 8KB each. The burst

size of 8KB matches the access line size of the DRAM and therefore ensures that most of

the adjacent data is accessed from the same DRAM access line.

The following diagram (Fig 5.1) illustrates the overall sorting process.

Figure 5.1: The overall Sorting processed in Bursts

26



The initial input stream of entering the Radix Sorter 1 is completely unsorted and therefore

map to an address range of 4GB. The Radix sorter 1 sorts the top 8 bits and the stream

coming out of it contains bursts within which all the addresses have the value at the top 8

bits. These bursts now have a partially reduced address space variation of 224 = 2 MB. The

stream is sorted further by passing it through the second radix sorter that further sorts the

stream, and all the 8KB bursts coming out contain addresses contain the same value of the

top 16 bits. These bursts now have a reduced address space variation of just 216 = 8KB.

The two crucial parameters that we optimized the design for the radix sorter part are the

Chip utilization and the Throughput. These results are described below. Further, the overall

throughput of the entire chip and the power consumption are also described.

5.1 Radix Sorter Results

The design was tested on the Xilinx KC705 chip using a Kintex-7 FPGA. Although the

chip is relatively small and old, we target it for its low cost and high power efficiency.

5.1.1 Chip Utilization

Overall both the sorters combined more than 60% of the available chip space. The following

table (Table 5.1) shows the percentage utilization of the chip in terms of the number of LUTs

and the RAMB36 usage.

We can see that the LUT utilization of the first sorter is 43% whereas the second sorter uses

only 16.2%. The main reason as to why this might be happening is because the first sorter

sorts using 8 bits, and therefore has 256 buckets, whereas the second radix sorter uses only

7 bits to sort and thus has 128 buckets. Therefore, compared to the first sorter, the second
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Module LUTs RAMB36 RAMB18

Sorter1 130,412 (43.0%) 256 (24.7%) 0 (0%)

Sorter2 49,083 (16.2%) 544 (52.8%) 0 (0%)

Total 275,739 (90.8%) 986 (95.7%) 28 (1.7%)

Table 5.1: Chip and Memory utilization of Radix Sorters

sorter has a lot less number of forwarding, buffer and storage queues resulting in the lesser

LUT units utilization.

However, in contrast, the BRAM usage of first sorter is just 24.7% whereas the second sorter

uses 52% of it. This happens because of the sizes of the bursts which are processed. Since

the first sorters processes bursts of 1KB each, the amount of time (and the size of data) for

which addresses are stored in the FIFO queues is very less and they are cleared very often.

However, since the second sorter processes bursts of 8KB, data has to be stored for a longer

time before it sufficient quantity is accumulated for bursting. As a result, the second sorter

ends up using more BRAM than the first.

5.1.2 Throughput of the Radix Sorters

• Ideal case throughput: Considering that 128-bits are processed every cycle, the ideal

throughput of the radix sorters would be the bit processed per cycle multiplied by the

clock frequency which equals 4 GiB/s. However, this theoretical maximum can’t be

achieved in reality due to local skews in the data.

• Ideal case 32-bit throughput: If instead only 32-bits are processed every cycle, then

the theoretical maximum throughput is 1 GiB/s.

• Actual performance: The actual throughput of the Radix sorters turned out to be

approximately 2.91 GiB/s. The reason the theoretical maximum cannot be reached
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is because the data often contains local skews with all the data to be directed to a

single radix sub-sorter. Since elements in the buffers of a sub-sorter are processed

sequentially, this effectively reduces the throughput. However, a throughput of 2.91

GiB/s is still very impressive, and as discussed next, the radix sorters are not the

bottleneck in the overall pipeline and thus we are satisfied with the performance.

5.2 Some Overall Results

In this section, we present some overall performance values (including the rest of the com-

ponents in the architecture, such as the Hash Functions and the Table Updaters) that were

demonstrated that were achieved.

5.2.1 Overall Throughput

• Ideal case throughput: The main bottleneck in the overall chip is the memory, which

has a peak bandwidth of 10 GiB/s. Considering all the components, this bandwidth

will be shared between them. We estimated that there would be 3 read-write pairs

happening simultaneously (1 pair each from each of the table updaters, one read action

from the second radix sorter, and one write action from the first radix sorter). Hence,

the ideal peak bandwidth that would be available to each component is 10/6 = 1.66

GiB/s.

• Actual performance: The actual end-to-end pipeline performance achieved was 1.49

GiB/s. Although there is a slight reduction in performance due to the inefficiencies

in the components, the performance is still impressive.
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5.2.2 Power Consumption & Efficiency

The following plot (Fig 5.2) shows the throughput (in terms of Mhash/s) of the Bunch-

Bloomer and how it compares other implementations. It compares the Software implemen-

tations using the libraries Guava [6], bloom (Bl) [1], libbloom (Lbl) [13, 9], and custom

single-thread (S1) and multi-thread (S4) implementations with Direct update (DU) and

BunchBloomer FPGA implementations.

Figure 5.2: Throughput comparison (in MHash/s) of BunchBloomer with other implemen-
tations

The most notable comparisons can be made to the Software implementation on a multi-core

server, and an FPGA implementation with Hybrid Memory Cubes. The BunchBloomer

achieves an impressive throughput of 372 MHash/s at a very low power consumption of

25W.

In comparison, a software 12-threaded implementation on a multi-core server achieved a

throughput 163 MHash/s. Although the throughput difference is just 2x and the software

implementation can be improved further by optimizing the code more, what makes the

BunchBloomer standout is the power consumption. The multi-core server consumed a power
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of 120W compared to 25W and therefore, BunchBloomer has 10x better Power Efficiency

(Throughput/Power).

Likewise, [19] uses an FPGA Hybrid Memory Cube based implementation that produces

a 220 MHash/s throughput. Although the power consumption was nit explicitly stated,

we estimate that the FPGA would consume similar power as our implementation (25W)

and an extra 43W is used by the Hybrid Memory Cube Fabric. Therefore, in comparison,

BunchBloomer still has a 4x better Power Efficiency.
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Chapter 6

Conclusions

We conclude this report by summarizing some of the important details in the project.

• Bloom filters are an important tool that are used in several important genomics appli-

cations such as k-mer counting, genome sequencing, de Brujin graph construction, etc.

However, considering their magnitude, Software implementations can easily become

performance and memory bound.

• Using Accelerators such as GPUs or FPGAs can significantly speed the Hashing process

thereby removing the performance overhead. However, a high Performance memory,

either the on-chip memory or high performance power hungry off-chip memory such as

HMCs, is required to not undermine the processing capacity of the accelerator.

• The two-level Radix Sorting approach improves the bandwidth of the existing DRAM

by decreasing the randomness in the memory accesses. The addresses are bucketed

and processed in bursts of 8KiB to match the line buffer size of the DDR3 DRAM of

the target chip, thereby ensuring temporal locality in the accesses and efficient usage

of the cache.
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• The overall BunchBloomer has 10x better Power Efficiency compared to a 12-threaded

Software implementation on a multi-core server and over 4x better Power Efficiency

compared to an FGPA Hybrid Memory Cube implementation.
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