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Abstract

Progress in the management of patients with myelodysplastic syndromes (MDS) has been 

hampered by the inability to detect cytogenetic abnormalities in 40-60% of cases. We 

prospectively analyzed matched pairs of bone marrow and buccal cell (normal) DNA samples 

from 51 MDS patients by single nucleotide polymorphism (SNP) arrays, and identified 

somatically acquired clonal genomic abnormalities in 21 patients (41%). Among the 33 patients 

with normal bone marrow cell karyotypes, five (15%) had clonal, somatically acquired aberrations 

by SNP array analysis, including four with segmental uniparental disomies (UPD) and one with 
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three separate microdeletions. Each abnormality was detected more readily in CD34+ cells then in 

unselected bone marrow cells. Paired analysis of bone marrow and buccal cell DNA from each 

patient was necessary to distinguish true clonal genomic abnormalities from inherited copy 

number variations and regions with apparent LOH. UPDs affecting chromosome 7q were 

identified in two patients who had a rapidly deteriorating clinical course despite a low-risk 

International Prognostic Scoring System score (IPSS). Further studies of larger numbers of 

patients will be needed to determine whether 7q UPD detected by SNP array analysis will identify 

higher-risk MDS patients at diagnosis, analogous to those with 7q cytogenetic abnormalities.
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Introduction

The myelodysplastic syndromes (MDS) are predominantly diseases of the elderly (median 

age at diagnosis, 70 years) and are among the most common hematologic malignancies, 

affecting 1 in 500 persons over 65 years of age (1-3). Patients present with cytopenias 

involving one or more blood cell lineages, bone marrow morphologic findings indicative of 

mono-, di- or tri-lineage dysplasia, and a variable risk of transformation to acute leukemia. 

Currently, allogeneic stem cell transplantation offers the only curative therapy for MDS (4), 

but is not a realistic option for most elderly patients.

Cases of MDS are thought to arise from the clonal acquisition of mutations in multipotent 

hematopoietic stem cells, but the precise molecular abnormalities remain poorly defined. 

Bone marrow cytogenetic studies are helpful in this regard, revealing clonal abnormalities in 

30 to 50% of cases, most frequently deletions of chromosomes 5, 7, and 20 and/or trisomy 8 

(5). Cases with del(5q) as the sole abnormality, the so-called 5q syndrome, have shown 

remarkable responses to lenalidomide (6), and haploinsufficiency for the ribosomal protein 

14 (RPS14) gene appears to account for many of the clinical features of this syndrome (7). 

This suggests that improved detection of clonal genomic aberrations in MDS could identify 

additional patients likely to respond well to lenalidomide or perhaps to DNA 

methyltransferase inhibitors, such as 5-azacitidine and decitabine (8, 9). However, this 

leaves an estimated 50 to 70% of cases with normal bone marrow cell karyotypes for whom 

there are no molecular tests that could be used to distinguish between MDS and benign bone 

marrow cell diseases.

Recent studies of human cancers have indicated that small regions of specific clonal 

genomic abnormalities can be detected with high-density single nucleotide polymorphism 

(SNP) arrays, which provide a detailed structural examination of the cancer genome, 

including high-resolution analysis for loss of heterozygosity (LOH) (10). Two groups have 

applied this technology to the study of archival bone marrow samples from MDS patients, 

reporting a high frequency of detection of uniparental disomy (UPD) and copy number 

alterations, even in cases with a normal karyotype (11-15). We were troubled by these 

reports, because the MDS bone marrow samples were analyzed without a paired buccal or 
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other normal sample from the same patient. Instead, results were compared with those 

obtained from the blood cells of unrelated normal individuals. Without a paired analysis of 

bone marrow DNA with normal control DNA for each patient, we suspected that inherited 

copy number variations (CNVs) and genomic regions with apparent homozygosity due to 

linkage disequilibrium or consanguinity might confound the detection of somatically 

acquired abnormalities linked to the pathogenesis of the malignant clone. Thus, we 

undertook a prospective study of adults with MDS in which SNP array findings from bone 

marrow cell DNA were compared with those from matched control normal DNA extracted 

from autologous buccal swabs. We identified unambiguous, somatically acquired 

abnormalities with this approach in patients whose bone marrow cells had a normal 

karyotype, although at a lower frequency than has been previously reported (11-15). 

Importantly, we found that paired analysis of bone marrow and normal (buccal) DNA from 

each patient was necessary to distinguish acquired clonal abnormalities from inherited 

genomic variations.

Materials and Methods

Patients and clinical samples

Fifty-one patients were consecutively enrolled in this study seen at M.D. Anderson Cancer 

Center (MDACC) for a diagnosis and classification of MDS according to the WHO, FAB 

and IPSS systems (16-18) from June 21, 2006 to August 8, 2007. Patient characteristics are 

reported in Table 1 and Supplementary Tables 1 and 2. Buccal swabs and bone marrow 

aspirates were obtained with informed consent. Mononuclear cells were isolated from bone 

marrow aspirates by Ficoll centrifugation, and when sufficient cells were available, two 

thirds of these cells were further purified by magnetic beads (Milentyi) to obtain the CD34+ 

fraction. Cells were lysed in Gentra Puregene buffer (Qiagen). DNA from buccal swabs and 

the bone marrow cell lysates were prepared with the Gentra Puregene kit (Qiagen) and 

analyzed by spectrometry (Nanodrop Technologies).

SNP array analysis

Mononuclear bone marrow cell DNA and matched normal DNA from all 51 patients, 

together with the DNA from CD34+ bone marrow cells from 24 of these patients, was 

analyzed with Genechip Mapping 250K StyI arrays according to the manufacturer's protocol 

(Affymetrix). The data were analyzed with dChip (version August 5, 2008) (19). Raw data 

were normalized and modeled (PM/MM difference). Copy number values were computed 

by the “batch normalization” and “scaling copy number mode to 2 copies” algorithms. The 

raw data were inferred by the “median smoothing” algorithm and a window of 10 SNPs. To 

obtain standardized intensities (copy number values) across all probe sets, the log2 ratio was 

computed as log2 (signal intensity/mean signal intensity of all normal samples for a given 

SNP probe set). As a quality control, the standard deviation of the raw log2 ratio for each 

SNP probe set minus the raw log2 ratio for the adjacent SNP probe set was calculated along 

chr 1. Only samples with a standard deviation of 0.6 or smaller were included in the 

analysis. Reported segements of deletion or amplification (Supplementary Tables 1-3) were 

obtained by the Hidden Markov Model algorithm using a step of 0.2 and a standard 

deviation of 0.4. Only regions with a coverage of at least 5 consecutive probe sets, an 
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absolute average value of 0.2 and visual confirmation are reported. To identify CNVs, each 

matched normal sample was analyzed in the same way. LOH was inferred by the Hidden 

Markov Model. The LOH analysis for each patient was based on the comparison with the 

matched normal DNA. Only segments with an LOH probability greater then 0.8 were 

considered as LOH. UPDs were identified as copy-neutral LOH by comparison with the 

results of the copy number analysis. In addition to the LOH probability criterion, a UPD 

regions had to have at least 6 LOH calls (all LOH calls minus all conflict calls within that 

region) to be reported. As a third criterion, regions containing less than 5% informative calls 

were disregarded. Intervening segments of apparent retention were considered as LOH by 

comparison to their copy number status or if the number of calls was less then 6 (all 

retention calls minus all conflict calls within the segment). For the unpaired analysis all 

normal samples were disregarded. Instead, a reference genotype file containing 60 normal 

controls from the CEPH subset of the HapMap project (20) was used for the LOH analysis. 

All other parameters remained unchanged. Since no individual comparative calls are 

generated, the threshold for a region to be considered was set to at least 50 probe sets 

(SNPs) and at least 2 Mb in size.

Results

High Frequency of Deletions in MDS patients

We analyzed bone marrow samples from 51 patients with newly diagnosed MDS using 

high-resolution SNP arrays. Their median age was 66 years (range, 43 to 83 years) and 32 of 

51 (63%) had lower-risk disease (low or intermediate-1 IPSS scores). Thirty-three (65%) 

had normal karyotypes by conventional cytogenetic analysis. The distributions of patients by 

WHO, FAB and IPSS classifications are given in Table 1. For each patient, we compared 

the SNP array profiles of bone marrow mononuclear cell DNA with those of matched buccal 

swab DNA to detect somatically acquired clonal abnormalities of copy number as well as 

regions of LOH. Because MDS originates in hematopoietic stem cells, we also selected 

CD34+ cells from bone marrow aspirates of 24 patients and compared the SNP profiles with 

those of matched bone marrow mononuclear and buccal cells.

DNA copy number analysis identified chromosomal defects, mainly deletions, in 21 (41%) 

of the 51 patients (Supplementary Fig. 1, also Supplementary Tables 1 and 2). Chromosomal 

gains were less frequent than deletions and were found only in MDS cases with complex 

karyotypes (Supplementary Table 2). The most frequently deleted region (18% of all cases) 

was located on chromosome 5q, as is typical of cytogenetic findings in MDS(5). 

Heterozygous deletions were identified in eight patients (16%), together with a focal 

homozygous deletion of about 5 Mb within the 5q deleted region of patient 27 (Fig. 1, lanes 

22-24). By conventional karyotyping, this case had both a del(5q) and a t(5;12)(q33;q12) 

translocation, accounting for the deletion. Although the homozygously deleted region is 

located outside the two previously defined critical deleted regions (CDRs) on chromosome 

5q(21-23), half of our cases had a del(5q) that extended to the telomere, thus including the 5 

Mb homozygously deleted region.

Examples of recurrent chromosomal gain were also found in this cohort. Two patients (27 

and 49) had small regions of gain on chromosome 8 (Supplementary Fig. 3) that commonly 
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encompassed the 8q24.13-21 locus, which harbors the MYC gene. Four others (patients 34, 

37, 46 and 51) had 11q23 gains in association with multiple complex cytogenetic 

abnormalities, similar to the findings of others (24, 25).

Among the 24 patients with available CD34+ cell DNA, 11 (42%) had detectable 

chromosomal abnormalities by SNP array analysis. In most of these cases, the same 

aberrations were more readily detected in the purified CD34+ cells than in mononuclear 

bone marrow cells (see, for example, Fig.1, lanes 11 vs. 12, 14 vs. 15, 17 vs. 18 and 23 vs. 

24), consistent with the origin of MDS in hematopoietic stem cells. Thus, residual normal 

cells were present in the whole bone marrow mononuclear fractions of MDS patients. A 

significant fraction of these residual normal cells appeared to be mature T lymphocytes 

included in the unfractionated bone marrow mononuclear cells, as deletions of the T-cell 

receptor alpha locus (14q11.2) were detected in the bone marrow mononuclear cells of some 

cases, but not in either the matched CD34+ cell DNA or the buccal cell DNA 

(Supplementary Fig. 2). Buccal scrapings from some patients contained a small fraction of 

clonal blood leukocytes, resulting in a slightly lower-than-expected copy number for the 

region that was hemizygously deleted in the malignant clone (see, for example, patient 46 in 

Fig.1, lane 13). Relatively large regions of copy number gain were also observed at the 

proximal boundaries of some of the deletions (patients 37 and 46; Fig. 1, lanes 11, 12, 14 

and 15).

Clonal Abnormalities in Patients with a Normal Bone Marrow Cell Karyotype

Comparison of DNA genotyping profiles for bone marrow versus buccal cells from each 

patient identified clonal regions of acquired, copy-neutral LOH (indicative of acquired 

segmental regions of uniparental disomy, UPD) in MDS bone marrow cells of four of 33 

(12%) patients with a normal bone marrow cell karyotype (Figs. 2 and 4). In addition, one 

(patient 34) with a complex karyotype and one (patient 19) with a t(11,19) translocation had 

UPDs. The UPDs were found within segments of 3q (patient 15), 4q (patients 19 and 48), 7q 

(patients 5 and 7) and 17p (patient 34) and entirely extended to the telomere, suggesting that 

they resulted from a single recombination event per chromosome, possibly involving break-

induced replication (BIR) (26). Monosomy 7 and del(7q) are established poor-risk 

cytogenetic findings in the bone marrow cells of MDS patients (17); hence, our detection of 

7q UPDs spanning the same critical region in two of 33 cases with a normal karyotype 

indicates that approximately 6% of patients (90% confidence interval 1% to 18%) who lack 

other high-risk chromosomal features may harbor defects affecting this critical region of 

chromosome 7q. Patient 26 had a normal bone marrow cell karyotype by standard 

cytogenetic analysis, but SNP profiling revealed three small heterozygous deletions (Fig. 3) 

at 6q21 (3 Mb), 12p13.2 (1.5 Mb) and 21q22.12 (1.2 Mb). The 21q22.12 region contains the 

RUNX1 gene, and the deletion breakpoint was located within that locus. Alternatively, a 

cryptic translocation with an accompanying deletion of a small region could have led to the 

disruption of the intact RUNX1 locus in this patient. Another patient (49) also showed a 

disruption of the RUNX1 locus by a very small deletion, which was detected in the context 

of other abnormalities discernible by standard karyotyping. RUNX1 encodes a critical 

regulator of hematopoietic differentiation and can be inactivated by mutation or 

translocation in both MDS and AML (27, 28). Thus, SNP array analysis can pinpoint small 
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regions of deletion that harbor tumor suppressor genes, such as RUNX1, which are often 

mutated in MDS.

Association of UPD 7q with a Deteriorating Clinical Course

The short follow-up times for this study group precluded a statistical analysis of the 

association between SNP array findings and the clinical outcome of therapy. Within the 

normal karyotype subgroup (n=33), however, we noted that the two patients identified as 

having UPDs affecting the long arm of chromosome 7 (Fig. 4) experienced a deteriorating 

clinical course. One patient (no. 5) was a 56-year-old woman with refractory anemia and an 

IPSS score of zero who had a UPD at 7q22.1-7qtel at presentation. Over the next 10 months, 

she developed rapidly increasing bone marrow blast counts and worsening cytopenias and 

died. The other patient (no. 7) was a 67-year-old man with refractory anemia and a 

hypercellular bone marrow showing multilineage dysplasia and an IPSS score of zero. At 

presentation he had a UPD at 7q31.33-7qtel. Over the next 12 months, he developed 

thrombocytopenia, leukocytosis and pleural effusions, and died. The finding of a 

chromosome 7 cytogenetic abnormality in MDS confers a higher-risk score according to the 

IPSS criteria (17). In these two patients with normal bone marrow cell karyotypes, our 

results suggest that UPD 7q detected by SNP array may identify the same subset of higher 

risk patients as does a cytogenetic abnormality of chromosome 7 (Fig. 4).

Requirement for Matched Normal DNA in SNP Array Analysis

The human genome contains structural variations consisting of thousands of regions in 

which segments of DNA have been gained or lost. These so-called copy number variations, 

or CNVs, constitute much of the inherited variation among individuals (29-31). A growing 

number of the most frequently occurring CNVs have been cataloged in databases (32), and 

must be considered in the interpretation of SNP array results; however, additional CNVs 

occur at low frequency in human populations and have not yet been included in existing 

databases.

Published SNP array analyses of bone marrow cells from MDS patients (11-15) have relied 

mainly on CNV databases and DNA samples from unrelated individuals, rather than on 

paired samples of normal DNA for each patient, to substantiate regions of MDS-related 

copy number aberrations or UPD. This method can yield spurious results, as low allelic 

frequencies of inherited CNVs and linkage disequilibrium in the inheritance of linked SNPs 

can often mimic small regions of deletion or gain, as well as acquired UPDs, in an unpaired 

analysis. Thus, we reanalyzed the SNP array data from our patient cohort with normal bone 

marrow cell karyotypes (n=33) to determine the proportion of inherited polymorphisms and 

CNVs that would be erroneously identified as clonal, somatically acquired genomic 

abnormalities without the use of individual normal controls. By this approach, we identified 

31 non-redundant copy number changes, mainly deletions, in 27 of the patients; their sizes 

ranged from 0.4 to 1897 kb (minimal coverage 5 consecutive SNPs). Analysis with paired 

normal DNA samples revealed that only 3 of these lesions were true microdeletions, 

whereas 28 were CNVs. Even upon reconciliation with a CNV database (32), 6 (21%) of the 

28 CNVs we identified would have been falsely identified as microdeletions. Figure 5A 

shows examples of 3 CNVs that each occurred only once in the analysis of the 33 patients 
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with a normal karyotype. Each of these areas of copy number loss is readily apparent in both 

the DNA from bone marrow and the paired buccal swab from the same patient, clearly 

indicating that they are all inherited CNVs. By contrast, the region of copy number loss 

identified in the bone marrow cells of patient 26 is not present in the matched buccal DNA 

sample, identifing this region as a somatically acquired microdeletion. Thus, matched 

normal controls are needed to reliably detect true copy number alterations.

Similarly, reanalysis of our LOH results, replacing the matched normal DNA samples with 

60 unrelated normal controls (CEPH subset of the HapMap project (20)) identified 110 

regions of potential LOH in the 33 patients with a normal karyotype (regions covered by 

more than 50 SNPs and greater than 2 Mb in size). With use of matched buccal DNA 

samples, however, we were able to show that only 4 (3.6%) of these 110 regions represented 

true UPDs. An example of the detection of a true UPD is shown in Figure 5B, in which a 

large region of chromosome 7q exhibits LOH based on the SNP calls, with retention of 

normal copy number by comparison of bone marrow and matched normal DNA. By 

contrast, a region of 12.2 Mb in patient 2 shows apparent LOH based on analysis of 60 

unrelated normal controls (Fig. 5C, unpaired). However, analysis of the same patient's bone 

marrow DNA compared with the matched normal DNA (Fig. 5C, paired) reveals that this 

region is actually a stretch of apparent homozygosity (only A or B calls), which is 

maintained in both the normal and the bone marrow DNA of this patient and does not 

represent a somatically acquired loss and reduplication event leading to UPD (see 

Supplementary Fig. 4 for an additional example). Thus, failure to include paired normal 

DNA samples in SNP array analysis of bone marrow cells from MDS patients can lead to 

vastly overestimated frequencies of UPDs and microdeletions, most of which are not linked 

to somatic abnormalities that have occurred during the genesis of the MDS clone.

Discussion

This prospective study, the first to apply genome-wide SNP array analysis to paired bone 

marrow and normal DNA specimens from a large cohort of patients with MDS, identified 

cryptic chromosomal changes with both clinical and molecular genetic implications. Our 

findings differ in important aspects from those in retrospective studies based on DNA 

extracted from archived bone marrow cell samples (11-15). Importantly, the overall rate of 

genomic abnormalities in MDS patients with normal bone marrow karyotypes was much 

lower in our analysis than in earlier studies. We attribute this discrepancy to the lack of 

paired normal DNA samples in most previous analyses resulting in the spurious 

identification of inherited CNVs or regions of apparent homozygosity as somatically 

acquired genomic alterations within the MDS clone. Indeed, we demonstrate that the 

majority of apparent abnormalities detected by analysis of bone marrow cell DNA alone 

reflect inherited genomic diversity rather than clonal somatic abnormalities. Thus, a 

straightforward comparison with matched normal DNA is required to identify unequivocally 

the more subtle aberrations arising from acquired clonal genomic changes. Hence, an 

attempt to correlate UPD or copy number changes with clinical outcome (14, 15) in patients 

who have been incorrectly classified due to uncontrolled assessment of genomic variation 

will not yield valid results.
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Aside from its role in assessing bone marrow cell clonality in newly diagnosed cases of 

MDS, SNP array analysis promises to help unravel the molecular pathogenesis of these 

complex stem cell diseases. Indeed, identification of discrete clonal molecular changes in 

MDS by high-density SNP array analysis will likely provide the best starting point for the 

discovery of new genetic mutations and signal transduction pathways involved in MDS, 

leading to the development of more effective targeted therapies. We would emphasize that 

the smallest regions of copy number alteration or LOH are often the most informative in 

implicating individual genes for detailed sequence analysis, but these small regions are also 

the most difficult to distinguish from nonpathologic human germline variations. Hence, 

consistent use of paired bone marrow and normal DNA samples would also be expected to 

accelerate the pace of disease allele discovery in MDS.

We also addressed the question of whether CD34+ cell selection is required to assess the 

clonal aberrations in MDS. All of the aberrations found in the CD34+ fraction were also 

identified in unselected mononuclear cells, indicating that the clonality of the MDS bone 

marrow is remarkably high. Our results suggest that the cells lacking MDS-associated clonal 

changes in the bone marrow-derived samples are mainly circulating blood T-lymphocytes 

(see Supplementary Fig. 2), indicating that depletion of mature T cells might be a useful 

strategy for removing residual normal cells from the bone marrow aspirate. In any event, 

SNP array analysis in MDS can be performed with the mononuclear fraction of whole bone 

marrow cells, and is therefore clinically feasible even when, as is often the case, the MDS 

bone marrow sample contains low numbers of cells.

We report the identification of UPDs in four of 33 patients with a normal karyotype. 

Notably, all segmental UPDs discovered in this study were terminal (see Supplementary Fig.

5 for summary). This suggests that break-induced replication (BIR (26)) might be a 

dominant mechanism by which a cell duplicates a somatically acquired event such as a 

mutation, a microdeletion or an epigenetically suppressed region and consequently become 

homozygous for this segmental region. BIR appears to be a common repair mechanism at 

stalled or broken replication forks, however, only the reduplication of a region that contains 

a genetic or epigenetic alteration conferring a growth advantage to the cell would allow for 

its clonal dominance and selection, leading to its detection by LOH analysis. In this regard, 

our findings of nonrandom segmental UPDs help to clarify models purporting to explain the 

pathogenetic basis of large deletions that are typically observed in MDS cases. Certain large 

deletions, such as the del(5q), are thought to arise from haploinsufficiency for one or more 

genes within the targeted regions (21, 23). Indeed, haploinsufficiency for the RPS14 gene 

has recently been linked to the pathogenesis of MDS associated with the 5q- syndrome(7); 

homozygous inactivation is not observed in such cases because the RPS14 protein is 

essential for cellular protein synthesis. Consistent with this model of molecular 

pathogenesis, we did not observe any UPD affecting 5q in MDS cases. Apparently, deletion 

of one allele of 5q is sufficient for pathogenesis, and loss of the wild-type alleles with 

reduplication of mutated or microdeleted target genes on 5q, as would occur with a UPD, is 

strongly selected against, because it is lethal to the MDS stem cell. By contrast, we did 

observe UPD affecting the same deleted region that is affected in cases with cytogenetically 

apparent loss of the long arm of chromosome 7. This implies that at least one mutated or 
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epigenetically suppressed gene in this region is likely reduplicated together with loss of the 

normal allele in cases with 7q UPD, fulfilling Knudsen's hypothesis for the homozygous 

inactivation of classical tumor suppressor genes (33).

We hypothesize that genes within the region of UPD on chromosome 7 are likely to harbor 

inactivating point mutations that will eventually be identified by judicious sequencing of the 

involved genes in specific cases with UPD. By contrast, other regions of UPD that do not 

correspond to regions of cytogenetic deletion may harbor activating mutations that are 

duplicated by UPD and thus provide a growth advantage (34). FLT3 mutations in acute 

myeloid leukemia (AML) fit the latter category, in that they are frequently identified on both 

alleles in AML cases with a normal karyotype. Thus, SNP array analysis can provide critical 

information needed to pinpoint and identify mutated genes and altered signal transduction 

pathways in MDS.

A major goal of our study was to detect clonal genomic abnormalities in MDS patients that 

could be used to improve the clinical management of these disorders. Although longer 

follow-up times are needed to determine the association of our SNP array findings with 

treatment outcome, several results appear to have immediate relevance to patient 

management. The ability to detect clonal genomic aberrations in cases with a normal bone 

marrow cell karyotype using SNP array analysis can distinguish MDS from other causes of 

bone marrow cell dysplasia and pancytopenia due to the effects of drugs, environmental 

toxins or aberrant immune responses, thus aiding in the initial diagnosis. Moreover, our 

identification of UPDs affecting chromosome 7 in two patients with low-risk IPSS scores 

who later showed rapidly deteriorating clinical courses is intriguing. UPD selects for 

homozygosity of a specific genomic region, and the same region of chromosome 7q affected 

by UPD is also very often deleted in MDS cases. When identified by cytogenetic analysis, 

abnormalities of chromosome 7q by themselves signify an increased IPSS score. Thus, it is 

possible that the 7q UPDs we identified are equivalent to a deletion in this region and may 

constitute a high-risk feature in MDS (17). Whether or not UPDs affecting this and other 

genomic regions convey important prognostic information is an important question to 

address in additional prospective studies using SNP array technology to evaluate patients 

with MDS entering clinical therapeutic trials.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Copy number alterations on chromosome 5
The copy number values for probe sets on chromosome 5 are shown as log2 ratios. Patients 

with abnormalities affecting this chromosome are identified at the top of each column 

together with the DNA source (N, normal cells; WBM, whole bone marrow mononuclear 

cells; CD34, CD34+ bone marrow cells). White areas indicate no copy number change (log2 

ratio = zero), while shades of blue and red designate losses and gains, respectively (see scale 

at bottom). All blue areas on the q-arm correspond to heterozygous deletions, except in 

patient 27, where a homozygously deleted area (dark blue) was found within the 

heterozygous region of loss. A profile view of the copy number for this patient is shown on 

the right. The red line indicates the expected normal copy number, while the blue line 
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indicates the log2 ratio of the measured copy number along the chromosome. The positions 

of the two previously described common deleted regions (CDRs) of chromosome 5q are 

indicated.
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Figure 2. Uniparental disomies in cases with a normal bone marrow cell karyotype
Copy number analysis and paired genotype (LOH) analysis are shown for patients 15, 19 

and 48, as indicated at the top of each column together with the DNA source (N, normal 

cells; WBM, whole bone marrow mononuclear cells). Only informative chromosomes are 

shown; all remaining chromosomal regions were normal by copy number and LOH analysis. 

The finding of LOH with a normal copy number reveals the presence of segmental UPD in 

these patients.
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Figure 3. Small deletions identified in patients 26 and 49
Copy number values along chromosomes 6 and 12 (patient 26) and 21 (patient 26 and 49) 

are shown as log2 ratios. Patient identifiers are designated at the top of each column, 

together with the DNA source (N, normal cells; WBM, whole bone marrow mononuclear 

cells). The blue arrows indicate the loci of deletions. On chromosome 21, the arrows 

indicate the locus of the RUNX1 gene, which is affected by a deletion distal to the 

centromere in patient 26 and proximal in patient 49. Chromosomes are not drawn to scale.
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Figure 4. Uniparental disomies and copy number alterations on chromosome 7
Copy number values along chromosome 7 are shown as log2 ratios for all patients having a 

copy number change on this chromosome and for patients 6 and 8, who lack a copy number 

change. Patient identifiers are included at the top of each column together with the DNA 

source (N, normal cells; WBM, whole bone marrow mononuclear cells). Two additional 

plots (for patients 5 and 7) show the results of a paired genotype analysis (LOH analysis), 

which is based on the comparison of mononuclear cell DNA with matched DNA. Yellow 

areas indicate retention of the genotype, while blue areas indicate LOH. In patients 5 and 7, 

the finding of LOH extending to the telomere of the long arm of chromosome 7 with a 

normal copy number is caused by segmental UPD (see text).
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Figure 5. 
A: Comparison of CNV loci and mircrodeletions. The copy number values are shown as 

log 2 ratios at high magnification. Different chromosomes are not drawn to the same scale. 

Patients are identified at the top of each column together with the DNA source (N, normal 

cells; WBM, whole bone marrow mononuclear cells). The comparative analysis of copy 

number values with a match normal allows the differentiation of CNVs (left panel) and 

microdeletions (right panel). CNVs and microdeletions shown here explamplify findings 

summarized in Supplementary Table 1 and 3. B/C: Detection of true UPDs in paired 
samples as opposed to findings by unpaired LOH analysis. The results of copy number 

analysis are shown in the columns labeled “1”and reveal no deletions or gains. The raw 

genotyping calls are depicted in columns labeled “2” (A in red, B in blue, AB in yellow). 

The inferred LOH analysis (column 3; yellow signifies retention and blue LOH, 

respectively) is the result of the comparative genotype analysis. In cases of unpaired 

analysis, 60 normal controls (not shown) were used (CEPH subset of the HapMap project). 

Planel B illustrates the detection of a true UPD on chromosome 7p in patient 5. Planel C: 

Detection of a 12Mb locus with apparent UPD by unpaired analysis in patient 2, that is 

reveal as strech of inherited homozygosity by paired analysis. The comparison between left 

and right part of panel C emphasizes the necessity of paired analysis.
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Table 1

Characteristics of the patient cohort (n=51)*

Median Age (range) 66 (43-83)

number percentage

Cytogenetics normal karyotype 33 64.7

aberrant karyotype 18 35.3

Sex female 20 39.2

male 31 60.8

WHO classification RA 4 7.8

RCMD 7 13.7

RARS 1 2.0

RCDM-RS 4 7.8

RAEB-1 11 21.6

RAEB-2 13 25.5

unclassified 11 21.6

FAB classification RA 15 29.4

RARS 5 9.8

RAEB 21 41.2

RAEB-t 5 9.8

CMML 3 5.9

AML evolved from MDS 2 3.9

IPSS 0 Low risk 12 23.5

0.5-1.0 Intermediate 1 20 39.2

1.5-2.0 Intermediate 2 13 25.5

>2.0 High 5 9.8

AML evolved from MDS 1 2.0

*
see Supplementary Tables 1 and 2 for patient-by-patient characteristics and results
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