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Warm dense matter (WDM) is a high energy phase between solids and plasmas, with char-

acteristics of both. It is present in the centers of giant planets, within the earth’s core, and

on the path to ignition of inertial confinement fusion. The high temperatures and pressures

of warm dense matter lead to complications in its simulation, as both classical and quantum

effects must be included. One of the most successful simulation methods is density functional

theory-molecular dynamics (DFT-MD). Despite great success in a diverse array of applica-

tions, DFT-MD remains computationally expensive and it neglects the explicit temperature

dependence of electron-electron interactions known to exist within exact DFT.

Finite-temperature density functional theory (FT DFT) is an extension of the wildly success-

ful ground-state DFT formalism via thermal ensembles, broadening its quantum mechanical

treatment of electrons to include systems at non-zero temperatures. Exact mathematical

conditions have been used to predict the behavior of approximations in limiting conditions

and to connect FT DFT to the ground-state theory. An introduction to FT DFT is given

within the context of ensemble DFT and the larger field of DFT is discussed for context.

Ensemble DFT is used to describe ensembles of ground-state and excited systems. Exact

conditions in ensemble DFT and the performance of approximations depend on ensemble

xx



weights. Using an inversion method, exact Kohn-Sham ensemble potentials are found and

compared to approximations. The symmetry eigenstate Hartree-exchange approximation is

in good agreement with exact calculations because of its inclusion of an ensemble derivative

discontinuity. Since ensemble weights in FT DFT are temperature-dependent Fermi weights,

this insight may help develop approximations well-suited to both ground-state and FT DFT.

A novel, highly efficient approach to free energy calculations, finite-temperature potential

functional theory, is derived, which has the potential to transform the simulation of warm

dense matter. As a semiclassical method, it connects the normally disparate regimes of cold

condensed matter physics and hot plasma physics. This orbital-free approach captures the

smooth classical density envelope and quantum density oscillations that are both crucial to

accurate modeling of materials where temperature and pressure effects are influential.
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Part I

Introduction
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Chapter 1

Motivation and Section Summaries

1.1 The Malfunction Junction

Warm dense matter (WDM) has been characterized as the “malfunction junction” because

of the inadequacy of traditional condensed matter and classical plasma descriptions of its

complicated state[179]. In these systems with temperatures over 103 K and condensed matter

densities, theoretical treatments must incorporate quantum effects, strong correlation, and

partial ionization[80, 179]. The reliability of phase diagrams for WDM is crucial for modeling

the core structures of planets like Jupiter, Saturn, and the Earth itself. These cores determine

planetary magnetic fields and bear the signature of historical astronomical events. Further,

WDM can help us examine how the planets within and beyond our solar system were formed

and how that formation determined their current state[179].

Good predictions of WDM melt properties and thermal conductivity also contribute to the

development of inertial confinement fusion (ICF), whereby a hot, compressed sphere of fuel

is used to initiate a fusion reaction[5]. The ignition process requires that the fuel and capsule

pass through WDM conditions toward those of even higher temperatures and pressures. This
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Figure 1.1: WDM occurs at temperatures over 103 K and pressures between 105 and 109

atm. The blue region in the lower right indicates the dominance of quantum effects, while
the orange region in the upper left indicates dominant classical effects. WDM bridges many
regions, with no one effect dominating its behavior[179].

transition must be controlled through accurate theoretical models for both fuel and capsule

materials, as inhomogeneity developed at any point during ignition can potentially quench

the budding reaction. This accuracy can only be achieved over the entire range of ignition

conditions through careful consideration of a model’s limiting behaviors[179].

In the last decade, the predictive power of WDM simulations has skyrocketed[81, 101, 123,

128, 167, 213]. In Ref. [167], inclusion of electron thermal statistics in quantum-classical

simulations resulted in a new phase diagram for high energy density water that was supported

by experimental results from the Z Machine at Sandia National Laboratories. This led to

new predictions of structural characteristics of Neptune. A few years later[213], researchers
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predicted Hugoniot states of shocked xenon using similar methods, which were again verified

by experiments on Z. Despite these and other great successes, current WDM computational

methods suffer from important drawbacks. Inclusion of electron thermal statistics, as in

the first example, captures hugely important temperature effects, but there are still missing

thermal effects in its treatment of electronic interactions[206].

Simulation of WDM materials is a priority[36, 179] because of these and other contributions

to geochemistry, planetary science, and fusion efforts. Simulations are crucial for experimen-

tal design, prediction of material properties, and analysis of experimental results. They are

of particular value due to the difficult and expensive nature of WDM experiments. In Ref.

[179], one of the specific research priorities identified was development of a comprehensive

theory for WDM. The work described in this dissertation provides insight into how WDM’s

high temperatures influence their equally important quantum mechanical behavior, and it

lays the foundation of a promising comprehensive theoretical method specifically suited to

WDM.

1.2 Density Functional Theory-Molecular Dynamics

Since not all WDM experiments are conducive to taking reliable or isolated measurements at

such extreme conditions, density functional theory-molecular dynamics (DFT-MD)[31, 104,

134, 135, 136] is often used to predict material properties. DFT-MD uses DFT, a quantum

mechanical method[17, 99], to calculate the forces used in molecular dynamics simulations for

the generation of ion distributions in the material. This mixed quantum-classical method has

been very successful[128, 167], but it is hugely expensive, misses some temperature effects,

and its accuracy cannot be systematically improved using standard approaches. This is

largely due to its reliance on Kohn-Sham DFT.
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Kohn-Sham DFT is an iterative method of calculating energies of an interacting electronic

system using a noninteracting system with the same density[132]. Exact expressions are

known for all but a small piece of the energy in Kohn-Sham DFT, called the exchange-

correlation (XC) energy:

EXC[n] = E[n]− TS[n]− U [n], (1.1)

where E is the total electronic energy, TS is the non-interacting kinetic energy, U is the

classical electrostatic energy, and square brackets indicate that these are functionals of the

single-particle electronic density, n(r). Numerous approximations for this piece exist at

zero temperature[18, 22], and these zero-temperature functionals are often used for finite-

temperature DFT (FT DFT) at this time. FT DFT combines statistical mechanical en-

sembles of energy states with the methods of energy minimization used in DFT[169]. This

move to include statistical equilibrium demands use of a finite-temperature XC functional

in the exact theory[206]. This shortcoming in current practice is coupled with incredible

computational demands. Kohn-Sham DFT at WDM conditions includes huge numbers of

high-energy states that are fractionally occupied[120]. In order to find the kinetic energy of

these states, massive eigensystems must be solved at each time step at great computational

expense.

1.3 Overview of the Dissertation

My work focuses on the electronic structure step of WDM simulations, unraveling the struc-

ture of density functional theory applied to thermal ensembles. I begin in Chapter 2 with

a casual introduction to DFT’s underlying logic and its history, while Chapter 3 gives a

detailed technical introduction to ground-state and thermal DFT. Chapters 4 and 5 use

simple-yet-meaningful model systems to address questions related to why some approxima-
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Figure 1.2: Though the zero-temperature chemical potential is discontinuous, this discon-
tinuity is smoothed as temperatures increase. Here, N is the number of electrons in a
unit-width infinite well, and εFN is the Fermi energy of N electrons.

tions work well for ensembles, thermal or otherwise. Finally, in Chapters 6 and 7, I introduce

a way to bypass the malfunction junction by skirting KS-DFT altogether. An overview of

these chapters is given below.

1.3.1 Chapter 3: Thermal DFT

A primary focus of my thesis work has been on finite-temperature DFT, an extension of the

ground-state formalism via thermal ensembles[169, 206]. Much of my work has focused on

the exact theory and the derivation of exact mathematical conditions. These conditions can

help us analyze approximations, where we expect them to fail, and their behavior in limiting

conditions[152, 153]. Examining the exact theory also lets us connect finite-temperature

DFT to the ground-state theory. For instance, in Fig. 1.2, the chemical potential develops a
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discontinuity as temperatures drop to zero, even for non-interacting particles in an incredibly

simple potential. These types of connections between finite-temperature DFT and limiting

conditions are crucial for developing DFT methods that will span the many physical regimes

bridged by WDM.

1.3.2 Chapters 4 and 5: Ensemble DFT

Ensemble DFT[85, 86, 159] is used to describe ensembles of ground-state and excited systems.

Ensembles are constructed by taking a collection of ground and excited states for a given

Hamiltonian. Ensemble energies and densities are weighted sums of the eigenvalues and

densities of these states, with lower-energy states being weighted more heavily than higher-

energy states. Its main use is its efficient extraction of excitation energies, which was the

focus of two papers that we have published in the past year[207, 257]. Of particular interest

to us is how exact conditions and the performance of approximations are dependent on

the ensemble weights, which we investigated by examining essentially exact Kohn-Sham

potentials.

Because FT DFT is a form of ensemble DFT with a particular weighting[206], my interest

in ensembles is not just for the extraction of excitation energies. The symmetry eigenstate

Hartree-exchange approximation (SEHX) that we examine in our publications may be useful

in a finite-temperature context as well. SEHX has shown good agreement with exact calcula-

tions because of its inclusion of an ensemble derivative discontinuity[257]. This discontinuity

is defined as the difference between the Kohn-Sham potentials of an ensemble with small

ensemble weights and of the ensemble with ensemble weight going to zero[150]. This can be

related to the weight-derivative of the XC energy:

∆vXC(r) = lim
w→0

∂EHXC,w[n]/∂w|n=nw . (1.2)
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Since ensemble weights in FT DFT are temperature-dependent Fermi weights, this and

other insights into ensemble DFT may help us develop approximations well-suited to both

ground-state and FT DFT.

1.3.3 Chapters 6 and 7: Finite Temperature PFT

As mentioned earlier, Kohn-Sham DFT is a clever way to solve a fully interacting, quantum-

mechanical electronic system by mapping it to a non-interacting system. This introduces a

new problem: although we know the non-interacting kinetic energy exactly, to find it we must

solve a computationally expensive eigenvalue problem to find eigenstates called orbitals. In

our recently submitted paper[29], we use the mapping to a non-interacting system without

having to solve the expensive eigenvalue problem.

At zero-temperature, one solution to this problem is potential functional theory (PFT)[26,

28]. In this method, one flips DFT on its head and uses functionals of the potential instead

of functionals of the density. Instead of using the Kohn-Sham eigenfunctions to generate

kinetic energies, PFT uses a coupling-constant formalism to generate kinetic energies. We

have developed a finite-temperature extension of PFT, called FT PFT, that uses similar logic

to write a formally exact expression for the non-interacting free energy[29]. Since this is an

exact relationship, once we write down an approximation to the finite-temperature density,

we have a corresponding approximation to this free energy that introduces no additional

errors. This may seem like we are just switching one problem for another: approximating

a density instead of an energy. However, because we have systematic semiclassical methods

at our disposal[9, 27, 30], approximating a density to higher accuracy is potentially a much

easier problem in practice.

To demonstrate the accuracy of our method, we provide a numerical demonstration. We

used a path integral formulation to approximate the density via a series approximation
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to the density that contains both the smooth, average density from classical physics and

the important density oscillations from quantum mechanics. This sum converges more and

more quickly as the temperature increases. Becoming more efficient at higher temperatures

while still including quantum corrections at all temperatures means FT PFT is uniquely

suited to problems in warm dense matter. There, high temperatures make orbital-based

methods very expensive and high pressures make quantum oscillations crucially important

for accurate simulations. Since the already inexpensive method becomes more efficient as

temperatures rise, this should eliminate the computational Kohn-Sham DFT bottleneck in

DFT-MD simulations while maintaining their accurate free energies.

1.3.4 Caveat

Many of these chapters come from papers published for different audiences. As such, some

of the notation is inconsistent between chapters. Please refer to the definitions given within

each chapter to prevent confusion.
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Part II

Context and Overview of DFT
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Chapter 2

DFT: A Theory Full of Holes?

written with David A. Gross and Kieron Burke. Published in Ann. Rev. Phys. Chem. 66,

283–304 (2015).

Abstract: This article is a rough, quirky overview of both the history and present state of the

art of density functional theory. The field is so huge that no attempt to be comprehensive

is made. We focus on the underlying exact theory, the origin of approximations, and the

tension between empirical and non-empirical approaches. Many ideas are illustrated on the

exchange energy and hole. Features unique to this article include how approximations can be

systematically derived in a non-empirical fashion and a survey of warm dense matter.

2.1 What is this article about?

The popularity of density functional theory (DFT) as an electronic structure method is

unparalleled, with applications that stretch from biology[254] to exoplanets[129]. However,

its quirks of logic and diverse modes of practical application have led to disagreements
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on many fronts and from many parties. Developers of DFT are guided by many different

principles, while applied practitioners (a.k.a. users) are suspicious of DFT for reasons both

practical (how can I pick a functional with so many choices? [208]) and cultural (with so

many choices, why would I call this first-principles? ).

A modern DFT calculation[22] begins with the purchase of a computer, which might be as

small as a laptop, and a quantum chemical code. Next, a basis set is chosen, which assigns

predetermined functions to describe the electrons on each atom of the molecule being studied.

Finally, a DFT approximation to something called the exchange-correlation energy (XC) is

chosen, and the code starts running. For each guess of the nuclear positions, the code

calculates an approximate energy[22]. A geometry optimization should find the minimum

energy configuration. With variations on this theme[43, 185], one can read out all molecular

geometries, dissociation energies, reaction barriers, vibrational frequencies, etc. A modern

desktop may do a calculation for a 100-atom system within a day. A careful user will repeat

the most important parts of the calculation with bigger basis sets, to check that answers

don’t change significantly.

2.2 Where does DFT come from?

Although DFT’s popularity has skyrocketed since applications to chemistry became useful

and routine, its roots stretch back much further[18, 110, 258].

2.2.1 Ye olde DFT

Developed without reference to the Schrödinger equation[219], Thomas-Fermi (TF) theory[60,

61, 240] was the first DFT. It is pure DFT, relying only on the electronic density, ρ(r), as

input. The kinetic energy was approximated as that of a uniform electron gas, while the
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repulsion of the electrons was modeled with the classical electrostatic Coulomb repulsion,

again depending only on the electronic density as an input.

2.2.2 Mixing in orbitals

John Slater was a master of electronic structure whose work foreshadowed the development of

DFT. In particular, his Xα method[227] approximates the interactions of electrons in ground-

state systems and improved upon Hartree-Fock (HF) [67, 94], one of the simplest ways to

capture the Pauli exclusion principle. One of Slater’s great insights was the importance of

holes, a way of describing the depressed probability of finding electrons close to one another.

Ahead of his time, Slater’s Xα included focus on the hole, satisfied exact conditions like sum

rules, and considered of the degree of localization present in the system of interest.

2.2.3 A great logical leap

Although Slater’s methods provided an improvement upon HF, it was not until 1964 that Ho-

henberg and Kohn formulated their famous theorems[99], which now serve as the foundation

of DFT:

(i) the ground-state properties of an electronic system are completely determined by ρ(r),

and

(ii) there is a one-to-one correspondence between the external potential and the density.

We write this by splitting the energy into two pieces:

Eelec[density] = F [density] +NucAtt, (2.1)

where Eelec is the total energy of the electrons, F is the sum of their exact quantum kinetic
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and electron-electron repulsion energies, and NucAtt is their attraction to the nuclei in the

molecule being calculated. Square brackets [ ] denote some (very complex) dependence on the

one-electron density, ρ(r), which gives the relative probability of finding an electron in a small

chunk of space around the point r. F is the same for all electronic systems, and so is called

universal. For any given molecule, your computer simply finds ρ(r) that minimizes Eelec

above. Compare this to the variational principle in regular quantum mechanics. Instead of

spending forever searching lots of wavefunctions that depend on all 3N electronic coordinates,

you just search over one-electron densities, which have only 3 coordinates (and spin).

The pesky thing about the Hohenberg-Kohn theorems, however, is that they tell us such

things exist without telling us how to find them. This means that to actually use DFT, we

must approximate F [density]. We recognize that the old TF theory did precisely this, with

very crude approximations for the two main contributions to F :

F [density] ∼
∫
d3r ρ5/3(r) + CoulRep, (TF ) (2.2)

where we’ve not bothered with constants, etc. The first term is an approximation to the

kinetic energy as a simple integral over the density. It is a local approximation, since the

contribution at any point comes from only the density at that point. The other piece is

the self-repulsion among electrons, which is simply modeled as the classical electrostatic

repulsion, often called their Hartree energy or the direct Coulomb energy. Such simple

approximations are typically good to within about 10% of the electronic energy, but bonds

are a tiny fraction of this, and so are not accurate in such a crude theory[237].

2.2.4 A great calculational leap

Kohn and Sham proposed rewriting the universal functional in order to approximate only

a small piece of the energy. They mapped the interacting electronic system to a fake non-
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interacting system with the same ρ(r). This requires changing the external potential, so these

aloof, non-interacting electrons produce the same density as their interacting cousins. The

universal functional can now be broken into new pieces. Where in the interacting system, we

had kinetic energy and electron-electron interaction terms, in the Kohn-Sham (KS) system,

we write the functional

F = OrbKE + CoulRep+XC (2.3)

where OrbKE is the kinetic energy of the fake KS electrons. XC contains all the rest,

which includes both kinetic and potential pieces. Although it is small compared to the

total, ‘nature’s glue’ [140] is critical to getting chemistry and physics right. The X part is

(essentially) the Fock exchange from a HF calculation, while C is the correlation energy, i.e.,

that part that traditional methods such as coupled cluster usually get very accurately[10].

When you minimize this new expression for the energy, you find a set of orbital equations,

the celebrated KS equations. They are almost identical to Hartree-Fock equations, and

this showed that Slater’s idea could be made exact (if the exact functional were known).

The genius of the KS scheme is that, because it calculates orbitals and gives their kinetic

energy, only XC, a small fraction of the total energy, needs to be approximated as a density

functional. The KS scheme usually produces excellent self-consistent densities, even with

simple approximations like LDA, but approximate potentials for this non-interacting KS

system are typically very different from the exact KS potential (Fig. 2.1).

2.2.5 Popular approximations for XC

Despite the overwhelming number of approximations available in the average DFT code,

most calculations rely on a few of the most popular approximations. The sequence of these
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is the exact KS potential. Two fake electrons in the 1s orbital of this potential have the
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approximations is

XC ∼ XCunif(ρ) (LDA)

∼ XCGGA(ρ, |∇ρ|) (GGA)

∼ a(X −XGGA) +XCGGA (hybrid) (2.4)

The first was the third major step from the mid-60s and was invented in the KS paper[132].

It was the mainstay of solid-state calculations for a generation, and remains popular for some

specific applications even today. It is (almost) never used in quantum chemistry, as it typ-

ically overbinds by about 1eV/bond. The local density approximation (LDA)[132] assumes

that the XC energy depends on the density at each position only, and that dependence is

the same as in a uniform electron gas.

Adding another level of complexity leads to the more accurate generalized gradient approxi-

mations (GGAs)[13, 192], which use information about both the density and its gradient at

each point. Hybrid approximations mix a fraction (a) of exact exchange with a GGA[14].

These maneuvers beyond the GGA usually increase the accuracy of certain properties with

an affordable increase in computational cost[197]. (Meta-GGAs try to use a dependence on

the KS kinetic energy density to avoid calculating the Fock exchange of hybrids[195, 234],

which can be very expensive for solids.)

Fig. 2.2 shows that the two most popular functionals, PBE[112, 194] and B3LYP[14, 145],

comprise a large fraction of DFT citations each year (about 2/3), even though they are now

cited only about half the time they are used. PBE is a GGA, while B3LYP is a hybrid[14].

As a method tied to Hartree-Fock, quantum chemists’ old stomping grounds, and one with

typically higher accuracy than PBE, B3LYP is more often a chemist’s choice. PBE’s more

systematic errors, mathematical rationale, and lack of costly exact exchange, have made it
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most popular in solid-state physics and materials science. In reality, both are used in both

fields and many others as well.
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Figure 2.2: The number of DFT citations has exploded (as have ab initio methods). PBE is
the number of citations of Ref. [194], and B3LYP of Ref. [14]. Dark indicates papers using
either of these approximations without citing the original papers, while other is all other
DFT papers. All numbers are estimates. Contrast with Fig. 1 of Ref. [18], which missed
almost 2/3 of these.

2.2.6 Cultural wars

The LDA was defined by Kohn and Sham in 1965; there is no controversy about how it

was designed. On the other hand, adding complexity to functional approximations demands

choices about how to take the next step. Empirical functional developers fit their approx-

imations to sets of highly accurate reference data on atoms and molecules. Non-empirical

developers use exact mathematical conditions on the functional and rely on reference sys-

tems like the uniform and slowly-varying electron gases. The PBE GGA is the most popular

non-empirical approximation, while the most popular empirical functional approximation is

the B3LYP hybrid. Modern DFT conferences usually include debates about the morality of
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this kind of empiricism.

Both philosophies have been incredibly successful, as shown by their large followings among

developers and users, but each of these successes is accompanied by failures. No single

approximation works well enough for every property of every material of interest. Many

users sit squarely and pragmatically in the middle of the two factions, taking what is best

from both of their accomplishments and insights. Often, empiricists and non-empiricists find

themselves with similar end products, a good clue that something valuable has been created

with the strengths of both.
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Figure 2.3: Exchange energy (in Hartrees) of atoms from a HF calculation as a function of
Z, atomic number, and two LDA X calculations, one with the theoretical asymptote, the
other fitted.

To illustrate this idea, we give a brief allegory from an alternative universe. Since at least

the 1960s, accurate HF energies of atoms have been available due to the efforts of Charlotte

Froese Fischer and others[65, 66]. A bright young chemistry student plots these X energies

as a function of Z, the atomic number, and notices they behave roughly as Z5/3, as in Fig.
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2.3. She’s an organic chemistry student, and mostly only cares about main-group elements,

so she fits the curve by choosing a constant to minimize the error on the first 18 elements,

finding EX = −0.25Z5/3. Much later, she hears about KS DFT, and the need to approximate

the XC energy. A little experimentation shows that if

Xopt = C0

∫
d3r ρ4/3(r), (2.5)

this goes as Z5/3 when Z is large, and choosing C0 = −0.80 makes it agree with her fit.

In our alternate timeline, a decade later, Paul Dirac, a very famous physicist, proves[40]

that for a uniform gas, C0 = AX = −(3/4)(3/π)1/3 = −0.738. Worse still, Julian Schwinger

proves[222] that inserting the TF density into Dirac’s expression becomes exact as Z →∞,

so that EX → −0.2201Z5/3. Thus theirs is the ‘correct’ LDA for X, and our brave young

student should bow her head in shame.

Or should she? If we evaluate the mean absolute errors in exchange for the first 20 atoms, her

functional is significantly better than the ‘correct’ one[92]. If lives depend on the accuracy

for those 20 atoms, which would you choose1?

This simple fable contains the seeds of our actual cultural wars in DFT derivations:

(i) An intuitive, inspired functional need not wait for an official derivation. One parameter

might be extracted by fitting, and later derived.

(ii) A fitted functional will usually be more accurate than the derived version for the cases

where it was fitted. The magnitude of the errors will be smaller, but less systematic.

1In fact, sadly, the young chemist is unable to find a permanent position, and she ends up selling
parametrized functionals for food on the streets. On the other hand, the physicists all celebrate their
triumph over empiricism with a voyage on a brand new ship, which has been designed with materials whose
properties have been calculated using DFT. Because the local approximation, as given above, underestimates
the magnitude of the exchange energy, the brittle transition temperature is overestimated. When the new
ship sails through icy waters, its hull is weakened and damaged by an iceberg, so all of them drown. (The
interested reader may find more information on the ductile-to-brittle transition in Ref. [220] and other works
by Kaxiras.)
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(iii) The fitted functional will miss universal properties of a derived functional. We see in

Sec. 2.6 that the correct LDA for exchange is a universal limit of all systems, not just atoms.

(iv) If you want to add the next correction to LDA, starting with the wrong constant will

make life very difficult (see Sec. 2.6).

2.3 What’s at the forefront?

2.3.1 Accurate Gaps

Calculating accurate energy gaps and self-interaction errors are notorious difficulties within

DFT[64]. Self-interaction error (SIE) stems from spurious interaction of an electron with

itself in the Coulomb repulsion term. Orbital-dependent methods often cure most of the

SIE problem, but they can be expensive to run. The ‘gap problem’ in DFT often stems

from treating the KS HOMO-LUMO gap as the fundamental gap, but the difference in the

HOMO and LUMO of the KS system is not the same as the difference between the ionization

potential and the electron affinity[64]. Ad hoc methods are often used to correct DFT gaps,

but these methods require expensive additional calculations, empirical knowledge of your

system, or empirical tuning. However, it has recently been shown that some classes of self-

interaction error are really just errors due to poor potentials leading to poorer densities

[124, 125]. Such errors are removed by using more accurate densities (Fig. 2.4).

2.3.2 Range-separated hybrids

Range-separated hybrids[98] improve fundamental gaps calculated via the DFT HOMO-

LUMO gap[138]. Screened range-separated hybrids can even achieve gap renormalization

present when moving between gas-phase molecules and molecular crystals[210]. The basic
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range-separated hybrid scheme separates the troublesome Coulomb interaction into long-

range and short-range pieces. The screened version enforces exact conditions to determine

where this separation occurs and incorporates the dielectric constant as an adaptive parame-

ter. This technique takes into account increased screening as molecules form solids, resulting

in reduced gaps critical for calculations geared toward applications in molecular electronics.

2.3.3 Weak Interactions

Another of DFT’s classic failings is its poor treatment of weak interactions[84, 109]. In-

duced dipoles and the resulting dispersion interactions are not captured by the most popular

approximations of Eq. 2.4. This prevents accurate modeling of the vast majority of biolog-

ical systems, as well as a wide range of other phenomena, such as surface adsorption and

molecular crystal packing. GGAs and hybrids are unable to model the long-range correla-

tions occurring between fluctuations induced in the density. The non-empirical approach

based on the work of Langreth and Lundqvist[2, 39, 146, 230] and the empirical DFT-D of

Grimme[83, 114] have dominated the advances in this area, along with the more recent, less

empirical approach of Tkatchenko and Scheffler[241, 259].

2.4 Reducing cost: Is less more?

No matter how much progress is made in improving algorithms to reduce the computational

cost of DFT calculations, there will always be larger systems of interest, and even the

fastest calculations become prohibitively expensive. The most glaring example is molecular

dynamics (MD) simulation in biochemistry. With classical force fields, these can be run for

nano- to milli-seconds, with a million atoms, with relative ease. But when bonds break, a

quantum treatment is needed, and the first versions of these were recognized in last year’s
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Nobel prize in chemistry[122, 147, 251]. These days, many people run Car-Parrinello MD[31,

104], with DFT calculations inside their MD, but this reduces tractable system sizes to a

few hundred atoms.

Because of this, there remains a great deal of interest in finding clever ways to keep as much

accuracy as needed while simplifying computational steps. One method for doing so involves

circumventing the orbital-dependent KS step of traditional DFT calculations. Alternatively,

one can save time by only doing those costly steps (or even more expensive procedures) on a

system’s most important pieces, while leaving the rest to be calculated using a less intensive

method. The key to both approaches is to achieve efficiency without sacrificing precious

accuracy.

2.4.1 Removing the orbitals

Orbital-free methods[43, 115, 117, 118, 229, 250] like TF reduce computational costs, but

are often not accurate enough to compete with KS DFT calculations. Current methods

search for a similar solution, by working on non-interacting kinetic energy functionals that

allow continued use of existing XC functionals[130]. (An intriguing alternative is to use the

potential as the basic variable [26, 28] – see Secs. 2.6 and 2.7.)

2.4.2 Embedding

Partitioning and embedding are similar procedures, in which calculations on isolated pieces

of a molecule are used to gain understanding of the molecule as a whole[158]. One might

want to separate out molecular regions to look more closely at pieces of high interest or

to find a better way to approximate the overall energy with density functionals. Parsing a

molecule into chunks can also allow for entirely new computational approaches not possible
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when dealing with the molecule as a whole.

Partition DFT[47] is an exact embedding method based on density partitioning[34, 35].

Because it uses ensemble density functionals[85, 207], it can handle non-integer electron

numbers and spins[233]. Energy of the fragments is minimized using effective potentials

consisting of a fragment’s potential and a global partition potential that maintains the correct

total density. This breakdown into fragment and partition energies allows approximations

good for localized systems to be used alongside those better for the extended effects associated

with the partition potential.

While partition DFT uses DFT methods to break up the system, projector-based wavefunction-

theory-in-DFT embedding techniques combine wavefunction and DFT methods[8, 161]. This

multiscale approach leverages the increased accuracy of some wavefunction methods for some

bonds, where high accuracy is vital, without extending this computational cost to the entire

system. Current progress in this field has been toward the reduction of the errors introduced

by the mismatch of methods between subsystems. This type of embedding has been recently

applied to heterolytic bond cleavage and conjugated systems[75]. Density matrix embedding

theory on lattices[126] and its extension to full quantum mechanical chemical systems[127]

use ideas from the density matrix renormalization group (DMRG)[252, 253], a blazingly fast

way to exactly solve low-dimensional quantum mechanics problems. This shifts the interac-

tions between fragments to a quantum bath instead of dealing with them through a partition

potential.
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2.5 What is the underlying theory behind DFT ap-

proximations?

Given the Pandora’s box of approximate functionals, many found by fitting energies of sys-

tems, most users imagine DFT as an empirical hodgepodge. Ultimately, if we end up with a

different functional for every system, we will have entirely defeated the idea of first-principles

calculations. However, prior to the mid-90s, many decades of theory were developed to bet-

ter understand the local approximation and how to improve on it[109]. Here we summarize

the most relevant points.

The joint probability of finding one electron in a little chunk of space around point A and

another in some other chunk of space around point B is called the pair probability density.

The exact quantum repulsion among electrons is then

ElecRep =
1

2

∫
dA

∫
dB

P (A,B)

|rA − rB|
. (2.6)

But we can also write

P (A,B) = ρ(A) ρcond(A,B). (2.7)

where ρ(A) is the density at rA and ρcond(A,B) is the probability of finding the second

electron at B, given that there’s one at A. (If you ignore the electron at A, this is just ρ(B),

and Eq. 2.6 gives the Coulomb repulsion in Eqs. 2.2 and 2.3). We write this conditional

probability as

ρcond(A,B) = ρ(B) + ρXC(A,B). (2.8)

where ρXC(A,B) is called the hole around A. It is mostly negative and represents a missing
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electron (it integrates to -1), since the conditional probability integrates to N − 1. With a

little math trick (called the adiabatic connection[87, 143]), we can fold the kinetic correlation

into the hole so that

XC =
1

2

∫
dA

∫
dB

ρ(A) ρXC(A,B)

|rA − rB|
. (2.9)
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Figure 2.5: Cartoon of a one-dimensional 10-electron density (solid red), the conditional
density (dot-dashed blue) given an electron at A = 2, and its hole density (dashed green).

Because the XC hole tends to follow an electron around, i.e., be centered on A as in Fig.

2.5, its shape is roughly a simple function of ρ(A). If one approximates the hole by that of a

uniform gas of density ρ(A), Eq. 2.9 above yields the LDA for the XC energy. So the LDA

approximation for XC can be thought of as approximating the hole by that of a uniform
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gas[52, 109].
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Figure 2.6: Representation of system-averaged radial exchange holes for the helium atom[54],
weighted by the Coulomb repulsion, so that the area equals the X energy. The LDA hole
(dashed green) is not deep enough, reflecting the LDA underestimate of the magnitude of
the X energy. The GGA hole (dot-dashed blue) is substantially better, but a little too deep.

But while the XC is roughly approximated by LDA, the energy density at each point in a

system is not, especially in systems of low symmetry. But from Eq. 2.9, the energy depends

only on the average of the XC hole over the system, and Fig. 2.6 shows such a system-

averaged hole for the He atom. (Integrate over A and the angular parts of B in Eq. (2.9).)

The LDA hole is not deep enough, and neither is the LDA energy. This is the effect that

leads to LDA overbinding of molecules.

2.5.1 GGA Made Briefer

The underlying idea behind the Perdew series of GGAs was to improve on the LDA hole[11].

Adding gradient corrections to the hole violates certain sum rules (negativity of the X hole

and integration to -1, and integration to 0 for the correlation hole), so the real-space cutoff
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procedure was designed to restore these conditions. This is an effective resummation of the

gradient expansion, producing the numerical GGA. The popular functional PBE was derived

from imposing exact conditions on a simple form[112, 194], but should be believed because

it mimics the numerical GGA. In Fig. 2.6, we show how the GGA hole roughly improves on

LDA, reducing typical energy errors by a factor of three.

GGAs don’t only show how important good hole models can be. They also demonstrate

that good approximations can satisfy different exact conditions, so picking which to satisfy

is non-trivial. For instance, B88[13], PW91[113, 193], and PBE[112, 194] give similar values

for exchange energy when densities do not get too small or vary too quickly. However, once

they do, each behaves very differently. Each approximation was sculpted to satisfy different

exact conditions in this limit. Becke decided a good energy density for exponential elec-

tronic densities was important. Perdew first thought that a particular scaling behavior was

important[21], then that satisfying a certain bound was better[194]. Without a systematic

way to improve our approximations, these difficult choices guide our progress. But starting

from a model for the XC hole is an excellent idea, as such a model can be checked against

the exact XC hole[25].

2.5.2 XDM

A recent, parameter-free approach to capturing dispersion is the exchange-hole dipole mo-

ment (XDM) method[15, 16, 108, 182], where perturbation theory yields a multipole-multipole

interaction, and quantum effects are included through the dipole moment of the electron with

its exchange hole. Using these in concert with atomic polarizabilities and dipole moments

generates atomic pair dispersion coefficients that are within 4% of reference C6 values[12].

Such a model has the advantage over the more popular methods of Sec. 2.3 because its

assertions about the hole can be checked.
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2.5.3 RPA and other methods

Originally put forth in the 1950s as a method for the uniform electron gas, the random phase

approximation (RPA) can be viewed as a simplified wavefunction method or a nonlocal den-

sity functional approach that uses both occupied and unoccupied KS states to approximate

the correlation energy. RPA correlation performs extremely well for noncovalent, weak in-

teractions between molecules and yields the correct dissociation limit of H2[70], two of the

major failures of traditional DFT approximations[33].

Though computational expense once hindered its wide use, resolution-of-identity implementations[58,

72] have improved its efficiency, making RPA accessible to researchers interested in large

molecular systems. RPA gives good dissociation energy for catalysts involving the break-

ing of transition-metal-ligand and carbon-carbon bonds in a system of over 100 atoms[57].

Though RPA handles medium- and long-range interactions very well, its trouble with short-

range correlations invites development of methods that go ‘beyond RPA.’ RPA used in

quantum chemistry usually describes only the particle-hole channel of the correlation, but

another recent approach to RPA is the particle-particle RPA (pp-RPA)[247]. pp-RPA is

missing some correlation, which causes errors in total energies of atoms and small molecules.

This nearly cancels out in reaction energy calculations and yields fairly accurate binding

energies[189].

RPA and variations on it will likely lead to methods that work for both molecules and solids,

and their computational cost will be driven down by algorithmic development. However,

RPA is likely to remain substantially more expensive than a GGA calculation for the indef-

inite future. While it may rise to fill an important niche in quantum chemistry, producing

comparably accurate energetics to modern functionals without any empiricism, such meth-

ods will not replace DFT as the first run for many calculations. Moreover, as with almost all

‘better’ methods than DFT, there appears to be no way to build in the good performance
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of older DFT approximations.

2.6 Is there a systematic approach to functional ap-

proximation?

A huge intellectual gap in DFT development has been in the theory behind the approxima-

tions. This, as detailed above, has allowed the rise of empirical energy fitting. Even the most

appealing non-empirical development seems to rely on picking and choosing which exact con-

ditions the approximation should satisfy. Lately, even Perdew has resorted to one or two

parameters in the style of Becke[111, 231], in order to construct a meta-GGA. Furthermore,

up until the mid 1990s, many good approximations were developed as approximations to the

XC hole, which could then be tested and checked for simple systems.

However, in fact, there is a rigorous way to develop density functional approximations. Its

mathematical foundations were laid down 40 years ago by Lieb and Simon[154, 155, 157].

They showed the fractional error in the energy in any TF calculation vanishes as Z → ∞,

keeping N = Z. Their original proof is for atoms, but applies to any molecule or solid,

once the nuclear positions are scaled by Z1/3 also. Their innocuous statement is in fact very

profound. This very complicated many-body quantum problem, in the limit of large numbers

of electrons, has an almost trivial (approximate) solution. And although the world finds TF

theory too inaccurate to be useful, and performs KS calculations instead, the equivalent

statement (not proven with rigor) is that the fractional error in the LDA for XC vanishes as

Z →∞. XC, like politics, is entirely local in this limit.

These statements explain many of the phenomena we see in modern DFT:

(i) LDA is not just an approximation that applies for uniform or slowly varying systems, but
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is instead a universal limit of all electronic systems.

(ii) LDA is the leading term in an asymptotic expansion in powers of ~, i.e., semiclassical.

Such expansions are notoriously difficult to deal with mathematically.

(iii) The way in which LDA yields an ever smaller error as Z grows is very subtle. The

leading corrections are of several origins. Often the dominant error is a lack of spatial

quantum oscillations in the XC hole. However, as Z grows, these oscillations get faster, and

so their net effect on the XC energy becomes smaller. Thus, even as Z grows, LDA should

not yield accurate energy densities everywhere in a system (and its potential is even worse,

as in Fig. 2.1), but the integrated XC energy will become ever more accurate.

(iv) The basic idea of the GGA as the leading correction to LDA makes sense. The leading

corrections to the LDA hole should exist as very sophisticated functionals of the potential,

but whose energetic effects can be captured by simple approximations using the density

gradient. This yields improved net energetics, but energy densities might look even worse,

especially in regions of high gradients, such as atomic cores.

Next, we continue the allegory from Sec. 2.2.6. To do so, we subtract the LDA X energy

from our accurate ones, so we can see the next correction, and plot this, per electron, in

Fig. 2.7. Now, a bright young chemist has heard about the GGA, cooks up an intuitive

correction to LDA, and fits one parameter to the noble gas values. Later, some physicists

derive a different GGA, which happens to also give the correct value. Later still, a derivation

of the correction for large Z is given, which can be used to determine the parameter (and

turns out to match the empirical value within 10%). The only difference from the original

allegory is that this is all true. The chemist was Axel Becke; his fitted functional is B88[13].

The derived functional is PBE[194], and the derivation of the parameter in B88 is given in

Ref. [46].

This true story both validates Becke’s original procedure and the semiclassical approach to
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Figure 2.7: The non-local exchange energy (exchange minus LDA X) per electron of atoms
with atomic number Z (compare with Fig. 2.3). The PBE functional tends to the theoretical
limit (Z → ∞) (horizontal green line), but B88 is more accurate for Z < 50 because of
fitting[46].
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density functional approximation. Note that even the correction is evaluated on the TF

density to find the limiting behavior. The PBE exchange functional also yields the leading

the correction to the exchange energy of atoms. By throwing this away and restoring the

(different) gradient expansion for slowly-varying gases, PBEsol was created[55].

2.6.1 Semiclassical approximations

New approximations driven by semiclassical research can be divided into density approaches

and potential approaches. In the density camp, we find innovations like the approximations

by Armiento and Mattsson[4, 165, 166], which incorporate surface conditions through their

semiclassical approach. In the potential functional camp, we find highly accurate approxima-

tions to the density, which automatically generate approximations to non-interacting kinetic

energies[26, 27, 28]. Since these approaches use potential functionals, they are orbital-free

and incredibly efficient, but only apply in one dimension (see also Sec. 2.7). Current research

is focused on extension to three dimensions, semiclassical approximations in the presence of

classical turning points, as well as semiclassical approximations to exchange and correlation

energies.

2.7 Warm dense matter: A hot new area?

Though we do not live at icy absolute zero, most chemistry and physics happens at low

enough temperatures that electrons are effectively in their ground state. Most researchers

pretend to be at zero temperature for their DFT work with impunity. But some people,

either those working at high enough temperatures and pressures or those interested in low-

energy transitions, can’t ignore thermal effects. Those of us caught up in these warmer

pursuits must tease out where temperature matters for our quantum mechanical work.
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Mermin proved a finite-temperature version of the Hohenberg-Kohn theorem in 1965[169],

and the finite-temperature LDA was shown in the original KS paper[132]. However, many

people continue to rely on the zero-temperature approximations, though they populate states

at higher energy levels using finite-temperature weightings. Better understanding and mod-

eling of the finite-temperature XC hole could lead to improvement in some of the finer details

of these calculations, like optical and electronic properties[206].

2.7.1 WDM and MD

One area that has seen great recent progress with DFT is the study of warm dense matter

(WDM)[80, 180]. WDM is intermediate to solids and plasmas, inhabiting a world where

both quantum and classical effects are important. It is found deep within planetary interi-

ors, during shock physics experiments, and on the path to ignition of inertial confinement

fusion. Lately, use of DFT MD has been a boon to researchers working to simulate these

complicated materials[101, 123, 128, 167, 213]. Most of these calculations are performed

using KS orbitals with thermal occupations, ignoring any temperature dependence of XC,

in hopes that the kinetic and Coulomb energies will capture most of the thermal effects.

Agreement with experiment has been excellent, though there is great interest in seeing if

temperature-dependent XC approximations affects these results.

2.7.2 Exact conditions

Exact conditions have been derived[45, 56, 202, 206] for finite-temperature systems that

seem very similar to their ground-state counterparts. However, a major difference in thermal

systems is that when one squeezes or compresses the length scale of the system, one sees an

accompanying scaling of the temperature. This is further reflected in the thermal adiabatic

connection, which connects the non-interacting KS system to the interacting system through
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Figure 2.8: The density of a single electron in a flat box spreads toward the infinite walls as
temperatures rise.
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scaling of the electron-electron interaction. At zero temperature, this allows us to write the

XC energy in terms of the potential alone, as long as it is accompanied by appropriate

squeezing or stretching of the system’s length scale (see Sec. 2.5). With the temperature-

coordinate scaling present in thermal ensembles, the thermal adiabatic connection requires

not only length scaling, but also the correct temperature scaling.
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Figure 2.9: Eight electrons in the potential −2 sin2 (πx/10) in a 1d box. At zero temperature
(gray), the density exhibits sharp quantum oscillations, which wash out as the temperature
increases (black). This effect is much weaker near the edges. TF is used in many warm
simulations, but (green) misses all oscillations, vital for accurate chemical effects. The
orbital-free, finite-temperature potential functional approximation of Ref. [29] is almost
exact here (red).

2.7.3 OF Methods

Orbital-free methods, discussed in Sec. 2.4, are of particular interest in the WDM commu-

nity. Solving the KS equations with many thermally populated orbitals is repeated over and
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over in DFT MD, leading to prohibitive cost as temperatures rise. The focus on free energies

for thermal ensembles has led to two different approaches to orbital-free approximations.

One approach uses two separate forms for kinetic and entropic contributions[45]. Follow-

ing this path, one can either make approximations empirically[121] or non-empirically[116].

Another approach enforces a particular type of response in the uniform gas limit[226]. If

one wishes to approximate the kentropy[206] as a whole, one can use temperature-dependent

potential functional theory to generate highly accurate approximations from approximate

densities generated semiclassically or stochastically[6, 29]. Fig. 2.9 shows the accuracy of

a semiclassical density approximation, which captures the quantum oscillations missed by

Thomas-Fermi and still present as temperatures rise.

2.8 What can we guess about the future?

The future of DFT remains remarkably bright. As Fig. 2.2 shows, the number of applications

continues to grow exponentially, with three times as much activity than previously realized

(Fig. 1 of [18]). While empiricism has generated far too many possible alternatives, the

standard well-derived approximations continue to dominate.

To avoid losing insight, it is important to further develop the systematic path to approxi-

mations, which eschews all empiricism and expands the functional in powers of ~, Planck’s

constant. This will ultimately tell us what we can and cannot do with local-type approxi-

mations. There is huge room for development in this area, and any progress could impact

all those applications.

Meanwhile, new areas have been (e.g. weak interactions) or are being developed (warm dense

matter). New methods, such as using Bayesian statistics for error analysis[168] or machine

learning for finding functionals[228, 229], are coming on line. Such methods will not suffer the
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limitations of local approximations, and should be applicable to strongly correlated electronic

systems, an arena where many of our present approximations fail. We have little doubt that

DFT will continue to thrive for decades to come.
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Part III

Introduction to Thermal DFT
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Chapter 3

Thermal Density Functional Theory

in Context

written with Stefano Pittalis, E.K.U. Gross, and Kieron Burke. Published in Frontiers and

Challenges in Warm Dense Matter, Lecture Notes in Computational Science and Engineering

96, Frank Graziani, Michael P. Desjarlais, Ronald Redmer, and Samuel B. Trickey, eds.,

Springer International Publishing, 25–60 (2014), ibid. 113, 1601(E) (2013).

Abstract: This chapter introduces thermal density functional theory, starting from the ground-

state theory and assuming a background in quantum mechanics and statistical mechanics. We

review the foundations of density functional theory (DFT) by illustrating some of its key re-

formulations. The basics of DFT for thermal ensembles are explained in this context, as are

tools useful for analysis and development of approximations. We close by discussing some

key ideas relating thermal DFT and the ground state. This review emphasizes thermal DFT’s

strengths as a consistent and general framework.
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3.1 Introduction

The subject matter of high-energy-density physics is vast [180], and the various methods for

modeling it are diverse [81, 167, 218]. The field includes enormous temperature, pressure,

and density ranges, reaching regimes where the tools of plasma physics are appropriate [5].

But, especially nowadays, interest also stretches down to warm dense matter (WDM), where

chemical details can become not just relevant, but vital [128]. WDM, in turn, is sufficiently

close to zero-temperature, ground-state electronic structure that the methods from that field,

especially Kohn-Sham density functional theory (KS DFT) [123, 213], provide a standard

paradigm for calculating material-specific properties with useful accuracy.

It is important to understand, from the outset, that the logic and methodology of KS-DFT

is at times foreign to other techniques of theoretical physics. The procedures of KS-DFT

appear simple, yet the underlying theory is surprisingly subtle. Consequently, progress in

developing useful approximations, or even writing down formally correct expressions, has

been incredibly slow. As the KS methodology develops in WDM and beyond, it is worth

taking a few moments to wrap one’s head around its logic, as it does lead to one of the most

successful paradigms of modern electronic structure theory [18].

This chapter sketches how the methodology of KS DFT can be generalized to warm systems,

and what new features are introduced in doing so. It is primarily designed for those unfamiliar

with DFT to get a general understanding of how it functions and what promises it holds

in the domain of warm dense matter. Section 2 is a general review of the basic theorems

of DFT, using the original methodology of Hohenberg-Kohn [99] and then the more general

Levy-Lieb construction [148, 156]. In Section 3, we discuss approximations, which are always

necessary in practice, and several important exact conditions that are used to guide their

construction. In Section 4, we review the thermal KS equations [169] and some relevant

statistical mechanics. Section 5 summarizes some of the most important exact conditions for
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thermal ensembles [45, 202]. Last, but not least, in Section 6 we review some recent results

that generalize ground-state exact scaling conditions and note some of the main differences

between the finite-temperature and the ground-state formulation.

3.2 Density functional theory

A reformulation of the interacting many-electron problem in terms of the electron density

rather than the many-electron wavefunction has been attempted since the early days of quan-

tum mechanics [60, 61, 240]. The advantage is clear: while the wavefunction for interacting

electrons depends in a complex fashion on all the particle coordinates, the particle density

is a function of only three spatial coordinates.

Initially, it was believed that formulating quantum mechanics solely in terms of the particle

density gives only an approximate solution, as in the Thomas-Fermi method [60, 61, 240].

However, in the mid-1960s, Hohenberg and Kohn [99] showed that, for systems of electrons in

an external potential, all the properties of the many-electron ground state are, in principle,

exactly determined by the ground-state particle density alone.

Another important approach to the many-particle problem appeared early in the devel-

opment of quantum mechanics: the single-particle approximation. Here, the two-particle

potential representing the interaction between particles is replaced by some effective, one-

particle potential. A prominent example of this approach is the Hartree-Fock method [67, 94],

which includes only exchange contributions in its effective one-particle potential. A year af-

ter the Hohenberg-Kohn theorem had been proven, Kohn and Sham [132] took a giant leap

forward. They took the ground state particle density as the basic quantity and showed that

both exchange and correlation effects due to the electron-electron interaction can be treated

through an effective single-particle Schrödinger equation. Although Kohn and Sham wrote
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their paper using the local density approximation, they also pointed out the exactness of

that scheme if the exact exchange-correlation functional were to be used (see Section 3.2.3).

The KS scheme is used in almost all DFT calculations of electronic structure today. Much

development in this field remains focused on improving approximations to the exchange-

correlation energy (see Section 3.3).

The Hohenberg-Kohn theorem and Kohn-Sham scheme are the basic elements of modern

density-functional theory (DFT) [17, 18, 23]. We will review the initial formulation of DFT

for non-degenerate ground states and its later extension to degenerate ground states. Alter-

native and refined mathematical formulations are then introduced.

3.2.1 Introduction

The non-relativistic Hamiltonian1 for N interacting electrons2 moving in a static potential

v(r) reads (in atomic units)

Ĥ = T̂ + V̂ee + V̂ := −1

2

N∑
i=1

∇2
i +

1

2

N∑
i,j=1

i 6=j

1

|ri − rj|
+

N∑
i=1

v(ri). (3.1)

Here, T̂ is the total kinetic-energy operator, V̂ee describes the repulsion between the electrons,

and V̂ is a local (multiplicative) scalar operator. This includes the interaction of the electrons

with the nuclei (considered within the Born-Oppenheimer approximation) and any other

external scalar potentials.

The eigenstates, Ψi(r1, ..., rN), of the system are obtained by solving the eigenvalue problem

1See Refs. [221] or [217] for quantum mechanical background that is useful for this chapter.
2In this work, we discuss only spin-unpolarized electrons.
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ĤΨi(r1, ..., rN) = EiΨi(r1, ..., rN), (3.2)

with appropriate boundary conditions for the physical problem at hand. Eq. (3.2) is the

time-independent Schrödinger equation. We are particularly interested in the ground state,

the eigenstate with lowest energy, and assume the wavefunction can be normalized.

Due to the interactions among the electrons, V̂ee, an explicit and closed solution of the many-

electron problem in Eq. (3.2) is, in general, not possible. But because accurate prediction

of a wide range of physical and chemical phenomena requires inclusion of electron-electron

interaction, we need a path to accurate approximate solutions.

Once the number of electrons with Coulombic interaction is given, the Hamiltonian is deter-

mined by specifying the external potential. For a given v(r), the total energy is a functional

of the many-body wavefunction Ψ(r1, ..., rN)

Ev[Ψ] = 〈Ψ|T̂ + V̂ee + V̂ |Ψ〉 . (3.3)

The energy functional in Eq. (3.3) may be evaluated for any N -electron wavefunction, and

the Rayleigh-Ritz variational principle ensures that the ground state energy, Ev, is given by

Ev = inf
Ψ
Ev[Ψ], (3.4)

where the infimum is taken over all normalized, antisymmetric wavefunctions. The Euler-

Lagrange equation expressing the minimization of the energy is

δ

δΨ
{Ev[Ψ]− µ [〈Ψ|Ψ〉 − 1]} = 0, (3.5)
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where the functional derivative is performed over Ψ ∈ L2(R3N) (defined as in Ref. [50]). Rela-

tion (3.5) again leads to the many-body Schrödinger equation and the Lagrangian multiplier

µ can be identified as the chemical potential.

We now have a procedure for finding approximate solutions by restricting the form of the

wavefunctions. In the Hartree-Fock (HF) approximation, for example, the form of the wave-

function is restricted to a single Slater determinant. Building on the HF wavefunction, mod-

ern quantum chemical methods can produce extremely accurate solutions to the Schrödinger

equation [224]. Unfortunately, wavefunction-based approaches that go beyond HF usually

are afflicted by an impractical growth of the numerical effort with the number of parti-

cles. Inspired by the Thomas-Fermi approach, one might wonder if the role played by the

wavefunction could be played by the particle density, defined as

n(r) := 〈Ψ|
N∑
i=1

δ(r̂− r̂i)|Ψ〉 = N

∫
dr2...

∫
drN

∣∣∣Ψ(r, r2, ..., rN)
∣∣∣2, (3.6)

from which

∫
d3r n(r) = N. (3.7)

In that case, one would deal with a function of only three spatial coordinates, regardless of

the number of electrons.

3.2.2 Hohenberg-Kohn theorem

Happily, the two-part Hohenberg-Kohn (HK) Theorem assures us that the electronic density

alone is enough to determine all observable quantities of the systems. These proofs cleverly

connect specific sets of densities, wavefunctions, and potentials, exposing a new framework

for the interacting many-body problem.
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Let P be the set of external potentials leading to a non-degenerate ground state for N

electrons. For a given potential, the corresponding ground state, Ψ, is obtained through the

solution of the Schrödinger equation:

v −→ Ψ, with v ∈ P. (3.8)

Wavefunctions obtained this way are called interacting v-representable. We collect these

ground state wavefunctions in the set W. The corresponding particle densities can be

computed using definition (3.6):

Ψ −→ n, with Ψ ∈W. (3.9)

Ground state particle densities obtained this way are also called interacting v-representable.

We denote the set of these densities as D.

First part

Given a density n ∈ D, the first part of the Hohenberg-Kohn theorem states that the

wavefunction Ψ ∈W leading to n is unique, apart from a constant phase factor. The proof

is carried out by reductio ad absurdum and is illustrated in Figure 3.1.

Consider two different wavefunctions in W, Ψ1 and Ψ2, that differ by more than a constant

phase factor. Next, let n1 and n2 be the corresponding densities computed by Eq. (3.6).

Since, by construction, we are restricting ourselves to non-degenerate ground states, Ψ1 and

Ψ2 must come from two different potentials. Name these v1 and v2, respectively.

Assume that these different wavefunctions yield the same density:

Ψ1 6= Ψ2 but n1(r) = n2(r). (3.10)
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Figure 3.1: The Hohenberg-Kohn proves the one-to-one mappings between potentials and
ground-state wavefunctions and between ground-state wavefunctions and ground-state den-
sities. The dotted lines indicated by question marks show the two-to-one mappings disproved
by Hohenberg and Kohn [43, 50].
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Application of the Rayleigh-Ritz variational principle yields the inequality

〈Ψ1|Ĥ1|Ψ1〉 < 〈Ψ2|Ĥ1|Ψ2〉, (3.11)

from which we obtain

E1 < 〈Ψ2|Ĥ2 + (V̂1 − V̂2)|Ψ2〉 = E2 +

∫
d3r n1(r) [v1(r)− v2(r)] . (3.12)

Reversing the role of systems 1 and 2 in the derivation, we find

E2 < 〈Ψ1|Ĥ1 + (V̂2 − V̂1)|Ψ1〉 = E1 +

∫
d3r n2(r) [v2(r)− v1(r)] . (3.13)

The assumption that the two densities are equal, n1(r) = n2(r), and addition of the inequal-

ities (3.12) and (3.13) yields

E1 + E2 < E1 + E2, (3.14)

which is a contradiction. We conclude that the foregoing hypothesis (3.10) was wrong, so

n1 6= n2. Thus each density is the ground-state density of, at most, one wavefunction. This

mapping between the density and wavefunction is written

n −→ Ψ, with n ∈ D and Ψ ∈W. (3.15)
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Second part

Having specified the correspondence between density and wavefunction, Hohenberg and

Kohn then consider the potential. By explicitly inverting the Schrödinger equation,

N∑
i=1

v(ri) = E −

(
T̂ + V̂ee

)
Ψ(r1, r2, ..., rN)

Ψ(r1, r2, ..., rN)
, (3.16)

they show the elements Ψ of W also determine the elements v of P, apart from an additive

constant.

We summarize this second result by writing

Ψ −→ v, with Ψ ∈W and v ∈ P. (3.17)

Consequences

Together, the first and second parts of the theorem yield

n −→ v + const, with n ∈ D and v ∈ P, (3.18)

that the ground state particle density determines the external potential up to a trivial addi-

tive constant. This is the first HK theorem.

Moreover, from the first part of the theorem it follows that any ground-state observable is

a functional of the ground-state particle density. Using the one-to-one dependence of the

wavefunction, Ψ[n], on the particle density,

〈Ψ|Ô|Ψ〉 = 〈Ψ[n]|Ô|Ψ[n]〉 = O[n]. (3.19)
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For example, the following functional can be defined:

Ev,HK[n] := 〈Ψ[n]|T̂ + V̂ee + V̂ |Ψ[n]〉 = FHK[n] +

∫
d3r n(r)v(r), (3.20)

where v is a given external potential and n can be any density in D. Note that

FHK[n] := 〈Ψ[n]|T̂ + V̂ee|Ψ[n]〉 (3.21)

is independent of v. The second HK theorem is simply that FHK[n] is independent of v(r).

This is therefore a universal functional of the ground-state particle density. We use the

subscript, HK, to emphasize that this is the original density functional of Hohenberg and

Kohn.

Let n0 be the ground-state particle density of the potential v0. The Rayleigh-Ritz variational

principle (3.4) immediately tells us

Ev0 = min
n∈D

Ev0,HK[n] = Ev0,HK[n0]. (3.22)

We have finally obtained a variational principle based on the particle density instead of the

computationally expensive wavefunction.

Extension to degenerate ground states

The Hohenberg-Kohn theorem can be generalized by allowing P to include local potentials

having degenerate ground states [43, 148, 249], . This means an entire subspace of wavefunc-

tions can correspond to the lowest eigenvalue of the Schrödinger equation (3.2). The sets

W and D are enlarged accordingly, to include all the additional ground-state wavefunctions

and particle densities.
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In contrast to the non-degenerate case, the solution of the Schrödinger equation (3.2) now

establishes a mapping from P to W which is one-to-many (see Figure 3.2). Moreover, differ-

ent degenerate wavefunctions can have the same particle density. Equation (3.6), therefore,

establishes a mapping from W to D that is many-to-one. However, any one of the degenerate

ground-state densities still determines the potential uniquely.

! " #

Figure 3.2: The mappings between sets of potentials, wavefunctions, and densities can be
extended to include potentials with degenerate ground states. This is seen in the one-to-
many mappings between P and W. Note also the many-to-one mappings from W to D
caused by this degeneracy [43, 74].

The first part of the HK theorem needs to be modified in light of this alteration of the

mapping between wavefunctions and densities. To begin, note that two degenerate subspaces,

sets of ground states of two different potentials, are disjoint. Assuming that a common

eigenstate Ψ can be found, subtraction of one Schrödinger equation from the other yields

(V̂1 − V̂2)Ψ = (E1 − E2)Ψ. (3.23)
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For this identity to be true, the eigenstate Ψ must vanish in the region where the two

potentials differ by more than an additive constant. This region has measure greater than

zero. Eigenfunctions of potentials in P, however, vanish only on sets of measure zero [42].

This contradiction lets us conclude that v1 and v2 cannot have common eigenstates. We then

show that ground states from two different potentials always have different particle densities

using the Rayleigh-Ritz variational principle as in the non-degenerate case.

However, two or more degenerate ground state wavefunctions can have the same particle

density. As a consequence, neither the wavefunctions nor a generic ground state property

can be determined uniquely from knowledge of the ground state particle density alone. This

demands reconsideration of the definition of the universal FHK as well. Below, we verify that

the definition of FHK does not rely upon one-to-one correspondence among ground state

wavefunctions and particle densities.

The second part of the HK theorem in this case proceeds as in the original proof, with

each ground state in a degenerate level determining the external potential up to an additive

constant. Combining the first and second parts of the proof again confirms that any element

of D determines an element of P, up to an additive constant. In particular, any one of the

degenerate densities determines the external potential. Using this fact and that the total

energy is the same for all wavefunctions in a given degenerate level, we define FHK:

FHK[n] := E [v[n]]−
∫
d3r v[n](r)n(r). (3.24)

This implies that the value of

FHK[n] = 〈Ψ0 → n|T̂ + V̂ee|Ψ0 → n〉 (3.25)

is the same for all degenerate ground-state wavefunctions that have the same particle density.

The variational principle based on the particle density can then be formulated as before in
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Eq. (3.22).

3.2.3 Kohn-Sham scheme

The exact expressions defining FHK in the previous section are only formal ones. In prac-

tice, FHK must be approximated. Finding approximations that yield usefully accurate results

turns out to be an extremely difficult task, so much so that pure, orbital-free approximations

for FHK are not pursued in most modern DFT calculations. Instead, efficient approximations

can be constructed by introducing the Kohn-Sham scheme, in which a useful decomposition

of FHK in terms of other density functionals is introduced. In fact, the Kohn-Sham decom-

position is so effective that effort on orbital-free DFT utilizes the Kohn-Sham structure, but

not its explicitly orbital-dependent expressions.

Consider the Hamiltonian of N non-interacting electrons

Ĥs = T̂ + V̂ := −1

2

N∑
i=1

∇2
i +

N∑
i=1

v(ri). (3.26)

Mimicking our procedure with the interacting system, we group external local potentials

in the set P. The corresponding non-interacting ground state wavefunctions Ψs are then

grouped in the set Ws, and their particle densities ns are grouped in Ds. We can then apply

the HK theorem and define the non-interacting analog of FHK, which is simply the kinetic

energy:

Ts[ns] := E [v[ns]]−
∫
d3r v[ns](r)ns(r). (3.27)

Restricting ourselves to non-degenerate ground states, the expression in Eq. (3.27) can be
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rewritten to stress the one-to-one correspondence among densities and wavefunctions:

Ts[ns] = 〈Ψs[ns]|T̂ |Ψs[ns]〉 . (3.28)

We now introduce a fundamental assumption: for each element n of D, a potential vs in

Ps exists, with corresponding ground-state particle density ns = n. We call vs the Kohn-

Sham potential. In other words, interacting v-representable densities are also assumed to be

non-interacting v-representable. This maps the interacting problem onto a non-interacting

one.

Assuming the existence of vs, the HK theorem applied to the class of non-interacting systems

ensures that vs is unique up to an additive constant. As a result, we find the particle density

of the interacting system by solving the non-interacting eigenvalue problem, which is called

the Kohn-Sham equation:

ĤsΦ = EΦ. (3.29)

For non-degenerate ground states, the Kohn-Sham ground-state wavefunction is a single

Slater determinant. In general, when considering degenerate ground states, the Kohn-Sham

wavefunction can be expressed as a linear combination of several Slater determinants [51,

156]. There also exist interacting ground states with particle densities that can only be

represented by an ensemble of non-interacting particle densities [59, 183, 184, 215, 244]. We

will come back to this point in Section 3.2.5.

Here we continue by considering the simplest cases of non-degenerate ground states. Eq.

(3.29) can be rewritten in terms of the single-particle orbitals as follows:

[
−1

2
∇2 + vs(r)

]
ϕi(r) = εiϕi(r) . (3.30)
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The single-particle orbitals ϕi(r) are called Kohn-Sham orbitals and Kohn-Sham wavefunc-

tions are Slater determinants of these orbitals. Via the Kohn-Sham equations, the orbitals

are implicit functionals of n(r). We emphasize that – although in DFT the particle density is

the only basic variable – the Kohn-Sham orbitals are proper fermionic single-particle states.

The ground-state Kohn-Sham wavefunction is obtained by occupying the N eigenstates with

lowest eigenvalues. The corresponding density is

n(r) =
N∑
i=1

ni|ϕi(r)|2, (3.31)

with ni the ith occupation number.

In the next section, we consider the consequences of introducing the Kohn-Sham system in

DFT.

Exchange-correlation energy functional

A large fraction of FHK[n] can be expressed in terms of kinetic and electrostatic energy. This

decomposition is given by

FHK[n] = Ts[n] + U [n] + Exc[n] . (3.32)

The first term is the kinetic energy of the Kohn-Sham system,

Ts[n] = −1

2

N∑
i=1

∫
d3r ϕ∗i (r)∇2ϕi(r) . (3.33)

The second is the Hartree energy (a.k.a. electrostatic self-energy, a.k.a. Coulomb energy),

U [n] =
1

2

∫ ∫
d3rd3r′

n(r)n(r′)

|r− r′|
. (3.34)
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The remainder is defined as the exchange-correlation energy,

Exc[n] := FHK[n]− Ts[n]− U [n] . (3.35)

For systems having more than one particle, Exc accounts for exchange and correlation energy

contributions. Comparing Eqs. (3.32) and (3.20), the total energy density functional is

Ev,HK[n] = Ts[n] + U [n] + Exc[n] +

∫
d3r n(r)v(r). (3.36)

Consider now the Euler equations for the interacting and non-interacting system. Assuming

the differentiability of the functionals (see Section 3.2.5), these necessary conditions for

having energy minima are

δFHK

δn(r)
+ v(r) = 0 (3.37)

and

δTs
δn(r)

+ vs(r) = 0, (3.38)

respectively. With definition (3.32), from Eqs. (3.37) and (3.38), we obtain

vs(r) = vH [n](r) + vxc[n](r) + v(r). (3.39)

Here, v(r) is the external potential acting upon the interacting electrons, vH [n](r) is the

Hartree potential,

vH [n](r) =

∫
d3r′

n(r′)

|r− r′|
=

δU

δn(r)
, (3.40)
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and vxc[n](r) is the exchange-correlation potential,

vxc[n](r) =
δExc[n]

δn(r)
. (3.41)

Through the decomposition in Eq. (3.32), a significant part of FHK is in the explicit form

of Ts[n] + U [n] without approximation. Though often small, the Exc density functional still

represents an important part of the total energy. Its exact functional form is unknown,

and it therefore must be approximated in practice. However, good and surprisingly efficient

approximations exist for Exc.

We next consider reformulations of DFT, which allow analysis and solution of some important

technical questions at the heart of DFT. They also have a long history of influencing the

analysis of properties of the exact functionals.

3.2.4 Levy’s formulation

An important consequence of the HK theorem is that the Rayleigh-Ritz variational principle

based on the wavefunction can be replaced by a variational principle based on the particle

density. The latter is valid for all densities in the set D, the set of v-representable densities.

Unfortunately, v-representability is a condition which is not easily verified for a given function

n(r). Hence it is highly desirable to formulate the variational principle over a set of densities

characterized by simpler conditions. This was provided by Levy [148] and later reformulated

and extended by Lieb [156]. In this and the sections that follow, Lebesgue and Sobolev

spaces are defined in the usual way [50, 209].

First, the set W is enlarged to WN, which includes all possible antisymmetric and normal-

ized N -particle wavefunctions Ψ. The set WN now also contains N -particle wavefunctions

which are not necessarily ground-state wavefunctions to some external potential v, though
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it remains in the same Sobolev space [50] as W: H1(R3N). Correspondingly, the set D is

replaced by the set DN. DN contains the densities generated from the N -particle antisym-

metric wavefunctions in WN using Eq. (3.6):

DN =

{
n | n(r) ≥ 0,

∫
d3r n(r) = N, n1/2(r) ∈ H1(R3)

}
. (3.42)

The densities of DN are therefore called N -representable. Harriman’s explicit construc-

tion [93] shows that any integrable and positive function n(r) is N -representable.
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Figure 3.3: This diagram shows the two-step minimization of Levy’s constrained search.
The first infimum search is over all wavefunctions corresponding to a certain density ni. The
second search runs over all of the densities [74, 185].

Levy reformulated the variational principle in a constrained-search fashion (see Figure 3.3):
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Ev = inf
n∈DN

{
inf

Ψ→n|Ψ∈WN

〈Ψ|T̂ + V̂ee|Ψ〉+

∫
d3r n(r)v(r)

}
. (3.43)

In this formulation, the search inside the braces is constrained to those wavefunctions which

yield a given density n – therefore the name “constrained search”. The minimum is then

found by the outer search over all densities. The potential v(r) acts like a Lagrangian

multiplier to satisfy the constraint on the density at each point in space. In this formulation,

FHK is replaced by

FLL[n] := inf
Ψ→n
〈Ψ|T̂ + V̂ee|Ψ〉, with Ψ ∈WN and n ∈ DN . (3.44)

The functional EHK can then be replaced by

Ev,LL[n] := FLL[n] +

∫
d3r n(r)v(r), with n ∈ DN. (3.45)

If, for a given v0, the corresponding ground-state particle density, n0, is inserted, then

Ev0,LL[n0] = Ev0,HK[n0] = Ev0 , (3.46)

from which

FLL[n] = FHK[n], for all n ∈ D . (3.47)

Furthermore, if any other particle density is inserted, we obtain

Ev0,LL[n] ≥ Ev0 , for n 6= n0 and n ∈ DN. (3.48)

In this approach, the degenerate case does not require particular care. In fact, the corre-
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spondences between potentials, wavefunctions and densities are not explicitly employed as

they were in the previous Hohenberg-Kohn formulation. However, the N -representability is

of secondary importance in the context of the Kohn-Sham scheme. There, it is still necessary

to assume that the densities of the interacting electrons are non-interacting v-representable

as well. We discuss this point in more detail in the next section.

Though it can be shown that the FLL[n] infimum is a minimum [156], the functional’s lack

of convexity causes a serious problem in proving the differentiability of FLL [156]. Differ-

entiability is needed to define an Euler equation for finding n(r) self-consistently. This is

somewhat alleviated by the Lieb formulation of DFT (see below).

3.2.5 Ensemble-DFT and Lieb’s formulation

In the remainder of this section, we are summarizing more extensive and pedagogical reviews

that can be found in Refs. [50], [43], and [248]. Differentiability of functionals is, essentially,

related to the convexity of the functionals. Levy and Lieb showed that the set D is not

convex [156]. In fact, there exist combinations of the form

n(r) =
M∑
k=1

λknk(r), λk = 1 (0 ≤ λk ≤ 1), (3.49)

where nk is the density corresponding to degenerate ground state Ψk, that are not in D [149,

156].

A convex set can be obtained by looking at ensembles. The density of an ensemble can be

defined through the (statistical, or von Neuman) density operator

D̂ =
M∑
k=1

λk|Ψk〉〈Ψk|, with
M∑
k=1

λk = 1 (0 ≤ λk ≤ 1) . (3.50)
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The expectation value of an operator Ô on an ensemble is defined as

O := Tr
{
D̂Ô

}
, (3.51)

where the symbol “Tr” stands for the trace taken over an arbitrary, complete set of orthonor-

mal N -particle states

Tr{D̂Ô} :=
∑
k

〈Φk|(D̂Ô)|Φk〉. (3.52)

The trace is invariant under unitary transformations of the complete set for the ground-state

manifold of the Hamiltonian Ĥ [see Eq.(3.50)]. Since

Tr
{
D̂Ô

}
=

M∑
k=1

λk〈Ψk|Ô|Ψk〉, (3.53)

the energy obtained from a density matrix of the form (3.50) is the total ground-state energy

of the system.

Densities of the form (3.49) are called ensemble v-representable densities, or E-V-densities.

We denote this set of densities as DEV. Densities that can be obtained from a single wave-

function are said to be pure-state (PS) v-representable, or PS-V-densities. The functional

FHK can then be extended as [216]

FEHK[n] := Tr
{
D̂
(
T̂ + V̂ee

)}
, with n ∈ DEV (3.54)

where D̂ has the form (3.50) and is any density matrix giving the density n. However, the

set DEV, just like D, is difficult to characterize. Moreover, as for FHK and FLL, a proof of

the differentiability of FEHK (and for the non-interacting versions of the same functional) is

not available.
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In the Lieb formulation, however, differentiability can be addressed to some extent [89, 90,

156] . In the work of Lieb, P is restricted to P = L3/2(R3) +L∞(R3) and wavefunctions are

required to be in

WN = {Ψ | ||Ψ|| = 1, T [Ψ] ≤ ∞} . (3.55)

The universal functional is defined as

FL[n] := inf
D̂→n∈DN

Tr
{
D̂
(
T̂ + V̂ee

)}
, (3.56)

and it can be shown that the infimum is a minimum [156]. Note that in definition (3.56), D̂

is a generic density matrix of the form

D̂ =
∑
k

λk|Ψk〉〈Ψk|, with
∑
k

λk = 1 (0 ≤ λk ≤ 1) , (3.57)

where Ψk ∈WN. The sum is not restricted to a finite number of degenerate ground states

as in Eq. (3.50). This minimization over a larger, less restricted set leads to the statements

FL[n] ≤ FLL[n], for n ∈ DN, (3.58)

and

FL[n] = FLL[n] = FHK[n], for n ∈ D . (3.59)

FL[n] is defined on a convex set, and it is a convex functional. This implies that FL[n] is

differentiable at any ensemble v-representable densities and nowhere else [156]. Minimizing
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the functional

EL[n] := FL[n] +

∫
d3r n(r)v(r) (3.60)

with respect to the elements of DEV by the Euler-Lagrange equation

δFL

δn(r)
+ v(r) = 0 (3.61)

is therefore well-defined on the set DEV and generates a valid energy minimum.

We finally address, although only briefly, some important points about the Kohn-Sham

scheme and its rigorous justification. The results for FL carry over to TL[n]. That is, the

functional

TL[n] = inf
D̂→n

Tr
{
D̂T̂
}
, with n ∈ DN (3.62)

is differentiable at any non-interacting ensemble v-representable densities and nowhere else.

We can gather all these densities in the set Ds
EV. Then, the Euler-Lagrange equation

δTL

δn(r)
+ vs(r) = 0 (3.63)

is well defined on the set Ds
EV only. One can then redefine the exchange-correlation functional

as

Exc,L[n] = FL[n]− TL[n]− U [n], (3.64)

and observe that the differentiability of FL[n] and TL[n] implies the differentiability of Exc[n]

only on DEV ∩ Ds
EV. The question as to the size of the latter set remains. For densities

defined on a discrete lattice (finite or infinite) it is known [105] that DEV = Ds
EV. Moreover,
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in the continuum limit, DE and Ds
E can be shown to be dense with respect to one another

[89, 90, 156]. This implies that any element of DEV can be approximated, with an arbitrary

accuracy, by an element of Ds
EV. But, whether or not the two sets coincide remains an open

question.

3.3 Functional Approximations

Numerous approximations to Exc exist, each with its own successes and failures [18]. The

simplest is the local density approximation (LDA), which had early success with solids[132].

LDA assumes that the exchange-correlation energy density can be approximated locally with

that of the uniform gas. DFT’s popularity in the chemistry community skyrocketed upon

development of the generalized gradient approximation (GGA) [192]. Inclusion of density

gradient dependence generated sufficiently accurate results to be useful in many chemical

and materials applications.

Today, many scientists use hybrid functionals, which substitute a fraction of single-determinant

exchange for part of the GGA exchange [13, 14, 145]. More recent developments in functional

approximations include meta-GGAs [197], which include dependence on the kinetic energy

density, and hyper-GGAs [197], which include exact exchange as input to the functional.

Inclusion of occupied and then unoccupied orbitals as inputs to functionals increases their

complexity and computational cost; the idea that this increase is coupled with an increase in

accuracy was compared to Jacob’s Ladder [197]. The best approximations are based on the

exchange-correlation hole, such as the real space cutoff of the LDA hole that ultimately led

to the GGA called PBE [112, 194]. An introduction to this and some other exact properties

of the functionals follows in the remainder of this section.

Another area of functional development of particular importance to the warm dense matter
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community is focused on orbital-free functionals [43, 115, 117, 119, 250]. These approxi-

mations bypass solution of the Kohn-Sham equations by directly approximating the non-

interacting kinetic energy. In this way, they recall the original, pure DFT of Thomas-Fermi

theory [60, 61, 240]. While many approaches have been tried over the decades, including

fitting techniques from computer science [229], no general-purpose solution of sufficient ac-

curacy has been found yet.

3.3.1 Exact Conditions

Though we do not know the exact functional form for the universal functional, we do know

some facts about its behavior and the relationships between its components. Collections

of these facts are called exact conditions. Some can be found by inspection of the formal

definitions of the functionals and their variational properties. The correlation energy and

its constituents are differences between functionals evaluated on the true and Kohn-Sham

systems. As an example, consider the kinetic correlation:

Tc[n] = T [n]− Ts[n]. (3.65)

Since the Kohn-Sham kinetic energy is the lowest kinetic energy of any wavefunction with

density n(r), we know Tc must be non-negative. Other inequalities follow similarly, as well

as one from noting that the exchange functional is (by construction) never positive [17]:

Ex ≤ 0, Ec ≤ 0, Uc ≤ 0, Tc ≥ 0. (3.66)
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Some further useful exact conditions are found by uniform coordinate scaling [152]. In the

ground state, this procedure requires scaling all the coordinates of the wavefunction3 by a

positive constant γ, while preserving normalization to N particles:

Ψγ(r1, r2, ..., rN) = γ3N/2Ψ(γr1, γr2, ..., γrN), (3.67)

which has a scaled density defined as

nγ(r) = γ3n(γr). (3.68)

Scaling by a factor larger than one can be thought of as squeezing the density, while scaling

by γ < 1 spreads the density out. For more details on the many conditions that can be

extracted using this technique and how they can be used in functional approximations, see

Ref. [17].

Of greatest interest in our context are conditions involving exchange-correlation and other

components of the universal functional. Through application of the foregoing definition of

uniform scaling, we can write down some simple uniform scaling equalities. Scaling the

density yields

Ts[nγ] = γ2Ts[n] (3.69)

for the non-interacting kinetic energy and

Ex[nγ] = γ Ex[n] (3.70)

3Here and in the remainder of the chapter, we restrict ourselves to square-integrable wavefunctions over
the domain R3N .
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for the exchange energy. Such simple conditions arise because these functionals are defined

on the non-interacting Kohn-Sham Slater determinant. On the other hand, although the

density from a scaled interacting wavefunction is the scaled density, the scaled wavefunction

is not the ground-state wavefunction of the scaled density. This means correlation scales less

simply and only inequalities can be derived for it.

Another type of scaling that is simply related to coordinate scaling is interaction scaling,

the adiabatic change of the interaction strength [195]. In the latter, the electron-electron

interaction in the Hamiltonian, Vee, is multiplied by a factor, λ between 0 and 1, while

holding n fixed. When λ = 0, interaction vanishes. At λ = 1, we return to the Hamiltonian

for the fully interacting system. Due to the simple, linear scaling of Vee with coordinate

scaling, we can relate it to scaling of interaction strength. Combining this idea with some

of the simple equalities above leads to one of the most powerful relations in ground-state

functional development, the adiabatic connection formula [87, 143]:

Exc[n] =

∫ 1

0

dλUxc[n](λ), (3.71)

where

Uxc[n](λ) = Vee[Ψ
λ[n]]− U [n] (3.72)

and Ψλ[n] is the ground-state wavefunction of density n for a given λ and

Ψλ[n](r1, r2, ..., rN) = λ3N/2Ψ[n1/λ](λr1, λr2, ..., λrN). (3.73)

Interaction scaling also leads to some of the most important exact conditions for construction

of functional approximations, the best of which are based on the exchange-correlation hole.

The exchange-correlation hole represents an important effect of an electron sitting at a given
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position. All other electrons will be kept away from this position by exchange and correlation

effects, due to the antisymmetry requirement and the Coulomb repulsion, respectively. This

representation allows us to calculate Vee, the electron-electron repulsion, in terms of an

electron distribution function.4

To define the hole distribution function, we need first to introduce the pair density function.

The pair density, P (r, r′) describes the distribution of the electron pairs. This is proportional

to the the probability of finding an electron in a volume d3r around position r and a second

electron in the volume d3r′ around r′. In terms of the electronic wavefunction, it is written

as follows

P (r, r′) = N(N − 1)

∫
d3r3 . . .

∫
d3rN |Ψ(r, r′, . . . , rN)|2. (3.74)

We then can define the conditional probability density of finding an electron in d3r′ after

having already found one at r, which we will denote n2(r, r′). Thus

n2(r, r′) = P (r, r′)/n(r). (3.75)

If the positions of the electrons were truly independent of one another (no electron-electron

interaction and no antisymmetry requirement for the wavefunction) this would be just ρ(r′),

independent of r. But this cannot be, as

∫
d3r′ n2(r, r′) = N − 1. (3.76)

The conditional density integrates to one fewer electron, since one electron is at the reference

point. We therefore define a “hole” density:

n2(r, r′) = n(r′) + nhole(r, r
′). (3.77)

4For a more extended discussion of these topics, see Ref. [195].
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which is typically negative and integrates to -1 [195]:

∫
d3r′ nhole(r, r

′) = −1. (3.78)

The exchange-correlation hole in DFT is given by the coupling-constant average:

nxc(r, r
′) =

∫ 1

0

dλ nλhole(r, r
′), (3.79)

where nλhole is the hole in Ψλ. So, via the adiabatic connection formula (Eq. 3.71), the

exchange-correlation energy can be written as a double integral over the exchange-correlation

hole:

Exc =
1

2

∫
d3r n(r)

∫
d3r′

nxc(r, r
′)

|r− r′|
. (3.80)

By definition, the exchange hole is given by nx = nλ=0
hole and the correlation hole, nc, is

everything not in nx. The exchange hole may be readily obtained from the (ground-state)

pair-correlation function of the Kohn-Sham system. Moreover nx(r, r) = 0, nx(r, r
′) ≤ 0,

and for one particle systems nx(r, r
′) = −n(r′). If the Kohn-Sham state is a single Slater

determinant, then the exchange energy assumes the form of the Fock integral evaluated with

occupied Kohn-Sham orbitals. It is straightforward to verify that the exchange-hole satisfies

the sum rule

∫
d3r′ nx(r, r

′) = −1 ; (3.81)

and thus

∫
d3r′ nc(r, r

′) = 0 . (3.82)
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The correlation hole is a more complicated quantity, and its contributions oscillate from

negative to positive in sign. Both the exchange and the correlation hole decay to zero at

large distances from the reference position r.

These and other conditions on the exact hole are used to constrain exchange-correlation

functional approximations. The seemingly unreasonable reliability of the simple LDA has

been explained as the result of the “correctness” of the LDA exchange-correlation hole [53,

109]. Since the LDA is constructed from the uniform gas, which has many realistic properties,

its hole satisfies many mathematical conditions on this quantity [20]. Many of the most

popular improvements on LDA, including the PBE generalized gradient approximation, are

based on models of the exchange-correlation hole, not just fits of exact conditions or empirical

data [194]. In fact, the most successful approximations usually are based on models for the

exchange-correlation hole, which can be explicitly tested [24]. Unfortunately, insights about

the ground-state exchange-correlation hole do not simply generalize as temperatures increase,

as will be discussed later.

3.4 Thermal DFT

Thermal DFT deals with statistical ensembles of quantum states describing the thermody-

namical equilibrium of many-electron systems. The grand canonical ensemble is particularly

convenient to deal with the symmetry of identical particles. In the limit of vanishing temper-

ature, thermal DFT reduces to an equiensemble ground state DFT description [56], which,

in turn, reduces to the standard pure-state approach for non-degenerate cases.

While in the ground-state problem the focus is on the ground state energy, in the statisti-

cal mechanical framework the focus is on the grand canonical potential. Here, the grand

canonical Hamiltonian plays an analogous role as the one played by the Hamiltonian for the
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ground-state problem. The former is written

Ω̂ = Ĥ − τ Ŝ − µN̂, (3.83)

where Ĥ, Ŝ, and N̂ are the Hamiltonian, entropy, and particle-number operators. The crucial

quantity by which the Hamiltonian differs from its grand-canonical version is the entropy

operator:5

Ŝ = − kBlnΓ̂ , (3.84)

where

Γ̂ =
∑
N,i

wN,i|ΨN,i〉〈ΨN,i| . (3.85)

|ΨN,i〉 are orthonormal N -particle states (that are not necessarily eigenstates in general) and

wN,i are normalized statistical weights satisfying
∑

N,iwN,i = 1. Γ̂ allows us to describe the

thermal ensembles of interest.

Observables are obtained from the statistical average of Hermitian operators

O[Γ̂] = Tr {Γ̂Ô} =
∑
N

∑
i

wN,i〈ΨN,i|Ô|ΨN,i〉 . (3.86)

These expressions are similar to Eq. (3.53), but here the trace is not restricted to the ground-

state manifold.

In particular, consider the average of the Ω̂, Ω[Γ̂], and search for its minimum at a given

temperature, τ , and chemical potential, µ. The quantum version of the Gibbs Principle en-

sures that the minimum exists and is unique (we shall not discuss the possible complications

5Note that, we eventually choose to work in a system of units such that the Boltzmann constant is kB = 1,
that is, temperature is measured in energy units.
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introduced by the occurrence of phase transitions). The minimizing statistical operator is

the grand-canonical statistical operator, with statistical weights given by

w0
N,i =

exp[−β(E0
N,i − µN)]∑

N,i exp[−β(E0
N,i − µN)]

. (3.87)

E0
N,i are the eigenvalues of N -particle eigenstates. It can be verified that Ω[Γ̂] may be written

in the usual form

Ω = E − τS − µN = −kBτ lnZG, (3.88)

where ZG is the grand canonical partition function; which is defined by

ZG =
∑
N

∑
j

e−β(E0
N,i−µN) . (3.89)

The statistical description we have outlined so far is the standard one. Now, we wish to

switch to a density-based description and thereby enjoy the same benefits as in the ground-

state problem. To this end, the minimization of Ω can be written as follows:

Ωτ
v−µ = min

ρ

{
F τ [n] +

∫
d3r n(r)(v(r)− µ)

}
(3.90)

with n(r) an ensemble N -representable density and

F τ [n] := min
Γ̂→n

F τ [Γ̂] = min
Γ̂→n

{
T [Γ̂] + Vee[Γ̂]− τS[Γ̂]

}
. (3.91)

This is the constrained-search analog of the Levy functional [148, 185], Eq. (3.44). It replaces

the functional originally defined by Mermin [169] in the same way that Eq. (3.44) replaces

Eq. (3.21) in the ground-state theory. 6

6The interested reader may find the extension of the Hohenberg-Kohn theorem to the thermal framework
in Mermin’s paper.
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Eq. (3.91) defines the thermal universal functional. Universality of this quantity means that

it does not depend explicitly on the external potential nor on µ. This is very appealing, as it

hints at the possibility of widely applicable approximations.

We identify Γτ [n] as the minimizing statistical operator in Eq. (3.91). We can then define

other interacting density functionals at a given temperature by taking the trace over the

given minimizing statistical operator. For example, we have:

T τ [n] := T [Γ̂τ [n]] (3.92)

V τ
ee[n] := Vee[Γ̂

τ [n]] (3.93)

Sτ [n] := S[Γ̂τ [n]]. (3.94)

In order to introduce the thermal Kohn-Sham system, we proceed analogously as in the zero-

temperature case. We assume that there exists an ensemble of non-interacting systems with

same average particle density and temperature of the interacting ensemble. Ultimately, this

determines the one-body Kohn-Sham potential, which includes the corresponding chemical

potential. Thus, the noninteracting (or Kohn-Sham) universal functional is defined as

F τ
s [n] := min

Γ̂→n
Kτ [Γ̂] = Kτ [Γ̂τs [n]] = Kτ

s [n], (3.95)

where Γ̂τs [n] is a statistical operator that describes the Kohn-Sham ensemble and Kτ [Γ̂] :=

T [Γ̂]− τS[Γ̂] is a combination we have chosen to call the kentropy.

We can also write the corresponding Kohn-Sham equations at non-zero temperature, which

are analogous to Eqs. (3.30) and (3.39) [132]:

[
−1

2
∇2 + vs(r)

]
ϕi(r) = ετiϕi(r) (3.96)
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vs(r) = vH [n](r) + vxc[n](r) + v(r). (3.97)

The accompanying density formula is

n(r) =
∑
i

fi|ϕi(r)|2, (3.98)

where

fi =
(

1 + e(ε
τ
i −µ)/τ

)−1

. (3.99)

Eqs. (3.96) and (3.97) look strikingly similar to the case of non-interacting Fermions. How-

ever, the Kohn-Sham weights, fi, are not simply the familiar Fermi functions, due to the

temperature dependence of the Kohn-Sham eigenvalues.

Through the series of equalities in Eq. (3.95), we see that the non-interacting universal

density functional is obtained by evaluating the kentropy on a non-interacting, minimizing

statistical operator which, at temperature τ , yields the average particle density n. The

seemingly simple notation of Eq. (3.95) reduces the kentropy first introduced as a functional

of the statistical operator to a finite-temperature functional of the density. From the same

expression, we see that the kentropy plays a role in this framework analogous to that of the

kinetic energy within ground-state DFT. Finally, we spell-out the components of F τ
s [n]:

F τ
s [n] = T τs [n]− τSτs [n] , (3.100)

where T τs [n] := T [Γ̂τs [n]] and Sτs [n] := S[Γ̂τs [n]].

Now we identify other fundamental thermal DFT quantities. First, consider the decompo-
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sition of the interacting grand-canonical potential as a functional of the density given by

Ωτ
v−µ[n] = F τ

s [n] + U [n] + F τxc[n] +

∫
d3r n(r) (v(r)− µ) . (3.101)

Here, U [n] is the Hartree energy having the form in Eq. (3.34). The adopted notation stresses

that temperature dependence of U [n] enters only through the input equilibrium density. The

exchange-correlation free-energy density functional is given by

F τxc[n] = F τ [n]− F τ
s [n]− U [n] . (3.102)

It is also useful to introduce a further decomposition:

F τxc[n] := F τx [n] + F τc [n] . (3.103)

This lets us analyze the two terms on the right hand side along with their components.

The exchange contribution is

F τx [n] = Vee[Γ
τ
s [n]]− U [n] . (3.104)

Note that the average on the right hand side is taken with respect to the Kohn-Sham ensemble

and that kinetic and entropic contributions do not contribute to exchange effects explicitly.

Interaction enters in Eq. (3.104) in a fashion that is reminiscent of (but not the same as)

finite-temperature Hartree-Fock theory. In fact, F τx [n] may be expressed in terms of the

square modulus of the finite-temperature Kohn-Sham one-body density matrix. Thus F τx [n]

has an explicit, known expression, just as does F τs [n]. For the sake of practical calculations,

however, approximations are still needed.
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The fundamental theorems of density functional theory were proven for any ensemble with

monotonically decreasing weights [238] and were applied to extract excitations [85, 159,

173]. But simple approximations to the exchange for such ensembles are corrupted by ghost

interactions [73] contained in the ensemble Hartree term. The Hartree energy defined in

Eq. (3.34) is defined as the electrostatic self-energy of the density, both for ground-state

DFT and at non-zero temperatures. But the physical ensemble of Hartree energies is in fact

the Hartree energy of each ensemble member’s density, added together with the weights of

the ensembles. Because the Hartree energy is quadratic in the density, it therefore contains

ghost interactions [73], i.e., cross terms, that are unphysical. These must be canceled by the

exchange energy, which must therefore contain a contribution:

∆EGI
X =

∑
i

wiU [ni]− U

[∑
i

wini

]
. (3.105)

Such terms appear only when the temperature is non-zero and so are missed by any ground-

state approximation to Ex.

Consider, now, thermal DFT correlations. We may expect correctly that these will be

obtained as differences between interacting averages and the noninteracting ones. The kinetic

correlation energy density functional is

T τc [n] := T τ [n]− T τs [n], (3.106)

and similar forms apply to Sτc [n] and Kτ
c [n]. Another important quantity is the correlation

potential density functional. At finite-temperature, this is defined by

U τ
c [n] := Vee[Γ

τ [n]]− Vee[Γ
τ
s [n]] . (3.107)
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Finally, we can write the correlation free energy as follows

F τc [n] = Kτ
c [n] + U τ

c [n] = Eτ
c [n]− τSτc [n] (3.108)

where

Kτ
c [n] = T τc [n]− τSτc [n] (3.109)

is the correlation kentropy density functional and

Eτ
c [n] := T τc [n] + U τ

c [n] (3.110)

generalizes the expression of the correlation energy to finite temperature. Above, we have

noticed that entropic contributions do not enter explicitly in the definition of F τx [n]. From

Eq. (3.108), on the other hand, we see that the correlation entropy is essential for determining

F τc [n]. Further, it may be grouped together the kinetic contributions (as in the first identity)

or separately (as in the second identity), depending on the context of the current analysis.

In the next section, we consider finite-temperature analogs of the exact conditions described

earlier for the ground state functionals. This allow us to gain additional insights about the

quantities identified so far.

3.5 Exact Conditions at Non-Zero Temperature

In the following, we review several properties of the basic energy components of thermal

Kohn-Sham DFT [45, 202].
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We start with some of the most elementary properties, their signs [202]:

F τx [n] ≤ 0, F τc [n] ≤ 0, U τ
c [n] ≤ 0, Kτ

c [n] ≥ 0. (3.111)

The sign of F τx [n] is evident from the definition given in terms of the Kohn-Sham one-body

reduced density matrix [50]. The others may be understood in terms of their variational

properties. For example, let us consider the case for Kτ
c [n]. We know that the Kohn-Sham

statistical operator minimizes the kentropy

Kτ
s [n] = Kτ [Γ̂τs [n]] . (3.112)

Thus, we also know that Kτ
s [n] must be less than Kτ [n] = Kτ [Γτ [n]], where Γτ [n] is the

equilibrium statistical operator. This readily implies that

Kτ
c [n] = Kτ [Γ̂τ [n]]−Kτ [Γ̂τs [n]] ≥ 0. (3.113)

An approximation for Kτ
c [n] that does not respect this inequality will not simply have the

“wrong” sign. Much worse is that results from such an approximation will suffer from

improper variational character.

A set of remarkable and useful properties are the scaling relationships. What follows mirrors

the zero-temperature case, but an important and intriguing difference is the relationship

between coordinate and temperature scaling.

We first introduce the concept of uniform scaling of statistical ensembles in terms of a

particular scaling of the corresponding statistical operators. 7 Wavefunctions of each state

in the ensemble can be scaled as in Eq. (3.67). At the same time, we require that the

statistical mixing is not affected, so the statistical weights are held fixed under scaling (we

7Uniform coordinate scaling may be considered as (very) careful dimensional analysis applied to density
functionals. Dufty and Trickey analyze non-interacting functionals in this way in Ref. [45].
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shall return to this point in Section 3.6.1). In summary, the scaled statistical operator is

Γ̂γ :=
∑
N

∑
i

wN,i|Ψγ,N,i〉〈Ψγ,N,i|, (3.114)

where (the representation free) Hilbert space element |Ψγ〉 is such that Ψγ(r1, ..., rN) =

〈r1, ..., rN |Ψγ〉. For sake of simplicity, we restrict ourselves to states of the type typically

considered in the ground-state formalism.

Eq. (3.114) leads directly to scaling relationships for any observable. For instance, we find

N [Γ̂γ] = N [Γ̂], (3.115)

T [Γ̂γ] = γ2T [Γ̂], and (3.116)

S[Γ̂γ] = S[Γ̂] . (3.117)

Combining these, we find

Γ̂τs [nγ] = Γ̂τ/γ
2

γ,s [n] and F τ
s [nγ] = γ2F τ/γ2

s [n]. (3.118)

Eq. (3.118) states that the value of the non-interacting universal functional evaluated at a

scaled density is related to the value of the same functional evaluated on the unscaled density

at a scaled temperature. Eq. (3.118) constitutes a powerful statement, which becomes more

apparent by rewriting it as follows [202]:

F τ ′

s [n] =
τ ′

τ
F τ
s [ρ√

τ/τ ′
]. (3.119)

This means that, if we know F τ
s [n] at some non-zero temperature τ , we can find its value at

any other temperature by scaling its argument.

Scaling arguments allow us to extract other properties of the functionals, such as some of
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their limiting behaviors. For instance, we can show that in the “high-density” limit, the

kinetic term dominates [202]:

T∞s [n] = lim
γ→+∞

Fs[nγ]/τ
2 (3.120)

while in the “low-density” limit, the entropic term dominates:

S∞s [n] = lim
γ→0

Fs[nγ]τ. (3.121)

Also, we may consider the interacting universal functional for a system with coupling strength

equal to λ

F τ,λ[n] = min
Γ̂→n

{
T [Γ̂] + λVee[Γ̂]− τS[Γ̂]

}
, (3.122)

and note that in general,

Γ̂τ,λ[n] 6= Γ̂τ [n]. (3.123)

We can relate these two statistical operators [202]. In fact, one can prove

Γ̂τ,λ[n] = Γ̂
τ/λ2

λ [n1/λ] and F τ,λ[n] = λ2F τ/λ2 [n1/λ]. (3.124)

In the expressions above, a single superscript implies full interaction [202]. Eq. (3.124)

demands scaling of the coordinates, the temperature, and the strength of the interaction at

once. This procedure connects one equilibrium state to another equilibrium state, that of a

“scaled” system. Eq. (3.124) may be used to state other relations similar to those discussed

above for the non-interacting case.

Scaling relations combined with the Hellmann-Feynman theorem allow us to generate the
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thermal analog of one of the most important statements of ground-state DFT, the adiabatic

connection formula [202]:

F τxc[n] =

∫ 1

0

dλ U τ
xc[n](λ), (3.125)

where

U τ
xc[n](λ) = Vee[Γ̂

τ,λ[n]]− U [n] (3.126)

and a superscript λ implies an electron-electron interaction strength equal to λ. The inter-

action strength runs between zero, corresponding to the noninteracting Kohn-Sham system,

and one, which gives the fully interacting system. All this must be done while keeping

the density constant. In thermal DFT, an expression like Eq. (3.125) offers the appealing

possibility of defining an approximation for F τxc[n] without having to deal with kentropic

contributions explicitly.

Another interesting relation generated by scaling connects the exchange-correlation to the

exchange-only free energy [202]:

F τx [n] = lim
γ→∞
Fγ2τxc [nγ]/γ. (3.127)

This may be considered the definition of the exchange contribution in an xc functional, and

so Eq. (3.127) may also be used to extract an approximation for the exchange free energy, if

an approximation for the exchange-correlation free energy as a whole is given (for example,

if obtained from Eq. (3.125)).

Despite decades of research [38, 199, 200, 201], thermal exchange-correlation GGAs have not

been fully developed. The majority of the applications in the literatures have adopted two

practical methods: one uses plain finite-temperature LDA, the other uses ground-state GGAs
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within the thermal Kohn-Sham scheme. This latter method ignores any modification to the

exchange-correlation free energy functional due to its non-trivial temperature dependence.

As new approximations are developed, exact conditions such as those above are needed to

define consistent and reliable thermal approximations.

3.6 Discussion

In this section, we discuss several aspects that may not have been fully clarified by the

previous, relatively abstract sections. First, by making use of a simple example, we will

illustrate in more detail the tie between temperature and coordinate scaling. Then, with

the help of another example, we will show how scaling and other exact properties of the

functionals can guide development and understanding of approximations. The last subsection

notes some complications in importing tools directly from ground-state methods to thermal

DFT.

3.6.1 Temperature and Coordinate Scaling

Here we give an illustration of how the scaling of the statistical operators introduced in the

previous section is applicable to thermal ensembles. Our argument applies – with proper

modifications and additions, such as the scaling of the interaction strength – to all Coulomb-

interacting systems with all one-body external potentials. For sake of simplicity, we shall

restrict ourselves to non-interacting fermions in a one-dimensional harmonic oscillator at

thermodynamic equilibrium.

Let us start from the general expression of the Fermi occupation numbers

ni(τ, µεi) =
(
1 + eβ(εi−µ)

)−1
, (3.128)
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where εi is the ith eigenvalue of the harmonic oscillator, εi = ω(i+ 1/2). For our system, the

(time-independent) Schrödinger equation is:

{
−1

2

d2

dx2
+ v(x)

}
φi(x) = εiφi(x) . (3.129)

Now, we multiply the x-coordinates by γ

{
− 1

2γ2

d2

dx2
+ v(γx)

}
φi(γx) = εiφi(γx). (3.130)

We then multiply both sides by γ2:

{
−1

2

d2

dx2
+ γ2v(γx)

}
φi(γx) = γ2εiφi(γx). (3.131)

Substituting ṽ(x) = γ2v(γx), φ̃i(x) =
√
γφi(γx) (to maintain normalization), and ε̃i = γ2εi

yields

{
−1

2

d2

dx2
+ ṽ(x)

}
φ̃i(x) = ε̃iφ̃i(x). (3.132)

The latter may be interpreted as the Schrödinger equation for a “scaled” system. In the

special case of the harmonic oscillator,

γ2v(γx) = γ4v(x), (3.133)

the frequency scales quadratically, consistent with the scaling of the energies described just

above. Now, let us look at the occupation numbers for the “scaled” system

ni(τ, µ̃, ε̃i) =
(
1 + eβ(ε̃i−µ̃)

)−1
, (3.134)

where µ̃ = γ2µ (in this way, the average number of particle is kept fixed too). These
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occupation numbers are equal to those of the original system at a temperature τ/γ2,

ni(τ, µ̃, ε̃i) = ni(τ/γ
2, µ, εi). (3.135)

Thus the statistical weights of the scaled system are precisely those of the original system,

at a suitably scaled temperature.

3.6.2 Thermal-LDA for Exchange Energies

In ground-state DFT, uniform coordinate scaling of the exchange has been used to constrain

the form of the exchange-enhancement factor in GGAs. In thermal DFT, a “reduction”

factor, Rx, enters already in the expression of a LDA for the exchange energies. This lets

us capture the reduction in exchange with increasing temperature, while keeping the zero-

temperature contribution well-separated from the modification entirely due to non-vanishing

temperatures.

The behavior of Rx can be understood using the basic scaling relation for the exchange free

energy. Observe that, from the scaling of Γ̂s
τ
, U , and Vee[Γ

τ
s [n]], one readily arrives at

F τx [nγ] = γF τ/γ2x [n]. (3.136)

Since

FLDA,τ
x [n] =

∫
d3r f τx (n(r)), (3.137)

Eq. (3.136) implies that a thermal-LDA exchange free energy density must have the form [202]

funif,τ
x (n) = eunif

x (n)Rx(Θ), (3.138)
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where eunif
x (n) = −Axn4/3, Ax = (3/4π)(3π2)1/3, and Rx can only depend on τ and n through

the electron degeneracy Θ = 2τ/(3π2n(r))2/3.

The LDA is exact for the uniform electron gas and so automatically satisfies many conditions.

As such, it also reduces to the ground-state LDA as temperature drops to zero:

Rx → 1 as τ → 0. (3.139)

Moreover, for fixed n, we expect

F τx/U → 0 as τ →∞ (3.140)

because the effect of the Pauli exclusion principle drops off as the behavior of the system

becomes more classical. Moreover, since U [n] does not depend explicitly on the temperature,

fixing n also fixes U . We conclude that, the reduction factor must drop to zero:

Rx → 0 as τ →∞. (3.141)

Now, let us consider the parameterization of Rx for the uniform gas by Perrot and Dharma-

Wardana [200]:

Runif
x (Θ) ≈

(
4

3

)
0.75 + 3.04363Θ2 − 0.092270Θ3 + 1.70350Θ4

1 + 8.31051Θ2 + 5.1105Θ4
tanhΘ−1 , (3.142)

Here, Θ = τ/εF = 2τ/k2
F and kF is the Fermi wavevector. Note the factor of 4/3 that is not

present in their original paper, which arises because we include a factor of 3/4 in Ax they do

not. Fig. 3.4 shows the plot of this reduction factor. From both Fig. 3.4 and Eq. (3.142), it

is apparent that the parametrization satisfies all the exact behaviors discussed just above.
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3.6.3 Exchange-Correlation Hole at Non-Zero Temperature

Previously, we have emphasized that in ground-state DFT, the exchange-correlation hole

function was vital for constructing reliable approximations. Therefore, it is important to

reconsider this quantity in the context of thermal DFT. As we show below, this does not

come without surprises.

In the grand canonical ensemble, the pair correlation function is a sum over statistically

weighted pair correlation functions of each of the states in the ensemble labeled with collective

index, ν (in this section, we follow notation and convention of Refs. [190] and [139]). A state

Ψλ,ν has particle number Nν , energy Eν , and corresponds to λ-scaled interaction. If its

weight in the ensemble is denoted as

wλ,ν =
e−β(Eλ,ν−µNν)∑
ν e
−β(Eλ,ν−µNν)

, (3.143)

the ensemble average of the exchange-correlation hole density is

〈
nλxc(r, r

′)
〉

=
∑
ν

wλ,νn
λ
xc,ν(r, r

′). (3.144)

However, the exchange-correlation hole function used to obtain F τxc through a λ integration

requires the addition of more complicated terms [139]:

nλxc(r, r
′) =

〈
nλxc(r, r

′)
〉

+
∑
ν

wλ,ν
[nλ,ν(r)− n(r)]

n(r)
[nλ,ν(r

′) + nλxc,ν(r, r
′)], (3.145)

where nλxc,ν is the usual exchange-correlation hole corresponding to Ψλ,ν with particle density

nλ,ν .
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Thus, the sum rule stated in the ground state gets modified as follows [191]

∫
d3r′ nλxc(r, r

′) = −1 +
∑
ν

wλ,ν
nλ,ν(r)

n(r)
[Nν − 〈N〉]. (3.146)

The last expression shows that the sum rule for the thermal exchange-correlation hole ac-

counts for an additional term due to particle number fluctuations. Worse still, this term

carries along with it state-dependent, and therefore system-dependent, quantities. This is

an important warning that standard methodologies for producing reliable ground-state func-

tional approximations must be properly revised for use in the thermal context.

3.7 Conclusion

Thermal density functional theory is an area ripe for development in both fundamental theory

and the construction of approximations because of rapidly expanding applications in many

areas. Projects underway in the scientific community include construction of temperature-

dependent GGAs [204], exact exchange methods for non-zero temperatures [82], orbital-free

approaches at non-zero temperatures [121], and continued examination of the exact condi-

tions that may guide both of these developments [204]. In the world of warm dense matter,

simulations are being performed, often very successfully [203], generating new insights into

both materials science and the quality of our current approximations [205]. As discussed

above, techniques honed for zero-temperature systems should be carefully considered before

being applied to thermal problems. Studying exact properties of functionals may guide effi-

cient progress in application to warm dense matter. In context, thermal DFT emerges as as

a clear and solid framework that provides users and developers practical and formal tools of

general fundamental relevance.

We would like to thank the Institute for Pure and Applied Mathematics for organization of

89



Workshop IV: Computational Challenges in Warm Dense Matter and for hosting APJ during

the Computational Methods in High Energy Density Physics long program. APJ thanks

the U.S. Department of Energy (DE-FG02-97ER25308), SP and KB thank the National

Science Foundation (CHE-1112442), and SP and EKUG thank European Community’s FP7,

CRONOS project, Grant Agreement No. 280879.

90



Part IV

Ensemble DFT
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Chapter 4

Excitations and benchmark ensemble

density functional theory for two

electrons

written with Zeng-hui Yang, John R. Trail, Kieron Burke, Richard J. Needs, and Carsten

A. Ullrich. Published in J. Chem. Phys. 140 18A541 (2014).

Abstract: A new method for extracting ensemble Kohn-Sham potentials from accurate excited

state densities is applied to a variety of two electron systems, exploring the behavior of exact

ensemble density functional theory. The issue of separating the Hartree energy and the choice

of degenerate eigenstates is explored. A new approximation, spin eigenstate Hartree-exchange

(SEHX), is derived. Exact conditions that are proven include the signs of the correlation

energy components, the virial theorem for both exchange and correlation, and the asymptotic

behavior of the potential for small weights of the excited states. Many energy components are

given as a function of the weights for two electrons in a one-dimensional flat box, in a box with

a large barrier to create charge transfer excitations, in a three-dimensional harmonic well
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(Hooke’s atom), and for the He atom singlet-triplet ensemble, singlet-triplet-singlet ensemble,

and triplet bi-ensemble.

4.1 Introduction and illustration

Ground-state density functional theory[99, 132] (DFT) is a popular choice for finding the

ground-state energy of electronic systems,[18] and excitations can now easily be extracted

using time-dependent DFT[32, 162, 214, 243] (TDDFT). Despite its popularity, TDDFT cal-

culations have many well-known difficulties,[103, 160, 181, 245] such as double excitations[48]

and charge-transfer excitations.[44, 242] Alternative DFT treatments of excitations[69, 77,

151] are always of interest.

Ensemble DFT (EDFT)[85, 86, 159, 238] is one such alternative approach. Unlike TDDFT, it

is based on an energy variational principle.[86, 239] An ensemble of monotonically decreasing

weights is constructed from the M + 1 lowest levels of the system, and the expectation value

of the Hamiltonian over orthogonal trial wavefunctions is minimized by the M + 1 exact

lowest eigenfunctions.[86] A one-to-one correspondence can be established between ensemble

densities and potentials for a given set of weights, providing a Hohenberg-Kohn theorem, and

application to non-interacting electrons of the same ensemble density yields a Kohn-Sham

scheme with corresponding equations.[85] In principle, this yields the exact ensemble energy,

from which individual excitations may be extracted.

But to make a practical scheme, approximations must be used.[68, 170, 173, 174, 225] These

have been less successful for EDFT than those of ground-state DFT[13, 14, 112, 145, 194]

and TDDFT,[107, 162] and their accuracy is not yet competitive with TDDFT transition

frequencies from standard approximations. Some progress has been made in identifying some

major sources of error.[73, 235, 236]
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Figure 4.1: Exact densities and equiensemble exchange-correlation potentials of the 1D box
with two electrons. The third excited state (I = 4) is a double excitation. See Sec. 4.6.1.
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To help speed up that progress, we have developed a numerical algorithm to calculate en-

semble Kohn-Sham (KS) quantities (orbital energies, energy components, potentials, etc.)

essentially exactly,[257] from highly accurate excited-state densities. In the present paper,

we provide reference KS calculations and results for two-electron systems under a variety

of conditions. The potentials we find differ in significant ways from the approximations

suggested so far, hopefully leading to new and better approximations.

To illustrate the essential idea, we perform calculations on simple model systems. For exam-

ple, Sec. 4.6.1 presents two ‘electrons’ in a one-dimensional box, repelling one another via a

(slightly softened) Coulomb repulsion. In Fig. 4.1, we show their ground- and excited-state

densities, with I indicating the specific ground or excited state. We also plot the ensem-

ble exchange-correlation potentials for equally weighted mixtures of the ground and excited

states, which result from our inversion scheme. In this lower plot, I = 1 denotes the ground-

state exchange-correlation potential, and I > 1 indicates the potential corresponding to an

equal mixture of the ground state and all multiplets up to and including the I-th state.

Excitation energies for all these states are extracted using the EDFT methods described

below.

The paper is laid out as follows. In the next section, we briefly review the state-of-the-art

for EDFT, introducing our notation. Then we give some formal considerations about how to

define the Hartree energy. The naive definition, taken directly from ground-state DFT, in-

troduces spurious unphysical contributions (which then must be corrected-for) called ‘ghost’

corrections.[73] We also consider how to make choices among KS eigenstates when they are

degenerate, and show that such choices matter to the accuracy of the approximations. We

close that section by showing how to construct symmetry-projected ensembles.

In the following section, we prove a variety of exact conditions within EDFT. Such condi-

tions have been vital in constructing useful approximations in ground-state DFT.[152, 194]

Following that, we describe our numerical methods in some detail.
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The results section consists of calculations for quite distinct systems, but all with just two

electrons. The one-dimensional flat box was used for the illustration here, which also gives

rise to double excitations. A box with a high, asymmetric barrier produces charge-transfer

excitations. Hooke’s atom is a three-dimensional system, containing two Coulomb-repelling

electrons in a harmonic oscillator external potential.[62] It has proven useful in the past to

test ideas and approximations in both ground-state and TDDFT calculations.[97] We close

the section reporting several new results for the He atom, using ensembles that include low-

lying triplet states. Atomic units [e = ~ = me = 1/(4πε0) = 1] are used throughout unless

otherwise specified.

4.2 Background

4.2.1 Basic theory

The ensemble variational principle[86] states that, for an ensemble of the lowest M+1 eigen-

states Ψ0, . . . ,ΨM of the Hamiltonian Ĥ and a set of orthonormal trial functions Ψ̃0, . . . , Ψ̃M ,

M∑
m=0

wm

〈
Ψ̃m

∣∣∣Ĥ∣∣∣ Ψ̃m

〉
≥

M∑
m=0

wmEm, (4.1)

when the set of weights wm satisfies

w0 ≥ w1 ≥ . . . ≥ wm ≥ . . . ≥ 0, (4.2)
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and Em is the eigenvalue of the mth eigenstate of Ĥ. Equality holds only for Ψ̃m = Ψm.

The density matrix of such an ensemble is defined by

D̂W =
M∑
m=0

wm|Ψm〉〈Ψm|, (4.3)

where W denotes the entire set of weight parameters. Properties of the ensemble are then

defined as traces of the corresponding operators with the density matrix. The ensemble

density nW(r) is

nW(r) = tr{D̂Wn̂(r)} =
M∑
m=0

wmnm(r), (4.4)

and the ensemble energy EW is

EW = tr{D̂WĤ} =
M∑
m=0

wmEm. (4.5)

nW(r) is normalized to the number of electrons, implying
∑M

m=0 wm = 1.

A Hohenberg-Kohn (HK)[99] type theorem for the one-to-one correspondence between nW(r)

and the potential in Ĥ has been proven,[85, 238] so all ensemble properties are functionals of

nW(r), including D̂W . The ensemble HK theorem allows the definition of a non-interacting KS

system, which reproduces the exact nW(r). The existence of an ensemble KS system assumes

ensemble v-representability. EDFT itself, however, only requires ensemble non-interacting

N -representability, since a constrained-search formalism is available.[85, 91] Ensemble N -

and v-representability are not yet proven, only assumed.

As in the ground-state case, only the ensemble energy functional is formally known, which

is

EW [n] = FW [n] +

∫
d3r n(r)v(r), (4.6)
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where v(r) is the external potential. The ensemble universal functional FW is defined as

FW [n] = tr{D̂W [n](T̂ + V̂ee)}, (4.7)

where T̂ and V̂ee are the kinetic and electron-electron interaction potential operators, re-

spectively. The ensemble variational principle ensures that the ensemble energy functional

evaluated at the exact ensemble density associated with v(r) is the minimum of this func-

tional, Eq. (4.5).

The ensemble KS system is defined as the non-interacting system that reproduces nW(r) and

satisfies the following non-interacting Schrödinger equation:

{
−1

2
∇2 + vS,W [nW ](r)

}
φj,W(r) = εj,Wφj,W(r). (4.8)

The ensemble KS system has the same set of wm as the interacting system. This consistency

has non-trivial implications even for simple systems. This will be explored more in Sec.

4.2.2.

The KS density matrix D̂s,W is

D̂S,W =
M∑
m=0

wm|Φm〉〈Φm|, (4.9)

where Φm are non-interacting N -particle wavefunctions, usually assumed to be single Slater

determinants formed by KS orbitals φj,W . We find that this choice can be problematic, and

it will be discussed in Sec. 4.3.1. The ensemble density nW(r) is reproduced by the KS

system, meaning

nW(r) =
M∑
m=0

wmnm(r) =
M∑
m=0

wmnS,m(r), (4.10)
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where nm(r) = 〈Ψm |n̂(r)|Ψm〉, and nS,m(r) = 〈Φm |n̂(r)|Φm〉. The KS densities of the

individual states are generally not related to those of the interacting system; only their

weighted sums are equal, as in Eq. (4.10).

EW [n] is decomposed as in ground-state DFT,

EW [n] = TS,W [n] + V [n] + EH[n] + EXC,W [n]

= tr{D̂S,WT̂}+

∫
d3r n(r)v(r)

+ EH[n] + EXC,W [n],

(4.11)

where only the ensemble exchange-correlation (XC) energy EXC,W is unknown. The form of

vS,W(r) is then determined according to the variational principle by requiring δEW [nW ]/δnW(r) =

0, resulting in

vS,W [nW ](r) = v(r) + vH[nW ](r) + vXC,W [nW ](r), (4.12)

where vH[n](r) = δEH[n]/δn(r), and vXC,W [n](r) = δEXC,W [n]/δn(r). EH is generally defined

to have the same form as the ground-state Hartree energy functional. Although this choice

is reasonable, we find that it is more consistent to consider EHX, the combined Hartree and

exchange energy. This point will be discussed in Sec. 4.3.1.

The ensemble universal functional FW [n] depends on the set of weights wm. Ref. [85] intro-

duced the following set of weights, so that only one parameter w is needed:

wm =


1−wgI
MI−gI

m < MI − gI ,

w m ≥MI − gI ,
(4.13)

where w ∈ [0, 1/MI ]. In this ensemble, here called GOK for the authors Gross, Oliveira, and

Kohn,[73] I denotes the set of degenerate states (or ‘multiplet’) with the highest energy in
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the ensemble, gI is the multiplicity of the I-th multiplet, and MI is the total number of states

up to the I-th multiplet. GOK ensembles must contain full sets of degenerate states to be

well-defined. The weight parameter w interpolates between two ensembles: the equiensemble

up to the I-th multiplet (w = 1/MI) and the equiensemble up to the (I − 1)-th multiplet

(w = 0). All previous studies of EDFT have been based on this type of ensemble.

The purpose of EDFT is to calculate excited-state properties, not ensemble properties. With

the GOK ensemble, the excitation energy of multiplet I from the ground state, ωI , is obtained

using ensembles up to the I-th multiplet as

ωI =
1

gI

∂EI,w
∂w

∣∣∣∣
w=wI

+
I−1∑
i=0

1

Mi

∂Ei,w
∂w

∣∣∣∣
w=wi

, (4.14)

which simplifies to

ω1 = ωs,1,w +
∂EXC,w[n]

∂w

∣∣∣∣
n=nw

(4.15)

for the first excitation energy. Eq. (5.10) holds for any valid wi’s if the ensemble KS sys-

tems are exact, despite every term in Eq. (5.10) being w-dependent. No existing EXC,w

approximations satisfy this condition.[159, 173]

Levy[150] pointed out that there is a special case for w→ 0 of bi-ensembles (I = 2, with all

degenerate states within a multiplet having the same density),

∆vXC = lim
w→0

∂EXC,w[n]

∂w

∣∣∣∣
n=nw

=
[
lim
w→0

vXC,w[nw](r)
]
− vxc,w=0[nw=0](r)

(4.16)

for finite r, where ∆vXC is the change in the KS highest-occupied-molecular-orbital (HOMO)

energy between w = 0 (ground state) and w→ 0+.[1] ∆vXC is a property of electron-number-

neutral excitations, and should not be confused with the ground-state derivative discontinuity
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∆XC, which is related to ionization energies and electron affinities.[43]

4.2.2 Degeneracies in the Kohn-Sham system

Taking the He atom as our example, the interacting system has a non-degenerate ground

state, triply degenerate first excited state, and a non-degenerate second excited state. How-

ever, the KS system has a four-fold degenerate first excited state (corresponding to four

Slater determinants), due to the KS singlet and triplet being degenerate (Fig. 4.2). Con-

sider an ensemble of these states with arbitrary, decreasing weights, in order to work with

the most general case. Represent the ensemble energy functional Eq. (4.5) as the KS ensem-

ble energy, ES,W , plus a correction, GW . This correction then must encode the switch from

depending only on the sum of the weights of the excited states as a whole in the KS case to

depending on the sum of triplet weights and the singlet weight separately.

˜ I =1

˜ g ( ˜ I =1) = 4"#
1

I = 0

I =1

g(I =1) = 3

I = 2

g(I = 2) =1

˜ I = 0

Real Kohn "Sham

"
1

"
2

˜ I = 2

˜ g ( ˜ I = 2) = 4

Figure 4.2: Diagram of the interacting and KS multiplicity structure for He. Degeneracy
of the I-th multiplet is g(I); tildes denote KS values. For instance, Ĩ = 2 refers to the KS
multiplet used to construct the second (singlet) multiplet of the real system (I = 2), as is
described in Sec. 4.3.2.
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For the interacting system, the ensemble energy and density take the forms

EW = E0 + wTω1 + wSω2,

nW(r) = n0(r) + wT∆n1(r) + wS∆n2(r),

(4.17)

where ωi = Ei − E0, and so on, wT is the sum of the triplet weights, and wS is the singlet

weight. On the other hand, for the KS system we have

ES,W = ES,0 + (wT + wS) ∆ε1,w,

nW(r) = 2 |φ1s|2 + (wT + wS)
(
|φ2s|2 − |φ1s|2

)
.

(4.18)

Each of the weights must be the same for the non- interacting and interacting systems,

in order to define an adiabatic connection, but wT may differ from wS. If they are equal

as in some ensemble treatments, variational principles for ensembles may be connected to

statistical mechanics and one another more readily.[186]

The functional GW = EW − ES,W in this case is

GW [nW ] = E0 − Es,0 + wT (ω1 −∆ε1) + wS (ω2 −∆ε1) , (4.19)

showing that, in its most general form, the exact ensemble energy functional (which can also

be decomposed as in Eq. (4.11)) has to encode the change in the multiplet structure between

non-interacting and interacting systems, even for a simple system like the He atom. Such

information is unknown a priori for general systems, and can be very difficult to incorporate

into approximations. In light of this difficulty, some researchers opt to use single-Slater-

determinant states and equal weights for degenerate states.[186] However, we show that

this problem can be alleviated if the degeneracies are the result of symmetry. This will be

discussed in Sec. 4.3.3.
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4.2.3 Approximations

Available approximations to the ensemble EXC include the quasi-local-density approximation

(qLDA) functional[131, 159] and the ‘ghost’-corrected exact exchange (EXX) functional.[73,

173] The qLDA functional is based on the equiensemble qLDA,[131] and it interpolates

between two consecutive equiensembles:[159]

EqLDA
XC,I,w [n] = (1−MIw)EeqLDA

XC,I−1 [n] +MIwE
eqLDA
XC,I [n], (4.20)

where EeqLDA
XC is the equiensemble qLDA functional defined in terms of finite-temperature

LDA in Ref. [131].

The ensemble Hartree energy is defined analogously to the ground-state Hartree energy as

shown in Eq. (4.11). Similarly, Nagy provides a definition of the exchange energy for bi-

ensembles:[173]

ENagy
X,w [n↑, n↓] = −1

2

∑
σ

∫
d3rd3r′

|nσ(r, r′)|2

|r− r′|
, (4.21)

where nσ(r, r′) is the reduced density matrix defined analogously to its ground-state coun-

terpart, assuming a spin-up electron is excited in the first excited state:

nσ,w(r, r
′) =

Nσ∑
j=1

nj,σ(r, r′) + δσ,↑w (nL↑(r, r
′)− nH↑(r, r

′)) , (4.22)

with nj,σ(r, r′) = φj,σ(r)φ∗j,σ(r′), L↑= N↑ + 1 and H↑= N↑, the spin-up lowest-unoccupied-

molecular-orbital (LUMO) and HOMO, respectively. Both EH in Eq. (4.11) and (4.21)

contain ‘ghost’ terms,[73] which are cross-terms between different states in the ensemble due

to the summation form of nw(r) in Eq. (4.4) and nw(r, r
′) in Eq. (4.22). An EXX functional

is obtained after such spurious terms are corrected. As an example of the GPG X energy

functional[73] (named for its creators Gidopoulos, Papaconstinou, and Gross), take two-state
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ensembles constructed as in the Nagy example above. For this simplified case, the GPG X

energy functional is

EGPG
X,w [n↑, n↓] =

∫
d3rd3r′

|r− r′|

{
−1

2
(nσ(r, r′))

2
+ ww [nH↑(r, r

′)nL↑(r, r
′)− nH↑(r

′)nH↑(r
′)]

}
,

(4.23)

where w = 1− w. These ‘ghost’ corrections are small compared to the Hartree and exchange

energies. However, they are large corrections to the excitation energies, as Eq. (5.10) contains

energy derivatives instead of energies. Table 4.1 shows a few examples.

With the help of the exact ensemble KS systems to be presented in this paper, we construct

a new approximation, the motivation and justification of which will be explained in Secs.

4.3.1 and 4.3.2.

4.3 Theoretical considerations

In this section, we review important definitions and extend EDFT to improve the consistency

and generality of the theory.

4.3.1 Choice of Hartree energy

The energy decomposition in Eq. (4.11) is analogous to its ground-state counterpart. How-

ever, unlike TS and V , the choices for EH and EX and EC are ambiguous; only their sum

is uniquely determined. As shown in Eq. (4.11) and (4.21), definitions for EH and EX can

introduce ‘ghost’ terms. Corrections can be considered either a part of EH and EX or a part

of EC. Such correction terms also take a complicated form when generalized to multi-state

ensembles.
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A more natural way of defining EH and EXC for ensembles can be achieved by considering

the purpose of this otherwise arbitrary energy decomposition. In the ground-state case, the

electron-electron repulsion reduces[154] to the Hartree energy for large Z, which is a simple

functional of the density. The remaining unknown, EXC (and its components EX and EC), is

a small portion of the total energy, so errors introduced by approximations to it are small.

For ensembles, we review a slightly different energy decomposition proposed by Nagy.[174,

175] Instead of defining EH and EX in analogy to their ground-state counterparts, first define

the combined Hartree-exchange energy EHX, which is the more fundamental object in EDFT.

EHX can be explicitly represented as the trace of the KS density matrix:

EHX,W = tr{D̂S,WV̂ee} =
M∑
m=0

wm

〈
Φm

∣∣∣V̂ee

∣∣∣Φm

〉
. (4.24)

For the ground state, both Hartree and exchange contributions are first-order in the adi-

abatic coupling constant, while correlation consists of all higher-order terms. According

to the definition above, this property in the ensemble is retained. Eq. (4.24) contains no

‘ghost’ terms by definition, eliminating the need to correct them.[175] As a consequence, the

correlation energy, EC, is defined and decomposed as

EC,W = EHXC,W − EHX,W = TC,W + UC,W , (4.25)

where EHXC,W = EW − TS,W − V , TC,W = TW − TS,W and UC,W = EC,W − TC,W .

This form of EHX reveals a deeper problem in EDFT. As demonstrated in Sec. 4.2.2, the

multiplet structure of real and KS He atoms is different. Real He has a triplet state and a sin-

glet state as the first and second excited states, but KS He has four degenerate single Slater

determinants as the first excited states. Worse, the KS single Slater determinants are not

eigenstates of the total spin operator Ŝ2, so their ordering is completely arbitrary. The KS

system is constructed to yield only the real spin densities, not other quantities. KS wavefunc-
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tions that are not eigenstates of Ŝ2 do not generally affect commonly calculated ground-state

DFT properties,[196] but things are clearly different in EDFT. Consider the bi-ensemble of

the ground state and the triplet excited state of He. Then EHX,w[ρw] depends on which three

of the four KS excited-state Slater determinants are chosen, though it must be uniquely de-

fined. Therefore, we choose the KS wavefunctions in EDFT to be linear combinations of the

degenerate KS Slater determinants, preserving spatial and spin symmetries and eliminating

ambiguity in EHX. We note here that GPG allows use of spin eigenstates[73] as in their own

atomic calculations, but we require it from our approximation. Such multi-determinant, spin

eigenstates are also required for construction of symmetry-projected ensembles, as described

in Sec. 4.3.3.

With EHX fixed, the definitions of EH and EX depend on one another, but EC does not.

Defining a Hartree functional in the same form as the ground-state

U [n] =
1

2

∫
d3r

∫
d3r′

n(r)n(r)

|r− r′|
, (4.26)

we can examine different definitions for the GOK ensemble. A ‘ghost’-free ensemble Hartree,

Eens
H , can be defined as

Eens
H,w =

M∑
m=0

wmU [nm], (4.27)

i.e., the ensemble sum of the Hartree energies of the interacting densities, or as the slightly

different

EKS ens
H,w =

M∑
m=0

wmU [ns,m], (4.28)

i.e., the ensemble sum of the Hartree energies of the KS densities. The traditional Hartree
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definition,

Etrad
H,w = U [nw], (4.29)

introduces ‘ghost’ terms through the fictitious interaction of ground- and excited-state den-

sities. Traditional and ensemble definitions differ in their production of ‘ghosts,’ as well as

in their w-dependence. The ‘ghost’-corrected EH in Ref. [73]

EGPG
H,w =

M∑
m=0

w2
mU [ns,m] (4.30)

has a different form from Eq. (4.28), which is also ‘ghost’-free. Each of these definitions

of EH reduces to the ground-state EH when w0 = 1 and satisfies simple inequalities such

as EH > 0 and EX < 0. However, this ambiguity in the definition of EH requires that an

approximated ensemble EXC be explicit about its compatible EH definition.

The different flavors of EH,w are compared for the He singlet ensemble[257] in Fig. 4.3.

Even though Eens
H,w and EKS ens

H,w do not contain ‘ghost’ terms by definition, their magnitude

is slightly bigger than that of Etrad
H , which is not ‘ghost’-free. This apparent contradiction

stems from Eens
H,w and EKS ens

H,w depending linearly on w, while Etrad
H,w depends on w quadratically.

The quadratic dependence on w is made explicit with the ‘ghost’-corrected EGPG
H,w of Ref.

[73]. Comparing with the ‘ghost’-free Eens
H,w and EKS ens

H,w , it is clear that EGPG
H overcorrects in

a sense, and is compensated by an over-correction of the opposite direction in EGPG
X .

The traditional definition of Eq. (4.29) has the advantage that vH(r) is a simple functional

derivative with respect to the ensemble density. Any other definition requires solving an

optimized effective potential (OEP)[223, 232]-type equation to obtain vH. On the other hand,

an approximated EXC compatible with Etrad
H requires users to approximate the corresponding

‘ghost’ correction as part of EXC. Since the ghost correction is usually non-negligible, this is

a major source of error for the qLDA functional.
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Figure 4.3: Behaviors of the different ensemble Hartree energy definitions for the singlet
ensemble of He.

4.3.2 Symmetry-eigenstate Hartree-exchange (SEHX)

We have now identified EHX as being more consistent with the EDFT formalism than EH and

EX. Having also justified multi-determinant ensemble KS wavefunctions, we now derive a

spin-consistent EXX potential, the symmetry-eigenstate Hartree-exchange (SEHX). Define

the two-electron repulsion integral

(µν | κλ) =

∫
d3rd3r′

|r− r′|
φ∗µ(r)φ∗ν(r

′)φκ(r)φλ(r
′) (4.31)

and

Lµνκλ = (µν | κλ) δσµ,σκδσν ,σλ . (4.32)
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φµ(r) denotes the µ-th KS orbital and σµ its spin state. If the occupation of the p-th Slater

determinant of the µ-th KS orbital of the ĩ-th multiplet of the KS system is f
(̃i)
pµ , define

α
(i,k)
µ,ν,κ,λ =

g̃(̃i)∑
p=1

C(i,k)
p f (̃i)

p,µf
(̃i)
p,ν

g̃(̃i)∏
η 6=µ,ν,κ,λ

δf ĩp,η ,f ĩq,η (4.33)

for the q-dependent kth state of the ith multiplet of the exact system. g̃(̃i) is the KS multiplic-

ity of the i-th multiplet, and C’s are the coefficients of the multi-determinant wavefunctions

defined by

Ψ(i,k)
s (r1, . . . , rN) =

g̃(̃i)∑
p=1

C(i,k)
p Ψ̃ĩ

s,p(r1, . . . , rN). (4.34)

Ψ̃s is a KS single Slater determinant. Note the numbering of the KS multiplets, ĩ, depends

on i, the numbering of the exact multiplet structure. The C coefficients are chosen according

to the spatial and spin symmetries of the exact state. Now, with p and q KS single Slater

determinants of the KS multiplet, define

h
(i,k)
µνκλ =

g̃(̃i)∑
q=1

(
α

(i,k)
µ,ν,κ,λα

(i,k)
κ,λ,µ,ν −

(
C(i,k)
q

)2
f (̃i)
q,µf

(̃i)
q,νf

(̃i)
q,κf

(̃i)
q,λ

)
, (4.35)

in order to write

H(i,k) =
∑
µ,ν>µ
κ,λ>κ

(Lµνκλ − Lµνλκ)h(i,k)
µνκλ. (4.36)

Then, if

G(i,k) =
∑
µ,ν>µ

(Lµµνν −<Lµνµν)
g̃(̃i)∑
p=1

∣∣C(i,k)
p

∣∣2 f ĩp,µf ĩp,ν , (4.37)
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the Hartree-exchange energy for up to the I-th multiplet is

ESEHX
HX,W =

I∑
i=1

g(i)∑
k=1

w(i,k)
{
G(i,k) +H(i,k)

}
, (4.38)

where g(i) is the exact multiplicity of the i-th multiplet. The vHX,W potential is then

vSEHX
HX,W,σ(r) =

δEHX,W

δnW,σ(r)

=

∫
d3r′

∑
j

δEHX,W

δφj,σ(r′)

δφj,σ(r′)

δnW,σ(r)
+ c.c.,

(4.39)

which yields an OEP-type equation for vHX,W(r).

The vHX,W(r) of Eq. (4.39) produces no ‘ghost’ terms. For closed-shell systems, Eq. (4.39)

yields vHX,W,↑(r) = vHX,W,↓(r). An explicit vHX,W(r) can be obtained by applying the usual

Krieger-Li-Iafrate(KLI)[137] approximation. Here we provide the example of the singlet

bi-ensemble studied in our previous paper.[257] EHX for a closed-shell, singlet ensemble is

ESEHX
HX,w =

∫
d3rd3r′

|r− r′|
{
norb

1 (r)norb
1 (r′) + w

[
norb

1 (r)
(
norb

2 (r′)− norb
1 (r′)

)
+ φ∗1(r)φ∗2(r′)φ1(r′)φ2(r)

]}
,

(4.40)

where norb
j (r) = |φj(r)|2 is the KS orbital density. Spin is not explicitly written out because

the system is closed-shell. After applying the KLI approximation, we obtain

vHX,w(r) =
1

nw(r)

{
(2− w)norb

1 (r) [v1(r) + v̄HX1 − v̄1] +w norb
2 (r) [v2(r) + v̄HX2 − v̄2]

}
, (4.41)

with

v1(r) =
1

(2− w)

∫
d3r′

|r− r′|
[
2(1− w)norb

1 (r′) +w
(
norb

2 (r′) + φ∗1(r′)φ∗2(r)φ2(r′)/φ∗1(r)
)]
, (4.42)
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v2(r) =

∫
d3r′

|r− r′|

[
norb

1 (r′) +
φ∗1(r)φ∗2(r′)φ1(r′)

φ∗2(r)

]
, (4.43)

and

v̄j =

∫
d3r vj(r)norb

j (r). (4.44)

Eq. (4.41) is an integral equation for vHX(r) that can be easily solved.

To fully understand the performance of vHX(r), self-consistent EDFT calculations would be

needed at different values of w, which is beyond the scope of this paper. Ideally these self-

consistent calculations would be compared to the symmetry-eigenstate form of GPG used

in Table I of Ref. [73]. In this work, we demonstrate the performance of SEHX at w = 0 in

Sec. 4.4.3.

4.3.3 Symmetry-projected Hamiltonian

The ensemble variational principle holds for any Hamiltonian. If the Hamiltonian Ĥ com-

mutes with another operator Ô, one can apply to Ĥ a projection operator formed by the

eigenvectors of Ô. One obtains a new Hamiltonian, and the ensemble variational principle

holds for this subspace of Ĥ, allowing an EDFT to be formulated.

An example would be the total spin operator Ŝ2, where

S2 =
∞∑
S=0

(2S + 1)|S〉〈S| (4.45)
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and |S〉 are its eigenvectors. Define a new Hamiltonian Ĥ1 as

Ĥ1 = |S〉〈S|Ĥ. (4.46)

Ĥ1 has the same set of eigenvectors as Ĥ, but the eigenvalues are 0 for the eigenvectors

not having spin S. Since one can change the additive constant in Ĥ arbitrarily, it is always

possible to make the eigenvalues of any set of spin-S eigenvectors negative and thus ensure

that they are the lowest energy states of Ĥ1. The ensemble variational principle holds for

ensembles of spin-S states. We have employed this symmetry argument in our previous

paper[257] for a purely singlet two-state ensemble of the He atom.

A similar statement is available in ground-state DFT, allowing direct calculation of the lowest

state of a certain symmetry.[76, 88] The differences between the subspace and full treatments

are encoded in the differences in their corresponding EXC. Thus the lowest two states within

each spatial and spin symmetry category can be treated in EDFT in a two-state-ensemble

fashion, which is vastly simpler than the multi-state formalism.

Since the multiplet structures of the interacting system and the KS system must be compat-

ible, a symmetry-projected ensemble also requires a symmetry-projected KS system, which

is impossible if KS wavefunctions are single Slater determinants, as discussed in Sec. 4.3.1.

4.4 Exact conditions

Here we prove some basic relations for the signs of various components of the KS scheme and

construct an energy density from the virial. We describe a feature of the ensemble derivative

discontinuity and extraction of excited properties from the ground state.
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4.4.1 Inequalities and energy densities

Simple exact inequalities of the energy components (such as EC < 0) have been proven in

ground-state DFT.[43] If these are true in EDFT, experiences designing approximated EXC

in ground-state DFT may be transferrable to EDFT. Here we show that inequalities related

to the correlation energy are still valid in EDFT.

Due to the variational principle,[86] the wavefunctions that minimize the ensemble energy

Eq. (4.5) are the interacting wavefunctions Ψm. Thus

EC,W = tr{D̂WĤ} − tr{D̂S,WĤ} ≤ 0. (4.47)

The existence of a non-interacting KS system[85] means TS,W is the smallest possible kinetic

energy for a given density nW(r), resulting in

TC,W = TW − TS,W ≥ 0. (4.48)

From Eq. (4.47) and (4.48) we immediately obtain

UC,W = EC,W − TC,W ≤ 0, (4.49)

and

|UC,W | ≥ |TC,W | . (4.50)

These inequalities are later verified with exact ensemble KS calculations.

Since EDFT is a variational method, one expects that the virial theorem holds. This was first

proven by Nagy[171, 175] and later extended to excited states.[176] Here, we use the theorem

to construct energy densities, which have been important interpretation tools in ground-state
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DFT. The virial theorem provides an expression for kinetic correlation in terms of HXC,

TC,W [n] = −EHXC,W [n]−
∫
d3r n(r)r · ∇vHXC,W(r), (4.51)

for Hartree-exchange in terms of its potential,

EHX,W [n] = −
∫
d3r n(r)r · ∇vHX,W(r). (4.52)

and one relating correlation energies through the correlation potential.

TC,W [n] = −EC,W [n]−
∫
d3r n(r)r · ∇vC,W(r). (4.53)

The integrand of Eq. (4.51) can be interpreted as an energy density, since integrating over

all space gives

EHXC,W + TC,W =

∫
d3r (eHXC,W + tC,W)

= −
∫
d3r n(r)r · ∇vHXC,W(r),

(4.54)

which can easily be converted to an “unambiguous” energy density.[19]

4.4.2 Asymptotic behavior

Ref. [150] derived the ensemble derivative discontinuity of Eq. (4.16) for bi-ensembles, in

the limit of w → 0. For finite w of an atomic system, as shown in our previous paper,[257]

∆vXC is close to a finite constant for small r, and jumps to 0 at some position denoted by

rC. We provide the derivation of the location of rC as a function of w here.

For atoms, the HOMO wavefunction and LUMO wavefunctions have the following behavior:
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φHOMO(r) ∼ Arβe−αr

φLUMO(r) ∼ A′rβ
′
e−α

′r,

(4.55)

with α ≥ α′. For the bi-ensemble of the ground state and the first excited state, the ensemble

density is

nw(r) ∼ 2
HOMO∑
n=1

|φn(r)|2 + w
(
A′2r2β′e−2α′r − A2r2βe−2αr

)
, r →∞, (4.56)

assuming that the HOMO is doubly-occupied. The behavior of the density at large r is

dominated by the density of the doubly-occupied HOMO and the second term. In order to

see where the density decay switches from that of the HOMO to the LUMO, we find the

r-value at which the two differently decaying contributions are equal:

(2− w)A2r2βe−2αr = wA′2r2β′e−2αr. (4.57)

As w→ 0, rC is then

rC → −
lnw

2∆α
, (4.58)

with ∆α = α− α′.

The ionization energies are available for the He ground state and singlet excited state. Since

n(r) ∼ e−2αr ≈ e−2
√

2Ir, (4.59)
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we obtain

rC → −0.621lnw, w→ 0. (4.60)

for the He singlet bi-ensemble with w close to 0.

4.4.3 Connection to ground-state DFT

With weights as in Eq. (4.13), calculation of the excitation energies is done recursively: for

the Mth excited state, one needs to perform an EDFT calculation with the Mth state highest

in the ensemble, and another EDFT calculation with the (M−1)th as the highest state, and

so on. Thus for the Mth state, one needs to perform M separate EDFT calculations for its

excitation energy.

For bi-ensembles, however, the calculation of the excitation energy can be greatly simplified.

Eq. (5.10) holds for w = 0, so one can work with ground-state data only and obtain the

first-excited state energy, without the need for an explicit EDFT calculation of the two-state

ensemble.

We calculate the first excitation energies of various atoms and ions with Eq. (5.10) at w = 0

with both qLDA[131, 159] (based on LDA ground states), EXX,[173] GPG,[73] and SEHX,

with the last three based on OEP-EXX (KLI) ground states.[137] In order to ensure the cor-

rect symmetry in the end result, SEHX must be performed on spin-restricted ground states.

However, for closed-shell systems, these results coincide with those of spin-unrestricted calcu-

lations. We use these readily available results when possible in this paper. The w-derivatives

of the EXC’s for qLDA and GPG required in Eq. (5.10) are (considering Eq. (4.65))

lim
w→0

∂EqLDA
XC,w [n]

∂w

∣∣∣∣∣
n=nw

= MI

(
EeqLDA

XC [I = 2, n]− ELDA
XC [n]

)
, (4.61)
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where ELDA
XC is the ground-state LDA functional, and

lim
w→0

∂EGPG
X,w [n]

∂w

∣∣∣∣∣
n=nw

=

∫ ∫
d3rd3r′

|r− r′|

{[
NH∑
j=1

nj(r, r
′)

]
[nH(r, r′)− nL(r, r′)]

− nH(r)nL(r′) + nH(r, r′)nL(r, r′)

}
+

∫
d3r vXC(r)[nH(r)− nL(r)],

(4.62)

where j sums over the spin-up densities. Only ground state properties are needed to evaluate

Eq. (4.62). The results are listed in Table 4.1. Note that the single-determinant form of GPG

performs well here, despite not being designed for this method. SEHX improves calculated

excitation energies for systems where single-determinant GPG has large errors with this

method, such as Be and Mg atoms.

He Li Li+ Be Be+ Mg Ca Ne Ar
Exp. 20.62 1.85 60.76 5.28 3.96 4.34 2.94 16.7 11.6

qLDA - 1.93 53.85 3.71 4.30 3.58 1.79 14.2 10.7
EXX 27.30 6.34 72.26 10.22 12.38 8.25 9.89 26.0 18.2
GPG 20.67 1.84 60.40 3.53 4.00 3.25 3.25 18.2 12.1
SEHX 21.29 2.08∗ 61.64 5.25 4.06∗ 4.39 3.55 18.4 12.2

Table 4.1: First non-triplet excitation energies (in eV) of various atoms and ions calculated
with qLDA, EXX, GPG, and SEHX functionals. qLDA calculations were performed upon
LDA (PW92)[198] ground states; EXX[173] ground states were used for the rest. Asterisks
indicate use of spin-restricted ground states. qLDA relies on ground-state LDA orbital
energy differences; it cannot be used with the single bound orbital of LDA He. GPG is
used with single-determinant states and performs well, though GPG allows the choice of
multi-determinant states.

4.5 Numerical procedure

We invert the ensemble KS equation with exact densities to obtain the exact KS potential.

We describe the numerical inversion procedure in Ref. [257]. For ease in obtaining the
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Hartree potential, EH is always chosen to be Etrad
H . The resulting KS potential, being exact,

does not depend on the choice of EH, but EXC and vXC(r) reported in later sections are those

compatible with Etrad
H and vtrad

H (r), respectively. For simplicity, only GOK-type ensembles

[Eq. (4.13)] are considered, though there is no difficulty adapting the method to other

types of ensembles. With this numerical procedure, vXC,w(r) is determined up to an additive

constant.

We implemented the numerical procedure on a real-space grid. The ensemble KS equation

(4.8) is solved by direct diagonalization of the discrete Hamiltonian. The grid is in general

nonuniform, which complicates the discretization of the KS kinetic energy operator. We

tested two discretization schemes, details of which are available in the Supplemental Material.

Based on these tests, all results presented in this paper have been obtained using the finite-

difference representation

−1

2

d2φ(x)

dx2
≈ φ(xi)

(xi − xi−1)(xi+1 − xi)
− φ(xi−1)

(xi − xi−1)(xi+1 − xi−1)
− φ(xi+1)

(xi+1 − xi)(xi+1 − xi−1)
.

(4.63)

4.5.1 Derivative Corrections

Exactness of the inversion process can be verified by calculating the excitation energies with

Eq. (5.10) at different w values. Eq. (5.10) requires calculating EXC,w of the exact ensemble

KS system,

EXC,w[nw] = Ew − Es,w +

∫
d3r nw(r)

[
vH[nw](r)

2
+ vXC,w[nw](r)

]
. (4.64)

Since we do not have a closed-form expression for the exact EXC, its derivative can only be

calculated numerically. However, the numerical derivative of EXC, ∂EXC,w[nw]/∂w, is not the
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quantity required in Eq. (5.10). It is related to the true derivative through

∂EXC,w[n]

∂w

∣∣∣∣
n=nw

=
∂EXC,w[nw]

∂w
−
∫

d3r vXC,w[nw](r)
∂nw(r)

∂w
. (4.65)

The correction to the numerical derivative of EXC,w adjusts for the w-dependence of the

ensemble density, which is not inherent to EXC,w. All our calculations show that the two terms

on the right hand side of Eq. (4.65) are of the same order of magnitude. This shows that the

exact EXC,w[n] changes more slowly than nw(r) as w changes. Though the calculations of EXC,w

and ∂EXC,w[n]/∂w|n=nw both involve integrations containing vXC,w(r), they are independent of

the additive constant.

4.6 Results

We apply the numerical procedure described in Sect. 4.5 to both 1D and 3D model systems

in order to further demonstrate our method for inverting ensemble densities.

4.6.1 1D flat box

The external potential of the 1D flat box is

v(x) =

 0, 0 < x < L,

∞, x ≤ 0 or x ≥ L.
(4.66)

The exact wavefunctions can be solved numerically for two electrons with the following

soft-Coulomb interaction:

vSC(x, x′) =
1√

(x− x′)2 + a2
, (4.67)
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where we choose a = 0.1.

I E T
0 (singlet) 15.1226 10.0274
1 (triplet) 27.5626 24.7045
2 (singlet) 30.7427 24.7696
3 (singlet) 43.9787 39.6153
4 (triplet) 52.8253 49.3746

Table 4.2: Total and kinetic energies in a.u. for a unit-width box, including a doubly-excited
state (I = 3).

Table 4.2 shows the total and kinetic energies of the exact ground state and first four excited

states for L = 1 a.u., calculated on a 2D uniform grid with 1000 points for each position

variable. The third excited state is a doubly-excited state corresponding to both electrons

occupying the second orbital of the box. Fig. 4.1 shows the exact densities of the ground

state and first four excited states, together with the XC potential of equiensembles containing

1 to 5 multiplets. Table 4.3 lists calculated excitation energies, showing that the excitation

energy is independent of w, no matter how many states are included in the ensemble. This

is a non-trivial exact condition for the ensemble EXC.

Double excitations are generally difficult to calculate. It has been shown that adiabatic

TDDFT cannot treat double or multiple excitations.[48] Table 4.3 shows that there is no

fundamental difficulty in treating double excitations with EDFT. Fig. 4.1 shows that vXC,w(r)

for the 4-multiplet equiensemble resembles the potentials of other ensembles. The exact two-

multiplet ensemble XC potentials at different w are plotted in Fig. 4.4. The bump up near

the center of the box in these potentials ensures that the ensemble KS density matches that of

the real ensemble density. Increasing the proportion of the excited state density (see Fig. 4.1)

included in the ensemble density requires a corresponding increase in the height of this bump

(see Supplemental Material). With no asymptotic region, there is no derivative discontinuity

for the box, and vXC,w→0(r) is equal to the ground-state vXC(r). Energy components for the

bi-ensemble of the 1D box satisfy the inequalities shown in Sec. 4.4.1 and are reported in

120



the Supplemental Material.

2-multiplet: ω1 = 12.4399 hartree
w2 0.25 0.125 0.03125

EKS
1,w2
− EKS

0,w2
13.9402 13.9201 13.8932

∂Exc,w2[I = 2, n]/∂w2|n=nw2
-4.5010 -4.4407 -4.3598

(E1 − E0)w2 12.4399 12.4399 12.4399
3-multiplet: ω2 = 15.6202 hartree

w3 0.2 0.1 0.025
EKS

2,w3
− EKS

0,w3
14.2179 14.0757 13.9735

∂Exc,w3[I = 3, n]/∂w3|n=nw3
2.7358 2.7713 2.7969

(E2 − E0)w2,w3 15.6202 15.6201 15.6202
4-multiplet: ω3 = 28.8561 hartree (double)

w4 0.166666 0.083333 0.020833
EKS

3,w4
− EKS

0,w4
28.7534 28.5826 28.4706

∂Exc,w4[I = 4, n]/∂w4|n=nw4
1.1061 1.1186 1.1858

(E3 − E0)w2,w3,w4 28.8561 28.8561 28.8561
5-multiplet: ω4 = 37.7028 hartree

w5 0.111111 0.055555 0.013888
EKS

4,w5
− EKS

0,w5
38.8375 38.8602 38.8746

∂Exc,w5[I = 5, n]/∂w5|n=nw5
-1.1279 -1.2205 -1.2787

(E4 − E0)w2,w3,w4,w5 37.7028 37.7027 37.7028

Table 4.3: Excitation energies of the 1D box calculated at different w values using the exact
ensemble KS systems and Eq. (5.10). The double excitation (4-multiplet) shows accuracy
comparable to that of the single excitation (2-multiplet). All energies are in Hartree. See
Supplemental Material for the full table.

4.6.2 Charge-transfer excitation with 1D box

Charge-transfer (CT) excitations are difficult to treat with approximate TDDFT, due to the

lack of overlap between orbitals.[71] With common approximations, the excitation energy

calculated by TDDFT is much smaller than experimental values.[243] Here we provide a

1D example of an excited state with CT character, showing that there is no fundamental

difficulty in treating CT excitations with EDFT. Since EDFT calculations do not involve

transition densities, they do not suffer from the lack-of-orbital-overlap problem in TDDFT.
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Figure 4.4: Exact ensemble XC potentials of the 1D box with two electrons. The ensemble
contains the ground state and the first (triplet) excited state.

The external potential for the CT box is

v(x) =


0 x ∈ [0, 1] ∪ [2, 4]

20 x ∈ (1, 2)

∞ x < 0 or x > 4,

(4.68)

with the barrier dimensions chosen for numerical stability of the inversion process. The

lowest two eigenstate densities are given in the top of Fig. 4.5. The ground-state and

first-excited-state total and kinetic energies of the CT system described are

E0 = 138.254 eV, T0 = 63.4617 eV (singlet),

E1 = 140.652 eV, T1 = 112.141 eV (triplet).

(4.69)

This significant increase in kinetic energy together with a small total energy change designate

the CT character of the first excited state. The electrons become distributed between the
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two wells of the potential, instead of being confined in one well.
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Figure 4.5: Exact densities and ensemble xc potentials of the 1D charge-transfer box.

The ground- and first-excited-state densities and ensemble XC potentials are plotted in Fig.

4.5. The potentials show the characteristic step-like structures of charge-transfer excitations,

which align the chemical potentials of the two wells.[95, 96] Table 4.4 lists the ensemble

energies of the CT box. Excitation energies have larger errors than those for the 1D flat box

due to greater numerical instability, but they are still accurate to within 0.01 eV.
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3w 0.5 0.1 0.02
EKS

1,w − EKS
0,w 2.2048 2.4092 2.4317

∂EXC,w[n]/∂n|n=nw/3 0.1993 -0.0108 -0.0334
ω1,w 2.4042 2.3983 2.3983

Table 4.4: First excitation energy and energy decomposition of the two-multiplet ensemble of
the 1D charge-transfer box at different w values, calculated using Eq. (5.10). All energies are
in eV. The exact first excitation energy is E1 −E0 = 2.3983 eV. See Supplemental Material
for additional data.

4.6.3 Hooke’s atom

Hooke’s atom is a popular model system[63, 144] with the following external potential:

v(r) =
k

2
|r|2 . (4.70)

For our calculation, k = 1/4. Though the first excited state has cylindrical symmetry,

we use a spherical grid, as it has been shown that the error due to spherical averaging is

small.[141] As a closed-shell system, the spatial parts, and therefore the densities, of the

spin-up and spin-down ensemble KS orbitals have to be the same, so we treat this system

as a bi-ensemble.

The magnitude of the external potential of the Hooke’s atom is smallest at r = 0, and

becomes larger as r increases. This is completely different from the Coulomb potential of

real atoms. Since the electron-electron interaction is still coulombic, vXC(r) can be expected

to have a −1/r behavior as r → ∞, which is negligibly small compared to v(r). Com-

bined with a density that decays faster than real atomic densities, n(r) ∼ exp(−ar2) versus

n(r) ∼ exp(−br), convergence of the Hooke’s atom vXC(r) is difficult in the asymptotic re-

gion. Additionally, vXC(r) � v(r) for small r, so larger discretization errors in this region

also contribute to poorer inversion performance. Despite these challenges, we still obtain

highly accurate excitation energies.
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A logarithmic grid with 550 points ranging from r = 10−5 a.u. to 10 a.u. is used for all the

Hooke’s atom calculations. On this grid, the exact ground- and first excited-state energies

are

E1 = 54.42 eV, E2 = 64.19 eV. (4.71)

Calculated ω2 was 9.786 eV for all values of w tested (see Supplemental Material). Unlike

the He atom and the 1D flat box, the nw(r) and vXC,w(r) show little variation with w (see

Supplemental Material). The second KS orbital of the Hooke’s atom is a p-type orbital, which

has no radial node and a radial shape similar to that of the first KS orbital. Consequently,

the changes in the KS and xc potentials are also smaller.

4.6.4 He

Using the methods in Ref. [257], we employ a Hylleraas expansion of the many-body

wavefunction[41] to calculate highly accurate densities of the first few states of the He atom.

We report the exact ensemble XC potentials for He singlet ensemble in that paper. Table

4.5 shows accurate excitation energies calculated from mixed symmetry, three-multiplet, and

strictly triplet ensembles, demonstrating the versatility of EDFT. Fig. 4.6 compares vXC,w(r)

for four types of He equiensembles, highlighting their different features. The characteristic

bump up in these potentials is shifted left in the 2-multiplet case, relative to the others

shown. This shift has little impact on the first “shell” of the ensemble density’s shell-like

structure, but the second is shifted left and has sharper decay, noticeably different from that

of the singlet ensemble.[257]

The inequalities shown in Sec. 4.4.1 and the virial theorem Eq. (4.53) are verified by the

exact results. Behaviors of the energy components for the singlet ensemble versus w are

plotted in Fig. 4.7. Correlation energies show strong non-linear behavior in w. According to
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glet, and strictly triplet He equiensembles.

2-multiplet ensemble: ω1 = 19.8231 eV
w2 0.25 0.125 0.03125

EKS
1,w2
− EKS

0,w2
25.1035 22.4676 21.6502

∂Exc,w2
[n]/∂w2|n=nw2

-15.8099 -7.9358 -5.4351
(E1 − E0)w2 19.8336 19.8224 19.8385

3-multiplet ensemble: ω2 = 20.6191 eV
w3 0.2 0.1 0.025

EKS
2,w3
− EKS

0,w3
26.8457 25.8895 25.2853

∂Exc,w3
[n]/∂w3|n=nw3

-0.9596 -0.7207 -0.5696
(E2 − E0)w2,w3 20.6270 20.6184 20.6306

triplet ensemble: ω1 = 2.8991 eV
w 0.16667 0.08333 0.02083

EKS
1 − EKS

0 2.8928 2.8956 2.8967
∂EXC,w[n]/∂w|n=nw 0.0187 0.0104 0.0074

(E1 − E0)w 2.8990 2.8990 2.8992

Table 4.5: He atom excitation energies, calculated using Eq. (5.10) and various ensemble
types: singlet-triplet (2-multiplet), singlet-triplet-singlet (3-multiplet), and strictly triplet.
All energies are in eV. w2 dependency of the 3-multiplet excitation energies is noted explicitly,
though w2 = (1 − w3)/4 for the GOK ensemble. See Supplemental Material for additional
data and figures.
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Eq. (5.10), the excitation energies are related to the derivative of EXC versus w. Therefore,

EC is crucial for accurate excitation energies, even though its absolute magnitude is small.

4.7 Conclusion

This paper is an in-depth exploration of ensemble DFT, an alternative to TDDFT for ex-

tracting excitations from DFT methodology. Unlike TDDFT, EDFT is based on a variational

principle, and so one can expect that the failures and successes of approximate functionals

should occur in different systems than those of TDDFT.

Apart from exploring the formalism and showing several new results, the main result of this

work is to apply a new algorithm to highly-accurate densities of eigenstates to explore the

exact EDFT XC potential. We find intriguing characteristic features of the exact potentials

that can be compared against the performance of old and new approximations. We also

extract the weight-dependence of the KS eigenvalues, which are needed to extract accurate

transition frequencies, and find that a large cancellation of weight-dependence occurs in

the exact ensemble. Many details of these calculations are reported in the supplemental

information.

From the original works of Gross, Oliviera, and Kohn, ensemble DFT has been slowly devel-

oped over three decades by a few brave pioneering groups, most prominently that of Nagy.

We hope that the insight these exact results bring will lead to a plethora of new ensem-

ble approximations and calculations and, just possibly, a competitive method to treating

excitations within DFT.
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Chapter 5

Exact and approximate Kohn-Sham

potentials in ensemble

density-functional theory

written with Zeng-hui Yang, John R. Trail, Kieron Burke, Richard J. Needs, and Carsten

A. Ullrich. Published in Phys. Rev. A 90 042501 (2014).

Abstract: We construct exact Kohn-Sham potentials for the ensemble density-functional the-

ory (EDFT) from the ground and excited states of helium. The exchange-correlation (XC)

potential is compared with the quasi-local-density approximation and both single determinant

and symmetry eigenstate ghost-corrected exact exchange approximations. Symmetry eigen-

state Hartree-exchange recovers distinctive features of the exact XC potential and is used to

calculate the correlation potential. Unlike the exact case, excitation energies calculated from

these approximations depend on ensemble weight, and it is shown that only the symmetry

eigenstate method produces an ensemble derivative discontinuity. Differences in asymptotic

and near-ground-state behavior of exact and approximate XC potentials are discussed in the
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context of producing accurate optical gaps.

5.1 Introduction

The balance of useful accuracy with computational efficiency makes density-functional theory

(DFT) popular for finding ground-state electronic properties of a wide range of systems

and materials [18]. While exact conditions [194] and fitting to chemical data sets [14] are

often used to construct approximations, another major source of inspiration has been highly

accurate calculations of Kohn-Sham (KS) quantities for simple systems, such as the He

atom [246]. The exact KS potential, orbitals, energies, and energy components have been

enormously useful in illustrating basic theorems of DFT and testing approximations. Many

algorithms now exist for extracting the KS potential from accurate densities [79, 142, 188].

Time-dependent density-functional theory (TDDFT) [162, 243] has become the standard

DFT method for calculating excitation energies, at least for molecules, with typical accuracies

and efficiency comparable to what can be achieved in ground-state DFT [106]. Once again,

accurate KS energies, of both occupied and unoccupied orbitals, play a vital role [3]. But

alternative density-functional approaches for excitation energies can be valuable, both as

practical tools and for gaining physical insight [78, 151]. The ensemble density-functional

theory (EDFT) formalism for excited states [85, 86, 91, 159, 238, 239] is based on a variational

principle of ensembles comprising the ground state and a chosen number of excited states.

Despite its rigorous formal framework and appealing physical motivation[73, 170, 173, 174,

186, 187], the EDFT excited-state formalism has seen only limited practical success. The lack

of good approximate exchange-correlation (XC) functionals for EDFT leads to inaccurate

transition frequencies. Better approximations are needed for EDFT to become more useful.

Here, we describe an algorithm that extracts the ensemble KS and XC potentials from
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the various eigenstate densities, and apply that algorithm to highly accurate densities of

the helium atom. We use the exact results to analyze errors in approximations that have

been designed for use in EDFT, plot various potentials, and check the virial theorem for

the ensemble correlation potential. We demonstrate the weight-independence of transition

frequencies in the exact case, but also find a strong weight-dependence in the individual

elements contributing to the exact expression, all of which cancels in the final excitation

energy. We show that approximations all yield (incorrectly) weight-dependent transition

frequencies, and demonstrate how this is related to the ensemble derivative discontinuity.

5.2 Theory

An ensemble in EDFT consists of the ground state and M excited states. For the lowest

M+1 eigenstates Ψm of the many-body Hamiltonian Ĥ, sorted by energy in ascending order,

each state is assigned a weight wM . EDFT states that for

w0 ≥ w1 ≥ w2 ≥ · · · ≥ wM ≥ 0, (5.1)

there is a one-to-one correspondence between the ensemble density

n(r) =
M∑
m=0

wm 〈Ψm |n̂(r)|Ψm〉 (5.2)

and the external potential [85, 86]. A Kohn-Sham (KS) scheme can then be constructed in

the usual way [85].

We consider only bi-ensembles of the ground and first-excited states. For a non-degenerate
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ground state,

nw(r) = w n0(r) + g w n1(r), w ≤ 1/(1 + g) (5.3)

Ew[nw] = w E0 + g w E1, (5.4)

where g is the degeneracy of the excited state, w = 1 − g w, and subscripts 0 and 1 refer

to the ground and excited states. EDFT also holds for ensembles of states that share a

symmetry-projected Hamiltonian [109]. For helium, the ground state is a singlet, the first

excited state is a triplet, and the second excited state is again a singlet, shown in Fig. 5.1.

The (unprojected) bi-ensemble always includes the ground state and the first excited state.

Here we focus on calculations in the spin-projected ensemble to find the transition to the

lowest singlet.

The corresponding ensemble KS potential vs,w[nw](r) is defined as the potential of the non-

interacting system

{
−1

2
∇2 + vs(r)

}
φj(r) = εjφj(r), (5.5)

which reproduces the exact ensemble density as

nw(r) = (1 + w) |φ1(r)|2 + g w |φ2(r)|2 , (5.6)

where φj(r) are KS orbitals. Atomic units (e = ~ = me = 1/4πε0 = 1) are used throughout,

and all KS quantities are w-dependent. Then

Ew[n] = Ts,w[n] +

∫
d3r n(r)v(r) + EHXC,w[n], (5.7)

where Ts,w[n] = (1+w) t1 +g w t2 is the ensemble KS kinetic energy, with tj the kinetic energy
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of φj. v(r) is the external potential of the interacting system.

EHX = w
〈

Φ0,w[n]
∣∣∣|r− r′|−1

∣∣∣Φ0,w[n]
〉

+ g w
〈

Φ1,w[n]
∣∣∣|r− r′|−1

∣∣∣Φ1,w[n]
〉

(5.8)

is the ensemble Hartree-exchange energy, and the ensemble correlation energy EC = EHXC −

EHX. Φi,w[n] is the KS many-body wavefunction, with i = 0 or 1 again indicating the ground

or excited state. Here we choose EH to be the Hartree energy of the ensemble density,

although it contains “ghost” interactions[73]. The exchange energy is then defined as the

expectation of the electron-electron repulsion on the KS ensemble minus the Hartree energy.

This definition of EHXC is consistent with our choice of spin eigenstates that are necessarily

multi-determinant. The ensemble KS potential is

vs,w[n](r) = v(r) + vHXC,w[n](r), (5.9)

where vHXC,w[n](r) = δEHXC,w[n]/δn(r). The excitation energy is then independent of w:

ω = E1 − E0 = ∆εw + ∂EHXC,w[n]/∂w|n=nw , (5.10)

where ∆εw = ε2,w − ε1,w.

The w-dependence of the HXC energy comes from both the w-dependence of nw(r) and from

the HXC energy functional. Eq. (5.10) shows that the correction to the KS gap originates

from the w-dependence of XC, not from nw(r). Using a ground-state XC functional in EDFT

yields no correction to the KS excitation energy. EDFT is a more general theory encompass-

ing ground-state DFT, and the ground-state XC functional is only a special case (w = 0) of

the ensemble XC functional. However, the excitation energies can also be obtained from the

difference of two consecutive equiensemble energies. In contrast to Eq. (5.10), the density-

based w-dependence of EHXC,w does not drop out in that approach, and using ground-state XC

functionals would yield finite corrections. These two approaches for the excitation energy
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yield the same result using the exact functional, but no known approximations can achieve

such consistency.

5.3 Inversion Method

The only unknown in the ensemble KS procedure is the XC functional. Without this func-

tional, an inversion method for EDFT is needed to extract XC potentials from accurate

densities. Ref. [170] presented an inversion scheme for EDFT similar to the van Leeuwen-

Baerends (LB) algorithm in ground-state DFT[142], but we found its numerical stability

unsatisfactory. Ref. [188] observed that a LB-type algorithm cannot change the local sign

of the KS potential during the iteration. While not a fundamental problem, it makes the

algorithm less stable. Also, it can be hard to obtain the −1/r asymptotic behavior of vXC

using the LB algorithm without having to build it in the initial guess. Ref. [188] suggested

an alternative ground-state density-inversion algorithm, where the xc potential is updated

iteratively by

v
(i+1)
XC (r) = v

(i)
XC(r) + αrβ[n

(i)
KS(r)− n(r)] + [I

(i)
KS − I]

[
θ(1− r)rγ +

θ(r − 1)

rδ

]
, (5.11)

where α, β, γ, δ are parameters controlling the speed of convergence, and I is the ionization

energy. In the asymptotic region, the density difference in the second term of Eq. (5.11) is

very small, so the convergence needs to be accelerated by the use of the rβ in front of this

term. Even so, the −1/r asymptotic behavior of vXC can be hard to obtain, and the third

term of Eq. (5.11) is there to ensure this asymptotic behavior.

Our scheme for EDFT is based on the ground-state density-inversion method of Ref. [188]

and Eq. (5.11), producing the ensemble XC potential from any given ensemble density. For
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simplicity, we describe the scheme for spherical systems, but it can be extended to other

systems easily. We modify the ground-state Eq. (5.11) for EDFT usage as

v(i+1)
xc,w (r) = v(i)

xc,w(r) + αrβ[n
(i)
KS,w(r)− nw(r)]/h(r), (5.12)

where h(r) is described below. Since the ionization energies of Eq. (5.11) are not defined for

an ensemble, a double-loop scheme is used to ensure the correct −1/r asymptotic behavior.

In the first iterative loop, we update the ensemble xc potential with Eq. (5.12) and set

h(r) = 1. Convergence is reached when

∫
d3r

∣∣∣n(i)
KS,w(r)− nw

∣∣∣ < ∆1, (5.13)

for a chosen accuracy ∆1. Even if large β values are used to accelerate convergence in the

large-r region, this first loop is usually insufficient to produce the −1/r asymptotic behavior

in the ensemble xc potential, due to the exponential asymptotic decay of the density. To

compensate for this, we use a second iterative loop. Starting from the result of the first loop,

the ensemble xc potential is updated using Eq. (5.12) with h(r) = nw(r) and new values of

α and β. The convergence of the second loop is also checked with Eq. (5.13), but with a

smaller ∆2. This second loop updates the ensemble xc potential with the relative error in

the ensemble density, so the correction in the large-r region for each iteration is larger than

in the first loop. The second loop is therefore more sensitive to the initial guess than the first

loop, so it cannot be used independently. We consistently obtain −1/r asymptotic behavior

in the ensemble XC potentials produced by this double-loop procedure, without having to

build it in the algorithm or in the initial guess. This double loop scheme guarantees both

numerical stability and good convergence in the asymptotic region.

For ensembles of the helium atom, we found that parameters α ∈ [0, 2] and β ∈ [0, 2]

guarantee convergence of the first loop. For the second loop, α ∈ [0, 0.0001] and β ∈ [0, 2]
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guarantee convergence, if w is not close to 0. As w approaches 0, the value of α needs to be

smaller to prevent the second loop from becoming unstable. The double-loop scheme has

had good numerical performance in all types of grids and discretizations of the Hamiltonian

tested thus far.

5.4 Exact results for He atom
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Figure 5.1: Radial densities for the three lowest eigenstates of helium. Color online.

We apply this scheme to highly accurate helium densities. Fig. 5.1 shows the ground

and first two excited state densities for helium, which are essentially numerically exact.

Two-body electronic wave functions were obtained by optimizing an expansion in Hylleraas

functions[41]. Analytic integration of the density matrix associated with the optimum wave

function provides an accurate spherically averaged charge density at each radius as a sum

of terms. Basis sets composed of 376 and 406 Hylleraas functions for the singlet and triplet
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states, respectively, result in total energies within 10−11 a.u. of accurate estimates[178]. The

errors in the virial are below 10−12 a.u. for the ground state and 10−8 a.u. for the first

singlet excited state, used in the singlet bi-ensemble. Our calculation for w = 0 agrees with

the known exact ground-state DFT quantities of helium [246].

The exact equiensemble density and potential are plotted in Fig. 5.2, along with those

resulting from an equal mixture of orbitals from the ground-state KS potential. The subtle

shell-like structure in the ensemble density corresponds to the cross-over between the ground-

state density and the first singlet excited-state density. The upward bump near r = 2.5 in

the ensemble KS potential ensures its ensemble density matches the interacting one, unlike

the ensemble of orbitals from the ground-state KS potential. This bump is shifted left in the

XC potential for the unprojected bi-ensemble (Fig. 5.3).

Fig. 5.4 shows the exact ensemble XC potentials at various w values, which have been found

by subtracting the Hartree potential of the ensemble density from the KS potential. The

bump near r = 2.5 develops as w increases. Even when w is close to 0, vXC,w(r) differs from

the w = 0 (ground-state) XC potential in Fig. 5.4. The potentials shift further and further

from the ground-state curve in the small-r region as w increases.

This discrepancy between small-w and w = 0 potentials is due to the ensemble derivative

discontinuity[150]. For any nonzero w, the asymptotic behavior of the ensemble density is

dominated by that of the excited state. Levy [150] proved an analog of the derivative discon-

tinuity of ground-state DFT: the ensemble KS highest-occupied-molecular-orbital (HOMO)

energy has a finite change as w changes from 0 (ground state) to 0+:

∆vXC(r) = lim
w→0

vHXC,w[nw](r)− vHXC[n](r) (5.14)

= lim
w→0

∂EHXC,w[n]/∂w|n=nw . (5.15)

This is an exact property of number-conserving excitations[1]. According to Eq. (5.10) and
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Figure 5.2: Radial densities and KS potentials for helium in singlet EDFT. The black
solid lines are equiensemble properties. The red dashed line in the upper panel shows an
equiensemble density constructed from orbitals of the ground-state KS potential; the red
dashed line in the lower panel shows the exact ground-state KS potential.
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Figure 5.6: The exact potential jump ∆vXC, showing the shoulder in the XC potential
developing from the small-w step as w increases. Since w is no longer near zero, the asymptotic
formula for the position of the drop-off no longer holds.

(5.15), we obtain ∆vXC = 0.0116 a.u. for the singlet bi-ensemble.

Fig. 5.5 shows the exact XC potential jump for small w values. A step structure occurs

since the ensemble density at small r is dominated by the HOMO density, and at large r the

dominating behavior switches to the lowest-unoccupied-molecular-orbital (LUMO) density,

which decays more slowly than the HOMO density. As w decreases, the switching point

rC moves to the right. In the limit of w → 0, the HOMO density dominates nw(r) for

finite r, so ∆vXC(r) becomes a constant. The ground-state limit is thus recovered since

an additional constant on a potential has no physical effect. Though this difference is not

close to a constant in the small-r region for larger w (Fig. 5.6), evidence of the step down

remains in the shoulder present before the sharp decrease to the ground-state potential. We

showed[207] that the switching point rC for small values of w depends on log w, so the w→ 0

limit is achieved slowly as w decreases. The large-w difference between the ground-state and
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ensemble XC potentials (Fig. 5.4) appears to emerge continuously from the step-like small-w

behavior, suggesting that the derivative discontinuity is crucial for replication of the bump

in vXC(r).

With the exact ensemble XC potentials available, we can numerically verify exact conditions

of EDFT, such as the virial theorem[171, 175]. With traditionally defined Hartree, its form

is similar to its ground-state counterpart[152]:

TC,w[n] = −EXC,w[n]−
∫

d3r n(r)r · ∇vXC,w(r). (5.16)

The virial as defined by Nagy yields the same results as directly calculated kinetic correlation

to within 1%.
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Figure 5.7: Eq. (5.10) applied to the exact helium singlet ensemble, demonstrating the exact
cancellation of all w-dependence in KS gaps (red) and corrections to the KS gap (green),
leading to no w dependence in the calculated optical gap (blue). Gaps are shifted by the true
optical gap ω for ease of comparison. Color online.

Eq. (5.10) converts the w-dependent KS transition energies, ∆εw, into the exact, w-independent
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transition frequency. The last term in Eq. (5.10) is significant for all values of w and is

strongly w-dependent. Fig. 5.7 shows the exact cancellation of the w-dependence as re-

quired by Eq. (5.10). If this cancellation is incomplete, as it is in existing approximations,

w-dependent excitation energies will result.

The strong w-dependence in the exact KS gap ∆εw is related to the bumps in the exact

XC potentials (Fig. 5.4). The bump near r = 2.5 creates a local confinement effect near

the nucleus, shifting the KS eigenvalues upward from the ground-state values. The effect is

smaller for the 1s orbital because the 1s orbital density is already small and monotonically

decaying at the position of the bump. The KS gap becomes larger as the bump is more

prominent, as can be seen in the large-w region of Fig. 5.7. The sharp change of ∆εw in

the small-w region of Fig. 5.7 is due to the ensemble derivative discontinuity, since ∆vXC(r)

effectively creates a bump in the XC potential in the small-r region.

5.5 Approximations

To illustrate the usefulness of these results, we test the few existing approximations to

EDFT, including the quasi-local-density approximation (qLDA)[131, 159], the single-Slater-

determinant ghost-corrected exact exchange (SD)[73, 173], and the symmetry eigenstate

Hartree-exchange (SEHX)[73, 207]. Both SD and SEHX are approximations falling under

the overarching work on ghost interactions by Gidopoulos, Papaconstantinou, and Gross[73],

which we denote here as GPG. The flexibility of GPG lies in its general approach to the de-

scription and elimination of ghost interactions introduced by the exchange and traditionally

defined Hartree energies. These ghosts occur when one uses the ensemble density as input

into these terms, as there are spurious interactions between the ground and excited states. If

one uses the ensemble definition of Hartree-exchange in Eq. (5.8), these ghosts are avoided.
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As a general methodology, GPG can be used in various forms. When faced with degenerate

states, one always has choices about which states to use to describe the system of inter-

est. Two obvious choices are single- and multi-determinant descriptions. When the GPG

methodology is applied to ensemble Hartree-exchange using symmetry eigenstates with the

Krieger-Li-Iafrate approximation[137], one produces the SEHX approximation. Alterna-

tively, one may choose to use single-determinant states within the GPG methodology. We

show this SD approach alongside the SEHX approximation to clarify the effect of using full

eigenstates to describe ensemble ghosts, since previous calculations[37, 133, 174, 187, 236]

can be reevaluated in light of these comparisons.

The general equation of the SEHX energy for an ensemble up to the I-th group of degenerate

states(‘multiplet’) is[207]

ESEHX
HX =∫

d3rd3r′

|r− r′|

{ ∑
µ,ν>µ

{
norb
µ (r)norb

ν (r′)−<[norb
µ (r′, r)norb

ν (r, r′)]δσµ,σν
} I∑
i=1

gi∑
k=1

wi,k

g̃ĩ∑
p=1

|Ci,k,p|2 fĩ,p,µfĩ,p,ν

+
∑
µ,ν>µ
κ,λ>κ

[φ∗µ(r)φ∗ν(r
′)φκ(r)φλ(r

′)δσµ,σκδσν ,σλ − φ∗µ(r)φ∗ν(r
′)φλ(r)φκ(r

′)δσµ,σλδσν ,σκ ]

×
I∑
i=1

gi∑
k=1

wi,k

g̃ĩ∑
p,q 6=p

C∗i,k,pCi,k,qfĩ,p,µfĩ,p,νfĩ,q,κfĩ,q,λ
∏

η 6=µ,ν,κ,λ

δfĩ,p,η ,fĩ,q,η

}
, (5.17)

where i denotes a multiplet; k denotes a specific state in the i-th multiplet; gi is the de-

generacy of the i-th multiplet; g̃ĩ is the degeneracy of the corresponding Kohn-Sham (KS)

multiplet; p, q denote specific KS single Slater determinants; µ, ν, κ, λ, η denote KS orbitals;

wi,k is the weight of the k-th state in the i-th multiplet; Ci,k,p is the mixing coefficient of the p-

th determinant to make up the k-th state in the i-th multiplet; fĩ,p,µ is the occupation number

of the µ-th orbital in the p-th determinant of the ĩ-th KS multiplet; σ denotes spin, φ denotes

KS orbitals; norb
µ (r) is the orbital density of the µ-th orbital; and norb

µ (r, r′) = φµ(r)φ∗µ(r′).
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This form is more explicit than the one given in our previous work[207], in order to fa-

cilitate use of the SEHX version of GPG. Ref. [73] presents the general framework and a

single-determinant example based on the exact exchange OEP formalism of Nagy[172, 173].

However, the authors use the ensemble Hartree-exchange definition of Eq. (5.8) and sym-

metry eigenstates to calculate their reported results. We have denoted such a procedure as

SEHX. SEHX, as written out here and in Ref. [207], yields self-consistent results that agree

to within 0.03 eV with those presented in Table I of Ref. [73], with this difference assumed

to be due to numerical differences in implementation.

5.6 Approximate Results

Comparison of exact and approximate quantities exposes differences in single- and multi-

determinant approximations, as well as the shortcomings both share. Fig. 5.8 shows exact

and approximate XC potentials using the exact ensemble density. Both the SD and the SEHX

are OEPs, which guarantees their correct −1/r asymptotic behavior in the XC potential (Fig.

5.8). However, only the SEHX potential shows the large w bump and recovers the general

shape of the exact vXC,w(r).

The correlation potential vC,w(r) displays two distinct bumps, shown in Fig. 5.9. The w = 0

correlation potential matches perfectly with the exact ground-state correlation potential in

Ref. [246]. The first bump at about r = 1 also exists in the ground-state vC(r), while the

second bump at about r = 2.5, which vanishes rapidly as w decreases, is unique to EDFT.

Fig. 5.10 shows that, in the small w region, only SEHX generates a step-like form for the

ensemble derivative discontinuity. The SEHX XC potential is also the only approximation

that has the characteristic bump of the exact XC potential. Both SEHX and SD are OEP

methods, but the former satisfies the exact condition of the ensemble derivative disconti-
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nuity, while the latter does not. The SEHX potential is obtained by applying the KLI

approximation[137] to the optimized effective potential (OEP) equation[173]. Equations for

vSEHX
HX,w (r) of the helium singlet bi-ensemble are given in Eqs. 41 - 43 of Ref. [207].
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Figure 5.10: Self-consistent ∆vXC(r) of various approximations at w = 0.0001. Only SEHX
(dotted red) replicates a shift similar to that of the exact curve (solid black). Color online.

To understand the absence of the derivative discontinuity in SD, we compare the small-w

behavior of both SD and SEHX[207]. The SD potential for the spin-up electron is

vSD
HX↑,w(r) =

{
(1− w)norb

1↑ (r)[v1↑(r) + v̄HX1↑,w − v̄1↑]

+ wnorb
2↑ (r)[v2↑(r) + v̄HX2↑,w − v̄2↑]

}
/n↑,w(r),

(5.18)

where n↑,w(r) = (1− w)norb
1↑ (r) + wnorb

2↑ (r), and

v1↑(r) = v2↑(r) =

∫
d3r′

|r− r′|
norb

1↓ (r′). (5.19)
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Barred quantities are defined

v̄j =

∫
d3r vj(r)norb

j (r), (5.20)

so that v̄HX1↑,w, for instance, is the expectation value of the spin-up HX potential with respect

to norb
1↑ (r).

Comparing the SEHX[207] and SD expressions for the HX potentials makes the disappear-

ance of the derivative discontinuity in the SD approximation clear. When w is very small, in

the region where r is smaller than a certain rC, nw(r) is dominated by the (2−w)norb
1 (r) term

(see Eq. 41 of Ref. [207]). In the r > rC region, however, it is dominated by the wnorb
2 (r)

term due to the slower decay of norb
2 (r). Thus, when w is very small, we have

vSEHX
HX,w≈0(r) ≈

 v1(r) + v̄HX1 − v̄1, r < rC,

v2(r) + v̄HX2 − v̄2, r > rC,
(5.21)

and

vSD
HX↑,w≈0(r) ≈

 v1↑(r) + v̄HX1↑,w − v̄1↑, r < rC,

v2↑(r) + v̄HX2↑,w − v̄2↑, r > rC,
(5.22)

For any w, v1↑(r) = v2↑(r), so the SD approximation yields the same behavior at large or

small w. In contrast, when w is very small within the SEHX approximation,

v1(r) ≈
∫

d3r′

|r− r′|
n1(r′), (5.23)
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and

v2(r) =

∫
d3r′

|r− r′|

[
norb

1 (r′) +
φ∗1(r)φ∗2(r′)φ1(r′)

φ∗2(r)

]
= v1(r) + f(r).

(5.24)

v1(r) and v2(r) therefore have a finite difference even at w = 0. We have shown that rC ≈

−0.621lnw in Ref. [207], so the constant terms in Eq. (5.21) are

v̄HX1(r)− v̄1(r) =

∫
d3r norb

1 (r)[vSEHX
HX,w≈0(r)− v1(r)]

≈
∫

dΩ

∫ ∞
rC

dr norb
1 (r)f(r),

(5.25)

because the integrand vanishes when r < rC and w is small. Similarly,

v̄HX2(r)− v̄2(r) ≈ −
∫

dΩ

∫ rC

0

dr norb
2 (r)f(r). (5.26)

Eq. 5.24 shows that f(r) decreases rapidly as r increases, since φ1(r) decays faster asymp-

totically than φ2(r). Since f(r) is a part of v2(r), which only dominates the large-r behavior

of vSEHX
HX,w≈0(r), the difference between the large-r and small-r behaviors of vSEHX

HX,w≈0(r) is due to

the constant terms in Eqs. (5.25) and (5.26). In the w → 0 limit, Eq. (5.25) vanishes, and

Eq. (5.26) approaches a finite negative value. The additive constant in the HX potential ob-

tained needs to be determined by matching with the known 1/r behavior, and the resulting

potential would show the upward ensemble derivative discontinuity step illustrated in Fig.

5.5. Since both v̄HX1↑,w− v̄1↑ and v̄HX2↑,w− v̄2↑ vanish in the w→ 0 limit, there is no ensemble

derivative discontinuity for SD.

Figs. 5.11, 5.12, and 5.13 demonstrate that qLDA, SD, and SEHX approximations are

unable to generate w-independent excitation energies. The less severe w-dependence of the

SEHX KS gap is due to its closer replication of the exact ensemble derivative discontinuity,

though the SEHX cancellation of excitation energy w-dependence is not exact. Fig. 5.8
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Figure 5.11: Eq. (5.10) applied to self-consistent quasi-LDA results. The correction to the
quasi-LDA KS gap (dashed green) is not 0, but it is too small to be noticed on this scale.
This correction is inadequate to cancel the w-dependence in the qLDA KS gap (dashed red),
resulting in inaccurate, w-dependent calculated optical gaps (dashed blue). The gaps have
been shifted in this figure by the optical gap ω for easier comparison, and the exact results
of Fig. 5.7 are also shown for context. Color online.
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red) is insufficiently corrected by the SD corrections to the KS gap (dashed green), yielding
calculated optical gaps that are too small (dashed blue). Though the w-dependence is less
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far less variation in calculated excitation energies with w (dashed blue), which appears to
be the result of its ensemble derivative discontinuity. This produces approximate KS gaps
(dashed red) and KS gap corrections (dashed green) that most closely resemble the exact
curves in overall shape. The exact results (as in Fig. 5.7) are also shown for context. The
gaps have been shifted in this figure by the optical gap ω for easier comparison, and the
exact results of Fig. 5.7 are also shown for context. Color online.
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shows that the position of the large w bump of SEHX is at smaller r values than the exact

one. This agrees with the less rapid change of the SEHX KS gap in the large-w region. In

Fig. 5.13, the sharp change of the SEHX KS gap in the small-w region is similar to that of

the exact ensemble, which is due to the bump created by the step in ∆vXC. qLDA and SD

potentials have neither the large-w bump nor the small-w derivative discontinuity step, so the

w-dependencies of their KS gaps are very different from the exact one. Comparing to Figs.

5.4 and 5.8, the r = 2.5 bump in the correlation potential (Fig. 5.9) fixes the position of the

bump in the exchange-only (SEHX) potential, and thereby sets the w-dependence of the KS

gap and its correction.

5.7 Conclusion

This work provides a method for inverting ensemble densities, so that the resulting exact

ensemble KS systems can be used as references for developing approximated EDFT func-

tionals. We show the density-inversion method for spherically-symmetric systems in this

paper, but it is not difficult to generalize the method for other types of systems. We have

tested the density-inversion method in cylindrically-symmetric systems and it also yields

good results[207]. For systems with lower symmetry, the real-space approach shown in this

paper would not yield accurate results without a massive grid point set. Though expression

in a basis set may solve this problem, further study is required to determine the effect this

would have on the density-inversion method’s stability and performance.

We applied the density-inversion method on the helium singlet bi-ensemble for its simplicity.

This exposes the continuous emergence of the exact XC potential bump from the ensem-

ble derivative discontinuity and facilitates comparison with approximations. The singlet

bi-ensemble is by no means the limit of the applicability of the density-inversion method,

however. In Ref. [207], we apply the method to ensembles of various real and model 2-
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electron systems, in which it retains the numerical stability and accuracy seen in this paper.

This work illustrates that EDFT properties deviate from ground-state DFT ones in previ-

ously unseen ways. Also, some exact conditions, such as Eq. (5.10), do not suggest obvious

methods for their satisfaction by approximations. Of the approximations we tested, the

SEHX version of GPG, the only one with an ensemble derivative discontinuity, generated

the most accurate XC potentials and excitation energies. These complications make devel-

oping a good EDFT functional considerably harder than in ground state, and we hope the

exact results shown in this work can alleviate some burden on EDFT developers.
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Chapter 6

Foundations of Finite Temperature

PFT

6.1 Potential Functional Theory (PFT)

In DFT calculations, the computational bottleneck involves solving the Kohn-Sham equa-

tions. One way around this costly step is formulating an orbital-free method, which requires

a direct approximation of the kinetic energy functional. As shown by Cangi et al.[27, 28],

the kinetic energy can be expressed as a functional of the density or of the potential, due

to the one-to-one correspondence of density and potential as shown by the Hohenberg-Kohn

Theorem in 1964.[99] Unreasonable accuracy for box boundary conditions can be achieved at

zero temperature by use of an approximate density formula and coupling-constant expression

for the non-interacting kinetic energy[28]:

T ccS [v] =

∫
d3r {n̄AS [v](r)− nAS [v](r)} v(r). (6.1)
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Here, nAS [v](r) is an approximation to the non-interacting density as a functional of the

potential, and

n̄AS [v](r) =

∫ 1

0

dλ nAS [vλ](r), (6.2)

where vλ(r) = (1− λ)v0(r) + λv(r) and v0 is chosen to be zero. The coupling constant, λ, in

our formula connects two potentials:

vλ(r) = (1− λ)v0(r) + λv(r), (6.3)

where v0 is some reference potential and v(r) is our potential of interest. One may think of

it as a dial: as λ increases from 0 to 1, our system moves smoothly from a reference potential

to our potential of interest, passing through a weighted mixture of the two. For instance, a

coupling constant could be used to move gradually from a flat box potential to a box with

a dip in the middle.

By defining both the kinetic energy and density as functionals of the potential, a general

approximation to the kinetic energy is automatically generated, eliminating the need for

a separate kinetic energy approximation. It will be shown that a similar kinetic energy

approximation can be generated at finite temperature.

6.2 Derivation of Formalism at Finite Temperature

Cangi et al. have shown PFT to be highly accurate at zero temperature and that in-

clusion of leading corrections to the local density approximation improves the accuracy of

functionals.[27, 28, 49] Since these corrections are built into semiclassical methods, pursuit

of finite temperature PFT (FT PFT) is a natural progression. The first step is to derive

a potential functional expression for the non-interacting kentropy in terms of the coupling
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constant.

In general, a universal potential functional can be defined in order to establish the grand

potential at finite temperature as a functional of the potential. For a non-interacting system,

Ωτ
S [v] = F τ

S [v] +
∫
d3r nτ [v](r) (v(r)− µ) (6.4)

= Kτ
S [v] +

∫
d3r nτ [v](r) (v(r)− µ) . (6.5)

Using vλ = (1− λ)v0 + λ v(r), we can also write

Ωτ
S [v] = Ωτ

0[v] +

∫ 1

0

dλ

(
∂Ωτ

S [vλ]

∂λ

)
(6.6)

= Ωτ
S [v0] +

∫
d3r

∫ 1

0

dλ (−v0(r) + v(r)) nτ [vλ](r) (6.7)

where Ωτ
S [v0] = Kτ

S [v0] + V τ [v0]− µτN is the non-interacting grand potential of a system in

a reference potential at temperature τ . By setting v0 as the infinite square well potential,

we can write the non-interacting kentropy in terms of a reference kentropy and the density

as a potential functional:

Kτ
S [v] = Kτ

S [v0] +

∫
d3r

{∫ 1

0

dλ nτ [vλ](r)− nτ [v](r)

}
v(r). (6.8)

Labeling the reference kentropy to clarify its dependence on the box boundary conditions,

the coupling constant expression for the non-interacting kentropy is written

Kτ
S [v] = Kτ

box +

∫
d3r {n̄τ [v](r)− nτ [v](r)} v(r), (6.9)

where n̄τ [v](r) =
∫ 1

0
dλ nτ [vλ](r) and we’ve dropped the cc superscript for simplicity of

notation. Thus, by this method, one needs only select an approximation to the density and
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calculate the reference kentropy to calculate the approximate non-interacting kentropy.

To summarize, we have used the idea of the coupling constant to derive an exact expression

that feeds the potential into a functional that then yields the density, and then uses that

density to generate the exact universal functional at finite temperature. The universal func-

tional is a combination of free energy and electron-electron interaction energy that is the

same for any system of electrons at finite temperature. If we have the exact density written

in terms of the potential, we will get out the exact universal functional value. If we have a

very good approximation to the density, we will get out a very good approximation to it.

This formalism is exact and applies to all systems. It can be used with interacting or non-

interacting density expressions. To leverage the huge body of work in XC approximations

and to simplify the task of finding highly accurate density approximations, our formalism

uses it with non-interacting densities, as discussed in the next section.
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Chapter 7

An Efficient Formalism for Warm

Dense Matter Simulations

written with Attila Cangi. Submitted to Phys. Rev. B (2015).

Abstract: Simulation of warm dense matter requires computational methods that capture

both quantum and classical behavior efficiently under high-temperature, high-density condi-

tions. Currently, density functional theory molecular dynamics is used to model electrons and

ions, but this method’s computational cost skyrockets as temperatures and densities increase.

We propose finite-temperature potential functional theory as an in-principle-exact alternative

that suffers no such drawback. We derive an orbital-free free energy approximation through

a coupling-constant formalism. Our density approximation and its associated free energy

approximation demonstrate the method’s accuracy and efficiency.
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7.1 Introduction

Warm dense matter (WDM) is a highly energetic phase of matter with characteristics of both

solids and plasmas[80]. The high temperatures and pressures necessary for creation of WDM

are present in the centers of giant planets and on the path to ignition of inertial confine-

ment fusion capsules[5, 180]. The high cost of experiments in this region of phase space has

led to renewed interest and great progress in its theoretical treatment[81, 167, 218]. Tradi-

tional plasma and condensed matter theoretical approaches exhibit serious shortcomings[80],

leading to the WDM regime’s characterization as the “malfunction junction.” Since both

quantum and classical effects are crucial to accurate WDM simulations[128], density func-

tional theory (DFT) molecular dynamics has been used with increasing frequency[101]. This

method relies on Kohn-Sham (KS) DFT, which simplifies solving the interacting problem of

interest by mapping it onto a non-interacting system[99, 132]. While the agreement between

these calculations and experimental results is excellent[123, 213], the calculations remain

incredibly expensive[163, 164]. The computational bottleneck in these calculations is the

solution of the KS equations, a step that becomes increasingly expensive as temperatures

and fractional occupations rise. In fact, the cost exhibits nearly exponential scaling with

temperature due to the KS cycle including many states at WDM temperatures[120].

A solution to this problem is orbital-free DFT[250], which avoids this costly step using non-

interacting kinetic energy approximations that depend directly on the electronic density.

Because the kinetic energy is such a large fraction of the total energy, however, these ap-

proximations must be highly accurate to be of practical use. Though much progress has

been made for WDM[116, 121, 226], approximations are complicated by temperature effects.

The KS kentropy, the free energy consisting of the non-interacting kinetic energy and en-

tropy, must be approximated directly, greatly complicating the production of useful, efficient

approximations.
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Figure 7.1: Shortcomings of the TF approximation in the WDM regime: Total density
of five particles in the potential v(x) = −2 sin2(πx/10) within a box (of size 10 a.u.) at
Λ = τ/µ = 0.93. Compare the exact density (solid black curve) with our PFA (dashed red
curve) derived in Eq. (7.12), which is basically on top of the exact result. On the other
hand, the TF approximation (dotted green curve) and conventional (second-order) gradient
expansion (dotted purple) capture the general qualitative features, but completely miss the
quantum oscillations. We also show the corresponding exact density at zero temperature
(light blue shaded area), with its pronounced oscillations that smooth as temperatures rise.
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At zero temperature, potential functional theory (PFT) is a promising approach to the elec-

tronic structure problem[26, 28]. It is also orbital-free, but skirts the troublesome issue of

separately approximating the KS kinetic energy. PFT’s coupling-constant formalism au-

tomatically generates a highly accurate kinetic energy potential functional approximation

(PFA) for any density PFA[28]. In this way, one needs only find a sufficiently accurate den-

sity approximation[27]. Approximations to the non-interacting density have been derived

in various semiclassical[27, 49, 212], and stochastic approaches[6]. Most closely related to

this work is the pioneering path-integral formalism of Yang[255, 256] which goes beyond the

gradient expansion at finite temperature. An advantage of PFT is that it generates leading

corrections to zero-temperature local approximations[27], which become exact in the well-

known Lieb limit[154]. Finite-temperature Thomas-Fermi theory[61, 240] becomes relatively

exact for non-zero temperatures under similar scaling[177]. In this way, our method provides

a pathway to systematic improvements to approximations, something generally missing from

DFT approaches.

The particular scaling conditions under which TF becomes exact for all temperatures is re-

lated to the breakdown of purely quantum or classical behavior as both temperatures and

particle numbers increase[80]. The importance of both these effects in the WDM regime un-

derlies its theoretical complexity[206]. It is useful to represent the influences of temperature

and density with a single electron degeneracy parameter defined by Λ = τ/µ, which depends

on the system temperature τ and temperature-dependent chemical potential µ. Then, the

WDM regime can be defined as where Λ ≈ 1. At these conditions, KS-DFT is hugely expen-

sive, while traditional plasma methods miss critical electronic structure features. In Fig. 7.1,

density oscillations still present at WDM conditions are neglected by the smooth, classical

TF approximation and its conventional gradient correction, but are captured by our method.

In this work, we (i) derive PFT for thermal ensembles, (ii) give an explicit equation for the

kentropy relying solely on the temperature-dependent density, (iii) derive and implement
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a highly accurate density approximation in one dimension to illustrate our general result,

and (iv) perform (orbital-free) PFT calculations in the WDM regime. Our method gen-

erates highly accurate density and kentropy approximations, skirts the need for separate

kentropy approximations, provides a roadmap for systematically improved approximations,

and converges more quickly as temperatures increase while maintaining accuracy at low

temperatures. At the same time, it bridges low and high temperature methods, and so is

uniquely suited to WDM.

7.2 Theory

At non-zero temperature, the energy is replaced by the grand canonical potential as the

quantity of interest[56, 169]. The grand canonical Hamiltonian is written

Ω̂ = Ĥ − τ Ŝ − µN̂, (7.1)

where Ĥ, Ŝ, and N̂ are the Hamiltonian, entropy, and particle-number operators. In elec-

tronic structure theory, we typically deal with non-relativistic electrons, most commonly

within the Born-Oppenheimer approximation. The electronic Hamiltonian (in atomic units

here and thereafter) reads

Ĥ = T̂ + V̂ee + V̂ , (7.2)

where T̂ denotes the kinetic energy operator, V̂ee the interelectronic repulsion, and v(r) the

static external potential in which the electrons move. (We suppress spin for simplicity of

notation.) The grand canonical potential can be written in terms of potential functionals
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(denoted by square brackets) as follows:

Ωτ

v−µ = F τ [v] +

∫
d3r nτ [v](r)(v(r)− µ). (7.3)

Here, F τ [v] = F τ [Γ̂0
v−µ] = T [Γ̂0

v−µ] + Vee[Γ̂
0
v−µ] − τS[Γ̂0

v−µ] denotes the universal functional

in terms of the equilibrium statistical operator Γ̂0
v−µ, which captures all system-independent

behavior in thermal DFT[202].

In practice, approximating this expression would require two separate approximate potential

functionals, one for the universal finite-temperature functional and one for the density:

Ω̆τ

v−µ = F̆ τ [v] +

∫
d3r n̆τ [v](r)(v(r)− µ). (7.4)

However, we can generate an approximation (denoted by a breve above the approximated

quantity) to the universal functional that corresponds to any chosen density approximation.

In analogy to the zero-temperature case[28], we introduce a coupling constant λ in the one-

body potential, vλ(r) = (1− λ)v0(r) + λv(r), where v0 is some reference potential. Via the

Hellmann-Feynman theorem, we rewrite the grand potential,

Ωτ

v−µ = Ωτ

0 +

∫ 1

0

dλ

∫
d3r nτ [vλ](r)∆v(r), (7.5)

where ∆v(r) = v(r) − v0(r) and Ωτ
0 is the reference system grand potential. Setting v0 = 0

and defining n̄τ [v](r) =
∫ 1

0
dλnτ [vλ](r), we now write the exact finite-temperature universal

functional in terms of the density written as a potential functional:

F τ [v] =

∫
d3r {n̄τ [v](r)− nτ [v](r)} v(r). (7.6)

This defines an approximate functional, F̆ τ [v], corresponding to the chosen density approxi-

mation n̆τ and is the generalization of PFT to thermal ensembles. The coupling-constant ap-
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proach differentiates the present formalism from previous groundbreaking work in Refs. [256]

and [9].

Practical use of this formula as written would require sufficiently accurate approximations

to the interacting electron density. These are likely unavailable, so we instead apply it

to the non-interacting electrons of the KS system. In DFT, the KS system is a clever

way of approximating the exact F τ by mapping the interacting system to a non-interacting

system with the same electronic density and temperature. This determines the one-body KS

potential and corresponding chemical potential. Through this mapping, the non-interacting,

finite-temperature universal density functional is defined[202]

F̃ τ

S [n] := min
Γ̂→n

Kτ [Γ̂] = Kτ [Γ̂τ

s [n]] = K̃τ

s [n] . (7.7)

The non-interacting kentropy K̃S[n] = T̃S[n] − τ S̃S[n] generates the KS equations and the

KS orbitals, and tildes denote density functionals. The orbitals are implicit functionals of

the density via the KS equations, and the average density is constructed by Fermi-weighted

summing of the orbitals. Solution of these equations at every time-step is the most costly

step of DFT molecular dynamics.

The KS potential is defined[26, 28]

vS(r) = v(r) + ṽH[nτS[vS]](r) + ṽXC[nτS[vS]](r) , (7.8)

where, in contrast to KS-DFT, the density is posed as a potential functional. All many-

body interactions among the electrons are captured in the usual KS-DFT sense, via the

(traditionally defined) Hartree and XC potentials[43]. The difference from a usual KS-DFT

calculation is that Eq. (7.8) in conjunction with an approximation to the non-interacting

density bypasses the hugely expensive iterative solution of the KS equations for WDM.

Choosing a potential functional approximation to the non-interacting density automatically
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generates an approximated KS potential, as illustrated in the Supplemental Materials. Once

the self-consistent KS potential is determined, the KS kentropy is computed from

Kτ

S [vS] =

∫
d3r {n̄τS(r)− nτS[vS](r)} vS(r) , (7.9)

which is the analog of Eq. (7.6) for KS electrons. Again, Eq. (7.9) defines a coupling-constant

approximation, K̆τ
S [vS], when evaluated on any chosen approximation to the non-interacting

density n̆τS. Finally, the grand potential expressed in terms of KS quantities[202],

Ωτ

v−µ = Kτ

S [vS] + Ũ [nτS[vS]] + F̃ τ

xc[n
τ

S[vS]] +

∫
d3r nτ [vS](r) (v(r)− µ) , (7.10)

can be evaluated via Eq. (7.9). Through this result, we leverage the body of time-proven

XC approximations and eliminate the need to construct separate approximations to the KS

kentropy for use in orbital-free (and thereby computationally inexpensive) schemes. Only

an approximation to the non-interacting density is required. A general, systematic, non-

empirical route to improved kentropy approximations is now available.

7.3 Numerical Demonstration

To illustrate the significance of our main result in Eq. (7.9), we consider a simple, yet

useful, numerical demonstration: Non-interacting, spinless fermions in an arbitrary potential

v(x) confined to a box of size L obeying vanishing Dirichlet boundary conditions. (In a

practical realization, this would be the self-consistent KS potential of the given many-body

problem.) A starting point for deriving an approximation to the non-interacting density at

finite temperature is the semiclassical propagator, which can be written as a convolution

of the zero-temperature propagator with a factor carrying all temperature dependence[9].
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From the propagator, we extract the density via an inverse Laplace transformation.

n̆τS[vS](r) = lim
r′→r

1

2πi

η+∞∫
η−∞

dα
eµα

α
Gτ [vS](r, r

′;α) . (7.11)

Recently, a highly accurate PFA to the density was derived for this model using the path

integral formalism and semiclassical techniques[30]. Here we extend this result to finite

temperature and obtain:

n̆τS(x) = lim
x′→x

4∑
α=1

∞∑
j=0

γ̆τS(x, x′;α, j) , (7.12)

a PFA to the density at a given temperature and chemical potential, where

γ̆τS(x, x′;α, j) =
τ sin Θα

µ(x, x′; j)csch[πτT αµ (x, x′; j)]

(−1)α+1
√
kµ(x)kµ(x′)

. (7.13)

Here we define generalized classical phases Θ1
µ(x, x′; j) = θ−µ (x, x′) + 2jθµ(L), Θ2

µ(x, x′; j) =

θ+
µ (x, x′) + 2jθµ(L), Θ3

µ(x, x′; j) = θ−µ (x, x′)− 2(j + 1)θµ(L), Θ4
µ(x, x′; j) = θ+

µ (x, x′)− 2(j +

1)θµ(L) and generalized classical traveling times T αµ (x, x′; j) = dΘα
µ(x, x′; j)/dµ. Further-

more, θ±(x, x′) = θ(x) ± θ(x′), where θµ(x) =
∫ x

0
dy kµ(y) and kµ(x) =

√
2(µ− v(x)) at a

given chemical potential µ, which is determined by normalization of the density.

The physical interpretation of our result in Eq. (7.12) is instructive: For a given chemical

potential there are infinitely many classical paths that contribute to the total density. The

paths are classified into four primitives (identified by α) onto which an integral number of

periods (labelled by j) is added. The first primitive is special, in that it yields the TF

density. However, higher-order terms in j do not yield the conventional gradient expansion.

All other primitives and additional periods carry phase information about reflections from

the boundaries, producing quantum density oscillations that greatly improve upon the TF

result[30]. For more details, we refer to Ref. [30].
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Our result in Eq. (7.12) can be evaluated numerically for a given temperature by truncating

the infinite sum at an upper limit at which the sum has converged. Importantly for WDM

applications, the higher the temperature, the lower the upper limit required for convergence

of the sum. In fact, in the WDM regime only the leading term (j = 1) in the sum needs to

be kept. Similar results have also been recently found at zero temperature[30, 211], so this

may be a universal feature due to the approximation’s semiclassical nature.

However, the stationary phase approximation used to derive Eq. (7.12) yields the TF den-

sity at zero temperature as the leading term, i.e., limx′→x γ̆
τ
S(x, x′; 1, 0) = kµ(x)/π =

n̆0
TF(x), instead of the finite-temperature TF density n̆τTF(x) =

√
τ/(2π)F−1/2(z), where

Fν(z) =
∫∞

0
da aν [1 + exp(a − z)]−1 and z = k2

µ(x)/2τ . We fix this problem with an

ad-hoc correction and ensure the correct boundary conditions. To do so, we replace the

density from the first primitive limx′→x γ̆
τ
S(x, x′; 1, 0) with a Gaussian interpolation of n̆0

TF(x)

and n̆τTF(x). In this way, we cope with the density approaching the high-temperature limit

(under which TF theory becomes exact) differently in two distinct regions, the interior of the

box and the edge regions near the walls. These two distinct boundary layers have different

asymptotic expansions in the high-temperature limit. The size of the edge-region boundary

layers shrinks as the limit is approached. Our Gaussian interpolation is a crude version of

the asymptotic matching used in boundary-layer theory[100].

In Fig. 7.1, we plot a typical density of five particles in the WDM regime (Λ ≈ 1) in

the potential v(x) = −2 sin2(πx/10) within a ten-unit box, along with approximate den-

sities. The black curve is the exact result, the red dashed curve is our approximation,

the green dotted curve is the TF density, and the purple dotted curve is the second-

order gradient-corrected TF[9] density with the second-order gradient correction given by

−∂2
xv(x)/

√
512πτ 3F−5/2(z)− 5(∂xv)2/

√
8192πτ 5F−7/2(z). In addition, the light-blue shaded

area denotes the corresponding density at zero temperature. Quantum oscillations in the

density persist in the WDM regime, and TF theory completely fails to capture them. On
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the other hand, our PFA – derived to include quantum effects – is able to describe them

properly and is therefore highly accurate. This mimics the results for cold densities seen in

Fig. 1 of Ref. [27].

Table 7.1: Residual kentropy of five particles in the same potential as in Fig. 7.1. We list
the error of the conventional TF approach, its gradient correction, and of our PFA (given in
Eq. (7.14)) far below and above where WDM is typically encountered.

Λ Kτ
S,0 ∆Kτ

S error × 102

TF GEA(2) PFA
0.16 3.94 0.462 6.39 8.93 -0.32
0.31 3.87 0.461 7.16 9.85 -0.28
0.47 3.76 0.459 7.91 10.11 -0.31
0.62 3.64 0.456 8.39 10.01 -0.29
0.78 3.50 0.452 8.61 9.78 -0.30
0.93 3.34 0.448 8.65 9.52 -0.37
1.09 3.16 0.444 8.58 9.24 -0.50
1.40 2.77 0.435 8.21 8.63 -0.87
1.71 2.36 0.425 7.69 7.99 -1.27
2.02 1.92 0.414 7.13 7.35 -1.61
2.48 1.25 0.396 6.34 6.46 -1.86
2.94 0.58 0.378 5.64 5.69 -1.80
3.41 -0.10 0.360 5.04 5.04 -1.45
4.03 -0.99 0.338 4.37 4.33 -0.63

Next, we demonstrate the accuracy of our approach for kentropies. For our example, Eq. (7.9)

simplifies to

K̆τ

S [v] = Kτ

S,0 +

∫
dx
{

˘̄nτS(x)− n̆τS[v](x)
}
v(x) . (7.14)

In this case the reference potential is not zero, but an infinite square well. Hence, a kentropic

contribution Kτ
S,0 = T τ

S,0 − τSτS,0 of the reference system appears, which we compute exactly.

The kinetic energy of the infinite square well is T τ
S,0 =

∑N
j f

τ
j εj,0, and the entropy is SτS,0 =

−
∑

j f
τ
j ln(f τj ) + (1− f τj )ln(1− f τj ), with f τj = 1/(1.0 + exp [(εj,0 − µ0)/τ ]) denoting Fermi

functions and εj,0 and µ0 the jth eigenvalue and chemical potential. We avoid temperature-

dependent KS eigenvalues[206] by choosing a purely non-interacting reference system, not a
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KS system associated with a specific interacting system. Evaluating Eq. (7.14) for the same

potential as in Fig. 7.1 yields the results in Tab. 7.1. We measure the error of TF theory, its

gradient correction, and our PFA with respect to the residual kentropy ∆Kτ
S = Kτ

S −Kτ
S,0,

because this is the only approximated piece of the kentropy. From cold temperatures up to

the WDM regime (Λ ≈ 1), our PFA yields kentropies that are significantly more accurate

than either TF theory or the gradient expansion, improving them by roughly an order of

magnitude. In fact, the gradient correction worsens the results, though it may improve them

in other systems. In any case, the gradient correction is small, while our PFA yields dramatic

improvements. Far beyond the WDM regime, the entropic contribution dominates, and the

errors of all methods become comparable. In Tab. 7.1, N is fixed as temperature increases.

If instead N scales with increasing temperature, the system will approach a Lieb-like limit

and TF accuracy is less than one percent for Λ > 2.

We can better understand the advantage of our PFA over the conventional TF approach

by analyzing both in real space. We compute residual kentropic densities (the integrand of

Eq. (7.14)) for the example in Fig. 7.1. As illustrated in Fig. 7.2, the TF approach (dotted

green curve) and its gradient correction (dotted purple) only reproduce the qualitative trends

of the exact result (black curve). Errors due to an overestimation in the interior are balanced

by underestimation in the outer regions of the system. Our PFA, on the other hand, not only

yields accurate integrated kentropies (area under the curve in Fig. 7.2), but is also highly

accurate in real space. As such, and unlike TF, our PFA does not rely on cancellation of

errors in the kentropy density for its accurate kentropy values.

7.4 Conclusion

The finite-temperature PFA approach outlined here offers several advantages over other

methods, particularly for WDM, where solution of the KS equations for numerous occu-
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Figure 7.2: Residual kentropic density of five particles in the same potential as in Fig. 7.1 in
the WDM regime. Our PFA (solid red curve) derived in Eq. (7.12) is on top of the exact result
(solid black curve). TF (dotted green curve) and its gradient correction (dotted purple), on
the other hand, follow the general trend as expected, but miss quantitative details.
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pied states becomes especially daunting. We retain the advantages of the KS system while

avoiding the costly, repetitive solution of eigenvalue problems by isolating a piece of the

kentropy to approximate through the coupling-constant formalism. Combined with our den-

sity approximation, this improves approximate kentropies by up to an order of magnitude

in the WDM regime and produces highly accurate kentropic densities. This accuracy relies

on inclusion of quantum oscillations beyond the minor corrections of the conventional gradi-

ent expansion. The density approximation derived in this paper is computationally efficient

because only the leading term is needed for convergence at WDM temperatures.

The path integral method used to derive this approximation[30] invites use of successful zero-

temperature approximations to the propagator, and it is a promising approach for extension

to three dimensional systems. Furthermore, combining finite-temperature PFT with semi-

classical methods offers prospects for a systematic route to exchange energy approximations,

instead of relying on existing, zero-temperature density functional approximations. Work in

this direction is currently in development. With these advantages, finite-temperature PFT is

poised to bridge the “malfunction junction” of WDM by providing computationally efficient,

semiclassical methods at high temperatures and densities.

We acknowledge Hardy Gross and Kieron Burke for providing an atmosphere facilitating

independent research. We are grateful to Rudy Magyar for useful discussion. A.C. has

been partially supported by NSF grant CHE-1112442. A.P.J. is supported by DOE grant
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Part VI

Conclusions
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Chapter 8

Summary and Future Work

Warm dense matter, with its physical complexity and idiosyncratic behavior, offers many

challenges to theorists, whether they begin from the chilly regime of condensed matter or

the sizzling perspective of traditional plasma physics. We are driven to face these challenges

by the huge rewards doing so would offer in fields as diverse as astronomy, materials science,

and the quest for fusion energy. In this thesis, I’ve begun to address some of them, namely,

how to include temperature dependence in DFT approximations and how to overcome the

computational inefficiency of KS-DFT.

In Chapters 6 and 7, I presented a novel method for calculating the electronic structure of

finite-temperature systems that avoids solution of the Kohn-Sham equations. The formalism

is valid in three dimensions, and we demonstrated it using a highly accurate semiclassical

density approximation. This orbital-free method, when combined with our path-integral-

based approximation, is well-suited to WDM simulations because it works well across a wide

range of phase space and becomes more efficient as temperatures rise.

Finite-temperature DFT was explained as a specific case of ensemble DFT in Chapter 3,

and the importance of derivative discontinuities in approximations was demonstrated in
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Chapters 4 and 5. These chapters also showed that inclusion of ghost interactions and using

only single determinant states reduces the accuracy of ensemble DFT energy calculations

and Kohn-Sham potentials.

Future work related to that presented here could proceed on a multitude of paths. Some

projects that are already in progress or planned in the near future include:

• exact conditions of DFT at finite temperature, such as

– the FT Lieb-Oxford bound

– limits of the correlation free energy from perturbation theory

– relations between different components of the correlation energy

• using methods from strongly correlated physics to examine how FT KS-DFT is used

in practice

• developing weight-dependent XC approximations for ensemble DFT

• developing non-empirical, temperature-dependent GGA XC approximations

• rigorously extending TDDFT to finite temperatures within linear response

• deriving tied temperature-time-interaction scaling relationships

• testing of our density PFA with different potentials and developing new PFAs

• extending FT PFT to realistic, three-dimensional systems and implementing PFT-MD

Work in density functional theory and potential functional theory for WDM will continue,

in hopes that the challenges of this wonderfully troublesome region can be met. Doing so

will surely continue to expose new avenues for improvement and drive further investigation.
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