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ABSTRACT OF THE DISSERTATION 

 

Total Synthesis of Picrinine 

 

by 

 

Joel Michael Smith 

 

Doctor of Philosophy in Chemistry 

University of California, Los Angeles, 2015 

Professor Neil K. Garg, Chair 

 

 

Throughout history, organisms have ensured their survival by producing a wide variety of 

small molecule natural products. These entities commonly serve roles in cell function and 

signaling, and have also provided a defense system to combat infectious parasites. In the realm 

of synthetic chemistry, natural products serve as an architectural inspiration for the development 

of novel chemical transformations and molecular cascade processes. Ultimately, the synthesis of 

natural products that have biological importance holds promise toward the understanding of a 

plethora of biochemical pathways and the treatment of disease.  



 iii 

 This dissertation describes synthetic efforts toward the alkaloid picrinine. This molecule 

is a member of the akuammiline alkaloid class, and it bears a complex molecular scaffold 

unaddressed by synthetic chemistry. Central to the synthetic approach is the use of the Fischer 

indolization reaction as a platform for rapidly building molecular complexity and constructing 

the salient furanoindoline core of picrinine. The earlier part of this dissertation describes a first-

generation approach to the synthesis of picrinine, while the ensuing chapter concerns a second-

generation route, which resulted in its total synthesis. This dissertation’s final section concerns 

the development of a unified and enantioselective approach to the akuammiline alkaloid family, 

in addition to a formal enantioselective synthesis of both aspidophylline A and picrinine. In 

summary, the synthetic endeavors described emphasize the importance natural products hold for 

the development of novel synthetic strategies and transformations. 
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CHAPTER ONE 

 

Cascade Reactions: A Driving Force in Akuammiline Alkaloid Total Synthesis  

Adapted from: Joel M. Smith, Jesus Moreno, Ben W. Boal, and Neil K. Garg. 

Angew. Chem. Int. Ed. 2015, 54, 400–412. 

 

1.1 Abstract 

The akuammiline alkaloids are a family of intricate natural products that have received 

considerable attention from scientists worldwide.  Despite that many members of this alkaloid 

class were discovered over 50 years ago, synthetic chemistry has been unable to address their 

architectures until recently. This chapter provides a brief overview of the rich history of the 

akuammiline alkaloids, including their isolation, structural features, biological activity, and 

proposed biosyntheses.  Furthermore, several recently completed total syntheses are discussed in 

detail. These examples not only serve to highlight modern achievements in alkaloid total 

synthesis, but also demonstrate how the molecular scaffolds of the akuammilines have provided 

inspiration for the discovery and implementation of innovative cascade reactions for the rapid 

assembly of complex structures. 

 

1.2 Introduction 

Natural products belonging to the akuammiline family of alkaloids have provided a 

fruitful area of scientific discovery for over one century.1 Initial interest in the akuammilines 

stemmed from their role in traditional medicine, where inhabitants of southern and southeastern 

Asia utilized the leaves of native plants such as Alstonia scholaris to treat various ailments in 
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humans and livestock.2 As a result, scientists have investigated the pharmacological effects of 

akuammiline alkaloids and discovered their wide range of biological properties, which range 

from anti-cancer to analgesic effects.  For example, echitamine (1.1), which was first isolated in 

1875,3 displays both in vitro and in vivo cytotoxicity,4 whereas strictamine (1.2)5 inhibits the 

transcription factor NF-κB (Figure 1.1).6  Additionally, derivatives of picraline (1.3)7 inhibit the 

renal cortex protein SGLT2,8 while aspidophylline A (1.4) reverses drug-resistance in cancerous 

cell lines.9 

 

Figure 1.1 Representative biologically active akuammiline alkaloids. 

!

!

As is apparent from the representative family members shown in Figure 1.1, there is a 

great deal of complexity and structural diversity amongst the >30 akuammiline alkaloids that 
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proposed biogenesis of various akuammilines sheds light on how nature likely assembles these 

intricate scaffolds. As shown in Figure 1.2, the union of tryptamine (1.5) and the monoterpenoid 

secologanin (1.6) first results in the formation of the natural product geissoschizine (1.7). In turn, 

1.7 serves as the progenitor to many different alkaloid frameworks including the strychnos, 

mavacurine, and akuammiline varieties.10 For example, the strychnos alkaloid preakuammicine 

(1.8) would arise from a cyclization between C2 and C16, whereas the mavacurine alkaloid 

pleiocarpamine (1.9) stems from a cyclization between N1 and C16. The akuammiline 

framework, on the other hand, derives from an intramolecular oxidative coupling between C7 

and C16 of geissoschizine (1.7). This constructs the caged indolenine framework of rhazimal 

(1.10).11 
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Figure 1.2 Proposed biosynthesis of several monoterpenoid indole alkaloid classes. 

!

!

The polycyclic natural product rhazimal (1.10) is thought to serve as a molecular 

platform to access to all the other akuammiline family members through redox transformations, 
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(1.3),7,7b while the analogous transformation from 1.2 would yield picrinine (1.13).13 Both 

scholarisine A (1.14) and aspidophylline A (1.4) are believed to arise from picrinine (1.13). 

Aspidophylline A (1.4)9 could be generated by reduction at C5 and N4 formylation, whereas 

scholarisine A (1.14) is proposed to come from a redox isomerization and skeletal 

reconfiguration.14 Finally, the pyrrolidinoindoline scaffold of vincorine (1.15)15 is thought to 

stem from strictamine (1.2) via N4 migration from C3 to C2.5 

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!



! 6 

Scheme 1.1!Divergent biosynthetic relationship of the akuammiline alkaloids.!

!

!

Research concerning the akuammilines has historically focused on isolation and 

pharmacological studies1a with relatively less emphasis on synthetic chemistry.  However, 
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provided some noteworthy lessons on synthetic strategies for accessing these challenging natural 

products.16 Since then, many research groups have reported promising strategies toward the 

akuammilines, including those of Sakai,17 Toupet,18 Bosch,19 Takemoto,20 Higuchi,21 Shi,22 and 

Zhu.23  

Although many akuammiline alkaloids have yet to succumb to laboratory synthesis, 

synthetic efforts spanning the past 6 years have led to the completed total synthesis of four 

daunting akuammilines: vincorine (1.15),24,25,26 aspidophylline A (1.4),27,28,29 picrinine (1.13),30 

and scholarisine A (1.14).31,32 Although the synthetic routes towards these alkaloids contain a 

variety of creative elements, one unifying theme is their utilization of innovative cascade 

reactions to elegantly and efficiently forge their intricate architectures. This chapter provides a 

perspective on the key transformations that construct multiple chemical bonds in one process, 

and how these cascades have fueled achievements in akuammiline total synthesis. Additionally, 

other important bond formations are highlighted, specifically those that played instrumental roles 

in enabling the completed syntheses. 

 

1.3 Total Syntheses of Vincorine 

(–)-Vincorine (1.15, Scheme 1.1) was first isolated in 1962 from Vinca minor by 

Šefčovič and co-workers.15 As mentioned above, this alkaloid contains a pyrrolidinoindoline core 

that arises from a nitrogen migration within the parent akuammiline architecture.  This migration 

results in a pentacyclic scaffold that includes one seven-membered ring and four contiguous 

stereocenters, one of which is quaternary. This section highlights the three completed total 

syntheses of 1.15 that have been reported to date by the groups of Qin,24 Ma,25 and MacMillan.26 
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1.3.1 Qin’s Cyclopropanation Approach 

The first breakthrough in the total synthesis of akuammilines came from Qin and co-

workers, who reported the total synthesis of (±)-vincorine (1.15) in 2009.24 The Qin group 

targeted two key challenges: assembly of the cyclohexyl-fused pyrrolidinoindoline framework 

and construction of the seven-membered ring. To address the former difficulty, Qin and co-

workers employed an elegant cyclopropanation/fragmentation cascade sequence, which had 

earlier proven useful in their synthesis of the strychnos alkaloid minfiensine.33  

As depicted in Scheme 1.2, a three-step sequence was used to convert ester 1.16, a 

readily available intermediate,34 to α-diazoester 1.17, the substrate for the key cascade reaction. 

Using 5 mol% of copper(I) triflate, α-diazoester 1.17 underwent the desired 

cyclopropanation/fragmentation sequence to furnish tetracycle 1.20 in 52% yield. The 

transformation is thought to proceed by initial cyclopropanation of the indole moiety. 

Subsequent fragmentation of the cyclopropane (transition structure 1.18) to the corresponding 

indoleninium species presumably occurs rapidly by virtue of the indoline nitrogen. Subsequent 

trapping by the tosyl-protected amine (transition structure 1.19) then delivers the tetracyclic 

product. Notably, this cascade reaction concisely builds one carbon–nitrogen bond and one 

carbon–carbon bond. Moreover, the key C7 quaternary stereocenter is introduced, in addition to 

the pyrrolidinoindoline scaffold. From tetracycle 1.20, four steps were used to access allylic 

alcohol 1.21.  

!
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Scheme 1.2 Qin’s key cyclopropanation step to construct 1.21.  
 

 

 

An abbreviated sequence illustrating the endgame to Qin’s synthesis of (±)-vincorine 

(1.15) is shown in Scheme 1.3. Upon treatment with pivalic acid and trimethyl orthoacetate, 
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deprotection and redox manipulations of the alcohol, and a deprotection and N-methylation of 
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Scheme 1.3 Qin’s synthetic endgame and completion of (±)-vincorine (1.15). 
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seminal studies provided significant groundwork for future syntheses of vincorine (1.15) and 

other akuammiline alkaloids. 

 

1.3.2 Ma’s Oxidative Coupling Approach 

In 2012, Ma and co-workers reported the first enantioselective synthesis of (–)-vincorine 

(1.15).25 Similar to the approach of Qin, Ma elected to forge the pyrrolidinoindoline scaffold 

early in the synthesis. Ma’s approach utilizes a bioinspired intramolecular oxidative coupling to 

introduce all of the requisite carbon atoms of the natural product, prior to building the seven-

membered ring.  It should be noted that the Ma laboratory had previously developed a similar 

oxidative coupling strategy for their enantioselective synthesis of communesin F.36  

Ma’s synthesis of the key oxidative cyclization precursor, diester 1.31, is summarized in 

Scheme 1.4. α,β-Unsaturated ester 1.27, an intermediate readily accessed from tryptophan, was 

elaborated to malonate 1.28 in four steps. Toward installing the ethylidene unit, the Ma 

laboratory implemented an organocatalyzed enantioselective Michael addition of 1.29 using a 

proline-derived catalyst on the basis of precedent.37 Although both aldehyde 1.29 and malonate 

1.28 were both more complex than substrates reported in the literature, the desired coupling 

proceeded smoothly to deliver selenide 1.30 in 75% yield as a 5:1 diastereomeric mixture. 

Selenide 1.30 was then converted to the oxidative intramolecular coupling substrate 1.31 over a 

five-step sequence. 

!
!
!
! !
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Scheme 1.4 Ma’s enantioselective synthesis of intermediate 1.31. 
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N-iodosuccinimide in place of iodine,38 had detrimental effects on the reaction. Nonetheless, this 

bioinspired cascade transformation resulted in the construction of the key C7 quaternary center 

and three of the natural product’s four stereogenic centers.  In addition, the oxidative coupling 

was highly diastereoselective, translating the stereoselectivity of the organocatalyzed Michael 

addition into the enantioenriched pyrrolidinoindoline product.  

To complete the total synthesis, Krapcho decarboxylation39 of diester 1.35, followed by 

treatment with triphenylphosphine dichloride40 delivered alkyl chloride 1.36 in 61% yield over 

two steps. This intermediate was then quickly elaborated to (–)-vincorine (1.15) after a final 

three-step sequence involving deprotection, cyclization to forge the seven-membered ring, and 

methylation. 
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Scheme 1.5 Ma’s oxidative cyclization and completion of (–)-vincorine (1.15). 
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construct the quaternary center of 1.15 and two of its complex rings. Of note, this cascade also 

builds the compound’s carbon framework, which greatly facilitated late-stage transformations. 

Ma’s approach to (–)-vincorine (1.15) proceeds in 18 steps from commercially available starting 

materials in a striking overall yield of 5%. 
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1.3.3 MacMillan’s Organocatalytic Approach 

Most recently, the MacMillan laboratory successfully completed a concise 

enantioselective total synthesis of (–)-vincorine (1.15).26 Similar to the overall bond construction 

strategy pursued by the Qin and Ma laboratories, MacMillan opted to first assemble the 

pyrrolidinoindoline framework of the natural product, before building the seven-membered ring.  

However, in the interest of creating a general strategy toward (–)-vincorine (1.15) and related 

natural products, MacMillan and co-workers designed an enantioselective organocatalytic Diels–

Alder/iminium ion cyclization cascade sequence41 to construct the fused pyrrolidinoindoline 

tetracyclic core, which, in turn, enabled the efficient introduction of the seven-membered ring.  

The details of the key cascade reaction are presented in Scheme 1.6. Vinyl tryptamine 

1.37, a readily accessible intermediate from 5-methoxy-N!-Boc tryptamine, was combined with 

enal 1.38 and treated with catalyst 1.39 at –20 °C to afford tetracycle 1.42 in 70% yield and 95% 

ee. It is proposed that the activated iminium species approaches the vinyl tryptamine as depicted 

in transition structure 1.40 in an endo fashion with the facial selectivity controlled by the 

catalyst’s steric environment. Following tandem catalyst dissociation and acid-promoted 

protonation, an indoleninium is formed. Trapping of this ion by the tethered carbamate (see 

transition structure 1.41) afforded the tetracyclic product 1.42. It should be emphasized that this 

remarkable cascade reaction establishes the relative and absolute configuration of four 

stereocenters, three of which reside in the natural products’ architecture. From there, tetracycle 

1.42 was transformed to telluride 1.43 over two steps in preparation of constructing the seven-

membered ring. 

!
!
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Scheme 1.6 MacMillan’s key cascade transformation.  

 

 

The elaboration of telluride 1.43 to the natural product is depicted in Scheme 1.7. 
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over two steps. Upon heating this substrate to 200 °C for 10 h, the desired 7-exo-dig cyclization 

(see transition structure 1.46) took place, furnishing the exocyclic allene product 1.47.42 The 
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an acyl telluride being used as an alkyl radical precursor, and provides a bold and creative 

solution to the formation of the challenging seven-membered ring. With intermediate 1.47 in 

hand, selective hydrogenation of the allene terminus delivered (–)-vincorine (1.15) in 80% yield.  

 

Scheme 1.7 MacMillan’s radical cyclization and completion of (–)-vincorine (1.15). 
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1.4      Total Syntheses of Aspidophylline A and Picrinine 

The akuammiline alkaloids aspidophylline A (1.4) and picrinine (1.13) were isolated in 

20079 and 1965,27 respectively (Scheme 1.1).  Aspidophylline A (1.4) was found to reverse drug 

resistance in cancer cells, while picrinine (1.13) has been shown to have mild analgesic 

activity.[43] Each natural product contains a furoindoline motif embedded within a polycyclic 

framework. Additionally, both compounds contain multiple stereogenic centers, including 

quaternary centers at C7, thus rendering them daunting synthetic targets.  This section includes a 

summary of total syntheses of aspidophylline A (1.4) reported by Garg,27 Zhu,28 and Ma,29 as 

well as the total synthesis of picrinine (1.13).30 

 

1.4.1 Garg’s Interrupted Fischer Approach 

In 2011, the Garg laboratory reported the first synthesis of aspidophylline A (1.4), which 

was carried out in racemic form.27 Central to their strategy for building the pentacyclic 

framework of the natural product was the construction of the fused indoline moiety through an 

interrupted Fischer indolization cascade reaction.44  Of note, the authors were able to execute this 

challenging approach at a late stage in the total synthesis. 

The synthesis of the substrate for the aforementioned cascade reaction is illustrated in 

Scheme 1.8. [2.2.2]-bicyclic lactam 1.48 was elaborated over five steps to vinyl iodide 1.49, 

which, upon treatment with palladium (0) and pentamethylpiperidine, cleanly underwent a 

regioselective Heck cyclization45 to forge the [3.3.1]-azabicycle and furnish 1.50 in excellent 

yield. Next, in a series of transformations, [3.3.1]-azabicycle 1.50 was converted to hydroxy 

ester 1.51 in three steps, which was subsequently carried forward to tricyclic lactone 1.52 in five 

steps.  
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Scheme 1.8 Garg’s synthesis of lactone 1.52.  
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Scheme 1.9 Interrupted Fischer indolization and completion of aspidophylline A (1.4). 
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1.4.2 Garg’s Synthesis of Picrinine 

The details of this synthesis are the main subject matter of Chapters 2 and 3 of this 

dissertation. An account of Garg’s synthetic efforts towards picrinine (1.13) can be found in 

these respective sections.  

 

1.4.3 Zhu’s Oxidative Azidoalkoxylation Approach 

  Earlier this year, Zhu and co-workers reported the second synthesis of (±)-aspidophylline 

A (1.4).28 Zhu’s synthesis hinged upon an oxidative azidoalkoxylation reaction46 to install N2 of 

the alkaloid’s scaffold while concurrently establishing the furoindoline moiety.47  This contrasted 

with Garg’s strategy described earlier, where installation of the [3.3.1]-azabicycle was 

accomplished early in the synthesis, followed by late-stage introduction of the furoindoline.  

As shown in Scheme 1.10, Zhu’s synthesis commenced from readily available 

cyclohexanedione 1.58,48 which was elaborated to tricycle 1.59 through a triflation.49 reduction,50 

and carbamoylation sequence. Next, chemoselective oxidation of the terminal olefin with 

osmium tetroxide and sodium periodate,51 followed by sodium borohydride reduction, provided 

furoindoline 1.60 in 71% yield over two steps. This intermediate was then elaborated to silyl 

ether 1.61, the substrate for the key oxidative cyclization cascade. In the event, treatment of silyl 

ether 1.61 with ceric ammonium nitrate and sodium azide in acetone delivered azidofuroindoline 

1.64 in 53% yield.  Mechanistically, it is thought that ceric ammonium nitrate serves as a mild 

oxidant to first promote single electron transfer and putatively form radical cation 1.62. Then, 

this radical cation is trapped by azide, with tandem loss of another electron, to afford an 

indoleninium species, which undergoes in situ cyclization (see transition structure 1.63). This 

umpolung cascade transformation efficiently forges the tetracyclic furoindoline core of the 
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natural product. Additionally, it successfully installs three contiguous stereocenters and the 

important nitrogen substituent at C3 of the natural product. 

 

Scheme 1.10 Zhu’s oxidative key azidoalkoxylation transformation. 

 

 

The remainder of Zhu’s synthesis is depicted in Scheme 1.11. In a two-step azide 

reduction and alkylation sequence,52 furoindoline 1.64 was elaborated to iodide 1.65. Iodide 1.65 

was the utilized as the substrate for a challenging intramolecular Michael addition into the 

embedded enoate.  After much optimization, the authors found that treatment of 1.65 with t-BuLi 
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forging the pentacyclic scaffold of the natural product.53 Subsequent formylation and cleavage of 
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Scheme 1.11 Zhu’s completion of (±)-aspidophylline A (1.4). 
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substrate for this coupling appeared less complex than the coupling substrate in the authors’ 

synthesis of vincorine, the transformation proved to be quite challenging.54 After optimization, it 

was discovered that treatment of 1.68 with LHMDS in THF at –40 °C promoted formation of the 

putative lithium complex 1.69. Quenching with iodine and warming to 0 °C led to oxidative C–C 

bond formation, thus furnishing an indolenine intermediate. In turn, this underwent in situ imine 

trapping (see transition structure 1.70) to deliver furoindoline 1.71 in 36% yield. Ma and co-

workers noted that the addition of additives to this reaction, such as HMPA, resulted mostly in 

oxidative coupling of the diester to the indole nitrogen, presumably as a result of HMPA 

disrupting the formation of complex 1.69. Although the oxidative coupling was not as high 

yielding as the analogous reaction in Ma’s vincorine synthesis, the transformation is quite 

impressive in that it provides the furoindoline scaffold of the natural product, with three 

contiguous stereocenters including the quaternary center at C7. 

 

Scheme 1.12 Ma’s key oxidative coupling to forge furoindoline 1.71. 
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Ma’s synthetic endgame is shown in Scheme 1.13. Furoindoline 1.71 was converted to 

tetracyclic enoate 1.72 through a protection, decarboxylation, and oxidation sequence. Similar to 

the approach taken by Zhu, vinyl iodide 1.74 was synthesized from enoate 1.72 in two steps 

including Staudinger reduction and alkylation with bromide 1.73. Next, formylation of the 

secondary nitrogen with formic acid and N,N’-diisopropylcarbodiimide delivered formamide 

1.75. Following this acylation event, cyclization of the iodide with the pendant enoate was 

mediated by Ni(COD)2 in the presence of triethylamine and BHT to deliver pentacycle 1.76 in 

27% yield.55 Following this difficult cyclization, cleavage of the Boc group was achieved in 

nearly quantitative yield to afford (±)-aspidophylline A (1.4). 

 

Scheme 1.13 Ma’s completion of (±)-aspidophylline A (1.4). 
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Ma’s total synthesis of (±)-aspidophylline A (1.4) requires only 15 steps. Critical to the 

brevity of the synthesis is the use of an innovative intramolecular oxidative cascade coupling to 

rapidly assemble the furoindoline core of the natural product. This unique strategy, along with 

the concise construction of the piperidine ring, provides useful synthetic tools that should prove 

useful in assembling other complex molecules. 

 

1.5 Total Syntheses of Scholarisine A 

The natural product scholarisine A (1.14) is one of the most recently discovered 

akuammilines. Reported in 2008, Luo and co-workers isolated 1.14 from the tree Alstonia 

scholaris.14  Scholarisine A (1.14) contains a rearranged akuammiline skeleton with six fused 

rings and six stereogenic centers, including two quaternary centers.  In addition, its unusual 

[2.2.2]-bicyclic lactone moiety provides a unique synthetic challenge in akuammiline alkaloid 

total synthesis.  The valiant efforts of the Smith31 and Snyder32 laboratories have recently led to 

two completed total syntheses, both of which harness the power of cascade reactions to access 

1.14. 

 

1.5.1 Smith’s Reductive Cyclization Approach 

In 2012, the Smith laboratory reported the first total synthesis of (+)-scholarisine A 

(1.14).31 Their route relied on the use of a reductive cyclization cascade to introduce three rings 

of the natural product.  In addition, the authors utilized a late-stage Fischer indolization reaction 

to install the indole nucleus en route to forging the [2.2.2]-bicyclic lactone of the natural product.  

  The synthesis of ketone 1.81 is depicted in Scheme 1.14. Lactone 1.77, a known 

compound synthesized from commercially available cis-4-cyclohexene-1,2-dicarboxylic 



! 27 

anhydride,56 was elaborated to nitrile 1.78 in three steps. Upon treatment of 1.78 with H2 and 

rhodium on alumina, the desired reductive cyclization cascade occurred to deliver tricyclic amine 

1.80 in 64% yield. This cascade sequence presumably proceeds via reduction of the nitrile,57 

followed by intramolecular epoxide opening by the resulting amine.58 Of note, the authors 

observed that this cyclization is the first of its kind and, importantly, forges the [3.3.1]-bicyclic 

moiety contained within the natural product’s structure.  In addition, the opening of the epoxide 

elegantly provided a secondary alcohol functional group handle that could be used to later install 

the indole nucleus. The authors performed two additional steps to convert amine 1.80 to ketone 

1.81, which involved amine protection and alcohol oxidation. 

 

Scheme 1.14 Smith’s key reductive cyclization cascade reaction. 
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Subsequent base-mediated desilylation in the same pot afforded diol 1.85. Diol 1.85 was carried 

forward to mesylate 1.86 over six steps and subjected to tert-butyliminotri(pyrrolidino)-

phosphorane (BTPP).61 This resulted in cyclization to provide indolenine 1.87 in 19% yield from 

diol 1.85. Indolenine 1.87 was quickly elaborated to (+)-scholarisine A (1.14) using a two-step 

sequence. 

 

Scheme 1.15 Smith’s completion of (+)-scholarisine A (1.14). 
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for the late-stage efforts, thus illustrating the importance of cascade reactions not solely for 

generating complexity, but also for providing properly functionalized synthetic intermediates for 

subsequent manipulations. 

 

1.5.2 Snyder’s Radical Functionalization Approach 

The Snyder laboratory reported the most recent synthesis of (+)-scholarisine A (1.14) in 

2013.32 Their strategy differed greatly from that of Smith’s and relied heavily on radical cascade 

processes to forge the natural product’s polycyclic skeleton. In particular, two cascade reactions 

were utilized to construct the two quaternary centers and, in turn, the important indolenine 

moiety.  

Shown in Scheme 1.16 is the key radical cascade used to construct tetracyclic lactam 1.93.  

Starting from bicyclic lactone 1.88, the substrate for the radical cascade (1.89) was synthesized 

in two steps via an acetonide hydrolysis62 and bromination sequence.  Subsequent treatment of 

1.89 with triethyl borane in the presence of air at 75 °C promoted homolysis of the carbon 

bromine bond which putatively revealed a primary radical.63 This radical then underwent a 6-

exo-trig cyclization (see transition structure 1.90) resulting in tertiary radical compound 1.91, 

which was trapped in situ with allyltributylstannane to give tricycle 1.92 with full 

diastereoselectivity. Notably, this cyclization/trapping cascade sequence forged two key carbon–

carbon bonds with remarkable stereocontrol, and allowed for swift access to the natural product’s 

core. This tricyclic intermediate was further elaborated over three steps to lactam 1.93 through a 

redox epimerization of the nitrogen substituent and intramolecular amide formation. 
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Scheme 1.16 Snyder’s radical cyclization/Keck allylation cascade. 
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azobis(cyclohexane-carbonitrile) in toluene, the authors obtained indolenine 1.9864 (18% over the 

three steps from lactam 1.93). The transformation is thought to proceed by initial homolysis of 

the C–I bond to give an aryl radical. 1,5-hydrogen atom transfer (see transition structure 1.95) 

then yields an isomeric bridgehead radical intermediate. 5-exo-trig homolytic aromatic 

substitution on the pendant aryl ring, as suggested in transition structure 1.96, would then forge 

the C7–C8 linkage and deliver intermediate 1.97. Oxidation of the cyclohexadienyl radical 

provides indolenine 1.98. This key synthetic intermediate was then used to complete the 

synthesis (+)-scholarisine A (1.14). 
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Scheme 1.17 Snyder’s radical C–H activation and completion of (+)-scholarisine A (1.14). 
 

 

 

Snyder’s approach to (+)-scholarisine A (1.14) is currently the most concise approach to 

this complex alkaloid (14 steps).  The synthesis was enabled by the daring use of two 

challenging radical cascades, which highlights their importance and utility in building complex 

molecular architectures. 
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utilized cascade reactions to construct the cores of these compounds, demonstrating that these 

innovative techniques are useful for the construction of exceedingly complex structural 

manifolds. The collective efforts of the many laboratories involved in this area have not only 

provided a solid groundwork for making other akuammilines and their derivatives, but has also 

set the stage for using modern cascade reactions in the synthesis of other intricate molecular 

scaffolds. 
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CHAPTER TWO 

 

First-Generation Approach to the Total Synthesis of Picrinine 

 

2.1 Abstract 

 

Picrinine, which is a member of the akuammiline family of alkaloids, was first isolated in 

1965 from the leaves of Alstonia scholaris.  The natural product possesses a daunting polycyclic 

skeleton that contains a furanoindoline, a bridged [3.3.1]-azabicycle, two N,O-acetal linkages, 

and six stereogenic centers. These structural features render picrinine a challenging and attractive 

target for total synthesis. This Chapter describes our initial approach to synthesize this daunting 

target, with a Fischer indolization reaction being a key strategic transformation towards 

accessing the skeleton of the natural product. Additionally, efforts to circumvent the synthetic 

roadblocks en route to picrinine are described, along with our first-generation late-stage efforts 

towards completing its synthesis. 

 

2.2 Introduction 

 The plant Alstonia scholaris, also known as the Dita Bark Tree, has been a rich source of 

alkaloid natural products for close to a century. In fact, extracts from its bark, leaves, seeds, 

fruitpods, flowers, and roots have been used in traditional folk medicines to treat various 

ailments in humans and livestock.1 Amongst the alkaloids found in Alstonia scholaris, picrinine 

(2.1) is one of the major constituents that was first isolated and structurally elucidated in 1965 by 

Chaterjee and coworkers (Figure 2.1).2 Following its isolation, an X-ray crystal structure of 2.1 
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was obtained, which highlights the densely functionalized, cage-like structure of the natural 

product. 3  Structural features of 2.1 include a fused furanoindoline framework, a [3.3.1]-

azabicycle, and a highly functionalized cyclohexyl unit that bears five of the natural product’s 

six stereocenters. The C7 stereocenter is quaternary and presents a notable synthetic challenge. 

The remaining stereocenter is at C5, which is a part of the bis-(N,O-acetal) moiety that links the 

furanoindoline to N4 of the piperidine ring.  Picrinine (2.1) has shown in vitro anti-inflammatory 

activity via inhibition of the 5-lipoxygenase enzyme.4 Moreover, 2.1 is a major constituent of the 

leaf extracts of Alstonia scholaris that have been approved for clinical trials in China due to their 

antitussive and antiasthmatic properties.5  

 

Figure 2.1 Picrinine (2.1) and 3D representation from X-ray structure. 

 

 

 

Picrinine (2.1) belongs to a larger family of alkaloids called the akuammilines.6 Over 30 
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scholaris, have served as traditional ailment remedies across the Eastern Hemisphere. Biological 

testing of the akuammilines has revealed promising activities for combating illnesses that are 

viral, plasmodial, and cancerous.4a An overview of these alkaloids is presented in Chapter 1.  

This chapter describes a first-generation effort to achieve the first total synthesis of 

picrinine (2.1).7 The approaches described herein were inspired by our laboratory’s prior total 

synthesis of aspidophylline A (2.7).8 Central to our synthetic approach to 2.7 was the key 

interrupted Fischer indolization reaction shown in Figure 2.2.9 Phenylhydrazine (2.2) was reacted 

with ketolactone 2.3 in the presence of trifluoroacetic acid (TFA) in 1,2-dichloroethane (DCE) at 

40 °C to first give a hydrazone intermediate.  Following tautomerization, charge-accelerated 

[3,3]-sigmatropic rearrangement (see transition structure 2.4), and subsequent loss of ammonia, 

intermediate indolenine 2.5 was obtained.  Removal of the volatiles, followed by the addition of 

K2CO3 and methanol, promoted lactone cleavage and spontaneous cyclization to build the 

pentacyclic furanoindoline product 2.6 in 70% yield. This process occurred with complete 

diastereoselectivity.  Further elaboration through two additional steps provided the natural 

product (2.7), thus completing its first total synthesis. 

We envisioned a similarly attractive stategy in our approach to picrinine (2.1) as 

suggested in Figure 2.2.  Ideally, we sought to utilize interrupted Fischer indolization substrate 

2.8 to access the core of the natural product, but foresaw challenges in achieving selective 

hydrazone formation of the ketone in the presence of the C5 aldehyde en route to 2.10. The use 

of an alkene as an aldehyde mask presented a viable workaround, and led to the design of 

substrate 2.9.10  After the Fischer indolization of 2.9 to furnish 2.11, the alkene would be 

oxidatively cleaved at a late stage to access the correct C5 aldehyde oxidation state found in the 

natural product.8,11 Finally, the viability of the Fischer indolization reaction was a notable 
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concern considering the substrate’s complexity, its differences compared to ketolactone 2.3 used 

in the synthesis of aspidophylline A (2.7),8 and our prior experiences with challenging Fischer 

indolizations of related substrates.12  

 

Figure 2.2. Summary of total synthesis of aspidophylline A (2.7) and initial synthetic plan for 

picrinine (2.1) utilizing the key Fischer indolization reaction. 
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2.3 Initial Forays and First Generation Retrosynthetic Analysis 

 

Based on the synthetic plan mentioned above, we tested the Fischer indolization of 

ketone 2.9, a known intermediate from our prior synthesis of aspidophylline A (Figure 2.3).8 

Upon treatment of 2.9 with phenylhydrazine (2.2) under the same Fischer indolization conditions 

used for the aspidophylline A (2.7) synthesis, none of the desired product (2.11) was observed, 

with only oxidized hydrazone derivative 2.12 forming as the major product in 57% yield. When 

the reaction was studied with different acid sources and/or temperatures, the same outcome was 

obtained.  Similarly, attempts to rigorously exclude molecular oxygen from the reaction mixture 

also led to the formation of 2.12.  We hypothesized that the putatively formed ene-hydrazine 

2.13 was prone to deprotonation at C16, and that the deprotonation would ultimately result in N–

N bond cleavage. Such N–N bond cleavage processes have been observed in Fischer 

indolizations and studied by Houk and coworkers.13  Following this formal oxidation event (i.e., 

deprotonation and N–N bond cleavage), excess hydrazine in the reaction mixture could condense 

on the ketone to give the observed product 2.12.  As the desired [3,3]-sigmatropic rearrangement 

was presumably being outcompeted by this unproductive reaction pathway, we sought to design 

an alternate Fischer indolization substrate. It was hypothesized that by converting the exocyclic 

ester to a protected alcohol derivative, the undesired N–N bond cleavage might be suppressed 

due to the reduced acidity of the C16 proton (see structure 2.14). Consequently, the desired [3,3]-

sigmatropic rearrangement could be rendered the predominant reaction pathway. Additionally, 

we opted to switch the nitrogen protecting group from tosyl to the more labile nosyl group in 

order to facilitate removal at a late stage in the synthesis.14  
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Figure 2.3 Unsuccessful Fischer indolization of 2.9 and design of new substrate. 

 

 

 

With the key elements and modifications of our design plans established, we devised the 

retrosynthetic analysis of 2.1 shown in Scheme 2.1. It was envisioned that the natural product 

could arise from the spontaneous cyclization of an intermediate such as 2.15, which would result 

from oxidation and deprotection of indolenine 2.16.  In turn, indolenine 2.16 would arise from a 

late-stage Fischer indolization of phenylhydrazine (2.2) and ketone 2.17.15  Ketone 2.17 would be 

derived from enone 2.18, an intermediate that could be accessed from enoate 2.19.  This bicyclic 

enoate would arise by Heck cyclization of vinyl iodide 2.20.16,17 Finally, the Heck cyclization 

substrate (2.20) would be derived from the known bicyclic lactam 2.21,18 which can be readily 

prepared from commercially available starting materials.    
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Scheme 2.1 Initial retrosynthetic plan for the total synthesis of picrinine (2.1). 
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quantities of 2.22.20 Next, a two step sequence involving ketalization and debenzylation afforded 

bicyclic lactam 2.23 in excellent yield.  Bicycle 2.23 was then protected as the 2-

nitrobenzenesulfonamide upon treatment with n-BuLi at low temperature, followed by 

quenching with NsCl to give 2.24.  We next sought to achieve methanolysis of the lactam with 

olefin transposition, but this transformation proved challenging. Typical cleavage conditions 

utilizing K2CO3 and methanol resulted in low yields of enoate 2.26, in addition to substantial 

nonspecific decomposition. After surveying a number of bases to effect methanolysis, it was 

found that utilizing 1,5,7-triazabicyclo[4.4.0]dec-5-ene (TBD) (2.25) in methanol21 was most 

effective and delivered enoate 2.26 in 73% yield. Following methanolysis, alkylation with 

tosylate 2.2722 in the presence of Cs2CO3 at elevated temperature provided vinyl iodide 2.20, the 

substrate for the key Heck cyclization.  Following inspiration from the groups of Rawal and 

Vanderwal,16 iodide 2.20 was exposed to Pd(PPh3)4 (5 mol%) in the presence of 1,2,2,6,6-

pentamethylpiperidine (PMP) at 70 °C in acetonitrile to furnish 2.19 in 91% yield.  Notably, this 

transformation efficiently constructed the important [3.3.1]-azabicycle found in the natural 

product.   
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Scheme 2.2 Synthesis of [3.3.1]-azabicycle 2.19. 
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propensity for double alkylation to occur at warmer temperatures.  As a result, our optimal 

procedure involves stopping the reaction in a manner that allows for the recovery of ketone 2.29 

(60% recovered yield) and material recycling. Nonetheless, the aforementioned sequence 

provided adequate quantities of 2.30 to test the pivotal Fischer indolization reaction.  

 

Scheme 2.3 Synthesis of Fischer indolization substrate 2.30. 
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loss of ammonia to deliver the desired indolenine 2.34.  It is worth noting that the Fischer 

indolization of ketone 2.30 is more sluggish compared to the corresponding reaction of lactone 

2.3 (see Figure 2.2) used in the aspidophylline A (2.7) synthesis (24 h vs 16 h).8 We attribute this 

difference to the presence of the freely rotating allyl group in 2.30, which provides additional 

steric encumberance in the [3,3]-sigmatropic rearrangement step. Nonetheless, the successful 

Fischer indolization of substrate 2.30 to give tetracyclic indolenine 2.34 validated our hypothesis 

that by the judicious modification of substrate, we could suppress the undesired formal oxidation 

pathway and promote the critical [3,3]-sigmatropic rearrangement process. 

 

Scheme 2.4 Successful Fischer indolization of ketone 2.30. 
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smoothly using a standard methanolysis procedure to give 2.35.  Subsequent PCC oxidation and 

Lindgren oxidation with NaClO2 in the presence of 2-methyl-2-butene gave an intermediate 

carboxylic acid.  Methylation using trimethylsilyldiazomethane afforded ester 2.36 in 38% yield 

over the three steps.24 At this point, all that remained was to implement a chemoselective 

oxidative cleavage of the terminal olefin25 and to remove the sulfonamide protecting group. 

Upon treatment of ester 2.36 with aqueous osmium tetraoxide in the presence of NaIO4 and 2,6-

lutidine, selective oxidation occurred to putatively give diol 2.37.  However, instead of 

undergoing the desired oxidative C–C bond cleavage to deliver lactol 2.39, cyclization took 

place to give furanoindoline 2.38. Considerable efforts were undertaken to effect the desired 

oxidative cleavage of 2.38; however, the formation of 2.39 was never observed.26 Thus, despite 

the excitement of having circumvented the problems associated with the key Fischer indolization 

in this particular synthetic approach to picrinine (2.1), further modification of our synthetic plan 

would be required in order to access the natural product.     
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Scheme 2.5 Unsuccessful attempts to elaborate Fischer indolization product 2.34. 
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cyclization observed in the late-stage oxidation of 2.36 should be considered in moving forward 

towards successful construction of picrinine (2.1). 

 

2.7 Experimental Section 

2.7.1 Materials and Methods 

 

Unless stated otherwise, reactions were conducted in flame-dried glassware under an 

atmosphere of nitrogen using anhydrous solvents (either freshly distilled or passed through 

activated alumina columns). n-Butyllithium (n-BuLi), 1,5,7-triazabicyclo[4.4.0]dec-5-ene, 

1,2,2,6,6-pentamethylpiperidine (PMP), diisobutyl-aluminum hydride (i-Bu2AlH), pyridinium p-

toluenesulfonate  (PPTS), pivaloic anhydride (Piv2O), scandium (III) triflate [Sc(OTf)3], lithium 

hexamethyldisilazide (LiHMDS), allyl iodide, sodium chlorite (NaClO2), 2-methyl-2-butene, and 

2,6-lutidine were obtained from Sigma–Aldrich. Tetrakis(triphenylphosphine)palladium 

[Pd(PPh3)4], copper iodide (CuI), and osmium tetroxide (OsO4) were obtained from Strem. 

Trifluoroacetic acid (TFA) and monobasic sodium phosphate (NaH2PO4) were obtained from 

Fischer. Phenylhydrazine (2.2) and pyridinium chlorochromate (PCC) were obtained from 

Acros. In addition, phenylhydrazine (2.2) was purified by flash chromatography (4:1 

hexanes:EtOAc) prior to use. Sodium periodate (NaIO4) was obtained from Alfa-Aesar. 2-

Nitrobenzenesulfonyl chloride (NsCl) and trimethylsilyldiazomethane (TMSCHN2) were 

obtained from TCI. Potassium carbonate (K2CO3) was obtained from EMD. Acetic acid (AcOH) 

was obtained from JT Baker. Unless stated otherwise, reactions were performed at room 

temperature (approximately 23 °C). Microwave reactions were conducted on a Discover 

microwave reactor from CEM with an automated Explorer sample changer. Thin-layer 
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chromatography (TLC) was conducted with EMD gel 60 F254 pre-coated plates (0.25 mm) and 

visualized using a combination of UV, anisaldehyde, and iodine staining. SiliCycle silica gel 60 

(particle size 0.040–0.063 mm) was used for flash column chromatography. 1H NMR spectra 

were recorded on Bruker spectrometers (500 and 600 MHz). Data for 1H spectra are reported as 

follows: chemical shift (δ ppm), multiplicity, coupling constant (Hz), integration and are 

referenced to the residual solvent peak 7.26 ppm for CDCl3. 13C NMR spectra are reported in 

terms of chemical shift (at 125 MHz) and are referenced to the residual solvent peak 77.16 ppm 

for CDCl3. IR spectra were recorded on a Perkin-Elmer 100 spectrometer and are reported in 

terms of frequency absorption (cm–1). Uncorrected melting points were measured using a Mel-

Temp II melting point apparatus with a Fluke 50S thermocouple and a Digimelt MPA160 

melting point apparatus. High-resolution mass spectra were obtained from the UC Irvine and 

UCLA Mass Spectrometry Facilities. 

 

2.7.2 Experimental Procedures 

 

 
 
Hydrazone 2.12 and Enone 2.41. To a solution of ketone 2.9 (5.0 mg, 0.012 mmol) in 1,2-
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EtOAc (3 x 15 mL). The combined organic layers were dried over MgSO4, filtered, and 

evaporated under reduced pressure. Hydrazone 2.12 was the major product in the crude reaction 

mixture (3.5 mg, 57% crude yield). The crude residue was purified via preparative TLC (2:1 

hexanes:EtOAc � 1:2 hexanes:EtOAc) to afford enone 2.41 (1 mg, 20% yield) as an orange oil. 

Hydrazone 2.12: Rf 0.55 (2:1 hexanes:EtOAc); 1H NMR (500 MHz, CDCl3): δ 9.58 (s, 1H), 7.79 

(d, J = 8.3, 2H), 7.37–7.30 (m, 6H), 6.99 (tt, J = 7.2, 1.4, 1H), 6.01 (m, 1H), 5.49 (q, J = 6.9, 

1H), 5.20 (dq, J = 17.1, 1.7, 1H), 5.03 (dq, J = 10.1, 1.7, 1H), 4.94 (t, J = 2.9, 1H), 4.18 (d, J = 

16.0, 1H), 3.92–3.85 (m, J = 3H), 3.80 (dd, J = 13.4, 6.5, 1H), 3.77 (s, 3H), 2.49 (s, 3H), 1.70–

1.62 (m, 4H), 1.17 (dt, J = 12.9, 3.2, 1H); Enone 2.41: Rf 0.70 (1:2 hexanes:EtOAc); 1H NMR 

(500 MHz, CDCl3): δ 7.67 (d, J = 8.3, 2H), 7.27 (d, J = 8.3, 2H), 5.65 (q, J = 6.9, 1H), 5.27 (m, 

1H), 4.78 (dq, J = 17.1, 1.7, 1H), 4.71 (dq, J = 10.1, 1.7, 1H), 4.55 (t, J = 3.3, 1H), 4.14 (d, J = 

13.6, 1H), 3.98 (t, J = 3.2, 1H), 3.77 (s, 3H), 3.50 (dt, J = 13.6, 2.0, 1H), 3.09 (dd, J = 13.8, 6.7, 

1H), 2.99 (dd, J = 13.8, 6.7, 1H), 2.41 (s, 3H), 2.34 (dt, J = 13.1, 3.3, 1H), 2.11 (dt, J = 13.1, 3.2, 

1H), 1.69 (dd, J = 6.9, 1.9, 3H); 13C NMR (125 MHz, CDCl3): δ 192.9, 167.2, 144.3, 143.6, 

140.8, 135.4, 134.1, 129.5, 128.8, 128.2, 124.5, 116.5, 56.0, 52.5, 46.7, 33.9, 33.1, 30.5, 21.7, 

12.9; IR (film): 2923, 2853, 1723, 1786, 1456, 1350, 1248, 1219, 1163, 1096; HRMS–ESI (m/z) 

[M + H]+ calcd for C22H26NO5S+, 416.15262; found 416.15044. 
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µL, 1.03 mmol). The reaction was heated to 150 ºC for 25 min in the microwave reactor. The 

reaction was poured into a 1 M HCl aqueous solution (15 mL) and extracted with CH2Cl2 (3 X 

10 mL). The organic layers were combined, dried over Na2SO4, and evaporated under reduced 

pressure. The resulting residue was purified by flash chromatography (2:1→ 1:1 hexanes:EtOAc) 

to afford alkene 2.22 (15.6 mg, 69% yield) as an orange oil. Alkene 22: Rf 0.2 (1:1 

hexanes:EtOAc); 1H NMR (500 MHz, CDCl3): δ 7.39–7.31 (m, 3H), 7.21–7.16 (m, 2H), 6.73 

(ddd, J = 9, 6, 1.5, 1H), 6.47 (d, J = 9, 6, 2 1H), 4.89 (d, J = 15, 1H), 4.33 (d, J = 15, 1H), 

4.18(dd, J =6, 2, 1H), 3.80 (ddd, J = 5, 3, 2.5, 1H), 2.45 (dd, J = 18, 2.5, 1H), 2.16 (dd, J = 18, 3, 

1H) ; 13C NMR (125 MHz, CDCl3): δ 200.2, 170.5, 136.9, 135.7, 129.1, 128.7, 127.9, 64.8, 48.6, 

44.6, 32.0; IR (film): 3467, 3031, 2923, 1736, 1671, 1445, 1419, 1240, 1156; HRMS-ESI (m/z) 

[M + Na]+ calcd for C14H13NO2, 250.0844; found 250.0845. 
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ketal 2.40 (2.42 g, 99% yield) as an orange oil. Rf 0.2 (1:1 hexanes:EtOAc); 1H NMR (500 MHz, 

CDCl3): δ 7.32–7.25 (m, 3H), 7.12 (d, J = 7.5, 2H), 6.44 (dd, J = 7, 6, 1H), 6.29 (dd, J = 7, 5.5, 

1H), 4.01 (d, J = 5.5, 1H), 3.90 (d, J = 15.5, 1H), 3.49–3.47 (m, 1H), 3.20 (s, 3H), 3.13 (s, 3H), 

2.15 (dd, J = 13, 1.5, 1H), 1.64 (dd, J = 13, 2.5, 1H). 

To a solution of sodium metal (786 mg, 34.2 mmol) in NH3 (30 mL) was added a solution 

of ketal 2.40 (3.11 g, 11.4 mmol) and tert-butanol (0.2 mL, 3.45 mmol) in THF (40 mL) at –78 

°C. After 30 min, the reaction mixture was quenched with a solution of sat. aq. NH4Cl (15 mL) at 

–78 ºC. The reaction was warmed to rt and poured into brine (20 mL). The solution was diluted 

with EtOAc (50 mL) and the layers were separated. The aqueous layer was extracted with EtOAc 

(3 x 50 mL).  The organic layers were combined, dried over MgSO4, and evaporated under 

reduced pressure. The resulting residue was purified by flash chromatography (100:0→ 90:10 

CH2Cl2:MeOH) to afford amide 2.23 (1.84 g, 88% yield) as a beige solid. Amide 2.23: Rf 0.1 

(1:1 hexanes:EtOAc); 1H NMR (500 MHz, CDCl3): δ 7.41 (s, 1H), 6.48 (s, 2H), 4.27 (s, 1H), 

3.33 (s, 1H), 3.28 (s, 3H), 3.22 (s, 3H), 1.72 (d, J = 12.5, 1H), 1.29 (d, J = 12.5, 1H) ; 13C NMR 

(125 MHz, CDCl3): δ 176.4, 132.7, 131.8, 106.9, 53.3, 49.1, 49.0, 44.3, 34.1; IR (film): 3242, 

2946, 1683, 1638, 1618, 1451, 1131, 1063; HRMS-ESI (m/z) [M + Na]+ calcd for C9H13NO3Na, 

206.0793; found 206.0796. 
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was stirred for 30 min, and then a solution of 2-nitrobenzenesulfonyl chloride (NsCl) (1.634 g, 

7.38 mmol) in THF (8 mL) was added. After stirring for 30 min at –50 °C, the reaction was 

quenched by the addition of a solution of saturated aqueous NH4Cl (10 mL) and warmed to room 

temperature. The reaction was then poured into brine (50 mL) and extracted with CH2Cl2 (3 x 

100 mL). The combined organic layers were dried over MgSO4, filtered, and evaporated under 

reduced pressure. The resulting residue was purified via flash chromatography (2:1 

hexanes:EtOAc) to afford lactam 2.24 (1.630 g, 90% yield) as a white solid. Lactam 2.24: mp: 

154–156 °C; Rf 0.52 (3:1 benzene:EtOAc); 1H NMR (500 MHz, CDCl3): δ 8.48 (m, 1H), 7.76–

7.72 (m, 3H), 6.74 (ddd, J = 7.6, 6.0, 1.6, 1H), 6.33 (ddd, J = 7.7, 6.2, 1.6, 1H), 5.25 (dd, J = 6.0, 

1.7, 1H), 3.39 (s, 3H), 3.37 (m, 1H), 3.27 (s, 3H), 2.10 (dd, J = 13.2, 2.6, 1H), 1.85 (dd, 13.2, 

3.2, 1H); 13C NMR (125 MHz, CDCl3): δ 170.8, 148.0, 134.8, 134.6, 133.3, 132.3, 132.2, 130.6, 

124.6, 105.5, 58.2, 49.8, 49.6, 45.2, 33.4; IR (film): 3102, 2950, 2839, 1726, 1541, 1441, 1367, 

1264, 1229, 1177, 1135, 1117, 1092, 1061, 1040; HRMS–ESI (m/z) [M + H]+ calcd for 

C15H17N2O7S+, 369.07510; found 369.07382. 

 

 

Enoate 2.26. To a solution of lactam 2.24 (1.630 g, 4.43 mmol) in MeOH (70 mL) was added 

1,5,7-triazabicyclo[4.4.0]dec-5-ene (2.25) (0.739 g, 5.31 mmol) at room temperature. After 1 h, 

the reaction was diluted with EtOAc (50 mL) and poured into a solution of saturated aqueous 

NH4Cl (75 mL). The layers were separated, and the aqueous layer was extracted with EtOAc (3 x 

75 mL). The combined organic layers were dried over MgSO4, filtered, and evaporated under 

NHNs

CO2Me

MeO

MeO
Ns
NOMeO

MeO
MeOH

(73% yield)

2.262.24

N
H

N

N

2.25



! 59!

reduced pressure. The resulting residue was purified via flash chromatography (2:1 

hexanes:EtOAc) to afford enoate 2.26 (1.292 g, 73% yield) as a colorless oil. Enoate 2.26: Rf 

0.47 (3:1 benzene:EtOAc); 1H NMR (500 MHz, CDCl3): δ 8.16 (dd, J = 7.6, 1.9, 1H), 7.91 (m, 

1H), 7.75 (m, 2H), 6.68 (s, 1H), 5.58 (d, J = 7.0, 1H), 3.81 (m, 1H), 3.74 (s, 3H), 3.11 (s, 3H), 

2.89 (s, 3H), 2.69 (d, J = 18.3, 1H), 2.60 (br. s, 2H), 2.35 (dq, J = 18.3, 2.3, 1H); 13C NMR (125 

MHz, CDCl3): δ 166.5, 147.8, 135.9, 135.1, 133.4, 132.9, 131.1, 127.0, 125.5, 99.4, 52.1, 51.5, 

48.6, 48.1, 31.5, 29.4; IR (film): 3298, 3098, 2951, 2836, 1714, 1541, 1438, 1362, 1263, 1166, 

1126, 1081, 1061; HRMS–ESI (m/z) [M – H]– calcd for C16H19N2O8S–, 399.08676; found 

399.08626. 

    

 

Iodide 2.20. To a solution of enoate 2.26 (0.349 g, 0.983 mmol) in MeCN (9.8 mL) was added 

tosylate 2.27 (1.300 g, 3.83 mmol)27 and Cs2CO3 (0.417 g, 1.28 mmol). The reaction mixture was 

heated to 80 °C.  After 3.5 h, the reaction was cooled to room temperature and the solvent was 

removed under reduced pressure. The residue was redissolved in CH2Cl2 (50 mL) and poured 

into a solution of saturated aqueous NH4Cl (50 mL). The layers were separated, and the aqueous 

layer was extracted with CH2Cl2 (3 x 50 mL). The combined organic layers were dried over 

MgSO4, filtered, and evaporated under reduced pressure. The resulting residue was purified via 

flash chromatography (4:1 hexanes:EtOAc � 2:1 hexanes:EtOAc) to afford iodide 2.20 (0.393 

g, 75% yield) as a pale yellow oil. Iodide 2.20: Rf 0.44 (2:1 hexanes:EtOAc);  1H NMR (500 
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MHz, CDCl3): δ 7.96 (dd, J = 7.8, 1.3, 1H), 7.69–7.59 (m, 3H), 6.97 (m, 1H), 6.01 (qt, J = 6.4, 

1.4, 1H), 4.47 (dt, J = 16.9, 1.4, 1H), 4.42 (t, J = 6.92, 1H), 4.37 (dt, J = 16.9, 1.7, 1H), 3.75 (s, 

3H), 3.30 (s, 3H), 3.24 (s, 3H), 2.89–2.79 (m, 2H), 2.74 (m, 1H), 2.60 (dq, J = 18.1, 2.6, 1H), 

1.62 (dt, J = 6.4, 1.2, 3H); 13C NMR (125 MHz, CDCl3): δ 166.8, 147.9, 138.7, 135.5, 134.0, 

133.3, 132.4, 131.5, 126.7, 124.4, 106.0, 100.0, 57.4, 56.6, 52.1, 51.0, 49.5, 30.8, 30.2, 22.0; IR 

(film): 2950, 2838, 1713, 1657, 1543, 1437, 1372, 1266, 1163, 1125, 1077; HRMS–ESI (m/z) 

[M + H]+ calcd for C20H26N2O8S+, 581.04491; found 581.04118. 

   

 

Enoate 2.19. In the glovebox, tetrakis(triphenylphosphine)palladium [Pd(PPh3)4] was added to a 

500 mL round-bottom flask. The flask was removed from the glovebox, and a solution of iodide 

2.20 (0.843 g, 1.45 mmol) in MeCN (104 mL) was added, followed by 1,2,2,6,6-

pentamethylpiperidine (PMP) (0.676 g, 4.36 mmol).  The reaction mixture was sparged with N2 

for 10 min, and heated to 70 °C. After 16 h, the reaction mixture was cooled to room temperature 

and the solvent was removed under reduced pressure.  The residue was redissolved in CH2Cl2 (40 

mL) and poured into H2O (40 mL). The layers were separated, and the aqueous layer was 

extracted with CH2Cl2 (3 x 40 mL). The combined organic layers were dried over MgSO4, 

filtered, and evaporated under reduced pressure. The resulting residue was purified via flash 

chromatography (4:1 hexanes:EtOAc � 2:1 hexanes:EtOAc) to afford enoate 2.19 (0.597 g, 

91% yield) as a pale yellow oil. Enoate 2.19: Rf 0.44 (2:1 hexanes:EtOAc); 1H NMR (500 MHz, 

CDCl3): δ 8.04 (d, J = 7.5, 1H), 7.64 (m, 3H), 7.02 (s, 1H), 5.40 (q, J = 6.7, 1H), 4.40 (s, 1H), 
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3.92 (d, J = 14.8, 1H), 3.86 (d, J = 14.8, 1H), 3.83 (t, J = 2.8, 1H), 3.73 (s, 3H), 3.28 (s, 3H), 

3.27 (s, 3H), 2.06 (dt, J = 13.1, 2.8, 1H), 1.79 (dt, J = 13.1, 2.8, 1H), 1.67 (d, J = 6.7, 3H); 13C 

NMR (125 MHz, CDCl3): δ 166.0, 148.1, 135.9, 134.5, 134.3, 133.3, 131.4, 131.1, 130.1, 124.2, 

123.1, 96.3, 52.4, 52.2, 49.4, 49.3, 47.4, 30.7, 30.4, 12.8; IR (film): 2950, 2857, 1720, 1543, 

1438, 1372, 1356, 1248, 1163, 1123, 1076, 1042; HRMS–ESI (m/z) [M + H]+ calcd for 

C20H25N2O8S+, 453.13261; found 453.12936. 

 

 

Enone 2.18. To a solution of enoate 2.19 (0.560 g, 1.24 mmol) in THF (8.3 mL) was added 

diisobutylaluminum hydride (i-Bu2AlH) (4.95 mL, 1M in hexanes) at –78 °C. After 4 h, the 

reaction was quenched with a solution of saturated aqueous NH4Cl (10 mL) and warmed to room 

temperature. The mixture was then poured into a solution of saturated aqueous sodium potassium 

tartrate (Rochelle’s salt) (10 mL) and stirred vigorously for 30 min. The mixture was extracted 

with EtOAc (3 x 50 mL) and the organic layers were combined, dried over MgSO4, filtered, and 

evaporated under reduced pressure afforded alcohol 2.42, which was used in the subsequent step 

without further purification. 

To a solution of alcohol 2.42 (0.526 g, 1.24 mmol) in acetone (13.6 mL) and H2O (0.7 

mL) was added pyridinium p-toluenesulfonate (PPTS) (0.062 g, 0.248 mmol). The reaction 

mixture was heated to 40 °C.  After 1.5 h, the reaction was poured into a solution of saturated 

aqueous NH4Cl (10 mL) and the mixture was extracted with EtOAc (3 x 40 mL). The combined 

organic layers were dried over MgSO4, filtered, and evaporated under reduced pressure. The 
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resulting residue was purified via flash chromatography (1:2 hexanes:EtOAc) to afford enone 

2.18 (0.431 g, 92% yield, 2 steps) as a colorless foam. Enone 2.18: Rf 0.34 (1:2 hexanes:EtOAc); 

1H NMR (500 MHz, CDCl3): δ 8.14 (dd, J = 2.0, 7.3, 1H), 7.70 (m, 2H), 7.61 (dd, J = 2.0, 7.4, 

1H), 6.28 (s, 1H), 5.68 (q, J = 7.0, 1H), 4.44 (br. s, 1H), 4.33 (d, J = 17.4, 1H), 4.20 (d, J = 15.2, 

2H), 3.86 (dt, J = 2.2, 14.5, 1H), 3.56 (t, J = 3.2, 1H), 2.31 (dt, J = 13.2, 3.4, 1H), 2.20 (dt, J = 

13.2, 3.0, 1H), 1.74 (dd, J = 1.9, 6.8, 3H); 13C NMR (125 MHz, CDCl3): δ 192.7, 165.2, 148.2, 

133.8, 133.4, 132.0, 131.9, 129.7, 124.3, 124.11, 124.10, 63.5, 56.7, 47.4, 34.1, 32.4, 13.0; IR 

(film): 3432, 2926, 1676, 1542, 1440, 1370, 1281, 1164, 1127, 1073; HRMS–ESI (m/z) [M + H]+ 

calcd for C17H19N2O6S+, 379.09583; found 379.09474. 

 

 

Hydroxyketone 2.28. To a solution of copper iodide (CuI) (0.500 g, 2.62 mmol) in 

hexamethylphosphoramide (HMPA) (1mL) and THF (8 mL) was added diisobutylaluminum 

hydride (i-Bu2AlH) (5.24 mL, 1 M in hexanes) at –78 °C. The solution was stirred for 30 min at 

which point a solution of enone 2.18 (0.395 g, 1.05 mmol) in THF (3 mL) was added at –78 °C.  

After 2 h, the reaction was quenched with a solution of saturated aqueous NH4Cl (10 mL) and 

allowed to warm to room temperature. The mixture was filtered over a pad of celite and washed 

with EtOAc (5 x 30 mL). The mixture was then poured into a solution of saturated aqueous 

sodium potassium tartrate (Rochelle’s salt) (100 mL) and stirred vigorously for 30 min. The 

layers were separated and the aqueous layer was extracted with EtOAc (3 x 100 mL). The 

combined organic layers were dried over MgSO4, filtered, and evaporated under reduced 
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pressure. The resulting residue was purified via flash chromatography (2:1 hexanes:EtOAc � 

1:1 hexanes:EtOAc) to afford hydroxyketone 2.28 (0.261 g, 66% yield) as a colorless foam. 

Hydroxyketone 2.28: Rf 0.12 (1:2 hexanes:EtOAc); 1H NMR (500 MHz, CDCl3): δ 8.08 (m, 1H), 

7.71 (m, 2H), 7.63 (m, 1H), 5.72 (q, J = 7.0, 1H), 4.27 (d, J = 14.8, 1H), 4.26 (app. s, 1H), 4.13 

(dt, J = 14.8, 2.1, 1H), 3.55 (m, 2H), 3.20 (q, J = 3.1, 1H), 2.56 (d, J = 13.2, 1H), 2.30 (m, 2H), 

2.19 (dt, J = 14.0, 3.6, 1H), 2.01 (dt, J = 14.0, 3.0, 1H), 1.74 (dd, J = 7.0, 1.8, 3H); 13C NMR 

(125 MHz, CDCl3): δ 205.3, 134.2, 134.1, 132.3, 132.2, 132.0, 130.8, 124.6, 124.3, 65.3, 59.0, 

50.1, 44.2, 41.8, 33.9, 29.6, 13.1; IR (film): 3472, 2924, 1717, 1542, 1440, 1370, 1248, 1165, 

1073, 1033; HRMS–ESI (m/z) [M + H]+ calcd for C17H21N2O6S+, 381.11148; found 381.10923. 

 

 

Pivaloate 2.29. To a solution of ketone 2.28 (59 mg, 0.16 mmol) in MeCN (1 mL) was added 

pivalic anhydride (Piv2O) (86 mg, 0.47 mmol) and scandium triflate [Sc(OTf)3] (8.0 mg, 0.016 

mmol). After 10 min, the solvent was removed under reduced pressure. The resulting residue 

was redissolved in CH2Cl2 (20 mL) and poured into a solution of saturated aqueous NH4Cl (10 

mL). The layers were separated, and the aqueous layer was extracted with CH2Cl2 (3 x 30 mL). 

The combined organic layers were dried over MgSO4, filtered, and evaporated under reduced 

pressure. The resulting residue was purified via flash chromatography (5:1 hexanes:EtOAc � 

1:1 hexanes:EtOAc) to afford pivaloate 2.29 (54 mg, 73% yield) as a colorless foam. Pivaloate 

2.29: Rf 0.62 (3:2 hexanes:EtOAc); 1H NMR (500 MHz, CDCl3): δ 8.08 (m, 1H), 7.71 (m, 2H), 

7.64 (m, 1H), 5.73 (q, J = 6.95, 1H), 4.27 (m, 2H), 4.15 (dt, J = 15.2, 2.2, 1H), 3.98 (dd, J = 11.2, 
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6.9, 1H), 3.91 (dd, J = 11.2, 6.5, 1H), 3.12 (app. q, J = 3.6, 1H), 2.58 (dd, J = 15.9, 5.9, 1H) 2.46 

(m, 1H), 2.32 (dd, J =15.9, 12.9, 1H), 2.20 (dt, J = 14.0, 3.6, 1H), 2.02 (dt, J = 14.0, 3.1, 1H), 

1.68 (dd, J = 6.9, 1.7, 3H), 1.18 (s, 9H); 13C NMR (125 MHz, CDCl3): (19 of 20 observed) δ 

204.4, 178.4, 148.1, 134.1, 132.2, 132.0, 129.8, 124.9, 124.3, 66.2, 58.7, 49.9, 42.0, 41.1, 38.9, 

33.7, 29.8, 27.3, 13.2; IR (film): 2959, 2928, 1721, 1543, 1367, 1282, 1164, 1128; HRMS–ESI 

(m/z) [M + H]+ calcd for C22H29N2O7S+, 465.16900; found 465.16831. 

 

 

Ketone 2.30. To a solution of pivaloate 2.29 (78 mg, 0.167 mmol) in THF (2 mL) was added a 

solution of lithium hexamethyldisilazide (LHMDS) (0.028 g, 0.167 mmol) in THF (1.3 mL) at –

78 °C. After 30 min, the solution was warmed to 0 °C and stirred for 1 h. Allyl iodide (15.2 µL, 

0.167 mmol) was then added at 0 °C and the reaction mixture was allowed to warm to room 

temperature. After 3 h, the reaction mixture was poured into a solution of saturated aqueous 

NH4Cl (10 mL). The layers were separated, and the aqueous layer was extracted with CH2Cl2 (3 

x 20 mL). The combined organic layers were dried over MgSO4, filtered, and evaporated under 

reduced pressure. The resulting residue was purified via flash chromatography (4:1 

hexanes:EtOAc � 2:1 hexanes:EtOAc) to afford ketone 2.30 (25 mg, 30% yield) as a colorless 

foam and recovered pivaloate 2.29 (47 mg, 60% yield). Ketone 2.30: Rf 0.68 (3:2 

hexanes:EtOAc); 1H NMR (500 MHz, CDCl3): δ 8.07 (m, 1H), 7.70 (m, 2H), 7.61 (m, 2H), 5.69 

(q, J = 6.6, 1H), 5.58 (m, 1H), 4.98 (dq, J = 17.2, 1.5, 1H), 4.95 (d, J = 10.2, 1H), 4.31 (t, J = 3.3, 

1H), 4.30 (d, J = 14.5, 1H), 4.21 (dt, J = 14.5, 2.2, 1H), 4.20 (dd, J = 11.5, 2.4, 1H), 3.94 (dd, J = 
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11.5, 7.3, 1H), 3.17 (app. q, J = 3.4, 1H), 2.57 (ddd, J = 12.1, 6.4, 3.2, 1H), 2.45 (dq, J = 14.5, 

1.6, 1H), 2.30 (m, 1H), 2.20, (m, 1H), 2.14 (dt, J = 14.0. 3.6, 1H), 1.97 (dt, J = 14.0, 3.1, 1H), 

1.68 (dd, J = 6.9, 1.9, 3H), 1.19 (s, 9H); 13C NMR (125 MHz, CDCl3): δ 205.7, 178.4, 148.1, 

135.0, 134.1, 132.24, 132.20, 132.0, 130.6, 124.4, 124.2, 117.6, 64.7, 59.1, 50.3, 49.1, 44.9, 38.9, 

33.8, 31.5, 31.1, 27.3, 13.0; IR (film): 3077, 2974, 1721, 1545, 1370, 1283, 1165, 1071; HRMS–

ESI (m/z) [M + H]+ calcd for C25H33N2O7S+, 505.20030; found 505.20001. 

 

 

Indolenine 2.34. To a solution of ketone 2.30 (14 mg, 0.028 mmol) in 1,2-dichloroethane (DCE) 

(0.5 mL) was added phenylhydrazine (2.2) (16.4 µL, 0.17 mmol) and trifluoroacetic acid (TFA) 

(43 µL, 0.56 mmol). The reaction mixture was heated to 40 °C. After 24 h, the reaction was 

diluted with EtOAc (5 mL) and poured into a solution of saturated aqueous NaHCO3 (10 mL). 

The layers were separate, and the aqueous layer was extracted with EtOAc (3 x 15 mL). The 

combined organic layers were dried over MgSO4, filtered, and evaporated under reduced 

pressure. The resulting residue was purified via flash chromatography (2:1 hexanes:EtOAc � 

1:2 hexanes:EtOAc) to afford indolenine 2.34 (11 mg, 65% yield) as an orange oil. Indolenine 

2.34: Rf 0.70 (1:2 hexanes:EtOAc); 1H NMR (500 MHz, CDCl3): δ 8.17 (m, 1H), 7.74 (m, 2H), 

7.68 (d, J = 7.7, 1H), 7.63 (m, 1H), 7.45 (d, J = 7.4, 1H), 7.36 (td, J = 7.7, 1.1, 1H), 7.27 (td, J = 

7.4, 1.1, 1H), 5.80 (q, J = 7.2, 1H), 5.25 (t, J = 3.2, 1H), 5.10 (m, 1H), 4.83 (dd, J = 11.3, 2.5, 

1H), 4.71 (d, J = 16.8, 1H), 4.62 (d, J = 10.1, 1H), 4.43 (d, J = 15.1, 1H), 4.22 (t, J = 11.2, 1H), 

4.05 (dt, J = 15.1, 2.6, 1H), 3.21 (s, 1H), 3.11 (dd, J = 14.0, 4.6, 1H), 2.50 (dd, J = 14.0, 8.9, 1H), 
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2.46 (dt, J = 14.0, 3.6, 1H), 1.85 (dt, J = 14.0, 3.0, 1H), 1.74 (dd, J = 7.0, 1.9, 1H), 1.68 (dt, J = 

11.1, 3.0, 1H), 1.17 (s, 9H); 13C NMR (125 MHz, CDCl3): δ 183.3, 178.3, 154.1, 148.9, 143.3, 

134.1, 131.9, 131.82, 131.77, 131.6, 131.3, 128.4, 126.1, 125.1, 124.3, 123.6, 121.8, 118.4, 62.7, 

61.4, 54.8, 51.8, 47.7, 38.9, 36.0, 35.2, 29.0, 27.4, 13.9; IR (film): 2975, 1727, 1545, 1480, 1456, 

1441, 1371, 1282, 1164, 1074; HRMS–ESI (m/z) [M + H]+ calcd for C31H36N3O6S+, 578.23193; 

found 578.23111. 

 

 

Alcohol 2.35. To a solution of indolenine 2.34 (15 mg, 0.026 mmol) in MeOH (2 mL) was added 

potassium carbonate (K2CO3) (20 mg, 0.14 mmol). The reaction mixture was heated to 65 °C. 

After 4 h, the reaction was diluted with EtOAc (10 mL), poured into a solution of aqueous 

NaHSO4 (10 mL, 0.5 M). The layers were separated, and the aqueous layer was extracted with 

EtOAc (3 x 10 mL). The combined organic layers were dried over MgSO4, filtered, and 

evaporated under reduced pressure. The resulting residue was purified via flash chromatography 

(1:3 hexanes:EtOAc) to afford alcohol 2.35 (8 mg, 65% yield) as colorless oil. Alcohol 2.35: Rf 

0.21 (1:2 hexanes:EtOAc); 1H NMR (500 MHz, CDCl3): δ 8.15 (m, 1H), 7.72 (m, 2H), 7.67 (d, J 

= 7.6, 1H), 7.61 (m, 1H), 7.38 (d, J = 7.6, 1H), 7.35 (dt, J = 7.6, 1.2, 1H), 7.23 (dt, J = 7.6, 1.2, 

1H), 5.78 (q, J = 7.1, 1H), 5.23 (t, J = 3.4, 1H), 5.10 (m, 1H), 4.70 (d, J = 16.7, 1H), 4.61 (d, J = 

10.2, 1H), 4.41 (d, J = 15.1, 1H), 4.07–3.95 (m, 2H), 3.37 (br. s, 1H), 3.10 (ddt, J = 14.1, 4.8, 

1.5, 1H), 2.43 (m, 2H), 1.88 (dd, J = 7.1, 2.1, 3H), 1.82 (dt, J = 14.1, 3.1, 1H), 1.48 (dt, J = 10.4, 

3.3, 1H), 1.36 (dd, J = 6.4, 3.3, 1H); 13C NMR (125 MHz, CDCl3): δ 184.1, 154.2, 148.9, 143.7, 
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134.0, 132.3, 131.8, 131.7, 131.6, 131.3, 128.3, 125.7, 125.2, 124.2, 123.6, 121.8, 118.2, 61.9, 

60.6, 55.9, 55.0, 47.8, 35.9, 35.5, 28.2, 14.3; IR (film): 3422, 3070, 2924, 2840, 1542, 1441, 

1371, 1173, 1127, 1074; HRMS–ESI (m/z) [M + H]+ calcd for C26H28N3O5S+, 494.17442; found 

494.17214. 

 

 

Ester 2.36. To a solution of alcohol 2.35 (4 mg, 0.008 mmol) in CH2Cl2 (0.30 mL) was added 

pyridinium chlorochromate (PCC) (6 mg, 0.028 mmol). After 1 h, celite (0.5 g) was added 

followed by Et2O (3 mL). The hetereogenous mixture was filtered over a pad of basic alumina 

and celite and washed with EtOAc (20 mL). Evaporation of the filtrate under reduced pressure 

afforded a crude residue of aldehyde 2.43 which was used in the subsequent step without further 

purification. 

To a solution of crude aldehyde 2.43 (4 mg) and 2-methyl-2-butene (0.10 mL) in t-BuOH 

(0.150 mL) at 0 °C was added a solution of sodium chlorite (NaClO2) (4 mg, 0.040 mmol) and 

monobasic sodium phosphate (NaH2PO4) (6 mg, 0.047 mmol) in H2O (0.150 mL). After 15 min, 

the reaction mixture was quenched with AcOH (0.25 mL), diluted with EtOAc (mL), and poured 

into a brine solution (4 mL). The layers were separated, and the aqueous layer was extracted with 

(60% yield, 3 steps)

Me3SiCHN2
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EtOAc (3 x 5 mL). The combined organic layers were dried over MgSO4, filtered, and 

evaporated under reduced pressure. The crude residue of acid 2.44 was used in the subsequent 

step without purification. 

To a solution of acid 2.44 (4 mg) in MeOH (0.15 mL) and CH2Cl2 (0.25 mL) was added 

trimethylsilyldiazomethane (Me3SiCHN2) (5 µL, 2 M in hexanes). After 15 min, the reaction 

mixture was quenched with acetic acid (AcOH) (0.25 mL) and concentrated under reduced 

pressure. The crude residue was purified by preparative TLC (1:1 hexanes:EtOAc) to afford ester 

2.36 (2.5 mg, 60% yield over 3 steps) as a colorless oil. Ester 2.36: Rf 0.42 (1:1 hexanes:EtOAc); 

1H NMR (500 MHz, CDCl3): 8.19–8.13 (m, 1H), 7.77–7.68 (m, 2H), 7.65 (d, J = 7.7, 1H), 7.63–

7.60 (m, 1H), 7.35 (d, J = 7.5, 1H), 7.33 (t, J = 7.7, 1H), 7.21 (t, J = 7.5, 1H), 5.76 (q, J = 7.2, 

1H), 5.29 (t, J = 3.1, 1H), 5.13–5.00 (m, 1H), 4.72 (d, J = 17.2, 1H), 4.58 (d, J = 10.2, 1H), 4.41 

(d, J = 15.1, 1H), 4.00 (d, J = 15.1, 1H), 3.74 (s, 3H), 3.64 (dd, J = 14.4, 9.4, 1H), 3.54 (br s, 

1H), 3.31 (dd, J = 14.4, 4.9 1H), 2.47 (dt, J = 13.9, 3.4, 1H), 2.16 (d, J = 3.0, 1H), 1.85 (dt, J = 

13.9, 3.41, 1H), 1.61 (d, J = 7.9, 3H).             

 

 

Furanoindoline 2.38. To a solution of ester 2.36 (6 mg, 0.012 mmol) in THF (0.40 mL) and 

H2O (0.20 mL) was added 2,6-lutidine (5.4 µL, 0.046 mmol) and sodium periodate (NaIO4) (10 

mg, 0.046 mmol) followed by aqueous osmium tetroxide (OsO4) (25 µL, 0.079 M in H2O). After 

16 h, the reaction was poured into a brine solution (5 mL) and the mixture was extracted with 

EtOAc (3 x 10 mL). The combined organic layers were dried over MgSO4, filtered and 
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evaporated under reduced pressure. The resulting residue was purified via preparative TLC (1:1 

hexanes:EtOAc) to afford furanoindoline 2.38 (1.3 mg, 20% yield) as a colorless oil. 

Furanoindoline 2.38: Rf 0.45 (1:1 hexanes:EtOAc); 1H NMR (500 MHz, CDCl3): δ 8.16 (m, 1H), 

7.72 (m, 3H), 7.14 (d, J = 7.3, 1H), 7.07 (t, J = 8.0, 1H), 6.75 (t, J = 7.3, 1H), 6.61 (d, J = 8.0, 

1H), 5.35 (q, J = 6.8, 1H), 4.52 (s, 1H), 4.44 (t, J = 3.0, 1H), 4.30 (d, J = 14.6, 1H), 4.02 (d, J = 

13.1, 1H), 3.77 (d, J = 11.1, 1H), 3.71 (s, 3H), 3.46 (d, J = 14.6, 1H), 3.45 (d, J = 12.4, 1H) 3.28 

(m, 1H), 3.10 (d, J = 5.1, 1H), 3.02 (t, J = 12.2, 1H), 2.31 (dd, J = 13.1, 4.1, 1H), 2.04 (dt, J = 

13.7, 3.7, 1H), 2.01 (dt, J = 13.7, 2.8, 1H), 1.54 (d, J = 6.8, 3H); 13C NMR (125 MHz, CDCl3): δ 

172.0, 147.8, 146.7, 137.0, 133.8, 133.2, 132.2, 132.0, 129.7, 128.6, 125.2, 125.0, 123.3, 119.9, 

108.6, 100.7, 80.5, 61.6, 54.7, 54.6, 54.2, 51.8, 48.7, 37.6, 30.4, 30.0, 12.9; IR (film): 3372, 

2917, 2849, 2338, 1734, 1608, 1541, 1472, 1319, 1155, 1100; HRMS–ESI (m/z) [M + H]+ calcd 

for C27H28N3O5S+, 556.1748; found 556.1754. 
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APPENDIX ONE 

 

Spectra Relevant to Chapter Two: 

 

First-Generation Approach to the Total Synthesis of Picrinine 
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Figure A1.2 Infrared spectrum of compound 2.22. 

 
Figure A1.3 13C NMR (125 MHz, CDCl3) of compound 2.22. 
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Figure A1.5 Infrared spectrum of compound 2.23. 

 
Figure A1.6 13C NMR (125 MHz, CDCl3) of compound 2.23. 
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Figure A1.8 Infrared spectrum of compound 2.24. 

 
Figure A1.9 13C NMR (125 MHz, CDCl3) of compound 2.24. 



 80 

10
9

8
7

6
5

4
3

2
1

0
pp

m
2.327
2.332
2.364
2.369
2.598
2.675
2.712
2.894
3.107
3.744
3.798
3.806
3.813
3.819
3.827

5.568
5.582
5.599
6.864
7.712
7.716
7.727
7.731
7.742
7.746
7.757
7.760
7.772
7.775
7.905
7.908
7.920
7.923
8.149
8.152
8.163
8.167

1.077
1.982
1.085
3.291
3.171

3.000
1.069

1.123

0.961

2.487
1.102
0.979

C
ur

re
nt

 D
at

a 
P

ar
am

et
er

s
N

A
M

E
   

   
   

 J
M

S
-5

-1
49

E
X

P
N

O
   

   
   

   
   

  1
P

R
O

C
N

O
   

   
   

   
   

 1

F2
 - 

A
cq

ui
si

tio
n 

P
ar

am
et

er
s

D
at

e_
   

   
   

 2
01

40
70

2
Ti

m
e 

   
   

   
   

 2
1.

04
IN

S
TR

U
M

   
   

   
 d

rx
50

0
P

R
O

B
H

D
   

5 
m

m
 b

b-
Z 

Z8
00

P
U

LP
R

O
G

   
   

   
   

zg
30

TD
   

   
   

   
   

 6
55

36
S

O
LV

E
N

T 
   

   
   

 C
D

C
l3

N
S

   
   

   
   

   
   

 1
6

D
S

   
   

   
   

   
   

  0
S

W
H

   
   

   
  1

00
00

.0
00

 H
z

FI
D

R
E

S
   

   
   

0.
15

25
88

 H
z

A
Q

   
   

   
   

3.
27

67
99

9 
se

c
R

G
   

   
   

   
   

   
18

1
D

W
   

   
   

   
   

50
.0

00
 u

se
c

D
E

   
   

   
   

   
  6

.0
0 

us
ec

TE
   

   
   

   
   

 2
97

.1
 K

D
1 

   
   

   
 2

.0
00

00
00

0 
se

c
TD

0 
   

   
   

   
   

   
1

==
==

==
==

 C
H

A
N

N
E

L 
f1

 =
==

==
==

=
N

U
C

1 
   

   
   

   
   

 1
H

P
1 

   
   

   
   

   
13

.3
0 

us
ec

P
L1

   
   

0 
dB

S
FO

1 
   

   
 5

00
.3

33
00

20
 M

H
z

F2
 - 

P
ro

ce
ss

in
g 

pa
ra

m
et

er
s

S
I  

   
   

   
   

  3
27

68
S

F 
   

   
   

50
0.

33
00

22
0 

M
H

z
W

D
W

   
   

   
   

   
   

E
M

S
S

B
   

   
0

LB
   

   
 0

 H
z

G
B

   
   

 0
P

C
   

   
   

   
   

  1
.0

0

NH
Ns

M
eO

M
eO

CO
2M
e

2.
26

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fi
gu

re
 A

1.
10

 1 H
 N

M
R

 (5
00

 M
H

z,
 C

D
C

l 3)
 o

f c
om

po
un

d 
2.
26

. 
 



 81 

4000.0 3600 3200 2800 2400 2000 1800 1600 1400 1200 1000.0
79.7

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103
103.5

cm-1

%T 

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 ppm

29
.4

2
31

.5
0

48
.1

3
48

.6
2

51
.4

9
52

.0
6

99
.4

0

12
5.

52
12

7.
03

13
1.

11
13

2.
87

13
3.

38
13

5.
12

13
5.

85
14

7.
76

16
6.

45

Current Data Parameters
NAME      JMS-5-149-13C
EXPNO                 1
PROCNO                1

F2 - Acquisition Parameters
Date_          20140703
Time               8.54
INSTRUM          drx500
PROBHD   5 mm bb-Z Z800
PULPROG          zgdc30
TD                65536
SOLVENT           CDCl3
NS                13935
DS                    0
SWH           32679.738 Hz
FIDRES         0.498653 Hz
AQ            1.0027008 sec
RG              10321.3
DW               15.300 usec
DE                 6.00 usec
TE                298.1 K
D1           2.00000000 sec
d11          0.03000000 sec
TD0                   1

======== CHANNEL f1 ========
NUC1                13C
P1                 6.20 usec
PL1      0 dB
SFO1        125.8231939 MHz

======== CHANNEL f2 ========
CPDPRG[2        waltz16
NUC2                 1H
PCPD2            100.00 usec
PL2              120.00 dB
PL12              16.10 dB
SFO2        500.3320013 MHz
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Figure A1.11 Infrared spectrum of compound 2.26. 

 
Figure A1.12 13C NMR (125 MHz, CDCl3) of compound 2.26. 
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Figure A1.14 Infrared spectrum of compound 2.20. 

 
Figure A1.15 13C NMR (125 MHz, CDCl3) of compound 2.20
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PCPD2             80.00 usec
PLW2        13.50000000 W
PLW12        0.21094000 W
PLW13        0.13500001 W

F2 - Processing parameters
SI               131072
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GB       0
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Figure A1.17 Infrared spectrum of compound 2.19. 

 
Figure A1.18 13C NMR (125 MHz, CDCl3) of compound 2.19. 
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PLW1        23.00000000 W
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F2 - Processing parameters
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Figure A1.20 Infrared spectrum of compound 2.18. 

 
Figure A1.21 13C NMR (125 MHz, CDCl3) of compound 2.18. 
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Figure A1.23 Infrared spectrum of compound 2.28. 

 
Figure A1.24 13C NMR (125 MHz, CDCl3) of compound 2.28. 
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Figure A1.26 Infrared spectrum of compound 2.29. 

 
Figure A1.27 13C NMR (125 MHz, CDCl3) of compound 2.29
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Figure A1.29 Infrared spectrum of compound 2.30. 

 
Figure A1.30 13C NMR (125 MHz, CDCl3) of compound 2.30.. 



 94 

10
9

8
7

6
5

4
3

2
1

0
pp

m1.172
1.727
1.731
1.741
1.745
1.837
1.865
2.472
3.214
4.197
4.220
4.242
4.414
4.444
4.610
4.630
4.698
4.731
4.817
4.822
4.840
4.845
5.241
5.248
5.254
7.267
7.269
7.282
7.284
7.349
7.351
7.364
7.366
7.446
7.461
7.616
7.620
7.625
7.629
7.634
7.668
7.683
7.722
7.724
7.726
7.732
7.738
7.740
7.742
8.157
8.162
8.167
8.171
8.176

9.274

1.132
3.056
1.144

2.022

0.992
0.982

1.133
1.117
1.004
1.018
1.002
0.972
1.023
0.986

1.012

0.965
1.071
1.010
0.944
1.266
2.194
0.999

C
ur

re
nt

 D
at

a 
P

ar
am

et
er

s
N

A
M

E
   

   
   

 J
M

S
-5

-2
37

E
X

P
N

O
   

   
   

   
   

  2
P

R
O

C
N

O
   

   
   

   
   

 1

F2
 - 

A
cq

ui
si

tio
n 

P
ar

am
et

er
s

D
at

e_
   

   
   

 2
01

41
21

5
Ti

m
e 

   
   

   
   

 1
7.

36
IN

S
TR

U
M

   
   

   
  a

v5
00

P
R

O
B

H
D

   
5 

m
m

 D
C

H
 1

3C
-1

P
U

LP
R

O
G

   
   

   
   

zg
30

TD
   

   
   

   
   

 6
55

36
S

O
LV

E
N

T 
   

   
   

 C
D

C
l3

N
S

   
   

   
   

   
   

  8
D

S
   

   
   

   
   

   
  0

S
W

H
   

   
   

  1
00

00
.0

00
 H

z
FI

D
R

E
S

   
   

   
0.

15
25

88
 H

z
A

Q
   

   
   

   
3.

27
67

99
9 

se
c

R
G

   
   

   
   

   
 1

2.
14

D
W

   
   

   
   

   
50

.0
00

 u
se

c
D

E
   

   
   

   
   

 1
0.

00
 u

se
c

TE
   

   
   

   
   

 2
98

.0
 K

D
1 

   
   

   
 2

.0
00

00
00

0 
se

c
TD

0 
   

   
   

   
   

   
1

==
==

==
==

 C
H

A
N

N
E

L 
f1

 =
==

==
==

=
S

FO
1 

   
   

 5
00

.1
33

00
08

 M
H

z
N

U
C

1 
   

   
   

   
   

 1
H

P
1 

   
   

   
   

   
10

.0
0 

us
ec

P
LW

1 
   

   
 1

3.
50

00
00

00
 W

F2
 - 

P
ro

ce
ss

in
g 

pa
ra

m
et

er
s

S
I  

   
   

   
   

  6
55

36
S

F 
   

   
   

50
0.

13
00

12
1 

M
H

z
W

D
W

   
   

   
   

   
   

E
M

S
S

B
   

   
0

LB
   

   
   

   
   

  0
.3

0 
H

z
G

B
   

   
 0

P
C

   
   

   
   

   
  1

.0
0

N

N
M
e

H

H

Ns

Pi
vO 2.
34

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 

Fi
gu

re
 A

1.
31

 1 H
 N

M
R

 (5
00

 M
H

z,
 C

D
C

l 3)
 o

f c
om

po
un

d 
2.
34

. 
 



 95 

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 ppm

13
.9

4

27
.3

5
29

.0
3

35
.2

4
36

.0
3

38
.9

0

47
.6

7
51

.7
7

54
.7

5
61

.3
8

62
.6

5

11
8.

45
12

1.
76

12
3.

63
12

4.
28

12
5.

13
12

6.
11

12
8.

42
13

1.
34

13
1.

57
13

1.
77

13
1.

82
13

1.
87

13
4.

06
14

3.
28

14
8.

86
15

4.
08

17
8.

28
18

3.
26 Current Data Parameters

NAME      JMS-5-237-13C
EXPNO                 2
PROCNO                1

F2 - Acquisition Parameters
Date_          20141215
Time              17.40
INSTRUM           av500
PROBHD   5 mm DCH 13C-1
PULPROG          zgpg30
TD                65536
SOLVENT           CDCl3
NS                  342
DS                    2
SWH           31250.000 Hz
FIDRES         0.476837 Hz
AQ            1.0485760 sec
RG               204.54
DW               16.000 usec
DE                18.00 usec
TE                298.0 K
D1           2.00000000 sec
D11          0.03000000 sec
TD0                   1

======== CHANNEL f1 ========
SFO1        125.7722511 MHz
NUC1                13C
P1                 9.63 usec
PLW1        23.00000000 W

======== CHANNEL f2 ========
SFO2        500.1330008 MHz
NUC2                 1H
CPDPRG[2        waltz16
PCPD2             80.00 usec
PLW2        13.50000000 W
PLW12        0.21094000 W
PLW13        0.13500001 W

F2 - Processing parameters
SI               131072
SF          125.7577719 MHz
WDW                  EM
SSB      0
LB                 1.00 Hz
GB       0
PC                 1.40

 
 
 
  
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

 

4000.0 3600 3200 2800 2400 2000 1800 1600 1400 1200 1000.0
80.5

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104
104.5

cm-1

%T 

Figure A1.32 Infrared spectrum of compound 2.34. 

 
Figure A1.33 13C NMR (125 MHz, CDCl3) of compound 2.34. 
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Figure A1.35 Infrared spectrum of compound 2.35. 

 
Figure A1.36 13C NMR (125 MHz, CDCl3) of compound 2.35. 
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Figure A1.38 Infrared spectrum of compound 2.38. 

 
Figure A1.39 13C NMR (125 MHz, CDCl3) of compound 2.38. 
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CHAPTER THREE 

 

Second-Generation Approach and Total Synthesis of Picrinine 

 

3.1 Abstract 

 

 This chapter describes a second-generation approach to the akuammiline alkaloid 

picrinine. Central to the success of our approach is the use of a Fischer indolization reaction a 

cyclopentene-containing substrate to circumvent the previously encountered roadblocks. 

Additionally, a more concise and scalable synthetic strategy towards building the natural product 

scaffold is detailed, which ultimately fueled a thorough investigation of late-stage chemistry. 

Furthermore, we describe various roadblocks encountered in our experimental efforts are 

described, which were successfully overcome to complete the total synthesis. 

!
3.2 Introduction 

 
 
 As described in Chapter 2, our initial route to picrinine (3.1) were met with many 

setbacks. Among these difficulties was that the route provided inefficient material throughput 

due to scale limitations. This impediment provided for little faculty in the investigation of the 

final synthetic manipulations. Thus, we were prompted to devise a new, concise, and efficient 

strategy that allowed for scalability, while addressing the strategic hurdles encountered in the 

later stages of our first-generation route. 
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3.3 Second-Generation Retrosynthetic Analysis 

 

 Our second-generation retrosynthetic analysis of 3.1 is shown in Scheme 3.1. Identical to 

our first strategy, we envisioned picrinine (3.1) arising from cyclization of the penultimate lactol 

3.2.  However, we now sought to access this lactol from indolenine 3.3, which bears a 

cyclopentene moiety.  The cyclopentene would serve as a “tethered” variant of the previously 

problematic allyl sidechain (see chapter 2). Specifically, we envisaged that the oxidative 

cleavage of cyclopentene 3.31 would not be hampered by cyclization of the presumed diol 

intermediate due to geometric constraints; accordingly, C–C bond cleavage could occur. 

Indolenine 3.3 would be derived from late-stage Fischer indolization of phenylhydrazine (3.4) 

and ketone 3.5, the latter of which would be derived from enone 3.6.  Although we previously 

had been able to access 3.6 (see Chapter 2, Scheme 2.3), our route was significantly hampered by 

poor material throughput. Thus, we took the opportunity to design a new and scalable synthetic 

route to this key intermediate. We envisioned that enone 3.6 could be accessed from bicyclic 

ketone 3.7,2 the product of an intramolecular Pd-catalyzed enolate coupling of vinyl iodide 3.8.  

Finally, the iodide would be prepared from readily available fragments cyclohexanone 3.9 and 

tosylate 3.10.  
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Scheme 3.1 Revised retrosynthetic analysis of picrinine (3.1). 
 

 

 
 

3.4 Development of a Synthetic Route to Access Fischer Indolization Substrate 3.5 

 

 Scheme 3.2 shows the successful synthesis of bicyclic ketone 3.7 and our initial attempt 
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3.11 in 60% yield.6 Enone 3.11 was treated with a preformed MOM-protected alkyllithium 

species at low temperature to give tertiary allylic alcohol 3.12, albeit in low yield. 7 

Unfortunately, all attempts to oxidatively rearrange allylic alcohol 3.12 to enone 3.13 were 

unsuccessful. The use of various Cr (VI) 8  reagents, hypervalent iodine reagents, 9  or N-

oxoammonium salts10 was ineffective, and largely resulted in the recovery of starting material or 

decomposition.  Attempts to isomerize the allylic alcohol without oxidation were also 

unsuccessful.  We surmise that the difficulties encountered in our attempts to manipulate 3.12 are 

due to the tertiary alcohol being extremely sterically hindered.  

 

Scheme 3.2 Assembly of the [3.3.1]-azabicycle and attempted elaboration to enone 3.13. 
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3.14 was treated with Pd(PPh3)4 in the presence of AcOH.12 However, the only product obtained 

was enal 3.15, which presumably arises by initial formation of a π-allylpalladium complex and 

subsequent β-hydride elimination and tautomerization. A second effort to open epoxide 3.14 was 

attempted using dilute sulfuric acid,13 but this also delivered the undesired enal 3.15. In an 

alternate strategy, we returned to enone 3.11 and performed an oxidation using sodium perborate 

tetrahydrate in THF and water,14 which furnished epoxide 3.16 in 89% yield. This epoxide was 

subsequently treated with methylmethoxytriphenylphosphonium chloride in the presence of base 

to furnish enal 3.18 in 82% yield.15  Presumably this transformation proceeds via Wittig 

olefination and spontaneous epoxide fragmentation and hydrolysis (see transition structure 3.17). 

Using this sequence, gram quantities of enal 3.18 were accessible.    

 

Scheme 3.3 Approaches to homologate and oxidize enone 3.11. 
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 En route to the desired Fischer indolization substrate, we sought to perform a conjugate 

reduction of the enal (Scheme 3.4).  Our initial attempts involved treatment of enal 3.18 with a 

number of copper16 or rhodium-based reducing agents,17 however these efforts were ineffective. 

Hypothesizing that the secondary alcohol was problematic, we silyl protected it to give 3.21 in 

83% yield. Reduction of 3.21 in the presence of Pd(PPh3)4, Bu3SnH, and ZnCl2 in THF18 

proceeded in 62% yield, although with poor diastereoselectivity (dr = 1:5), favoring the 

undesired epimer 3.23. The diastereoselectivity of this process is thought to be governed by the 

bulky triethylsilyl ether, which sterically hinders protonation (see 3.22).19   Although further 

attempts to reduce 3.18 were also unsuccessful, we found that treatment of unprotected enal 3.18 

under the Pd-catalyzed reduction conditions gave the desired hydroxyaldehyde 3.20 in 90% yield 

(dr = 7:1). The favorable selectivity presumably arises from protonation of the intermediate 

enolate on the sterically more accessible face of the [3.3.1]-azabicycle (see 3.19).     

 

Scheme 3.4 Diastereoselective reduction of enal 3.18. 
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 As shown in Scheme 3.5, aldehyde 3.20 could be readily elaborated to the desired Fischer 

indolization substrate. Wittig olefination of the aldehyde, followed by oxidation of the secondary 

alcohol with Dess–Martin periodinane, afforded ketone 3.24 in 80% over two steps.  Next, allylic 

alkylation of 3.24 with allyl iodide in the presence of strong base and N,N!-

dimethylpropyleneurea (DMPU) furnished 3.25 in 55% yield, along with 31% recovered ketone 

3.24. To arrive at the desired Fischer indolization substrate, 3.25 was treated with the Grubbs–

Hoveyda 2nd Generation catalyst (3.26) in CH2Cl2 at reflux to give cyclopentene 3.5 in good 

yield.20  It is worth noting that epimerization was not observed in this reaction and the trans-

hydrindenone product (3.5) was the only product observed. To our delight, reaction of ketone 3.5 

with phenylhydrazine (3.4) and TFA delivered indolenine 3.3 in 74% yield via late-stage Fischer 

indolization. Of note, only a single diastereomer was observed in this complexity-generating 

step. The transformation required only 2 h, which compares favorably to our earlier Fischer 

indolization studies.  It is hypothesized that the rigid nature of the substrate is responsible for the 

facile nature of the [3,3]-sigmatropic rearrangement. Nonetheless, our ability to access 3.3 

marked a critical juncture in our synthetic efforts, as we expected that oxidative cleavage of the 

cyclopentene could lead to assembly of the important furanoindoline motif present in the natural 

product. 
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Scheme 3.5 Synthesis of cyclopentene 3.5 and Fischer indolization. 
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Figure 3.1 Attempted olefin oxidation of indolenine substrate 3.3. 
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attempting to oxidatively cleave cyclopentene 3.3. A three-dimensional depiction of 3.3 shows 

that approach to the olefin is severely obstructed on both faces. On one hand, the proximal 

ethylidene moiety blocks approach of an oxidant, whereas approach to the other face is impeded 

by the hydrogen at C9. As a workaround, we considered performing the oxidative 

functionalization of cyclopentene 3.5 prior to performing the Fischer indolization step. Although 

the ethylidene similarly blocks approach of one face of the olefin in 3.5, the other face appeared 

accessible for oxidation to occur.     
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Figure 3.2 Hypothesis for oxidation difficulties and revision of strategy. 

 

 

 

3.6 Earlier Oxidation, Successful Fischer indolization, and Late-Stage Challenges  

 

Our efforts to carry out the revised endgame strategy are depicted in Scheme 3.6.  First, 

chemo- and diastereoselective Upjohn dihydroxylation25 of the trans-hydrindenone 3.5, followed 

by protection of the resultant diol as the cyclic carbonate,26 gave tetracyclic intermediate 3.28 in 

78% yield over 2 steps. The success of this sequence validated our hypothesis shown in Figure 

3.2 and allowed us to attempt the key Fischer indolization step. Treatment of 3.28 with 

phenylhydrazine (3.4) and TFA at 80 °C in DCE gave a mixture of two products in a combined 

yield of 69%.  After careful separation and 2D-NMR analysis of each compound in C6D6, the 

two products were identified as indolenine 3.29 and hydrate 3.30.27 These compounds could be 

taken forward as an inconsequential mixture. It is worth noting that the Fischer indolization of 

substrate 3.28 is one of the most complex examples in the literature to date.28  

The next late-stage maneuver involved revealing the diol moiety and performing oxidative 

cleavage.  This was achieved by treating the mixture of 3.29 and 3.30 with NaOH,29 followed by 

exposure of the intermediate diol to NaIO4. The resulting lactol, 3.27, was obtained in 81% yield 

over 2 steps.30  Thus, by installing oxidation prior to the Fischer indolization, our problematic 
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oxidation of cyclopentene 3.3 (see Figures 3.1 and 3.2) had been successfully circumvented.  

Having synthesized lactol 3.27, all that remained was conversion of the exocyclic aldehyde to a 

methyl ester, cleavage of the sulfonamide, and construction of the N,O-acetal.  In our first 

efforts, we attempted to cleave the sulfonamide group using thiol-based denosylation 

conditions.31 Unfortunately, these attempts led to the formation of multiple products that proved 

difficult to isolate. To facilitate purification, the deprotection of 3.27 was tried using a resin-bond 

thiol (MetSThiol) in the presence of Cs2CO3.32 Although it appeared that cleavage of the nosyl 

protecting group had occurred,33 we regrettably did not detect formation of the desired product 

3.31.  Thus, our efforts to access the natural product (3.1) had again been foiled. 

 

Scheme 3.6 Synthesis of lactol 3.27 and failed late-stage N,O-acetal formation. 
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3.7 Completion of the Total Synthesis of Picrinine (3.1) 

 

 With limited options available, we decided to change the order of late-stage 

transformations by introducing the ester prior to denosylation (Scheme 3.7).  Toward this end, 

Lindgren oxidation of 3.27 gave an intermediate carboxylic acid, which was methylated with 

trimethylsilyldiazomethane to afford ester 3.32 in 58% yield over 2 steps.34 This delicate 

oxidation is noteworthy in that it occurred without any competitive oxidation of the lactol. With 

ester 3.32 in hand, we attempted the nosyl removal using the solid-supported conditions 

mentioned previously. Much to our pleasure, picrinine (3.1) was obtained as the sole product.35 It 

is likely that the smooth formation of 3.1 occurs via cyclization of intermediate 3.2 due to the 

constrained proximity of N4 and C5. Our synthetic sample of picrinine (3.1) was found to be 

identical to a natural sample. 36 

 

Scheme 3.7 Completion of the total synthesis of picrinine (3.1). 
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3.8 Conclusion 

 

 In conclusion, we have developed the first total synthesis of the daunting, polycyclic 

akuammiline alkaloid picrinine (3.1). Challenges from our first-generation approach prompted us 

to develop a revised synthesis of the [3.3.1]-azabicyclic core of the natural product, which 

proved far more robust and scalable compared to our initial route. In turn, efficient access to the 

azabicyclic core permitted late-stage studies and the design and testing of substrates for late-

stage Fischer indolization reactions. In fact, the substrates utilized in our synthetic forays toward 

picrinine represent some of the most complex examples of Fischer indolizations to date. It is 

hoped that the lessons learned in the course of our total synthesis of 3.1 will help guide synthetic 

studies pertaining to akuammilines and other classes of complex indole alkaloids. 

 

3.9 Experimental Section 

3.9.1 Materials and Methods 

 

Unless stated otherwise, reactions were conducted in flame-dried glassware under an atmosphere 

of nitrogen using anhydrous solvents (either freshly distilled or passed through activated alumina 

columns). 2-Iodoxybenzoic acid (IBX) 37 and Dess–Martin periodinane38 were prepared from 

known literature procedures. trans-4-Aminocyclohexanol•HCl, pyridinium chlorochromate 

(PCC), potassium tert-butoxide (KOt-Bu), lithium hexamethyldisilazide (LHMDS), sodium 

chlorite, 2-methyl-2-butene, N-methylmorpholine-N-oxide (NMO), triphosgene, 

methoxymethyltriphosphonium chloride, methyltriphosphonium bromide, tributyltin hydride, 

trimethylsulfonium iodide (Me3SI), n-butyllithium (n-BuLi), 2,6-lutidine, and allyl iodide were 
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obtained from Sigma–Aldrich. Osmium tetroxide, bis(diphenylphosphino)ferrocene-

palladium(II) dichloride dichloromethane adduct [PdCl2(dppf)•CH2Cl2], palladium diacetate 

[Pd(OAc)2], tetrakis(triphenylphosphine)palladium [Pd(PPh3)4], and zinc chloride (ZnCl2) were 

obtained from Strem. Triethylsilylchloride (TESCl) was obtained from Oakwood. Sodium 

perborate and trifluoroacetic acid were obtained from Fischer. Phenylhydrazine was obtained 

from Acros and purified by flash chromatography (4:1 hexanes:EtOAc). The Hoveyda–Grubbs 

second-generation catalyst was obtained from Materia. Sodium periodate and cesium carbonate 

were obtained from Alfa-Aesar. 2-Nitrobenzenesulfonyl chloride (NsCl) and 

trimethylsilyldiazomethane were obtained from TCI. Solid supported thiol-resin (MetSThiol®) 

was obtained from SiliCycle (Product # R51030B). 1,3-dimethyl-3,4,5,6-tetrahydro-2(1H)-

pyrimidinone (DMPU) was obtained from Aldrich and distilled from calcium hydride before use. 

Unless stated otherwise, reactions were performed at room temperature (approximately 23 °C). 

Thin-layer chromatography (TLC) was conducted with EMD gel 60 F254 pre-coated plates (0.25 

mm) and visualized using a combination of UV, anisaldehyde, and iodine staining. SiliCycle 

silica gel 60 (particle size 0.040–0.063 mm) was used for flash column chromatography. 1H 

NMR spectra were recorded on Bruker spectrometers (300 and 500 MHz). Data for 1H spectra 

are reported as follows: chemical shift (δ ppm), multiplicity, coupling constant (Hz), integration 

and are referenced to the residual solvent peak 7.26 ppm for CDCl3 and 7.16 ppm for C6D6. 13C 

NMR spectra are reported in terms of chemical shift (at 125 MHz) and are referenced to the 

residual solvent peak 77.16 ppm for CDCl3, and 128.06 for C6D6. IR spectra were recorded on a 

Perkin-Elmer 100 spectrometer and are reported in terms of frequency absorption (cm–1). 

Uncorrected melting points were measured using a Mel-Temp II melting point apparatus with a 

Fluke 50S thermocouple and a Digimelt MPA160 melting point apparatus. High-resolution mass 



! 114 

spectra were obtained from the UC Irvine and UCLA Mass Spectrometry Facilities. 

 

3.9.2 Experimental Procedures 

 

 

Nosyl Ketone 3.9.  To a solution of trans-4-aminocyclohexanol•HCl (10.0 g, 66.0 mmol) in 

isopropyl alcohol (120 mL) was added 2-nitrobenzenesulfonyl chloride (14.6 g, 66.0 mmol) and 

triethylamine (36.7 mL, 263.8 mmol) at 0 °C.  The mixture was heated to 60 °C and after 2 h, the 

reaction was filtered and the filtrate was concentrated under reduced pressure.  The resulting 

residue was dissolved in EtOAc (200 mL) and washed successively with 0.5 M HCl (50 mL) and 

H2O (100 mL).  The aqueous layer was extracted with EtOAc (50 mL) and the organic layers 

were combined, dried over MgSO4, and evaporated under reduced pressure to afford the crude 

product 3.33.  This residue was used in the subsequent step without further purification.   

 To a solution of pyridinium chlorochromate (26.0 g, 120.9 mmol) and celite (9.5 g) in 

CH2Cl2 (202 mL) was added 3.33 at room temperature.  After 12 h, the reaction was diluted with 

Et2O (300 mL), filtered over a pad of layered celite, alumina, and sand, and washed with EtOAc 

(1 L).  The filtrate was concentrated under reduced pressure to afford nosyl ketone 3.9 (12.5 g, 

64% yield, 2 steps) as a beige solid. Nosyl ketone 3.9: mp: 145–147 °C; Rf 0.25 (1:1 

hexanes:EtOAc); 1H NMR (500 MHz, CDCl3): δ 8.21 (m, 1H), 7.90 (m, 1H), 7.78 (m, 2H), 5.41 

(d, J = 7.0), 3.79 (m, 1H), 2.47–2.32 (m, 4H), 2.12 (m, 2H), 1.86 (m, 2H); 13C NMR (125 MHz, 

CDCl3): δ 208.6, 148.1, 134.5, 134.0, 133.2, 130.9, 125.7, 51.1, 38.5, 32.6; IR (film) 3305, 2952, 

NH3Cl

OH

NsCl
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iPrOH, 0 °C to 60 °C

NHNs
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CH2Cl2, rt

NHNs
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1710, 1538, 1443, 1343, 1163; HRMS–ESI (m/z) [M + H]+ calcd for C12H15N2O5S+, 299.06962; 

found 299.06911. 

 

 

Iodide 3.8. To a suspension of ketone 3.9 (15.0 g, 50.3 mmol) and cesium carbonate (24.6 g, 

75.5 mmol) in MeCN (250 mL) was added tosylate 3.1039 (21.3 g, 60.5 mmol). The reaction was 

refluxed at 80 °C. After 1.5 h, the reaction was cooled to room temperature and excess MeCN 

was removed under reduced pressure. The residue was poured into deionized water (100 mL) 

and the resulting mixture was diluted with CH2Cl2 (250 mL). The layers were separated and the 

aqueous layer was extracted with CH2Cl2 (3 x 100 mL). The organic layers were combined, dried 

over MgSO4, and evaporated under reduced pressure. The resulting residue was purified via flash 

chromatography (1.5:1 hexanes:EtOAc) to afford iodide 3.8 (23.1 g, 96% yield) as a yellow 

solid. Iodide 3.8: mp: 58–61 °C; Rf  0.53 (1:1 hexanes:EtOAc); 1H NMR (500 MHz, CDCl3): δ 

8.02–8.00 (m, 1H), 7.75–7.65 (m, 3H), 6.00 (qt, J = 6.4, 1.3, 1H), 4.42 (tt, J = 12.1, 3.6, 1H), 

4.20 (t, J = 1.3, 2H), 2.51 (, J = 14.6, 6, 2H), 2.42 (dt, J = 14.6, 2.4, 2H), 2.23–2.17 (m, 2H), 1.89 

(qd, J = 12.8, 4.7, 2H), 1.66 (dt, J = 6.4, 1.3, 3H); 13C NMR (125 MHz, CDCl3): δ 208.8, 147.9, 

134.4, 134.2, 133.9, 131.8 (2 carbons), 124.6, 105.3, 56.5, 55.8, 40.1, 30.6, 22.0; IR (film): 2957, 

1716, 1541, 1369, 1345, 1160; HRMS–ESI (m/z) [M + Na]+ calcd for C16H19IN2O5SNa+, 

500.9952; found 500.9960.  
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Ketone 3.7. A solution of iodide 3.8 (500 mg, 1.05 mmol) in MeOH (20 mL) was cooled to  –

100 °C. After stirring for 5 min, the solution was put under vacuum. After 5 additional min of 

stirring, the reaction was sparged with N2 for 10 min, followed by the addition of 1,1'-

bis(diphenylphosphino)ferrocene-palladium(II)dichloride dichloromethane adduct (171 mg, 

0.209 mmol) and potassium carbonate (570 mg, 4.18 mmol) (Note: The variable amount of 

oxygen present in the reaction can alter the yield, thus rigorous deoxygenation is required). The 

cooling bath was removed from the reaction and continued to be degassed while warming up to 

room temperature, at which point the reaction was refluxed at 70 °C. After 45 min, the reaction 

was cooled to room temperature and the excess MeOH was removed under reduced pressure. 

The resulting residue was diluted with deionized water (100 mL) and CH2Cl2 (100 mL). The 

layers were separated and the aqueous layer was extracted with CH2Cl2 (2 x 100 mL). The 

organic layers were combined, dried over Na2SO4, and evaporated under reduced pressure. The 

resulting residue was purified via flash chromatography (1.5:1 hexanes:EtOAc) to afford ketone 

3.7 (195 mg, 53% yield) as a brown solid. Ketone 3.7: mp: 125–129 °C; Rf  0.29 (1:1 

hexanes:EtOAc); 1H NMR (300 MHz, CDCl3): δ 8.07–8.03 (m, 1H), 7.77–7,68 (m, 2H), 7.67–

7.60 (m, 1H), 5.68 (q, J = 7.0, 1H), 4.30 (t, J = 5.8, 1H), 4.15 (d,  J = 13.9, 1H), 3.90 (dt, J = 

13.9, 0.9, 1H), 3.49 (br. s, 1H), 2.90–2.79 (m, 1H), 2.33–2.24 (m, 2H), 2.03 (dt, J = 14.1, 2.7, 

1H), 1.97–1.85 (m, 1H), 1.61 (dt, J = 7.0, 0.9, 3H); 13C NMR (125 MHz, CDCl3): δ 208.1, 148.5, 

134.0, 132.0, 131.8, 131.3, 128.8, 126.6, 124.4, 49.0, 48.2. 46.7. 35.0, 32.9, 31.4, 13.2; IR (film): 
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2956, 1713, 1543, 1373, 1164; HRMS–ESI (m/z) [M + Na]+ calcd for C16H18N2O5SNa+, 

373.0829; found 373.0836. 

 

 

Enone 3.11. To a dram vial charged with IBX (0.128 g, 0.457 mmol) and NMO (0.056 g, 0.476 

mmol) was added DMSO (0.5 mL).  The mixture was stirred for 10 min at room temperature at 

which point a solution of ketone 3.7 (0.050 g, 0.143 mmol) in DMSO (0.64 mL) was added and 

the reaction was heated to 45 °C.  After 20 h, the reaction was cooled to room temperature and 

washed with a 5% aq. NaHCO3 solution (2 mL) and extracted with Et2O (4 x 20 mL). The 

organic layers were combined, dried over MgSO4, and evaporated under reduced pressure. The 

resulting residue was purified via flash chromatography (1.5:1 hexanes:EtOAc) to afford enone 

3.11 (0.030 g, 60% yield) as a white solid. Enone 3.11: mp: 122.5–124 ºC; Rf 0.48 (1.5:1 

hexanes:EtOAc); 1H NMR (500 MHz, CDCl3): δ 8.08 (dd, J = 7.4, 2, 1H), 7.67–7.67 (m, 3H), 

6.85 (ddd, J = 10.0, 6.1, 1.8, 1H), 6.26 (dd, J = 10.0, 1.1), 5.58 (q, J = 7.2, 1H), 4.74 (dt J = 6.1, 

3.1, 1H), 4.00 (d, J = 14.7, 1H), 3.85 (dt, J = 14.7, 2.1, 1H), 3.67 (t, J = 3.0, 1H), 2.36 (dt, J = 

13.1, 3.1, 1H), 2.05 (m, 1H), 1.73 (dd, J = 6.8, 2.1, 3H); 13C NMR (125 MHz, CDCl3): δ 197.2, 

147.9, 142.3, 134.0, 133.2, 133.1, 132.1, 131.0, 128.0, 124.9, 124.7, 47.6, 47.1, 44.2, 32.8, 12.9; 

IR (film): 2925, 1686, 1542, 1370, 1165 cm–1; HRMS–ESI (m/z) [M + Na]+ calcd for 

C16H16N2O5SNa+, 371.0677; found 371.0672. 
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Alcohol 3.12. To a solution of CH3OCH2OCH2SnBu3 (39 mg, 0.11 mmol)40 in THF (1 mL) was 

added a solution of n-butyllithium (n-BuLi) (0.046 mL, 2.05 M in hexanes) at –78 °C. The 

reaction mixture was stirred for 20 min, at which point a solution of enone 3.11 (25 mg, 0.072 

mmol) in THF (1 mL) was added dropwise over 1 min at –78 °C. After 1 h, the reaction mixture 

was quenched with a solution of saturated aqueous NH4Cl (3 mL) and allowed to warm to room 

temperature. The layers were separated, and the aqueous layer was extracted with EtOAc (4 x 10 

mL). The combined organic layers were dried over MgSO4, filtered, and evaporated under 

reduced pressure. The resulting residue was purified via flash chromatography (2:1 

hexanes:EtOAc) to afford alcohol 3.12 (9 mg, 30% yield) as a pale yellow oil. Alcohol 3.12: Rf 

0.28 (2:1 hexanes:EtOAc); 1H NMR (500 MHz, CDCl3): δ 8.02 (m, 1H), 7.68 (m, 2H), 7.62, (m, 

1H), 5.86 (dd, J = 10.0, 1.3, 1H), 5.73 (ddd, J = 10.0, 5.7, 1.3, 1H), 5.66 (q, J = 6.9, 1H), 4.68–

4.48 (m, 3H), 3.97 (d, J = 14.1, 1H), 3.90 (dt, J = 14.1, 2.0, 1H), 3.58 (d, J = 10.4, 1H), 3.48 (d, J 

= 10.4, 1H), 3.38 (s, 3H), 3.23 (t, J = 3.8, 1H), 2.49 (s, 1H), 1.99 (dt, J = 13.4, 3.0, 1H), 1.82 (dt, 

J = 13.4, 3.4, 1H), 1.66 (dd, J = 6.9, 2.0, 3H); 13C NMR (125 MHz, CDCl3): δ 148.0, 136.2, 

133.7, 133.6, 131.8, 131.2, 130.8, 125.6, 124.8, 124.4, 97.3, 72.8, 71.5, 55.7, 47.9, 47.7, 35.0, 

30.9, 12.9; IR (film): 3526, 2931, 1543, 1442, 1372, 1352, 1213, 1164, 1108, 1036; HRMS–ESI 

(m/z) [M + H]+ calcd for C19H25N2O7S+, 425.13770; found 425.13565. 
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Epoxide 3.14. To a suspension of trimethylsulfonium iodide (Me3S+I-) (39 mg, 0.19 mmol) in 

THF (1 mL) was added n-butyllithium (n-BuLi) (65 µL, 2.65 M in hexanes) at 0 °C. After 5 min, 

a solution of enone 3.11 (56 mg, 0.16 mmol) in THF (0.6 mL) was added dropwise over 1 min at 

0 °C. After 30 min, the reaction was warmed to room temperature and poured into a brine 

solution (3 mL). The layers were separated, and the aqueous layer was extracted with EtOAc (3 x 

10 mL). The combined organic layers were dried over MgSO4, filtered, and evaporated under 

reduced pressure. The resulting residue was purified via flash chromatography (2:1 

hexanes:EtOAc) to afford epoxide 3.14 (30 mg, 52% yield) as a pale yellow oil. Epoxide 3.14: Rf 

0.58 (2:1 hexanes:EtOAc); 1H NMR (500 MHz, CDCl3): δ 8.04 (m, 1H), 7.69 (m, 2H), 7.63 (m, 

1H), 5.94 (ddd, J = 1.5, 5.9, 9.9, 1H), 5.56 (q, J = 6.8, 12), 5.55 (dd, J = 1.2, 9.9, 1H), 4.61(dt, J 

= 3.0, 5.9, 1H), 4.00(m, 2H), 2.96 (d, J = 5.2, 1H), 2.85 (d, J = 5.2, 1H), 2.73 (br. s, 1H), 2.16 

(dt, J = 3.1, 12.9, 1H), 1.99 (ddt, J = 1.6, 3.4, 12.9, 1H), 1.56 (dd, J = 1.5, 6.3, 3H); 13C NMR 

(125 MHz, CDCl3): δ 148.0, 135.8, 133.6, 133.7, 131.9, 131.0, 130.8, 129.1, 124.4, 123.5, 58.3, 

56.4, 47.6, 47.3, 34.9, 32.3, 12.7; IR (film): 2924, 1543, 1440, 1372, 1165, 1127, 1075; HRMS–

ESI (m/z) [M + H]+ calcd for C17H19N2O5S+, 363.10090; found 369.10024. 
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Enal 3.15. To a solution of tetrakis(triphenylphosphine)palladium [Pd(PPh3)4] (1 mg, 0.00030 

mmol) and acetic acid (AcOH) (2 µL, 0.033 mmol) in THF (0.25 mL) was added a solution of 

epoxide 3.14 (0.011 g, 0.030 mmol) dropwise over 1 min. After 30 min, the reaction was filtered 

over a plug of SiO2, washed with EtOAc (25 mL) and the filtrate was concentrated under reduced 

pressure. The resulting residue was purified via preparative TLC (2:1 hexanes:EtOAc) to afford 

enal 3.15 (7 mg, 62% yield) as a colorless oil. 

 

 

Enal 3.15. To a solution of epoxide 3.14 (11 mg, 0.030 mmol) in THF (0.30 mL) was added an 

aqueous solution of sulfuric acid (H2SO4) (0.2 mL, 2% w/w). After 5 min, the reaction mixture 

was diluted with EtOAc (5 mL) and poured into a solution of saturated aqueous NaHCO3 (5 mL). 

The layers were separated and the aqueous layer was extracted with EtOAc (3 x 10 mL). The 

combined organic layers were dried over MgSO4, filtered, and evaporated under reduced 

pressure. The resulting residue was purified via flash chromatography (2:1 hexanes:EtOAc) to 

afford enal 3.15 (10 mg, 91% yield) as a colorless oil. Enal 3.15: Rf 0.38 (2:1 hexanes:EtOAc); 

1H NMR (500 MHz, CDCl3): δ 9.37 (s, 1H), 8.05 (m, 1H), 7.74–7.63 (m, 3H), 6.91 (t, J = 3.7, 

1H), 5.43 (q, J = 6.9, 1H), 4.45 (br. s, 1H), 3.96 (br. s, 1H), 3.85 (d, J = 14.3, 1H), 3.71 (d, J = 

14.3, 1H), 2.82 (ddd, J = 3.4, 5.9, 21.5, 1H), 2.59 (dd, J = 3.9, 21.5, 1H), 1.92 (dt, J = 3.4, 12.8, 

1H), 1.78 (dd, J = 1.8, 6.8, 3H), 1.69 (dt, J = 3.1, 12.8, 1H); 13C NMR (125 MHz, CDCl3): δ 

191.8, 149.1, 148.0, 142.5, 133.7, 133.6, 131.9, 131.0, 130.7, 124.5, 122.7, 48.0, 47.0, 33.2, 30.9, 
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26.6, 12.9; IR (film): 2923, 1682, 1542, 1440, 1371, 1340, 1164, 1126, 1081; HRMS–ESI (m/z) 

[M + H]+ calcd for C17H19N2O5S+, 363.10090; found 363.10022. 

 

 

Epoxide 3.16. To two individual, but identical solutions of enone 3.11 (422 mg, 1.21 mmol) in 

1:1 THF:H2O (4 mL) was added sodium perborate monohydrate (375 mg, 3.76 mmol). Each 

reaction was heated to 65 °C. After stirring for 12 h, each reaction was cooled to room 

temperature and poured into deionized water (150 mL) and diluted with EtOAc (150 mL). The 

layers were separated and the aqueous layer was extracted with EtOAc (2 x 150 mL). The 

organic layers from both reactions were combined, dried over MgSO4, and evaporated under 

reduced pressure. The combined residue was purified via flash chromatography (2:1 

hexanes:EtOAc) to afford epoxide 3.16 (785 mg, 89% yield) as a yellow solid.  Epoxide 3.16: 

mp: 147–149 °C; Rf  0.45 (1:1 hexanes:EtOAc); 1H NMR (500 MHz, CDCl3): δ 8.13–8.11 (m, 

1H), 7.77–7.69 (m, 3H), 5.60 (q, J = 6.9, 1H), 4.72 (q, J = 2.9, 1H), 4.06 (d, J = 15.1, 1H), 3.97 

(dt, J = 15.1, 1.8), 3.62 (t, J = 3.2, 1H), 3.52 (t, J = 2.7, 1H), 3.38 (d, J = 3.2, 1H), 2.33 (dt, J = 

13.7, 2.9, 1H), 1.71–1.68 (m, 4H); 13C NMR (125 MHz, CDCl3): δ 201.7, 147.8, 134.1, 133.0, 

132.1, 131.0, 128.3, 125.1, 124.7, 54.2, 51.7, 48.4, 47.6, 42.0, 23.6, 12.8; IR (film): 2919, 1716, 

1542, 1371, 1163; HRMS–ESI (m/z) [M + Na]+ calcd for C16H16N2O6SNa+, 387.0621; found 

387.0630. 
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Enal 3.18. In a glovebox, a round-bottom flask was charged with methoxymethyl-

triphenylphosphonium chloride (0.659 g, 1.93 mmol), and a dram vial was charged with 

potassium tert-butoxide (0.198 g, 1.76 mmol). The contents were removed from the glovebox, 

placed under N2 pressure, and THF was added to the flask and vial (8 mL and 2 mL, 

respectively). The solution of methoxymethyltriphosphonium chloride in THF was cooled to –

78 °C and the solution of potassium tert-butoxide in THF was added dropwise over 1 min. The 

mixture was stirred at –78 °C for 30 min, at which point a solution of epoxide 3.16 (0.585 g, 1.60 

mmol) in THF (6 mL) was added dropwise over 1 min. The reaction was warmed to 0 °C, and 

after stirring for 15 min, the reaction was quenched with a solution of sat. aq. NH4Cl (15 mL). 

The resulting mixture was poured into deionized water (100 mL) and diluted with EtOAc (100 

mL). The layers were separated and the aqueous layer was extracted with EtOAc (2 x 100 mL). 

The organic layers were combined, dried over MgSO4, and evaporated under reduced pressure. 

The resulting residue was purified via flash chromatography (1:1 hexanes:EtOAc) to afford enal 

3.18 (0.500 g, 82% yield) as a clear wax. Enal 3.18: Rf 0.15 (1:1 hexanes: EtOAc); 1H NMR (500 

MHz, CDCl3): δ 9.47 (s, 1H), 8.05 (dd, J = 1.7, 7.5, 1H), 7.76–7.65 (m, 3H), 6.86 (d, J = 3.8, 

1H), 5.45 (q, J = 6.8, 1H), 4.42 (d, J = 2.7, 1H), 4.26 (s, 1H), 3.93 (s, 1H), 3.84 (d, J = 14.5, 1H), 

3.60 (d, J = 14.5, 1H), 2.70 (s, 1H), 1.91 (dt, J = 13.3, 3.2), 1.81–1.73 (m, 4H); 13C NMR (125 

MHz, CDCl3): δ 192.3, 147.9, 146.7, 143.6, 133.9, 133.3, 132.1, 131.0, 129.4, 124.6, 123.5, 67.6, 

55.1, 47.2, 27.1, 26.6, 12.9; IR (film): 3406, 2926, 2859, 1686, 1541, 1370, 1160, 1127; HRMS–

ESI (m/z) [M – H]– calcd for C17H17N2O6S–, 377.0807; found 377.0821. 
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Enal 3.21. To a solution of enal 3.18 (25 mg, 0.066 mmol) in CH2Cl2 (1 mL) was added 2,6-

lutidine (0.046 mL, 0.40 mmol) and chlorotriethylsilane (TESCl) (33 µL, 0.20 mmol). After 

stirring for 17 h, the reaction mixture was diluted with CH2Cl2 (5 mL) and poured into H2O (5 

mL). The layers were separated, and the aqueous layer was extracted with CH2Cl2 (2 x 10 mL). 

The combined organic layers were dried over MgSO4, filtered, and evaporated under reduced 

pressure. The resulting residue was purified via preparative TLC (1:1 hexanes:EtOAc) to afford 

enal 3.21 (27 mg, 83% yield) as a colorless oil. Enal 3.21: Rf 0.31 (4:1 hexanes:EtOAc); 1H 

NMR (500 MHz, CDCl3): δ 9.44 (s, 1H), 8.06 (m, 1H), 7.73–7.65 (m, 3H), 6.75 (dd, J = 4.0, 1.2, 

1H), 5.41 (q, J = 6.7, 1H), 4.41 (d, J = 4.0, 1H), 4.06 (br. s, 1H), 2.90 (t, J = 2.9, 1H), 3.81 (d, J = 

14.5, 1H), 3.67 (dt, J = 14.5, 1.9, 1H), 1.95 (dt, J = 13.0, 3.1, 1H), 1.76 (dd, J = 6.8, 1.9, 3H), 

1.66 (dt, J = 13.0, 3.2, 1H), 0.96 (t, J = 8.1, 9H), 0.66 (q, J = 8.1, 6H); 13C NMR (125 MHz, 

CDCl3): δ 192.6, 148.0 (2 carbons), 142.1, 133.8, 133.4, 131.9, 131.1, 129.7, 124.7, 122.9, 67.9, 

55.1, 47.2, 27.1, 26.2, 12.8, 6.9, 4.7; IR (film): 2957, 2877, 1690, 1543, 1457, 1440, 1370, 1343, 

1240, 1164, 1126, 1071, 1009; HRMS–ESI (m/z) [M + H]+ calcd for C23H32N2O6SSi+, 493.18231; 

found 493.17800. 
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Aldehyde 3.23 and Aldehyde 3.35. In the glovebox, a vial was charged with 

tetrakis(triphenylphosphine)palladium [Pd(PPh3)4] (2 mg, 0.0016 mmol) and zinc chloride 

(ZnCl2) (17 mg, 0.125 mmol). The flask was removed from the glovebox, placed under N2 

pressure, and THF (1.5 mL) was added. To this solution was added a solution of enal 3.21 (27 

mg, 0.054 mmol) in THF (1.2 mL). The resulting mixture was sparged with N2 for 10 min, at 

which point tributyltin hydride (Bu3SnH) (0.029 mL, 0.11 mmol) was added. After 20 h, the 

reaction mixture was diluted with EtOAc (10 mL) and poured into H2O (10 mL). The layers were 

separated, and the aqueous layer was extracted with EtOAc (2 x 10 mL). The  combined organic 

layers were dried over MgSO4, filtered, and evaporated under reduced pressure. The resulting 

residue was purified via preparative TLC (18:1:1 benzene:Et2O:CH2Cl2) to afford aldehyde 3.23 

(14 mg, 52% yield) and aldehyde 3.35 (3 mg, 10% yield) as colorless oils. The stereochemical 

assignment of 3.23 and 3.35 were determined by analysis of 1H NMR coupling constants. 

Aldehyde 3.23: Rf 0.48 (2:1 hexanes:EtOAc); 1H NMR (500 MHz, CDCl3): δ 9.72 (s, 1H), 7.96 

(m, 1H), 7.70 (m, 2H), 7.61 (m, 1H), 5.48 (q, J = 7.0, 1H), 4.14 (app. q, J = 3.1, 1H), 4.06 (d, J = 

14.1, 1H), 3.75 (m, 2H), 3.36 (br. s, 1H), 2.35 (ddd, J = 14.8, 6.8, 2.5, 1H), 2.30 (dt, J = 14.2, 

2.7, 1H), 2.25 (d, J = 6.8, 1H), 2.03 (d, J = 14.8, 1H), 1.57 (d, J = 7.0, 3H), 1.50 (dt, J = 14.2, 

3.7, 1H), 0.96 (t, J = 8.1, 9H), 0.62 (q, J = 8.1, 6H); 13C NMR (125 MHz, CDCl3): δ 202.6, 

148.7, 134.4, 133.8, 131.61, 131.57, 131.2, 124.4, 121.9, 68.9, 54.3, 48.61, 48.60, 27.19, 27.17, 

20.4, 13.2, 6.9, 4.7; IR (film): 2955, 2921, 2876, 1720, 1544, 1467, 1439, 1373, 1356, 1242, 

1168, 1105, 1082, 1069; HRMS–ESI (m/z) [M + H]+ calcd for C23H34N2O6SSi+, 495.19796; 

found 495.19705.  

Aldehyde 3.35: Rf 0.48 (2:1 hexanes:EtOAc); 1H NMR (500 MHz, CDCl3): δ 9.64 (s, 

1H), 8.04 (m, 1H), 7.69 (m, 3H), 5.45 (q, J = 6.9, 1H), 4.19 (app. q, J = 2.7, 1H), 4.13 (dt, J = 
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15.3, 2.4, 1H), 3.90 (d, J = 15.3, 1H), 3.85 (app. q, J = 3.5, 1H), 3.35 (app. q, J = 3.5, 1H), 3.02 

(dt, J = 12.7, 4.4, 1H), 2.41 (dt, J = 13.2, 3.1, 1H), 2.10 (ddd, J = 15.7, 13.0, 3.4, 1H), 1.85 (dd, J 

= 15.7, 4.8, 1H), 1.60 (dd, J = 6.9, 1.6, 3H), 1.56 (dt, J = 13.2, 3.6, 1H), 0.95 (t, J = 8.1, 9H), 

0.61 (q, J = 8.1, 6H); 13C NMR (125 MHz, CDCl3): δ 203.4, 148.1, 133.7, 133.0, 131.8, 131.3, 

130.7, 124.7, 122.5, 68.5, 53.3, 49.7, 48.7, 29.0, 28.8, 26.7, 13.2, 7.0, 4.7; IR (film): 2955, 2920, 

2876, 1723, 1543, 1459, 1440, 1369, 1243, 1164, 1127, 1099, 1067, 1045, 1006; HRMS–ESI 

(m/z) [M + H]+ calcd for C23H34N2O6SSi+, 495.19796; found 495.19642. 

 

 

Aldehyde 3.20 and Aldehyde 3.34. In a glovebox, a round-bottom flask was charged with 

tetrakis(triphenylphosphine)palladium [Pd(PPh3)4] (68.0 mg, 0.059 mmol) and zinc chloride 

(ZnCl2) (370 mg, 2.71 mmol). The flask was removed from the glovebox, placed under N2 

pressure, and THF (11 mL) was added. To this solution was added a solution of enal 3.18 (430 

mg, 1.17 mmol) in THF (11 mL). The resulting mixture was sparged with N2 for 10 min, at 

which point tributyltin hydride (Bu3SnH) (0.63 ml, 2.35 mmol) was added. After stirring for 12 

h, the reaction was quenched with a solution of saturated aqueous NH4Cl (30 mL). The resulting 

mixture was diluted with EtOAc (65 mL). The layers were separated and the aqueous layer was 

extracted with EtOAc (2 x 65 mL). The combined organic layers were washed with saturated 

aqueous NH4Cl (30 mL), dried over MgSO4, filtered and evaporated under reduced pressure. 

The resulting residue was purified via flash chromatography (1.5:1 hexanes:EtOAc � 1:1.5 

hexanes:EtOAc) to afford aldehyde 3.20 (0.341 g, 79% yield) as a yellow solid and aldehyde 
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3.34 (0.049 g, 0.13 mmol) as a colorless foam. The stereochemical assignment of 3.20 and 3.34 

were determined by analysis of 1H NMR coupling constants. Aldehyde 3.20: mp: 52–55 °C; Rf 

0.12 (1:1 hexanes:EtOAc); 1H NMR (500 MHz, CDCl3): �9.60 (s, 1H), 8.06–8.04 (m, 1H), 

7.73–7.68 (m, 2H), 7.77–7.64 (m, 1H), 5.46 (q, J = 6.8, 1H), 4.25 (br. s, 1H), 4.12 (dt, J = 15.3, 

2.0, 1H), 4.03–4.01 (m, 1H), 3.92 (d, J = 15.3, 1H), 3.41–3.39 (m, 1H), 3.04 (dt, J = 13.0, 4.6, 

1H), 2.41 (dt, J = 13.3, 3.0, 1H), 2.15 (ddd, J = 15.9, 13, 3.9, 1H), 1.97 (dd, J = 15.9, 4.6, 1H), 

1.87 (d, J = 3.4, 1H), 1.64 (dt, J = 13.3, 3.4, 1H), 1.61 (dd, J = 6.8, 2.0, 3H); 13C NMR (125 MHz, 

CDCl3): � 202.6, 147.9, 133.7, 132.7, 131.8, 131.1, 130.2, 124.5, 122.8, 67.9, 52.7, 49.7, 48.4 

28.8, 27.7, 26.8, 13.0; IR (film): 3432, 2924, 2851, 1720, 1542, 1371, 1164; HRMS–ESI (m/z) 

[M + H]+ calcd for C17H21N2O6S+, 381.11148; found 381.11309.  

Aldehyde 3.34. Rf 0.12 (1:1 hexanes:EtOAc); 1H NMR (500 MHz, CDCl3): δ 9.79 (s, 

1H), 8.01 (m, 1H), 7.71 (m, 2H), 7.61 (m, 1H), 5.53 (q, J = 6.9, 1H), 4.16 (t, J = 3.0, 1H), 4.11 

(d, J = 14.2, 1H), 3.88 (app. q, J = 3.4, 1H), 3.82 (d, J = 14.2, 1H), 3.35 (br. s, 1H), 2.45 (d, J = 

6.9, 1H), 2.37 (d, J = 4.1, 1H), 2.30 (ddd, J = 15.3, 6.9, 3.2, 1H), 2.16 (dt, J = 14.9, 2.9, 1H), 

2.13 (d, J = 15.3, 1H), 1.62 (d, J = 6.9, 3H), 1.55 (dt, J = 14.9, 3.8, 1H); 13C NMR (125 MHz, 

CDCl3): δ 203.7, 148.7, 134.0, 133.9, 131.7, 131.5, 131.3, 124.3, 122.4, 68.0, 53.8, 49.1, 48.6, 

27.2, 25.5, 20.5, 13.2; IR (film): 3516, 2926, 2854, 1716, 1542, 1467, 1440, 1373, 1352, 1165, 

1127, 1102, 1078, 1066; HRMS–ESI (m/z) [M + H]+ calcd for C17H21N2O6S+, 381.11148; found 

381.11041. 
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Vinyl Ketone 3.24. In a glovebox, a dram vial was charged with potassium tert-butoxide (125 

mg, 1.10 mmol). The vial was removed from the glovebox and placed under N2 pressure. To a 

suspension of methyltriphenylphosphonium bromide (417 mg, 1.16 mmol) in THF (2 mL) at 

0 °C was added a solution of the potassium tert-butoxide in THF (2 mL) dropwise over 1 min. 

The mixture was stirred at 0 C° for 30 min, at which point a solution of aldehyde 3.20 (200 mg, 

0.526 mmol) in THF (8 mL) was added dropwise over 1 min. After 10 min of stirring at 0 °C, the 

reaction was quenched with acetone (6 mL) and deionized water (6 mL). The resulting mixture 

was diluted with EtOAc (50 mL). The layers were separated and the aqueous layer was extracted 

with EtOAc (2 x 50 mL). The organic layers were combined and dried over MgSO4. Evaporation 

of the solvent under reduced pressure afforded vinyl alcohol 3.36, which was used in the 

subsequent step without further purification. 

 To a solution of crude vinyl alcohol 3.36 and sodium bicarbonate (420 mg, 4.96 mmol) in 

CH2Cl2 (5 mL) was added Dess–Martin Periodinane (631 mg, 1.49 mmol). After stirring for 1.5 

h, the reaction mixture was quenched with a solution of sat. aq. NaHCO3 (10 mL) and diluted 

with CH2Cl2 (65 mL). The layers were separated and the aqueous layer was extracted with 

CH2Cl2 (2 x 65 mL). The organic layers were combined, dried over MgSO4, and evaporated 

under reduced pressure. The resulting residue was purified via flash chromatography (1.5:1 

hexanes:EtOAc) to afford vinyl ketone 3.24 (159 mg, 80% yield, 2 steps) as a white solid. Vinyl 

ketone 3.24: mp: 159–161 °C; Rf 0.47 (1:1 hexanes:EtOAc); 1H NMR (500 MHz, CDCl3): 8.08–

8.06 (m, 1H), 7.76–7.68 (m, 2H), 7.64–7.62 (m, 1H), 5.75–5.66 (m, 2H), 5.07–5.02 (m, 2H), 

4.26–4.17 (m, 3H), 3.07 (q, J = 3.6, 1H), 2.78 (dd, J = 12.2, 6.4, 1H), 2.54 (dd, J = 15.7, 12.4, 

1H), 2.46 (dd, J = 15.7, 6.4, 1H), 2.20 (dt, J = 14.0, 3.6, 1H), 2.03 (dt, J = 14.0, 2.9, 1H), 1.63 

(dq, J = 6.9, 1, 3H); 13C NMR (125 MHz, CDCl3): δ 205.7, 148.1, 139.2, 134.1, 132.23, 132.20, 
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131.9, 130.2, 124.3, 124.0, 115.6, 58.7, 49.6, 46.6, 43.9, 33.6, 33.0, 13.5; IR (film): 2921, 2851, 

1721, 1633, 1542, 1370, 1166; HRMS–ESI (m/z) [M + H]+ calcd for C18H21N2O5S+, 377.1166; 

found 377.11588. 

 

 

Allyl–vinyl Ketone 3.25. In a glovebox, a dram vial was charged with LiHMDS (129 mg, 0.77 

mmol). The vial was removed from the glovebox, placed under N2 pressure, and THF was added 

(4 mL). To a solution of ketone 3.24 (288 mg, 0.77 mmol) in THF (4 mL) at –78 ºC was added 

the solution of LHMDS dropwise over 1 min. The resulting mixture was stirred for 20 min at –78 

ºC, at which point DMPU (2 mL) was added. After 15 min of additional stirring at –78 ºC, a 

solution of allyl iodide (210 μL, 2.30 mmol) in THF (3 mL) was added and the reaction was 

subsequently warmed to –45 ºC. Following 1 h, an additional solution of allyl iodide (210 μL, 

2.30 mmol) in THF (3 mL) was added at –45 ºC. Following 2 h, an additional solution of allyl 

iodide (210 μL, 2.30 mmol) in THF (3 mL) was added at –45 ºC.  After 1 further h, the reaction 

was quenched with a solution of sat. aq. NH4Cl (9 mL) and warmed to room temperature. The 

resulting mixture was poured into deionized water (6 mL) and diluted with EtOAc (75 mL). The 

layers were separated and the aqueous layer was extracted with EtOAc (2 x 75 mL). The organic 

layers were combined, dried over MgSO4, and evaporated under reduced pressure. The resulting 

residue was purified via flash chromatography (4:1 hexanes:EtOAc → 1:1.5 hexanes:EtOAc) to 

afford recovered vinyl–ketone 3.24 (88 mg, 31% yield) and allyl–vinyl ketone 3.25 (179 mg, 

56% yield) as a clear oil. Allyl–vinyl ketone 3.25: Rf 0.64 (1:1 hexanes:EtOAc); 1H NMR (500 
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MHz, CDCl3): 8.07–8.02 (m, 1H), 7.72–7.67 (m, 2H), 7.64–7.59 (m, 1H), 5.69 (q, J = 7.0, 1H) 

5.65–5.52 (m, 2H), 5.12–5.07 (m, 2H), 4.92–4.86 (m, 2H), 4.31 (dt, J = 15.1, 1.9, 1H), 4.26 (dt, J 

= 15.1, 1.2, 1H)  4.23 (dd, J = 4.0, 2.8, 1H), 3.05 (q, J = 3.4, 1H), 2.60 (ddd, J = 11.4, 7.1, 3.5, 

1H), 2.46 (ddd, J = 12.7, 9.3, 4.6, 1H), 2.26–2.18 (m, 2H), 2.16 (ddd, J = 13.9, 4.0, 3.1, 1H), 

2.00 (dt, J = 13.9, 3.1, 1H), 1.61 (dt, J = 7.0, 1.2, 3H); 13C NMR (125 MHz, CDCl3): δ 206.9, 

148.1, 138.8, 135.6, 134.0, 132.3, 132.1, 132.0, 130.4, 124.3, 123.9, 117.5, 116.8, 59.7, 52.4, 

50.5, 49.4, 34.1, 33.9, 30.9, 13.6; IR (film): 2922, 1718, 1542, 1358, 1166; HRMS–ESI (m/z) [M 

+ H]+ calcd for C21H25N2O5S+, 417.14787; found 417.14670. 

 

 

 

Cyclopentene 3.5. In a glovebox, a dram vial was charged with Hoveyda–Grubbs second 

generation catalyst (9.8 mg, 0.016 mmol). The vial was removed from the glovebox, placed 

under N2 pressure, and CH2Cl2 (1 mL) was added. A solution of allyl vinyl ketone 3.25 (93 mg, 

0.22 mmol) in CH2Cl2 (10 ml) was added to the solution of Hoveyda–Grubbs second generation 

catalyst. The resulting mixture was heated to 40 °C. After 24 h, the reaction was cooled to room 

temperature and directly purified by flash chromatography (1:5:1 hexanes:EtOAc) to afford 

cyclopentene 3.5 (69 mg, 80% yield) as a white solid. Cyclopentene 3.5: mp: 144–147 °C; Rf 

0.37 (1:1 hexanes:EtOAc); 1H NMR (500 MHz, CDCl3): 8.04–8.00 (m, 1H), 7.73–7.68 (m, 2H), 

7.66–7.64 (m, 1H), 5.83–5.81 (m, 1H), 5.77–5.73 (m, 2H), 4.41 (d, J = 15.0, 1H), 4.09 (ddd, J = 

15.0, 2.4, 1.2, 1H), 4.04 (dd, J = 4.1, 2.4, 1H), 3.53 (ddd, J = 17.5, 10.8, 6.8, 1H), 3.38 (br. s, 1H), 
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2.72–2.68 (m, 1H), 2.47–2.43 (m, 1H), 2.42–2.37 (m, 1H), 2.05–2.00 (m, 1H), 1.94 (dt, 14.3, 2.7, 

1H), 1.69 (dd, 7.1, 2.4, 3H); 13C NMR (125 MHz, CDCl3): δ 207.9, 148.0, 134.0, 132.5, 132.02, 

132.00, 131.9, 131.7, 131.5, 124.6, 124.3 61.0, 60.3, 50.5, 48.4, 34.9, 31.6, 29.0, 14.9; IR (film): 

2923, 2854, 1733, 1543, 373, 1166; HRMS–ESI (m/z) [M + H]+ calcd for C19H21N2O5S+, 

389.11657; found 389.11773. 

 

 

 

Indolenine 3.3. To a solution of cyclopentene 3.5 (6 mg, 0.015 mmol) in 1,2-dichloroethane (DCE) 

(0.40 mL) was added phenylhydrazine (3.4) (4.6 μL, 0.046 mmol), followed by trifluoroacetic acid (9.5 

μL, 0.124 mmol). The reaction was heated to 40 °C. After 2.5 h, the reaction was cooled to room 

temperature and quenched with a solution of sat. aq. NaHCO3 (10 mL). The resulting mixture was 

diluted with EtOAc (10 mL). The layers were separated and the aqueous layer was extracted with 

EtOAc (2 x 10 mL). The organic layers were combined, dried over MgSO4, and evaporated under 

reduced pressure. The resulting residue was purified by flash chromatography (2:1 hexanes:EtOAc → 

1:2 hexanes:EtOAc) to afford indolenine 3.3 (5.3 mg, 74% yield) as a brown solid. Indolenine 3.3: mp: 

98–101 °C; Rf 0.48 (3:1 EtOAc:hexanes); 1H NMR (500 MHz, CDCl3): δ 8.19–8.17 (m, 1H), 7.69–7.65 

(m, 2H), 7.62–7.60 (m, 2H), 7.36 (d, J = 7.5, 1H), 7.31 (dt, J = 7.6, 1.0, 1H), 7.13 (dt, J = 7.5, 1.0, 1H), 

6.05–6.03 (m, 1H), 5.96–5.94 (m, 1H), 5.62 (q, J = 6.2, 1H), 5.07 (dd, J = 4.4, 2.0, 1H), 4.29 (d, J = 15.2, 

1H), 4.09 (dt, J = 15.2, 2, 1H), 3.10 (dq, J = 17.0, 2.4, 1H), 3.02 (m, 2H), 2.48 (ddd, J = 14.0, 4.4, 3, 1H), 

2.17 (dd, J = 17.0, 2.4, 1H), 1.87 (dt, J = 14.0, 2.4, 1H), 1.61 (d, J = 6.2, 3H); 13C NMR (125 MHz, 
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CDCl3): δ 185.6, 152.8, 148.4, 148.3, 133.9, 132.7, 132.3 132.1, 131.8 (2 carbons), 131.7, 128.0, 126.2, 

124.2, 123.3, 120.89, 120.87, 62.2, 60.2, 54.7, 48.0, 40.7, 36.4, 31.6, 15.0; IR (film): 2920, 2851, 1544, 

1440, 1358, 1169; HRMS–ESI (m/z) [M + H]+ calcd for C25H24N3O4S+, 462.1482, found 462.14698. 

 

 

Carbonate 3.28. To a solution of cyclopentene 3.5 (27.2 mg, 0.070 mmol) in 16:1 acetone:H2O 

(0.58 mL) was added a solution of N-methylmorpholine-N-oxide (8.6 mg, 0.0073 mmol) in 

acetone (0.82 mL). The solution was cooled to 0 ºC. After stirring for 5 min, a solution of 

osmium tetroxide in water (45 μL of a 20 mg /1 mL solution, 0.0036 mmol) was added. The 

reaction was stirred at 0 ºC for one additional h before being warmed to room temperature. After 

4 h, the reaction mixture was poured into deionized water (10 mL) and brine (5 mL) and the 

resulting mixture was diluted with EtOAc (15 mL). The layers were separated and the aqueous 

layer was extracted with EtOAc (2 x 15 mL). The organic layers were combined and dried over 

MgSO4. Evaporation of the solvent under reduced pressure afforded diol 3.37, which was used in 

the subsequent step without further purification. 

To a solution of crude diol 3.37 (23 mg, 0.054 mmol) in CH2Cl2 (2.0 mL) and pyridine 

(0.20 mL) was added a solution of triphosgene (15.3 mg, 0.051 mmol) in CH2Cl2 (0.5 mL) 

dropwise. After stirring for 10 min, the volatiles were removed under reduced pressure and the 

resulting residue was purified by flash chromatography (1:1 hexanes:EtOAc → 100% EtOAc) to 

afford carbonate 3.28 (24.5 mg, 78% yield, 2 steps) as a brown solid. Carbonate 3.28: mp: 121–
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124 °C; Rf 0.23 (3:1 EtOAc:hexanes); 1H NMR (500 MHz, CDCl3): 8.06 (dd, J = 7.3, 2, 1H) 7.74 

(m, 2H), 7.68 (dd, J = 7.3, 2, 1H), 5.69 (q, J = 6.7, 1H), 5.11 (dd, J = 6, 3.6, 1H), 5.07 (t, J = 6.0, 

1H), 4.40 (dt, 15.5, 1.6, 1H), 4.25 (dd, J = 4.2, 2.4, 1H), 4.11 (dt, J = 15.5, 1.4, 1H), 3.41–3.38 

(m, 2H), 2.26 (ddd, J = 14.1, 4.2, 3, 1H), 2.13 (dd, J = 15.1, 5.8, 1H), 2.00 (m, 1H), 1.94 (dt, J = 

14.1, 3, 1H), 1.81 (dt, J = 14.0, 3.6, 1H), 1.73 (dt, J = 6.7, 1.4, 3H); 13C NMR (125 MHz, CDCl3): 

δ 205.3, 154.6, 148.1, 134.4, 132.3, 132.0, 131.5, 128.8, 125.1, 124.7, 81.3, 79.3, 59.9, 55.1, 

48.5, 46.1, 35.9, 31.6, 29.5, 13.6; IR (film): 2923, 2851, 1799, 1730, 1543, 1373, 1167; HRMS–

ESI (m/z) [M + H]+ calcd for C20H21N2O8S+, 449.10131, found 449.10056. 

 

 

Indolenine 3.29 and Indoline 3.30. To a solution of carbonate 3.28 (14.7 mg, 0.033 mmol) in 

1,2-dichloroethane (DCE) (1.1 mL) was added phenylhydrazine (3.4) (10 μL, 0.098 mmol), 

followed by trifluoroacetic acid (TFA) (20 μL, 0.26 mmol). The reaction was heated to 80 °C. 

After stirring for 2 h, the reaction mixture was cooled to room temperature and quenched with a 

solution of saturated aqueous NaHCO3 (15 mL). The resulting mixture was diluted with EtOAc 

(15 mL). The layers were separated and the aqueous layer was extracted with EtOAc (2 x 15 

mL). The combined organic layers were dried over MgSO4, filtered, and evaporated under 

reduced pressure. The resulting residue was purified via flash chromatography (2:1 

hexanes:EtOAc → 1:2 hexanes:EtOAc) to afford indolenine 3.29 and indoline 3.30 (12.0 mg, 

69% yield) as a red oil. Indolenine 3.29: Rf  0.39 (3:1 EtOAc:hexanes); 1H NMR (500 MHz, 
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C6D6): 7.85 (dd, J = 7.9, 1.3, 1H), 7.69 (d, J = 7.7, 1H), 7.09 (dt, J = 7.7, 1.0, 1H), 6.89 (dt, J = 

7.5, 1.0, 1H), 6.62 (dd, J = 7.9, 1.3, 1H), 6.57 (dt, J = 7.7, 1.3, 1H), 6.42 (dt, J = 7.7, 1.3, 1H), 

6.24 (d, J = 7.5, 1H), 5.43 (dd, J = 4.2, 2.7, 1H), 5.29 (q, J = 7.0, 1H), 4.61 (dt, J = 15.5, 2.4, 

1H), 4.38 (app. t, J = 8.8, 1H), 4.31–4.25 (m, 1H), 3.94 (dt, J = 15.5, 1.2, 1H), 2.78 (dd, J = 15.3 

5.9, 1H), 2.55 (quin, J = 3.1, 1H), 1.79 (ddd, J = 13.8, 4.2, 3, 1H), 1.72 (dd, J = 7.0, 1.2, 3H), 

1.53 (m, 2H), 1.31 (dt, J = 13.8, 3.1, 1H); 13C NMR (23 of 26 observed, 125 MHz, C6D6): δ 

183.0, 154.3, 153.8, 148.4, 146.5, 133.4, 132.4, 131.7, 130.8, 126.2, 123.9, 122.3, 120.9, 80.7, 

80.4, 61.8, 54.4, 53.4, 48.8, 38.5, 36.8, 28.2, 13.9; IR (film): 2923, 2851, 1802, 1543, 1373, 

1166; HRMS–ESI (m/z) [M + Na]+ calcd for C26H23N3O7SNa+, 544.1149; found 544.1160. 

Indoline 3.30: Rf  0.77 (3:1 EtOAc:hexanes); 1H NMR (500 MHz, C6D6): 7.71 (dd, J = 7.9, 

1.3, 1H), 7.06 (td, J = 7.6, 1.1, 1H), 6.68–6.61 (m, 3H), 6.45 (td, J = 7.7, 1.3, 1H), 6.38 (d, J = 

7.6, 1H), 6.1 (d, J = 7.5, 1H), 5.35 (q, J = 7.7, 1H), 4.39–4.34 (m, 3H), 4.23 (t, J =  3.1, 1H), 3.80 

(d, J = 15.4, 1H), 3.09 (s, br, 1H), 3.05 (s, br, J = 1H), 2.90 (dd, J = 16.0, 2.9, 1H), 2.49 (dd, J = 

3.5, 3.0, 1H), 2.17 (m, 1H), 1.91 (dt, J = 13.4, 3.1, 1H), 1.76 (dt, J = 13.4, 3.5, 1H), 1.55–1.53 

(m, 1H) 1.65 (dd, J = 7.7, 2.1, 3H); 13C NMR (500 MHz, C6D6): δ 154.7, 147.8, 145.1, 138.7, 

133.3, 133.2, 131.5, 131.2, 129.4, 129.1, 127.5, 124.1, 121.4, 119.5, 109.9, 94.2, 81.1, 80.3, 55.7, 

55.3, 53.7, 50.5, 37.1, 32.3, 27.2, 13.4; IR (film): 3475, 3359, 1803, 1731, 1599, 1542, 1372, 

1163; HRMS–ESI (m/z) [M + Na]+ calcd for C26H25N3O8SNa+, 562.1255; found 562.1262. 
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Aldehyde 3.27. To a solution of indolenine 3.29 (9.0 mg, 0.017 mmol) in THF (0.17 mL) was 

added an aqueous solution of NaOH (0.5 N, 0.17 mL). After vigorous stirring for 45 min, the 

reaction mixture was poured into deionized water (10 mL) and the resulting mixture was diluted 

with EtOAc (10 mL). The layers were separated and the aqueous layer was extracted with EtOAc 

(2 x 10 mL). The organic layers were combined and dried over MgSO4. Evaporation of the 

solvent under reduced pressure afforded diol 3.38, which was used in the subsequent step 

without further purification. 

To a solution of crude diol 3.38 in 1:1 THF:H2O (0.34 mL) was added NaIO4 (10.9 mg, 

0.051 mmol).  After stirring for 1.5 h, the reaction mixture was poured into deionized water (5 

mL) and brine (5 mL), and the resulting mixture was diluted with EtOAc (10 mL). The layers 

were separated and the aqueous layer was extracted with EtOAc (2 x 10 mL). The organic layers 

were combined and dried over MgSO4. The resulting residue was purified via flash 

chromatography (2:1 hexanes:EtOAc) to afford aldehyde 3.27 (7.1 mg, 81% yield) as an orange 

solid and as an inseparable mixture of diastereomers (2:1). These compounds were characterized 

as a mixture. Aldehyde 3.27: mp: 145–148 °C; Rf  0.50 (1.5:1 EtOAc:hexanes); 3.27(major): 1H 

NMR (500 MHz, C6D6): 9.27 (d, J = 0.6, 1H), 7.85 (dd, J = 8.0, 1.3, 1H), 7.23 (d, J = 7.4, 1H), 

6.96 (dd, J = 7.7, 1.2, 1H), 6.78–6.67 (m, 3H), 6.53 (dt, J = 7.7, 1.4, 1H), 6.30 (d, J = 7.7, 1H), 

5.30–5.24 (m, 1H), 4.96 (q, J = 7.0, 1H), 4.58 (app. s, 1H), 4.04 (s, 1H), 3.74 (app. d, 1H), 3.61 

(dt, J = 15.2, 2.2, 1H), 2.75 (d, J = 14.4, 1H), 2.68–2.65 (m, 1H), 2.35 (dd, J = 14.4, 5.6, 1H), 

1.96 (app. d, 1H), 1.89 (dt, J = 13.5, 3.8, 1H), 1.66 (d, J = 8.5, 1H), 1.63 (dt, J = 13.6, 2.9, 1H), 

1.16 (dd, J = 7.0, 1.7, 3H); 3.27(minor): 1H NMR (500 MHz, C6D6): 9.29 (d, J = 1.1, 1H),  7.78 

(dd, J = 8.0, 1.3, 1H), 7.02 (dd, J = 7.7, 1.2, 1H), 6.78–6.67 (m, 3H), 6.64 (dt, J = 7.7, 1.3, 1H), 

6.49 (dt, J = 7.7, 1.4, 1H), 6.35 (d, J = 7.7, 1H), 5.30–5.24 (m, 1H), 4.85 (q, J = 7.0, 1H), 4.58 
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(app. s, 1H), 4.15 (dt, J = 15.4, 2.3, 1H), 3.74 (app. d, 1H), 3.71 (d, J = 8.1, 1H), 3.52 (d, J = 

15.4, 1H), 3.03 (dd, J = 13.7, 4.9, 1H), 2.68–2.65 (m, 1H), 2.21 (dd, J = 13.7, 7.6, 1H), 2.00 (dd, 

J = 13.5, 3.8, 1H), 1.96 (app. d, 1H), 1.76 (dd, J = 13.7, 2.9, 1H), 1.14 (dd, J = 7.0, 1.6, 3H); 13C 

NMR (125 MHz, CDCl3): δ 201.1, 200.9, 148.1 (2 carbons), 145.8, 144.8, 136.7, 135.8, 133.8, 

133.6, 133.5, 133.0, 132.4, 132.0, 131.7, 131.5, 129.23 129.15, 129.12, 128.9, 125.3, 125.1, 

124.9, 124.6, 124.1, 123.8, 120.8, 120.5, 110.4, 110.1, 104.0, 101.2. 101.0, 99.0, 77.4, 77.2, 76.9, 

62.6, 61.8, 54.0, 53.8, 52.0, 51.3, 48.3, 48.2, 43.9, 43.8, 30.4, 30.1, 28.0 (2 carbons), 13.7, 13.6; 

IR (film): 3371, 2925, 2851, 1721, 1542, 1468, 1370, 1263, 1162; HRMS–ESI (m/z) [M + Na]+ 

calcd for C25H25N3O7SNa+, 534.1311; found 534.1324. 

 

 

Ester 3.32. To a solution of aldehyde 3.27 (5.2 mg, 0.010 mmol) in t-BuOH (0.39 mL) and 2-

methyl-2-butene (0.26 mL) at 0 °C was added a solution of sodium chlorite (5.1 mg, 0.056 

mmol) and monobasic sodium phosphate (7.9 mg, 0.066 mmol) in H2O (0.39 mL). The reaction 

was allowed to warm to room temperature while stirring. After vigorous stirring for 1 h, the 

reaction mixture was poured into deionized water (10 mL) and the resulting mixture was diluted 

with EtOAc (10 mL). The layers were separated and the aqueous layer was extracted with EtOAc 

(2 x 10 mL). The organic layers were combined and dried over MgSO4. Evaporation of the 

solvent under reduced pressure afforded acid 3.39, which was used in the subsequent step 

without further purification. 
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To a solution of crude acid 3.39 in 5:3 THF/MeOH (1.0 mL) was added 

trimethylsilyldiazomethane (20 µL of a 0.6 M solution in hexanes, 0.012 mmol). After stirring 

for 30 min, the reaction mixture was poured into deionized water (10 mL) and the resulting 

mixture was diluted with CH2Cl2 (10 mL). The layers were separated and the aqueous layer was 

extracted with CH2Cl2 (2 x 10 mL). The organic layers were combined and dried over MgSO4. 

The resulting residue was purified via flash chromatography (2:1 hexanes:EtOAc) to afford ester 

3.32 (3.2 mg, 58% yield) as a brown solid and as an inseparable mixture of diastereomers 

(1.5:1). These compounds were characterized as a mixture. Ester 3.32: mp: 78–82 °C; Rf  0.51 

(1.5:1 EtOAc:hexanes); 3.32(major): 1H NMR (26 of 27 observed, 500 MHz,  CDCl3): δ 8.11–

8.07 (m, 1H), 7.74–7.72 (m, 1H), 7.70–7.64 (m, 2H), 7.16–7.08 (m, 2H), 6.81 (dt, J = 7.5, 0.7, 

1H), 6.71 (d, J = 7.8, 1H), 5.55–5.46 (m, 1H), 5.29 (dd, J = 8.7, 5.5, 1H), 4.76 (s, 1H), 4.48–4.45 

(m, 1H), 3.92 (dt, J = 15.2. 2.1 1H), 3.85 (d, J = 15.2, 1H), 3.70 (s, 3H), 3.34–3.28 (m, 1H), 

3.07–3.00 (m, 1H), 2.79 (d, J = 4.5, 1H), 2.74 (d, J = 14.9, 1H), 2.23–2.13 (m, 1H), 2.11–2.08 

(app. t, J = 3.3, 1H), 1.56 (app. d, 3H); 3.32(minor): 1H NMR (26 of 27 observed, 500 MHz, 

CDCl3): δ 8.18–8.15 (m, 1H), 7.74–7.72 (m, 1H), 7.70–7.64 (m, 2H), 7.16–7.08 (m, 2H), 6.79 

(dt, J = 7.5, 0.7, 1H), 6.67 (d, J = 7.8, 1H), 5.55–5.46 (m, 1H), 5.17–5.12 (m, 1H), 4.59 (s, 1H), 

4.48–4.45 (m, 1H), 4.29 (dt, J = 14.9. 2.0, 1H), 3.68 (s, 3H), 3.34–3.28 (m, 1H), 3.07–3.00 (m, 

1H), 2.77 (d, J = 4.5, 1H), 2.54 (dd, J = 14.1, 7.8, 1H), 2.23–2.13 (m, 1H), 2.11–2.08 (app. t, J = 

3.3, 1H), 1.86 (d, J = 9.0, 1H), 1.56 (app. s, 3H); 13C NMR (125 MHz, CDCl3): δ 172.02, 171.97, 

148.2, 148.1, 145.9, 144.9, 136.8, 136.1, 133.8, 133.6, 133.5, 132.9, 132.6, 132.0, 131.69, 

131.67, 129.1, 128.94, 128.90, 128.84, 125.8, 125.4, 124.9, 124.5, 123.4, 123.1, 120.7, 120.4, 

110.7, 110.4, 103.9, 101.3, 101.1 99.0, 54.5, 54.1, 53.8, 52.7, 51.92, 51.89, 51.84, 48.2, 48.1, 

43.8, 43.7, 30.8, 30.5, 29.9, 29.8, 13.02, 12.99; IR (film): 3497, 3365, 2917, 2850, 1737, 1542, 
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1441, 1364, 1261, 1162; HRMS–ESI (m/z) [M + H]+ calcd for C26H28N3O8SH+, 542.15916; found 

542.15948. 

 

 

Picrinine (3.1). To a suspension of ester 3.32 (6.3 mg, 0.012 mmol) and cesium carbonate (11.4 

mg, 0.035 mmol) in MeCN (0.39 mL) was added SiliaMetS® Thiol (35.0 mg, 0.047 mmol). The 

reaction was heated to 65 °C. After 1 h, the reaction was cooled to room temperature, and 

directly purified by flash chromatography (30:1 EtOAc:MeOH → 9:1 IPA:CH2Cl2) to afford 

picrinine 3.1 (2.9 mg, 75% yield) as a white solid. Spectral data for 1H NMR for synthetic 3.1 

was consistent with literature reports36 and a natural sample of 3.1 obtained from Prof. T.-S. Kam 

(see comparison 1H NMR spectra). Spectral data for 13C NMR for synthetic 3.1 was consistent 

with literature reports.36 Picrinine (3.1): 1H NMR (500 MHz, CDCl3): δ 7.14 (d, J = 7.5, 1H), 

7.09 (dt, J = 7.7, 1.3, 1H), 6.79 (dt, J = 7.5, 1.0, 1H), 6.76 (d, J = 7.7, 1H), 5.40 (q, J = 7.0, 1H), 

4.82 (d, J = 2.6, 1H), 4.72 (s, 1H), 3.76 (dt, J = 17.6, 2.5, 1H), 3.65 (s, 3H), 3.59 (d, J = 4.9, 1H), 

3.42 (d, J  = 13.7, 1H) 3.28 (app. d, J = 2.8, 1H), 3.09 (d, J = 17.0, 1H), 2.44 (d, J = 3.5, 1H), 

2.26 (dd, J = 13.7, 2.6, 1H), 2.15 (ddd, J = 14.1, 4.9, 3.5, 1H), 1.86 (dd, J = 14.1, 2.8, 1H), 1.49 

(dd, J = 7.0, 2.5, 3H). 13C NMR (125 MHz, CDCl3): δ 172.6, 147.7, 136.4, 135.4, 128.1, 125.3, 

121.0, 120.5, 110.7, 106.4, 87.5, 52.1, 52.0, 51.6, 51.3, 46.5, 40.7, 31.2, 26.2, 12.9. 
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Figure A2.2 Infrared spectrum of compound 3.9. 

 
Figure A2.3 13C NMR (125 MHz, CDCl3) of compound 3.9. 
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Figure A2.5 Infrared spectrum of compound 3.8. 

 
Figure A2.6 13C NMR (125 MHz, CDCl3) of compound 3.8. 
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Figure A2.8 Infrared spectrum of compound 3.7. 

 
Figure A2.9 13C NMR (125 MHz, CDCl3) of compound 3.7. 



 149 

N
s
N

M
e

H

H

3.
11

O

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fi
gu

re
 A

2.
10

 1 H
 N

M
R

 (5
00

 M
H

z,
 C

D
C

l 3)
 o

f c
om

po
un

d 
3.
11

. 
 



 150 

4000.0 3600 3200 2800 2400 2000 1800 1600 1400 1200 1000.0
50.2

52

54

56

58

60

62

64

66

68

70

72

74

76

78

80

82

84

86

88

90

92

94

96

98

99.9

cm-1

%T 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

Figure A2.11 Infrared spectrum of compound 3.11. 

 
Figure A2.12 13C NMR (125 MHz, CDCl3) of compound 3.11. 
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Figure A2.14 Infrared spectrum of compound 3.12. 

 
Figure A2.15 13C NMR (125 MHz, CDCl3) of compound 3.12. 
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Figure A2.17 Infrared spectrum of compound 3.14. 

 
Figure A2.18 13C NMR (125 MHz, CDCl3) of compound 3.14. 
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Figure A2.20 Infrared spectrum of compound 3.15. 

 
Figure A2.21 13C NMR (125 MHz, CDCl3) of compound 3.15. 
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Figure A2.23 Infrared spectrum of compound 3.16. 

 
Figure A2.24 13C NMR (125 MHz, CDCl3) of compound 3.16. 
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Figure A2.26 Infrared spectrum of compound 3.18. 

 
Figure A2.27 13C NMR (125 MHz, CDCl3) of compound 3.18. 
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Figure A2.29 Infrared spectrum of compound 3.21. 

 
Figure A2.30 13C NMR (125 MHz, CDCl3) of compound 3.21. 
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Figure A2.32 Infrared spectrum of compound 3.23. 

 
Figure A2.33 13C NMR (125 MHz, CDCl3) of compound 3.23. 
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Figure A2.35 Infrared spectrum of compound 3.35. 

 
Figure A2.36 13C NMR (125 MHz, CDCl3) of compound 3.35. 
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Figure A2.38 Infrared spectrum of compound 3.20. 

 
Figure A2.39 13C NMR (125 MHz, CDCl3) of compound 3.20. 
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Figure A2.41 Infrared spectrum of compound 3.34. 

 
Figure A2.42 13C NMR (125 MHz, CDCl3) of compound 3.34. 
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Figure A2.44 Infrared spectrum of compound 3.24. 

 
Figure A2.45 13C NMR (125 MHz, CDCl3) of compound 3.24. 
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Figure A2.47 Infrared spectrum of compound 3.25. 

 
Figure A2.48 13C NMR (125 MHz, CDCl3) of compound 3.25. 
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Figure A2.50 Infrared spectrum of compound 3.5. 

 
Figure A2.51 13C NMR (125 MHz, CDCl3) of compound 3.5. 
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Figure A2.53 Infrared spectrum of compound 3.3. 

 
Figure A2.54 13C NMR (125 MHz, CDCl3) of compound 3.3. 
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Figure A2.56 Infrared spectrum of compound 3.28. 

 
Figure A2.57 13C NMR (125 MHz, CDCl3) of compound 3.28. 
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Figure A2.59 Infrared spectrum of compound 3.29. 

 
Figure A2.60 13C NMR (125 MHz, CDCl3) of compound 3.29. 
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Figure A2.62 Infrared spectrum of compound 3.30. 

 
Figure A2.63 13C NMR (125 MHz, CDCl3) of compound 3.30. 



 185 

3.
27

H
N

O
N

M
e

H
C
H
O

H

Ns
HO

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

 

Fi
gu

re
 A

2.
64

 1 H
 N

M
R

 (5
00

 M
H

z,
 C

D
C

l 3)
 o

f c
om

po
un

d 
3.
27

. 
 



 186 

4000.0 3600 3200 2800 2400 2000 1800 1600 1400 1200 1000.0
82.6

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

99.6

cm-1

%T 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

Figure A2.65 Infrared spectrum of compound 3.27. 

 
Figure A2.66 13C NMR (125 MHz, CDCl3) of compound 3.27. 
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Figure A2.68 Infrared spectrum of compound 3.32. 

 
Figure A2.69 13C NMR (125 MHz, CDCl3) of compound 3.32. 
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Figure A2.71 13C NMR (125 MHz, CDCl3) of compound 3.1. 
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CHAPTER FOUR 

 

Unified and Enantioselective Approach to the Akuammiline Alkaloids 

 

4.1 Abstract 

 

The akuammiline alkaloids are a family of natural products with a rich diversity of 

structural features. Although there have been many synthetic efforts toward the akuammilines, a 

central approach to their construction that hinges on synthetic divergence has not been disclosed.  

This chapter describes initial studies towards the development of a unified route to access the 

various akuammiline scaffolds. A key component of the approach is the use of the interrupted 

Fischer indolization as a fulcrum for overall synthetic unity. Additionally, an asymmetric route 

to the key [3.3.1]-azabicyclic akuammiline alkaloid core is demonstrated, which constitutes a 

formal enantioselective synthesis of several alkaloids.  

 

4.2 Introduction 

 

Akuammiline alkaloids, although intricate in their diverse structures, share a unifying 

biosynthetic origin (see Chapter 1).1 Most members vary in their functionality or oxidation state 

at C5 (Figure 1), which is hypothesized to emerge late in their divergent biosynthetic pathway(s). 

Largely inspired by this phenomenon, we undertook the challenge of creating a parallel synthetic 

strategy that would serve as a platform to access several akuammiline scaffolds from a common 

intermediate.2 Additionally, we were interested in rendering our synthetic approach asymmetric 
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in order to access these alkaloids in enantioenriched form. In this Chapter, an initial synthetic 

foray into a divergent strategy to the akuammiline alkaloids is described, along with a successful 

asymmetric route to the [3.3.1]-azabicyclic akuammiline framework.  

 

4.3 Unified Route to the Akuammiline Alkaloids  

 

The retrosynthetic analysis for our unified and divergent approach is depicted in Figure 1. 

It was envisioned that picrinine (4.1), aspidophylline A (4.2), and strictamine (4.3) could all be 

accessed from tricyclic lactone 4.4 through slightly differing pathways. First, picrinine (4.1) 

would arise from a Fischer indolization of lactone 4.4 and subsequent late-stage C5 oxidation.  

An interrupted Fischer indolization utilizing lactone 4.4 would allow access to the framework of 

aspidophylline A (4.2), and strictamine (4.3) would result from a strategic late-stage alkylation 

event at C5 to forge its methanoquinolizidine scaffold.3 Lactone 4.4, the lynchpin intermediate 

for the divergent synthetic pathways, would be derived from enal 4.5 through a radical 

cyclization and lactonization strategy. Enal 4.5 would serve as a starting point for this endeavor, 

as it had been accessed in multigram scale in our successful synthesis of picrinine (4.1) (vide 

supra).4 
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Figure 4.1 Unified retrosynthetic strategy of akuammilines 4.1–4.3. 

 

 

As a first goal, we aimed to access lactone 4.4 from enal 4.5, and subsequently achieve a 

second-generation total synthesis of aspidophylline A (Scheme 1).  Initial transformation of 4.5 
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borohydride. Heating diol 4.9 in the presence of p-toluenesulfonic acid catalyzed lactone 

formation, and subsequent oxidation of the secondary alcohol gave the desired lactone 4.4, the 

desired Fischer indolization substrate, in modest yield over 2 steps. Lactone 4.4 was then 

elaborated by my coworker Jesus Moreno to aspidophylline A (4.2), in a similar fashion to our 

laboratory’s previously reported route.3,6  

This synthetic route to lactone 4.4 provides a scalable entryway to the akuammiline 

alkaloids through the divergent synthetic approach described above. Moreover, this effort 

marked a second-generation synthetic route to aspidophylline A (4.2), which proceeds in 16 

steps from readily available starting materials. 

 

Scheme 4.1 Synthesis of lactone 4.4 from enal 4.5 and elaboration to aspidophylline A (4.2). 
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4.4 Enantioselective Approach to the Akuammiline Alkaloids 

 

As outlined above, in addition to developing a divergent approach to the akuammiline 

alkaloids, we were interested in rendering our strategy asymmetric. This goal would entail 

modification of the synthetic strategy at the beginning of the synthesis. To this end, we targeted 

bicyclic enone 4.10, an important intermediate from our racemic synthesis of picrinine (4.1), as 

our target for enantioselective synthesis (Scheme 4.2).4 Retrosynthetically, we envisioned a few 

strategic avenues by which to efficiently construct 4.10 in enantioenriched form.  First, we 

envisioned the possibility of accessing the desired [3.3.1]-azabicycle through a Pd-enolate 

cyclization of enol ether 4.11.7  Enol ether 4.11 could theoretically be accessed through a 

desymmetrization of ketone 4.12 with a chiral lithium amide base (Strategy One, Scheme 4.2).8  

Two other strategies both hinged on a successful gold (I)-catalyzed cyclization of alkyne 4.13 to 

access enone 4.10.9 , 10 Strategy Two (see Scheme 4.2) would employ functionalization of 

cyclohexenone 4.14, which can be accessed by a number of established synthetic strategies.11 

Finally, strategy three would utilize a modification of an established Pd-catalyzed 

desymmetrization of dibenzoate 4.15.11a,12 Scouting experiments for each route led us to focus on 

Strategy Three, which held the most promise for providing 4.10 directly and in enantioselective 

form.      
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Scheme 4.2 Three approaches to the enantioselective synthesis of enone 4.10. 

 

  

The asymmetric synthesis of enone 4.10 is shown in Scheme 4.3. Dibenzoate 4.15, which 

is readily available following a procedure by Trost, was treated with sulfonamide 4.1613  in the 

presence of a catalytic amount of allylpalladium(II) chloride dimer, (R, R)-DACH-phenyl Trost 

ligand, and cesium carbonate in CH2Cl2 to afford allylic benzoate 4.17.11a The crude product was 

subjected to benzoate cleavage, resulting in the formation of allylic alcohol 4.18 in 86% yield 

over the two operations. Alcohol 4.18 was oxidized with PCC in excellent yield to deliver ketone 

4.13. Exposure of ketone 4.13 to TBDPSOTf and 2,6-lutidine at low temperature afforded the 

cross-conjugated silyl enol ether 4.19 in 76% yield. With 4.19 in hand, we were poised to 

attempt the key gold (I)-catalyzed cyclization.  Upon treatment of 4.19 with 10 mol % 

(PPh3)AuCl and 15 mol % AgOTf in a 10:1 mixture of toluene and t-BuOH, cyclization occurred 

to deliver enone 4.10 in 50% yield.10 Analysis of the product by chiral supercritical fluid 

chromatography showed that enone 4.10 had been synthesized in 97% ee. Accordingly, this 

effort constitutes formal enantioselective total synthesis of aspidophylline A (4.2) and picrinine 

(4.1). 
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Scheme 4.3 Asymmetric synthesis of enone 4.10. 

 

 

4.5 Conclusion 

 

We have developed a unified, divergent approach to the akuammilines, which rests on the 

ability to efficiently access lactone 4.4. The route to 4.4, which begins from enal 4.5, is eight 

steps, scalable, and relies on a Ueno–Stork radical cyclization. The synthesis of 4.4 also 

permitted a second generation synthesis of aspidophylline A (4.2). In addition, we have 

developed an asymmetric route to azabicyclic core of the akuammilines.  Our strategy relies on a 

Trost-type desymmetrization reaction, followed by a gold-mediated cyclization, to construct the 

enone 4.10. The successful enantioselective synthesis of enone 4.10 comprises a formal 

enantioselective synthesis of picrinine (4.1) and aspidophylline A (4.2).  Both of these natural 

products have not been accessed enantioselectively previously, and this strategy provides a 

framework for the successful elaboration of the enantioenriched enone 4.10 to either natural 

product. The asymmetric synthesis of 4.10, coupled with the divergent synthetic strategy outline 
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above, is expected to provide a unified and asymmetric entryway to the akuammiline family of 

monoterpenoid indole alkaloids.     

 

4.6 Experimental Section 

4.6.1 Materials and Methods 

 

Unless stated otherwise, the reactions reported were carried out in flame–dried glassware 

under an atmosphere of nitrogen. The solvents were either freshly distilled or passed through 

activated alumina columns. Commercially available reagents were used as received unless 

otherwise specified. Sodium chlorite, 2-methyl-2-butene, 2,6-lutidine, (R,R)-DACH-phenyl Trost 

Ligand, pyridinium chlorochromate, and tributyltin hydride were obtained from Sigma-Aldrich. 

Cesium carbonate and lithium hydroxide monohydrate were obtained from Alfa–Aesar. 

Trimethylsilyldiazomethane and tert-butyldiphenylsilyl triflate were obtained from TCI. 

Chlorotriphenylphosphinegold (I), silver (I) triflate, and palladium allyl chloride dimer were 

purchased from Strem. N-Iodosuccimide was purchased from Sigma-Aldrich and recrystallized 

from 1,4-dioxane. Unless stated otherwise, reactions were performed at room temperature 

(approximately 23 °C). Thin-layer chromatography (TLC) was conducted with EMD gel 60 

F254 pre-coated plates (0.25 mm) and visualized using a combination of UV, anisaldehyde, and 

iodine staining. SiliCycle silica gel 60 (particle size 0.040–0.063 mm) was used for flash column 

chromatography. 1H NMR spectra were recorded on Bruker spectrometers (300 and 500 MHz). 

Data for 1H spectra are reported as follows: chemical shift (δ ppm), multiplicity, coupling 

constant (Hz), integration and are reference to the residual solvent peak 7.26 ppm for CDCl3 and 

7.16 ppm for C6D6. 13C NMR spectra are reported in terms of chemical shift (at 125 MHz) and 
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are reference to the residual solvent peak 77.16 for CDCl3 and 128.06 for C6D6. IR spectra were 

recorded on a Perkin Elmer 100 spectrometer and are reported in terms of frequency absorption 

(cm-1). Uncorrected melting points were measured using a Mel-Temp II melting point apparatus 

with a Fluke 50S thermocouple and a Digimelt MPA 160 melting point apparatus. High-

resolution mass spectra were obtained on Thermo Scientific™ Exactive Mass Spectrometer with 

DART ID-CUBE. Determination of enantiopurity was carried out on a Mettler Toledo SFC 

(supercritical fluid chromatography) using a Daicel ChiralPak OD-H column. 

 

4.6.2. Experimental Procedures 

4.6.2.1 Synthesis of Lactone 4.4 

 

 

Enoate 4.6. To a solution of known enal 4.5 (0.400 g, 1.06 mmol) in t-BuOH (40.6 mL) and 2-

methyl-2-butene (24.36 mL) at 0 °C was added a solution of sodium chlorite (524 mg, 5.81 

mmol) and monobasic sodium phosphate (0.820 g, 6.86 mmol) in H2O (40.6 mL). The reaction 

was allowed to warm to room temperature while stirring. After 12 h, the reaction mixture was 

poured into water (150 mL) and the resulting mixture was diluted with EtOAc (150 mL). The 

layers were separated and the aqueous layer was extracted with EtOAc (2 x 100 mL). The 

organic layers were combined and dried over MgSO4. Evaporation of the solvent under reduced 

pressure afforded the corresponding acid, which was used in the subsequent step without further 

purification. 
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To a solution of crude acid in 5:3 THF:MeOH (106 mL) was added 

trimethylsilyldiazomethane (0.64 mL, 2.0 M solution in hexanes). After stirring for 1 h, the 

reaction mixture was poured into water (150 mL) and the resulting mixture was diluted with 

CH2Cl2 (150 mL). The layers were separated and the aqueous layer was extracted with CH2Cl2 (2 

x 100 mL). The organic layers were combined and dried over MgSO4 then concentrated under 

reduced pressure. The resulting residue was purified via flash chromatography (2:1 

hexanes:EtOAc) to afford enoate 4.6 (0.388 g, 85% yield) as a yellow oil. Enoate 4.6: Rf  0.56 

(3:7 hexanes:EtOAc); 1H NMR (500 MHz, CDCl3): δ 8.04 (m, 1H), 7.74–7.63 (m, 3H), 7.05 (dd, 

J = 4.1, 1.2, 1H), 5.48 (q, J = 6.9, 1H), 4.24 (d, J = 4.2, 1H), 4.17 (br s, 1H), 3.93 (t, J = 3.0, 1H), 

3.85 (d, J = 14.1, 1H), 3.74 (s, 3H), 3.67 (dt, J = 14.1, 1.9, 1H), 1.96 (dt, J = 13.0, 3.1, 1H), 1.76 

(dd, J = 6.9, 1.9, 1H), 1.74 (dt, J = 13.0, 3.0, 1H); ); 13C NMR (125 MHz, CDCl3): δ 166.0, 

147.8, 137.9, 134.2, 133.7, 133.3, 132.0, 130.9, 130.0, 124.4, 123.0, 67.1, 54.2, 52.0, 47.1, 29.5, 

27.1, 12.7; IR (film): 3485, 1954, 1716, 1543, 1371, 1163 cm-1; HRMS–ESI (m/z) [M + H]+ calc 

for C18H21N2O7S+, 409.10640, found 409.10491. 

 

 

 

Acetal 4.7. To a solution of enoate 4.6 (0.503 g, 1.23 mmol) in CH2Cl2 (3.4 mL) at –20 °C was 

added NIS (1.66 g, 7.39 mmol). Ethyl vinyl ether (0.94 mL, 9.85 mmol) was then added 

dropwise over 2 min at –20 °C. The reaction was stirred at –20 °C for 2.5 h and then was 

quenched with sat. aq. sodium thiosulfate (150 mL). The resulting mixture was diluted with 
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CH2Cl2 (150 mL) and the layers were separated. The aqueous layer was extracted with CH2Cl2 (2 

x 100 mL) and the organic layers were combined and dried over MgSO4. Evaporation of the 

solvent under reduced pressure afforded the corresponding acetal 4.7 (0.596 g, 80% yield) as an 

inseparable mixture of diastereomers. Acetal 4.7 (diastereomer 1): mp: 88–92 °C as a mixture; Rf 

0.73 (1:1 hexanes:EtOAc); 1H NMR (500 MHz, CDCl3): δ 8.09 (m, 1H), 7.74–7.64 (m, 3H), 

7.07 (dd, J = 4.3, 1.2 1H), 5.47 (m, 1H), 4.83 (dd, J = 6.6, 4.2, 1H), 4.27 (m, 2H), 3.92 (t, J = 3.0, 

1H), 3.80 (d, J = 14.2, 1H), 3.75 (d, J = 14.2, 1H), 3.73 (s, 3H), 3.70 (m, 1H), 3.62 (m, 1H), 

3.25–3.20 (m, 2H), 1.94 (dt, J = 13.0, 3.1, 1H), 1.75 (dd, J = 6.9, 1.6, 3H), 1.70 (m, 1H), 1.24 (t, 

J = 7.0, 3H); (diastereomer 2) 1H NMR (500 MHz, CDCl3): δ δ 8.07 (m, 1H), 7.74–7.64 (m, 

3H), 7.05 (dd, J = 4.3, 1.2 1H), 5.45 (m, 1H), 4.80 (t, J = 6.8, 1H), 4.22 (m, 2H), 3.90 (t, J = 3.0, 

1H), 3.80 (d, J = 14.2, 1H), 3.75 (d, J = 14.2, 1H), 3.72 (s, 3H), 3.68 (m, 1H), 3.56 (m, 1H), 

3.24–3.16 (m, 2H), 1.94 (dt, J = 13.0, 3.1, 1H), 1.73 (dd, J = 6.9, 1.6, 3H), 1.67 (m, 1H), 1.23 (t, 

J = 7.0, 3H); 13C NMR (42 of 44 observed, 125 MHz, CDCl3): δ 166.0, 165.9, 147.8, 136.9, 

136.5, 134.5, 134.3, 133.9, 133.8, 133.3, 133.2, 132.1, 132.0, 131.1, 131.0, 130.1, 130.0, 124.7, 

124.6, 123.0, 122.9, 102.1, 101.8, 71.7, 71.4, 62.8, 62.7, 52.2, 52.1, 51.3, 47.2, 47.1, 29.4, 29.3, 

27.3, 27.2, 15.4, 15.0, 12.81, 12.80, 5.8, 5.7; IR (film) as a mixture: 2976, 1717, 1516, 1438, 

1369, 1342, 1250, 1162, 1126, 1090, 1021; HRMS–ESI (m/z) [M + H]+ calcd for C22H25N2O8SI+, 

607.06056, found, 607.05525. 
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Tricycles 4.8 and 4.8b. To a solution of acetal 4.7 (0.452 g, 0.74 mmol) in toluene (3.7 mL) was 

added a solution of AIBN (0.020 g, 0.12 mmol) and n-Bu3SnH (0.13 mL, 0.50 mmol) in toluene 

(1.2 mL) at 0 °C. The mixture was heated to 75 °C. After 1 h, a second identical solution of 

AIBN and n-Bu3SnH in toluene was added. After a 2 h, a third identical solution of AIBN and n-

Bu3SnH in toluene was added. After 3 h, the resulting yellow solution was cooled to rt, 

concentrated under reduced pressure, and purified via flash chromatography (3:20 

benzene:EtOAc) to afford tricycle 4.8a and 4.8b as a mixture of diastereomers (266 mg, 75% 

yield, 1:1 dr) as a white solid. Tricycle 4.8a: mp: 88–92 °C; Rf 0.38 (9:1 benzene:EtOAc); 1H 

NMR (500 MHz, CDCl3): δ 8.08 (m, 1H), 7.71–7.63 (m, 3H), 5.48 (q, J = 6.8, 1H), 5.05 (d, J = 

5.8, 1H), 5.25 (app q, J = 3.1, 1H), 4.09 (ddd, J = 5.9, 2.4, 1.2, 1H), 4.05 (d, J = 15.1, 1H), 3.93 

(dt, J = 15.1, 2.1, 1H), 3.73 (m, 1H), 3.64 (s, 3H), 3.41 (m, 1H), 3.32 (m, 2H), 2.89 (m, 1H), 2.22 

(ddd, J = 13.4, 7.1, 6.0, 1H), 2.11 (dt, J = 13.2, 2.7, 1H), 1.77 (d, J = 13.7, 1H), 1.66 (ddt, J = 

13.4, 3.4, 1.5, 1H), 1.55 (dd, J = 6.9, 2.1, 3H), 1.19 (t, J = 7.1, 3H); 13C NMR (125 MHz, 

CDCl3): δ 173.9, 147.8, 133.6, 133.5, 131.8, 131.0, 130.7, 124.5, 123.3, 103.1, 79.9, 63.3, 51.6, 

50.4, 49.9, 47.2, 40.4, 35.4, 31.1, 29.7, 27.3, 15.3, 12.3; IR (film): 2919, 1732, 1543, 1439, 1373, 

1196 cm-1; HRMS–ESI (m/z) [M + H]+ calcd for C22H29N2O8S+, 481.16391, found 481.16224. 

Tricycle 4.8b: mp: 88–92 °C; Rf 0.28 (9:1 benzene:EtOAc); 1H NMR (500 MHz, CDCl3): δ 8.07 

(m, 1H), 7.72–7.63 (m, 3H), 5.49 (q, J = 7.0, 1H), 5.13 (dd, J = 5.7, 4.0, 1H), 4.34 (app q, J = 

3.0, 1H), 4.10 (m, 1H), 4.13–4.05 (m, 2H), 4.03 (dt, J = 15.2, 2.1, 1H), 3.74 (ddd, J = 16.6, 9.5, 

7.1, 1H), 3.65 (s, 3H), 3.43 (ddd, J = 16.6, 9.5, 7.1, 1H), 3.26 (app q, J = 3.4, 1H), 2.89 (ddd, J = 

11.6, 7.6, 5.0, 1H), 2.48 (dd, J = 11.6, 4.3, 1H), 2.10 (ddd, J = 14.2, 7.5, 4.0, 1H), 2.06 (dt, J = 

13.3, 2.9, 1H), 1.86 (dd, J = 14.2, 5.9, 1H), 1.64 (dt, J = 13.3, 3.6, 1H), 1.52 (dd, J = 6.9, 1.8, 

3H), 1.17 (t, J = 7.1, 3H); 13C NMR (125 MHz, CDCl3): δ 173.3, 147.8, 133.5, 133.4, 131.7, 
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131.0, 130.1, 124.4, 123.5, 102.1, 75.9, 63.6, 51.8, 49.8, 49.5, 49.3, 41.3, 36.9, 31.5 , 28.0, 15.2, 

12.3; IR (film): 2922, 1733, 1544, 1439, 1373 cm-1; HRMS–ESI (m/z) [M + H]+ calcd for 

C22H29N2O8S+, 481.16, found 481.16224. 

 

 

Diol 4.9. To a solution of tricycles 4.8a and 4.8b (0.331 g, 0.69 mmol) in THF (4.6 mL) and H2O 

(4.6 mL) at 23 °C was added AcOH (13.7 mL, 240.8 mmol). The reaction vessel was heated to 

75 °C for 12 h. After cooling to 23 °C the reaction was quenched with sat. aq. sodium 

bicarbonate (150 mL). The resulting mixture was diluted with EtOAc (150 mL) and the layers 

were separated. The aqueous layer was extracted with EtOAc (2 x 100 mL) and the organic 

layers were combined and dried over MgSO4. Evaporation of the solvent under reduced pressure 

afforded the corresponding lactol, which was used in the subsequent step without further 

purification. 

To a solution of the crude lactol (194 mg, 0.428 mmol) in MeOH (8.56 mL) at 0 °C was 

added NaBH4 (32.4 mg, 0.86 mmol). The mixture was stirred at 0 °C for 1.5 h, diluted with 

EtOAc (100 mL) and then poured into H2O (100 mL). The layers were separated and the aqueous 

layer was extracted with EtOAc (2 x 100 mL). The organic layers were combined, dried over 

MgSO4, and concentrated under reduced pressure. The crude mixture was purified via flash 

chromatography (1:1 hexanes:EtOAc) to afford diol 4.9 (0.188 g, 60% yield over two steps) as a 

white solid. Diol 4.9: mp: 151–154 °C; Rf 0.18 (1:1 benzene:EtOAc); 1H NMR (500 MHz, 

CDCl3): δ 8.05 (m, 1H), 7.72–7.63 (m, 3H), 5.44 (q, J = 6.9, 1H), 4.26 (dt, J = 15.2, 2.4, 1H), 
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4.19 (t, J = 3.7, 1H), 4.70 (app q, J = 3.4, 1H), 3.97 (d, J = 15.2, 1H), 3.76 (m, 2H), 3.62 (s, 3H), 

3.40 (br s, 1H), 3.20 (app q, J = 3.4, 1H), 2.80 (dd, J = 12.1, 4.5, 1H), 2.38 (m, 1H), 2.31 (dt, J = 

13.4, 3.2, 1H), 2.03 (br s, 1H), 1.67 (m, 2H), 1.55–1.48 (m, 3H); 13C NMR (125 MHz, CDCl3): δ 

173.9, 148.0, 133.6, 132.9, 131.8, 131.1, 130.9, 124.4, 122.2, 69.0, 61.0, 52.9, 51.6, 49.8, 47.3, 

36.7, 32.6, 31.8, 29.7, 26.4, 12.3; IR (film): 3397, 2951, 1728, 1542, 1162, 1128 cm-1; HRMS–

ESI (m/z) [M + H]+ calcd for C20H27N2O8S+, 455.14826; found 455.14845. 

  

 

Lactone 4.4. To a solution of diol 4.9 (153 mg, 0.337 mmol) in benzene (17 mL) was added p-

TsOH (16.0 mg, 0.084 mmol). The resulting mixture was placed into a preheated heating block 

at 80 °C for 1 h. After cooling to 23 °C, the reaction was diluted with EtOAc (100 mL) and then 

poured into H2O (100 mL). The layers were separated and the aqueous layer was extracted with 

EtOAc (2 x 100 mL). The organic layers were combined and dried over MgSO4 then 

concentrated under reduced pressure to afford the corresponding lactone, which was used 

subsequently without further purification. 

To a solution of the crude lactone (0.337 mmol) in CH2Cl2 (3.5 mL) was added Dess–

Martin periodinane (0.400 g, 0.944 mmol). The resulting mixture was heated to 40 °C. After 12 

h, the reaction was cooled to room temperature and quenched with a 1:1 mixture of sat. aq. 

sodium thiosulfate (10 mL) and sat. aq. sodium bicarbonate (10 mL). The mixture was stirred at 

for 5 min and then suspended in H2O (50 mL). The resulting mixture was diluted with CH2Cl2 

(50 mL) and the layers were separated. The aqueous layer was extracted with CH2Cl2 (2 x 50 
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mL) and the organic layers were combined, dried over MgSO4, and concentrated under reduced 

pressure. The crude mixture was purified via flash chromatography (3:2 benzene:EtOAc) to 

afford lactone 4.4 (0.071 g, 50% yield over two steps) as a yellow oil. Lactone 4.4: Rf  0.49 (3:7 

hexanes:EtOAc); 1H NMR (500 MHz, CDCl3): δ 8.09 (m, 1H), 7.77–7.66 (m, 3H), 5.72 (q, J = 

7.0, 1H), 4.43 (ddd, J = 11.6, 6.0, 3.8, 1H), 4.39–4.27 (m, 3H), 4.19 (d, J = 15.2, 1H), 3.66 (q, J 

= 3.2, 1H), 3.14 (ddd, J = 14.4, 10.4, 4.4, 1H), 2.67 (dd, J = 13.9, 3.5, 1H), 2.19 (m, 2H), 2.07–

1.98 (m, 2H), 1.83 (dd, J = 7.0, 1.4, 3H); 13C NMR (125 MHz, CDCl3): δ 203.2, 168.8, 147.9, 

134.3, 132.1, 132.0, 131.7, 127.9, 127.0, 124.6, 68.0, 58.6, 50.6, 49.8, 45.2, 34.2, 28.7, 22.7, 

13.5; IR (film): 2917, 1725, 1542, 1370, 1167, 1072; HRMS–ESI (m/z) [M + H]+ calcd for 

C19H20N2O7S+, 421.10640; found 421.10445. 

  

4.6.2.2 Enantioselective Synthesis of Azabicycle 4.10 

 

Alcohol 4.18. To a solution of [Pd(C3H5)Cl]2 (0.028 g, .078 mmol), (R, R)-DACH-phenyl Trost 

ligand (0.161 g, 0.23 mmol), and Cs2CO3 (1.160 g, 3.57 mmol) in CH2Cl2 (5.5 mL) was added a 

solution of dibenzoate 4.1511a (1.00 g, 3.10 mmol) and sulfonamide 4.1613 (0.910 g, 3.57 mmol) 

in CH2Cl2 (10 mL) at room temperature. After stirring for 30 min, the reaction was poured into a 

solution of sat. aq. NaHCO3 (20 mL) and the layers were separated. The aqueous layer was 

extracted with EtOAc (3 x 50 mL) and the organic layers were combined, dried with MgSO4, and 
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concentrated under reduced pressure. The crude benzoate 4.17 was used in the subsequent step 

without further purification. 

 To a solution of the crude benzoate 4.17 in methanol (14 mL) was added LiOH 

monohydrate (0.195 g, 4.66 mmol) at room temperature. After stirring for 2 h, the reaction was 

diluted with Et2O (20 mL), poured into a pH 7-buffered solution (20 mL), and the layers were 

separated.  The aqueous layer was extracted with Et2O (3 x 50 mL) and the organic layers were 

combined, dried with MgSO4, and concentrated under reduced pressure. The resulting residue 

was purified via flash chromatography (1:1 � 1:2 hexanes:EtOAc) to afford alcohol 4.18 (0.932 

g, 86% yield over two steps) as a clear oil. Alcohol 4.18: Rf  0.21 (3:7 hexanes:EtOAc); 1H NMR 

(500 MHz, CDCl3): δ 8.17 (m, 1H), 7.71–7.62 (m, 3H), 5.99 (m, 1H), 5.70 (d, J = 10.1, 1H), 

4.49 (m, 1H), 4.13 (m, 1H), 4.09 (dq, J = 18.3, 2.3, 1H), 3.96 (dq, J = 18.3, 2.3, 1H), 2.05 (m, 

1H), 1.90 (s, 1H), 1.88–1.75 (m, 3H), 1.60 (t, J = 2.3, 3H); 13C NMR (125 MHz, CDCl3): δ 

148.1, 134.2, 133.6, 133.4, 131.6, 131.5, 131.4, 124.2, 81.1, 74.7, 62.6, 55.8, 34.2, 29.9, 22.9, 

3.5; IR (film): 3367, 2946, 1542, 1438, 1371, 1165, 1123, 1071, 1025; HRMS–ESI (m/z) [M + 

H]+ calcd for C16H19N2O5S+, 351.10092; found, 351.10003; [α]25.1
D –4.0° (c = 1.0, CH2Cl2). 

 

 

Enone 4.13. To a solution of pyridinium chlorochromate (0.860 g, 3.99 mmol) in CH2Cl2 (5 mL) 

was added a solution of alcohol 4.18 (0.932 g, 2.66 mmol) in CH2Cl2 (15 mL) at room 

temperature. After stirring for 2 h, celite (4 g) was added followed by Et2O (20 mL). The mixture 

was filtered over a pad of celite (10 g) and basic alumina (5 g), and then washed with EtOAc 

OH

NsN
Me PCC

CH2Cl2

(89% yield)

4.18

O

NsN
Me

4.13
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(500 mL). The filtrate was concentrated under reduced pressure and the resulting residue was 

purified via flash chromatography (1:1 hexanes:EtOAc) to afford enone 4.13 (0.821 g, 89% 

yield) as a clear oil. Enone 4.13: Rf  0.68 (1:2 hexanes:EtOAc); 1H NMR (500 MHz, CDCl3): δ 

8.22 (m, 1H), 7.77–7.68 (m, 3H), 6.92 (dt, J = 10.3, 2.0, 1H), 6.08 (ddd, J = 10.3, 2.7, 1.0, 1H), 

5.00 (m, 1H), 4.08 (dq, J = 18.4, 2.4, 1H), 4.04 (dq, J = 18.4, 2.4, 1H), 2.64–2.48 (m, 2H), 2.40–

2.23 (m, 2H), 1.61 (t, J = 2.4, 3H); 13C NMR (125 MHz, CDCl3): δ 197.4, 150.8, 148.1, 134.0, 

133.9, 132.0, 131.9, 131.7, 124.5, 82.3, 73.9, 55.9, 37.1, 34.6, 29.0, 3.5; IR (film): 2922, 1685, 

1541, 1439, 1356, 1296, 1251, 1209, 1164, 1125, 1082, 1016; HRMS–ESI (m/z) [M + H]+ calcd 

for C16H17N2O5S+, 349.08527; found, 349.08457; [α]25.1
D –40.3° (c = 1.0, CH2Cl2).  

 

 

 Enol Ether 4.19. To a solution of enone 4.13 (0.174 g, 0.50 mmol) and 2,6-lutidine (0.065 g, 

0.60 mmol) in CH2Cl2 (3.3 mL) at –78 °C was added TBDPSOTf (0.214 g, 0.55 mmol). After 

stirring for 1 h, the reaction was diluted with CH2Cl2 (5 mL) and poured into a solution of sat. aq. 

NaHCO3 (4 mL). The layers were separated and the aqueous layer was extracted with CH2Cl2 (3 

x 20 mL). The organic layers were combined, dried with MgSO4, and concentrated under 

reduced pressure. The resulting residue was purified via flash chromatography (10:1 � 5:1 

hexanes:EtOAc) to afford enol ether 4.19 (0.223 g, 76% yield) as a clear oil. Enol ether 4.19: Rf  

0.67 (3:7 hexanes:EtOAc); 1H NMR (500 MHz, CDCl3): δ 8.14 (m, 1H), 7.72–7.67 (m, 4H), 

7.67–7.60 (m, 3H), 7.46–7.35 (m, 6H), 6.07 (dt, J = 10.1, 2.1, 1H), 5.64 (dd, J = 10.1, 4.8, 1H), 

4.61 (m, 2H), 3.94 (dq, J = 18.3, 2.3, 1H), 3.73 (dq, J = 18.3, 2.3, 1H), 2.49 (ddd, J = 18.6, 10.6, 

O

NsN
Me TBDPSOTf

2,6-lutidine

CH2Cl2, –78 °C

(76% yield) OTBDPS

NsN
Me

4.13 4.19
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3.7, 1H), 2.39 (dt, J = 18.6, 5.4, 1H), 1.48 (t, J = 2.3, 3H), 1.03 (s, 9H); 13C NMR (125 MHz, 

CDCl3): δ (24 of 26 found) 148.1, 146.5, 135.64, 135.58, 134.6, 133.4, 132.93, 132.89, 131.8, 

131.4, 130.4, 130.0, 127.88, 127.86, 125.5, 124.1, 102.0, 80.4, 74.9, 50.4, 34.4, 27.8, 26.6, 19.3, 

3.5; IR (film): 2927, 2856, 1543, 1428, 1403, 1359, 1236, 1165, 1113, 1070; HRMS–ESI (m/z) 

[M + H]+ calcd for C26H30N2O5SiS+, 587.20305; found, 587.20078; [α]25.1
D –72.0° (c = 0.10, 

CH2Cl2). 

 

 

Enone 4.10. To a solution of (PPh3)AuCl (0.017 g, 0.034 mmol) and enol ether 4.19 (0.200 g, 

0.34 mmol) in toluene (8 mL) was added a solution of AgOTf (0.013 g, 0.051 mmol) in toluene 

(2 mL) and t-BuOH (1 mL) at room temperature.  After stirring for 3 h, the reaction was diluted 

with EtOAc (20 mL), poured into a solution of sat. aq. NaHCO3, and the layers were separated. 

The aqueous layer was extracted with EtOAc (3 x 20 mL) and the organic layers were combined, 

dried with MgSO4, and concentrated under reduced pressure. The resulting residue was purified 

via flash chromatography (3:2 hexanes:EtOAc) to afford enone 4.10 (0.059 g, 50% yield, 97% 

ee) as a clear oil. Enone 4.10: For m. p., Rf, IR, HRMS–ESI, 1H NMR, and 13C NMR data, see 

Chapter 3 (Enone 3.11). [�]25.1
D –22.0° (c = 0.10, CH2Cl2). Chiral SFC assay was run on a 

Daicel ChiralPak OD–H column at 35 °C with a 12% i-PrOH isocratic solvent system and a flow 

rate of 2 mL/min. The retention times of the two enantiomers were 7.59 (minor) and 8.34 

(major), respectively. The enantiomeric ratio (er) was 1.5:98.5, respectively. 

  

OTBDPS

NsN
Me (PPh3)AuCl (10 mol %)

AgOTf (15 mol %)

10:1 PhMe/t-BuOH

(50% yield)

N

Me

H

H

4.10, 97% ee

O

4.19

Ns
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APPENDIX THREE 

 

Spectra Relevant to Chapter Four: 

 

Unified and Enantioselective Approach to the Akuammiline Alkaloids 
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Figure A3.2 Infrared spectrum of compound 4.6. 

 
Figure A3.3 13C NMR (125 MHz, CDCl3) of compound 4.6. 
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Figure A3.5 Infrared spectrum of compound 4.7. 

 
Figure A3.6 13C NMR (125 MHz, CDCl3) of compound 4.7. 
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Figure A3.8 Infrared spectrum of compound 4.8a. 

 
Figure A3.9 13C NMR (125 MHz, CDCl3) of compound 4.8a. 
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Figure A3.11 Infrared spectrum of compound 4.8b. 

 
Figure A3.12 13C NMR (125 MHz, CDCl3) of compound 4.8b. 
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Figure A3.14 Infrared spectrum of compound 4.9. 

 
Figure A3.15 13C NMR (125 MHz, CDCl3) of compound 4.9. 
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Figure A3.17 Infrared spectrum of compound 4.4. 

 
Figure A3.18 13C NMR (125 MHz, CDCl3) of compound 4.4. 
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Figure A3.20 Infrared spectrum of compound 4.18. 

 
Figure A3.21 13C NMR (125 MHz, CDCl3) of compound 4.18. 
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Figure A3.23 Infrared spectrum of compound 4.13. 

 
Figure A3.24 13C NMR (125 MHz, CDCl3) of compound 4.13. 
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Figure A3.26 Infrared spectrum of compound 4.19. 

 
Figure A3.27 13C NMR (125 MHz, CDCl3) of compound 4.19. 
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CHROMATOGRAM METHOD REPORT :

Acquisition : 
System : UCLA SFC USER
Project : SFC USER
Run Name : JMS-5-162a
Run Id. : 1
Run Time : 12.00
Scale : 
  Autoscale
Vial    : 2
Rack    : 0
Divisor factor     : 1.00
Multipliplier factor : 1.00
Analysis   : Sample
Injection volume  : 5.00 
Sample mass : 0.00 

Run Log : 
------------------------------------------------------------------------------------------------------------------------------
 Injection occured at 7/21/2014 3:55:31 PM
------------------------------------------------------------------------------------------------------------------------------
------------------------------------------------------------------------------------------------------------------------------
PUMP [Berger FCM-1100/1200 Fluid Control Module] 
System not ready; Pressure not ready
Pressure ready Device is ready.
System not ready; Pressure not ready
Pressure ready Device is ready.
System not ready; Pressure not ready
Pressure ready Device is ready.
System not ready; Pressure not ready
Pressure ready Device is ready.
------------------------------------------------------------------------------------------------------------------------------
------------------------------------------------------------------------------------------------------------------------------
DAD [Agilent G1315A/B Diode Array Detector] 
HP1100 G1315A Events occurred
7/21/2014 3:54:26 PM Event 108 (Status change to Not Ready)
7/21/2014 3:54:26 PM Event 121 (Unknown Event)
7/21/2014 3:54:26 PM Event 122 (Unknown Event)

No calibration file found.

 
 
 
 
 
 

 
Figure A3.29 Chiral SFC trace of enantioenriched compound 4.10. 

 
Figure A3.28 Chiral SFC Trace of racemic compound 3.11 (see chapter 3). 




