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In this paper the prediction problem is considered for linear regression models with elliptical
errors when the Bayes prior is non-informative. We show that the Bayes prediction density under
the elliptical errors assumption is exactly the same as that obtained with normally distributed
errors. Thus, assuming that the errors have a normal distribution, when the true distribution is
elliptical, will not lead to incorrect predictive inferences if the error variance structure is correctly
specified. This extends the results of Zellner (1276). Finally, based on Monte Carlo numerical
integration procedures, computations are provided in a model with multiplicative heteroscedastic-
ity.

1. Introduction

Lately there has been much theoretical and applied interest in linear models
with non-normal disturbances as several authors have explored the conse-
quences of non-normality and heavy-tailed error distributions. In the context
of one heavy-tailed error distribution, the multivariate-z distribution, Zellner
(1976) provides a Bayes and classical analysis of a regression model, Ullah and
Walsh (1984) consider the issue of testing restrictions, and Kelejian and
Prucha (1985) point out the importance of distinguishing between indepen-
dence and uncorrelatedness in non-normal situations. Models containing sys-
tems of equations are discussed in Prucha and Kelejian (1984) and Sutradhar
and Ali (1986), and the issue of minimax estimation of the location parameters
is taken up in Judge, Miyazaki and Yancey (1985). The problem of prediction

*We would like ic acknowledge our appreciation to Professor Arnold Zellner :mq two
anonymous referees for many valuable comments that helped us to generalize the results in the
original draft.
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based on the assumption of spherical errors is considered in Dawid (1981) and
Jammalamadaka, Tiwari and Chib (1987).

The purpose of this paper is to show that the assumption of elliptical errors
in linear regression models with limited prior information on the parameters
has no new consequences for prediction if ihe error variance structure is
correctly specified. For example, correctly assuming that the errors are spheri-
cal but misspecifying the error distribution as normal, when the true distribu-
tion is a multivariate ¢, does not lead to incorrect predictive inferences. In
Zeliner (1976) it is shown that when prior information is of the non-informa-
tive type, the joint posterior of B, the regression coefficient vector, and 72, the
error precision, differs depending on the error distribution assumed, although
the marginal posterior of 8 is unaffected. The latter feature, whici carries over
in more general settings, is essentially the key as to why the predictive
distribution is invariant to a wide class of error distributions. This means that
in the study of robustness, perturbations from the assumed model can have
very different consequences for estimation as opposad to prediction.

The plan of this paper is as follows. Section 2 contains the Bayes prediction
densities for the linear regression model with elliptical errors. In section 3, we
show that the resulting prediction density and the predictive moments can be
computed numerically using procedures that are described in Geweke (1987a,
b). We base our computational analysis on a model with multiplicative
heteroscedasticity.

2. The elliptical error model

Consider the linear regression model with non-random regressors and
elliptical errors,

y=XB+4(Z)u, (2.1)
where y € R", B € R¥, u~ N(0,(72A)~1), 7?A is the precision matrix, 72> 0,
Z is a positive random variable with distribution G independent of u, and
¥(-) is a positive function. Model (2.1) implies that conditionally on Z,

YIZ, B, 7% A~ N(XB,(+A) "¥(2)’), (22)
while the unconditional distribution of y|§, 72, A is

f( ylﬁ, TZ,A) aC j(;wITZAln/z{lll(Z)—z} n/2

<exp| = 4(2) (- XBYA(y-XB)) 46(2).

(2.3)
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From (2 3) several dist'ibutions including the e-contaminated normal and

Z is chi i-Squ ared with » ucgrc s of freedom disiribuied maepenaenuy of u,
t

and J(7Z\N=1{( /1)\_1/2 >N then o hac tha allintinal smnléterceinta ¢ J.n‘- | -
il YLy \&/v) s ¥ ~ Uy uivii LIAS LUiiv villpuval uluuuvauatc-t dDUIUU-
tion with density given by [cf. Press (1982, p. 136)]
r 7
£l IR 72 A=l 22\ A 11/2
VAW ZNEEELY AR AU A 0|
i- 1-2 —l—(n+v)/2
wl1o (.. WOVAL .._ WD)\ {7 A\
"I-‘- ' v \V AP LAy /‘P}J 9 \<.%)
where
F/n+1'\ //F/ V\( A
e=I\ == )\ 7J(m)™"):
N 2 ri \ A) 2 7 ra

The case » =1 results in the multivariate Cauchy distribution. If A =1,, the
identity matrix of order n, we obtain the homoscedastic (or spherical) muiti-

val ldlC'l uxbu l.U u ll.Ull.

The oenaral Ravac nrediction nrahlem in the contavt af maodel ¢ 2 can he

& AW EwiAwiii PR WO PAVMIVIAVIL PIVULWEIAL i1E WAV WULILWALV Ul aiiUswi Ceak

described as follows. Suppose that the vector of observations y is partmo ed
as y=(y{, yJ), where y,: n, X1 is observed and interc:t centers on predic-
ting y,:n, X1, an unobserved set of future observations, assuming that
X =(X/, X;) is known. The Bayes prediction density is defined as

_ J1Cn mi0)n(6) a0

so that the r sulting function i e

The definition in (2.5) is used to compute the Bayes prediction density for
the elliptical regrcssnon error medel. Observe that conditional on 72, the
random vectors y, and y, are uncorrelated, however, they are not indepen-
dent unless Z is a degenerate random variable.

We suppose that the matrix A: n X n is described by a fixed (i.e., indepen-
Anemt AL ) sonsmnerm ot 1an sSupDose sthat tha nancin Armative
ULt Ui 6 ) pal Tcwer VGUI.UI l’, l’ (= VT . MAISU SUPPUN At LG EIVIISIEIIUVL IR LE VY
nrior of (B. 72 m) is
prior of (&, 75, 1) 1S

'rr(ﬁ,'rz,vp)=(72)—lvr(n), Be Rk, >0, neER”’. (2.6)
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First we note the key result that the margina! posterior density of 8 given y,
is unaffected by a change in the error distribution from multivariate normal to
elliptical, which extends the result of Zellner (1976).! If we let the prior pdf of
(B, 72, m) be (2.6), then the marginal posterior pdf of B given y,:n, X1, for
any Z, is

1
W(B‘J’l) « LERP[I + ("1"k)812(71) (B—ﬁl(n))’

—(k+n,—k)/2
XX{Al("?)"l(B‘E(ﬂ))J W(ﬂ)d'ﬂ,

where
ﬁl(") = (Xl'-’ll("l)Xl)—lxl'A1(’7).V1,
si(n) = SSE,(n)/(n, - k),
SSE,(9) = ( A Xlﬁl(n))'Al(")( - Xlﬁl("l)),

where A, = A,(0) is the n; X n, submatrix corresponding to y,. This is exactly
the marginal posterior density of 8 obtained in the case where the errors are
multivariate normal with precision matrix 7?A, [cf. Leamer (1978)]. Conse-

quently the posterior of 8 given y,, y, and Z is equal to the posterior of 8
given y, and y,, ie,

By, . Z2Bly,, 3, and (B, y, mIZ2 (B, y, 1),

where £ stands for equal in distribution. Hence, the posterior of y, given y,
and Z is equal to the posterior of y, given p,, i.e.,

AL A A

which is stated in the next proposition.

Proposition 1. Let w(B, 7%,m) & (t2)"'n(n). Then the Bayes prediction density
of y,, under model (2.1) is for any Z,

FApin) =ct [ AAXA(n) X| 72
€ R?

X SSE(5) ™" % (n)dn, (2.8)

! This point, that the invariance of the predictive disi ribution is connected to the invariance of
the marginal posterior of £, was made to us by a referee. Heuce the differential error distribution
has an effect only on the posterior distribution of 72.
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where

SSE(n) = ( y — XB(n))A(n)( y - XB(n)),

B(n) = (XA(n)X)"'X'A(m) ,

am e B {52

(> ]
X [ (P IX{A () X, 72

X SSE, (1) "2 x(n) dn.
Using the updating results in Chib, Jammalamadaka and Tiwari (1987), it is

possible to also express this density as a mixture of multivariate-r densities, a
representation that is useful under some circumstances. If we let

Z(n) C(n) ]

A™(m)= [c'(vn 2,(n)

where

Zi(m):ny Xny,  C(q):ng Xny,  Zy(m):nyXny,
and define

B21(n) = X,B,(n) + C()Z,(n) " (3, - X, 8:(m)),
2,1(n) = Z,(n) - C'(n)Z,(n) " 'C(n),
Q(1) =X, - C'(n)Z,(n) 'C(n),
2(1) =25, + Q(n)(XZ,(n) ' X,) T @),
then the Bayes prediction density of v, given in (2.8) can also be expressed as
FP(palp) = [$n,(2s(n), Poa(n), my = k)7 (dnlpy), (29)

where the integrand ¢, in (2.9) is the (n,X 1) multivariate-r density with
mean vector fi,,(7), precision matrix PB,,(n)=[2(n)]"'/si(n), and n, ~k
degiees of freedom. The integration is performed with respect to the posterior



354 S. Chib et al., Bayes prediction in regressions with elliptical errors

density of 7, given y,. This posterior density is

”("U’l)=m(y1|ﬂ)ﬂ(n)/fm(ylln)vr(vs)dn,
where
m( py1m) = 1A, ()12 X{A1 (n) X, ~2/2[SSE, ()] 742,

What is interesting about the MVt pdf in (2.8) is that the random-variable Z
plays no role in the final answer, and that the prediction density is identical to
that obtained under the assumption of multivariate normal errors, This shows
that when there is limited prior information on the parameters, the assumption
of normality is robust to deviation in the direction of elliptical distributions as
far as prediction is concerned.

Based on this result, the prediction density with spherical errors (i.e., when
A=1,) can be obtained as a special case. Let the ordinary least squares
estimates of B and (7%) 7!, respectively, based on y,, be given by

ﬁl = (Xl'xl)_lxl’yl and s12 =8SE,/n, - k,
with
SSE, =||y, - Xxﬁxllz-

Then by setting A = I, in (2.9) we get the following result:

Corollary 1 [Jammalamacaka, Tiwari and Chib (1987)). Let the prior pdf of
(B, 7%) be w(B, 1) x (12)"}, BE R, 72> 0. Then the Bayes prediction density
of y,, given y,, for any Z, is tP,.z(XzﬁnUn, + Xo(X{X,)7'X;17 /st ny = k),
a multivariate-t pdf with mean vector X,P,, precision matrix (Z,, +
X,(X¥/X,) 'X]]1"Y /5%, and n, — k degrees of freedom.

This is the prediction density in Zellner (1971) under the assumption of
multivariate normal errors with independent components.

3. An example

Consider a special case of the model in the previous section and suppose
(7?A)7! is a diagonal matrix representing heteroscedastic variances. In fact
heteroscedastic linear models have been extensively studied, but almost evclu-
sively from the viewpoint of parameter estimation and testing. Surekha and
Griffiths (1984) is a useful recent work that compares some Bayes and
sampling theory estimators in two heteroscedastic error models. We can apply
the results of the previous section to examine the conscauences of hetero-
scedasticity on predictive inferences.
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Assume, along the lines of Geary (1966), Park (1966), Lancaster (1968) and
Harvey (1976), that the variance of the error term is proportional to an
unknown power of one of the covariates, say the ith, and write

_ -1
var(e,|(0%,v)) =0>=(+*) "%}, x,>0, yER,
t=1,2,...n,n,+1,...,n,
and let i > 2, since the first covariate in X is usually a constant.? Under this

specification tue distribution of the vector y in model (2.1) is elliptical with
density

f(B 7 ) & [P (4(2) x| - S 9(2)
x (y—x,e)'rm(y—xe)) 46(2), (1)

where 72P(y) = rdiag(x;;", x5, ..., x;;¥) is the precision matrix of the error
vector e. Notice that y = 0 reproduces the spherical case discussed in Corol-
lary 1.

Suppose that a priori B, log7° and y are independent and uniformly
distributed, which implies that the prior of (8, 72, v) is given by

2

'n(B,TZ,y)OE(TZ)—l, BER*, 12>0, yeR. (3.2)
When the error distribution is heteroscedastic multivariate normal, this is also
Jeffreys’ invariant prior of (B, 72, v). See Surekha and Griffiths (1984, p. 91),

where the above prior is adopted.
We define:

P,(y) = diag(x;",..., x;l}f),
ﬁ1(7) = (Xl'Pl(Y)Xl)—lXIPl(Y)yp

SSEl(Y) = ( - X1ﬁ1(7))'1’1(7)( - Xlﬁl(Y))’

2Notice that x,,>0 and thus this regression specification cannot be obtained from a joint
normal distribution for the dependent and independent variables or from 1ny other joint
distribution involving doubly-infinite ranges. We owe this point to Arnold Zellner.



356 S. Chib et al., Bayes prediction in regressions with elliptical errors

Slz(Y) = SSEl_(y)/(n,_ - k).

The next result follows from Proposition 1.

Nzl ) T ot ool R -2 MM Ved 1_2\—'1 T ot tho nhoownntinme v hano downcity ne in
LOrviel y 4. $U\PHy T S JJNN\T ) » A4S HIET UUDCT UKLV |y IHUUT KCTItokE )y WO e
(3.1). Suppose v, is unobserved. Then the Bayes prediction density for y, is given
\~*® ) & rr~>~>J2 7 r 7 7 A [=]

by

[-w FR(yaly ) m( ply) dy

A mly) = —2——— , (3.3)
J  miniv)dy

where f3( y;lyp, ¥) = ‘Pn,(xzﬁl('Y) [2,(Y) + Xo(X{P(v)X,) X317/
s#(v), ny — k), and m(y,|v)/[m( y,|v)dy is the marginal posterior density of
Y, given y,, with

-
\

(4]

-

This density can be analyzed numerically. Although the integral can be
approximated by Laplace’s meihod as discussed in Tierney and Kadane
(1986), we employ a direct numericai integration procedure to produce the
prediction density and predictive moments.

Quimmace we lo cancider 8 madel cimilar ta the Ane in
Suppose we let y,:1X1, and consider a model similar to the one in
Surekha and Griffiths (1984), in which the data-generating process containing
a-generating process containing

one explanatory vanable is assumed to be

nnth R =1 AR =10 v ~TH/T TM nnifarm An tha intarual 1 101 inas Anr
vl HO Xy ’Jl J.V, J\rl U\.‘., -l-vl, SBAAARNJALLL Wil UilNv RAALVLA VAL ll, ].U‘. WLAANVYY U
results show that the prediction function with elliptical errors is identical to

il Liuptibal L4 L3

that with multivariate normal errors, the ¢, are random draws from a normal
distribution with mean zero and variance 02 = (72) L (:Hl=4,y=1A
sample size of n, =20 is used.? The functxon fB(»,lp1, v) in (3.3) is numeri-
caliy integrated with respect to (wrt) the posterio" of y given »;, using Monte

chaice of tha imnartanca flincting 1o oritinal in nl-u»n-.nnn apraienta actismatag Af
VAIUIWY Ul Ulv BILPUL WAIIVG 1BEIWLEATEE 5D LRI 111 UULGL lls AV UL W S QXLCS VL

i} CuUr (14
the l_ntggral_ In general for fB( iy Y) in (3.3), the ideal importance function
1) S22l i 7 2RRGD S G2 ABPULIRILT aBLAIE
is, of course, the posterior Ddf of y given p,. Since it is difficult in our case to

3The actual data set is available from the authors. The ana_vm  was also carried out with sample

ciza g = 1N and AN Qiernn tha wvacelée wran ... PN cava cHmanrs a o d e

size n; =10 and #; = 30. Since the results were similar, we decided to save space and not report
those results.
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Yy pdf & t approx. :n;=20

@
o
©
ol =
T2} [ ,/

§O i II

Serp A
(=} 1
N: /I
(=] / /4 \
°_ ) " A PR f S
©-18-09 0.0 1.0 1.9 28

Y
Fig. 1. m(y|»): —, f(¥}: === f(¥) = ¥, (C 524252,2.302607, 18). [The normeizing constant of

7(yl3), ie, fm(y|y)dy, is found by Monte Carlo integration. The importance function found
adequate is the uniform density on [ - 6,6] which was used to produce 1000 random draws of v.]

sample from this posterior pdf, we have used an importance function, f(¥),
that mimics 7 (y| yl). For large sample 7(v|y,) will tend to be approximately
Nl(?ML,[var(?ML)]‘ ), where ¥, is the maximum likelihood estimate of y
and var(fyy ) is the variance of the ML estimate (computed in the usual way
from the observed Fisher information matrix). A possible choice for f(y) i isa
V1 (¥mu»[var(§p )] 2, ) pdf with d.f. » chosen to ensure that the tails of f(v)
are no sharper than those of #(y|y,). The adequacy of this choice is illustrated
in fig. 1.

Given that the Student-r density f(y) ¥,(0.524252,2.302607.18) is an
adequate importance function, N values of v, say y?, i=1,2,..., N, may be
generated randomly, where N is a suitably large number. The Monte Carlo
estimate of (3.3) at the point y, is

5 [/%(5alyn v )m( 3l (v )]

fB(Y2|.V1)=i=1 N . . . (3-4)
Y [m( mly®)/f(v)]
i=1

Similarly, adapting the ideas in the interesting paper of Geweke (1987b), the
predictive moments can be found as follows. It can be confirmed that the
evaluation of the expeciation h(y,) with respect to the predictive pdf is
equivalent to finding a certain expectation with respect to the posterior of y
given p,. In particular,

E/ P02l [n(y,)] = E"[g(¥)], (3.5)
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Table 1
Central moments, skewness and kurtosis of the predictive distribution.?

ny m ) I3 B4 Sk K
20 52.76888 24.61801 0.62324 2077.4587 0.00510 3.4279

3The moments are calculated using S = 100 antithetic replications of y,, for each value of y.
Sk is a measure of skewness (Sk = p/0%) and K is a measure of kurtosis (K = p,/0%).

where
2(v) = [R(3) 2 (3alyr, 7) dy,.

Clearly for a given value of y, say v, it is easy to generate random draws
from fP(y,|y;, 7). Suppose for each y”, S antithetic y, values, denoted
yyn; j=1,..., S, are thus drawn. Then the Monte Carlo estimate of g(y®)
is

S
&=L y"/s,
Jj=1

and the Monte Carlo estimate of the LHS of (3.5) is

_]Zv‘, [(Zm(51v®) /(D))
E[2(3,)n] = 5 -,
X [m(51v?)/f ()]

i=

(3.6)

p—

which can be programmed. Notice that, since E( y,|y,, v) and var(y,|y,, y) are
given by simple expressions, the unconditional mean and variance can be
obtained by numerically integrating over =(y|y;) for, e.g., E(y,|y,)=
E"OI[E( 3, |y, v). However, (3.6) is a more general procedure that can be
used even when tlie iatter approach is infeasible or complicated. Based on (3.4)
and (3.6), the prediction density and predictive moments are provided below.
In addition, we report the ‘irue’ prediction density. The true prediction
dentily is f(,|y;, @), which for our chosen parameter values and simulated
X, =(1,5.21737) is the density of a N,{53.17366,0.047917) distribution.
Examination of table 1 confirms the visual impression from fig. 2 that the
prediction density is symmetric and, relative to a normal density with the same
mean and variance, is slightly more peaked. It, therefore, appears that sym-
metric (around the mean) highest probability density prediction intervals are
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pdf:Bayes and.true:n;=20

0.1

pdf

) =<7 . . s
©36.0 44.0 52.0 60.0 68.0
Y2

Fig. 2. f B(y,|3): —, true: ---. [The number of replications is N = 2000; antithetic sampling
is used. Over the 2000 replications, the minimum value of y= —1.8775 and the maximum
is 2.9260.)

adequate for this problem. Whether the same phenomenon arises in other
experiments with heteroscedasticity can be investigated along the lines devel-
oped in the paper. Of course, the ideas in this paper can be used quite
generally in a variety of other contexts that are described by the elliptical error
structure used here.
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