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Abstract
It is well known that any multimode positive definite quadratic Hamil-
tonian can be transformed into a Hamiltonian of uncoupled harmonic os-
cillators. Based on this theorem, the multimode thermal squeezed coher-
ent states are constructed in terms of density operators. Decoherence of
multimode thermal squeezed coherent states is investigated via the char-
acteristic function and it is shown that the decohered (reduced) states are

still thermal squeezed coherent states in general.
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1 Introduction

In the past three decades, decoherence (reduction) has become more and more
widely recognized, being studied in many fields of physics from non—equilibrium
statistical mechanics [1] to quantum measurement and quantum cosmology {2, 3].
The purpose of this paper is to investigate decoherence of multimode thermal
Squeezed Coherent States (SqCS’s).

In the literature there are many equivalent definitions for one-mode, two—
mode [4, 5, 6, 7] and multimode SqCS’s [8]. However, thermal SqCS’s are usually
defined for one-mode [9]. (Two-mode thermal SqCS in thermo-field formalism
is effectively one-mode.) Therefore, in this paper we first introduce a general
definition of the multimode thermal SqCS’s in terms of density operators. Then
we will discuss two related representations—the Wigner function and the char-
acteristic function—and will show that the latter is the better representation for
decoherence problems. Finally we will use the characteristic function to study
the decoherence of multimode thermal SqCS’s.

This paper is organized as follows: In Sec. 2 notations, conventions and a
lemma on matrix are introduced for the mathematics used in this paper. In
Sec. 3 a unified definition of multimode SqCS’s with the aid of a special kind of -
Hamiltonian is presented. In Sec. 4 the multimode thermal SqCS is constructed
by thermalizing the multimode SqCS defined in Sec. 3. In Sec. 5 we calculate
the Wigner functions and the characteristic functions of some muitimode thermal
SqCS’s. In Sec. 6 the decoherence of multimode thermal SqCS is effectuated and
it is shown that the decohered state is still a thermal SqCS.

2 Mathematical Preliminaries

Throughout this paper, & is set equal to 1; “t” denotes hermitian conjugate and

“t” denotes the transpose of a matrix. The physical system under consideration

~ 1s of n degrees of freedom, hence the dummy indices run from 1 to n unless

otherwise specified.
Weuse T =< £1,%2,...,Tn, > and k =< ky, ko, ..., k, > for the n~dimensional

-
canonical coordinate and momentum respectively. Thus < Z;k > is a vector in



2n—dimensional phase space. 5 and p denote the n—dimensional position and
momentum operators corresponding to the canonical variables £ and k. The
Canonical Commutation Relations (CCR’s) are:

[éis QJ] = Lﬁi,f’j] = 01 [qi’ﬁj] = i(sij' (1)

|0) denotes the n-mode Fock vacuum state, i.e., the ground state of an n-

dimensional harmonic oscillator with unit mass and frequency:
- _n 1
(#10) = 7% expl[— (&) @)
The number operators are defined in the ordinary way:

- 1 R R
N; = -2-(13,-2 + g2 —1). (3)

-

The (phase space) displacement operator D(< Z;k >) is defined as:

-

D(< 5k >) = expli(F-§—7-H)] (4)
D(< #;k >) is unitary and has the following properties:
DN < Zk>) =D V< &k >) = D(— < Fk >), (5)
D(<#k>)<q:p> D <5k >) =< (@-2s(B-F>. (6
The coherent state is defined as [4]:
|Z,k) = D(< ,k >)|0). (7)

Another kind of unitary operator we will use in this paper are the elements
of metaplectic group Mp(2n,R)—the quantum analogue of symplectic group
Sp(2n,R). Mp(2n,R) is an n(2n + 1)-dimensional Lie group with its algebra
spanned by {§:§;, PiD;, ¢:p; +P;G:}- The elements of the Lie algebra of Mp(2n,R)
can be organized as anti-hermitian operators in the following form:

) i n . = o
o(m) = > > leu8:d; + Biipib; + i (G:p; + 9;6:)]

3,7=1
2 3z a o 22t
= =—<qgp> < qp>
T 2
= §<q;p>Jm<q;p>t, (8)



where OG5 = Qg ,Bij = ﬁji and

— t —
m = ( v A ) € sp(2n, 1) ©)
a 7
is a 2n x 2n real matrix [10], while
o 1\ , ,
J= ( ) , = n X n unit matrix. (10)

-1 0
From CCR’s, we have: /

t \ ) -
[®(m), < §;p > = ( 70 '87) < g;p>'=—m < §p >, (11)
and _
[2(m1), (m2)] = &([ma,m2]). (12)
Therefore the Lie algebra of Mp(2n,R) is isomorphic to sp(2n,r)—the Lie al-
gebra of Sp(2n,R)

The action of exp[®(m)] € Mp(2n,R) on < §; p > can be defined and calcu-
lated from (11):

exp[®(m)] < §; 5 >* exp[~&(m)] = exp(—m) < &5 >, (13)

where exp(—m) € Sp(2n,R).
Now we replace exp(—m) in (13) by a general element S € Sp(2n,R) and try
to find a unitary operator U(S) € Mp(2n,R) such that

U(S)<§p> US) =85<gp>*. (14)

From linear algebra and group theory, we know that there is a unique polar de-
composition S = RP for any element S in Sp(2n,R), where R is orthogonal, P is
symmetric and positive definite, and both R and P are in Sp(2n,R). Therefore we
can always put S = exp(mpg) exp(mp), where R = exp(mg), P = exp(mp), and
both mg and mg are elements in sp(2n,r) (mp is symmetric and unique, while
mp is anti-symmetric and not unique) [11]. The element U(S) € Mp(2n,R)

which is unitary and satisfies (14) can be constructed as follows:
U(S) = exp[®(—mp)] exp[&(—mp)], (15)
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where exp[®(—mp)] corresponds to a generalized squeezing and exp[&)(—mR)]
to a rotation in 2n—dimensional phase space. This decomposition is crucial in
the construction of multimode SqCS since the Fock vacuum is an eigenstate of
exp[®(—mpg)], hence only the degrees of freedom in exp[®(—mp)] are effective in
the SqCS constructed as U(S)[0) [8].

Lemma [12] |
If M is a symmetric and positive definite 2n X 2n matrix, then there exists a

matrix S € Sp(2n,R) (but not unique), such that

0 .
M=35 (“’ ) S, (16)
0 w
where w = diag(w;,wa,...,w,), w; > 0 for all j.

Remarks:

(1) S € Sp(2n,R) if and only if S*JS = J by definition.

(2) wj is not an eigenvalue of M in general.

(3) The eigenvalues of JM are +iw;’s, hence we can calculate w;’s from JM
as an ordinary eigenvalue problem.

(4) If the matrix C; corresponds to a 2—-dimensional rotation on the

< zj,k; > plane, then

w 0 w 0 w 0
c;.(o w)c,-:c;c,-(o w)=(0 w). (17)

Therefore S in (16) can be replaced by C;S and hence is not unique.

3 Unified Definition of Multimode Squeezed
Coherent States

The Hamiltonian we will use in this section is of n-mode, inhomogeneously

quadratic, time-independent, and with its quadratic part positive definite:

Q)

<GP>M <gp> +V <§p >, (18)



where M is a 2n x 2n, symmetric and positive definite (hence invertible) real
matrix and V is a 1 X 2n real vector. This kind of Hamiltonian can be transformed

into the “standard form”:
H = DoUoHoUs* D3 + constant, (19)
where Do is a displacement operator, Uy is an operator in Mp(2n,R) and

ffo = Zw,'N;, w; > 0. (20)

i=1

Using the formulas discussed in last section, the derivation of (19) is straight-

0

forward:
H = %<§,§>M<§;§>‘ +V <§p>t
= %[< §:p> +VM ' M(< §:p>t +M~VE + conétant
= 5 <@ G~ Ro) > M < (F—50); (F— Fo) >* +constant
= %Ao<§;§>D51MDo<(-§‘;§>tD51+constant
= f)o[% 35>M<q,p>]D -+ constant
= f)o[% §5>5t(: 2)S<55 1D5? + constant
= f)o[%fjo < §p> U3t ( ) Uo < &5 > U7")D3* + constant
= 1‘\)0_(70[l <§p> (w ) 5 P> ]UJIDJI + constant

= DoUo[ 3@ + 3105 D5t + constant

t—l

= DoUo[Zw, :JUs D5 + constant

i=1

= boﬁoﬂoﬁglbgl + constant,, (21)
where VM1 = — < a':'g;EO >, Do = 15(< Zo; ko >) and Uo = [7(.5')

)



Without loss of generality, we can always drop the constant term and consider
H = DoUoHoUs 1Dt (22)

It is easy to see that the normalized ground state of this Hamiltonian is:
DoUo|0) oc Do exp[®(—mp)]|0), (23)

which is a SqCS in general, it contains the coherent state (Uo =1, Do # 1) and
the squeezed state (Up # 1, Do = 1) as two special cases.

Therefore we can take (23) as a unified definition of the multimode SqCS.
However, since those w;’s in Ho do not appear in (23), the correspondence between
(22) and (23) is many—to—one. The non-uniqueness of S, hence U, will not cause
any trouble, because we have shown that S is unique up to some 2—dimensional
rotations in phase space, and rotations correspond to exp[®(—mg)] in U(S) which

will not appear in (23).

4 Multimode Thermal Squeezed Coherent States

Consider immersing a physical system described by the Hamiltonian (22) in
a heat bath of temperature 7. This constitutes a canonical ensemble and the

density operator of this system is:

p = Z'exp(—PH)
= Z 'exp[—B(DoloHoUzt D3")]

= Z 'DoUsexp(—BHo)Us* DY, (24)
where )
B=15  Z="Trlexp(—pH)] = Trlexp(—pHo)). (25)

This density operator p describes a mixed state unless T' = 0. In the limit as

T — 0, since

Jim exp(~pHo) = 0)(0], - (26)
we have
p = Dolis|0)(0|U5* D5, (27)

6
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which corresponds to the pure SqCS (23), hence (23) is a special case of (24) and
(24) is a “thermalized state” of (23). Therefore we can take (24) as the definition

of multimode thermal SqCS.

5 Representations of Multimode Thermal Squeezed
Coherent States

There are many equivalent representations of the density operator j, e.g.,
the coordinate representation, P-representation, Q-representation, Fock space
representation, Wigner function and characteristic function, etc. In this paper

we will discuss the last two representations.

5.1 Wigner Function

The Wigner function of a density operator p is defined as [13, 14]:
W@ =n [~ dgexp(2ik- Dp(F - 7,7+ 1), (28)

where p(Z, z’) is the coordinate representation of the density operator -
The Wigner function can also be put into the following form [15]:

W(Z; k) = TripAw(<  F >)), (29)

where the “Wigner operator” Aw(< T3k >) = n~"D(2 < T3 k >)exp(ir 0, N;)
is a well-defined hermitian operator with < Z; k> asits parameters.
The Wigner function is normalized by definition:

/ ¥ dZdEW (5 F) = 1, (30)

and it is real because the Wigner operator is hermitian. However, the Wigner

function is not always positive—definite and it is thus called the quasi—probability

distribution function over the “phase space” (Z; k). |
In the following, we will calculate the Wigner functions for some thermal

SqCS’s. First let us consider the simplest one-mode case, i.e.,

1

2

H= w@+4§—1)=wN, (31)



the density operator is:

p = Z7" exp(—BwN), (32)
and the Wigner function takes the form [14]:

W(z, k) = Tr[pAw(z, k)] = ;lr-tanh(%—u-) exp[— t:anh('%u)(a:2 + k?%)). (33)
In the limit as T — 0, (33) becomes
W(e,k) = — expl—(a? + K], | (34

which is exactly the Wigner function of the vacuum state [14].

Noticing that the Wigner function (33) is a Gaussian distribution function in
(z, k), we can use the exponent of (33) to define the “Wigner ellipse” in the phase
space (z, k) as:

tamh(%—i)(:z:2 + k) =1 (35)

The area of the Wigner ellipse represents the range of uncertainty of the corre-
sponding state. In this simplest case, the Wigner ellipse is a circle with radius
y/coth(38w) > 1 and with its center at the origin.

Next we consider the general one-mode Hamiltonian:

H = wDU,NU DY, (36)
the density operator is:
p = Z1DolUs exp(—BwNYU1 D7, (37)

The Wigner function takes the form [16]:

W(z,k) = Z'Tr[DolUoexp(—BwNU;s D5 Aw(z, k)]
Z ' Trexp(—BwN)U;* D3 Aw(z, k) Dolo)
= Z ' Trlexp(—BwN)Aw (', k)]
1
=~ tanh(52) expl—tanh(52) (2 4 7)) (38)

(1)-=(%) 9

8
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and the Wigner ellipse is:

T
mmxé;xx o, k — ko)StS (k k;) 1. (40)
For the n-mode cases we first consider the uncoupled Hamiltonian, i.e., H=

H,. The Wigner function in this case is a product of each individual one-mode

Wigner function:

W(Z; k) = =" =7 + k)] (41)

=1
In this multimode case, we can define the “Wigner ellipsoid” in 2n—dimensional

phase space as:
n

> tanh () a2+ K) = 1, (42)

or equivalently,
T 0 .
(&) &Ry =1, (43)
where T = diag(ta.rﬂl(%ﬂwl),tanh(aﬂwg), ...,tanh(3Bw,)). Analogously, the 2n-

dimensional volume of the Wigner ellipsoid represents the range of uncertainty.
For the most general Hamiltonian H= Doﬁoﬁoﬁg IDE 1 analogue to (38),
the Wigner function is:

W(ZE) = = Hmmf%

i=1

exp[—(Z — Zo; k — k)S* (

o p)SE-amE-y) (e

and the Wigner ellipsoid becomes:

T 0

@—%ﬁ-ay<07)sw—%£—&y=L (45)

5.2 Characteristic Function

The characteristic function of a density operator p is defined as:
X(&;k) = Tr[pD(~%; —F)), (46)

9
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From the symplectic Fourier transformation of the Wigner operator AW(:E:‘ k) .
FAw(# ) = [ dodiAw (@ F)expl—i(e - F - F - 2)]
= D(-%;—k), (47)

we can see that the characteristic function is the symplectic Fourier transforma-

tion of the Wigner function:

F[W (3 B)] = X(&; k). (48)

The normalization condition of the Wigner function corresponds to X (0;0) =
1 in the characteristic function. Since the operator D(—:E’;'—E) is unitary instead
of hermitian, X (Z; I::‘) is complex in general.

The characteristic function of the general n-mode thermal SqCS, which cor-
responds to the Wigner function (44), is:

T gl ) SEB i Ro—F -2 (49

L

X(&F) = expl— (& RS (

5.3 Covariance Matrix

For an n-mode (mixed) state with density operator p, the covariance matrix

5 9)

Ui = (& — (@))(d5 — (@) = (&:4d5) — (@:)d;)s (51)
Vi ={(B: — B:))(B5 — (Bi))) = (Bibs) — (B:)(Bs), (52)
Qi = %((és — (@) (B; — ;) + (Bi — (Bi)) (@ — (&:)))
= (505 +55)) — (@65 (53)
where (§;) = Tr(pg:), etc.

For the thermal SqCS which corresponds to the Wigner function (44) or the

characteristic function (49), it can be proved that the covariance matrix is

%5-1 < To_l T&) (S, (54)

is a 2n %X 2n matrix of the form:

10
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6 Decoherence Problems

6.1 General Theory of Decoherence

Consider a quantum system which contains two subsystems (A) and (B) with
the density operator p4p. Any (monomial) operator O which corresponds to a
measurement on the system can be decomposed into O4® 03, where O, corre-
sponds to a measurement on and only on (A) and OB correspondingly on (B). If
we decohere this system by ignoring (B), i.e., not making any measurement on
(B), then the operator O will be reduced to 04 ®1 and the expectation value of

19) 4 will become:

(Oa) = Tr{pan(0a®1)]
= Tr(A)Tr(B)[ﬁAB(éA ®1)]
= Tral(Trm)(pas))0al
= Tr{pa0al, | (55)
where Tr(4)/ Tr(p) represents the “partial trace” which only takes trace with
respect to the degrees of freedom of (A)/(B), and p4 = Trs)(pas) is a well-
defined reduced density operator.

If the Wigner function W (&, Zp; EA, EB) corresponds to the original density
operator pag, then the reduced Wigner function corresponding to p4 is [14]:

Wa(Za; Fg) = [_ d3pdReW (%4, B5; Fa, Fg). (56)

As for the characteristic function, if X(Z4,Zp; EA, EB) corresponds to pam,

the reduced characteristic function corresponding to g4 will take the form:
XA(:EA;EA) = X(Elha’ EAa(-).)’ (57)

which is a restriction of the original X (Z4;Zp, EA; EB) to a subspace in the 2n—
dimensional phase space. From the mathematical point of view, it is easier to use

the characteristic function to study decoherence problems. -

11



6.2 Decoherence of a Thermal Squeezed Coherent State
From n—Mode to m—Mode

For a given characteristic function of an n-mode thermal SqCS:

X(Z1,%2y ey Ty~ Tni k1, ko, oo sy Kn)
1
= exp{-—z(:z:l,xg,...,a:m,...,zn;kl,kg,...,km,...,kn)

0o T
+i ) _(zsko; — kjTo;)}- (58)

Jj=1

—1
S’t (T 0 )S(ml,xz,“.’xm,"‘.’xn;kl,kg,..-,km,..-,kn)t

The reduced characteristic function is:

X(z1,z2, - ey T, 05 k1, Ka, . . ey km, 0)
1 — -
= exp{”Z($17$2, R ,JIm,O; kl)k27 . )km,o)

T—l 0 - -,
St( 0 T-])S(xlax%""xm,o;kl,k%---)kmao)t

+ i(xjko:' — kjzo;)}

Jj=1

1
= exp{—z(l‘l,x'g, coeyLymy kl,kg, ey M,)K(Q:l,.’l!g, eoe9Tmy kl, kg, ... ,km)t

+1 jzl(:t:;koi - k,'(to,')}, (59)

where the matrix K is 2m X 2m and still symmetric and positive—definite, its

elements are a subset of the the elements of S* ( 0 T‘l) S:
~i(")

)
Kiym; =[St ( 0 )Sm,j, (61)
)8

Sl (60)

T—l

T1 -0
Kijom = [S ( Shsim (62)

T 1

12
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Ca

T-t 0

0 T_1 ) S]i+ﬂ..‘i+'n-a (63)

I{i+m,j+m = [St <

where 1 <17,7,<m.
From the Lemma in Sec. 1, we can find a 2m x 2m symplectic matrix o such

that: 0
Kzat(g T)a, (64)

where 7 = diag(m1,72,...,7m), i >0, forall : = 1,2,... ,m.

We can make a further restriction on 7; from the following physical considera-
tion: Since the reduced density operator g4 = TT(B)(ﬁAB) is well-defined, it will
never correspond to any non—physical state. Noticing that (59) is of the same
form as (49), comparison with (54) shows the covariance matrix of this decohered

state to be: ) 0
=217 —1yt _
K= 59 (0 T) (c7)". (65)

corresponds to a symplectic (hence canonical) transformation on the

;)

is also a covariance matrix for the same state in another canonical coordinates.

Since o1

canonical coordinates,

This guarantees that 7; > 1for all : = 1,2,...,m, otherwise (5§9) will give a state

that violates the uncertainty principle. Therefore we conclude that the reduced

characteristic function (59) corresponds to an m-mode thermal SqCS.

7 Conclusion

The results of this paper are threefold (1) A unified construction of multimode
(thermal) SqCS’s. (2) Proof of the statement: The decohered multimode thermal
SqCS is still a (multimode) thermal SqCS. (3) Introduction of the decohering
technique via characteristic function, which is very efficient and can be applied

to many related problems.

13-



Acknowled gement

. T would like to express my sincere gratitude to Professor G. F. Chew for his

valuable comments and advice.

References

[1] A. O. Caldeira and A. J. Leggett, Physica A 121, 587 (1983)
[2] W. H. Zurek, Phys. Today 44 (no.10), 36 (1991)

[3] J. B. Hartle, in Workshop on Squeezed States and Uncertainty Relations,
Eds. D. Han, Y. S. Kim and W. W. Zachary (NASA Conference Publication
3135, 1992)

[4] J. R. Klauder and B.-S. Skagerstam, Coherent States: Applications in
Physics and Mathematical Physics (World Scientific, Singapore, 1985)

[5] R. Loudon and P. L. Knight, J. Mod. Opt. 34 709 (1987)
[6] W. M. Zhang, D. H. Feng and R. Gilmore, Rev. Mod. Phys. 62, 867 (1990)

[71 Y. S. Kim and M. E. Noz, Phase Space Picture of Quantum Mechanics:
Group Theoretical Approach (World Scientific, Singapore, 1991)

[8] X. Ma and W. Rhodes, Phys. Rev. A 41, 4625 (1990)

[9] J. Oz—Vogt, A. Mann and M. Revzen, J. Mod. Opt. 38, 2339 (1991), and
references therein.

[10] R. Gilmore, Lie Groups, Lie Algebras, and Some of Their Applications
(Wiley, New York, NY, 1974)

[11] R. G. Littlejohn, Phys. Rep. 138, 193 (1986)
(12] Y. Tikochinsky, J. Math. Phys. 20, 406 (1979)

[13] E. P. Wigner, Phys. Rev. 40, 749 (1932)

14



[14] M. Hillery, R. F. O’connell, M. O. Scully and E. P. Wigner, Phys. Rep. 106,
121 (1984)

[15] B. R. Mollow, Phys. Rev. 162, 1256 (1967)

[16] L. Yeh and Y. S. Kim, LBL-31657 (1991)



LAWRENCE BERKELEY LABORATORY
UNIVERSITY OF CALIFORNIA
TECHNICAL INFORMATION DEPARTMENT
BERKELEY, CALIFORNIA 94720

e o e o m—





