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Nisheeth Srivastava, Johannes Miiller-Trede

Modeling sampling duration in decisions from experience

UC San Diego, 9500 Gilman Drive
La Jolla, CA 92093 USA

Abstract

Cognitive models of choice almost universally implicate se-
quential evidence accumulation as a fundamental element of
the mechanism by which preferences are formed. When to
stop evidence accumulation is an important question that such
models do not currently try to answer. We present the first cog-
nitive model that accurately predicts stopping decisions in in-
dividual economic decisions-from-experience trials, using an
online learning model. Analysis of stopping decisions across
three different datasets reveals three useful predictors of sam-
pling duration - relative evidence strength, how long it takes
participants to see all rewards, and a novel indicator of con-
vergence of an underlying learning process, which we call pre-
dictive volatility. We quantify the relative strengths of these
factors in predicting observers’ stopping points, finding that
predictive volatility consistently dominates relative evidence
strength in stopping decisions.

Keywords: response time; decision-making; evidence accu-
mulation; sequential sampling; decisions from experience

Introduction

In orienting decision research from analyzing static economic
choices towards more dynamic decisions akin to those people
face in everyday life, the decisions-from-experience (DFE)
paradigm presents an important step forward (Hertwig, Bar-
ron, Weber, & Erev, 2004). The DFE paradigm may be
thought of as a modification of the classic certainty equiva-
lence method commonly used procedure to elicit utility func-
tions for money (see von Winterfeldt & Edwards, 1993). Par-
ticipants in typical certainty equivalence experiments choose
between a risky option that pays H with a probability p and L
with probability 1 — p and a safe option that always pays M,
where H > M > L. They learn about the two options’ payouts
and the associated probabilities from explicit descriptions.

Decisions from experience modify this protocol: Partici-
pants are not shown payouts or probabilities, and must learn
about them experientially. Several interesting observations
emerge from research on DFE. Subjects sample more variable
options and options with higher stakes for longer, for exam-
ple (Lejarraga, Hertwig, & Gonzalez, 2012). They also ap-
pear to underestimate the probability of rare events (Hertwig
et al., 2004), though much less so with increasing experi-
ence (Zhang & Maloney, 2012).

In the particular variety of DFE we consider throughout
this paper, typically known as the sampling paradigm, partic-
ipants are permitted to sample each of two options without
consequence as long as they like, before finally committing
to a binding choice. This protocol is particularly interesting
since it closely mirrors the flow of information in many ev-
eryday settings—learn from the environment ad libitum, then
make a choice. Importantly, such choices are actually com-
posed of two decisions: a latent decision to terminate learn-
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ing, and an overt decision to choose the risky or the safe op-
tion, based on the learned information.

Efforts to model the overt decision about which option to
choose have been relatively successful (Erev et al., 2010).
Little attention has been paid, however, to modeling the ear-
lier latent decision about how long to sample information (or
when to stop learning). Research on DFE has used simple
statistical approaches as place-holders, assuming an under-
lying probability distribution over sampling lengths and fit-
ting this distribution to the empirical distribution of sampling
lengths observed in the data (Gonzalez & Dutt, 2011). Re-
cently, Markant et al. (2015) proposed a model that jointly
predicts choices and sampling length distribution. However,
since their model uses known lottery stakes, it cannot speak
to the effects of the specific characteristics of the actual, re-
alized samples that comprise individual learning experiences
in the DFE paradigm.

In this paper, we investigated variables that, on theoretical
grounds, are expected to predict sampling lengths in DFE,
without assuming a priori knowledge of lottery stakes and
probabilities. Our analyses of three different datasets re-
vealed the influence of two important variables on sampling
duration. One is the difference in the options’ expected val-
ues during sampling. The second is a measure of outcome
uncertainty we call predictive volatility, which tracks abrupt
changes in the magnitude of prediction error an observer ex-
periences while learning about a DFE decision. We further
developed a computational model of sequential sampling for
DFE that uses these predictors to make accurate sampling
length predictions for individual DFE trials.

Predictors of sampling duration

While largely neglected in the context of DFE, sampling du-
rations have played a key role in research on perceptual de-
cision tasks. Several of the leading theories in this domain
utilize drift-diffusion models (Forstmann, Ratcliff, & Wagen-
makers, 2016). In such models, the principal variable of in-
terest tends to be the relative evidence strength in favor of
either outcome (Bitzer, Park, Blankenburg, & Kiebel, 2014),
measured in log posterior odds. The larger the log odds fa-
voring a particular option, the more decisive—and quicker—
the evidence accumulation in its favor. In DFE, relative evi-
dence strength corresponds to the difference between the im-
puted value of the two options. Theories of perceptual deci-
sions applied to DFE thus suggest that smaller differences in
the options’ imputed values should be associated with longer
sampling durations.

Formally, we track the expected value difference (EVD)
between the two gambles, measured at every sample for each
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DFE trial,
EVD=pH+(1—-p)L—M, (1)

where p = ‘H“Hﬁ, and |- | is the number of times an outcome
has occurred in the sequence up to the time at which the mea-
surement is taken. In the following, we refer to this quantity
as the EVD predictor.

Information theory, we suggest, points to a second, com-
plementary factor that might influence sampling durations.
From an information-theoretic perspective, the DFE ob-
servers’ goal is to efficiently learn the reward rate of the gam-
ble(s) they are sampling. The decision to terminate infor-
mation gathering may then be seen as an agent’s rational re-
sponse to a learning procedure that has saturated. In practice,
observers, while trying to learn useful models of their envi-
ronment, have access to the prediction errors in such mod-
els. Unexpected increases in prediction error magnitude (as
illustrated in Figure 1) signal the presence of unlearned envi-
ronmental dynamics, stimulating rational observers to sample
more.

1
< 0'5 /—_\
% 2 4 6 8 10
05
<
0.5 2 4 6 8 10
04
é 0.2 S Volatility
% 2 4 6 8 10

Sample count

Figure 1: An intuitive view of predictive volatility. When
the prediction error in a sequential learning process increases
abruptly, it is reasonable to infer that the process has yet to
converge. This indicator of the need to keep learning is what
we call predictive volatility.

To understand the learning process, we can track the evolu-
tion of the learned parameter in a simple parametric observer
model over individual sampling sequences. If a learning pro-
cedure is efficient, the prediction error is expected to show
an asymptotic gradual decrease, reflecting that estimation is
increasingly precise as more data are sampled. Critically, we
assume that human observers are intuitive statisticians in this
particular sense — they are implicitly aware that when learning
is efficient, prediction error gradually declines. But in indi-
vidual learning sequences, this decline is not always mono-
tonic. We call deviations from the prediction error’s expected
trajectory episodes of predictive volatility. Observers who are
sensitive to the expected trajectory of prediction error may

rationally treat such episodes of volatility as evidence that
learning has not yet completed, and respond by sampling for
longer.

Formally, we model learning in DFE as a statistically ef-
ficient observer sequentially updating estimates of the mean
parameter A of a Poisson distribution tracking the frequency
with which the high outcome of the risky option occurs in the
sampling sequence. With every new sample, the parameter
estimate shifts by some quantity AA. In absolute values, this
quantity is mathematically—and, we argue, psychologically—
expected to decay over time, so that |AA;| < |AA,_;|. De-
viations from this trend constitute predictive volatility. Such
deviations suggest to an observer that some aspects of the task
may remain unlearned, and therefore justify continued sam-
pling. In the case of human observers, the deviations must be
sufficiently large to be noticeable, which suggests that volatil-
ity is perhaps best thought of as a binary variable which is ei-
ther present or absent. This led us to formally operationalize
volatility as

v(t) = 1iff |AA,| > k¥ x |AA,—1], and O otherwise.  (2)

The constant ¥ > 1 determines the smallest noticeable devi-
ation. All our analyses use K = 2; substantially larger values
would degrade the information present in this signal (since
such large fluctuations are statistically infeasible in DFE re-
ward rate estimation, where the set of possible outcomes is
very limited); substantially smaller values would add noise
to the signal, in the form of volatility false positives. Across
an entire sampling sequence, the cumulative effect of such
episodes is measured by the trial volatility load

V=Y ), 3)

and is referred to, in our following analysis, as the volatility
predictor.

Finally, observers who know (i.e., have learned) that the
standard DFE paradigm pits a safe option against a risky op-
tion (see above) may want to see all three reward outcomes at
least once before terminating sampling. Depending on how
skewed the risky option’s odds are, this can take a relatively
long time. The number of samples it takes to see all three
reward outcomes at least once thus also contains valuable in-
formation about the length of the sampling sequence. It en-
ters our predictive model in the form of a counting predictor,
counting the number of samples it took a participant to see all
three options at least once.

Results

We present two sets of results. We first demonstrate, using a
proportional hazards regression analysis, that both the magni-
tude of difference in expected value and the amount of volatil-
ity seen in the sampling sequence influence sampling dura-
tions as predicted by our theory. Model selection reveals that
volatility plays a more influential role in this process.

These results, however, are calculated using post hoc pre-
dictors that an actual observer would not have access to in
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real-time. Our second set of results uses sequential counter-
parts to these predictors to develop a sequential model that
simulates the trajectory of the stopping probability of any
DEFE trial, sensitive to the influence of both differences in ex-
pected value and episodes of volatility experienced in real-
time.

Data

We procured data from two sources: the decisions-by-
sampling condition from the Technion Prediction Tourna-
ment, which involved two sets (an estimation and a compe-
tition set) of 40 participants each solving 30 such problems,
and a sample of 37 participants solving 19 different DFE
problems we collected in the DFE condition of a different ex-
periment (Experiment 2 in Lejarraga & Miiller-Trede, 2016).
We refer to the Technion estimation dataset as TE, the Tech-
nion competition dataset as TC, and our own sample as LM.

Experimental protocols were largely identical across the
datasets.! Participants could sample both options in each lot-
tery pair as often as they liked, and subsequently committed
to one final draw that would correspond to their actual pay-
out. All participants were compensated via a random incen-
tive scheme, and earned real money corresponding to their
payout in one randomly selected choice problem. We note
that participants in LM revisited each choice problem in a
group setting between individual trials (for details, see Lejar-
raga & Miiller-Trede, 2016), whereas participants in TE and
TC did not.

Volatility matters more

What can the expected value difference between options tell
us about the decision to stop sampling? Recall that small
EVDs may trigger further sampling, whereas large EVDs
supply a reason to choose one option over the other (and thus
to terminate sampling). The average EVD predictor, defined
as %Z,T |EVD,| for sequences of duration T, should then be
negatively correlated with sampling lengths. If observers use
the weight of economic evidence to decide when to termi-
nate information search, greater average magnitudes of the
expected value difference should correspond to earlier sam-
pling termination and vice versa.

We tested this hypothesis by running a Cox proportional
hazards regression, assessing the direction and magnitude of
effect the average expected value difference measured during
a sampling sequence has on the hazard rate across all trials per
subject. The top panels in Figure 2(A) show that, as expected,
EVD consistently increases hazard rates across participants in
all three datasets.

We ran a similar proportional hazard regression using
volatility load as a predictor of sampling sequence lengths.
As the bottom row in Figure 2(A) demonstrates, volatility
load consistently retards hazard rates in participants across all

IParticipants in the LM experiment “chose” by alloting fractions
of an allocation budget to either option; TE and TC used binary
choices. Importantly for our purposes, the sampling procedure was
the same in all three studies.
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Figure 2: (A) Histograms of subject-wise Z-statistics ob-
tained by Cox regression of predictors against sampling se-
quence lengths. Negative Z-statistics indicate that the predic-
tor reduces the hazard rate, yielding longer sampling dura-
tions than baseline expectations. (B) Coefficients from Cox
multiple regressions using normalized EVD and volatility
predictors for all three datasets.

three datasets tested. Panel B in Figure 2 compares the regres-
sion coefficients obtained when we use both predictors—EVD
and volatility—normalized and combining all participants in
each dataset. In all three cases, the normalized predictors
are uncorrelated (r < 0.05, p > 0.25), so the regression co-
efficients (B-weights) are informative about the relative im-
portance of the two predictors (Nathans, Oswald, & Nimon,
2012). Volatility consistently dominates EVD as a predictor
across all three datasets.

Table 1: Model selection using BIC. Lower values are better
within individual datasets. ABIC from best model reported in
brackets.

TE TC LM
EVD 14312 (+165) 14643 (+177) 7090 (+63)
Volatility  14157(+10) 14529 (+63)  7031(+4)
Both 14147 14466 7027

A similar conclusion can be drawn by computing the
Bayesian Information Criterion (BIC) for regressions using
the two predictors indvidually, and then together. Not only is
the full model preferable by BIC, corresponding ABIC values
show that the volatility-alone model is considerably closer to
the full model than the EVD-alone model, suggesting that it is
a more powerful predictor. Together, these analyses demon-
strate (i) that EVD and volatility are independent sources
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of information for predicting sampling duration and (ii) that
volatility is a more informative predictor for sampling dura-
tions than EVD.

DFE sampling durations are post hoc predictable

How well can our account predict actual sampling durations
in the DFE paradigm? A simple additive model combining
these two predictors,

duration = volatility + 3 EVD

yields correlations r = {0.56,0.53,0.45} with human sam-
pling lengths for the TE, TC and LM datasets respectively,
suggesting that these predictors can explain around 20-30%
of the variance in sampling durations for human observers in
DFE.? For lack of competitors—to the best of our knowledge,
ours is the first model for predicting DFE sampling durations
at the individual trial level-we cannot assess this performance
comparatively.

To further improve predictive ability, we can add the count-
ing predictor to the model. Its incorporation yields an aug-
mented linear model

duration = count + o volatility + 3 EVD

which improves the correlations with human data to r =
{0.56,0.69,0.71} for the TE, TC, and LM datasets respec-
tively.3

Note that adding the counting predictor did not improve
the data-model correlation for the TE dataset. This is because
participants in this dataset strongly violated the expectation
that participants would want see all three outcomes at least
once. Of the 1200 total trials in this dataset (40 participants
x 30 problems), as many as 742 trials (62%) were termi-
nated without having seen all three outcomes, including 192
(16%) that were terminated after drawing just two samples
altogether. For comparison, participants in the TC and LM
datasets terminated 41% and 14% of all trials before seeing
all three possible outcomes, respectively. We suspect that the
higher sampling effort in the LM dataset may reflect addi-
tional intrinsic motivation participants in that study derived
from the repeated social interactions between choice prob-
lems.

In the other two datasets, adding the counting predictor
boosts the data-model correlation to ~ 0.7, so the augmented
model explains around 50% of the variance in those data. The
large improvement in predictive ability somewhat overstates
the predictor’s true explanatory value, however. To see why,
note that the sample count at which all three options have
been seen once, by definition, cannot exceed the overall sam-
pling sequence length. The counting predictor is thus upper-
bounded by the independent variable it is used to predict. The
resulting absence of counting predictor values greater than the

ZBest fit =0, —0.1,—0.4.
3For best fit values of o = {3.8,5.9,2.6} and P =
{—0.2,—0.4,—0.9} respectively.

actual sampling length inflates its correlation with the inde-
pendent variable. Hence, while the counting predictor prima
facie adds substantial predictive value to our model, it does
so for reasons that need not be theoretically insightful.

Real-time stopping point prediction

While we show that sampling lengths in DFE are substan-
tially predictable post hoc using objectively observable pre-
dictors, not all these predictors are available to decision-
makers at the time of making their decisions. Neither the
average EVD magnitude nor the cumulative volatility load
across the complete sequence is available to an observer who
is currently sampling. In the following analyses, we used
elements of our predictors that are available to observers in
real-time, and test how well they predict eventual stopping
decisions.

To do so, we use computational models that perform the
same sampling task as the observer, stepping through each
trial sample by sample, predicting sequence lengths indirectly
by estimating stopping probabilities A, at each sample. To
make this analysis feasible, we make the simplifying assump-
tion that there are no individual differences across partici-
pants within datasets. Doing so yields multiple data points
for each DFE problem, instead of just one per problem-by-
participant pair. This allows us to construct a stopping point
distribution for each problem.

We then use these stopping point distributions to fit a basic
piece-wise constant hazard model that assumes the stopping
probability increases linearly with the sampling count 7, i.e.,

7\.1_5_1 — 7\,[ = 87 (4)

and fit {Ag,0} for each unique problem using a grid search,
maximizing the statistical indistinguishability (measured us-
ing a two-sided T test; typical values p > 0.95) between the
empirical stopping point distributions and the model’s pre-
dicted stopping point distribution, averaged across multiple
simulations (N=1000). We kept these {Ag,d} values fixed in
the subsequent models we describe below, fitting only the ad-
ditional parameters.
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Figure 3: While simple statistical models of sampling lengths
can reproduce population-level statistics (left), they (right)
fail to predict sampling sequence lengths for individual tri-
als. Results shown for LM dataset.

This simple model theoretically and empirically resembles
previous sampling length models proposed in the literature,
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which assess model fit by testing whether it produces the
same statistical distribution of sampling lengths as the un-
derlying data (Gonzalez & Dutt, 2011; Markant, Pleskac,
Diederich, Pachur, & Hertwig, 2015). Figure 3 illustrates
that our baseline model closely approximates the empirical
distribution of sampling lengths, much like existing models
(compare left panel with Figure 1 in Markant et al., 2015). It
is a poor predictor of sampling lengths at the individual trial
level (r = 0.03, right panel), however, which illustrates a ba-
sic limitation of this modeling approach.

Table 2: Best fit correlations of sampling durations predicted
by sequential models with human data in all three datasets.

Models TE TC LM
Baseline -0.04 0.02 0.03
Baseline + Vol 020 0.11 0.19
Baseline + EVD 0.15 0.11 0.06
Baseline + EVD + Vol 0.26 0.18 0.21

Baseline + EVD + Vol + Counting 0.44  0.38 0.41

Next, we added a volatility predictor to the model. In
particular, we assumed that the baseline stopping probabil-
ity would increase by A every time the observer encounters
volatility in the sampling sequence,

A1 —A =8+ v(1)A. 5)

Here, volatility refers to single episodes of volatility within
a sampling sequence as defined in Equation 2, not the cumu-
lative quantity (“load”) measured across the entire sequence.
If volatility retards the termination probability as predicted,
negative values of A will yield greater correlations of the
model’s sample sequences with human data. As Figure 4
illustrates, observer models that reduce stopping probability
when encountering volatility (A < 0) indeed provide the best
fit to the data in all three datasets. Our hypothesis about the
influence of volatility thus finds clear support in the data.

We ran a similar analysis to measure the sample-by-sample
impact of the EVD predictor. We assumed that incoming
signals of greater relative evidence strength would affect the
stopping probability following a logistic relationship, with
larger values having a disproportionally larger effect. Thus,

e A
IOgl—k, _IOgl—M

where 7»; is obtained from Equation 4, k is fitted to the data
to maximize the model-data correlation, and d; is the EVD
calculated using the sequence up to the 1" sample. Table 2
provides a summary of the results.

To combine the influence of volatility and EVD, we revis-
ited Equation 6 with A’ calculated via Equation 5, and with
{A,k} as free parameters. The best overall model fit yielded
weakly positive correlations across the three datasets.*

+klogld, +1|, 6)

4Best fit parameter values for all three datasets: A =
{-0.20,—0.15,—-0.125},k = {0.02,0.02,0.02}.

Finally, when we incorporated the counting predictor into
our model in the form of a real-time decision threshold—if
all options seen at sample ¢, terminate with probability A;,
otherwise, terminate with probability Ag—the correlations im-
proved substantially, to {0.44,0.38,0.41}, for the same pa-
rameter values as in the previous model. Unlike in the aggre-
gate analysis, the effect of the counting predictor in sample-
by-sample data does not necessarily suffer from the problem
of artifactual inflation of correlation. These numbers thus
present a fair picture of the predictability of sampling dura-
tions using only real-time information. Empirical estimates
of the test-retest reliability of participants’ sampling lengths
would be required to assess how well our model’s perfor-
mance matches the best possible performance.

Discussion

This paper develops theory and algorithms to predict sam-
pling durations in economic decisions from experience in
which observers freely sample options before committing to
a binding choice. We argue and then empirically demonstrate
that a combination of evidence strength, predictive volatility,
and simply tracking how long it takes participants to observe
the entire reward structure of the particular DFE problem they
are solving goes a considerable way in explaining individ-
ual decisions to stop sampling. Previous attempts to mod-
eling information search in DFE succesfully reproduced dis-
tributions of sampling duration but were effectively random
in trial-level predictions. Our account matches these previ-
ous attempts in distribution-level performance and surpasses
them in making reasonably accurate trial level predictions.
Finally, since it yields direct stopping point predictions, our
model could easily be combined with choice models that re-
spect the epistemic limitations of sampling-based DFE such
as primed sampling or natural means (Erev et al., 2010) to
make joint predictions of choice and sampling duration.

Of the three predictors we examine, one—the number of
samples required to observe all possible outcomes—is spe-
cific to DFE. Its predictive power is substantial, which is in-
teresting because it suggests that participants in DFE exper-
iments both discern an aspect of the task structure not ex-
plicitly described to them (i.e., that each choice is between a
safe option and a risky option with exactly two possible out-
comes), and adaptively react to it. The other two predictors—
evidence strength and volatility—are substantially more gen-
eral and may thus be used to predict sampling duration in
other experimental modalities. For example, Juni et al. have
demonstrated that observers sample for longer when encoun-
tering noisier stimuli in a visuomotor estimation task (Juni,
Gureckis, & Maloney, 2011). In this modality, greater stim-
ulus noise corresponds directly to lower evidence strength,
and as in our case, lower evidence strength is associated with
longer sampling.

Our discovery of the significant influence of predictive
volatility on sampling duration warrants further investigation.
Predictive volatility is a highly accessible information signal
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Figure 4: Model-data correlations for observer models fitted using different increments to stopping probability when encoun-

tering volatility.

that observers could draw on in a variety of real-world deci-
sions from both experience and memory. To date, researchers
have modeled response durations as arising from either ev-
idence accumulation rising to a fixed threshold (Forstmann
et al.,, 2016), or from a time-sensitive threshold collapsing
to meet accumulating evidence (Thura, Beauregard-Racine,
Fradet, & Cisek, 2012). Our results suggest that thresholds
need not stay fixed or fall over time. Instead, they could
rise and fall adaptively within trials in response to sequence-
dependent predictive volatility. Volatility’s representational
generality, alongside our demonstration of its consistent and
considerable impact on DFE stopping point decisions, invites
further exploration in other experimental designs.

The role of predictive volatility in determining when to ter-
minate sampling could also streamline the functional inter-
pretation of cortico-striatal dopaminergic activity in decision-
making (Schultz, Dayan, & Montague, 1997). Dopamine has
been experimentally associated with encoding both reward
and prediction error. The latter association appears to be more
robust, however, in that it is congruent with a larger literature
on the role of prediction error in multiple motor, cognitive
and perceptual functions (Friston et al., 2012). Our account
provides a rationale for why dopaminergic activity could be
temporally correlated with the choice process without actu-
ally encoding reward: It may instead play a critical role in the
latent decision to make a choice, and to terminate information
search.
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