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Osteoarthritis (OA) is a leading cause of chronic dis-
abilities in the United States. OA of the knee is one 

of the most common forms of arthritis, which causes 
substantial social and economic impact. Conservative es-
timates of its prevalence in the U.S. population indicate 
that 26.9 million U.S. adults are affected (1). Its preva-
lence is on the rise, with incidences expected to increase 
to 59 million by 2020 (2).

Magnetic resonance (MR) imaging–based composi-
tional quantitative data (relaxometry) and morphologic 
quantitative data have become central imaging metrics 
for studying long-range outcomes in OA (3). MR im-
aging–based quantification of articular cartilage volume 
and thickness has been widely investigated (4,5). Addi-
tionally, T1

r
 and T2 mappings have shown the ability to 

reveal the risk of posttraumatic OA after anterior cruciate 
ligament (ACL) injury and reconstruction (6,7). Despite 
the evidence on the value of these quantitative MR im-
aging techniques for the assessment and tracking of OA 

(8–10), one of the obstacles in the clinical translation of 
these promising techniques is the time-consuming image 
postprocessing, particularly joint and musculoskeletal tis-
sue segmentation, which is often performed manually or 
semiautomatically (8,10) and is affected by inter- and in-
trauser variability (11).

In the past few years, major efforts have been under-
taken to develop automatic algorithms for the extraction 
of quantitative OA relaxometry and morphology data 
(12–14). However, there is still a lack of commonly ac-
cepted and widely distributed methods to solve this task 
(11). There is a crucial need for the development of a 
fully automatic knee segmentation method that is quick, 
accurate, precise, and able to reliably extract relaxation 
times and morphologic features from MR imaging data.

Deep neural networks, a subset of machine learning 
techniques, have become a popular method for solving 
a variety of computational problems, many of which are 
concerned with image analysis and have recently been 
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Purpose:  To analyze how automatic segmentation translates in accuracy and precision to morphology and relaxometry compared 
with manual segmentation and increases the speed and accuracy of the work flow that uses quantitative magnetic resonance (MR) 
imaging to study knee degenerative diseases such as osteoarthritis (OA).

Materials and Methods:  This retrospective study involved the analysis of 638 MR imaging volumes from two data cohorts acquired at 
3.0 T: (a) spoiled gradient-recalled acquisition in the steady state T1

r
-weighted images and (b) three-dimensional (3D) double-echo 

steady-state (DESS) images. A deep learning model based on the U-Net convolutional network architecture was developed to perform 
automatic segmentation. Cartilage and meniscus compartments were manually segmented by skilled technicians and radiologists for 
comparison. Performance of the automatic segmentation was evaluated on Dice coefficient overlap with the manual segmentation, as 
well as by the automatic segmentations’ ability to quantify, in a longitudinally repeatable way, relaxometry and morphology.

Results:  The models produced strong Dice coefficients, particularly for 3D-DESS images, ranging between 0.770 and 0.878 in 
the cartilage compartments to 0.809 and 0.753 for the lateral meniscus and medial meniscus, respectively. The models averaged 5 
seconds to generate the automatic segmentations. Average correlations between manual and automatic quantification of T1

r
 and T2 

values were 0.8233 and 0.8603, respectively, and 0.9349 and 0.9384 for volume and thickness, respectively. Longitudinal precision 
of the automatic method was comparable with that of the manual one.

Conclusion:  U-Net demonstrates efficacy and precision in quickly generating accurate segmentations that can be used to extract re-
laxation times and morphologic characterization and values that can be used in the monitoring and diagnosis of OA.

© RSNA, 2018

Online supplemental material is available for this article.
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Abbreviations
ACL = anterior cruciate ligament, CI = confidence interval, DESS = 
double-echo steady state, FC = femoral cartilage, KL = Kellgren-Law-
rence, LM = lateral meniscus, LTC = lateral tibial cartilage, MM = me-
dial meniscus, MTC = medial tibial cartilage, OA = osteoarthritis, PC = 
patellar cartilage, 3D = three-dimensional, 2D = two-dimensional

Summary
We aim to analyze how automatic segmentation performances translate 
in accuracy and precision to morphology and relaxometry in osteoar-
thritis compared with manual segmentations and increase the speed and 
accuracy of the work flow that uses quantitative MR imaging to study 
knee degenerative diseases.

Implications for Patient Care
nn Morphologic and biochemical composition quantitative MR im-

aging have shown clinical relevance in the diagnosis and monitor-
ing of osteoarthritis; accurate and precise automated segmentation 
will allow for rapid extraction of these values and their application 
to clinical management and research.

nn Automatic segmentation, morphology, and relaxometry allow for 
the timely incorporation of key parameters in the process that uses 
MR imaging to study degenerative diseases of the knee.

nn We demonstrate a data-driven approach’s interchangeability 
with manual segmentation, allowing clinicians to make quicker 
and more accurate diagnoses and representing an important 
step toward the clinical translation of quantitative MR imaging 
techniques.

applied to radiology and OA images (15–17). Deeper layers of 
a convolutional neural network can extract detailed lower-level 
information from the original image, which is very appealing 
for problems in radiology.

To our knowledge, our article presents one of the first examples 
of deep convolution neural networks to automatically segment and 
classify different subcompartments of the knee at MR imaging—
femoral cartilage (FC), lateral tibial cartilage (LTC), medial tibial 
cartilage (MTC), patellar cartilage (PC), lateral meniscus (LM), 
and medial meniscus (MM). Putting our results in the perspective 
of OA research and clinical application, the aims of our study were 
to (a) analyze how our automatic segmentation performances 
translate in accuracy and precision to morphology and relaxom-
etry in OA compared with manual segmentations and (b) increase 
the speed and accuracy of the work flow that uses quantitative MR 
imaging to study knee degenerative diseases such as OA.

Materials and Methods
Our retrospective study was performed in accordance with the 
regulations of the Committee for Human Research of the home 
institution prior to scanning. All subjects provided written in-
formed consent. Part of this study was funded by GE Health-
care IT Business. Data were collected before collaboration with 
GE Healthcare, and the authors had control of the information 
and data at all points of the study.

Table 1: Data Set Demographic Breakdown

Sequence and Parameter

Kellgren-Lawrence  
Score . 1 (n = 46 for T1

r
 

weighted; n = 144 for DESS)

Kellgren-Lawrence  
Score 0–1 (n = 177 for 1

r
 

weighted; n = 30 for DESS)
Anterior Cruciate  
Ligament (n = 115)

T1
r
 weighted*

  Sex†

    Male 20 (43.5) 56 (43.8) 143 (58.3)
    Female 26 (56.5) 72 (56.2) 146 (41.7)
  Age (y) 57.2 (37–75) 46.4 (24–70) 29.9 (13–81)
    Male patients 56.2 (37–75) 44.0 (24–70) 29.7 (15–81)
    Female patients 57.4 (41–72) 48.2 (25–69) 28.2 (13–56)
  Body mass index (kg/m2)‡ 24.81 (23.74, 25.88) 24.24 (23.62, 24.86) 24.64 (24.0, 25.28)
DESS§ …
  Sex† …
    Male 74 (51.4) 16 (53.3) …
    Female 70 (48.6) 14 (46.7) …
  Age 61.1 (45–78) 61.2 (46–77) …
    Male patients 60.2 (47–78) 59.7 (46–71)
    Female patients 61.9 (45–78) 62.5 (50–77)
  Body mass index (kg/m2)‡ 31.21 (30.43, 31.99) 30.39 (28.94, 31.84) …
Note.—Unless otherwise specified, data are means, with ranges in parentheses. 
* A magnetization prepared angle-modulated partitioned k-space spoiled gradient-echo snapshots sequence with the following 
parameters: repetition time msec/echo time msec, 9/2.6; field of view, 14 cm; matrix, 256 3 128; section thickness, 4 mm; 
bandwidth, 62.5 kHz; and final image resolution, 0.56 3 0.56 3 4 mm.
† Data are numbers of patients, with percentages in parentheses.
‡ Data are means, with 95% confidence intervals in parentheses.
§ Performed with the following parameters: 16.2/4.7; field of view, 14 cm; matrix, 307 3 348; bandwidth, 62.5 kHz; and final 
image resolution, 0.346 3 0.346 3 0.7 mm.
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Subjects
Two separate imaging data sets (both acquired at 3.0 T) were 
used for training, validating, and testing our model. The first 
data set consisted of 464 spoiled gradient-recalled acquisition in 
the steady state T1

r
-weighted image volumes (termed the “T1

r
-

weighted data set”) that were acquired from three research stud-
ies and included patients with ACL injuries, patients with OA 
(Kellgren-Lawrence [KL] grade . 1), and control subjects. This 
T1

r
-weighted data set was used for the relaxometry analysis, as 

T1
r
 and T2 maps were available for these subjects. We used the 

baseline and 12-month follow-up studies for 49 of these subjects 
whose condition was longitudinally stable (KL score = 0 across 
time points) to assess the precision of the proposed method in 
extracting T1

r
 and T2 values. The second data set consisted of 

174 three-dimensional (3D) double-echo steady-state (DESS) 
volumes (termed “DESS data set”) that were acquired from the 
Osteoarthritis Initiate Dataset (OAI) (18) and included data ob-
tained in both patients with OA and control subjects at baseline 
and 12 months. This data set was used for morphometry analy-
sis, as it was of higher spatial resolution than the T1

r
-weighted 

data set. Breakdown of subject demographics and MR imaging 
parameters for the two data sets are summarized in Table 1, and 
a flowchart of the data selection can be viewed in Figure 1.

Image Annotation and Relaxometry/Morphology 
Data Extraction
The T1

r
-weighted data set was manually segmented in-house by 

skilled technicians, with the supervision of radiologists and by us-

ing an in-house MATLAB-based program (Mathworks, Natick, 
Mass), only after they had passed strict training where their seg-
mentations met the metric standard proposed by Carballido-
Gamio et al (10) in morphology analysis and the standard of 
Li et al (19) for relaxation time analysis. The DESS data set was 
manually segmented; images and segmentation masks are avail-
able through the OAI (20). Manual annotations were performed 
for the identification of the FC, LTC, MTC, PC, LM, and MM. 
Relaxation time analysis was performed in the T1

r
-weighted data 

set. T1
r
 and T2 maps were computed on a pixel-by-pixel basis by 

using a two-parameter Levenberg-Marquardt monoexponential 
(21). The mean T1

r
 and T2 values were calculated for each com-

partment by using the respective segmentation method’s mask. 
Cartilage morphologic analysis was performed in the DESS data 
set. Thicknesses were computed for each point in the bone-carti-
lage interfaces and were transferred to the bone surfaces by using 
a previously presented method (10). Corresponding anatomic 
points were computed on the basis of 3D shape descriptors to 
register bones with affine and elastic transformations and were 
then used to perform a point-to-point comparison of cartilage 
thickness values (V.P., with 8 years of experience).

Model Architecture
The neural network model chosen for this problem is based on 
the U-Net architecture, which has previously shown promising re-
sults in the tasks of segmentation, particularly for medical images 
(15,22–25), and has fewer trainable parameters than the other 
popular segmentation architecture, SegNet (26). The U-Net ar-

Figure 1:  Data flow and exclusion process from the data sets used in this study. ACL = anterior cruciate ligament, DESS = double-echo steady 
state, OA = osteoarthritis, OAI = Osteoarthritis Initiate Dataset.
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chitecture can be viewed in Figure E1 (online). The 
network takes a full image section as input and then, 
through a series of trainable weights, creates the cor-
responding section segmentation mask (22).

Our U-Net model uses a weighted cross-entropy 
loss function between the true segmentation value 
and the output for our model. The weighted cross-
entropy function was used to account for the class 
imbalance of the volume that cartilage and menis-
cus compartments make up compared with the en-
tire MR imaging volume. Details on this equation 
can be viewed in Appendix E1 (online).

To build the U-Net models, data in subjects from 
both the T1

r
-weighted and the DESS sets were di-

vided into training, validation, and time-point test-
ing sets with a 70/20/10 split and were then broken 
down into their respective two-dimensional (2D) 
sections to be used as inputs for the two sequence 
models. The time-point testing set for both data 
sets consisted of only follow-up studies correspond-
ing to baseline studies in the training and valida-
tion data sets. This time-point holdout data set was 
used as validation for the precision of the automatic 
segmentation longitudinally. A full breakdown of 
the T1

r
-weighted and DESS training, validation, 

and time-point testing data according to diagnostic 
group (ACL, OA, control) can be viewed in Table 2
. The full 3D segmentation map was then generated 
by stacking the predicted 2D sections for a subject and then taking 
the largest 3D-connected component for each compartment class.

All U-Net models were implemented in Native Tensor-
Flow, version 1.0.1 (Google, Mountain View, Calif ). Model 
selection was made by using the 1-standard-error rule on 
the validation data set (27) (B.N., with 3 years of experi-
ence). For full learning specifications and learning curves of 
the U-Net, see Table E1 and Figure E2 (both online).

Model Performances Evaluation and Statistical Analysis
A multicompartment model for each data set was created for pre-
dicting the four cartilage compartments, two meniscus compart-
ments, overall cartilage, and overall meniscus. Segmentation per-
formances of these models were gauged by using the Dice 

coefficient (
+
∩2 T P

T P

), where T is the true manual segmentation 
map and P is the predicted segmentation map (28). For 
the T1

r
-weighted model, the automatic segmentations’ ability to 

evaluate T1
r
 and T2 relaxation times was compared with that of 

the manual segmentation by using Pearson correlation and a two-
sided t test to examine any associated differences. Relaxation times 
between time points for manual and automatic segmentation were 
evaluated by taking the absolute mean difference in relaxation 
times between time points for both manual and automatic seg-
mentation and then comparing the difference between the two 
methods by using a two-sided t test. The same statistical method 
was used in the DESS data set for comparing the two methods’ 
ability to extract volume and thickness. All statistical tests were 

Figure 2:  Example MR images show comparison between, A–C, manual segmenta-
tion and B, C, automatic segmentation predicted by using the U-net convolutional 
neural network. DESS = double-echo steady state, RES = resolution.

Table 2: Demographics in Training, Validation, and Testing Data Sets

Sequence and Data Set

All Kellgren-Lawrence  
Score . 1 (n = 85 for T1r 
weighted; n = 144 for DESS)

All Kellgren-Lawrence  
Score 0–1 (n = 215 for T1r 
weighted; n = 30 for DESS) All ACL (n = 115)

T1r weighted
  Training 69 (81.2) 174 (80.9) 89 (77.4)
  Validation 16 (18.8) 41 (19.1) 26 (22.6)
  Time-point testing … 49 (100) …
DESS …
  Training 105 (72.9) 16 (53.3) …
  Validation 27 (18.6) 10 (33.3) …
  Time-point testing 12 (8.3) 4 (13.4) …
Note.—Data are numbers of patients, with percentages in parentheses.
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performed by using MATLAB (Mathworks, Natick, Mass) at the 
a , .05 level.

Results
Automatic Segmentation Performances
Figure 2 shows predicted section examples from the model’s 
overall cartilage and meniscus predictions of the T1

r
-weighted 

and DESS test data sets (Fig 2, B, D) compared with the manual 
segmentations (Fig 2, A, C). Mean validation Dice coefficients 
calculated for predicting overall cartilage and meniscus in the 
T1

r
-weighted data set were 0.742 (95% confidence interval 

[CI]: 0.720, 0.764) for cartilage and 0.767 (95% CI: 0.743, 
0.791) for meniscus. Mean validation Dice coefficients for car-
tilage and meniscus in the DESS data set were 0.867 (95% 

Table 3: Dice Coefficient Results

Sequence and Data Set

Multicompartment Model

FC LTC MTC PC LM MM

T1r weighted
  Training 0.775 (0.768, 

0.782)
0.835 (0.828, 
0.842)

0.811 (0.804, 
0.818)

0.753 (0.740, 
0.766)

0.788 (0.780, 
0.796)

0.823 (0.817, 
0.829)

  Validation 0.699 (0.684, 
0.714)

0.702 (0.685, 
0.719)

0.684 (0.661, 
0.707)

0.632 (0.598, 
0.666)

0.627 (0.604, 
0.650)

0.671 (0.647, 
0.695)

  Time-point testing 0.671 (0.653, 
0.689)

0.728 (0.708, 
0.748)

0.600 (0.563, 
0.637)

0.501 (0.469, 
0.533)

0.662 (0.641, 
0.683)

0.707 (0.684, 
0.730)

DESS*
  Training 0.906 (0.903, 

0.909)
0.916 (0.912, 
0.920)

0.888 (0.882, 
0.894)

0.850 (0.840, 
0.860)

0.907 (0.904, 
0.910)

0.887 (0.883, 
0.891)

  Validation 0.878 (0.867, 
0.889)

0.822 (0.798, 
0.846)

0.795 (0.777, 
0.813)

0.767 (0.736, 
0.798)

0.809 (0.790, 
0.828)

0.753 (0.731, 
0.775)

  Time-point testing 0.867 (0.835, 
0.899)

0.799 (0.763, 
0.835)

0.777 (0.748, 
0.806)

0.767 (0.676, 
0.858)

0.812 (0.782, 
0.842)

0.731 (0.677, 
0.785)

Note.—Data are means, with 95% confidence intervals in parentheses. FC = femoral cartilage, LM = lateral meniscus, LTC = lateral tibial 
cartilage, MM = medial meniscus, MTC = medial tibial cartilage, PC = patellar cartilage, TP = time point.

Table 4: Results of Relaxometry and Morphology Analysis according to Data Set

Parameter and Location

Training Set Validation Set

Absolute Mean Difference R Value P Value Absolute Mean Difference R Value P Value
T1⍴ (msec)
  FC 1.1054 0.9350 .389 1.343 0.8574 .825
  LTC 1.2988 0.9257 .162 1.6852 0.8825 .464
  MTC 1.359 0.9043 .859 1.8187 0.8435 .858
  PC 2.5188 0.8972 .962 4.0019 0.7099 .669
T2 (msec)
  FC 0.8382 0.9243 .165 0.999 0.9181 .574
  LTC 0.9209 0.9339 .093 1.3294 0.8944 .337
  MTC 0.933 0.9094 .996 1.3863 0.8753 .974
  PC 1.7467 0.9206 .878 2.8553 0.7773 .694
Thickness (mm)
  FC 0.2097 0.9648 ,.001 0.2001 0.9342 .002
  LTC 0.0998 0.9894 .027 0.0442 0.9561 .572
  MTC 0.1376 0.9664 .001 0.1175 0.8818 .087
  PC 0.4315 0.9841 ,.001 0.3915 0.8627 ,.001
Volume (mm3)
  FC 1694.5 0.9872 ,.001 1646.3 0.9660 .024
  LTC 222.300 0.9939 .009 253.045 0.9455 .119
  MTC 253.875 0.9864 ,.001 203.517 0.9030 .129
  PC 674.729 0.9926 ,.001 448.912 0.8030 .050
Note.—Statistical significance is determined at the P , .05 level. FC = femoral cartilage, LTC = lateral tibial cartilage, MTC = medial 
tibial cartilage, PC = patellar cartilage.
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data set took 2.5 seconds to generate, while a volume from the 
DESS data set took 8 seconds.

Automatic Segmentation Extraction: T1
r
 and T2 

Relaxation Times
T1

r
 and T2 relaxation times across all cartilage compartments 

showed no associated differences between the manual and au-
tomatic segmentations for training and validation in the T1

r
-

weighted data set (validation T1
r
 for FC: P = .825; for LTC: P = 

.464; for MTC: P = .858; and for PC: P = .669; and validation 
T2 for FC: P = .574; for LTC: P = .337; for MTC: P = .974; and 
for PC: P = .696). T1

r
 and T2 relaxation times between manual 

and automatic segmentations had strong correlations for valida-
tion, with R values of 0.8767 and 0.894, respectively. The mean 
absolute difference between segmentation methods for validation 
T1

r
 and T2 relaxation times were 2.1 and 1.54 msec, respectively. 

CI: 0.859, 0.875) for cartilage and 0.833 (95% CI: 0.821, 
0.845) for meniscus. The multicompartment analysis for the 
T1

r
-weighted and DESS data sets also had strong Dice scores, 

which can be viewed in Table 3. For both the T1
r
-weighted 

and DESS data sets, Dice coefficient performances did not 
statistically differ between subjects with different KL grades, 
showing robustness of the method across the OA spectrum. 
However, it should be noted that the Dice scores between the 
different subject diagnostic cohorts for the T1

r
-weighted data 

did differ for validation data in two compartments. For the 
FC, ACL validation subjects performed 5.2% and 5.5% better 
than OA and control, respectively (P = .003). For the PC, ACL 
validation subjects performed 16.2% and 12.7% better than 
OA and control, respectively (P , .001).

In processing the automated segmentation maps for each 
training volume, a single subject volume from the T1

r
-weighted 

Figure 3:  Scatterplots and Bland-Altman plots show comparison of T1
p
 (top) and T2 (bottom) relaxation times produced from 

manual and automatic segmentation methods. (Note that the mean difference and standard errors of the mean of the Bland-
Altman plot are calculated by using the entire data set, not between compartments.) FC = femoral cartilage, LTC = lateral tibial 
cartilage, MTC = medial tibial cartilage, PC = patellar cartilage, SD = standard deviation, Train = training.
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in the scatterplots and Bland-Altman plots available in Figure 4
. Again, for the longitudinal testing data analysis, there was no 
associated difference in thickness or volume between the manual 
and automatic segmentations’ volume and thickness time-point 
changes (thickness for FC: P = .654; for LTC: P = .664; for 
MTC: P = .678; and for PC: P = .404; and volume for FC: P = 
.412; for LTC: P = .376; for MTC: P = .619; and for PC: P = 
.661). A full breakdown of longitudinal testing comparison can 
be viewed in Table 5. It should be noted that for some compart-
ments, our U-Net tended to overestimate volume and thickness.

Discussion

Our study’s results show insight into the application of deep neural 
networks within the field of musculoskeletal research. All metrics 
for model evaluation (Dice coefficients, relaxation times, mor-
phology, speed) are competitive with or outperform current state-
of-the-art automatic or semiautomatic segmentation methods.

Previous automatic or semiautomatic methods for knee tissue 
segmentation and relaxometry and morphology detection include 
a combination of model-based, atlas-based, and machine learn-
ing–based approaches (11). A popular state-of-the-art atlas-based 
approach is proposed by Dam et al (29), which uses a multiatlas 
registration accompanied by k-nearest neighbors (17,30). This 
approach requires multiple time-consuming steps to achieve the 
final segmentation, such as multiatlas registration and feature 

A full breakdown of these relaxometry metrics by cartilage com-
partments and training and validation can be viewed in Table 4,
 as well as in the scatterplots and Bland-Altman plots available 
in Figure 3. As for the longitudinal testing data analysis, there 
was no statistically associated difference between the manual and 
automatic segmentations’ relaxometry time point changes (T1

r
 

for FC: P = .355; for LTC: P = .235; for MTC: P = .695; and 
for PC: P = .584; and T2 for FC: P = .057; for LTC: P = .390; 
for MTC: P = .091; and for PC: P = .018 [not significant with 
Bonferroni correction]), showing comparable precision in man-
ual and automatic procedures. A full breakdown of longitudinal  
testing comparison can be viewed in Table 5.

Automatic Segmentation Extraction: Thickness and 
Volume
Thickness and volume of training and validation data sets be-
tween manual and automatic segmentations showed strong 
linear relationships and correlation across all cartilage compart-
ments. For validation data, the average thickness correlation 
across compartments was 0.9349, with an average absolute 
mean difference across compartments of 0.20195 mm, which 
was lower than image resolution. Again, for validation, the aver-
age volume correlation across compartments was 0.9384, with 
an average absolute mean differences across compartments of 
510.134 mm3. A full breakdown of these morphologic metrics 
by cartilage compartment can be viewed in Table 4, as well as 

Table 5: Results of Relaxometry and Morphology Analysis according to Time Point

Parameter and  
Location

Time Point Absolute Mean Difference Time Point Correlation
P Value for Difference  
between Manual and  
Automatic Segmentation

Manual  
Segmentation

Automatic  
Segmentation

Manual  
Segmentation

Automatic  
Segmentation

T1⍴ (msec)
  FC 3.8067 3.2507 0.1637 0.0732 .355
  LTC 4.0322 2.8404 0.4891 0.5741 .235
  MTC 3.7682 3.5259 0.4668 0.3860 .695
  PC 5.3999 4.9568 0.3008 0.5018 .584
T2 (msec)
  FC 1.5807 1.9252 0.9254 0.9040 .057
  LTC 2.5612 2.1712 0.8247 0.8405 .390
  MTC 2.7712 2.2400 0.7679 0.8104 .091
  PC 3.4686 5.1439 0.8121 0.7455 .018
Thickness (mm)
  FC 0.0422 0.0514 0.9554 0.8927 .654
  LTC 0.0784 0.0923 0.8815 0.9176 .664
  MTC 0.0833 0.0961 0.9055 0.9335 .678
  PC 0.1544 0.0989 0.7679 0.9081 .404
Volume (mm3)
  FC 300.147 838.095 0.9511 0.8522 .412
  LTC 117.070 168.592 0.9503 0.9569 .376
  MTC 142.975 165.528 0.9675 0.9472 .619
  PC 269.415 365.106 0.7073 0.6853 .661
Note.—Statistical significance is determined at the P , .05 level. FC = femoral cartilage, LTC = lateral tibial cartilage, MTC = medial tibial 
cartilage, PC = patellar cartilage.
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computation and selection. Dam et al used data in 88 subjects 
from the OAI. While it is unknown which patients Dam et al 
used, a loose comparison between their validation Dice coefficient 
results and our U-Net’s can be made by using a two-sample t test 
under the assumption that the two samples have equivalent dis-
tributions as a result of the same imaging parameters. The two 
methods show no associated difference between compartments, 
with the exception of the lateral tibia and femoral condyle (for 
MTC: P = .087; for LTC: P , .001; for FC: P , .001; for PC: 
P = .119; for MM: P = .339; and for LM: P = .052). Dam et al 
outperformed the U-Net by 3.7% for the lateral tibia (0.86 6 
0.034 [standard deviation] vs 0.822 6 0.071), while our U-Net 
outperformed Dam et al by 5% for the femoral condyle (0.878 
6 0.033 vs 0.828 6 0.044). Dam et al also compared volumes 
between manual and automatic segmentations for medial tibial 
and femoral compartments, overestimating the total segmentation 

volume by 14%. Our U-Net model overestimated volume by an 
average of about 12% across all compartments. For both methods, 
volume overestimation is not necessarily a flaw, as long as strong, 
linear correlations exist, allowing for bias adjustment.

Aside from the robust accuracy performances, our U-Net 
model has the distinct advantage over previous automatic/semi-
automatic segmentation methods in that it is an “end-to-end” 
method. There is no pipeline that requires extensive image pre- 
and postprocessing and registration, resulting in noteworthy im-
provements in performance time.

A pattern that should be noted in our results is that the DESS 
data set outperformed the T1

r
-weighted data set across all com-

partments. We believe there are two main reasons for this. First, 
the T1

r
-weighted data set had a smaller sample size on a per-

section basis than the DESS data set, which usually leads to less 
robust modeling. Second, because the T1

r
-weighted data were 

Figure 4:  Scatterplots and Bland-Altman plots show comparison of volumetric (top) and thickness (bottom) calculations pro-
duced from manual and automatic segmentation methods. (Note that the mean difference and standard errors of the mean of 
the Bland-Altman plot are calculated by using the entire data set, not between compartments.) FC = femoral cartilage, LTC = 
lateral tibial cartilage, MTC = medial tibial cartilage, PC = patellar cartilage, SD = standard deviation, Train = training.
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of lower spatial resolution, each misplaced voxel will decrease the 
Dice coefficient 2.25 times more than the Dice coefficient for a 
misplaced voxel in the DESS data set.

While our neural network model does show promising per-
formance advantages in comparison to manual and other auto-
matic segmentation methods, there is room for improvement in 
accuracy. Using the Dice coefficient as the loss function would 
be desirable for training (as well as a potential combination of 
volume and thickness measurements); however, the current con-
figuration of TensorFlow does not allow for this gradient cal-
culation. Another limitation with the current method is that it 
uses only four cartilage plates and two meniscus plates, whereas 
more information can be inferred about OA with more detailed 
subregions of the meniscus and cartilage. Finally, there was a 
lack of a real ground truth. Our accuracies are calculated assum-
ing manual segmentation as the reference standard, which may 
change because of user variability. However, our presented re-
sults show longitudinal precision that proves the robustness of 
our algorithm, independent of the ground truth definition.

Using state-of-the-art convolutional neural networks, we 
were able to produce fast, accurate, and precise automatic seg-
mentations of cartilage and meniscus compartments that are 
invariant across patients with OA. Our method also has substan-
tial computational speed advantages. Additionally, our models 
have demonstrated efficacy in extracting relaxation times and 
morphologic features that can be used in the prediction and 
monitoring of joint degeneration in OA. This demonstrates our 
model’s interchangeability with manual segmentation, allowing 
clinicians to make quicker and more accurate OA inferences, 
representing an important step toward the clinical translation of 
quantitative MR imaging techniques.
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