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Abstract of the Dissertation

Extended von Neumann Dimension

For Representations of Groups

and Equivalence Relations

by

Benjamin Richard Hayes

Doctor of Philosophy in Mathematics

University of California, Los Angeles, 2014

Professor Dimitri Shlyakhtenko, Chair

This thesis is on two related research problems, and is divided into 2 parts:

Part 1: Let Γ be a countable discrete sofic group, we given an entropic formula for the

von Neumann dimension of a Hilbert space representation of Γ contained in a multiple of the

left regular representation. We use our formula to extend von Neumann to any uniformly

bounded representation of Γ on a separable Banach space. We give computations for the left

regular representable representation of Γ on `p, as well actions on noncommutative Lp-spaces

and `p-Betti numbers of free groups. We prove some general results about the properties of

this invariant, including that the extended von Neumann dimension is always zero when the

group is infinite and the representation is finite-dimensional.

Part 2: We work on an analogous problem for representations of a sofic, discrete,

measure-preserving equivalence relation. Again, we are able to find an entropic formula

for von Neumann dimension of a Hilbert space representation of a sofic, discrete, measure-

preserving equivalence relation R. Again, this allows us to extend von Neumann dimension

to actions of R on a Banach space. Following techniques of Gaboriau in [12], we are able to

define the Lp-Betti numbers of (finitely presented) equivalence relations. We also indicate
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how this gives a potential way to solve the cost versus L2-Betti number problem as posed

by Gaboriau.
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CHAPTER 1

Introduction

The thesis is on extending a quantity called von Neumann dimension associated to certain

Hilbert space representations of groups and equivalence relations to more general represen-

tations on Banach spaces.

The original definition of von Neumann dimension is due to Murray and von Neumann

and heavily depends upon Hilbert space structure. For example, one starts with a unitary

representation of a countable discrete group Γ which is a subspace of `2(Γ × N) with the

left translation action. Then, one takes the orthogonal projection onto this subspace and

notices that it lands in a certain operator algebra with a trace, and then takes the trace of

the projection. This is natural from linear algebra, as it straightforward to verify that the

dimension of a subspace is the trace of the projection onto this subspace. More generally one

can replace Γ with a tracial von Neumann algebra and this is what generalizes the theory to

equivalence relations, measure spaces, etc.

The peculiar aspect of this dimension is that it typically takes on all values in [0,∞]

instead of just integer values. For example, this is the true in the group case described above

if the group is infinite. Moreover, for abelian groups the theory is relatively simple: by

Fourier analysis invariant subspaces of `2(Γ) correspond to measurable subsets of the dual

group, and the dimension is just the measure of the correspond set. A similar theory works

for any abelian von Neumann algebra. This theory of dimension allows one to define `2-Betti

numbers of groups or equivalence relations, and these numbers have tremendous applications

in group theory, orbit equivalence and ergodic theory, as well as operator algebras itself.

With the incredible success of von Neumann dimension, it is reasonable to wonder if one

1



can extend the theory to more general actions on Banach spaces. However, the definition

of von Neumann dimension highly relies on Hilbert space structure: the existence of projec-

tions, the structure of operator algebras on Hilbert spaces, and properties of traces on these

algebras. It is not clear how one could remove this structure. A possible approach was sug-

gested by Gromov in [15]. For this, it turns out to be useful to view von Neumann dimension

in a different way. Namely, one can view von Neumann dimension as being analogous to

entropy. For example, we have a canonical inclusion

`2(Γ) ⊆ CΓ,

and we view CΓ as a Bernoulli shift. Unfortunately, CΓ does not have the structure of a com-

pact space or a nice probability space structure that usually allows one to analyze Bernoulli

shifts. However, the spaces `p(Γ) clearly have nice analytic structure. Since classification for

Bernoulli shifts is done by entropy, we expect invariants for Γ y `p(Γ) to have an entropic

flavor.

This is not just a vague heuristic: Voiculescu in [27] discovered an entropic formula for

representations of amenable groups analogous to entropy of an action of an amenable group

on a topological space. His definition allows one to relate entropy for actions on certain

non-commutative spaces (i.e. C∗-algebras) to von Neumann dimension. Following up on

comments of Gromov, Antoine Gournay in [13] discovered a different entropic formula for

von Neumann dimension, but this time with the aim of extending von Neumann dimension

to actions on `p-spaces instead of Hilbert spaces. These results make clear the relationship

between entropy and von Neumann dimension in the case of amenable groups.

Quite recently, the theory of entropy of actions on a group on a topological space or

measure space has been extended to the class of sofic groups in the work of L. Bowen [2]

and Kerr-Li [18]. The class of sofic groups is much larger than the class of amenable groups:

it contains all residually amenable (in fact, residually sofic) groups, locally sofic groups,

and is closed under free products with amalgamation over amenable subgroups. Given our

analogy between entropy and dimension it is reasonable to expect one to be able express von
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Neumann dimension and entropy for sofic groups, and not just amenable groups. This is the

main content of this thesis, as well as exploring what happens when one drops the Hilbert

space structure of the representation. In particular, this leads us to define `p-Betti numbers

for sofic groups, as well as sofic equivalence relations. Further, the `p-Betti numbers give a

potential approach to the cost versus `2-Betti number, a significant and important problem

in orbit equivalence theory.

The thesis is divided into several parts. I have tried as much as possible to keep the

thesis accessible to a general audience. Thus the first chapter contains some preliminaries on

the less standard material: sofic groups, von Neumann algebras, and equivalence relations.

Assuming the reader takes a few things for granted, I have given a self-contained construction

of the classical von Neumann dimension (which isn’t even technically needed for most of the

thesis). The preliminaries are actually a relatively small amount of material, and so I hope

that readers familiar with functional analysis (e.g. locally convex spaces and introductory

C∗-algebra theory), will be able to read most of the text.

Interested readers may wish to decide which of the material in the thesis they want to skip.

In particular, the section on noncommutative Lp-spaces and any material requiring measure-

preserving equivalence relations is probably the most technical. A reader only knowing basic

functional analysis can read the section on extended von Neumann dimension for groups,

provided they roughly understand the construction of the usual von Neumann dimension.

Because it comprises such a small part of the text, I have delegated preliminaries on non-

commutative Lp-spaces to the appendix. The material there is essentially a comprehensive

introduction to the theory of noncommutative Lp-spaces. In particular, the (nonobvious)

fact that the noncommutative Lp-norms are norms is proved in a fairly short manner and in

a way that can be generalized to other noncommutative spaces analogous to those appearing

with classical analysis, e.g. noncommutative Lorentz spaces. The techniques can also be

used to prove that symmetrically normed ideals are in fact normed ideals in a short manner.
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CHAPTER 2

Preliminaries

2.1 Von Neumann Algebras

2.1.1 Basic Definitions

In this section, we discuss the concept of a von Neumann algebra, this is a certain algebra

of operators on a Hilbert space. It turns out to be quite natural to think of a von Neumann

algebra as a “noncommutative measure space”. The commutative von Neumann algebras

will correspond to measure spaces, and the intuition for many techniques in von Neumann

algebra theory come from measure theory.

Definition 2.1.1. Let H be a Hilbert space. The weak operator topology on B(H) is

the locally convex topology defined by the family of pseudonorms ρξ,η(T ) = |〈Tξ, η〉|, for

ξ, η ∈ H. Equivalently, the weak operator topology has the basis of open sets UT,E,F,ε index

by T ∈ B(H) and finite subsets E,F ⊆ H and ε > 0

UT,E,F,ε =
⋂

ξ∈E,η∈F

{S ∈ B(H) : |〈Sξ, η〉 − 〈Tξ, η〉| < ε}.

The strong operator topology on H is the locally convex topology on H defined by the family

of pseudonorms ρξ(T ) = ‖Tξ‖ for ξ ∈ H. Equivalently the strong operator topology has the

following basis of open sets UT,E,ε indexed by T ∈ B(H), E ⊂ H finite and ε > 0

UT,E,ε =
⋂

ξ∈E,η∈F

{S ∈ B(H) : ‖Sξ − Tξ‖ < ε}.

These topologies have the following descriptions in terms of nets: if we have a net Ti ∈
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B(H) then Ti → T in the weak operator topology if and only if for all ξ, η ∈ H,

〈Tiξ, η〉 → 〈Tξ, η〉

similarly, Ti → T in the strong operator topology if and only if for all ξ ∈ H we have

‖Tiξ − Tξ‖ → 0.

We collect some basic facts about these topologies.

Lemma 2.1.2. Let H be a Hilbert space.

(i): Let K ⊆ B(H) be convex, then K
SOT

= K
WOT

.

(ii): Let C ⊆ B(H) be a norm bounded set, then C
WOT

is compact in the weak operator

topology.

Proof. (i): It is clear that K
SOT ⊆ K

WOT
. For the reverse inclusion, let T ∈ K

WOT
, let

ξ1, · · · , ξn ∈ H and ε > 0. Let

Ξ = {((T − S)ξ1, · · · , (T − S)ξn) : S ∈ K}.

Then Ξ is a convex subset of H⊕n, and since T ∈ KWOT
, we have 0 ∈ Ξ

weak
. As the weak

and norm topologies always have the same closed convex sets (see [4] Theorem V.1.4), we

know that

0 ∈ Ξ
‖·‖
.

Thus, there is some S ∈ K so that

‖(T − S)ξj‖ < ε

for j = 1, · · · , n, as ε > 0, ξ1, . . . , ξn are arbitrary we have T ∈ KSOT
.

(ii): As {T ∈ B(H) : ‖T‖ ≤ R} is closed in the weak operator topology, it suffices by

scaling to show that

{T ∈ B(H) : ‖T‖ ≤ 1}
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is weak operator topology compact. Thinking of

HH

as all functions H → H we have the inclusion

{T ∈ B(H) : ‖T‖ ≤ 1} ⊆
∏
ξ∈H

{η ∈ H : ‖η‖ ≤ ‖ξ‖}.

Call the right hand side F. If we give F the product of the weak topology on H, then we

know that F is compact by Tychonoff’s theorem. Further the subset

{T ∈ B(H) : ‖T‖ ≤ 1},

corresponds to all linear functions in F. This is easily seen to be a closed subset of F, and

thus

{T ∈ B(H) : ‖T‖ ≤ 1}

is weak operator topology compact.

Definition 2.1.3. A von Neumann algebra is a subalgebra M ⊆ B(H) which is closed under

taking adjoints and the weak operator topology and contains the identity of B(H).

For X ⊆ B(H) we use X ′ = {S ∈ B(H) : TS = ST for all T ∈ X}, this is called the

commutant of X. Note that X ′ is a von Neumann algebra with the same identity as B(H).

It follows that X ′′, X ′′′, ... are all von Neumann algebras with the same identity as B(H).

We would like to prove the double commutant Theorem, which connects commutants to von

Neumann algebras. We first need to collect the following facts. For a closed linear subspace

V ⊆ H, we use PV for the orthogonal projection onto V. For a Hilbert space H, we use

`2(N,H) for all functions f : N→ H such that

∞∑
n=1

‖f(n)‖2 <∞,
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the inner product

〈f, g〉 =
∞∑
n=1

〈f(n), g(n)〉

turns `2(N,H) into a Hilbert space. We clearly have a similar notion of `2(k,H). For notation,

we set `2(∞,H) = `2(N,H). For n ∈ N ∪ {∞}, Consider the operators Vk : H → `2(n,H),

for k ∈ N, k ≤ n defined by (Vkξ)(j) = δj=kξ. For an operator T ∈ B(`2(n,H), we let

Tkl = V ∗k TVl. We can think of T as the matrix Tkl, for example

(T ∗)kl = (Tlk)
∗,

(TS)kl =
∑

r∈N:r≤n

TkrSrl

with the sum converging the strong operator topology when n = ∞ . For a unital von

Neumann subalgebra M ⊆ B(H), we let

M⊗B(`2(n)) = {T ∈ B(`2(n,H)) : Tkl ∈M for all k, l ∈ N, k, l ≤ n}

M⊗1`n = {T ∈ B(`2(n),H)) : there is a x ∈M with Tkl = δk=lx}.

Proposition 2.1.4. Let X ⊆ B(H) contain the identity and be closed under adjoints.

(i) A closed linear subspace V ⊆ H is invariant under all the operators in X if and only

if PV ∈ X ′.

(ii) For any von Neumann algebra M ⊆ B(H) with

(M⊗B(`2(n)))′ = M ′⊗1`2(n)

(M⊗1`2(n))
′ = M ′⊗B(`2(n)).

Proof. (i): First suppose that PV ∈ X ′. Then for T ∈ X, v ∈ V we have

PV (Tv) = T (PV v) = T (v)

so Tv ∈ V. Conversely suppose that V is X-invariant. We first claim that V ⊥ is X-invariant.

For this, suppose that ξ ∈ V ⊥, v ∈ V, then

〈Tξ, v〉 = 〈ξ, T ∗v〉

7



as T ∗ ∈ X by assumption, we know that T ∗v ∈ V, thus

〈ξ, T ∗v〉 = 0

so Tξ ∈ V ⊥. Now for ξ ∈ H, let

ξ = ξ1 + ξ2

with ξ1 ∈ V, ξ2 ∈ V ⊥ so

Tξ = Tξ1 + Tξ2.

As we already showed that V, V ⊥ are T -invariant we have that

PV (Tξ) = Tξ1 = TPV (ξ)

so T commutes with PV .

(ii): This is a direct computation.

We also use W ∗(X) for the smallest von Neumann subalgebra of B(H).

Theorem 2.1.5 (Double Commutant Theorem). Let H be a Hilbert space. Let X ⊆ B(H)

be a set which contains the identity and is closed under adjoints. Then,

X ′′ = W ∗(X).

Proof. It is easy to see that our hypothesis implies that X ′ is a von Neumann algebra with

the same identity as B(H). Also X ′ is closed under adjoints and contains the identity, thus

X ′′ is a von Neumann algebra with the same identity as B(H), and clearly contains X. Thus

X ′′ ⊇ W ∗(X).

For the reversion inclusion, let T ∈ X ′′. Let A be the subalgebra of B(H) generated by

X. Then X ′ = A′, so X ′′ = A′′, and as A is a ∗-algebra, we know

W ∗(X) = A
SOT

.

8



Let ξ1, · · · , ξn ∈ H, and ε > 0. Let

K = {(aξ1, · · · , aξn) : a ∈ A}.

ThenK is invariant underW ∗(X)⊗1`2(n), so by the preceding proposition PK ∈ W ∗(X)⊗1`2(n).

Applying the preceding proposition again, we see that PK commutes with

X ′′⊗1`2(n).

Thus

PK((Tξ1, · · · , T ξn)) = T (PK(ξ1, · · · , ξn)) = (Tξ1, · · · , T ξn),

the last equality following from the fact that A is unital. Thus there is some S ∈ A so that

n∑
j=1

‖(S − T )ξj‖2 < ε.

As ξ1, · · · , ξn are arbitrary we find that S ∈ ASOT
= W ∗(X).

2.1.2 Abelian von Neumann Algebras

Since it will greatly help with our intuition, we have decided to single out the case of abelian

von Neumann algebras. We shall see that roughly they correspond to measure spaces. Let

us first prove the following proposition.

Proposition 2.1.6. Let (X,µ) be a σ-finite measure space. View L∞(X,µ) ⊆ B(L2(X,µ))

via multiplication operators. Then L∞(X,µ)′ = L∞(X,µ), in particular L∞(X,µ) is a von

Neumann algebra.

Proof. Let us first assume that µ is a probability measure. It is clear that L∞(X,µ) ⊆

L∞(X,µ)′, suppose that T ∈ L∞(X,µ)′. Set

f = T (1),
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a priori f ∈ L2(X,µ), but we claim that f ∈ L∞(X,µ) with ‖f‖∞ ≤ ‖T‖. For all g ∈

L∞(X,µ), we have

‖gf‖2 = ‖gT (1)‖2 = ‖T (g)‖2 ≤ ‖g‖2‖T‖.

Suppose that ε > 0, and µ({x ∈ X : |f(x)| ≥ ‖T‖ + ε}) > 0. Let f = α|f |, with α a

measurable function and |α| = 1 almost everywhere. Set

g = αχ{x∈X:|f(x)|≥‖T‖+ε},

then

(‖T‖+ε)µ({x ∈ X : |f(x)| ≥ ‖T‖+ε})1/2 ≤ ‖fg‖2 ≤ ‖g‖2‖T‖ = µ({x ∈ X : |f(x)| ≥ ‖T‖+ε})‖g‖2.

This is a contradiction, so

‖f‖∞ ≤ ‖T‖.

Let us now handle the σ-finite case. We may find a φ ∈ L1(X,µ) such that 0 < φ(x) <∞

for almost every x, and ∫
φ(x) dµ(x) = 1.

Set

ν = φ dµ.

Define U : L2(X,µ)→ L2(X, ν), V : L2(X, ν)→ L2(X,µ) by

U(f) = fφ−1/2, V (f) = fφ1/2,

then U, V are isometries inverse to each other, and so U is a unitary. For f ∈ L∞(X,µ) =

L∞(X, ν), ξ ∈ L2(X,µ) we have

U(fξ) = fU(ξ).

As ν, is a probability measure we have by the first case L∞(X, ν)′ = L∞(X, ν). Pulling this

back via U we find that

L∞(X,µ) = L∞(X,µ)′.

10



We now prove a converse of this in the separable case.

Theorem 2.1.7. Let H be a separable Hilbert space, and let M ⊆ B(H) be an abelian von

Neumann algebra. Then, there is a compact metrizable space X, a Borel probability measure

µ on X, a sequence (fj)
∞
j=1 in L1(X,µ), and a unitary

U : H →
∞⊕
j=1

L2(X, fj dµ),

so that if we define

ρ : L∞(X,µ)→ B

(
∞⊕
j=1

L2(X, fj dµ

)
by

ρ(f)(ξj)
∞
j=1 = (fξj)

∞
j=1,

then

UMU∗ = ρ(L∞(X,µ)).

Further ρ can be chosen to be an isometry.

Proof. By Zorn’s Lemma and separability, we may find a countable set J, and a maximal

family (ξj)j∈J of vectors in H such that ‖ξj‖ = 1, and Mξj ⊥ Mξk for j 6= k in J. By

maximality,

H =
⊕
j∈J

Mξj.

Choose A ⊆M a unital separable C∗-subalgebra of M with 1A = 1M and so that

M = A
SOT

.

Let X be the Gelfand spectrum of A, and Φ: A → C(X) the Gelfand isomorphism (see [4]

Theorem VIII.2.1) . As A is separable, we know that X is a compact metrizable space. By

the Riesz Representation Theorem, we may find Borel probability measures µj, j ∈ J on X

so that

〈aξj, ξj〉 =

∫
X

Φ(a) dµj, for a ∈ A, j ∈ J.
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Because J is countable, we may find positive numbers bj, j ∈ J so that

1 =
∑
j∈J

bj,

set

µ =
∑
j∈J

bjµj.

By Radon-Nikodym, we find a fj ∈ L1(X,µ) so that

dµj = fj dµ.

Define unitaries Uj : Mξj → L2(X,µj) by

Uj(aξj) = Φ(a), a ∈ A

it is easy to see that the above extends uniquely to a unitary operator. Set U =
⊕

j∈J Uj.

We claim that these U, (fj)j∈J , µ do the trick.

Note that ρ as defined in the statement of the theorem is an isometry in this case. Indeed,

as in the preceding proposition one sees that

‖ρ(f)‖ = inf{α ∈ [0,∞) : µj({x ∈ X : |f(x)| > α}) = 0 for all j}

= inf{α ∈ [0,∞) : µ({x ∈ X : |f(x)| > α}) = 0} = ‖f‖∞.

To show that UMU∗ = ρ(L∞(X,µ)) we first prove that ρ(L∞(X,µ)) is a von Neumann

algebra.

Suppose T ∈ ρ(L∞(X,µ))
SOT

. Let Aj = {x ∈ X : fj(x) 6= 0}, define

ρj : L∞(X,µ)→ B(L2(X, fj dµ)),

by

ρj(f)ξ = fξ.

Note that ρj(L
∞(X,µ)) = L∞(Aj, µ).
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It is straightforward to show that there are Tj ∈ ρj(L∞(X,µ))
SOT

such that

T =
⊕
j∈J

Tj.

As L∞(Aj, µ) is a von Neumann algebra by the preceding proposition, we can find fj ∈

L∞(Aj, µ) so that

T =
⊕
j∈J

ρj(fj).

Fix j, k ∈ J. We claim that fj(x) = fk(x) for almost every x ∈ Aj ∩ Ak. Define S ∈

B
(⊕

j∈J L
2(X, fj dµ)

)
by

(Sη)α = 0 for α ∈ J \ {j, k},

(Sη)j = χAj∩Akηk,

(Sη)k = χAk∩Akηj.

Then S commutes with ρ(L∞(X,µ)), and so S commutes with T. Let η ∈
⊕∞

j=1 L
2(Aj, fj dµ)

be defined by ηα = χ{j,k}(α)1. As

(STη)k = fjχAj∩Ak ,

(TS)j = fkχAj∩Ak ,

so

fjχAj∩Ak = fkχAj∩Ak

almost everywhere. As J is countable, and ‖fjχAj‖∞ ≤ ‖T‖, we may find a f ∈ L∞(X,µ) so

that fχAj = fjχAj almost everywhere. Then, T = ρ(f), so ρ(L∞(X,µ)) is a von Neumann

algebra.

By construction,

UAU∗ ⊆ ρ(L∞(X,µ)).

Since ρ(L∞(X,µ)) is a von Neumann algebra, and A is strong operator topology dense in

M,

UMU∗ ⊆ ρ(L∞(X,µ)).
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Conversely, given f ∈ L∞(X,µ), choose fn ∈ C(X) so that ‖fn‖∞ ≤ ‖f‖∞ and fn → f

almost everywhere. If an ∈ A is such that Φ(an) = fn, we have

UanU
∗ = ρ(fn)→ ρ(f),

in the strong operator topology. Thus

ρ(L∞(X,µ)) ⊆ UMU∗.

2.1.3 Tracial von Neumann Algebras

Here we define the notion of a tracial von Neumann algebra. Tracial von Neumann algebras

will be the von Neumann algebras we will use to extend the usual dimension theory from

linear algebra. For terminology, we call a bounded linear map T : M → N between von

Neumann algebras normal if

T
∣∣
{x∈M :‖x‖≤1}

is weak operator topology continuous. For future use, we note the following equivalent

conditions for a linear functional to be normal.

Proposition 2.1.8. Let M be a von Neumann algebra, and φ ∈ M∗. The following are

equivalent.

(i) φ is normal,

(ii) ker(φ) ∩ {x ∈M : ‖x‖ ≤ 1} is weak operator topology closed,

(iii) ker(φ) ∩ {x ∈M : ‖x‖ ≤ 1} is strong operator topology closed,

(iv) φ
∣∣
{x∈M :‖x‖≤1} is strong operator topology continuous.

Proof. We have that (ii) and (iii) are equivalent since the weak operator topology and the

strong operator topology have the same closed convex sets. The implications (i) implies (i)

implies (ii), and (iii) implies (iv) are clear.For (ii) implies (i), suppose that xi is a net with

14



‖xi‖ ≤ 1, and xi → x in the strong operator topology. If φ = 0, the claim is zero. Otherwise,

choose a ∈M with φ(a) = 1. Since φ ∈M∗, we have that |φ(xi)| is bounded. Let xi(α) be a

subnet of xi and t ∈ C with φ(xi(α))→ t. Set

yα =
xi(α) − aφ(xi(α))

1 + ‖a‖|φ(xi(α))|
,

then ‖yα‖ ≤ 1, yα ∈ ker(φ), and

yα →
x− at

1 + ‖a‖t
,

in the weak operator topology. Thus by assumption,

x− at
1 + ‖a|t

∈ ker(φ)

so

φ(x) = t.

We thus find that every subnet of φ(xi) converges to φ(x). As |φ(xi)| is bounded, this implies

φ(xi)→ φ(x). The implication (iii) implies (iv) is done in the same way.

Definition 2.1.9. A tracial von Neumann algebra is a pair (M, τ) where τ ∈M∗ satisfies

1: τ(1) = 1,

2: τ(x∗x) ≥ 0, with equality if and only if x = 0,

3: τ(xy) = Tr⊗τ(yx), for all x, y ∈Mn(L(Γ)),

4: τ is normal.

Given a tracial von Neumann algebra, we define the following inner product on M :

〈x, y〉 = τ(y∗x).
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We let L2(M, τ) be the Hilbert space completion of M with respect to this inner product.

We define a ∗-representation λ : M → B(L2(M, τ)), and a ∗-anti-representation ρ : M →

B(L2(M, τ)) by

λ(x)y = xy for x, y ∈M

ρ(x)y = yxfor x, y ∈M .

We need to check that this is well-defined, i.e, that λ(x), ρ(x) are L2−L2 bounded. But for

y ∈M we have

(xy)∗(xy) = y∗x∗xy ≤ ‖x‖2y∗y,

so

‖xy‖2 ≤ ‖x‖‖y‖2.

Also,

‖yx‖2
2 = τ(x∗y∗yx) = τ(yxx∗y∗) ≤ ‖x‖2τ(yy∗) = ‖x‖2τ(y∗y) = ‖x‖2‖y‖2

2.

Thus

‖λ(x)‖ ≤ ‖x‖,

‖ρ(x)‖ ≤ ‖y‖.

So λ, ρ extend uniquely to ∗-representations and ∗-anti-representations of M. This will

turn out to be a natural way to view a tracial von Neumann algebra, and in fact more

natural than whatever Hilbert space M was originally represented on. Additionally define

J : L2(M, τ)→ L2(M, τ) densely by

J(x) = x∗,

for x ∈ M. By traciality we see that ‖J(x)‖2 = ‖x‖2 for x ∈ M, so J extends uniquely to a

conjugate linear isometry.

We collect a few basic facts here. We recall that if X ⊆ B(H), then

X ′ = {T ∈ B(H) : ST = TS for all S ∈ X}.
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Proposition 2.1.10. Let (M, τ) be a tracial von Neumann algebra, and let λ, ρ be the maps

constructed above.

(i): λ, ρ are injective and in particular are isometric.

(ii): λ, ρ are normal.

(iii):

λ(M) ⊆ ρ(M)′

ρ(M) ⊆ λ(M)′.

(iv): We have J2 = Id . For ξ, η ∈ L2(M, τ) we have 〈ξ, η〉 = 〈Jη, Jξ〉. Additionally

J(λ(x)ξ) = ρ(x∗)Jξ, J(ρ(x)ξ) = λ(x∗)Jξ) for x ∈M, ξ ∈ L2(M, τ).

(v): If T ∈ λ(M)′, then there is a unique ξ ∈ L2(M, τ) so that T (x) = λ(x)ξ and

T ∗(x) = λ(x)Jξ for x ∈ M. Similarly, if T ∈ ρ(M)′, then there is a unique ξ ∈ L2(M, τ) so

that T (x) = ρ(x)ξ, T ∗(x) = ρ(x)Jξ for all x ∈M.

Proof. (i): The “in particular” part follows from the fact that an injective ∗-homomorphisms

between C∗-algebras is isometric (see [4] Theorem VIII.4.8, for the statement for ρ we are

using the C∗-algebra M op). To see that λ is injective note that λ(x)1 = x. Thus λ(x) = 0

implies that

τ(x∗x) = ‖x‖2 = ‖λ(x)1‖2 = 0.

(ii): Suppose that ‖xi‖ ≤ 1, xi → x in the weak operator topology. To show that

λ(xi)→ λ(x) converges in the weak operator topology, it suffices to by density of M to show

that when a, b ∈M, ‖a‖, ‖b‖ ≤ 1, we have

〈λ(xi)a, b〉 → 〈λ(x)a, b〉.

The left hand-side of the above is

τ(b∗xia)

since

‖b∗xia‖ ≤ 1,
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b∗xia→ b∗xa, in the weak operator topology

normality of τ implies that

τ(b∗xia)→ τ(b∗xa) = 〈λ(x)b, a〉,

the proof for ρ is similar.

(iii): We clearly have

λ(x)ρ(y)a = ρ(y)λ(x)a

for x, y, a ∈M, the claim now follows by density.

(iv): The identities in question can be all checked directly on M, and the general claims

follow by density and continuity.

(v): Suppose T ∈ λ(M)′, set ξ = T (1), then for x ∈M,

T (x) = T (λ(x)1) = λ(x)T (1) = λ(x)ξ.

To show that T ∗(x) = λ(x)Jξ, it suffices to show that T ∗(1) = Jξ. For x ∈M we have

〈T ∗(1), x〉 = 〈1, λ(x)ξ〉 = 〈x∗, ξ〉 = 〈Jξ, x〉,

thus T ∗(1) = Jξ.

Theorem 2.1.11. Let (M, τ) be a tracial von Neumann algebra. Let λ, ρ be the representa-

tion and anti-representation on L2(M, τ) corresponding to τ. Then,

λ(M)′ = ρ(M)

ρ(M)′ = λ(M).

Proof. By the double commutant theorem it suffices to show one of the equalities. By the

preceding proposition, we have

ρ(M) ⊆ λ(M)′.
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For the reverse inclusion, let T ∈ λ(M)′. To show T ∈ ρ(M) it suffices, by the double

commutant theorem, to show T commutes with any S ∈ ρ(M)′. By the preceding proposition,

we may find a ξ, η so that

T (x) = λ(x)ξ, T ∗(x) = λ(x)Jξ,

S(x) = ρ(x)η, S∗(x) = ρ(x)Jη

for any x ∈M. Then, for any x, y ∈M,

〈TS(x), y〉 = 〈ρ(x)η, λ(y)Jξ〉 = 〈λ(y∗)ρ(x)η, Jξ〉 = 〈λ(y∗)η, ρ(x∗)Jξ〉,

where in the last equality we use that λ(M) commutes with ρ(M). Applying part (iv) of the

preceding proposition we have

〈TS(x), y〉 = 〈λ(x)ξ, ρ(y)Jη〉 = 〈T (x), S∗(y)〉 = 〈ST (x), y〉

so TS = ST. Thus T ∈ ρ(M)′′ = ρ(M).

2.1.4 Definition of von Neumann Dimension

In this section we define von Neumann Dimension for normal representations of tracial von

Neumann algebras. The idea is to follow the usual linear algebra formula, “dimension is the

trace of a projection.” We need to extend the trace to M⊗B(`2(n)) for n ∈ N ∪ {∞}.

Definition 2.1.12. Let (M, τ) be a tracial von Neumann algebra, and n ∈ N ∪ {∞}. Let

T ∈M⊗B(`2(n)) be a positive operator, set

Tr⊗τ(T ) =
∑

1≤i≤n,i∈N

τ(Tii).

If n <∞, we consider Tr⊗τ(T ) to be defined by the same formula for all T ∈M⊗B(`2(n))

(and not just positive T )

Note that if n =∞, the sum is of nonnegative terms, and this is always defined, but may

be infinite.
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Proposition 2.1.13. Let (M, τ) be a tracial von Neumann algebra, and n ∈ N∪ {∞}, then

we have the following.

Tr⊗τ(1) = n,

Tr⊗τ(x∗x) = Tr⊗τ(xx∗), for all x ∈M⊗B(`2(n)),

Tr⊗τ(x∗x) ≥ 0 for all x ∈M⊗B(`2(n)), with equality if and only if x = 0,

Further we have the following semi-continuity: if x(i) ∈ M⊗B(`2(n)) and 0 ≤ x(i) ≤ 1, and

x(i) → x in the weak operator topology, then

Tr⊗τ(x) ≤ lim inf
i

Tr⊗τ(x(i)),

further if n <∞, then

Tr⊗τ
∣∣
{x∈M :‖x‖≤1}

is weak operator topology continuous.

Proof. The first statement is clear. For the second, note that

(x∗x)ii =
∑

1≤k≤n,k∈N

(x∗)ikxki =
∑

1≤k≤n,k∈N

x∗kixki,

(with the sum converging in the weak operator topology if n =∞), hence

τ((x∗x)ii) =
∑

1≤k≤n,k∈N

τ(x∗kixki).

Thus

Tr⊗τ(x∗x) =
∑

1≤i≤n,i∈N

∑
1≤k≤n,k∈N

τ(x∗kixki) ≥ 0

since τ(x∗kixki) ≥ 0, further the above sum equals zero if and only if τ(x∗kixki) = 0 for all k, i

which is true if and only if xki = 0 for all k, i. Thus

Tr⊗τ(x∗x) ≥ 0

with equality if and only if x = 0.
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Since τ(x∗kixki) ≥ 0, we may interchange the sums to see that

Tr⊗τ(x∗x) =
∑

1≤k≤n,k∈N

∑
1≤i≤n,i∈N

τ(x∗kixki) =
∑

1≤k≤n,k∈N

∑
1≤i≤n,i∈N

τ(xkix
∗
ki)

using traciality. As

τ(xkx
∗
k) =

∑
1≤i≤n,i∈N

τ(xkix
∗
ki),

we have that

Tr⊗τ(x∗x) = Tr⊗τ(xx∗).

It is clear if n < ∞, then Tr⊗τ
∣∣
{x∈M :‖x‖≤1} is weak operator topology continuous. Sup-

pose x(i) ∈ M⊗B(`2(n)), with 0 ≤ x(i) ≤ 1 and x(i) → x in the weak operator topology.

Then, τ(x
(i)
jj )→ τ(x), for all j ∈ N. Hence for all k ∈ N,

k∑
j=1

τ(xjj) = lim
i

k∑
j=1

τ(x
(i)
jj ) ≤ lim inf

i
Tr⊗τ(x(i)).

Taking the supremum over k completes the proof.

Let (M, τ) be a tracial von Neumann algebra. By Theorem 2.1.11, we have a trace τ ′ on

λ(M)′ = ρ(M), by

τ ′(ρ(x)) = τ(x).

Suppose n ∈ N ∪ {∞}, and H ⊆ `2(n, L2(M, τ)) is invariant under the diagonal action

of M, then by Proposition 2.1.4, we know that PH ∈ ρ(M)⊗B(`2(n)). Thus, we may define

the von Neumann dimension of H by

dim(M,τ)(H) = Tr⊗τ ′(PH),

if τ is implicit we will often drop it. The next proposition collects some of the basic facts

about von Neumann dimension.
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Proposition 2.1.14. Let (M, τ) be a tracial von Neumann algebra. Let m,n ∈ N ∪ {∞}

(i): If H ⊆ K ⊆ `2(n, L2(M, τ)), we have

dimM(H) ≤ dimM(K).

(ii): If H,K ⊆ `2(n, L2(M, τ)) are M-invariant for some n ∈ N ∪ {∞}, and there is a

bounded linear M-equivariant map H → K with dense image, then dimM(K) ≤ dimM(K).

In particular, if H ∼= K as Hilbert M-modules, then dimM(K) = dimM(H).

(iii): If H ⊆ `2(n, L2(M, τ)), K ⊆ `2(m,L2(M, τ)), then regarding H ⊕ K ⊆ `2(n +

m,L2(M, τ)) we have

dimM(H⊕K) = dimM(H) + dimM(K).

(iv): If Hk ⊆ `2(n, L2(M, τ)), are an increasing sequence of closed M-invariant linear

subspaces, then

dimM

(⋃
k

Hk

)
= sup

k
dimM(Hk).

(v): If Hk ⊆ `2(m,L2(M, τ)), are a decreasing sequence of closed M-invariant linear

subspaces, and dimM(H1) <∞, then

dimM

(
∞⋂
n=1

Hk

)
= inf

n
dimM(Hk).

Proof. (i) Obvious from the fact that

PK ≤ PH.

(ii) Let T = U |T | be the polar decomposition of T (see [4] Theorem VIII 3.11). We leave

it as an exercise to verify (by the Spectral Theorem) that

U = WOT − lim
ε→0

T (|T |+ ε)−1,

hence we have that U ∈ ρ(M)⊗B(`2(n)). Since T has dense image,

U∗U = Pker(T )⊥ ≤ PH,
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UU∗ = PK.

Thus,

dimM(H) ≥ Tr⊗τ(U∗U) = Tr⊗τ(UU∗) ≥ dimM(K).

(iii): For this, we note that if H is any Hilbert M -module, and H is isomorphic to a

subspace K of `2(N, L2(M, τ)), then part (i) implies that we can define

dimM(H) = dimM(K),

and this is independent of the choice of K. Thus we can consider von Neumann dimension

to be unambiguously defined for Hilbert M -modules embeddable in `2(N, L2(M, τ)). This in

particular applies to H⊕K if m or n is infinite. With these comments part (ii) follows from

the formula

PH ⊕ PK = PH + PK.

(iv): Set

H =
⋃
k

Hk.

By part (i),

dimM(H) ≥ sup
k

dimM(Hk).

As

PHk → PH

in the strong operator topology, we know by the preceding proposition that

dimM(H) ≤ lim inf
k→∞

dimM(Hk) = sup
k

dimM(Hk).

(v): Set Kk = H1 ∩ (Hk)
⊥. Then Kk are increasing, and if we set

K =
⋃
k

Kk,

we have

K = H ∩

(⋂
k

Hk

)⊥
.
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Part (iii) implies that

dimM(K) = dimM(H1)− dimM

(⋂
k

Hk

)
,

dimM(Kk) = dimM(H1)− dimM(Hk),

now part (v) follows from part (iv).

As explained in part (ii) of the preceding proposition, if H is a Hilbert M -module embed-

dable in `2(N, L2(M, τ)) then we unambiguously define dimM(H), by choosing a M -invariant

closed linear subspace K ⊆ `2(N, L2(M, τ)) isomorphic to H and setting

dimM(H) = dimM(K).

Thus we often just assume that H is embeddable into `2(N, L2(M, τ)) without using a

specific embedding.

Proposition 2.1.15. Let (M, τ) be a tracial von Neumann algebra.

(i): Let

0 −−−→ H1
T−−−→ H2

S−−−→ H3 −−−→ 0

be a weakly exact sequence (i.e. T is injective, im(T ) = ker(S), im(S) = H3) of Hilbert

M-modules embeddable into `2(N, L2(M, τ)). Then

dimM(H2) = dimM(H1) + dimM(H3).

(ii): Let H,K be Hilbert M-modules embeddable into `2(N, L2(M, τ)), and T : H → K be

a M-equivariant bounded linear bijection. Then

dimM(im(T )) = dimM(H)− dimM(ker(T )).

Proof. (i): Let S = U1|S|, T = U2|S|, as in the previous proposition we have that U1, U2

are M -equivariant maps. We have that U1 induces a unitary M -equivariant isomorphism
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(ker(S))⊥ ∼= H3, and U2 a unitary M -equivariant isomorphism ker(S) = im(T ) ∼= H1. Thus

by the preceding proposition,

dimM(H2) = dimM(ker(S)) + dimM((ker(S))⊥) = dimM(H1) + dimM(H3).

(ii): Apply (i) to the weakly exact sequence

0 −−−→ ker(T ) −−−→ H T−−−→ im(T ) −−−→ 0.

2.1.5 Group von Neumann Algebras

Let Γ be a countable discrete group, define the left regular representation and the right

anti-regular representations of Γ by

λ : Γ→ U(`2(Γ)),

ρ : Γ→ U(`2(Γ))

by

(λ(g)f)(h) = f(g−1h),

(ρ(g)f)(h) = f(hg−1).

Let L(Γ) be the von Neumann algebra generated by λ(Γ), and R(Γ) be the von Neumann

algebra generated by ρ(Γ). Define

τ : L(Γ)→ C,

by

τ(x) = 〈xδe, δe〉.

Theorem 2.1.16. The pair (L(Γ), τ) is a tracial von Neumann algebra, additionally L(Γ)′ =

R(Γ). Let

L = {ξ ∈ `2(Γ) : ξ ∗ f ∈ `2(Γ) for all f ∈ `2(Γ).},
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R = {ξ ∈ `2(Γ) : f ∗ ξ ∈ `2(Γ) for all f ∈ `2(Γ).}.

For ξ ∈ L, η ∈ R and f ∈ `2(Γ) define

λ(ξ)f = ξ ∗ f,

ρ(η)f = f ∗ η.

Then λ(ξ), ρ(η) are bounded. Further

L(Γ) = {λ(ξ) : ξ ∈ L},

R(Γ) = {ρ(ξ) : ξ ∈ R},

and the map

L → L(Γ)

defined by

ξ → λ(ξ)

is a bijection with ‖ξ‖2 = ‖λ(ξ)‖2.

Proof. It is clear that τ ∈ L(Γ)∗ and is weak operator topology continuous. It is also direct

to check that

τ(λ(g)λ(h)) = τ(λ(h)λ(g)) (2.1)

for g, h ∈ Γ. For x, y ∈ L(Γ), find nets xi, yj where each xi, yj are in Span{λ(g) : g ∈ Γ} and

xi → x, yj → y in the weak operator topology. By weak operator topology continuity,

τ(xy) = lim
j

lim
i
τ(xiyj).

By (2.1), we know that

τ(xiyj) = τ(yjxi).

By weak operator topology continuity again,

lim
j

lim
i
τ(yjxi) = lim

j
τ(yjx) = τ(yx).
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Thus τ(yx) = τ(xy). As τ(x∗x) = ‖xδe‖2
2, it is clear that τ(x∗x) ≥ 0. Suppose that τ(x∗x) =

0. Since ρ(Γ) ⊆ λ(Γ)′, it is not hard to argue by taking weak limits of linear combinations

of λ(g), that ρ(Γ) ⊆ L(Γ)′. Thus

‖xδg‖2 = ‖xρ(g)δe‖2 = ‖ρ(g)xδe‖2 = 0,

as xδe = 0 by assumption. Since Span{δg : g ∈ Γ} is dense in `2(Γ), we find that x = 0.

Since

τ(λ(h)−1λ(g)) = 〈δg, δh〉

we have a L(Γ)-equivariant unitary isomorphism

U : L2(L(Γ), τ)→ `2(Γ)

defined by

U(λ(g)) = δg.

If we identify L2(L(Γ), τ) with `2(Γ) via U, then ρ(λ(g)) becomes ρ(g). Thus

L(Γ)′ = R(Γ)

by Theorem 2.1.11.

For the last claim, the fact that λ(ξ), ρ(η) are bounded for ξ ∈ L, η ∈ R follows from the

closed graph theorem. For x ∈ L(Γ), set ξ = x(δe). Then

x(δg) = x(ρ(g)δe) = ρ(g)x(δe) = ξ ∗ δg.

Hence x(f) = ξ ∗ f for all f ∈ cc(Γ). If f ∈ `2(Γ), choose fn ∈ cc(Γ) with

‖f − fn‖2 → 0.

By Fatou’s Lemma,

‖ξ ∗ f‖2 ≤ lim inf
n→∞

‖ξ ∗ fn‖2 ≤ lim inf
n→∞

‖x‖‖fn‖2 = ‖x‖‖f‖2.
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Thus ξ ∈ L, and

λ(ξ)f = lim
n→∞

λ(ξ)fn = lim
n→∞

x(fn) = x(f),

so x = λ(ξ). Further

‖ξ‖2
2 = ‖xδe‖2

2 = ‖x‖2
2.

Thus it remains to show that λ(ξ) ∈ L(Γ) for all ξ ∈ L. By the double commutant

theorem, it suffices to show that λ(ξ) commutes with R(Γ). Since R(Γ) is generated by ρ(Γ),

it is enough to show that λ(ξ) commutes with ρ(g). But this is clear: λ(ξ) is left convolution

by ξ, and ρ(g) is right-convolution by δg.

Because of the above Theorem, if H is a unitary representation of Γ which is contained

in `2(N, `2(Γ)) we can define dimL(Γ)(H) ∈ [0,∞] which is an isomorphism invariant with

the following properties:

1: dimL(Γ)(`
2(Γ)) = 1,

2: dimL(Γ)(H⊕K) = dimL(Γ)(H) + dimL(Γ)(K),

3: dimL(Γ)(H) ≤ dimL(Γ)(K) is there is a Γ-equivariant bounded linear map K → H with

dense image.

4: dimL(Γ)(H) = supn dimL(Γ)(Hn) if H =
⋃
nHn and Hn are increasing,

5: dimL(Γ) (
⋃∞
n=1Hn) = infn dimL(Γ)(Hn) if Hn is a decreasing sequence of closed Γ-

invariant subspaces, and dimL(Γ)(H1) <∞.

2.1.6 Equivalence Relations and their von Neumann Algebras

Ergodic theory may roughly be stated as the study of group actions on measure spaces. The

consideration of a measure-preserving transformation of a probability space is quite natural
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from probability and statistical mechanics. Considering such a transformation is equivalent

to studying the action of the integers on a probability space, and from a mathematical point

of view it is quite natural to generalize this to arbitrary group actions. Additionally, many

interesting properties of groups may be expressed in terms of their actions. For instance,

in the appendix it is proved that an amenable group may be characterized as one for which

any action on a compact metrizable space has an invariant measure. Other properties such

as Property (T) or the Haagerup property may also be expressed this way.

It turns out to be useful to view the action itself as an analogue of a group. The way

to do this is to consider the orbit equivalence relation. By analyzing symmetries of this

relation a surprising algebraic structure is developed. Further, many properties of a group

are simplified in this way. For example, a group may have that all of its elements have

infinite order and be finitely generated, but not finite. Similarly, there are non-amenable

groups which do not contain free subgroups. However, if we view groups from the point

of view of equivalence relations these complications disappear: every equivalence relation

contains a “copy” of Z (a precise version of this is Theorem B.2.6), and from recent work of

Gaboriau-Lyons (see [5]) the Bernoulli action of a non-amenable group always “contains” a

copy of the free group. Additionally, we know from the appendix that every amenable group

is Z from the point of view of equivalence relations. This often allows us to reduce properties

of amenable groups to Z. Lastly, equivalence relations have connections to operator algebras

as they can be axiomatized by certain maximal abelian subalgebras of finite von Neumann

algebras (see [10]).

We need some standard notions from descriptive set theory. A Polish space is a topo-

logical space X which is separable and has a compatible complete metric (we do not wish

to define a Polish space to be a complete separable metric space, by our definition the irra-

tionals are a Polish space but no sane person would ever call them a complete metric space,

similarly open subsets of Polish spaces are Polish and this is blatantly false for complete

metric spaces). A set X equipped with a σ-algebra of subsets B is said to be a standard

Borel space if it is isomorphic (as a measurable space) to a Polish space with its algebra of
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Borel sets. We will abuse terminology and call B the algebra of Borel sets. We will in fact

commit the greater sin of typically not referencing B and simply saying that a set is Borel.

Definition 2.1.17. A discrete, measure-preserving equivalence relation is a triple (R, X, µ)

where X is a standard Borel space, µ is a Borel probability measure on X, R is a Borel

subset of X ×X so that

1: The relation x ∼ y if and only if (x, y) ∈ R is an equivalence relation,

2: for almost every x ∈ X, Ox = {y : (x, y) ∈ R} is countable

3: for every Borel B ⊆ R,∫
X

|{y : (x, y) ∈ B}| dµ(x) =

∫
X

|{x : (x, y) ∈ B}| dµ(y).

We call the above common quantity µ(B), it follows that µ is a measure on R. If we

fix a standard probability space (X,µ) a Borel R ⊆ X × X so that (R, X, µ) is a dis-

crete, measure-preserving equivalence relation will be called a discrete, measure-preserving

measure-preserving equivalence relation on (X,µ).

Note that equivalence relations have a nice “localization” property that is absent in

discrete groups. Namely, if A ⊆ X is measurable, we have a new equivalence relation

(RA, A,
µ

µ(A)
) where

RA = {(x, y) ∈ A× A : (x, y) ∈ R}.

We call RA the compression of R by A.

LetRi, i = 1, 2 be a discrete, measure-preserving equivalence relation on (Xi, µi), i = 1, 2.

We say that R1 is isomorphic to R2 if there is a bimeasurable bijection

θ : X1 → X2

with θ∗µ1 = µ2 and

θ(Ox) = Oθ(x),
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for almost every x ∈ X. A partial morphism on R is a bimeasurable bijection φ : dom(φ)→

ran(φ), where dom(φ), ran(φ) are measurable subsets of X, such that (x, φ(x)) ∈ R for

almost every x ∈ dom(φ). We let [[R]] be the set of partial morphisms of R, we identify

φ, ψ ∈ [[R]] if µ(dom(φ)∆ dom(ψ)) = 0, and φ(x) = ψ(x) for almost every x ∈ X. We let

[R] be the set of φ ∈ [[R]] so that µ(dom(φ)) = .1 For A ⊆ X measurable, we let IdA be

partial morphisms with dom(IdA) = A, ran(IdA) = A, and IdA(x) = x for all x ∈ A.

The space of partial morphisms admits some useful algebraic structure. For φ, ψ ∈ [[R]]

we define φψ ∈ [[R]] by

dom(φψ) = ψ−1(dom(φ)) ∩ dom(ψ),

and φψ(x) = φ(ψ(x)) for x ∈ dom(φψ). For φ ∈ [[R]], we let φ−1 be the element of [[R]]

with dom(φ−1) = ran(φ), ran(φ−1) = dom(φ) and is the inverse to φ on ran(φ). We let

graph(φ) = {(x, φ(x)) : x ∈ dom(φ)}.

If φ, ψ ∈ [[R]] and µ(graph(φ) ∩ graph(ψ)) = 0, we let φ+ ψ ∈ [[R]] be defined by

dom(φ+ψ) = {x ∈ dom(φ)\dom(ψ) : φ(x) /∈ ran(ψ)}∪{x ∈ dom(ψ)\dom(φ) : ψ(x) /∈ ran(φ)},

and

(φ+ ψ)(x) =


φ(x), if x ∈ dom(φ+ ψ) ∩ dom(φ)

ψ(x), if x ∈ dom(φ+ ψ) ∩ dom(ψ)

.

Lastly, we define a distance on [[R]] by

d[[R]](φ, ψ)2 = µ(dom(φ)∆ dom(ψ)) + 2µ({x ∈ dom(φ) ∩ dom(ψ) : φ(x) 6= ψ(x)}).

We discuss one example. Let X be a standard Borel space and µ a Borel probability

measure on X. Suppose that Γ is a countable discrete group and Γ y (X,µ) by measure-

preserving transformations. We can then define the orbit equivalence relation of Γ by

RΓy(X,µ) = {(x, gx) : g ∈ Γ}.
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It is easy to check that this is a discrete-measure preserving equivalence relation on (X,µ).

We will call this the orbit equivalence relation of Γ y (X,µ). If the action is free, i.e. for all

g ∈ Γ \ {e},

µ({x ∈ X : gx = x}) = 0,

then we expect properties of the equivalence relations to reflect properties of the group, (e.g.

see the appendix on amenable equivalence relations and groups). We say that two countable

discrete groups Γ and Λ are orbit equivalent if they admit free actions on standard diffuse

probability spaces whose corresponding orbit equivalence relations are isomorphic.

It will be useful to have the following measurable selection principle first proved by von

Neumann. Recall that a subset of a standard Borel space is said to be analytic if it is the

image of a Borel subset of a standard Borel space under a Borel map. It is known that

such sets are universally measurable (i.e. measurable with respect to every Borel probability

measure) see [22] Theorem 4.3.1.

Theorem 2.1.18 (Measurable Selection Principle). Let X, Y be Polish spaces, and A ⊆

X × Y analytic. Let π : X × Y → X be the projection onto the first factor. Then there is a

universally measurable function φ : π(A)→ Y so that π ◦ φ = Id .

We leave it is an exercise to the reader to prove the following from the measurable

selection principle.

Corollary 2.1.19. Let (R, X, µ) be a discrete, measure-preserving equivalence relation.

Then there is a countable (φj)j∈J of elements of [[R]] with disjoint graphs and such that

µ

(
R \

⋃
j∈J

graph(φj)

)
= 0.

For later use, we would like to discuss when an equivalence relation can act on a Banach

space.

Definition 2.1.20. Let V be a Banach space, and (R, X, µ) a discrete, measure-preserving

equivalence relation. A representation of [[R]] on V is a map π : [[R]]→ B(V ) so that

π(IdX) = IdB(V ),
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π(φψ) = π(φ)π(ψ) for φ, ψ ∈ [[R]]

π(φ+ ψ) = π(φ) + π(ψ) if φ, ψ ∈ [[R]] and µ(graph(ψ) ∩ graph(φ)) = 0

π(φn)v → π(φ)v for all v ∈ V, if d[[R]](φn, φ)→ 0.

π(φ) = 0 if µ(dom(φ)) = 0.

We say the representation is uniformly bounded if there is a C > 0 so that ‖π(φ)‖ ≤ C for

all φ ∈ [[R]]. If V is a Hilbert space, we say the action is unitary if π(φ−1) = π(φ)∗ for all

φ ∈ [[R]].

Since we are identifying two elements of [[R]] if they differ on set of measure zero, implicit

in the above definition is that π(φ) = π(ψ) if they differ on a set of measure zero. Also, we

will frequently drop π and write φv instead of π(φ)v. Here is a natural example: for φ ∈ [[R]],

and 1 ≤ p ≤ ∞, and ξ ∈ Lp(R, µ), we define

(φξ)(x, y) = χran(φ)ξ(φ
−1(x), y).

We note that for 1 ≤ p ≤ ∞, we have a natural way for L∞(X,µ) to act on Lp(R, µ) by

(gf)(x, y) = g(x)f(x, y), f ∈ Lp(R, µ), g ∈ L∞(X,µ).

This gives to the von Neumann algebra of R.

Definition 2.1.21. Let R be a measure-preserving equivalence relation on the standard

probability space (X,µ). We let L(R) = W ∗({φ : φ ∈ [[R]]}), (under the above action of R

on L2(R, µ)) and we define τ : L(R)→ C by

τ(x) = 〈xχ∆, χ∆〉,

where ∆ = {(x, x) : x ∈ X}.

We also define an anti-representation

ρ : [[R]]→ B(L2(R, µ))

by

(ρ(φ)f)(x, y) = χdom(φ)(y)f(x, φ(y)).
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Theorem 2.1.22. (i): The pair (L(R), τ) is a tracial von Neumann algebra.

(ii): L(R)′ = W ∗(ρ([[R]])).

(iii): We have a canonical inclusion L∞(X,µ) ⊆ L(R) defined densely by χA → IdA .

(iv): If we set N = {u ∈ U(L(R)) : uL∞(X,µ)u∗ = L∞(X,µ)}, then L(R) = W ∗(N).

Proof. (i) As in the group case, the linearity and weak operator topology continuity are

clear. For φ ∈ [[R]], we have that

τ(φ) = µ({x ∈ ran(φ) : φ−1(x) = x})

= µ({x ∈ dom(φ) : φ(x) = x}),

where in the last line we use the measure-preserving transformation x 7→ φ(x).

Thus

τ(φψ) = µ({x ∈ dom(φψ) : φψ(x) = x})

= µ({x ∈ dom(ψ) ∩ ψ−1(dom(φ) ∩ ran(ψ)) : φψ(x) = x})

= µ({x ∈ dom(ψ) ∩ ψ−1(dom(φ) ∩ ran(ψ)) : ψ(x) = φ−1(x)}).

Now apply the measure-preserving transformation x 7→ ψ(x), we see that

τ(φψ) = µ({x ∈ ran(ψ) ∩ dom(φ) : φ(x) = ψ−1(x)}).

It is not hard to show that

{x ∈ ran(ψ) ∩ dom(φ) : φ(x) = ψ−1(x)} = {x ∈ dom(ψφ) : ψφ(x) = x}).

Thus

τ(φψ) = µ({x ∈ dom(ψφ) : ψφ(x) = x}) = τ(ψφ).

Playing the same tricks as in the group case with weak convergence shows that

τ(xy) = τ(yx)

for y, x ∈ L(R).
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We have that

τ(x∗x) = ‖xχ∆‖2
2 ≥ 0.

Note that ρ([[R]]) commutes with every vφ and thus with L(R). A direct computation shows

that ρ(φ)χ∆ = χG(φ−1), where G(φ−1) is the graph of φ−1. Thus if τ(x∗x) = 0, we find that

‖xχG(φ−1)‖2 = ‖ρ(φ)xχ∆‖2 = 0,

as xχ∆ = 0. Since R can be written as the union (up to sets of measure zero) of graphs of

partial morphisms, we have that

Span{χG(φ) : φ ∈ [[R]]} = L2(R, µ).

Hence, x = 0. Thus (L(R), τ) is a tracial von Neumann algebra.

(iii) For this, define Ψ: L∞(X,µ)→ B(L2(R, µ)) by

(Ψ(f)ξ)(x, y) = f(x)ξ(x, y).

Regarding L∞(X,µ) as represented on L2(X,µ) we have that Ψ is weak operator topology

continuous, and Ψ(χA) = vIdA .Weak operator topology continuity implies that Ψ(L∞(X,µ)) ⊆

L(R). Additionally, it is straightforward to check ‖Ψ(f)‖ = ‖f‖∞.

(iv) This follows from the fact that every partial morphism has an extension to an element

in the full group.

Again, as in the group case, the above theorem implies that we have a dimension theory

for representations of R contained in `2(N, L2(R, µ)).

For later use, we mention another example of representations. Let (X,µ) be a standard

probability space and Γ y (X,µ) a free measure-preserving action. Define the Zimmer

cocycle

θ : R → Γ
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by

θ(x, y)y = x.

Given a Banach space V and a representation ρ : Γ → B(V ), for 1 ≤ p ≤ ∞, we define a

representation π : [[RΓy(X,µ)]]→ B(Lp(X,µ, V )) by

(π(φ)ξ)(x) = χran(φ)(x)ρ(θ(x, φ(x)))ξ(φ−1x).

For x, y, z ∈ X we have

θ(x, z) = θ(x, y)θ(y, z),

and from this it is not hard to show that ρ is a representation.

2.1.7 Basic Properties of Equivalence Relations

Though it will be slightly disjoint from the rest of the material in this chapter, since we have

just introduced equivalence relations we would like to mention some of their basic properties.

These properties will be used frequently in Chapter 4. We first note the following version of

the Ergodic Decomposition.

Theorem 2.1.23 ([26] Theorem 4.2). Let (R, X, µ) be a discrete, measure-preserving equiv-

alence relation. Then, there is a standard measure space (Y, ν) a measurable map π : X → Y

with π∗µ = ν, and probability measures (µy)y∈Y on X with the following properties.

1: For µ-almost every (x, y) ∈ R we have π(x) = π(y),

2: for almost every y ∈ Y, µy(π−1({y})) = 1,

3: for all B ⊆ X measurable, the map y 7→ µy(B) is ν-measurable,and∫
Y

µy(B) dµ(y) = µ(B),

4: for almost every y ∈ Y, the equivalence relation Ry = {(p, q) : π(p) = π(q) =

y, (p, q) ∈ R} is a well-defined measurable equivalence relation on (π−1({y}), µy) and

is ergodic.
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The relations (Ry, π
−1({y}), µy) are typically called the “ergodic components” of (R, X, µ).

The next property has as particular a consequence that, from the point of view of equivalence

relations, every infinite group “measurably contains” a copy of Z/nZ. This is one instance

in which equivalence relations can be used to fix the complicated subgroup structure of a

group.

Proposition 2.1.24. Let (R, X, µ) be a discrete, measure-preserving, equivalence relation

and suppose that Ox is infinite for almost every x ∈ X. Then for every n ∈ N, there is a

free, measure-preserving action Z/nZ y (X,µ) so that

RZ/nZy(X,µ) ⊆ R.

Proof. Note that almost every ergodic component has infinite orbits almost everywhere.

Thus we may as well assume that R is ergodic. We leave it is an exercise to the reader to

use the measurable selection theorem to show that if A,B ⊆ X have equal measure and are

disjoint then there is a φ ∈ [[R]] with dom(φ) = A, ran(φ) = B (ignoring sets of measure

zero). Since R has infinite orbits almost everywhere, we must have that (X,µ) is diffuse.

Thus, we may find disjoint measurable subsets A1, . . . , An in X so that

µ(Aj) =
1

n
for 1 ≤ j ≤ n.

Thus our preceding remarks imply that we can find φ1 ∈ [[R]], 1 ≤ j ≤ n, with dom(φj) =

Aj, ran(φj) = Aj+1 for 1 ≤ j ≤ n− 1, and dom(φn) = An, ran(φn) = A1. Define α : X → X

by

α
∣∣
Aj

= φj,

it is straightforward to check that α induces a free action of Z/nZ. By definition,

RZ/nZy(X,µ) ⊆ R.
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2.2 Sofic Groups and Equivalence Relations

Definition 2.2.1. Let Γ be a countable discrete group. A sofic approximation of Γ is a

sequence Σ = (σi : Γ→ Sdi) of functions (not assumed to be homomorphisms) such that

1: di →∞

2: udi({j : (σi(g)σi(h))(j) = σi(gh)(j)})→ 1, for all g, h ∈ Γ

3: udi({j : σi(g)(j) 6= σi(h)(j)})→ 1, for all g, h ∈ Γ,g 6= h.

We say that Γ is sofic if it has a sofic approximation.

We could remove the condition di → ∞, and still have the same definition of a sofic

group. However, in order for the definition of topological entropy to be an invariant we need

di → ∞. The condition di → ∞ is also implied if Γ is infinite, which will be the main case

we are interested in anyway. It is known that the class of sofic groups contain all amenable

groups, all residually sofic groups, all locally sofic groups, all linear groups and is closed

under free products with amalgamation over amenable subgroups. For more see [9],[8],[6].

Let us mention another condition related to soficity for a group. On Mn(C) we define

tr(A) =
1

n

n∑
j=1

Ajj,

this is the canonical tracial state on Mn(C). We use ‖A‖2 for the L2 norm with respect to

this trace.

Definition 2.2.2. Let Γ be a countable discrete group. An embedding sequence of Γ is a

sequence Σ = (σi : Γ→ U(di)) so that

1: di →∞

2: ‖σi(g)σi(h)− σi(gh)‖2 → 0 for all g, h ∈ Γ

3: tr(σi(g)−1σi(h))→ 0, for all g, h ∈ Γ,g 6= h.
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We say that Γ is Rω-embeddable if it has an embedding sequence.

The terminology comes from the Connes Embedding problem, as one can show that L(Γ)

embeds into a tracial ultrapower of R if and only if it has an embedding sequence. Viewing

Sn ⊆ U(n) and using that

‖σ − τ‖2
2 =
|{j : σ(j) = τ(j)}|

n
,

for σ, τ ∈ Sn we see that every sofic group is Rω-embeddable.

Following our philosophy that one should try to study a group by its action on measure-

spaces it makes sense to study sofic equivalence relations. For notation, we use [[Rn]] for

the equivalence relation on ({1, . . . , n}, un) defined by declaring all points to be equivalent.

Definition 2.2.3. Let (R, X, µ) be a discrete, measure-preserving equivalence relation. A

sofic approximation of [[R]], is a sequence of functions σi : [[R]]→ [[Rdi ]] such that

1: di →∞,

2: d[[Rn](σi(φψ), σi(φ)σi(ψ))→ 0 for φ, ψ ∈ [[R]],

3: for all A ⊆ X measurable, there is a Ai ⊆ {1, . . . , di} so that σi(IdA) = IdAi ,

4: for all φ ∈ [[R]], |{j∈dom(σi(φ)):σi(φ)(j)=j}|
di

→ µ({x ∈ dom(φ) : φ(x) = x}).

We say that R is sofic if it has a sofic approximation.

This definition is due to Elek and Lippner in [7], and they proved many important

properties of sofic equivalence relations. We will need such finite approximations to define

extended von Neumann dimension. The point is that since Sn has a natural action on `p(n),

we can think of these maps as giving an “almost action” of our group or equivalence relation

on `p(di). Following the spirit of Lewis Bowen, David Kerr and Hanfeng Li, as well as ideas

of Voiculescu we will show that von Neumann dimension of a unitary representation Γ y H

can be computed as a normalized limit of the “size” of a space of almost equivariant maps
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H → `2(di). Since the Hilbert space structure places no role, we will be able to remove it

and consider almost equivariant maps X → `p(di), when X is a Banach space and Γ y X.

We proceed to express the main properties that go into this fact, but we will work in a more

general situation than just groups and equivalence relations.

For the next definition we need some terminology. Fix a set E, the universal C-algebra

generated by elements (Xa)a∈E, (X
∗
a)a∈E will be called the algebra of ∗-polynomials in n

noncommuting variables and will be denoted by

C∗〈Xa : a ∈ E〉.

Elements of this algebra will be called ∗-polynomials. The algebra C∗〈Xa : a ∈ E〉 has a

unique conjugate linear involution P 7→ P ∗ for P ∈ C∗〈Xa : a ∈ E〉 which maps Xa to X∗a

and such that (PQ)∗ = Q∗P ∗, for P,Q ∈ C∗〈Xa : a ∈ E〉. Given (xa)a∈E in a von Neumann

algebra M there is a unique homomorphism φ : C∗〈Xa : a ∈ E〉 →M mapping Xa to xa and

such that

φ(P ∗) = φ(P )∗, for P ∈ C∗〈Xa : a ∈ E〉.

We let P (xa : a ∈ E) denote φ(P ).

Definition 2.2.4. Let (M, τ) be a tracial von Neumann algebra, and E ⊆M. An embedding

sequence for E is a sequence E is a sequence of functions σi : E →Mdi(C) such that

1: supi ‖σi(x)‖∞ <∞ for all x ∈ E

2: for all x1, . . . , xn ∈ E and all ∗-polynomials P in n non-commuting variables,

tr(P (σi(x1), . . . , σi(xn)))→ τ(P (x1, . . . , xn)).

Note that sofic approximations and embedding sequences for equivalence relations and

groups are embedding sequences in the sense of the above definition viewing Γ ⊆ L(Γ), [[R]] ⊆

L(R). For the proof of the next lemma, we need the following definition.

Definition 2.2.5. Let (M, τ) be a tracial von Neumann algebra, and a ∈Mn(M) a normal

element. The spectral measure with respect to τ of a is the measure µa on the spectrum of

a defined by µa(E) = Tr⊗τ(χE(a)) for all Borel subsets E of the spectrum of a.

40



Lemma 2.2.6. Let (M, τ) be a tracial von Neumann algebra, and let E ⊆M be a subset so

that M = W ∗(x). Then, every embedding sequence of (σi : E → Mdi(C)) extends to one of

M.

Proof. Let A = {P (α : α ∈ E) : P ∈ C∗〈Xα : α ∈ E〉}. We first extend σ to A. For each

a ∈ A, choose a Pa ∈ C∗〈Xα : α ∈ E〉 with a = Pa(α : α ∈ E). For a ∈ A, set

σi(a) = Pa(σi(α) : α ∈ E)

Using that we may “compose” ∗-polynomials, it is not hard to see that σi is an embedding

sequence for A. Thus, we may assume that E = A. We first prove some preliminary claims.

Claim 1 : Let a ∈ A we claim that If (Ta,i)a∈A are in Mdi(C) and

‖Ta,i − σi(a)‖2 → 0,

sup
i
‖Ta,i‖∞ <∞,

then the map σ̃I : A→Mdi(C) defined by

σ̃i(a) = Ta,i

is an embedding sequence for A.

The claim follows from the inequality

‖TS −XY ‖2 ≤ ‖T‖∞‖S − Y ‖2 + ‖S‖∞‖T −X‖2

for elements T, S,X, Y in a tracial von Neumann algebra.

Claim 2 : For all a ∈ A :

µσi(a)∗σi(a) → µa∗a.

For this, it is trivial from the definition of embedding sequence that if P is a polynomial

then ∫
P dµσi(a)∗σi(a) →

∫
P dµa∗a.
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The general claim follows from the fact that the measures µσi(a)∗σi(a) have uniformly bounded

supports and the Weierstrass approximation theorem.

Claim 3 : For all a ∈ A, there are ai ∈Mdi(C) so that

‖ai‖∞ ≤ ‖a‖∞,

and

‖ai − σi(a)‖2 → 0.

Let σi(a) = ui|σi(a)| be the polar decomposition. Let φ ∈ Cc([0,∞)) be a continuous

function with φ(t) = t for t ∈ [0, ‖a‖∞], and |φ(t)| ≤ ‖a‖∞ for all t ∈ [0,∞). Set

ai = uiφ(|σi(a)|).

Then,

‖|ai − σi(a)‖2
2 ≤ ‖σi(a)− φ(|σi(a)|)‖2

2 =

∫
[0,∞)

|φ(t1/2)− t1/2|2 dµσi(a)∗σi(a)(t)

→
∫

[0,∞)

|φ(t1/2)− t1/2|2 dµa∗a(t)

= 0,

by Claim 2, the fact that φ(t) = t on [0, ‖a‖∞], and the fact that µa∗a is supported on

[0, ‖a‖2
∞].

We now prove the Lemma. By Claim 1 and Claim 3, we may assume that

‖σi(a)‖∞ ≤ ‖a‖∞

for all a ∈ A. Let x ∈ M \ A. By Kaplansky’s Density Theorem, we may find a sequence

an,x ∈ A so that

‖an,x‖∞ ≤ ‖x‖∞

and

‖an,x − x‖2 < 2−n.
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Choose an increasing sequence of integers in so that if i ≥ in, then for al1 ≤ j, k ≤ n,

|‖σi(aj,x)− σi(ak,x)‖2 − ‖aj,x − ak,x‖2| < 2−n.

Set σi(x) = an,x where in ≤ i < in+1, and define σi(x) arbitrarily for i < i1. If i ≥ in, and

k ≥ n is such that ik ≤ i < ik+1, then

‖σi(x)− σi(an,x)‖2 ≤ ‖σi(ak,x)− an,x‖2 ≤ 2−k + ‖ak,x − an,x‖2.

Hence

lim sup
i→∞

‖σi(x)− σi(an,x)‖2 ≤ ‖x− an,x‖2.

For x, y ∈M,

‖σi(x)σi(y)− σi(xy)‖2 ≤ ‖x‖∞‖σi(y)− σi(an,y)‖2 + ‖σi(xy)− σi(an,xy)‖2

+ ‖σi(an,y)‖∞‖σi(x)− σi(an,x)‖2

+ ‖σi(an,x)σi(an,y)− σi(an,xy)‖2.

Letting i→∞,

‖σi(x)σi(y)− σi(xy)‖2 ≤ ‖x‖∞‖y − an,y‖2 + ‖xy − an,xy‖2

+ ‖y‖∞‖x− an,x‖2 + ‖an,xan,y − an,xy‖2

Letting n→∞ completes the proof.
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CHAPTER 3

Extended von Neumann Dimension for Sofic Groups

We now proceed with the first major part of the thesis: the definition of extended von

Neumann dimension for actions of sofic groups on Banach spaces. Let us recall some history.

Voiculescu in [27] and Gournay in [13] noticed that for amenable groups Γ, we can

compute von Neumann dimension as a limit of normalized approximate dimensions of FnΩ,

with Fn a Følner sequence, and Ω ⊆ H. This formula is analogous to the definition of entropy

for actions of an amenable group on a compact metrizable space or measure space. Gournay

noted that a formula for von Neumann dimension similar to Voiculescu’s makes senses for

subspaces of `p(Γ, V ), with Γ amenable. Using this, he defined an isomorphism invariant for

subspaces of `p(Γ, V ) agreeing with von Neumann dimension in the case p = 2. In particular,

Gournay shows that if Γ is amenable, and there is an injective Γ-equivariant linear map of

finite type (see [13] for the definition) with closed image from `p(Γ, V ) → `p(Γ,W ) then

dimV ≤ dimW.

Recently, in [2],[18] a theory of entropy for actions of a sofic group on a probability space

or a compact metrizable space has been developed. Using this theory, it was shown for sofic

groups Γ that probability measure preserving Bernoulli actions Γ y (X,µ)Γ,Γ y (Y, ν)

are not isomorphic if the entropy of (X,µ) does not equal the entropy of (Y, ν) and that

Bernoulli actions Γ y XΓ,Γ y Y Γ are not isomorphic as actions on compact metrizable

spaces if |X| 6= |Y | (when X and Y are finite). We can think of the action of Γ on `p(Γ, V ) as

analogous to a Bernoulli action, since both actions are given by translating functions on the

group. Combining ideas of Kerr and Li [18] and Voiculescu in [27], we define an isomorphism
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invariant

dimΣ,`p(Y,Γ)

for a uniformly bounded action of a sofic group on a separable Banach space Y. This definition

of dimension has the following properties:

Property 1: dimΣ,`p(Y,Γ) ≤ dimΣ,`p(X,Γ) if there is an equivariant bounded linear map

X → Y with dense image,

Property 2: dimΣ,`p(V,Γ) ≤ dimΣ,`p(W,Γ) + dimΣ,`p(V/W,Γ), if W ⊆ V is a closed Γ-

invariant subspace,

Property 3: dimΣ,`p(Y ⊕W,Γ) ≥ dimΣ,`p(Y,Γ) + dimΣ,`p(W,Γ) for 2 ≤ p <∞, where dim is

a “lower dimension,” and is also an invariant,

Property 4: dimΣ,`p(`
p(Γ, V ),Γ) = dimΣ,`p(`

p(Γ, V ),Γ) = dim(V ) for 1 ≤ p ≤ 2,

Property 5: dimΣ,`p(X,Γ) ≥ dimL(Γ)(X
‖·‖2

), when X ⊆ `p(N, `p(Γ)) and 1 ≤ p ≤ 2.

We also note that for defining dim`p(Y,Γ), little about soficity of Γ is used, and we can

more generally define our invariants associated to a sequence of maps σi : Γ → Isom(Vi)

where Vi are finite-dimensional Banach spaces.

In particular, we can show that dimΣ,`2(Y,Γ) can be defined for Rω-embeddable groups

Γ. Because unitaries also act isometrically on the space of Schatten p-class operators, we can

also define an invariant

dimΣ,Sp(Y,Γ),

Sp dimension has properties analogous to `p dimension.

Property 1: dimΣ,Sp(Y,Γ) ≤ dimΣ,Sp(X,Γ) if there is a Γ-equivariant bounded linear bijec-

tion X → Y,

Property 2: dimΣ,Sp(V,Γ) ≤ dimΣ,Sp(W,Γ) + dimΣ,Sp(V/W,Γ), if W ⊆ V is a closed Γ-

invariant subspace,
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Property 3: dimΣ,Sp(Y ⊕W,Γ) ≥ dimΣ,Sp(Y,Γ) + dimΣ,Sp(W,Γ) for 2 ≤ p <∞,

Property 4: dimΣ,Sp(`
p(Γ, V ),Γ) = dim(V ) for 1 ≤ p ≤ 2,

Property 5: dimΣ,Sp(W,Γ) ≥ dimL(Γ)(W
‖·‖2

) if W ⊆ `p(N, `p(Γ)) is a nonzero closed invari-

ant subspace and 1 ≤ p ≤ 2,

Property 6: dimΣ,`2(H,Γ) = dimΣ,`2(H,Γ) = dimL(Γ)H if H ⊆ `2(N, `2(Γ)) is Γ invariant.

Property 7: dimΣ,`p(X,Γ) = 0, if X is a finite-dimensional Banach space.

In particular `p(Γ, V ) is not isomorphic to `p(Γ,W ) as a representation of Γ, if Γ is Rω-

embeddable and 1 ≤ p < ∞. This extends a result of [13] from amenable groups to Rω-

embeddable groups, and answers a question of Gromov (see [15] page 353) in the case of

Rω-embeddable groups. Lastly, we shall also define and compute `p-Betti numbers of free

groups, as well as dimensions for actions of Γ on noncommutative Lp-space.

3.1 Definition of the Invariants

Definition 3.1.1. Let X be a Banach space. An action Γ on X by is said to be uniformly

bounded if there is a constant C > 0 such that

‖sx‖ ≤ C‖x‖ for all x ∈ X, s ∈ Γ.

We say that a sequence S = (xj)
∞
j=1 in X is dynamically generating, if S is bounded and

Span{sxj : s ∈ Γ, j ∈ N} is dense.

If X is a Banach space we shall write Isom(X) for the group of all linear isometries from

X to itself.

Definition 3.1.2. Let V be a vector space with a pseudonorm ρ. If A ⊆ V, a linear subspace

W ⊆ V is said to ε-contain A, denoted A ⊆ε W, if for every v ∈ A, there is a w ∈ W such
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that ρ(v−w) < ε. We let dε(A, ρ) be the minimal dimension of a subspace which ε-contains

A.

Definition 3.1.3. A dimension triple is a triple (X,Γ,Σ = (σi : Γ→ Isom(Vi))), where X is

a separable Banach space, Γ is a countable discrete group with a uniformly bounded action

on X, each Vi is finite-dimensional, and the σi are functions with no structure assumed on

them.

Definition 3.1.4. Let (X,Γ,Σ = (σi : Γ → Isom(Vi))) be a dimension triple. Fix S =

(xj)
∞
j=1 a dynamically generating sequence in X. For e ∈ E ⊆ Γ finite, l ∈ N let

XE,l = Span{sxj : s ∈ El, 1 ≤ j ≤ l}.

If e ∈ F ⊆ Γ finite, m ∈ N, C, δ > 0, let HomΓ(S, F,m, δ, σi)C be the set of all linear maps

T : XF,m → Vi such that ‖T‖ ≤ C and

‖T (s1 · · · skxj)− σi(s1) · · ·σi(sk)T (xj)‖ < δ

if 1 ≤ j, k ≤ m, s1, . . . , sk ∈ F. If C = 1 we shall use HomΓ(S, F,m, δ, σi) instead of

HomΓ(S, F,m, δ, σi)1.

We shall frequently deal with inducing pseudonorms on `∞(N, V ) from pseudonorms on

`∞(N). For this, we use the following notation: if ρ is a pseudonorm on `∞(N) and V is a

Banach space, we let ρV be the pseudonorm on `∞(N, V ) defined by ρV (f) = ρ(j 7→ ‖f(j)‖).

Definition 3.1.5. Let Σ, S be as in the proceeding definition and let ρ be a pseudonorm on

`∞(N). Let αS : B(XF,m, Vi)→ `∞(N, Vi) be given by αS(T )(j) = χ{k≤m}(j)T (xj). We let

d̂ε(HomΓ(S, F,m, δ, σi), ρ) = dε(αS(HomΓ(S, F,m, δ, σi)), ρVi)

define the dimension of S with respect to ρ by

f. dimΣ(S, F,m, δ, ε, ρ) = lim sup
i→∞

1

dimVi
d̂ε(HomΓ(S, F,m, δ, σi), ρ),

f. dimΣ(S, ε, ρ) = lim sup
e∈F⊆Γ finite

m∈N
δ>0

f. dimΣ(S, F,m, δ, ε, ρ)

f. dimΣ(S, ρ) = sup
ε>0

f. dimΣ(S, ε, ρ),
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where the pairs (F,m, δ) are ordered as follows (F,m, δ) ≤ (F ′,m′, δ′) if F ⊆ F ′,m ≤ m′, δ ≥

δ′. We also use

f. dim
Σ

(S, F,m, δ, ε, ρ) = lim inf
i→∞

1

dimVi
d̂ε(HomΓ(S, F,m, δ, σi), ρ),

f. dim
Σ

(S, ε, ρ) = lim inf
e∈F⊆Γ finite

m∈N
δ>0

f. dimΣ(S, F,m, δ, ε, ρ)

f. dim
Σ

(S, ρ) = sup
ε>0

f. dimΣ(S, ε, ρ).

In section 3.2 we will show that

f. dimΣ(S, ρ) = sup
ε>0

lim inf
(F,m,δ)

lim sup
i→∞

1

dimVi
d̂ε(HomΓ(S, F,m, δ, σi), ρ),

f. dim
Σ

(S, ρ) = sup
ε>0

lim sup
(F,m,δ)

lim inf
i→∞

1

dimVi
d̂ε(HomΓ(S, F,m, δ, σi), ρ).

We introduce two other versions of dimension, which will be used to prove that the above

notion of dimension does not depend on the generating sequence.

Definition 3.1.6. Let X be a separable Banach space, we say that X has the C-bounded

approximation property if there is a sequence θn : X → X of finite rank maps such that

‖θn‖ ≤ C and

‖θn(x)− x‖ → 0, for all x ∈ X.

We say that X has the bounded approximation property if it has the C-bounded approxi-

mation property for some C > 0.

Definition 3.1.7. Let X be a separable Banach space with a uniformly bounded action

of a countable discrete group Γ. Let q : Y → X be a bounded linear surjective map, where

Y is a separable Banach space with the bounded approximation property. A q-dynamical

filtration is a pair F = ((asj)(s,j)∈Γ×N, (YE,l)e∈E⊆Γ finite,l∈N) where asj ∈ Y, YE,l ⊆ Y is a

finite dimensional linear subspace such that

1: sup(s,j) ‖asj‖ <∞,
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2: q(asj) = sq(aej),

3: (q(aej))
∞
j=1 is dynamically generating,

4: YE,l ⊆ YE′,l′ if E ⊆ E ′, l ≤ l′

5: ker(q) =
⋃

(E,l) YE,l ∩ ker(q),

6: YE,l = Span{asj : s ∈ El, 1 ≤ j ≤ l}+ ker(q) ∩ YE,l.

Note that if X has the bounded approximation property and Y = X with q the identity,

then a dynamical filtration simply corresponds to a choice of a dynamically generating se-

quence. In general, if S = (xj)
∞
j=1 is a dynamically generating sequence, then there is always

a q-dynamical filtration F = ((asj)(s,j)∈Γ×N, YF,l) such that q(aej) = xj. Simply choose asj

such that ‖asj‖ ≤ C‖xj‖ and q(asj) = sxj for some C > 0. If (yj)
∞
j=1 is a dense sequence in

ker(q), we can set

YE,l = Span{asj : (s, j) ∈ El × {1, . . . , l}}+
l∑

j=1

Cyj.

We can always find a Banach space Y with the bounded approximation property and a

quotient map q : Y → X, in fact it is a standard exercise that we can choose Y = `1(N).

Definition 3.1.8. A quotient dimension tuple is a tuple (Y, q,X,Γ, σi : Γ → Isom(Vi))

where (X,Γ, σi) is a dimension triple, Y is a separable Banach space with the bounded

approximation property and q : Y → X is a bounded linear surjection.

Definition 3.1.9. Let (Y, q,X,Γ, σi : Γ→ Isom(Vi)) be a quotient dimension triple, and let

F = ((asj)(s,j)∈Γ×N, YF,l) be a q-dynamical filtration. For e ∈ F ⊆ Γ finite, m ∈ N, δ, C > 0
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we let HomΓ(F , F,m, δ, σi)C be the set of all bounded linear maps T : Y → Vi such that

‖T‖ ≤ C and

‖T (as1···skj)− σi(s1) · · ·σi(sk)T (aej)‖ < δ∥∥∥T ∣∣
ker(q)∩YF,l

∥∥∥ < δ.

As before, if C = 1 we will use HomΓ(F , F,m, δ, σi) instead of HomΓ(F , F,m, δ, σi)C .

Again, in the case X has the bounded approximation property, we are simply looking

at almost equivariant maps from Γ to Vi, and this is similar in spirit to the definition of

topological entropy in [18]. In the general case, note that genuine equivariant maps from X

to Vi would correspond to maps on Y which vanish on the kernel of q, and so that

T (as1···skj) = σi(s1) · · ·σi(sk)T (aej),

so we are still looking at almost equivariant maps on X, in a certain sense.

Definition 3.1.10. Fix a pseudonorm ρ on `∞(N), let (Y, q,X,Γ,Σ = (σi : Γ→ Isom(Vi)))

be a quotient dimension tuple, and F a q-dynamical filtration. Let αF : B(Y, Vi)→ `∞(N, Vi)

be given by αF(φ) = (φ(aej))
∞
j=1 we again use d̂ε(A, ρ) = dε(αF(A), ρVi). We define the

dimension of F with respect to ρ,Σ as follows:

f. dimΣ(F , F,m, δ, ε, ρ) = lim sup
i→∞

1

dimVi
d̂ε(HomΓ(F , F,m, δ, σi), ρ),

f. dimΣ(F , ε, ρ) = inf
e∈F⊆Γ finite

m∈N
δ>0

f. dimΣ(F , F,m, δ, ε, ρ),

f. dimΣ(F , ρ) = sup
ε>0

f. dimΣ(F , ε, ρ).

Note that unlike f. dimΣ(S, F,m, δ, ε, ρ) we know that f. dimΣ(F , F,m, δ, ε, ρ) is smaller

when we enlarge F and m and shrink δ, thus the infimum is a limit and there are no issues

between equality of limit suprema and limit infima for this definition.
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Definition 3.1.11. Let Y,X be Banach spaces, and let ρ be a pseudonorm on B(X, Y ). For

ε > 0, 0 < M ≤ ∞, and A,C ⊆ B(X, Y ), the set C is said to (ε,M) contain A if for every

T ∈ A, there is a S ∈ C such that ‖S‖ ≤ M and ρ(S − T ) < ε. In this case we shall write

A ⊆ε,M C. We let dε,M(A, ρ) be the smallest dimension of a linear subspace which (ε,M)

contains A.

Definition 3.1.12. Let (Y, q,X,Γ, σi : Γ → Isom(Vi)) be a quotient dimension tuple. Let

F = (asj, YF,l) be a q-dynamical filtration. Fix a sequence of pseudonorms of ρi on B(Y, Vi)

and 0 < M ≤ ∞, set

opdimΣ,M(F , F,m, δ, ε, ρi) = lim sup
i→∞

1

dimVi
dε,M(HomΓ(F , F,m, δ, σi), ρi),

opdimΣ,M(F , ε, ρi) = inf
e∈F⊆Γ finite

m∈N
δ>0

opdimΣ,M(F , F,m, δ, ε, ρ),

opdimΣ,M(F , ρi) = sup
ε>0

opdimΣ,M(F , ε, ρ).

As before, we shall use

opdim
Σ,M

(F , ρi), f. dim
Σ

(F , ρ)

for the same definitions as above, but replacing the limit supremum with the limit infimum.

By scaling,

inf
0<M<∞

opdimΣ,M(F , ρi), opdimΣ,∞(F , ρi), f. dimΣ(S, ρ), f. dimΣ(F , ρ)

remain the same when we replace HomΓ(F , F,m, δ, σi), HomΓ(S, F,m, δ, σi), by HomΓ(F , F,m, δ, σi)C ,

HomΓ(S, F,m, δ, σi)C , for C a fixed constant. This will be useful in several proofs.

Note that if ρ is a pseudonorm on `∞(N), then we get a pseudonorm ρF ,i on B(Y, Vi) by

ρF ,i(T ) = ρ(j 7→ ‖T (aej)‖).

Further, for 0 < M ≤ ∞

opdimΣ,M(F , ρF ,i) ≥ f. dimΣ(F , ρ).
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Definition 3.1.13. A product norm ρ is a norm on `∞(N) such that

1 : ρ induces a topology stronger than the product topology,

2 : ρ induces a topology which agrees with the product topology on {f ∈ `∞(N) : ‖f‖∞ ≤

1}.

Typical examples are the `p-norms:

ρ(f)p =
∞∑
j=1

1

2j
|f(j)|p.

We shall show that there is constant M > 0, depending only on Y, so that if F ,F ′ are

dynamical filtrations of q and S is a dynamically generating sequence, then for any two

product norms ρ, ρ′,

opdimΣ,M(F , ρ′F ,i) = opdimΣ,M(F , ρF ,i) = f. dimΣ(F , ρ) =

f. dimΣ(F ′, ρ) = dimΣ(S, ρ).

and the same with dim replaced by dim. In particular all these dimension only depend of

the action of Γ on X, and give an isomorphism invariant. When we show all these equalities

we let

dimΣ(X,Γ)

denote any of these common numbers.

The equality between these dimensions is easier to understand in the case when X has

the bounded approximation property. When X has the bounded approximation property,

we can take Y = X, q = Id and then the equality

opdimΣ,M(F , ρF ,i) = f. dimΣ(S, ρ),

says the data of local almost equivariant maps on X is the same as the data of global

almost equivariant maps on X. This is essentially because if we take θE,l : X → XE,l which
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tend pointwise to the identity, then any almost equivariant map on XE,l gives an almost

equivariant map on X by composing with θE,l.

Since the maps σi : Γ → Isom(Vi) are not assumed to have any structure, this invariant

is uninteresting unless the maps σi model the action of Γ on X in some manner. Thus we

note that if Γ is a sofic group, then the maps σi : Γ → Sdi model at least the group Γ in a

reasonable manner.

Because Sn acts naturally on `p(n) we get an induced sequence of maps σi : Γ→ Isom(`p(di))

and the above invariant measures how closely the action of Γ on X is modeled by these

maps. When Γ is sofic, and Σ = (σi : Γ→ Sdi) is a sofic approximation and Σ(p) = (σi : Γ→

Isom(`p(di))) are the maps induced by the action of Sn on `p(n), we let

dimΣ,`p(X,Γ) = dimΣ(p)(X,Γ)

dimΣ,`p(X,Γ) = dimΣ(p)(X,Γ).

Similarly, if Γ is Rω-embeddable, and σi : Γ→ U(di) is a embedding sequence, then since

U(di) is the isometry group of `2(di) we shall let

dimΣ,`2(X,Γ) = dimΣ(X,Γ)

dimΣ,`2(X,Γ) = dimΣ(X,Γ).

Just as Sn acts on commutative `p-Spaces, we have two natural actions of U(n) on non-

commutative Lp-spaces. Let Sp(n) be Mn(C) with the norm

‖A‖Sp = Tr(|A|p)

where |A| = (A∗A)1/2. Then U(n) acts isometrically on Sp(n) by conjugation and by left

multiplication. We shall use

dimΣ,Sp,conj(X,Γ)

for our dimension defined above, thinking of σi as a map into Isom(Sp(n)) by conjugation

and

dimΣ,Sp,mult(X,Γ)
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thinking of σi as a map into Isom(Sp(n)) by left multiplication.

One of our main applications will be showing that when Γ is Rω-embeddable

dimΣ,Sp,conj(`
p(Γ)⊕n,Γ) = dimΣ,Sp,conj(`

p(Γ)⊕n,Γ) = n,

if 1 ≤ p ≤ 2, and

dimΣ,`p(`
p(Γ)⊕n,Γ) = dimΣ,`p(`

p(Γ)⊕n,Γ) = n,

if 1 ≤ p ≤ 2, In particular the representations `p(Γ)⊕n are not isomorphic for different values

of n, if Γ is Rω-embeddable.

3.2 Invariance of the Definitions

In this section we show that our various notions of dimension agree. Here is the main strategy

of the proof. First we show that there is an M > 0, independent of F so that

opdimΣ,M(F , ρF ,i) = f. dimΣ(F , ρ),

the constantM comes from the constant in the definition of bounded approximation property.

A compactness argument shows that

opdimΣ,M(F , ρF ,i)

does not depend on the choice of pseudonorm. We then show that

opdimΣ,∞(F , ρF ,i)

does not depend on the choice of F , this is easier than trying to show that

f. dimΣ(S, ρ)

does not depend on the choice of S. This is because the maps used to define

opdimΣ,∞(F , ρF ,i)
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all have the same domain, which makes it easy to switch from one generating set to another,

since we can use that generators for F have to be close to linear combinations of generators

for F ′. Then we show that

f. dimΣ(F , ρ) = f. dimΣ(S, ρ),

this will reduce to showing that if we are given an almost equivariant map φ : Y → Vi which

is small on the kernel of q, then there is a T : X ′ → V with X ′ ⊆ X finite dimensional such

that T ◦ q is close to φ on a prescribed finite set.

First we need a simple fact about spaces with the bounded approximation property.

Proposition 3.2.1. Let Y be a separable Banach space with the C-bounded approximation

property, and let I be a countable directed set. Let (Yα)α∈I be an increasing net of subspaces

of Y such that

Y =
⋃
α

Yα.

Then there are finite-rank maps θα : Y → Yα such that ‖θα‖ ≤ C and

lim
α
‖θα(y)− y‖ = 0

for all y ∈ Y.

Proof. Fix y1, . . . , yk ∈ Y and ε > 0. Then there is a finite rank θ : Y → Y such that

‖θ(yj)− yj‖ < ε,

‖θ‖ ≤ C.

Write

θ =
n∑
j=1

φj ⊗ xj

with φj ∈ Y ∗ and xj ∈ Y. If α is sufficiently large, then we can find x′j ∈ Yα close enough to

xj so that if we let

θ0 =
n∑
j=1

φj ⊗ x′j,
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θ̃ =


θ0 if ‖θ0‖ ≤ C

C θ0
‖θ0‖ otherwise

then

‖θ̃(yj)− yj‖ < 2ε.

Now let (yj)
∞
j=1 be a dense sequence in Y, and let

α1 ≤ α2 ≤ α3 ≤ · · ·

with αj ∈ I be such that for all β ∈ I, there is a j such that β ≤ αj. By the preceding

paragraph, we can inductively construct an increasing sequence nk of integers and finite-rank

maps

θk : Y → Yαnk

such that

‖θk‖ ≤ C

‖θk(yj)− yj‖ ≤ 2−k if j ≤ k.

Set θα = θαnk if k is the largest integer such that αnk is not bigger than α. Let θα = 0 if

α < α1. Then θα has the desired properties.

Lemma 3.2.2. Let (Y, q,X,Γ,Σ = (σi : Γ→ Isom(Vi))) be a quotient dimension tuple. Let

F = ((asj)(s,j)∈Γ×N, YF,l) be a q-dynamical filtration and ρ a product norm, and let C > 0 be

such that Y has the C-bounded approximation property. Fix M > C. Then for any V ⊆ Y

finite-dimensional, and κ > 0, there is a F ⊆ Γ finite m ∈ N, δ, ε > 0 and linear maps

Li : `
∞(N, Vi)→ B(Y, Vi)

so that if φ ∈ HomΓ(F , F,m, δ, σi), f ∈ `∞(N, Vi) satisfy ρVi(αF(φ)− f) < ε, then

‖Li(f)‖ ≤M,

∥∥Li(f)
∣∣
V
− φ
∣∣
V

∥∥ < κ.
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Proof. Note that for every V finite-dimensional there are a E ⊆ Γ finite, l ∈ N, such that

max
v∈V
‖v‖=1

inf
w∈YE,l
‖w‖=1

‖v − w‖ < κ,

so we may assume that V = YE,l for some E, l.

Fix η > 0 to be determined later. By the preceding proposition let θF,k : Y → YF,k be

such that

‖θF,k‖ ≤ C,

lim
(F,k)
‖θF,k(y)− y‖ = 0 for all y ∈ Y .

Choose F,m sufficiently large such that

‖θF,m
∣∣
YE,l
− Id

∣∣
YE,l
‖ ≤ η.

Let BF,m ⊆ Fm × {1, . . . ,m} be such that {q(asj) : (s, j) ∈ BF,m} is a basis for XF,m =

Span{q(asj) : (s, j) ∈ Fm × {1, . . . ,m}}. Define

L̃i : `
∞(N, Vi)→ B(XF,m, Vi)

by

L̃i(f)(q(asj)) = σi(s)f(j) for (s, j) ∈ BF,m.

We claim that if δ > 0, ε′ > 0 are sufficiently small, φ ∈ HomΓ(F , Fm,m, δ, σi) and f ∈

`∞(N, Vi) satisfy

ρVi(f − αF(φ)) < ε′,

then

‖L̃i(f) ◦ q
∣∣
YF,m
− φ
∣∣
YF,m
‖ ≤ η. (3.1)

By finite-dimensionality, there is a D(F,m) > 0 such that if v ∈ ker(q) ∩ YF,m, (dtr) ∈

CBF,m , then

sup(‖v‖, |dtr|) ≤ D(F,m)

∥∥∥∥∥∥v +
∑

(t,r)∈BF,m

dtratr

∥∥∥∥∥∥ .
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Thus if x = v +
∑

(t,r)∈BF,m dtratr with v ∈ ker(q) ∩ YF,m has ‖x‖ = 1, then

‖L̃i(f)(q(x))− φ(x)‖ ≤ D(F,m)δ +D(F,m)
∑

(t,r)∈BF,m

‖φ(atr)− σi(t)f(r)‖

≤ D(F,m)δ +D(F,m)|F |mmδ +
∑

(t,r)∈BF,m

‖φ(aer)− f(r)‖,

if δ < η
2D(F,m)(1+|F |mm)

, and ε′ > 0 is small enough so that ρ(g) < ε′ implies∑
(t,r)∈BF,m

|g(r)| < η

2
,

then our claim holds.

So assume that δ, ε′ > 0 are small enough so that (3.1) holds, and set Li(f) = L̃i(f) ◦

q
∣∣
YF,m
◦ θF,m. Then

‖Li(f)‖ ≤ C(1 + η)

and for φ, f as above and y ∈ YE,l

‖Li(f)(y)− φ(y)‖ ≤ (1 + η)‖θF,m(y)− y‖+ ‖L̃i(f) ◦ q(y)− φ(y)‖ ≤ (2 + η)η‖y‖.

So we force η to be small enough so that (2 + η)η < κ,C(1 + η) < M.

Lemma 3.2.3. Let (Y, q,X,Γ,Σ = (σi : Γ→ Isom(Vi))) be a quotient dimension tuple.

Let F = ((asj)(s,j)∈Γ×N, YE,l) be a q-dynamical filtration, and ρ a product norm, suppose

that Y has the C-bounded approximation property.

(a) If ∞ ≥M > C, then

f. dimΣ(F , ρ) = opdimΣ,M(F , ρ),

f. dim
Σ

(F , ρ) = opdim
Σ,M

(F , ρ).

(b) If ρ′ is another product norm then for all 0 < M <∞,

opdimΣ,M(F , ρF ,i) = opdimΣ,M(F , ρ′F ,i),

opdim
Σ,M

(F , ρF ,i) = opdim
Σ,M

(F , ρ′F ,i).
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Proof. (a) First note that

opdimΣ,M(F , ρ) ≥ opdimΣ,∞(F , ρ) ≥ f. dimΣ(F , ρ)

so it suffices to handle the case that M <∞.

Let A > 0 be such that

‖asj‖ ≤ A for all (s, j) ∈ Γ× N

Take 1 > ε > 0. Let k be such that if f ∈ `∞(N), and ‖f‖∞ ≤ 1, and f is supported on

{n : n ≥ k}, then ρ(f) < ε. Since ρ induces a topology weaker than the norm topology, we

can find an ε > κ > 0 such that

ρ(f) < ε

if

‖f‖∞ ≤ κ.

By Lemma 3.2.2, let e ∈ F ⊆ Γ be finite, m ∈ N, ε > ε′ > 0, κ > δ > 0 and

Li : `
∞(N, Vi) → B(Y, Vi) be such that if φ ∈ HomΓ(F , F,m, δ, σi) and f ∈ `∞(N, Vi) has

ρVi(αF(φ)− f) < ε′, then ∥∥Li(f)
∣∣
Y{e},k

− φ
∣∣
Y{e},k
‖ < κ,

‖Li(f)‖ ≤M.

Then if φ, f are as above we have

ρF ,i(φ− Li(f)) ≤ (M + 1)Aε+ ρ(χl≤k(j)(‖φ(aej)− Li(f)(aej)‖)∞j=1)

and for j ≤ k

‖φ(aej)− Li(f)(aej)‖ ≤ A(M + 1)κ.

Thus

ρF ,i(φ− Li(f)) ≤ (M + 1)(A+ 1)ε.
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This implies that

d((M+1)(A+1)ε,M(HomΓ(F , F ′,m′, δ′, σi), ρF ,i) ≤ d̂ε′(HomΓ(F , F ′,m′, δ′, σi), ρF ,i)

for all F ′ ⊇ F,m′ ≥ m, and all δ′ < δ. This completes the proof.

(b) This is a simple consequence of the compactness of the ‖ · ‖∞ unit ball of `∞(N) in

the product topology.

Lemma 3.2.4. Let (Y, q,X,Γ, σi : Γ → Isom(Vi)) be a quotient dimension tuple. Let F ,F ′

be two q-dynamical filtrations. If ρi is any fixed sequence of pseudonorms on B(Y, Vi), then

for all 0 < M ≤ ∞,

opdimΣ,M(F , ρi) = opdimΣ,M(F ′, ρi),

opdim
Σ,M

(F , ρi) = opdim
Σ,M

(F ′, ρi),

Proof. Let F ′ = ((a′sj)(s,j)∈Γ×N, Y
′
E,l), F = ((asj)(s,j)∈Γ×N, YE,l). We do the proof for opdimΣ,

the other case is proved in the same manner. Let C > 0 be such that ‖sx‖ ≤ C‖x‖ for all

s ∈ Γ, x ∈ X and such that ‖asj‖, ‖a′sj‖ ≤ C. Fix F ⊆ Γ finite, and m ∈ N, δ > 0. Fix η > 0

which will depend upon F,m, δ in a manner to be determined later.

Choose E ⊆ Γ finite l ∈ N, such that for 1 ≤ j ≤ m, s ∈ Fm there are cj,t,k with

(t, k) ∈ E × {1, . . . , l} and vsj ∈ Y ′E,l ∩ ker(q) such that∥∥∥∥∥∥asj − vsj −
∑

(t,k)∈E×{1,...,l}

cj,t,ka
′
stk

∥∥∥∥∥∥ < η,

and so that for every w ∈ YF,m∩ker(q) there is a v ∈ Y ′E,l∩ker(q) such that ‖v−w‖ ≤ η‖w‖.

Let A(η) = sup(|cj,t,k|, sup ‖vsj‖)

Set m′ = 2 max(m, l) + 1, F ′ = [(F ∪ F−1 ∪ {e})(E ∪E−1 ∪ {e})]2m′+1, we claim that we

can choose δ′ > 0, η > 0 small so that

HomΓ(F ′, F ′,m′, δ′, σi) ⊆ HomΓ(F , F,m, δ, σi).
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If T ∈ HomΓ(F ′, F ′,m′, δ′, σi), 1 ≤ j, r ≤ m, and s1, . . . , sr ∈ F then

‖T (as1···srj)− σi(s1) · · ·σi(sr)T (aej)‖ ≤

2η + ‖T (vsj)‖+ ‖σi(s1) · · ·σi(sr)T (vej)‖+∥∥∥∥∥∥
∑

(t,k)∈E×{1,...,l}

cj,t,k[T (a′s1···srtk)− σi(s1) · · ·σi(sr)T (a′tk)]

∥∥∥∥∥∥ ≤
2η + δ′A(η) + δ′A(η) + 2|E|lA(η)δ′.

By choosing η < δ/2, and then choosing δ′ very small we can make the above expression less

than δ. If we also force δ′ < δ/2 our choice of η implies that

‖T (w)‖ ≤ δ‖w‖

for T as above and w ∈ YF,m ∩ ker(q). This completes the proof.

Because of the above lemma, the only difficulty in proving that opdimΣ(F , ρF ,i) does not

depend on the choice of F is switching the pseudonorm from ρF ,i to ρF ′,i. Because of this

we will investigate how the dimension changes when we switch pseudonorms.

Definition 3.2.5. Let (Y, q,X,Γ,Σ = (σi : Γ→ Isom(Vi))) be a quotient dimension tuple,

and fix a q-dynamical filtration F . If ρi, qi are pseudonorms on B(Y, Vi) we say that ρi is

(F ,Σ)-weaker than qi and write ρi �F ,Σ qi if the following holds. For every ε > 0, there are

F ⊆ Γ finite, δ, ε′ > 0, m, i0 ∈ N, and linear maps Li : B(Y, Vi)→ B(Y, Vi) for i ≥ i0 such that

if φ ∈ HomΓ(F , F,m, δ, σi) and ψ ∈ B(Y, Vi) satisfy qi(φ− ψ) < ε′, then ρi(φ− Li(ψ)) < ε.

We say that ρi is (F ,Σ) equivalent to qi, and write ρi ∼F ,Σ qi, if ρi �F ,Σ qi and qi �F ,Σ ρi.

Lemma 3.2.6. Let (Y,X, q,Γ,Σ) be a quotient dimension tuple and F a q-dynamical filtra-

tion.

(a) If ρi, qi are pseudonorms with ρi �F ,Σ qi, then

opdimΣ,∞(F , ρi) ≤ opdimΣ,∞(F , qi),

opdim
Σ,∞(F , ρi) ≤ opdim

Σ,∞(F , qi).
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(b) Let F ′ = ((a′sj)(s,j)∈Γ×N, Y
′
E,l), F = ((asj)(s,j)∈Γ×N, YE,l) be q-dynamical filtrations. Let

ρ be any product norm. Define a pseudonorm on B(Y, Vi) by ρF ,i(φ) = ρ((‖φ(aej)‖)∞j=1), and

similarly define ρF ′,i. Then

ρF ′,i �F ,Σ ρF ,i.

Proof. Let Σ = (σi : Γ→ Isom(Vi)).

(a) This follows directly follow the definitions.

(b) Let C > 0 be such that Y has the C-bounded approximation property and

‖asj‖ ≤ C

‖a′sj‖ ≤ C

Choose m ∈ N such that ρ(f) < ε if ‖f‖∞ ≤ 1 and f is supported on {n : n ≥ m}, and

let κ > 0 be such that ρ(f) < ε if ‖f‖∞ ≤ κ.

By Lemma 3.2.2 choose F ′ ⊇ F finite m ≤ m′ ∈ N, and δ, ε > 0 and

L̃i : `
∞(N, Vi)→ B(Y, Vi)

so that if f ∈ `∞(N, Vi) and φ ∈ HomΓ(F , F ′,m′, δ, σi) has ρVi(αF(φ)− f) < ε′ then∥∥∥∥L̃i(f)
∣∣
Y ′{e},m

− φ
∣∣
Y ′{e},m

∥∥∥∥ < κ,

‖L̃i(f)‖ ≤ 2C.

Let Li : B(Y, Vi)→ B(Y, Vi) be given by Li(ψ) = L̃i(αF(ψ)).

Suppose φ ∈ HomΓ(F , F ′,m′, δ′, σi) and ψ ∈ B(Y, Vi) satisfy ρF ,i(φ− ψ) < ε′. Then, for

1 ≤ j ≤ m we have

‖φ(a′ej)− Li(ψ)(a′ej)‖ ≤ Cκ.

Our choice of m,κ then imply that ρF ′,i(φ−Li(ψ)) < 2C(C+ 1)ε. This completes the proof.
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Corollary 3.2.7. Let (Y, q,X,Γ, σi : Γ→ Isom(Vi)) be a quotient dimension tuple. Let ρ, ρ′

be two product norms. For any two q-dynamical filtrations F ,F ′ we have

opdimΣ,∞(F , ρF ,i) = opdimΣ,∞(F ′, ρF ′,i) = opdimΣ,∞(F ′, ρ′F ′,i).

opdim
Σ,∞(F , ρF ,i) = opdim

Σ,∞(F ′, ρF ′,i) = opdim
Σ

(F ′, ρ′F ′,i).

Proof. Combining Lemmas 3.2.3, 3.2.6, and 3.2.4 we have

opdimΣ,∞(F ′, ρ′F ′,i) = opdimΣ,∞(F ′, ρF ′,i) ≤ opdimΣ,∞(F , ρF ,i).

The opposite inequality follows by symmetry.

Because of the preceding corollary f. dimΣ(F , ρ) only depends on the action of Γ and the

quotient map q : Y → X. Thus we can define

dimΣ(q,Γ) = opdimΣ,∞(F , ρF ,i) = f. dimΣ(F , ρ)

where F is any q-dynamical filtration and ρ is any product norm.

We now proceed to show that dimΣ,∞(q,Γ) does not depend on q, as stated before the

idea is to prove that

dimΣ(q,Γ) = f. dimΣ(S, ρ)

where S is any dynamically generating sequence for X.

For this, we will prove that we can approximate maps T on Y which almost vanish on

the kernel of q, by maps on X. For the proof, we need the construction of ultraproducts of

Banach spaces.

Let Xn be a sequence of Banach spaces and ω ∈ βN \ N a free ultrafilter. We define the

ultraproduct of the Xn, written
∏ωXn by

ω∏
Xn = {(xn)∞n=1 : xn ∈ Xn, sup

n
‖xn‖ <∞}/{(xn)∞n=1 : xn ∈ Xn, lim

n→ω
‖xn‖ = 0}.
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We use (xn)n→ω for the image of (xn)∞n=1 under the canonical quotient map to

ω∏
Xn.

If a set A ⊆ N is in ω, we will say that A is ω-large.

Lemma 3.2.8. Let X, Y be Banach spaces with X and q : Y → X a bounded linear surjective

map. Let F ⊆ X be finite and Z a finite-dimensional subspace of Y with q(F ) ⊆ Z. Let

C > 0 be such that for all x ∈ X, there is a y ∈ Y with ‖y‖ ≤ C‖x‖ such that q(y) = x, and

fix A > C. Let I be a countable directed set, and (Yα)α∈I a net of subspaces of Y such that

Yα ⊆ Yβ if α ≤ β, and

q(Yα) ⊇ Z,

ker(q) =
⋃
α

Yα ∩ ker(q),

F ⊆
⋃
α

Yα.

Then for all ε > 0, there are a δ > 0 and α0 with the following property. If α ≥ α0 and W

is a Banach space with T : Yα → W a linear contraction such that∥∥∥T ∣∣
ker(q)∩Yα

∥∥∥ ≤ δ,

then there is a S : Z → W such that ‖S‖ ≤ A and

‖T (x)− S ◦ q(x)‖ ≤ ε,

for all x ∈ F.

Proof. Note that our assumptions imply

Y =
⋃
α

Yα.

Fix a countable increasing sequence αn in I, such that for every β ∈ I there is an n such

that β ≤ αn. Assume also that F ⊆ Yα1 . Since I is directed, if the claim is false, then we
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can find an ε > 0 and an increasing sequence βn with βn ≥ αn and a Tn : Yβn → Wn such

that ‖Tn‖ ≤ 1, ∥∥∥Tn∣∣ker(q)∩Yβn

∥∥∥ ≤ 2−n,

and for every S : X → Wn with ‖S‖ ≤ A,

‖Tn(x)− S ◦ q(x)‖ ≥ ε, for some x ∈ F .

Fix ω ∈ βN \ N and let

W =
ω∏
Wn.

Define

T :
⋃
n

Yβn → W

by

T (x) = (Tn(x))n→ω,

note that for any k, the map Tn is defined on Yβk for n ≥ k, so T is well-defined. Also

‖T (x)‖ ≤ ‖x‖

T (x) = 0 on
⋃
n Yβn ∩ ker(q).

Our density assumptions imply that T extends uniquely to a bounded linear map, still

denoted T, from Y to W, which vanishes on the kernel of q. Thus there is S : Z → W such

that T = S ◦ q, and our hypothesis on C implies that ‖S‖ ≤ C.

Since Z is finite dimensional, we can find Sn : X → Wn such that S(x) = (Sn(x))n→ω.

Compactness of the unit sphere of Z and a simple diagonal argument show that

C ≥ ‖S‖ = lim
n→ω
‖Sn‖.

Thus B = {n : ‖Sn‖ < A} is an ω-large set, and by hypothesis

B =
⋃
x∈F

{n ∈ B : ‖Tn(x)− Sn(q(x))‖ ≥ ε}.
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Since B is ω-large, there is some x ∈ F such that

{n ∈ B : ‖Tn(x)− Sn(q(x))‖ ≥ ε}

is ω-large. But then T (x) 6= S ◦ q(x), a contradiction.

Lemma 3.2.9. Let (Y, q,X,Γ,Σ = (σi : Γ→ Isom(Vi))) be a quotient dimension tuple. Fix

a dynamically generating sequence S in X, and ρ a product norm. Then

dimΣ(q,Γ) = f. dimΣ(S, ρ).

dimΣ(q,Γ) = f. dim
Σ

(S, ρ).

Proof. We will only do the proof for dim .

Let S = (xj)
∞
j=1 and let F = ((asj)(s,j)∈Γ×N, YE,l) be a dynamical filtration such that

q(aej) = xj. Let C > 0 be such that

sup
(s,j)

‖asj‖ ≤ C

sup
j
‖xj‖ ≤ C

‖q‖ ≤ C,

for every x ∈ X, there is a y ∈ Y such that q(y) = x and ‖y‖ ≤ C‖x‖,

and so that Y has the C-bounded approximation property. By Proposition, 3.2.1, we may

find θE,l : Y → YE,l such that ‖θE,l‖ ≤ C and

lim
(E,l)
‖θE,l(y)− y‖ = 0 for all y ∈ Y .

We first show that

dimΣ(q,Γ) ≥ f. dimΣ(S, ρ).

For this, fix ε > 0, and choose r ∈ N such that

ρ(f) < ε, if f is supported on {n : n ≥ r} and ‖f‖∞ ≤ 1,

66



as before choose ε ≥ κ > 0 such that if ‖f‖∞ ≤ κ, then

ρ(f) < ε.

Let e ∈ E ⊆ Γ finite and l ∈ N be such that if E ⊆ F ⊆ Γ is finite, and k ≥ l then

‖θF,k(aej)− aej‖ < κ

for 1 ≤ j ≤ r.

Now fix E ⊆ F ⊆ Γ finite, l ≤ m ∈ N, δ > 0. We claim that we can find F ⊆ F ′ ⊆ Γ

finite m ≤ m′ in N, δ > δ′ > 0 such that

HomΓ(S, F ′,m′, δ′, σi) ◦ q
∣∣
YF ′,m′

◦ θF ′,m′ ⊆ HomΓ(F , F,m, δ, σi)C2 .

For T ∈ HomΓ(S, F ′,m′, δ′, σi), for 1 ≤ j, k ≤ m and s1, . . . , sk ∈ F,

‖T ◦ q ◦ θF ′,m′(as1···skj)− σi(s1) · · ·σi(sk)T ◦ q ◦ θF ′,m′(aej)‖

≤ C‖θF ′,m′(as1···skj)− as1···skj‖+ C‖θF ′,m′(aej)− aej‖

+ ‖T (s1 · · · skxj)− σi(s1) · · ·σi(sk)T (xj)‖

< C‖θF ′,m′(as1···skj)− as1···skj‖+ C‖θF ′,m′(aej)− aej‖

+ δ′.

Also for y ∈ ker(q) ∩ YF,m we have

‖T ◦ q ◦ θF ′,m′(y)‖ ≤ C‖θF ′,m′(y)− y‖.

So it suffices to choose δ′ < min(δ, κ) and then F ′ ⊇ F,m′ ≥ max(m, l, r) such that

C‖θF ′,m′(as1···skj)− as1···skj‖+ C‖θF ′,m′(aej)− aej‖ < δ − δ′,

C
∥∥θF ′,m′∣∣YF,m − Id

∣∣
YF,m
‖ < δ.

for 1 ≤ j, k ≤ m and s1, . . . , sk ∈ F.
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Suppose that δ′, F ′,m′ are so chosen. If T ∈ HomΓ(S, F ′,m′, δ′, σi) and φ = T ◦ q
∣∣
YF ′,m′

◦

θF ′,m′ then,

ρVi(αS(T )− αF(φ)) ≤ C(C2 + 1)ε+ ρVi(χ{j:j≤r}(αS(T )− αF(φ)))

and if j ≤ r,

‖αS(T )(j)− αF(φ)(j)‖ = ‖T (xj)− T ◦ q ◦ θF,l(aej)‖ ≤ Cκ+ ‖T (xj)− T ◦ q(aej)‖ = Cκ.

Thus

ρVi(αS(T )− αF(φ)) ≤ (C2 + C + 1)ε.

Therefore

d̂(C2+C+2)ε(HomΓ(S, F ′,m′, δ′, σi), ρ) ≤ d̂ε(HomΓ(F , F,m, δ, σi)C2 , ρ).

Since F ′,m′ can be made arbitrary large and δ′ arbitrarily small, this implies

f. dimΣ(S, ρ, (C2 + 2C + 1)ε) ≤ lim sup
i

1

dimVi
d̂ε(HomΓ(F , F,m, δ, σi)C2 , ρ),

taking the limit supremum over (F,m, δ) and then the supremum over ε > 0,

f. dimΣ(S, ρ) ≤ f. dimΣ(q,Γ).

For the opposite inequality, fix 1 > ε > 0 and let r, κ, E, l be as before. Fix E ⊆ F ⊆ Γ

finite, m ≥ max(r, l) and δ < min(κ, ε).

By Lemma 3.2.8 we can find δ′ < δ, and F ⊆ F ′ ⊆ Γ finite and m ≤ m′ ∈ N such that if

W is a Banach space and

T : YF ′,m′ → W

has

‖T‖ ≤ 1,

‖T
∣∣
ker(q)∩YF ′,m′

‖ ≤ δ′,

then there is a φ : XF,m → W such that

‖T (as1···skj)− φ(s1 · · · skxj)‖ ≤ δ, for 1 ≤ j, k ≤ m, s1, . . . , sk ∈ F
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and ‖φ‖ ≤ 2C.

Fix T ∈ HomΓ(F , F ′,m′, δ′, σi), and choose φ : XF,m → Vi such that ‖φ‖ ≤ 2C and

‖T (as1···skj)− φ ◦ q(as1···skj)‖ ≤ δ, for 1 ≤ j, k ≤ m, s1, . . . , sk ∈ F .

Thus for 1 ≤ j, k ≤ m and s1, . . . , sk ∈ F we have

‖φ(s1 · · · skxj)− σi(s1) · · ·σi(sk)φ(xj)‖ ≤ 2δ

+ ‖T (as1···skj)− σi(s1) · · · σi(sk)T (aej)‖

< 2δ + δ′

< 3δ.

Thus φ ∈ HomΓ(S, F,m, 3δ, σi)2C . Furthermore, for 1 ≤ j ≤ r

‖αS(T )(j)− αF(φ)(j)‖ = ‖T (aej)− φ ◦ q(aej)‖ ≤ κ,

so

ρVi(αF(T )− αS(φ)) ≤ ε+ (2C2 + C)ε = (2C2 + C + 1)ε.

Thus

f. dimΣ(F , (2C2 + C + 2)ε, ρ) ≤ lim sup
i

1

dimVi
d̂ε (HomΓ(S, F,m, 3δ, σi)2C , ρ) ,

and since F,m, δ, ε are arbitrary this completes the proof.

Because of the preceding Lemma and Corollary 3.2.7, we know that

f. dimΣ(S, ρ), dimΣ(q,Γ)

only depend upon the action of Γ on X, and are equal. Because of this we will use

dimΣ(X,Γ) = f. dimΣ(S, ρ) = dimΣ(q,Γ)

for any dynamically generating sequence S, and any bounded linear surjective map q : Y →

X, where Y has the bounded approximation property. We similarly define dimΣ(X,Γ).
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We now prove a lemma which allows us to treat the limit supremum over (F,m, δ) in the

definition of f. dimΣ(S, ρ) as a limit.

Lemma 3.2.10. Let (X,Γ,Σ = (σi : Γ→ Isom(Vi)) be a dimension triple, fix a dynamically

generating sequence S in X and ρ a product norm. Then

f. dimΣ(S, ρ) = sup
ε>0

lim inf
(F,m,δ)

lim sup
i

1

dimVi
d̂ε(HomΓ(S, F,m, δ, σi), ρ),

f. dim
Σ

(S, ρ) = sup
ε>0

lim sup
(F,m,δ)

lim inf
i

1

dimVi
d̂ε(HomΓ(S, F,m, δ, σi), ρ).

Proof. Let S = (xj)
∞
j=1. We do the proof for dim only, the proof for dim is the same. Fix ε > 0

and choose k ∈ N such that if ‖f‖∞ ≤ 1 + supj∈N ‖xj‖ and f is supported on {n : n ≥ k},

then ρ(f) < ε. It suffices to show that

f. dimΣ(S, ρ) ≤ sup
ε

lim inf
(F,m,δ)

lim sup
i

1

dimVi
d̂ε(HomΓ(S, F,m, δ, σi), ρ).

Fix F ⊆ Γ finite m ≥ k, δ > 0. Then for any F ⊆ F ′ ⊆ Γ finite, m′ ≥ m, δ′ < δ and

ψ ∈ HomΓ(S, F ′,m′, δ′, σi) we have ψ ∈ HomΓ(S, F,m, δ, σi).

Furthermore if f, g ∈ `∞(N, Vi) are defined by

f(j) = χ{n≤m}(j)ψ(xj), g(j) = χ{n≤m′}ψ(xj)

then

ρ(j 7→ ‖f(j)− g(j)‖) < ε.

Thus

d̂2ε(HomΓ(S, F ′,m′, δ′, σi), ρ) ≤ d̂ε(HomΓ(S, F,m, δ, σi), ρ).

Therefore

f. dimΣ(S, 2ε, ρ) ≤ lim sup
i

1

dimVi
d̂ε(HomΓ(S, F,m, δ, σi), ρ).

Since F,m, δ were arbitrary

f. dimΣ(S, 2ε, ρ) ≤ lim inf
(F,m,δ)

lim sup
i

1

dimVi
d̂ε(HomΓ(S, F,m, δ, σi), ρ),

and taking the supremum over ε > 0 completes the proof.
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3.3 Main Properties of dimΣ(X,Γ)

The first property that we prove is that dimension is decreasing under surjective maps, as

in the usual case of finite-dimensional vector spaces.

Proposition 3.3.1. Let (Y,Γ,Σ = (σi : Γ→ Isom(Vi))), (X,Γ,Σ) be two dimension triples.

Suppose that there is a Γ-equivariant bounded linear map T : Y → X, with dense image.

Then

dimΣ(X,Γ) ≤ dimΣ(Y,Γ).

dimΣ(X,Γ) ≤ dimΣ(Y,Γ).

Proof. Let S ′ = (yj)
∞
j=1 be a dynamically generating sequence for Y. Let S = (T (xj))

∞
j=1,

then S is dynamically generating for X. Then

HomΓ(S, F,m, δ, σi) ◦ T ⊆ HomΓ(S ′, F,m, δ, σi)‖T‖,

and

αS′(φ ◦ T ) = αS(φ),

so the proposition follows.

We next show that dimension is subadditive under exact sequences. It turns out to be

strong of a condition to require that dimension be additive under exact sequences. As noted

in [13] if dimΣ,`p is additive under exact sequences and

dimΣ,`p(`
p(Γ)⊕n,Γ) = n,

then we can write the Euler characteristic of a group as an alternating sum of dimensions of

`p cohomology spaces. But torsion-free cocompact lattices in SO(4, 1) have positive Euler

characteristic and their `p cohomology vanishes when p is sufficiently large, so this would

give a contradiction.
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Proposition 3.3.2. Let (V,Γ,Σ = (σi : Γ → Isom(Vi))) be a dimension triple. Let W ⊆ V

be a closed Γ-invariant subspace. Then

dimΣ(V,Γ) ≤ dimΣ(V/W,Γ) + dimΣ(W,Γ),

dimΣ(V,Γ) ≤ dimΣ(V/W,Γ) + dimΣ(W,Γ),

dimΣ(V ⊕n,Γ) ≤ ndimΣ(V,Γ).

Proof. Let S2 = (wj)
∞
j=1 be a dynamically generating sequence for W, and let S1 = (aj)

∞
j=1

be a dynamically generating sequence for V/W. Let xj ∈ V, be such that xj +W = aj, and

‖xj‖ ≤ 2‖aj‖. Let S be the sequence

x1, w1, x2, w2, · · · .

We shall use the product norm on `∞(N) given by

ρ1(f) =
∞∑
j=1

1

2j
|f(j)|,

ρ2(f) =
∞∑
j=1

1

2j
|f(2j)|+

∞∑
j=1

1

2j
|f(2j − 1)|.

Let ε > 0, and choose m such that 2−m < ε. Let e ∈ F1 ⊆ Γ be finite,m ≤ m1 ∈ N, and

δ1 > 0. Let η > 0 to be determined later. By Lemma 3.2.8, we can find a δ1 > δ > 0, a

F1 ⊆ E ⊆ Γ finite, and a m ≤ k ∈ N, so that if X is a Banach space, and

T : VE,2k → X

has ‖T‖ ≤ 2, and

‖T
∣∣
W∩VE,2k

‖ ≤ δ,

then there is a φ : (V/W )F1,m1 → X with ‖φ‖ ≤ 3, and

‖φ(s1 · · · skaj)− T (s1 · · · skxj)‖ < δ1,

for all 1 ≤ j, k ≤ m1, and s1, . . . , sk ∈ F1.
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By finite-dimensionality, we can find a finite set F ′ ⊇ E,m′ ≥ 2k, and a 0 < δ′ < δ1, so

that if T : VF ′,m′ → X, satisfies

‖T (s1 · · · skxj)‖ < δ′

for all 1 ≤ j, k ≤ m′, and s1, . . . , sk ∈ F ′, then

‖T
∣∣
W∩VE,2k

‖ ≤ δ.

Define

R : HomΓ(S, F ′, 2m′, δ′, σi)→ HomΓ(S2, F
′,m′, δ′, σi)

by

R(T ) = T
∣∣
WF ′,m′

.

Find

Θ: im(R)→ HomΓ(S, F ′, 2m′, δ′, σi)

so that R ◦Θ = Id .

Then

(T − θ(R(T ))(s1 · · · skwj) = 0,

for all 1 ≤ j, k ≤ m′, and s1, . . . , sk ∈ F ′. Thus by assumption, we can find a

φ : (V/W )F1,m1 → Vi,

so that ‖φ‖ ≤ 3, and

‖φ(s1 · · · skaj)− (T − θ(R(T )))(s1 · · · skxj)‖ < δ1,

for all 1 ≤ j, k ≤ m1, s1, . . . , sk ∈ F1, in particular,

‖φ(aj)− (T − θ(R(T )))(xj)‖ < δ1,

for 1 ≤ j ≤ m.

Thus whenever 1 ≤ j, k ≤ m1, s1, . . . , sk ∈ F1,

‖φ(s1 · · · skaj)− σi(s1) · · · σi(sk)φ(aj)‖ ≤ 2δ1 + 2δ′ < 4δ1.
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Now suppose that

αS2(HomΓ(S2, F1,m1, δ1, σi)) ⊆ε,ρ1,Vi
G,

αS1(HomΓ(S1, F,m, 4δ1, σi)3) ⊆ε,ρ1,Vi
F.

Let E ⊆ `∞(N, Vi) be the subspace consisting of all h so that there are f ∈ F, g ∈ G so that

h(2k) = g(k), h(2k − 1) = f(k).

Then dim(E) = dim(F ) + dim(G). It easy to see that

αS(HomΓ(S, F ′,m′, δ′, σi)) ⊆3ε+δ1,ρ2,Vi
E.

So if δ1 < ε, we find that

αS(HomΓ(S, F1,m1, δ
′, σi)) ⊆3ε E.

From this the first two inequalities follow.

The last inequality is easier and its proof will only be sketched. Let S = (xj)
∞
j=1 be a

dynamically generating sequence for X, and yj = xq ⊗ er if j = nq + r, with 1 ≤ r ≤ n, and

xq ⊗ er is the element of X⊕n which is zero in all coordinates except for the rth, where it is

xq. If F ⊆ Γ is finite m ∈ N, δ > 0, then

HomΓ(S, F, nm, δ, σi) ⊆ HomΓ(S, F,m, δ, σi)
⊕n.

The rest of the proof proceeds as above.

We note here that subadditivity is not true for weakly exact sequences, that is sequences

0 −−−→ X −−−→ Y −−−→ Z −−−→ 0,

where X → Y is injective, im(X) = ker(Y → Z), and the image of Y is dense in Z. In fact,

using Fn for the free group on n letters a1, . . . , an, it is known that the map

∂ : `1(Fn)⊕n → `1(Fn),
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given by

∂(f1, . . . , fn)(x) =
n∑
j=1

fj(x)−
n∑
j=1

fj(xa
−1
j )

has dense image and is injective. We will show in section 3.8 that

dimΣ,`1(`1(Fn)⊕n,Fn) = dimΣ,`1(`1(Fn)⊕n,Fn) = n,

dimΣ,`1(`1(Fn),Fn) = dimΣ,`1(`1(Fn),Fn) = 1,

this gives a counterexample to subadditivity under weakly exact sequences. This also gives a

counterexample to monotonicity under injective maps, though once should note in this case

that the map defined above does not have closed image.

For 2 ≤ p ≤ ∞, we have a lower bound for direct sums, whose proof requires a few more

lemmas.

Lemma 3.3.3 ( [27], Lemma 8.5). Let H1, H2 be Hilbert spaces and let H = H1⊕H2 and let

Ωj ⊆ Hj and suppose C1, C2 > 0 are such that C1 ≤ ‖ξ‖ ≤ C2, for all ξ ∈ Ωj. If 0 < δ < C1,

then

dC−1
2 δ(Ω1 ⊕ 0 ∪ 0⊕ Ω2) ≥ dC−1

1

√
5δ(Ω1) + dC−1

1

√
5δ(Ω2).

Proof. By replacing Ωj with {
ξ

‖ξ‖
: ξ ∈ Ωj

}
we may assume C1 = C2 = 1. Let Pi be the projection onto each Hi, and set Ω = (Ω1⊕ 0)∪

(0⊕ Ω2). Suppose that V is a subspace such that Ω ⊆δ V, and let Q be the projection onto

V and T = QP1Q
∣∣
V
. Define

Ω′1 = Q(Ω1 ⊕ 0),Ω′2 = Q(0⊕ Ω2).

For ξ ∈ Ω we have

‖(1−Q)ξ‖ ≤ δ

thus for ξ ∈ Ω1 ⊕ {0}

〈TQξ,Qξ〉 = 〈QP1Qξ,Qξ〉 = ‖P1Qξ‖2 ≥ (‖ξ‖ − ‖P1(1−Q)ξ‖)2 ≥ (1− δ)2.
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So if T =
∫

[0,1]
t dE(t) we have with η = Qξ

(
√

1− δ2 − δ)2 ≤
〈(

1− 1

2
E ([0, 1/2])

)
η, η

〉
≤ 1− 1

2
‖E([0, 1/2])η‖2 .

Thus

‖E([0, 1/2])η‖2 ≤ 2(1− (1− δ)2) ≤ 4δ

i.e.

‖η − E((1/2, 1])η‖2 ≤ 4δ.

Thus

Ω′1 ⊆2
√
δ E((1/2, 1])V.

Similarly, because QP2Q
∣∣
V

= 1− T we have

Ω′2 ⊆2
√
δ E([0, 1/2])V.

For any projection P ′ and any x ∈ H we have ‖x − P ′x‖2 = ‖x‖2 − ‖P ′x‖2. So for all

ξ ∈ Ω1 ⊕ 0 we have since, QE((1/2, 1]) = E((1/2, 1]) (and E((1/2, 1]Q = E((1/2, 1]) by

taking adjoints), that

‖ξ − E((1/2, 1])Qξ‖2 = ‖ξ − E((1/2, 1])ξ‖2 = ‖ξ‖2 − ‖E((1/2, 1])ξ‖2 =

‖ξ‖2 − ‖Qξ‖2 + ‖Qξ‖2 − ‖E((1/2, 1])ξ‖2 =

‖ξ −Qξ‖2 + ‖Qξ − E((1/2, 1])Qξ‖2 ≤ δ2 + 4δ < 5δ.

Thus with a similar proof for Ω2 we have

Ω1 ⊕ 0 ⊆√5δ E((1/2, 1])V

0⊕ Ω2 ⊆√5δ E([0, 1/2))V

since

V = E([0, 1/2])V ⊕ E ((1/2, 1])V

the desired claim follows.
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Lemma 3.3.4. Let (X,Γ,Σ) be a dimension triple. Let S be a dynamically generating

sequence in X, and ρ a product norm such that ρ(f) ≤ ρ(g) if |f | ≤ |g|. Set

ρ(N)(f) = ρ(χj≤Nf).

Then

f. dimΣ(S, ρ) = lim
N→∞

f. dimΣ(S, ρ(N)),

f. dim
Σ

(S, ρ) = lim
N→∞

f. dim
Σ

(S, ρ(N)).

Proof. Let Σ = (σi : Γ→ Isom(Vi)). Let S = (xj)
∞
j=1, C = supj ‖xj‖.

Since ρ(N) ≤ ρ, for any ε > 0

f. dimΣ(S, ε, ρ(N)) ≤ f. dimΣ(S, ε, ρ) ≤ f. dimΣ(S, ρ),

thus

lim sup
n→∞

f. dimΣ(S, ρ(n)) ≤ f. dimΣ(S, ρ).

For the opposite inequality, fix ε > 0. and choose N such that ρ(f) < ε if f ∈ `∞(N, Vi)

is supported on {k : k ≥ N} and ‖f‖∞ ≤ C. Thus for T ∈ B(X, Vi), and f ∈ `∞(N, Vi) with

‖T‖ ≤ 1, and n ≥ N we have

|ρVi(αS(T )− χ{j≤N})− (ρ
(n)
Vi

(αS(T )− χ{j≤N}f))| ≤ |ρVi(χ{k>n}αS(T ))| ≤ ε.

Thus for n ≥ N,

f. dimΣ(S, 2ε, ρ) ≤ f. dimΣ(S, ε, ρ(n)) ≤ f. dimΣ(S, ρ(n)),

so

f. dimΣ(S, 2ε, ρ) ≤ lim inf
n→∞

f. dimΣ(S, ρ(n)).

For the next lemma, we recall the notion of the volume ratio of a finite-dimensional

Banach space. Let X be an n-dimensional real Banach space, which we will identify with
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Rn with a certain norm. By an ellipsoid in Rn we mean a set which is the unit ball for some

Hilbert space norm on Rn. Let B ⊆ Rn be the unit ball of X. We define the volume ratio of

B, denoted vr(B) by

vr(B) = inf

(
vol(B)

vol(D)

)1/n

,

where the infimum runs over all ellipsoids D ⊆ B. It is know that for any unit ball B of a

Banach space norm on Rn, there is an ellipsoid Dmax such that Dmax ⊆ B, and Dmax has

the largest volume of all such ellipsoids. So we have

vr(B) =

(
vol(B)

vol(Dmax )

)1/n

.

The main property we will need to know about volume ratio is the following theorem.

Theorem 3.3.5 (Theorem 6.1,[21]). Let B ⊆ Rn be the unit ball for a norm ‖ · ‖ on Rn. Let

D ⊆ B be an ellipsoid. Set

A =

(
vol(B)

vol(D)

)1/n

.

Let | · | be a norm such that D is the unit ball of (Rn, | · |), in particular ‖ · ‖ ≤ | · |. Then for

all k = 1, . . . , n− 1 there is a subspace F ⊆ Rn such that dimF = k and for every x ∈ F

|x| ≤ (4πA)
n

n−k ‖x‖. (3.2)

Further if we let Gnk be the Grassmanian manifold of k-dimensional subspaces of Rn, then

P({F ∈ Gnk : for all x ∈ F , equation (3.2) holds}) > 1− 2−n,

for the unique O(n)-invariant probability measure on Gnk.

What we will actually use is the following corollary.

Corollary 3.3.6. Let B ⊆ Rn be the unit ball for a norm ‖ ·‖ on Rn, and let Bo be its polar.

Let D ⊆ Bo be an ellipsoid. Set

A =

(
vol(Bo)

vol(Do)

)1/n

.
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Let | · | be a norm such that D is the unit ball of (Rn, | · |), in particular | · | ≤ ‖·‖. Then for all

k = 1, . . . , n− 1 there is a subspace F ⊆ Rn such that dimF = k and for every x ∈ Rn/F⊥

‖x‖(Rn/F⊥,‖·‖) ≤ (4πA)
n

n−k |x|(Rn/F⊥,|·|), (3.3)

where we use ‖ · ‖(Rn/F⊥,‖·‖) for the quotient norm induced by ‖ · ‖ and similarly for | · |.

Further,

P({F ∈ Gnk : for all x ∈ F, equation (3.3) holds}) > 1− 2−n.

Proof. This is precisely the dual of the above theorem.

Here is the main application of the above corollary to dimension theory.

Theorem 3.3.7. Let Γ be a countable group with a uniformly bounded action on separable

Banach spaces X, Y. Let Σ = (σi : Γ → Isom(Vi)) with dimVi < ∞. Suppose that Vi is the

complexification of a real Banach space V ′i such that

sup
i

vr((V ′i )
∗) <∞,

and there are constants C1, C2 > 0 so that

C1(‖x‖V ′i + ‖y‖V ′i ) ≤ ‖x+ iy‖ ≤ C2(‖x‖V ′i + ‖y‖V ′i ),

for all x, y ∈ Vi. Then the following inequalities hold,

dimΣ(X ⊕ Y,Γ) ≥ dimΣ(X,Γ) + dimΣ,Xi
(Y,Γ),

dimΣ(Y1 ⊕ Y2,Γ) ≥ dimΣ(X,Γ) + dimΣ(Y,Γ),

dimΣ(Y ⊕n,Γ) ≥ n dimΣ(Y,Γ),

Proof. We will do the proof for dim only, the proof of the other claims are the same. Let

S = (xn)∞n=1, T = (yn)∞n=1 be dynamically generating sequences, enumerate S⊕{0}∪{0}⊕T

by x1, y1, x2, y2, . . . , and fix integers k,m. By Lemma 3.3.4, it suffices to show that for fixed

m, k ∈ N, and for the pseudonorms ρ, ρ1, ρ2 on `∞(N) given by

ρ(f) =

(
m+k∑
j=1

|f(j)|2
)1/2

,
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ρ1(f) =

(
m∑
j=1

|f(j)|2
)1/2

,

ρ2(f) =

(
k∑
j=1

|f(j)|2
)1/2

,

we have

f. dimΣ(S ⊕ 0 ∪ 0⊕ T, ρ) ≥ f.dimΣ(S, ρ1) + f. dimΣ(T, ρ2).

Fix κ, ε > 0 and fix η > 0 which will depend upon κ, ε in a manner to be determined

later. By Corollary 3.3.6 there is a constant A, which depends only on κ,C1, C2 Hilbert space

norms | · |i on Xi, and finite dimensional complex subspaces Fi ⊆ V ∗i of complex dimension

b(1− κ)(dimVi)c such that
1

A
|x|i ≤ ‖x‖ ≤ ‖x‖ ≤ A|x|i

for all x ∈ Vi/F⊥i . Here, as in the Corollary 3.3.6, we abuse notation by using ‖x‖ for the

norm on Xi/F
⊥
i induced by ‖ · ‖, and similarly for | · |.

For m′ ≥ m ∈ N, δ > 0 and F ⊆ Γ finite we have

HomΓ(S, F, 2m′, δ, σi)⊕HomΓ(T, F, 2m′, δ, σi)2 ⊆ HomΓ((S⊕{0})∪ ({0}⊕ T ), F,m′, 2δ, σi).

Thus

d̂η (HomΓ((S ⊕ {0}) ∪ ({0} ⊕ T ), F, 2m′, 2δ, σi)2, ρ) ≥

d̂η (HomΓ(S, F, 2m′, δ, σi)⊕ HomΓ(T, F, 2m′, δ, σi)2, ρ) .

Let

K1 = {(T (x1), . . . , T (xm)) : T ∈ HomΓ(S, F, 2m′, δ, σi)}

K2 = {(S(y1), . . . , S(yk)) : S ∈ HomΓ(S, F, 2m′, δ, σi)}.

Then, by definition,

d̂η (HomΓ(S, F, 2m′, δ, σi)⊕ HomΓ(T, F, 2m′, δ, σi), ρ) =

dη
(
K1 ⊕K2, ‖ · ‖⊕m ⊕ ‖ · ‖⊕k

)
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where we use the `2-direct sum.

Let πi : Vi → Vi/F
⊥
i be the quotient map and let

Gj = π⊕li (Kj),

where l = m if j = 1, and l = k if j = 2.

Then

dη
(
K1 ⊕K2, ‖ · ‖⊕m ⊕ ‖ · ‖⊕k

)
≥ dη

(
G1 ⊕G2, ‖ · ‖⊕m ⊕ ‖ · ‖⊕k

)
≥

dAη
(
G1 ⊕G2, | · |⊕mi ⊕ | · |⊕ki

)
.

Set

Bi =
{
x ∈ Gi : lA ≥ |x| ≥ A

ε

4

}
,

where l = m if i = 1, and l = k if i = 2.

Then

dAη
(
G1 ⊕G2, | · |⊕mi ⊕ | · |⊕ki

)
≥ d

max(l,m)(ε/4)−1
√

5ηAmax(l,m)
(B1, | · |⊕m)

+ d
max(l,m)(ε/4)−1

√
5Aηmax(l,m))

(B2, | · |⊕k).

Setting η = ε4/3

Amax(l,m)·51/3 we have

dη(K1 ⊕K2, ‖ · ‖⊕m ⊕ ‖ · ‖⊕k) ≥ d ε
A

(B1, | · |⊕m) + d ε
A

(B2, | · |⊕k)

≥ dε(B1, ‖ · ‖⊕k) + dε(B2, ‖ · ‖⊕k).

Since Bi ⊇ {x ∈ Ci : ‖x‖ ≥ ε
4
} we have

dε(B1, ‖ · ‖⊕k) + dε(B2, ‖ · ‖⊕k) = dε(G1, ‖ · ‖⊕k) + dε(G2, ‖ · ‖⊕k).

Let Ei ⊆ (Vi/F
⊥
i )⊕l be a linear subspace of minimal dimension which ε-contains Ci with

respect to ‖ · ‖⊕l (l = k, if i = 1, and l = m if i = 2.) Let Ẽi ⊆ Vi be a linear subspace such

that dimEi = dim Ẽi and π⊕li (Ẽi) = Ei. Set Wi = Ẽi +F⊕li . Then Wi has dimension at most

dimEi + lci with limi→∞
ci

dimVi
= κ, since dimVi →∞, and Ki ⊆ε,‖·‖ Vi. Thus

dε(Gi, ‖ · ‖⊕l) ≥ d̂ε(Ki, ‖ · ‖⊕l)− lci.
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Since ε→ 0 as η → 0 (and vice versa) we conclude that

dimΣ(S1 ⊕ S2,Γ, ‖ · ‖S,T,i) ≥ −κ(k +m) + dimΣ(S1,Γ, ‖ · ‖S,i) + dimΣ(Y2,Γ, ‖ · ‖T,i).

Since κ is arbitrary this proves the desired inequality.

Corollary 3.3.8. Let 2 ≤ p <∞.

(a) Let Γ be a sofic group with uniformly bounded actions on separable Banach spaces

X, Y and let Σ be a sofic approximation. Then

dimΣ,`p(X ⊕ Y,Γ) ≥ dimΣ,`p(X,Γ) + dimΣ,`p(Y,Γ)

dimΣ,`p(X ⊕ Y,Γ) ≥ dimΣ,`p(X,Γ) + dimΣ,`p(Y,Γ)

(b) Let Γ be an Rω-embeddable group with uniformly bounded actions on separable Banach

spaces X, Y and let Σ be an embedding sequence. Then

dimΣ,Sp(X ⊕ Y,Γ) ≥ dimΣ,Sp(X,Γ) + dimΣ,Sp(Y,Γ)

dimΣ,Sp(X ⊕ Y,Γ) ≥ dimΣ,Sp(X,Γ) + dimΣ,Sp(Y,Γ).

Proof. For 1 ≤ q ≤ ∞, let Bq be the unit ball of Lq({1, . . . , n}, µn) where µn is the uniform

measure.

It is known that for all q,

inf
n

(
vol(Bq)

vol(B2)

)1/n

> 0,

sup
n

(
vol(Bq)

vol(B2)

)1/n

<∞,

(see the computation on page 11 of [21]). Similarly if we let Cq be the unit ball of {A ∈

Mn(C) : A = A∗} in the norm ‖ · ‖Lp( 1
n

Tr), it is known that for all q,

inf
n

(
vol(Cq)

vol(C2)

)1/n

> 0,

sup
n

(
vol(Cq)

vol(C2)

)1/n

<∞,

(see [25]) Apply the preceding theorem.
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We note one last property of `2-dimension for representations, which will be used in a

later section to show that our dimension agrees with von Neumann dimension in the `2-case.

Proposition 3.3.9. Let H be a separable unitary representation of a Rω-embeddable group

Γ. Let Σ be an embedding sequence of Γ. Suppose that H =
⋃
k=1 Hk with Hk increasing,

closed invariant subspaces, and that each Hk has a finite dynamically generating sequence.

Then

dimΣ,`2(H,Γ) = sup
k

dimΣ,`2(Hk,Γ),

dimΣ,`2(H,Γ) = sup
k

dimΣ,`2(Hk,Γ).

Proof. We will do the proof for dim only, the other cases are the same. By Proposition 3.3.2

we know that dimΣ,`2 is monotone for unitary representations, so we only need to show

dimΣ,`2(H,Γ) ≥ sup
k

dimΣ,`2(Hk,Γ).

Let {ξ(k)
1 , . . . , ξ

(k)
rk } be unit vectors which dynamically generateHk. Let SN be the sequence

ξ
(1)
1 , . . . , ξ(1)

r1
, ξ

(2)
1 , . . . , ξ(2)

r2
, . . . , ξ

(N)
1 , . . . , ξ(N)

rN
,

i.e. the `th term of SN is

ξ(i)
ql

if i is the largest integer such that

Ci =
∑
j≤i

rj < l,

and

ql = l −
∑
j≤i

rj.

Let S be the sequence obtained by the infinite concatenation of the SN ’s. We will use SN to

compute dimΣ,`2(HN ,Γ) and S to compute dimΣ,`2(H,Γ), we also use the pseudonorms

‖T‖S,i =
∞∑
j=1

1

2j
‖T (ξj)‖
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‖T‖SN ,i =
∞∑
j=1

1

2j
‖T (ξj)‖.

Fix ε > 0, and let M be such that 2−M < ε. Suppose F ⊆ Γ is finite,δ > 0 and m ∈ N

with m > CM . Let PM ∈ B(H) be the projection onto HM . Suppose V is a subspace of

B(HM ,Cdi) of minimal dimension such that

HomΓ(SM , F,m, δ, σi) ⊆ε,‖·‖S,i V,

let Ṽ ⊆ B(H,Cdi) be the image of V under the map T → T◦PM . If T ∈ HomΓ,`2(di)(S, F,m, δ, σi)

then T̃ = T
∣∣
HM

is in HomΓ(SM , F,m, δ, σi), and there exists φ ∈ V such that ‖φ−T̃‖SM ,i < ε.

Then

‖φ ◦ P − T‖S,i ≤ 2
∞∑

n=CM+1

1

2n
+ ‖φ− T̃‖SM ,i ≤ 2−m+1 + ε ≤ 3ε.

Thus

HomΓ(S, F,m, δ, σi) ⊆3ε,‖·‖S,i Ṽ ,

so

d3ε(HomΓ(SM , F,m, δ, σi), ‖ · ‖S,i) ≤ dε(HomΓ(SM , F,m, δ, σi), ‖ · ‖SM ,i).

Thus

dimΣ,`2(S,Γ, 3ε, ‖ · ‖S,i,2) ≤ dimΣ,`2(SM , 3ε, ‖ · ‖S,i,2) ≤ sup
M

dimΣ,`2(πM)

and similarly for dim. Taking the supremum over ε > 0 completes the proof.

Corollary 3.3.10. Let Γ be a Rω-embeddable group, and let Σ = (σi : Γ→ U(di)) be an

embedding sequence. Let πk : Γ → U(Hk) be a representations of Γ such that each πk has a

finite dynamically generating sequence. Then

dimΣ,`2

(
∞⊕
k=1

πk

)
≤

∞∑
k=1

dimΣ,`2(πk)

dimΣ,`2

(
∞⊕
k=1

πk

)
≥

∞∑
k=1

dimΣ,`2(πk).

Proof. The corollary is a simple consequence of the above proposition and Theorem 3.3.7.
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3.4 Computation of dimΣ,`p(`
p(Γ, V ),Γ), and dimΣ,Sp,conj(`

p(Γ, V ),Γ).

In this section we show that if Σ is a sofic approximation of Γ and 1 ≤ p ≤ 2, then

dimΣ,`p(`
p(Γ, V ),Γ) = dimV,

for V finite dimensional. Similarly if Σ is a embedding sequence of Γ and 1 ≤ p ≤ 2, we

show that

dimΣ,Sp,conj(`
p(Γ, V ),Γ) = dimV,

dimΣ,`2(`2(Γ, `2(n)),Γ) = n,

again for V finite dimensional.

The proof for sofic groups will be relatively simple, but the proof for Rω-embeddable

groups requires a few more lemmas.

Let ν be the unique U(n) invariant Borel probability measure on S2n−1, for the next

lemma we need that if T : Cn → Cn is linear, then

1

n
Tr(T ) =

∫
S2n−1

〈Tξ, ξ〉 dν(ξ).

This follows from the fact that Tr is, up to scaling, the unique linear functional on Mn(C)

invariant under conjugation by U(n).

Additionally, we will use the following concentration of measure fact (see [?] Page 295),

if f is a Lipschitz function on Sn−1, then

P(|f − Ef | > t) ≤ 4e
−nt2

‖f‖2
Lip

72π2
.

Lemma 3.4.1. Let Γ be a Rω-embeddable group, let σi : Γ → U(di) be an embedding se-

quence, and fix E ⊆ Γ finite,m ∈ N. For j ∈ {1, . . . ,m}, ξ, η ∈ S2di−1 define

Tξ,j : `2(Γ× {1, . . . ,m})→ `2(di),

Tξ,η,j : `p(Γ× {1, . . . ,m})→ Sp(di)
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by

Tξ,j(f) =
∑
s∈E

f(s, j)σi(s)ξ,

Tξ,η,j(f) =
∑
s∈E

f(s, j)σi(s)ξ ⊗ σi(s)η.

Then for any δ > 0 and 1 ≤ p <∞,

(a)

lim
i→∞

P({ξ ∈ S2di−1 : ‖Tξ,j : `2(Γ× {1, . . . ,m})→ `2(di)‖ < 1 + δ}) = 1,

(b)

{(ξ, η) ∈ (S2di−1)2 : ‖Tξ,η,j : `p(Γ× {1, . . . ,m})→ Sp(di)‖ < 1 + δ} ⊇ Ai × Ai,

where Ai ⊆ S2di−1 has ν(Ai)→ 1.

Proof. Let κ > 0 which will depend upon δ > 0, p in a manner to be determined later. Let

A =
⋂

s 6=t,s,t∈E

{ξ ∈ S2di−1 : |〈σi(s)ξ, σi(t)ξ〉| < κ},

since ∫
S2di−1

〈σi(s)ξ, σi(t)ξ〉 dν(ξ) =
1

di
Tr(σi(t)

−1σi(s))→ 0

for s 6= t, the concentration of measure estimate mentioned before the Lemma implies that

ν(A)→ 1.

For the proof of (a), (b) we prove that if ξ, η ∈ A then

‖Tξ,j‖`2→`2 ≤ 1 + δ,

‖Tξ,η,j‖`p→Sp ≤ 1 + δ,

if κ > 0 is sufficiently small.

(a) For f ∈ `2(Γ× {1, . . . ,m}), ξ ∈ A we have
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‖Tξ,j(f)‖2
2 =

∑
s,t∈E

f(s, j)f(t, j)〈σi(s)ξ, σi(t)ξ〉

≤ ‖fχE‖2
2 +

∑
s 6=t,s,t∈E

‖f‖2
2κ

≤ ‖f‖2
2(1 + κ|E|2)

≤ (1 + δ)‖f‖2
2

if κ < δ
|E|2 .

(b) Fix ε > 0 to be determined later. If κ is sufficiently small, then for any (ξ, η) ∈ A2

we can find (ξs)s∈E(ηs)s∈E such that 〈ξs, ξt〉 = δs=t, 〈ηs, ηt〉 = δs=t and

‖ξs − σi(s)ξ‖ < ε, ‖ηs − σi(s)η‖ < ε.

Then∥∥∥∥∥Tξ,η,j(f)−
∑
s∈E

f(s)ξs ⊗ ηs

∥∥∥∥∥
p

≤ ‖f‖p
∑
s∈E

(‖ξs − σi(s)ξ‖+ ‖σi(s)η − ηs‖) ≤ 2|E|ε‖f‖p.

Note that ∣∣∣∣∣∑
s∈E

f(s)ξs ⊗ ηs

∣∣∣∣∣
2

=
∑
s,t∈E

f(s)f(t)〈ξt, ξs〉ηs ⊗ ηt =

∑
s∈E

|f(s)|2ηs ⊗ ηs.

Thus ∥∥∥∥∥∑
s∈E

f(s)ξs ⊗ ηs

∥∥∥∥∥
p

p

= ‖fχE‖pp ≤ ‖f‖pp.

So if ε < δ
2|E| the claim follows.

The following Lemma will allow us to get the lower bound we need and is similar to

Lemma 7.8 in [27].

Lemma 3.4.2. Let H be a Hilbert space, and η1, . . . , ηk an orthonormal system in H, and

V = Span{ηj : 1 ≤ j ≤ k} and PV the projection onto V. Let K be a Hilbert space and

T ∈ B(H,K) with ‖T‖ ≤ 1. Then

dε({T (η1), . . . , T (ηk)}) ≥ −kε+ Tr(PV T
∗TPV ).
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Proof. For a subspace E ⊆ H we let PE be the projection onto E. Let W be a subspace of

minimal dimension which ε-contains {T (η1), . . . , T (ηk)}. Then

Tr(PWTT
∗) = Tr(PWTT

∗PW ) ≤ Tr(PW ),

similarly

Tr(PWTT
∗) ≥ Tr(PV T

∗PWTPV )

=
k∑
j=1

〈PWT (ηj), T (ηj)〉

≥ −εk +
k∑
j=1

〈T (ηj), T (ηj)〉

= −εk + Tr(PV T
∗TPV ).

For convenience, we shall identify L(Γ) as a set of vectors in `2(Γ). That is, we shall

consider L(Γ) to be all ξ ∈ `2(Γ) so that

‖ξ‖L(Γ) = sup
f∈cc(Γ),
‖f‖2≤1

‖ξ ∗ f‖2 <∞.

Here ξ ∗ f is the usual convolution product. By Theorem 2.1.16, if ξ ∈ L(Γ), then for all

f ∈ `2(Γ), ξ ∗ f ∈ `2(Γ) and

‖ξ ∗ f‖2 ≤ ‖ξ‖L(Γ)‖f‖2.

By Theorem 2.1.16, L(Γ) is closed under convolution and

(ξ ∗ η) ∗ ζ = ξ ∗ (η ∗ ζ)

for ξ, η, ζ ∈ L(Γ). Finally for ξ ∈ L(Γ), we set

ξ∗(x) = ξ(x−1).
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If ξ ∈ L(Γ), ζ, η ∈ `2(Γ), then

〈ξ ∗ η, ζ〉 = 〈η, ξ∗ ∗ ζ〉.

Finally, for ξ ∈ L(Γ), f ∈ cc(Γ),

‖f ∗ ξ‖2 = ‖ξ∗ ∗ f ∗‖2 ≤ ‖f ∗‖2‖ξ∗‖L(Γ) = ‖f‖2‖ξ‖L(Γ).

Hence every element of L(Γ) is bounded as a right convolution operator

Lemma 3.4.3. Let Γ be a countable sofic group, and Σ = (σi : Γ → Sdi) a sofic approx-

imation of Γ. Extend σi to a embedding sequence by Lemma 2.2.6, still denoted σi, of

(L(Γ), τ) with τ the group trace. For r, s ∈ N define σi : Mh,s(L(Γ)) → Mh,s(Mdi(C)) by

σi(A) = [σi(alr)]1≤l≤h,1≤r≤s. Fix n ∈ N. For 1 ≤ j ≤ di, 1 ≤ k ≤ n and E ⊆ Γ finite define

T
(E)
j,k : `p(Γ)⊕n → `p(di) by

T
(E)
j,k (f) =

∑
g∈E

fk(g)σi(g)ej.

Then

(a) For all E and (1− o(1))ndi of the j, k we have ‖T (E)
j,k ‖`p→`p ≤ 1 as i→∞.

(b) For 1 ≤ p ≤ ∞, for all ε > 0, for all f ∈ cc(Γ), g ∈ `p(Γ)⊕n, there is a finite subset

E ⊆ Γ, so that if E ′ ⊇ E is a finite subset of Γ, then the set of (j, k) so that

‖T (E′)
j,k (f ∗ g)− σi(f)T

(E)
j,k (g)‖p ≤ ε‖g‖p,

has cardinality at least (1− ε))ndi for all large i.

(c) For all ε > 0, for all ξ ∈M1,n(L(Γ)), (identifying M1,n(L(Γ)) as a subset of `2(Γ)⊕n)

there is a finite subset E ⊆ Γ, so that if E ′ ⊇ E is a finite subset of Γ, then the set of (j, k)

so that

‖T (E′)
j,k (ξ)− σi(ξ)(ej ⊗ ek)‖2 < ε,

(here ej ⊗ ek ∈ `2(di)
⊕n is ej in the kth coordinate and zero otherwise). has cardinality at

least (1− ε)ndi for all large i.
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Proof. (a) We have ∥∥∥T (E)
j,k (f)

∥∥∥p
p

=

di∑
r=1

∣∣∣∣∣∣∣∣
∑
g∈E,

σi(g)(j)=r

fk(g)

∣∣∣∣∣∣∣∣
p

.

Let Ci = {j ∈ {1, . . . , di} : σi(g)(j) 6= σi(h)(j) for g 6= h in E}. By soficity, we have

|Ci|
di
→ 1, and if j ∈ Ci we have ∥∥∥T (E)

j,k (f)
∥∥∥p
p
≤ ‖fk‖pp ≤ ‖f‖pp.

(b) For A ∈Mdi(C),

‖A‖2
2 =

1

di

di∑
j=1

‖Aej‖2
2,

where ej is the vector which has jth coordinate equal to 1, and all other coordinates zero.

Hence by Chebyshev’s inequality, the fact that ‖T (E)
j,k ‖p ≤ 1, and the definition of embedding

sequences, it is enough to verify this for f = δx, g = δy for some x, y ∈ Γ. But this is trivial

from the definition of soficity.

(c) Let us first verify this when ξ ∈ M1,n(cc(Γ)). In this case, we may again reduce to

ξ = (δa1 , . . . , δak) for some a1, . . . , ak ∈ Γ. Then if E ⊇ {a1, . . . , ak} we have

T
(E)
j,k (ξ) = σi(ak)ej = σi(ξ)(ej ⊗ ek).

In the general case let ε > 0, given ξ ∈ M1,n(L(Γ)) choose f ∈ M1,n(cc(Γ)) so that

‖f − ξ‖2 < ε. Thus for (1− (ε+ o(1)))kdi of the (j, k) we have

‖T (E′)
j,k (ξ)− σi(ξ)(ej ⊗ ek)‖2 ≤ 2ε+ ‖(σi(ξ)− σi(f))(ej ⊗ ek)‖.

By the definition of embedding sequence for all large i we have

1

di

di∑
j=1

n∑
k=1

‖(σi(ξ)− σi(f))(ej ⊗ ek)‖2
2 < ε2,

thus for at least (1−
√
ε)ndi of the (j, k) we have

‖(σi(ξ)− σi(f))(ej ⊗ ek)‖2 <
√
ε,
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combining these estimates completes the proof.

We need a similar lemma for Rω-embeddable groups.

Lemma 3.4.4. Let Γ be a countable Rω-embeddable group, and Σ = (σi : Γ → U(di)) an

embedding sequence. Define ρi : Γ → U(S2(di)) by ρi(g)A = σi(g)Aσi(g)−1. Extend σi, ρi

to embedding sequences by Lemma 2.2.6 , still denoted σi, ρi of (L(Γ), τ) with τ the group

trace. For h, s ∈ N define σi : Mh,s(L(Γ)) → Mh,s(Mdi(C)) by σi(A) = [σi(alr)]1≤l≤h,1≤r≤s.

Fix n ∈ N. For ξ, η ∈ `2(di), 1 ≤ k ≤ di and E ⊆ Γ finite define T
(E)
ξ,η,k : `p(Γ)⊕n → Sp(di) by

T
(E)
ξ,η,k(f) =

∑
g∈E

fk(g)σi(g)ξ ⊗ σi(g)η.

Then

(a) There exists measurable Ai ⊆ S2di−1 with P(Ai)→ 1, so that

{(ξ, η) ∈ (S2di−1)2 : ‖T (E)
ξ,η,k‖`p→Sp ≤ 2} ⊇ Ai × Ai,

for (1− o(1))di of the k.

(b) For all ε > 0, for all f ∈ cc(Γ), g ∈ `p(Γ)⊕n, there exists measurable Bi ⊆ S2di−1, with

P(Bi) ≥ 1− ε, for all large i, a finite subset E ⊆ Γ, so that if E ′ ⊇ E is a finite subset of Γ,

then for (1− ε)di of the k and for all large i,

{(ξ, η) ∈ (S2di−1)2 : ‖T (E′)
ξ,η,k(f ∗ g)− ρi(f)T

(E)
ξ,η,k(g)‖p < ε} ⊇ Bi ×Bi

(c) For all ε > 0, for all ζ ∈ M1,n(L(Γ)), (identifying M1,n(L(Γ)) as a subset of `2(Γ)⊕n

) there are measurable Ci ⊆ S2di−1, with P(Ci) ≥ 1− ε for all large i, a finite subset E ⊆ Γ,

so that if E ′ ⊇ E is a finite subset of Γ, so that for at least (1 − ε)di of the k and for all

large i,

{(ξ, η) ∈ (S2di−1)2 : ‖T (E′)
ξ,η,k(ζ)− ρi(ζ)ξ ⊗ η)‖2 < ε} ⊇ Ci × Ci,

has cardinality at least (1− ε)ndi for all large i.

91



Proof. Same as the preceding Lemma, but using Lemma 3.4.1.

Finally we need one last lemma, which allows us to reduce to considering subspaces of

finite direct sums of lp(Γ).

Lemma 3.4.5. Let Γ be a countable discrete group. Let H ⊆ `2(N, `2(Γ)) be a closed Γ-

invariant subspace.

(a) Define πk : `2(N, `2(Γ))→ `2(Γ)⊕k by πkf(j) = f(j) for 1 ≤ j ≤ k. Then

dimL(Γ)(H) = sup
k

dimL(Γ)(πk(H)
‖·‖2

).

(b) The representation H is isomorphic to a direct sum of representations of the form

`2(Γ)p with p ∈ L(Γ) an orthogonal projection.

Proof. (a) Since πk(H) is dense in πk(H) we have

dimL(Γ)(H) ≥ sup
k

dimL(Γ)(πk(H)
‖·‖2

).

Let us first handle the case when dimL(Γ)(H) <∞, let P be the projection onto H.

Then

dimL(Γ)(πk(H)) = dimL(Γ(ker(πkP )⊥)

= dimL(Γ)(H ∩ (H⊥ + `2(Γ)⊕k))

= dimL(Γ)(H ∩ (H ∩ `2(N \ {1, . . . , k},Γ))⊥)).

Let Qk be the projection onto H ∩ `2(N \ {1, . . . , k},Γ). Then

dimL(Γ)(H ∩ `2(N \ {1, . . . , k},Γ)) =
∞∑
n=1

〈Qk(δe ⊗ en), δe ⊗ en〉

=
∞∑
n=k

〈Qk(δe ⊗ en), δe ⊗ en〉

≤
∞∑
n=k

〈P (δe ⊗ en), δe ⊗ en〉

→ 0,
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as dimL(Γ)(H) <∞.

In the general case, it suffices to show that we may write H as a direct sum of representa-

tions with finite von Neumann dimension. Zorn’s Lemma implies that every representation

is a direct sum of cyclic representations which are contained in `2(N, `2(Γ)), so it suffices to

show every cyclic representation contained in `2(N, `2(Γ)) has finite von Neumann dimension.

For this, let ξ ∈ H be a cyclic vector, then by Theorem A.3.1, there is a y ∈ L1(L(Γ), τ)

so that

〈π(g)ξ, ξ〉 = τ(xy).

It is easy to see that y ≥ 0. Setting ζ = |y|1/2, we see that

〈π(g)ξ, ξ〉 = 〈gζ, ζ〉

for all g ∈ Γ. Thus H is isomorphic to Span
‖·‖2

(Γξ) via the unitary sending gξ → gζ. From

this it clear that H has dimension at most 1.

(b) As in part (a), we may assume that H is a cyclic representation contained in `2(Γ).

We have already seen directly before Proposition 2.1.14 that

H = L2(M, τ)p.

Theorem 3.4.6. Let Γ be a countable discrete group, let 1 ≤ p ≤ 2, and Y a closed Γ-

invariant subspace of `p(N, `p(Γ)), with Γ acting by gf(x) = f(g−1x). Set H = Y
‖·‖2

.

(a) Suppose Σ is a sofic approximation of Γ, then

dimΣ,`p(Y,Γ) ≥ dimL(Γ)(H).

(b)Suppose Σ is an embedding sequence of Γ, then

dimΣ,Sp,conj(Y,Γ) ≥ dimL(Γ)(H).

(c) Suppose Σ is an embedding sequence of Γ, and H ⊆ `2(N, `2(Γ)) is Γ invariant, then

dimΣ,`2(H,Γ) ≥ dimL(Γ)(H).
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Proof. We first reduce to the case that Y ⊆ `p(Γ)⊕h with h finite.

Consider the projection

πh : `p(N,Γ)→ `p({1, . . . , h}, `p(Γ))

given by

πhf(j) = f(j),

assume we know the result for Y ⊆ `p(Γ)⊕h for each h.

Then,

dimΣ,`p(Y,Γ) ≥ dimΣ,`p(πh(Y )
‖|·‖p

,Γ)

≥ dimL(Γ)(πh(H)
‖·‖2

),

letting h→∞ and applying the preceding Lemma proves the claim. Thus, we shall assume

that Y ⊆ `p(Γ)⊕n with n ∈ N.

By part (b) of the preceding Lemma, we can find vectors (ξ(q))∞q=1 ∈ H, so that

〈λ(g)ξ(s), ξ(s)〉 = 〈λ(g)qs, qs〉 = qs(g
−1), where qs is a projection in L(Γ),

∞∑
s=1

τ(qs) = dimL(Γ)(H),

〈λ(g)ξ(j), ξ(l)〉 = 0 for j 6= l, g ∈ Γ.

H =
∞⊕
j=1

L(Γ)ξ(j).

These equations can be rewritten as

n∑
i=1

ξ(j) ∗ (ξ(j))∗ = qj, for 1 ≤ j ≤ ∞

n∑
i=1

ξ(j) ∗ (ξ(l))∗ = 0 if j 6= l,

Let us illuminate these equations a little. Regard a vector ξ ∈ `2(Γ)⊕n as a element in

M1,n(`2(Γ)) with the product of two matrices induced from convolution of vectors. Then the
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product of elements of M1,n(`2(Γ)),Mn,1(L(Γ)) makes sense, but may not land back in `2(Γ).

The above equations then read

ξ(j)(ξ(j))∗ = qjfor 1 ≤ j <∞,

ξ(j)(ξ(l)) = 0 for j 6= l..

In particular, the above equations imply that

‖ξ(j)
r ‖L(Γ) ≤ 1.

So that ξ(j) ∈ M1,n(L(Γ)). Extend σi to a embedding sequence of Mn,m(L(Γ)) for all n,m

and such that

‖σi(ξ(j))‖ ≤ 1, for all j

‖σi(ξ(j)
r )‖ ≤ 1, for all j, r

σi(ξ
(j))σi(ξ

(l))∗ = 0 for all j 6= l.

for all j, r.

(a)

Let S = (xj)
n
j=1 be a dynamical generating sequence for Y.

Fix η > 0, t ∈ N and choose a finite subset F1 ⊆ Γ,m1 ∈ N, and c
(s)
gj for 1 ≤ s ≤ t, (g, j) ∈

F1 × {1, . . . ,m1} so that for all 1 ≤ s ≤ t∥∥∥∥∥∥∥∥ξ
(s) −

∑
g∈F1

1≤j≤m1

c
(s)
gj gxj

∥∥∥∥∥∥∥∥
2

< η.

Choose finitely supported functions x′j so that ‖xj − x′j‖p < η′ . Since p ≤ 2, it is easy to

see that if we force η′ to be sufficiently small then,∥∥∥∥∥∥∥∥ξ
(s) −

∑
g∈F1

1≤j≤m1

c
(s)
gj gx

′
j

∥∥∥∥∥∥∥∥
2

< η.
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Let S = (xj)
∞
j=1 be a dynamically generating sequence for Y. Fix F ⊆ Γ finite m ∈ N, δ >

0. Let E ⊆ Γ be finite, let T
(E)
j,k be defined as Lemma 3.4.3.

It is easy to see that if E is sufficiently large, then T
(E)
j,k

∣∣
YF,m
∈ HomΓ(S, F,m, δ, σi)2 for

(1− o(1))ndi of the j, k, and in fact ‖T (E)
j,k ‖`p→`p ≤ 2 for 1 ≤ p ≤ 2. For such (j, k), and for

all small δ, for 1 ≤ s ≤ t+ 1

∥∥∥∥∥∥∥∥T
(E)
j,k (ξ(s))−

∑
g∈F1

1≤j≤m1

c
(p)
gj σi(g)T

(E)
j,k (xj)

∥∥∥∥∥∥∥∥
2

< 2η,

‖T (E)
j,k (gx′j)− T

(E)
j,k (gxj)‖2 < η.

Thus by Lemma 3.4.3 for at least (1− (2014)!ε)ndi of the j, k we have∥∥∥∥∥∥∥∥σi(ξ
(s))(ej ⊗ ek)−

∑
g∈F1

1≤j≤m1

c
(p)
gj σi(g)T

(E)
j,k (xj)

∥∥∥∥∥∥∥∥
2

< ε+ η.

Now consider the linear map A : `∞(N, `p(di))→ `2(di)
⊕t given by

S(f) =

 ∑
g∈F1

1≤j≤m1

c
(p)
gj σi(g)f(j)


t

p=1

,

from the above it is easy to see that if αS(HomΓ(S, F,m, δ, σi)) ⊆ε′ V and ε′ is sufficiently

small,

A(V ) ⊇ε,‖·‖2 {φi(ej ⊗ ek) : (j, k) ∈ Ai},

with
|Ai|
di
→ (1− (2014)!ε)ndi,

φi(f) = (σi(ξ
(1))(f), σi(ξ

(2))(f), . . . , σi(ξ
(t))(f)).
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Thus φi is given in matrix form by

φi =


σi(ξ

(1)) 0 · · · 0

0 σi(ξ
(2)) · · · 0

...
. . . · · · ...

0 0 · · · σi(ξ
(t))

 .

As

φiφ
∗
i =


σi(ξ

(1))σi(ξ
(1))∗ 0 · · · 0

0 σi(ξ
(2))σi(ξ

(2))∗ · · · 0
...

. . . · · · ...

0 0 · · · σi(ξ
(t))σi(ξ

(t))∗


By our choice of σi we have

‖φi‖ ≤ 1,

By Lemma 3.4.2, we find that

dimΣ,`p(V,Γ) ≥ (1− (2014)!ε)n+ dimL(Γ)Ht.

Letting ε→ 0, t→∞ completes the proof.

(b), (c) Same proof as in (a), one instead uses Lemma 3.4.4, Lemma 3.4.1, and the

formula

P(A) =

∫
U(di)

|{j : Uej ∈ A}||di
dU,

for A ⊆ S2di−1, to find an orthonormal system ζ1, . . . , ζq with q ≥ (1− ε)di, so that T
(E)
ζj ,ζp,k

∈

HomΓ(· · · ) for most k and all j, p.

Corollary 3.4.7. Let 1 ≤ p ≤ 2, V a finite-dimensional normed vector space, and Γ a

countable discrete group.

(a) If Γ is sofic and Σ is a sofic approximation of Γ, then

dimΣ,`p(`
p(Γ, V ),Γ) = dimΣ,`p(`

p(Γ, V ),Γ) = dimV.
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(b) If Γ is Rω-embeddable and Σ is an embedding sequence of Γ, then

dimΣ,`2(`2(Γ, `2(n)),Γ) = dimΣ,`2(`2(Γ, `2(n)),Γ) = n.

dimΣ,Sp,conj(`
p(Γ, V ),Γ) = dimΣ,Sp,conj(`

p(Γ, V ),Γ) = dimV.

Proof. The lower bounds are automatic from the preceding Theorem. The upper bounds are

easy since `p(Γ, V ) can be generated by dimV elements.

Corollary 3.4.8. Let Γ be a Rω-embeddable group 1 ≤ p ≤ 2. If V,W are finite dimensional

vector spaces with dimV < dimW, then there are no Γ-equivariant bounded linear maps

from `p(Γ, V ) to `p(Γ,W ) with dense image. Consequently if 2 ≤ p < ∞, then there are no

Γ-equivariant bounded linear injections from `p(Γ,W ) to `p(Γ, V ).

Proof. For 1 ≤ p ≤ 2 this is immediate from the above corollary and Proposition 3.3.1. The

other result follow by duality.

Theorem 3.4.9. Let Γ be a Rω-embeddable group, and π : Γ→ U(H) a representation, such

that π ≤ λ⊕∞. Then for every embedding sequence Σ,

dimΣ,`2(π) = dimΣ,`2(π) = dimL(Γ)(π).

Proof. Let λ : Γ→ U(`2(Γ)) be given by λ(g)f(x) = f(g−1x). We already know from Theo-

rem 3.4.7 that

dimΣ,`2 λ
⊕n = dimΣ,`2λ

⊕n = n.

Let us first assume that π is cyclic with cyclic vector ξ, then as in Lemma 3.4.5 we may

find a ζ ∈ `2(Γ) so that

〈π(x)ξ, ξ〉 = 〈λ(x)ζ, ζ〉,
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so π ≤ λ. Let π′ be a representation such that λ = π ⊕ π′, then by Theorem 3.4.6 we have

1 = dimΣ,`2 λ ≥ dimΣ,`2 π + dimΣ,`2π
′

≥ dimΣ,`2π + dimΣ,`2π
′

≥ dimL(Γ) π + dimL(Γ) π
′

= 1.

Thus all the above inequalities must be equalities, in particular

dimΣ,`2 π = dimΣ,`2π = dimL(Γ) π.

In the general case, apply Zorn’s Lemma to write π =
⊕∞

n=1 πn with πn cyclic. Then by

Corollary 3.3.10

dimΣ,`2(π) ≥
∞∑
n=1

dimΣ,`2(πn) =
∞∑
n=1

dimL(Γ) πn = dimL(Γ) π,

dimΣ,`2(π) ≤
∞∑
n=1

dimΣ,`2(πn) =
∞∑
n=1

dimL(Γ) πn = dimL(Γ) π.

This completes the proof of the theorem.

3.5 Triviality In The Case of Finite-Dimensional Representations

In this section we prove the following.

Theorem 3.5.1. Let Γ be a infinite sofic group, and Σ a sofic approximation of Γ. Then for

every 1 ≤ p ≤ ∞, and for any uniformly bounded representation of Γ on a finite-dimensional

Banach space X,

dimΣ,`p(X,Γ) = 0.

Here is the outline of the proof. We will begin by studying `p-dimension for amenable

groups, using the standard technique of averaging over Følner sequences. Using this averag-
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ing technique we show that for finite Γ,

dimΣ,`p(X,Γ) =
dimCX

|Γ|
.

This easily implies proves the theorem when Γ has finite subgroups of unbounded size. We

then show that

dimΣ,`p(X,Z) = 0,

if X is finite-dimensional. Since dimension decreases when we restrict to the action of a

subgroup, we may assume that Γ has no elements of infinite order, but that there is a

uniform bound on the size of a finite subgroup of Γ. A compactness argument will show that

Γ has an infinite subgroup which acts on X trivially, so we only have to show that

dimΣ,`p(C,Γ) = 0,

where Γ acts trivially on C. To prove this last statement, we will pass to a sofic equivalence

relation induced by the group, and use that the full group of such an equivalence relation

contains Z/nZ for every integer n.

We first show that in the case of an action of an amenable group, we may assume that the

maps we use to compute dimension are only approximately equivariant after cutting down

by certain subsets. We formalize this as follows.

Definition 3.5.2. Let Γ be a sofic group with a uniformly bounded action on a Banach

space X. Let σi : Γ→ Sdi be a sofic approximation. Fix S = (aj)
∞
j=1 a bounded sequence in

X. Let Ai ⊆ {1, . . . , di}. For F ⊆ Γ finite, m ∈ N, δ > 0, we let HomΓ,`p,(Ai)(S, F,m, δ, σi)

be the set of all linear maps T : XF,m → `p(di) such that ‖T‖ ≤ 1, and 1 ≤ j, k ≤ m, and

s1, . . . , sk ∈ F we have

‖T (s1 · · · skaj)− σi(s1) · · ·σi(sk)T (aj)‖`p(Ai) < δ.

Set

dimΣ,`p(S,Γ, (Ai), ρ) = sup
ε>0

inf
F⊆Γ finite
m∈N
δ>0

lim sup
i→∞

1

di
dε(αS(HomΓ,`p,(Ai)(S, F,m, δ, σi)), ρ`p(di)),

where ρ is any product norm.
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Proposition 3.5.3. Fix a product norm ρ on `∞(N). Let Γ be a countable amenable group,

and Σ = (σi : Γ→ Sdi) a sofic approximation. Let Ai ⊆ {1, . . . , di} be such that

|Ai|
di
→ 1.

Then for any uniformly bounded action of Γ on a separable Banach space X, for every

generating sequence S in X, for every product norm ρ, and 1 ≤ p <∞ we have

dimΣ,`p(X,Γ) = dimΣ,`p(S,Γ, (Ai), ρ)

Proof. Fix S = (xj)
∞
j=1 a dynamically generating sequence for X. As

HomΓ,`p(S, F,m, δ, σi) ⊆ HomΓ,`p,(Ai)(S, F,m, δ, σi)

for m, i ∈ N, δ > 0 and F ⊆ Γ finite, we have

dimΣ,`p(X,Γ) ≤ dimΣ,`p(S,Γ, (Ai), ρ).

For the reverse inequality, first fix some notation. For E,F finite subsets of Γ containing

the identity and m ∈ N define

P
(E)
i : B(XEF,m, `

p(di))→ B(XF,m, `
p(di))

by

P
(E)
i (T ) =

1

|E|
∑
s∈E

σi(s) ◦ T ◦ s−1.

Then ‖P (E)
i ‖ ≤ 1. Note that for s1, . . . , sk ∈ F and T ∈ B(XEF,k, `

p(di)) that

P
(E)
i (T )(s1 · · · skx) =

1

|E|
∑
s∈E

σi(s)T (s−1s1 · · · skx) =

1

|E|
∑

s∈s−1
k ···s

−1
1 E

σi(s1 · · · sks)T (s−1x).

If Bi ⊆ {1, . . . , di} is the set of all 1 ≤ j ≤ di such that

σi(s1 · · · sks)−1(j) = σi(s)
−1σi(s1 · · · sk)−1(j),
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for all s ∈ E, s1, . . . , sk ∈ F, 1 ≤ k ≤ m. Then the above shows that if T ∈ B(XFE,m, `
p(Bi))

then

‖σi(s1 · · · sk) ◦ P (E)
i (T )(xj)− P (E)

i (T )(s1 · · · skxj)‖ ≤ 2
|E∆s−1

k · · · s
−1
1 E|

|E|
‖T‖‖xj‖, (3.4)

for 1 ≤ j ≤ m.

Let ε > 0, and M = supj ‖xj‖ < ∞. Since ρ is a product norm, we may choose N ∈ N,

and κ > 0 so that if f, g ∈ `∞(N, `p(di)) and ‖f‖, ‖g‖ ≤M and

max
1≤j≤N

‖f(j)− g(j)‖p < κ

then

ρ(f − g) < ε.

Let δ > 0 depend upon κ to be determined later. Let m ≥ max(2, N) be an integer, and let

e ∈ F be a symmetric finite subset of Γ. Let E ⊆ Γ be finite, the set E will depend upon

F,m, δ in a manner to be determined later. Let T ∈ HomΓ,`p,(Ai)(S,EF,m, δ, σi) then,

P
(E)
i (χBiT ) =

1

|E|
∑
s∈E

σi(s)χBiT ◦ s−1 =

1

|E|
∑
s∈E

χσi(s)Biσi(s)T ◦ s−1.

Set Ci = Ai ∩Bi ∩
⋂
s∈E σi(s)(Ai ∩Bi), then |Ci|

di
→ 1, and for 1 ≤ j ≤ m

‖P (E)
i (χBiT )(xj)− T (xj)‖`p(Ci) ≤

1

|E|
∑
s∈E

‖σi(s)T (s−1xj)− T (xj)‖`p(Ai) < 2δ. (3.5)

By amenability of Γ, we may choose E so that

max
1≤k≤m,
s1,...,s1∈F

2
|E∆s−1

k · · · s
−1
1 E|

|E|
‖xj‖ < δ.

Then by (3.4), we know P
(E)
i (χBi(T )) ∈ HomΓ,`p(S, F,m, δ, σi). By (3.5),

max
1≤j≤m

‖χCi(P
(E)
i (χBiT )(xj)− T (xj))‖p < δ. (3.6)
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For A ⊆ {1, . . . , n}, we use 1⊗ χA for the operator on `∞(N, `p(n) given by

[(1⊗ χA)f ](j) = χAf(j), f ∈ `∞(N, `p(n)), j ∈ N.

If we now force δ < κ, then by our choice of κ,m,N and (3.6),

αS(HomΓ,`p,(Ai)(S,EF,m, δ, σi)) ⊆2ε,ρ`p(di)
(1⊗ χCi)αS(HomΓ,`p(S, F,m, δ, σi)

+ {f ∈ `∞(N, `p(Aci) : f(j) = 0, if j > N}.

Thus,

d3ε(αS(HomΓ,`p,(Ai)(S,EF,m, δ, σi), ρ`p(di)) ≤ N |Aci |+ dε(αS(HomΓ,`p(S, F,m, δ, σi)).

As
|Aci |
di
→ 0,

dividing by di, taking the limit supremum over i, then the limit supremum over (F,m, δ)

and letting ε→ 0 proves that

dimΣ,`p(S,Γ, (Ai), ρ) ≤ dimΣ,`p(X,Γ).

Corollary 3.5.4. Let Γ be an amenable group with a uniformly bounded action on a separable

Banach space X. Let Σ = (σi : Γ → Sdi), Σ′ = (σ′i : Γ → Sdi) be two sofic approximations.

Then for all 1 ≤ p ≤ ∞,

dimΣ,`p(X,Γ) = dimΣ′,`p(X,Γ).

Proof. An ultrafilter argument using Theorem 1 of [8] shows that we can find τi : Sdi → Sdi

such that

dHamm(τiσi(s)τ
−1
i , σi(s)

′)→ 0.

Replacing σi by τi ◦ σi ◦ τ−1
i , we may assume that

dHamm(σi(s), σ
′
i(s))→ 0
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for all s ∈ Γ. In this case, we can find Ai ⊆ {1, . . . , di} such that

|Ai|
di
→ 1

and for all s1, . . . , sn ∈ Γ, we have

σi(s1 · · · sn)(j) = σi(s1) · · ·σi(sn)(j) = σ′i(s1) · · ·σ′i(sn)(j) = σ′i(s1 · · · sn)(j)

for all j ∈ Ai and all sufficiently large i. Thus if F ⊆ Γ is finite, m ∈ N, δ > 0 then for all

large i,

HomΓ,`p,(Ai)(S, F,m, δ, σi) = HomΓ,`p,(Ai)(S, F,m, δ, σ
′
i).

The corollary now follows from the preceding proposition.

Proposition 3.5.5. Let Γ be a finite group acting on a finite-dimensional vector space X.

For n ∈ N, let

n = qn|Γ|+ rn

where 0 ≤ rn < |Γ| and qn, rn ∈ N. Let An be a set of size rn and define a sofic approximation

Σ = (σn : Γ→ Sym(Γ× ({1, . . . , qn} t An)) by

σn(s)(g, j) = (sg, j) for s ∈ Γ, 1 ≤ j ≤ qn

σn(s)(a) = a for a ∈ An.

Then for any 1 ≤ p ≤ ∞

dimΣ,`p(X,Γ) = dimΣ,`p(X,Γ) =
dimCX

|Γ|
.

Proof. Fix a norm onX. By finite dimensionality we may use the operator norm onB(X, `p(di))

as our pseudonorm, and we replace HomΓ(S,Γ,m, δ, σi) by the space Hom′Γ(Γ,m, δ, σi) of all

operators T : X → `p(di) such that

‖T ◦ s1 · · · sk − σi(s1) · · ·σi(sk) ◦ T‖ < δ
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for all 1 ≤ k ≤ m, s1, . . . , sk ∈ Γ.

For 1 ≤ q ≤ ∞ define an action on `q(Γ× {1, . . . , qn}) by

(gf)(h, j) = f(g−1h, j), h ∈ Γ, 1 ≤ j ≤ qn.

Let Vn ⊆ B(X, `p(n)) be the linear subspace of all linear operators

T : X → `p(Γ× {1, . . . , qn})

which are equivariant with respect to the Γ-action. Note that we have norm one projections

B(X, `p(n))→ B(X, `p(Γ× {1, . . . , qn})

B(X, `p(Γ× {1, . . . , qn})→ Vn,

given by multiplication by χ{1,...,qn} and by

T → 1

|Γ|
∑
s∈Γ

σn(s)−1 ◦ T ◦ s.

Let Pn denote the composition of these two projections. Since we have a norm one projection

form B(X, `p(n))→ Vn, the Riesz Lemma implies that

dε({T ∈ Vn : ‖T‖ ≤ 1}, ‖ · ‖) ≥ dimC Vn. (3.7)

with the norm being the operator norm. Define an action of Γ on X∗ by (gφ)(x) = φ(g−1x).

Let Wn be the set of all Γ-equivariant operators in B(`p(Γ× {1, . . . , qn}, X∗), then T 7→ T t

(here T t is the Banach space adjoint of T,) defines an isomorphism Vn ∼= Wn. For f ∈

`p(Γ), k ∈ `p({1, . . . , qn}) let f ⊗ k be defined by (f ⊗ k)(g, j) = f(g)k(j). We leave it as an

exercise to the reader to verify that the map

Φ: Wn → B(`p({1, . . . , qn), X∗)

given by

Φ(T )(f) = T (χ{e} ⊗ f),
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is an isomorphism.Thus,

dimC(Vn) = dimC(Wn) = qn dimC(X).

For T ∈ Hom′Γ(Γ,m, δ, σi) we have

‖Pn(T )− T‖B(X,`p(n)) < δ.

Thus

dε(Hom′Γ(Γ,m, δ, σi), ‖ · ‖) ≤ (dimCX)qn + rn, (3.8)

and (3.7), (3.8) are enough to imply the proposition.

Corollary 3.5.6. Let Γ be a finite group acting on a finite-dimensional vector space X. For

any finite dimensional representation X of Γ, for any sofic approximation Σ = (σi : Γ→ Sdi)

of Γ and 1 ≤ p ≤ ∞ we have

dimΣ,`p(X,Γ) = dimΣ,`p(X,Γ) =
dimCX

|Γ|
.

Proof. Take

Σ′ = (ρdi : Γ→ Sdi)

where ρn is defined as in the previous proposition, then use the preceding proposition and

Corollary 3.5.4.

Proposition 3.5.7. Let X be a finite-dimensional Banach space with a uniformly bounded

action of Z. Let σn : Z→ Sym(Z/nZ) be given by the quotient map Z→ Z/nZ. Then for all

1 ≤ p ≤ ∞,

dimΣ,`p(X,Z) = 0.

Proof. Since all norms on a finite-dimensional space are equivalent, we may assume that X is

a Hilbert space. Since X is now a Hilbert space, we will call it H instead. Let π : Z→ B(H)
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be the representation given by the action of Z, and let K = π(Z). By finite-dimensionality,

K is a compact group. Let 〈·, ·〉H be the inner product on H. Define a new inner product on

H by

〈ξ, η〉 =

∫
K

〈Tξ, Tη〉H dT,

where the integration is with respect to the Haar measure on K. We leave it as an exercise to

verify that this is indeed an inner product inducing a norm equivalent to the original norm on

H, and that K acts unitarily with respect to 〈·, ·〉. Thus we may assume that π(Z) ⊆ U(H),

set U = π(1). By passing to direct sums, we may assume that π is irreducible, so if we fix

any ξ ∈ H with ‖ξ‖ = 1, then ξ is generating. We will take S = (ξ, 0, 0, . . . ), and as a

pseudonorm we take

ρ(T ) = ‖T (ξ)‖.

Fix n ∈ N, we then view αS as a map into `p(n).

Fix 1 > ε > 0, and let ε > δ > 0. Choose k such that δpk < ε, (if p = ∞ then let k be

any integer.) Since π(Z) is compact, we can find an integer m such that

‖Umj − 1‖ < δ,

for 1 ≤ j ≤ k. We may assume that m is large enough so that {U jξ : −m ≤ j ≤ −1} spans

H. Let F = {j ∈ Z : |j| ≤ m(2k + 1)}. Let qn ∈ N ∪ {0}, 0 ≤ rn < k be the integers defined

by

n = qnmk + rn.

Define Qj, j = 0, . . . , k − 1 by

Qj =
m⋃
l=1

{jm+ l + qmk : 0 ≤ q ≤ qn − 1}.

Pictorially, if we think of {1, . . . , qnmk} as a rectangle formed out of mk horizontal dots and

qn vertical dots, then Qj is the rectangle from the jm+ 1st horizontal dot to the (j + 1)mth

horizontal dot. Let fj : Qj → C be given by

fj(l) = T (ξ)(σn(mj)−1(l)).
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Note that for 1 ≤ p <∞,∥∥∥∥∥T (ξ)−
k−1∑
j=0

fj

∥∥∥∥∥
p

`p({1,...,qnmk})

=
k−1∑
j=0

‖T (ξ)− σn(mj)T (ξ)‖p`p(Qj)

< δpk +
k−1∑
j=0

‖T ((U−mj − 1)ξ)‖pp

< 2δpk

< 2ε

similarly for p =∞, ∥∥∥∥∥T (ξ)−
k−1∑
j=0

fj

∥∥∥∥∥
`∞({1,...,qnmk})

< 2ε.

Finally note that
∑k−1

j=0 fj is constant on

{i, i+m, . . . , i+m(k − 1)}

for each i ∈ Q0. Thus

αS(HomΓ(S, F,m, δ, σn)) ⊆ε,‖·‖p`p({1, . . . , n} \ {1, . . . , qnmk})+

{f ∈ `p(qnmk) : f(i+mj) = f(i), i ∈ Q0, 0 ≤ j ≤ k − 1}.

So
1

n
dε(αS(HomΓ(S, F,m, δ, σn), ‖ · ‖p) ≤

qnm

n
+
rn
n
.

Letting n→∞, taking the limit supremum over (F,m, δ) and then letting ε→ 0 we conclude

that

dε(αS(HomΓ(S, F,m, δ, σn), ‖ · ‖p) ≤
1

k
.

Since k becomes arbitrarily large when δ becomes small (or can be made arbitrarily large

when p =∞), this completes the proof.

We will now proceed to prove that if Γ is an infinite sofic group, and Σ is a sofic approx-

imation of Γ, then for any finite-dimensional representation V of Γ we have

dimΣ,`p(V,Γ) = 0.
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The method is based on passing to an action of the group on a measure space, and then

using that the corresponding equivalence relations contains an action of Z.

We shall first work with the trivial action of Γ on C. For this, fix a sofic group Γ and

a sofic approximation Σ . For S = (1, 0, 0, . . . ), and the trivial action of Γ on C, the map

T → T ({1}) identifies HomΓ,p(S, F,m, δ, σi) with all vectors ξ ∈ `p(di) such that

‖σi(g)ξ − ξ‖p < δ

for all g ∈ F.

Lemma 3.5.8. Let Γ be a countable discrete sofic group with a sofic approximation Σ. Let

Γ y (X,µ) be a free, ergodic, measure-preserving action on a standard probability space

(X,µ) such that there is a sofic approximation (still denoted Σ) of RΓy(X,µ) extending the

sofic approximation of Γ. Let Σ = (σi : [[R]]→ [[Rdi ]]). Fix φ ∈ [[R]], and η > 0. Then there

are F ⊆ Γ finite, m ∈ N, δ > 0 and Ci ⊆ {1, . . . , di} with |Ci| ≥ (1 − η)di so that for the

trivial representation of Γ on C, and T ∈ HomΣ,p((1, 0, 0, . . . ), F,m, δ, σi) with ξ = T (1) we

have

‖σi(φ)ξ − σi(Idran(φ))ξ‖`p(Ci) < η,

for all large i.

Proof. Let {Ag : g ∈ Γ} be a partition of ran(φ) so that

φ =
∑
g∈Γ

IdAg αg,

with the sum converging d[[R]]. Choose F ⊆ Γ finite so that

d[[R]]

(
φ,
∑
g∈F

IdAg αg

)
< η.

For ξ ∈ `p(di), φ ∈ [[Rdi ]], we use

(φξ)(j) = χran(φ)(j)ξ(φ
−1(j)),
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for A ⊆ {1, . . . , di} we also use χA for the operator of multiplication by A. By soficity, for

all large i, we may find a Ci ⊆ {1, . . . , di} with |Ci| ≥ (1− 2η)di so that

χCiσi(φ) =
∑
g∈F

χCiσi(IdAg)σi(g),

χCiσi(Idran(φ)) =
∑
g∈F

χCiσi(IdAg),

as operators on `p(di). Let m ∈ N, and let δ > 0 be sufficiently small in a manner to be

determined later. Thus for T, ξ as in the statement of the lemma,

σi(φ)ξ =
∑
g∈F

σi(IdAg)σi(g)ξ,

σi(Idran(φ))ξ =
∑
g∈F

σi(IdAg)ξ,

so

‖σi(φ)ξ − σi(Idran(φ))ξ‖`p(Ci) ≤ |F |δ.

So if δ < η
|F | , our claim is proved.

Lemma 3.5.9. Let Γ be a countably infinite discrete sofic group with sofic approximation

Σ. Then for the trivial representation of Γ on C, we have

dimΣ,`p(C,Γ) = 0.

Proof. Let R be the equivalence relation induced by the Bernoulli action of Γ on (X,µ) =

({0, 1}, u)Γ, u being the uniform measure. Extend Σ to a sofic approximation of [[R]], (this

is essentially possible by [2] Theorem 8.1, see also [7] Proposition 7.1,[6] Theorem 5.5, [20]

Theorem 2.1). Let S = (1, 0, 0, . . . ). Since Γ is an infinite group, by ([17] Corollary 7.6) we

know that for all n ∈ N, there is a subequivalence relation Rn, generated by a free, measure-

preserving action of Z/nZ on (X,µ). Let α ∈ [Rn] generate the action of Z/nZ on (X,µ).

Fix η > 0. By the preceding lemma, we may choose a finite subset F ⊆ Γ, δ > 0 and subsets

Ci ⊆ {1, . . . , di} with |Ci| ≥ (1− di)η so that if T ∈ HomΓ(S, F, 1, δ, σi) and ξ = T (1), then

‖σi(α)jξ − ξ‖`p(Ci) < η, for 1 ≤ j ≤ n− 1
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for all large i. We may assume that there are Ai ⊆ {1, . . . , di} with |Ai|
di
→ 1

n
, so that

{σi(α)j(Ai) : 0 ≤ j ≤ n− 1} are a disjoint family.

σi(α)
∣∣
{1,...,di}\

⋃n−1
j=0 σi(α)j(Ai)

= Id .

Let

η =
n∑
j=1

σi(α)jχAiξ =
n∑
j=1

χσi(α)j(Ai)σi(α)jξ.

Set Di = Ci ∩
⋃n−1
j=0 σi(α)j(Ai), then

χDiη − χDiξ =
n∑
i=1

χDi∩σi(α)j(Ai)(σi(α)jξ − ξ),

so

‖χDiη − χDiξ‖p ≤ ηn.

We may view αS as a map into `p(di), then

αS(HomΓ(S, F,m, δ, σi)) ⊆ηn,‖·‖pχDi

{
n∑
j=1

σi(α)jf : f ∈ `p(Ai)

}

+ `p({1, . . . , di} \Di).

As
|Di|
di
→ 1,

|Ai|
di
→ 1

n

we find that

lim sup
(F,m,δ)

lim sup
i→∞

1

di
dηn(αS(HomΓ(S, F,m, δ, σi), ‖ · ‖p) ≤

1

n
.

Letting η → 0, and then n→∞ completes the proof.

Theorem 3.5.10. Let Γ be a countably infinite sofic group with sofic approximation Σ. Then,

for any representation of Γ on a finite-dimensional vector space V, and for all 1 ≤ p <∞,

dimΣ,`p(V,Γ) = 0.
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Proof. As dimension decreases under restricting the action to a subgroup, by Corollary 3.5.6

and Proposition 3.5.7 we may assume that

{|Λ| : Λ is a finite subgroup of Γ},

is bounded, and that every element of Γ has finite order. As in Proposition 3.5.7 we may

assume that V is a Hilbert space and Γ acts by unitaries. Let M be greater than |Λ| for any

finite subgroup of Γ. Choose ε > 0 so that if U is a unitary on a Hilbert space and

‖U − 1‖ < ε,

then UM 6= 1 unless U = 1. Let π : Γ→ U(X) be the homomorphism induced by the action

of Γ. By finite-dimensionality, π(Γ) is compact, so we may find an infinite sequence (gn)∞n=1

of distinct elements of Γ with

‖π(gn)− 1‖ < ε.

If

Λ = 〈gn : n ∈ N〉,

our assumptions then imply that Λ is an infinite subgroup of Γ which acts trivially. Thus

by the preceding lemma and subadditivity under exact sequences,

dimΣ,`p(V,Γ) ≤ dimΣ,`p(V,Λ) = 0.

3.6 A Complete Calculation in the Case of
⊕n

j=1 L
p(L(Γ))qj).

In this section, we show that if Γ is Rω-embeddable, Σ is an embedding sequence and

q1, . . . , qn ∈ Proj(L(Γ)), then

dimΣ,Sp,mult

(
n⊕
j=1

Lp(L(Γ), τ)qj,Γ

)
= dimΣ,Sp,mult

(
n⊕
j=1

Lp(L(Γ), τ)qj,Γ

)
=
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n∑
j=1

τ(qj)

where τ is the group trace. See Appendix A for the appropriate background on noncommu-

tative Lp-spaces.

Lemma 3.6.1. (a) Let n ∈ N, suppose that A,B ∈Mn(C) are such that |A| ≤ |B|, then for

all β > 0,

tr(|A|β) ≤ tr(|B|β).

(b) Suppose that A,B ∈Mn(C) and Q is a orthogonal projection in Mn(C). Fix 1 ≤ p <

∞, suppose that δ, η > 0 are such that

‖(A− 1)B‖p < δ, ‖A−Q‖p < η.

Then

‖B − χ(0,
√
δ)(|A− 1|)B‖p <

√
δ,

and

tr(χ(0,
√
δ)(|A− 1|)) ≤ tr(Q) +

(
η

1−
√
δ

)p
.

Proof. We first make the following preliminary observation: if P,Q are orthogonal projec-

tions in Mn(C) with

PCn ∩QCn = {0},

then

tr(P ) ≤ 1− tr(Q).

This follows directly from the fact that 1−Q is injective on PCn.

(a) First note that

tr(Tα) = α

∫ ∞
0

tα−1 tr(χ(t,∞)(T )) dt

if T ≥ 0. If 0 ≤ T ≤ S, and

ξ ∈ χ(t,∞)(T )(Cn) ∩ χ[0,t](S)(Cn)
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and ξ 6= 0, then

t‖ξ‖2 < 〈Tξ, ξ〉 ≤ 〈Sξ, ξ〉 ≤ t‖ξ‖2,

which is a contradiction. Hence

χ(t,∞)(T )(Cn) ∩ χ[0,t](S)(Cn) = {0},

so the above integral formula and our preliminary observation prove (a).

(b) Note that

|χ[
√
δ,∞)(|A− 1|)B|2 = B∗χ[

√
δ,∞)(|A− 1|)B

≤ 1

δ
B∗|A− 1|2B =

∣∣∣∣ 1√
δ

(A− 1)B

∣∣∣∣2 ,
thus by (a)

‖B − χ(0,
√
δ)(|A− 1|)B‖p = ‖χ[

√
δ,∞)(|A− 1|)B‖p <

√
δ.

Further if

ξ ∈ χ(0,
√
δ)(|A− 1|)(Cn) ∩ (1−Q)(Cn) ∩ χ[0,1−

√
δ](|A−Q|)(C

n),

is nonzero, then

(1−
√
δ)2‖ξ‖2 ≥ 〈|A−Q|2ξ, ξ〉 = ‖Aξ‖2 > (1−

√
δ)2‖ξ‖2,

which is a contradiction. Thus

tr(χ(0,
√
δ)(|A− 1|)) ≤ tr(Q) + tr(χ(1−

√
δ,∞)(|A−Q|)).

Since

χ(1−
√
δ,∞)(|A−Q|) ≤

|A−Q|p

(1−
√
δ)p

,

we have that

tr(χ(1−
√
δ,∞)(|A−Q|)) <

ηp

(1−
√
δ)p

.
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Proposition 3.6.2. Let Γ be an Rω-embeddable group and Σ an embedding sequence. Let

M = L(Γ) and τ the canonical group trace on M. Then, for all 1 ≤ p < ∞ and for every

q1, . . . , qn ∈ Proj(M) we have

dimΣ,Sp,mult

(
n⊕
j=1

Lp(M, τ)qj,Γ

)
≤

n∑
j=1

τ(qj).

Proof. By subadditivity of dimension, it suffices to handle the case of Lp(M, τ)q. Let 0 <

ε, κ < 1/2. Let A be the ∗-algebra in L(Γ) generated by q and Γ, by Lemma 2.2.6, we may

extend σi to (potentially nonlinear, nonmultiplicative) maps σi : L(Γ)→Mdi(C), so that

sup
i
‖σi(x)‖∞ <∞, for all x ∈ L(Γ),

tr(σi(x))→ τ(x), for all x ∈ L(Γ),

‖P (σi(x1), . . . , σi(xn))− σi(P (x1, . . . , xn))‖2 → 0,

for all x1, . . . , xn ∈ L(Γ), and all ∗-polynomials in n-noncommuting variables.

Let p ∈ L(Γ) be any orthogonal projection. Then

‖ρi(p)− ρi(p)∗ρi(p)‖2 → 0

‖ρi(p)∗ρi(p)− (ρi(p)
∗ρi(p))

2‖2 → 0.

By functional calculus, for any ε < 1/2,

‖χ[1−ε,1+ε](ρi(p)
∗ρi(p))− ρi(p)∗ρi(p)‖2 ≤ ‖χ[0,∞)\[1−ε,1+ε](ρi(p)

∗ρi(p))ρi(p)
∗ρi(p)‖2

+ ‖χ[1−ε,1+ε](ρi(p)
∗ρi(p))(1− ρi(p)∗ρi(p))‖2

≤ 1

(1− ε)
‖ρi(p)∗ρi(p)− (ρi(p)

∗ρi(p))
2‖2

+
1

ε
‖ρi(p)∗ρi(p)− (ρi(p)

∗ρi(p))
2‖2.

Thus for all ε < 1/2,

‖ρi(p)− χ[1−ε,1+ε](ρi(p)
∗ρi(p))‖2 → 0.

Applying the above estimates with p = q, we see that we may replacing ρi(q) with χ[3/4,5/4](ρi(q)
∗ρi(q)).

Thus, we may assume that ρi(q) is an orthogonal projection for all i.
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Choose f ∈ cc(Γ) so that ∥∥∥∥∥q −∑
s∈Γ

f(s)us

∥∥∥∥∥
p

< κ.

If T : Lp(M, τ)q → Lp(Mdi(C), tr), define

T̃ (x) = T (xq).

Let F be the support of f, then if m ∈ N, κ, δ > 0 are sufficiently small we have∥∥∥∥∥
(∑
s∈Γ

f(s)σi(s)− 1

)
T̃ (q)

∥∥∥∥∥
p

< ε2,

for all T ∈ HomΓ(S, F,m, δ, σi). Thus the proceeding lemma implies that if

ei = χ(ε,∞)

(∣∣∣∣∣∑
s∈Γ

f(s)σi(s)− 1

∣∣∣∣∣
)
,

then for all large i, we have

‖T (q)− eiT (q)‖p < ε,

tr(ei) ≤ tr(ρi(q)) + 2pκp

We identify αS as a map into Lp(Mdi(C), tr), then

αS(HomΓ(S, F,m, δ, σi)) ⊆ε {eiA : A ∈ Lp(Mdi(C), tr)}.

So
1

di
dε(αS(HomΓ(S, F,m, δ, σi)) ≤

1

di
Tr(ei) = tr(ei) ≤ tr(ρi(q)) + 2pκp

and

tr(ρi(q))→ τ(q)

as i→∞. Taking the limit supremum over (F,m, δ) and then letting ε→ 0 proves that

dimΣ,Sp,mult(L
p(M, τ),Γ) ≤ τ(q) + 2pκp.

Since κ > 0 is arbitrary, this proves the claim.
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Lemma 3.6.3. Fix 1 ≤ p ≤ ∞, and a sequence of positive integers d(n)→∞, and let µn be

the Lebesgue measure on Lp(Md(n)(C), 1
d(n)

Tr) normalized so that µn(Ball(Lp(Md(n)(C), 1
d(n)

Tr))) =

1. Further, let qn ∈ Proj(Md(n)(C)) be such that 1
d(n)

Tr(qn) converges to a positive real num-

ber. Then, there is a function

κ : (0, 1)× (0,∞)→ [0, 1]

such that

lim
ε→0

κ(α, ε) = 1, for all α > 0,

which satisfies the following property. For all An ⊆ Ball(Vn), and α > 0 with

lim sup
n→∞

µn(Ball(Vn))1/2d(n)2 ≥ α.

We have for all ε > 0,

lim sup
n→∞

1

d(n) Tr(qn)
dε(Anqn, ‖ · ‖p) ≥ κ(α, ε).

Proof. Fix 1 > ε > 0, and suppose that

lim sup
n→∞

1

d(n) tr(qn)
dε(Anqn, ‖ · ‖p) < κ.

Then for all large n,

dε(Anqn, ‖ · ‖Vn) < d(n)κ tr(qn).

Let Wn be a subspace of dimension at most d(n)κ tr(qn) which ε-contains Anqn, thus

Anqn ⊆ (1 + ε) Ball(Wn) + εBall
(
Lp(Md(n)(C), tr)qn

)
.

Let S ⊆ (1 + ε) Ball(Wn) be a maximal family of ε-separated vectors, i.e. for all x, y ∈ S

with x 6= y we have ‖x− y‖ ≥ ε. Then the ε/3 balls centered at points in S are disjoint and

so by a volume computation

|S| ≤
(

3 + 3ε

ε

)2 dim(Wn)

.
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By maximality, S is ε-dense in (1 + ε) Ball(Wn). Thus

Anqn ⊆
⋃
x∈S

x+ 2εBall
(
Lp(Md(n)(C), tr)qn

)
,

so

vol(Anqn) ≤ 22d(n) Tr(qn)ε2d(n) Tr(qn)−2 dim(Wn) Tr(qn) (3 + 3ε)2 dim(Wn) ap(qn),

where for q ∈ Proj(Md(n)(C)) we use

ap(q) = vol(Ball
(
Lp(Md(n)(C), tr)q

)
).

Since An ⊆ Anqn × Ball
(
Lp(Md(n)(C), tr

)
, we have

α ≤ lim sup
n→∞

6 · 2
1

d(n)
Tr(qn)ε(1−κ)

Tr(qn)
d(n)

(
ap(qn)ap(1− qn)

ap(Idd(n))

)1/2d(n)2

Hence it suffices to show that

lim sup
n→∞

(
ap(qn)ap(1− qn)

ap(Idd(n))

)1/2d(n)2

<∞. (3.9)

It is well known that

a2(q) =
πTr(q)

Tr(q)!
d(n)−d(n).

Since 1
d(n)

Tr(qn) converges to a positive real number, we may apply Stirling’s formula and

the above equation to see that there is a M > 1 so that

M−1 ≤
(
a2(qn)a2(1− qn)

a2(Idd(n))

)1/2d(n)2

< M.

We know by [25] that there is a constant C > 0 so that(
ap(qn)ap(1− qn)

ap(Idd(n))

)1/2d(n)2

≤ C

(
ap(qn)ap(1− qn)

a2(Idd(n))

)1/2d(n)2

≤ CM2

(
ap(qn)

a2(qn)

)1/2d(n)2 (
ap(1− qn)

a2(1− qn)

)1/2d(n)2

.

Let p′ be such that 1
p

+ 1
p′

= 1. By the Santalo inequality (see [21] Corollary 7.2), and the

fact that 1
d(n)

Tr(qn) converges to a positive real number, we may find a A > 0 so that(
ap(qn)

a2(qn)

)1/2d(n)2 (
ap(1− qn)

a2(1− qn)

)1/2d(n)2

≤ A

(
a2(qn)

ap′(qn)

)1/2d(n)2 (
a2(1− qn)

ap′(1− qn)

)1/2d(n)2
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≤ AM2

(
a2(Id)

ap′(qn)ap′(1− qn)

)1/2d(n)2

.

Again by [25], we can find some D > 0 so that(
a2(Id)

ap′(qn)ap′(1− qn)

)1/2d(n)2

≤ D

(
ap′(Id)

ap′(qn)ap′(1− qn)

)1/2d(n)2

.

As

Ball(Lp
′
(Mdi(C), tr)) ⊆ Ball(Lp

′
(Mdi(C), tr)qn)× Ball(Lp

′
(Mdi(C), tr)(1− qn)),

we find that (
ap′(Id)

ap′(qn)ap′(1− qn)

)1/2d(n)2

≤ 1.

Putting all these inequalities together, we find that(
ap(qn)ap(1− qn)

ap(Idd(n))

)1/2d(n)2

≤ ACM4D,

and this proves (3.9).

To complete the calculation, it suffices to prove the following Theorem.

Theorem 3.6.4. Let Γ be an Rω-embeddable group and Σ an embedding sequence. Let

M = L(Γ) and τ the canonical group trace on M. Then, for all 1 ≤ p < ∞ and for every

q1, . . . , qn ∈ Proj(M) we have

dimΣ,Sp,mult

(
n⊕
j=1

 Lp(M, τ)qj,Γ

)
= dimΣ,Sp,mult

(
n⊕
j=1

 Lp(M, τ)qj,Γ

)
=

n∑
j=1

τ(qj).

Proof. We use the generating sequence S = (q1, . . . , qn, 0, . . . ) to do the calculation. By

Proposition 3.6.2, we have the upper bound. So it suffices to prove the lower bound. By

Lemma 2.2.6, we can find maps (not assumed to be linear) ρi : L(Γ)→Mdi(C) so that

ρi(λ(g)) = σi(g), for g ∈ Γ

sup
i
‖ρi(x)‖∞ <∞, for all x ∈ L(Γ),
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tr(ρi(x))→ τ(x), for all x ∈ L(Γ)

‖P (ρi(x1), . . . , ρi(xn)− ρi(P (x1, . . . , xn))‖2 → 0,

for all x1, . . . , xn ∈ L(Γ), and all ∗-polynomials P in n-noncommuting variables. As in

Proposition 3.6.2, we may assume that ρi(qj) is an orthogonal projection for all i, j.

Fix F ⊆ Γ finite m ≥ n in N, δ > 0. Let E ⊆ Γ be a finite set which is sufficiently large

in a manner to be determined later. Let

V
(j)
E = Span{ugq : g ∈ E}.

For A ∈Mdi(C) E ⊆ Γ finite define

T
(j)
A

(∑
g∈E

cgugq

)
=
∑
g∈E

cgσi(g)ρi(qj)A.

Note that ∥∥∥∥∥T (j)
A

(∑
g∈E

cgugq

)∥∥∥∥∥
p

≤ ‖A‖∞

∥∥∥∥∥∑
g∈E

cgσi(g)ρi(qj)

∥∥∥∥∥
p

.

Since σi is an embedding sequence, we know that∥∥∥∥∥∑
g∈E

cgσi(g)ρi(qj)

∥∥∥∥∥
p

→

∥∥∥∥∥∑
g∈E

cguqqj

∥∥∥∥∥
p

,

pointwise. As V
(j)
E is finite-dimensional,∥∥∥∥∥∑

g∈E

cgσi(g)ρi(qj)

∥∥∥∥∥
p

→

∥∥∥∥∥∑
g∈E

cguqqj

∥∥∥∥∥
p

,

uniformly on the ‖ · ‖p unit ball of V
(j)
E .

If E is sufficiently large, then for all g1, . . . , gk ∈ F,

‖T (j)
A (g1 · · · gkqj)− σ1(g1) · · ·σi(gk)T (j)

A (qj)‖p = ‖σi(g1 · · · gk)ρi(qj)A− σ1(g1) · · · σi(gk)ρi(qj)A‖p

≤ ‖A‖∞‖σi(g1 · · · gk)− σi(g1) · · ·σi(gk)‖p

→ 0.
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Thus if E is sufficiently large, depending upon F,m, δ then for all A1, . . . , An ∈Mdi(C) with

‖Aj‖∞ ≤ 1,

T
(1)
A1
⊕ · · · ⊕ T (n)

An
∈ HomΓ(S, F,mδ, σi)n.

So

αS(HomΓ(S, F,mδ, σi)n) ⊇
n∏
j=1

Ball(Mdi(C), ‖ · ‖∞)ρi(qj).

By [25] (
vol(Ball(Mdi(C), ‖ · ‖∞)

vol(Ball(Mdi(C), ‖ · ‖Lp(1/di Tr)

)1/2d2
i

,

so the theorem now follows from Lemma 3.6.3.

We can prove an analogue for the action of Γ on its reduced C∗-algebra but first we need

a Lemma.

Lemma 3.6.5. Let Γ be a countable discrete group, and X ⊆ Lp(L(Γ), τΓ) a closed Γ-

invariant subspace (for the action of left multiplication by elements of Γ). Then there is an

orthogonal projection q ∈ L(Γ) so that X = Lp(L(Γ), τΓ).

Proof. We always have the inequality

‖xy‖p ≤ ‖x‖∞‖y‖p.

Note that if xn ∈ L(Γ), supn ‖xn‖∞ < ∞, and xn → x in the strong operator topology

on `2(Γ), then xny → xy. Indeed, this follows by the above inequality and the density of

`2(Γ) in Lp(L(Γ), τΓ). Thus a closed Γ-invariant subspace is the same as an L(Γ)-invariant

subspace.

It suffices to prove the following two claims.

Claim 1. If x ∈ Lp(L(Γ), τΓ), then L(Γ)x
‖·‖p

= Lp(L(Γ), τΓ)χ(0,∞)(|x|).

Claim 2. If e, f are orthogonal projections in L(Γ), then

Lp(L(Γ), τΓ)e+ Lp(L(Γ), τΓ)f = Lp(L(Γ), τΓ)(e ∨ f).
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Indeed, if we grant the two claims, then by separability, we can find increasing subspaces

Xn of Γ of the form Lp(L(Γ), τΓ)qn for some orthogonal projection qn. Setting q = sup qn we

see that

X = Lp(L(Γ), τΓ)q.

For claim 2 it suffices to note that by functional calculus

1− (e ∨ f) = 1− (1− e) ∧ (1− f) = 1− lim
n→∞

((1− e)(1− f)(1− e))n,

the limit in ‖ · ‖p. As

1− [(1− e)(1− f)(1− e)]n ∈ Lp(L(Γ), τΓ)e+ Lp(L(Γ), τΓ)f

for all n, this implies that

Lp(L(Γ), τΓ)(e ∨ f) ⊆ Lp(L(Γ), τΓ)e+ Lp(L(Γ), τΓ)f.

The reverse inclusion being trivial, this proves claim 2.

For claim 1, let x = v|x| be the polar decomposition. Since |x| = v∗x,

L(Γ)x
‖·‖p

= L(Γ)|x|
‖·‖p

.

Let

yn = χ(ε,∞)(|x|)|x|−1,

then by functional calculus

‖yn|x| − χ(0,∞)(|x|)‖p → 0.

Thus

L(Γ)|x|
‖·‖p ⊇ Lp(Γ, τΓ)χ(0,∞)(|x|).

the reverse inclusion being trivial, we are done.

If Γ is a countable discrete group we use C∗λ(Γ) for C[Γ]
‖·‖∞

, with the closure taken in

the left regular representation.
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Corollary 3.6.6. Let Γ be an Rω-embeddable group and 1 ≤ p < ∞. Let I ⊆ C∗λ(Γ) be a

norm closed left-ideal. Let I
wk∗

= L(Γ)q (with the closure taken in L(Γ)). Then

dimΣ,Sp,mult(I,Γ) ≥ τ(q).

Proof. It suffices to show that the inclusion I ⊆ Lp(L(Γ), τ)q has dense image. By the

previous Lemma, Let q′ ∈ Proj(L(Γ)) be such that

I
‖·‖p

= Lp(L(Γ), τ)q′.

By the argument in the previous Lemma,

q′ = sup
x∈I

χ(0,∞)(|x|).

So it suffices to prove the following two claims.

Claim 1. If x ∈ C∗λ(Γ), then χ(0,∞)(|x|) ∈ I
wk∗

.

Claim 2. If e, f ∈ Proj(I
wk∗

), then e ∨ f ∈ Proj(I
wk∗

).

For the proof of claim I, let x = v|x| be the polar decomposition. By the Kaplansky

Density Theorem, we can find vn ∈ C∗λ(Γ) so that ‖vn‖∞ ≤ 1 and ‖vn − v‖2 → 0. But then

‖v∗nx− |x|‖2 → 0, so |x| ∈ Iwk∗

. Since

χ(ε,∞)(|x|) = |x|−1χ(ε,∞)(|x|)|x|,

we find that χ(0,∞)(|x|) ∈ I
wk∗

.

For the proof of claim 2, we use the formula (proved by functional calculus):

e ∨ f = 1− lim
n→∞

([(1− e)(1− f)(1− e)])n

where the limit is in ‖ · ‖2. Since e, f ∈ L(Γ)q, a little calculation shows that

1− ([(1− e)(1− f)(1− e)])n ∈ L(Γ)q.

This proves the corollary.
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We can also handle the case p =∞ if we assume a little more.

Definition 3.6.7. A C∗-algebra A is said to be a matricial field algebra if there is a

injective ∗-homomorphism

σ : A→
{(An)∞n=1 : An ∈Md(n)(C), supn ‖An‖∞ <∞}
{(An)∞n=1 : An ∈Md(n)(C), supn ‖An‖∞ → 0}

,

for some d(n) ∈ N and d(n) → ∞. A sequence σn : A → Mdn(C), of potentially nonmulti-

plicative, nonlinear maps, such that σ(a) is the image of (σn(a)) is called a norm microstates

sequence.

Theorem 3.6.8. Let Γ be a countable discrete group. Assume that there are norm mi-

crostates σi : C
∗
λ(Γ)→Mdi(C) such that

tr(σi(x))→ τ(x)

for all x ∈ C[Γ]. Let I ⊆ C∗λ(Γ) be a norm-closed left ideal, and let Iwk∗ = L(Γ)q, with

q ∈ Proj(L(Γ)). Then,

dimΣ,S∞,mult(I,Γ) ≥ τ(q).

Proof. Let

A =
{(xi)∞i=1 ∈

∏∞
i=1Mdi(C) : supi ‖σi(x)‖∞ <∞}

{(xi)∞i=1 ∈
∏∞

i=1Mdi(C) : supi ‖σi(x)‖∞ → 0}
,

then our hypothesis implies that there is an isometric ∗-homomorphism

σ : C∗λ(Γ)→ A,

such that

σ(ug) = π(σ1(g), σ2(g), . . . )

where

π :

{
(xi)

∞
i=1 ∈

∞∏
i=1

Mdi(C) : sup
i
‖σi(x)‖∞ <∞

}
→ A,

is the quotient map.
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As before, we may extend φi to an embedding sequence

ψi : L(Γ)→Mdi(C).

Now let ε > 0, and choose a finite subset E ⊆ Γ, l ∈ N, and cgj ∈ C, for (g, j) ∈

E × {1, . . . , l} so that ∥∥∥∥∥∥∥∥q −
∑
g∈E
,1≤j≤l

cgjugxj

∥∥∥∥∥∥∥∥
2

< ε.

Fix E ⊆ F ⊆ Γ finite, l ≤ m ∈ N, δ > 0. Since all injective ∗-homomorphisms defined on

C∗-algebras are isometric, it is easy to see that if we define ρi =
φi

∣∣
IF,m∥∥∥∥φi∣∣IF,m∥∥∥∥ , then

∥∥∥ρi − φi∣∣IF,m∥∥∥→ 0.

For B ∈Mdi(C) define

TB : IF,m →Mdi(C),

by

TB(x) = ρi(x)B.

If ‖B‖∞ ≤ 1, then

‖TB(x)‖ ≤ ‖B‖∞.

Further if ‖B‖∞ ≤ 1, and 1 ≤ j, k ≤ m, and g1, . . . , gk ∈ F, then

‖TB(g1 · · · gkxj)− σi(g1) · · ·σi(gk)TB(xj)‖ ≤ ‖φi(g1 · · · gkxj)− σi(g1) · · ·σi(gk)φi(xj)‖ → 0

using that

π((φi(g1 · · · gkxj))∞i=1) = π((σi(g1) · · ·σi(gk)φi(xj))∞i=1)).

Now suppose V ⊆ `∞(N,Mdi(C)) ε-contains {((ρi(xj)B)∞j=1 : ‖B‖∞ ≤ 1}. Define a map

Φ: `∞(N,Mdi(C))→ L2(Mdi(C), tr) by

Φ(f) =
∑

g∈E,1≤j≤l

cgjσi(g)f(j),
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then our hypotheses imply that for all large i,

Φ(V ) ⊇3ε,‖·‖2 {qB : B ∈ Ball(Mdi(C), ‖ · ‖∞)}.

Our methods to prove Theorem 3.6.4 can be used to complete the proof.

3.7 Definition of `p-Dimension Using Vectors

In this section, we give a definition of the extended von Neumann dimension using vectors

instead of almost equivariant operators. Thus may be conceptually simpler, as we do not

have to deal with the technicalities involving changing domains inherent to the definition of

HomΓ(· · · ). The definition is much simpler and requires fewer preliminaries as well. However,

for many theoretical purposes it will still be easier to use the notion of almost equivariant

operators. We will give this alternate definition after the following lemma.

Lemma 3.7.1. Let V be a finite-dimensional Banach space, let B be a finite set, and

(vβ)β∈B ∈ V B such that V = Span{vβ : β ∈ B}. Then for any η > 0, there is a δ > 0

so that if Y is a Banach space and (ξβ)β∈B ∈ Y B have the property that for all c ∈ `1(B)

with ‖c‖1 ≤ 1, ∥∥∥∥∥∑
β∈B

c(β)ξβ

∥∥∥∥∥ ≤ δ +

∥∥∥∥∥∑
β∈B

c(β)vβ

∥∥∥∥∥ ,
then there is a T : V → Y with ‖T‖ ≤ 1, such that

‖T (vβ)− ξβ‖ < η,

for all j ∈ B.

Proof. Let A ⊆ B be such that {vβ : β ∈ A} is a basis for X. For Y, (ξβ)β∈B, as in the

statement of the Lemma let T̃ : V → Y be defined by

T̃ (vβ) = ξβ
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for β ∈ A. By finite-dimensionality, there is a CV > 0 so that

∑
β∈A

|cβ| ≤ CV

∥∥∥∥∥∑
j∈A

cβvβ

∥∥∥∥∥ .
Thus our hypothesis implies that

‖T̃‖ ≤ CV δ + 1.

Set T = 1
1+C(V )δ

T̃ , then ‖T‖ ≤ 1. For each α ∈ B \ A choose a
(α)
β , β ∈ A so that

vα =
∑
β∈A

a
(α)
β vβ.

For α ∈ B \ A, let

Aα =
∑
β∈A

|a(α)
β |.

Define c(α) ∈ `1(B) by

c(α)(β) =
a

(α)
β

1 + Aα
, β ∈ A

c(α)(α) = − 1

1 + Aα
,

c(α)(β) = 0, β ∈ B \ (A ∪ {k}).

Then for α ∈ B \ A, ‖c(α)‖1 = 1, and∑
β∈A

c(α)(β)vβ = 0.

Thus by our hypothesis for α ∈ B \ A,

1

1 + Aα
‖ξα − T̃ (vα)‖ =

∥∥∥∥∥∑
β∈A

c(α)(β)ξβ

∥∥∥∥∥ ≤ δ,

so

‖ξα − T̃ (xα)‖ ≤ (1 + Aα)δ.

For all β ∈ B,

‖T̃ (vβ)− T (vβ)‖ =

∣∣∣∣1− 1

1 + δCV

∣∣∣∣ ‖T̃ (vβ)‖ ≤ δCV ‖vβ‖.
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Set

M = max

(
max
α∈B\A

1 + Aα,max
β∈B

CV ‖vβ‖
)
.

Then M does not depend upon Y, ε and for all β ∈ B,

‖T (vβ)− ξβ‖ ≤ 2Mδ,

so if δ < η
2M
, we are done.

Definition 3.7.2. Let X be a Banach space with a uniformly bounded action of a countable

discrete group Γ and σi : Γ→ Isom(Xi) withXi finite-dimensional. We let VectΓ(S, F,m, δ, σi)

be all m-tuples (ξj)
m
j=1 of vectors in X such that for all (cg1,...,gl,j)1≤l,j≤m,g1,...,gl∈F with

∑
g1,...,gl∈F
1≤j,l≤m

|cg1,...,gm,j| ≤ 1,

we have ∥∥∥∥∥∥∥∥
∑

g1,...,gl∈F
1≤j.l≤m

cg1,...,gl,jσi(g1) · · ·σi(gm)ξj

∥∥∥∥∥∥∥∥ ≤ δ +

∥∥∥∥∥∥∥∥
∑

g1,...,gl∈F
1≤j,l≤m

cg1,...,gl,jg1 · · · glxj

∥∥∥∥∥∥∥∥ .
Set

vdimΣ(S, F,m, δ, ε, ρ) = lim sup
i→∞

1

dimXi

dε(VectΓ(S, F,m, δ, σi), ρXi),

vdimΣ(S, ε, ρ) = inf
F,m,δ

vdimΣ(S, F,m, δ, ε, ρ),

vdimΣ(S, ρ) = sup
ε>0

vdimΣ(S, ε, ρ).

Proposition 3.7.3. Let X be a Banach space with a uniformly bounded action of a countable

discrete group Γ and σi : Γ→ Isom(Xi) with Xi finite-dimensional. Then for any dynamically

generating sequence S, and any product norm ρ,

dimΣ(X,Γ) = vdimΣ(S, ρ).
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Proof. Let S = (xj)
∞
j=1. Fix e ∈ F ⊆ Γ finite, m ∈ N, δ > 0. Suppose that T ∈

HomΓ(S, F,m, δ, σi) and set ξj = T (xj). Then for all (cg1,...,gl,j)g1,...,gl∈F,1≤j,l≤m with∑
g1,...,gl∈F
1≤j,l≤m

|cg1,...,gl,j| ≤ 1,

we have∥∥∥∥∥∥∥∥
∑

g1,...,gl∈F
1≤j,l≤m

cg1,...,gm,jσi(g1) · · ·σi(gl)ξj

∥∥∥∥∥∥∥∥ ≤ δ +

∥∥∥∥∥∥∥∥T
 ∑
g1,...,gl∈F
1≤j,l≤m

cg1,...,gl,jg1 · · · glξj


∥∥∥∥∥∥∥∥

≤ δ +

∥∥∥∥∥∥∥∥
∑

g1,...,gl∈F
1≤j,l≤m

cg1,...,gl,jg1 · · · glξj

∥∥∥∥∥∥∥∥ .
So (ξj)

m
j=1 ∈ VectΓ(S, F,m, δ, σi) and vdim ≤ dim .

For the opposite inequality, let ε > 0, and let M = supj ‖xj‖. Since ρ is a product norm,

we may find an N ∈ N, and a κ > 0 so that if f ∈ `∞(N) and ‖f‖∞ ≤M, and

max
1≤j≤N

|f(j)| < κ,

then

ρ(f) < ε.

Fix e ∈ F ⊆ Γ finite and m ∈ N with m ≥ N. Let δ′ > 0 be sufficiently small depending

upon κ, in a manner to be determined later. Set

B =
m⊔
l=1

{(g1, . . . , gl, j) : g1, . . . , gl ∈ F, 1 ≤ j ≤ m},

V = XF,m,

vβ = g1 · · · glxj, if β = (g1, . . . , gl, j) ∈ B,

η = δ′.

Let δ > 0 be as in the preceding lemma for thisB, V, (vβ)β∈B, η. If (ξj)
m
j=1 ∈ VectΓ(S, F,m, δ, σi),

then by the preceding lemma, we can find a T : XF,m → Xi with ‖T‖ ≤ 1 and

‖T (g1 · · · glxj)− σi(g1) · · · σi(gl)ξj‖ < δ′,
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for all g1, . . . , gl ∈ F, 1 ≤ j, l ≤ m. Thus for all 1 ≤ j, l ≤ m, g1, . . . , gl ∈ F,

‖T (g1 · · · gmxj)− σi(g1) · · ·σi(gm)T (xj)‖ < 2δ′.

Thus T ∈ HomΓ(S, F,m, 2δ′, σi), and

max
1≤j≤m

‖T (xj)− ξj‖ < δ′,

since e ∈ F. So if we choose δ′ < κ, then since m ≥ N, our choice of κ implies

αS(HomΓ(S, F,m, δ, σi) ⊆ε,ρXi VectΓ(S, F,m, δ, σi),

so

d2ε(αS(HomΓ(S, F,m, δ, σi) ≤ dε(VectΓ(S, F,m, δ, σi)).

Taking limits in the appropriate order, we see that dim ≤ vdim .

3.8 `p-Betti Numbers of Free Groups

Let X be a CW complex and let ∆n(X) be the collection of n-simplices of X. Suppose

that Γ acts properly on X with compact quotient, preserving the simplicial structure. For

v0, . . . , vn ∈ X, let

[v0, v1, . . . , vn]

be the simplex spanned by v0, . . . , vn. Let

Vn(X) = {(v0, . . . , vn) ∈ X : [v0, . . . , vn] ∈ ∆n}.

We abuse notation and let `p(∆n(X)) for 1 ≤ p ≤ ∞ be all functions f : Vn(X) → C such

that

f(vσ(0), . . . , vσ(n)) = (sgn σ)f(v0, . . . , vn) for σ ∈ Sym({0, . . . , n})∑
[v0,...,vn]∈∆n(X)

|f(v0, . . . , vn)|p <∞, for p <∞
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sup
[v0,...,vn]∈∆n(X)

|f(v0, . . . , vn)| <∞ p =∞.

By our antisymmetry condition the above sum is unchanged if we use a different represen-

tative for [v0, . . . , vn]. On `p(∆n(X)) we use the norm

‖f‖pp =
∑

v∈∆n(X)

|f(v0, . . . , vn)|p, for p <∞

‖f‖∞ = sup
[v0,...,vn]∈∆n(X)

|f(v0, . . . , vn)|.

Define the discrete differential δ : `p(∆n−1(X))→ `p(∆n(X)) by

(δf)(v0, . . . , vn) =
n∑
j=0

(−1)jf(v0, . . . , v̂j, . . . , vn),

where the hat indicates a term omitted, note that δf satisfies the appropriate antisymmetry

condition. Define the nth `p-cohomology space of X by

Hn
`p(X) =

ker(δ) ∩ `p(∆n(X))

δ(`p(∆n−1(X))
.

We define the `p-Betti numbers of X with respect to Γ by

β
(p)
Σ,n(X,Γ) = dimΣ,`p(H

n
`p(X),Γ).

It is known that if X is contractible and π1(X/Γ) ∼= Γ, then the `p-cohomology space

only depends upon Γ, (see [14] page 219). If Γ is sofic, we may use `p-dimension to define

Hn
`p(Γ) = Hn

`p(X,Γ),

β
(p)
Σ,n(Γ) = β

(p)
Σ,n(X,Γ),

for such X. The definition above for p = 2 goes back to Atiyah in [1].Attaching a number to

`p-cohomology (or homology), requires some dimension theory associated to `p-spaces. Since

we have done this in [16], the preceding definition of `p-Betti numbers is a new definition.

We also consider `p-homology. Define ∂ : `p(∆n(X))→ `p(∆n−1(X)) by

∂f(v0, . . . , vn−1) =
∑

x:[v0,...,vn−1,x]∈∆n(X)

f(v0, . . . , vn−1, x).
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We use T t for the Banach space adjoint of a bounded T : X → Y between Banach spaces

X, Y. By direct computation

(∂ : `p
′
(∆n(X))→ `p

′
(∆n−1(X))) = (δ : `p(∆n−1(X))→ `p(∆n(X)))t,

when 1
p

+ 1
p′

= 1. Define the `p-homology of X by

H`p

n (X) =
ker(∂) ∩ `p(∆n(X))

∂(`p(∆n+1(X))
.

We shall be interested in the `p-Betti numbers of free groups. Fix n ∈ N and consider

the free group Fn on n letters a1, . . . , an. Let G be the Cayley graph of Fn with respect

to a1, . . . , an, we regard the edges of G as oriented. There is a natural 1-dimensional CW

complex X associated to G, whose 0-simplices are the vertices of G, and whose 1-simplices

are the edges of G, and whose attaching maps are determined by incidence of edges in the

natural way. Then X is contractible, since G is a tree. Also π1(X/Fn) ∼= Fn, so the `p-

cohomology of G is the `p-cohomology of Fn. Let E(Fn) denote the set of edges of Fn. Then

`p(E(Fn)) as defined above is the set of all functions f : E(Fn)→ C such that

f(x, s) = −f(s, x) if (s, x) ∈ E(Fn),

n∑
j=1

∑
x∈Fn

|f(x, xaj)|p <∞

with the norm

‖f‖pp =
n∑
j=1

∑
x∈Fn

|f(x, xaj)|p.

Note that this is indeed a norm on `p(E(Fn)), and that Fn acts isometrically on `p(E(Fn))

by left translation. Also `p(E(Fn)) is isomorphic to `p(Fn) with respect to this action. If

(x, s) ∈ E(Fn), we let E(x,s) be the function on E(Fn) such that

E(x,s)(y, t) = 0 if {x, s} 6= {y, t}

E(x,s)(x, s) = 1

E(x,s)(s, x) = −1.
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We think of E(x,s) as representing the edge going from x to s.

The discrete differential δ : `p(Fn)→ `p(E(Fn)) we defined above is given by

(δf)(x, s) = f(s)− f(x) (x, s) ∈ E(Fn)).

The corresponding `p-cohomology space is given by

H1
`p(Fn) = `p(E(Fn))/δ(`p(Fn).

Also, ∂ : `p(E(Fn))→ `p(Fn) is given by

(∂f)(x) =
n∑
j=1

f(x, xaj)−
n∑
j=1

f(xa−1
j , x).

In this section, we compute the `p-Betti numbers

β
(p)
Σ,1(Fn),

for 1 ≤ p ≤ 2.

Let Γ be a countable discrete group, we define ρ : Γ→ B(`p(Γ)) by

(ρ(g)f)(x) = f(xg−1).

Lemma 3.8.1. Let n ∈ N, with n ≥ 2. Fix 1 ≤ p <∞. There is a C > 0 so that

‖δf‖p ≥ C‖f‖p,

for all f ∈ `p(Fn). In particular, the image of δ is closed.

Proof. Assume the lemma is false, then we can find fk ∈ `p(Fn), with ‖fk‖p = 1 and

‖δfk‖p → 0.

By direct computation

‖δfk‖pp =
n∑
j=1

‖ρ(a−1
j )fk − fk‖pp,
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where a1, . . . , an are the free generators of Fn. Thus

‖ρ(a−1
j )fk − fk‖p → 0.

Since {a1, . . . , an} generate Fn, it follows that

‖ρ(x)fk − fk‖1 → 0

for all x ∈ Fn. By Theorem B.1.2 (iii), this implies that Fn is amenable. By the argument

following Theorem B.1.2 we know that Fn is not amenable, so we have a contradiction.

Lemma 3.8.2. Fix n ∈ N, 1 ≤ p <∞. Then the set of all images of the elements E(e,a1), . . . ,

E(e,an−1) are dynamically generating for H1
`p(Fn).

Proof. It suffices to show that

W = δ(`p(Fn)) + Span{E(s,saj) : s ∈ Fn, 1 ≤ j ≤ n− 1}

is norm dense in `p(E(Fn)). It is enough to show that

E(e,an) ∈ W
‖·‖
.

By convexity it is enough to show that E(e,an) is in the weak closure of W.

We shall prove by induction on k that

E(e,an) ≡ E(akn,a
k+1
n ) mod W.

This is enough since

E(akn,a
k+1
n ) → 0

weakly.

The base case k = 0 is trivial, so assume the result true for some k. Then

E(akn,a
k+1
n ) − δ(χ{ak+1

n }) =
n∑
j=1

E(ak+1
n ,ak+1

n aj)
+

n−1∑
j=1

E(ak+1
n ,ak+1

n a−1
j )

= E(ak+1
n ,ak+2

n ) +
n−1∑
j=1

ak+1
n E(e,aj) −

n−1∑
j=1

ak+1
n a−1

j E(e,aj)

= E(ak+1
n ,ak+2

n ).
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Here is a graphical explanation of the above calculation. If we think of the elements of

`p(E(Fn)) as formal sums of oriented edges, then −δ(χak+1
n

) is a “source” at ak+1
n . It is the sum

of all edges adjacent to ak+1
n , directed away from ak+1

n . Below is a graphical representation

of −δ(χak+1
n

) :

ana
−1
n−1 ak+2

n anan−1

−δ(χak+1
n

) =
... ak+1

n

bb

||

OO

��

<<

""

...

ana
−1
1 akn ana1

The above computation can be phrased as follows:

−δ(χak+1
n

) + E(akn,a
k+1
n ) =

ak+1
n an−1 ak+2

n ak+1
n a1

... ak+1
n

dd

{{ ��

OO ::

##

... + ak+1
n

ak+1
n a−1

1 akn ak+1
n a−1

n−1 akn

OO

=

ak+2
n ana

−1
n−1 anan−1

al+1
n

OO

+
... an

aa

}}

==

!!

...

ana
−1
1 ana1

and the second term on the right-hand side is easily seen to be in the span of translates of

E(e,aj), j = 1, . . . , n− 1. This completes the induction step.
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We shall prove the analogous claim for `p-homology of free groups, but we need a few

preliminary results. These next few results must be well known, but we include proofs for

completeness.

Lemma 3.8.3. Let Γ be a non-amenable group with finite-generating set S. Let A : `p(Γ)→

`p(Γ) be defined by

A =
1

|S ∪ S−1|
∑

s∈S∪S−1

ρ(s),

then for 1 < p <∞, there is a constant Cp < 1 so that ‖Af‖p < Cp‖f‖p.

Proof. We use

‖A‖`p→`p

for the norm of A as an operator from `p(Γ) → `p(Γ). We know ‖A‖`2→`2 < 1 from the

non-amenability of Γ (see [3] Theorem 2.6.8 (8)). Since ‖A‖`∞→`∞ ≤ 1, and ‖A‖`1→`1 ≤ 1,

the lemma follows by interpolation.

Lemma 3.8.4. Let n ∈ N with n ≥ 2. For 1 < p <∞, the operator ∂ ◦ δ : `p(Fn)→ `p(Fn),

is invertible.

Proof. Let a1, . . . , an be free generators for Fn, and let S = {a1, . . . , an}. We have that

∂(δf)(x) =
∑

s∈S∪S−1

f(x)− f(xs) = |S ∪ S−1|

(
f(x)− 1

|S ∪ S−1|
∑

s∈S∪S−1

ρ(s)f(x)

)
.

By the previous lemma, ∥∥∥∥∥ 1

|S ∪ S−1|
∑

s∈S∪S−1

ρ(s)

∥∥∥∥∥
`p→`p

< 1,

for 1 < p <∞, so this proves that ∂(δ) is invertible for 1 < p <∞.

For the next corollary we use the following notation: if X, Y, Z are Banach spaces with

Y, Z ⊆ X, we use X = Y ⊕ Z to mean Y ∩ Z = {0}, Y + Z = X.

Corollary 3.8.5. Let n ∈ N with n ≥ 2. For 1 < p < ∞, we have the following Hodge

Decomposition:

`p(E(Fn)) = ker(∂ : `p(E(Fn))→ `p(Γ)) + δ(`p(Fn)).
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Proof. By 3.8.1, δ(`p(Fn)) is closed in `p(E(Fn)). It is clear that ker(∂ : `p(E(Fn))→ `p(Γ))

is closed in `p(E(Fn)). If f ∈ ker(∂ : `p(E(Fn))→ `p(Fn)) ∩ δ(`p(Fn)) write f = δ(g), then

0 = ∂(f) = ∂(δ(g)).

By the preceding lemma we have that g = 0.

If f ∈ `p(E(Γ)), then by the preceding lemma we can find a unique g so that ∂(f) =

∂(δ(g)). Then f − δ(g) ∈ ker(∂), and

f = f − δ(g) + δ(g).

Proposition 3.8.6. Let n ∈ N, and 1 < p < ∞. Then H`p

1 (Fn) can be generated by n − 1

elements.

Proof. The claim for n = 1 is clear since H1
`p(Z) = 0. First, we show how to reduce to the

case n = 2. Let n > 2, and let a1, . . . , an be the generators of Fn. Consider the injective

homomorphisms φj : F2 → Fn for 1 ≤ j ≤ n− 1 given by φj(ai) = ai+j. Let f be an element

in `p(E(F2)) so that Span(F2f) is dense in ker(∂) ∩ `p(E(F2)). Let fj ∈ `p(E(Fn)) be the

element defined by

fj(x, y) =


0, if one of x, y /∈ φj(F2)

f(φ−1
j (x), φ−1

j (y)), otherwise.

Then fj ∈ ker(∂). It is easy to see from the preceding corollary and the fact that f generates

ker(∂) ∩ `p(E(F2)), that

E(e,aj) ∈ ker(∂) + δ(`p(Fn)).

Again by the preceding corollary we find that f1, . . . , fn−1 generate ker(∂). Thus it suffices

to handle the case n = 2.

We now concentrate on the case n = 2, and we use a, b for the generators of F2. Let

f : E(F2)→ R defined by the following inductive procedure. Set

f1 = E(e,a) + E(e,b) + E(a−1,e) + E(b−1,e).
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Having constructed f1, . . . , fn so that fj is supported on the pairs of edges which have

word length at most j, define fn+1 as follows. For each word w of length n, let e1, e2, e3 be

the three oriented edges which have their terminal vertex w and the initial vertex a word of

length n + 1, and let e be the oriented edge which has its initial vertex w and its terminal

vertex a word of length n− 1. Define for j = 1, 2, 3

fn+1(ej) =
1

3
fn(e),

and define

fn+1(e) = fn(e)

if both vertices of e have length at most n. It is easy to see that the fn’s as constructed

above converge pointwise to a function f in `p(E(F2)) ∩ ker(∂) for 1 < p ≤ ∞.

The function f is pictured below:

... ab−1 a2 ab · · ·

b−2a

1/9
��

b−1a

1/3
��

a

1/3

cc

1/3

OO
1/3

==

ba b2a

b−3 1/9 // b−2 1/3 // b−1 1 // e

1

OO

1 // b

1/3
��

1/3

OO

1/3 // b2

1/9

OO

1/9 //

1/9
��

b3 · · ·

b−2a−1

1/9

OO

b−1a−1

1/3

OO

a−1

1

OO

ba−1 b2a−1

· · · a−1b−1

1/3
::

a−2

1/3

OO

a−1b
1/3

bb

Set V = Span(F2f) + δ(`p(F2))
wk

= Span(F2f) + δ(`p(F2))
‖·‖
.

To show that f generates ker(∂) it suffices, by the preceding corollary to show that

E(e,a1), E(e,a2) ∈ V.

Let Bn = {(x, y) ∈ G : ‖x‖, ‖y‖ ≤ n}. For n ≥ 0, let gn : E(Fn)→ C, be the function defined
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by

χBngn =

(
n−1∑
k=0

(1/3)n

)(
E(e,a) + E(e,b) + E(a−1,e) + E(b−1,e)

)
,

(1− χBn)gn = (1− χBn)f,

we first show that gn ∈ Span(F2f) + δ(`p(F2)), for all n. We prove this by induction on

n, the case n = 1 being clear since g1 = f. Suppose the claim true for some n. Then for

each word w of length n, we can add either (1/3)nδ(χ{w}), or −(1/3)nδ(χ{w}), to fn to make

the value on every edge from w to a word of length n + 1 zero. This now adds a value of

±(1/3)n to every edge going from a word of length n to a word of length n− 1. Now repeat

for every word of length n− 1 : add on ±(1/3)nδ(χ{w}) for every word w of length n− 1 to

force a value of 0 on every edge going from a word of length n − 1 to a word of length n.

Repeating this inductively until we get to words of length 1, we find by construction of f

that gn ∈ Span(F2f) + δ(`p(F2)). The first two steps of this process are pictured below:

... ab−1 a2 ab · · ·

b−2a

1/9
��

b−1a

1/3
��

a

1/3

cc

1/3

OO
1/3

==

ba b2a

b−3 1/9 // b−2 1/3 // b−1 1 // e

1

OO

1 // b

1/3

OO

1/3 //

1/3
��

b2

1/9

OO

1/9 //

1/9
��

b3 · · ·

b−2a−1

1/9

OO

b−1a−1

1/3

OO

a−1

1

OO

ba−1 b2a−1

· · · a−1b−1

1/3
::

a−2

1/3

OO

a−1b
1/3

bb

1
3

(δ(χ{a})+δ(χ{b})−δ(χ{b−1})−δ(χ{a−1}))+3
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... ab−1 a2 ab · · ·

b−2a

1/9
��

b−1a

0
��

a

0

cc

0

OO
0

==

ba b2a

b−3 1/9 // b−2 0 // b−1 4/3 // e

4/3

OO

4/3 // b

0

OO

0 //

0
��

b2

1/9

OO

1/9 //

1/9
��

b3 · · ·

b−2a−1

1/9

OO

b−1a−1

0

OO

a−1

4/3

OO

ba−1 b2a−1

· · · a−1b−1

0

::

a−2

0

OO

a−1b
0

bb

1
9

(δ(χ{b2}−δ(χ{b−2})+δ(χ{a2})+··· )+3

... ab−1 a2 ab · · ·

b−2a

0
��

b−1a

1/9
��

a

1/9

cc

1/9

OO
1/9

==

ba b2a

b−3 0 // b−2 1/9 // b−1 4/3 // e

4/3

OO

4/3 // b

1/9
��

1/9

OO

1/9 // b2

0

OO

0 //

0
��

b3 · · ·

b−2a−1

0

OO

b−1a−1

1/9

OO

a−1

4/3

OO

ba−1 b2a−1

· · · a−1b−1

1/9
::

a−2

1/9

OO

a−1b
1/9

bb

1
9

(δ(χ{a})+δ(χ{b})−δ(χ{b−1})−δ(χ{a−1}))+3

... ab−1 a2 ab · · ·

b−2a

0
��

b−1a

0
��

a

0

cc

0

OO
0

==

ba b2a

b−3 0 // b−2 0 // b−1 13/9 // e

13/9

OO

13/9 // b

0
��

0

OO

0 // b2

0

OO

0 //

0
��

b3 · · ·

b−2a−1

0

OO

b−1a−1

0

OO

a−1

13/9

OO

ba−1 b2a−1

· · · a−1b−1

0

::

a−2

0

OO

a−1b
0

bb
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Since supn ‖gn‖p <∞ we find that gn converges weakly to

3

2
(E(e,a) + E(e,b) + E(b−1,e) + E(a−1,e)).

Rescaling we find that

E(e,a) + E(e,b) + E(b−1,e) + E(a−1,e) ∈ V.

By adding ±δ(χ{e}) and scaling we find that

E(e,a) + E(e,b) ∈ V,

E(e,b−1) + E(e,a−1) ∈ V.

Inductively, we now see that

E(e,a) + E((ba−1)n−1b,(ba−1)n) ∈ V,

and taking weak limits proves that

E(e,a) ∈ V.

Subtracting E(e,a) from E(e,a) + E(e,b) we find that

E(e,a), E(e,b) ∈ V.

By F2-invariance that V = `p(E(F2)), this completes the proof.

Theorem 3.8.7. Fix n ∈ N, and a sofic approximation Σ.

(a) The dimension of the `p-cohomology groups of Fn satisfy

dimΣ,`p(H
1
`p(Fn),Fn) = dimΣ,`p(H

1
`p(Fn),Fn) = n− 1, for 1 ≤ p ≤ 2,

Hm
`p (Fn) = {0} for m ≥ 2.

(b) The dimension of the `p-homology groups of Fn satisfy:

dimΣ,`p(H
`p

1 (Fn),Fn) = dimΣ,`p(H
`p

1 (Fn),Fn) = n− 1, for 1 < p < 2

141



H`1

1 (Fn) = ker(∂) ∩ `1(E(Fn)) = {0}.

H`p

m (Fn) = 0 for m ≥ 2.

Proof. The statements about higher-dimensional homology or cohomology are clear, since

we know that the Cayley graph of Fn is contractible and one-dimensional.

Since the image of δ is closed, the sequence

0 −−−→ `p(Fn)
δ−−−→ `p(E(Fn)) −−−→ H1

`p(Fn) −−−→ 0

is exact. Subadditivity under exact sequences, and the computation for `p-spaces implies

that

n = dimΣ,`p(`
p(E(Fn)),Fn)

≤ dimΣ,`p(H
1
`p(Fn),Fn) + dimΣ,`p(`

p(Fn)

= dimΣ,`p(H
1
`p(Fn),Fn) + 1.

Thus

dimΣ,`p(H
1
`p(Fn),Fn) ≥ n− 1.

On the other hand, by the Lemma 3.8.2, H1
`p(Fn) can be generated by n− 1 elements, so

dimΣ,`p(H
1
`p(Fn),Fn) ≤ n− 1,

which proves the first claim.

For the second claim, by surjectivity of ∂ for 1 < p ≤ 2, the sequence

0 −−−→ H`p

1 (Fn) −−−→ `p(E(Fn))
∂−−−→ `p(Fn) −−−→ 0,

is exact. As in the first half this implies that

dimΣ,`p(H
`p

1 (Fn),Fn) ≥ n− 1,

for 1 < p ≤ 2. The upper bound for 1 < p ≤ 2 also holds by the preceding proposition.
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We turn to the last claim. If x ∈ Fn, because the Cayley graph of Fn is a tree we can

define γx to be the unique geodesic path from e to x. Let |x| = d(x, e), and define

A : CE(Fn) → CFn

by

(Af)(x) =

|x|∑
j=1

f(γx(j − 1), γx(j)),

note that δ(Af) = f. A direct computation verifies that A(E(x,xaj)) ∈ `∞(Fn), thus δ(`∞(Fn))

is weak∗ dense in `∞(E(Fn)). By duality ker(∂)∩ `1(E(Fn)) = {0}, this completes the proof.
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CHAPTER 4

Extended von Neumann Dimension for Equivalence

Relations

Our goal in this section is to follow the methods in the group case, and introduce an extended

version of von Neumann dimension for representations of a discrete, measure-preserving,

sofic equivalence relation. Similar to the group case, this dimension is decreasing under

equivariant maps with dense image, and in particular is an isomorphism invariant. We

compute dimensions of Lp(R, µ)⊕n for 1 ≤ p ≤ 2. We will define a upper and lower notions

of `p-dimension for sofic equivalence relations, denoted dimΣ,`p(V,R), dimΣ,`p(V,R) (here Σ

is a sofic approximation). This extended von Neumann dimension shares some of the usual

properties of von Neumann dimension, (it is an interesting problem in general to decide

which properties carry over and which do not):

Property 1: dimΣ,`p(W,R) ≤ dimΣ,`p(V,R) if there is a R-equivariant bounded map W →

V with dense image and the same for dim,

Property 2: µ(A) dimΣ,`p(IdA V,RA) = dimΣ,`p(V,R)and the same for dim

Property 3: dimΣ,`p(V,R) ≤ dimΣ,`p(W,R) + dimΣ,`p(V/W,R), if W ⊆ V is a closed R-

invariant subspace.

Property 4: dimΣ,`p(V,R) ≤ dimΣ,`p(W,R) + dimΣ,`p(V/W,R), if W ⊆ V is a closed R-

invariant subspace.

Property 5: dimΣ,`p(V,R) ≤ dimΣ,`p(W,R) + dimΣ,`p(V/W,R), if W ⊆ V is a closed R-

invariant subspace.
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Property 6: dimΣ,`2(H,R) = dimΣ,`2(H,R) = dimL(Γ)H if H ⊆ `2(N, L2(R, µ)) is a closed

R-invariant subspace.

Property 7: dimΣ,`p(L
p(R, µ)⊕n,R) = dimΣ,`p(L

p(R, µ)⊕n,R) = n for 1 ≤ p ≤ 2.

In Section 4.6, if R is a sofic equivalence relation with sofic approximation, which satisfies

a certain “finite presentation” assumption, we define a number c
(p)
1,Σ(R), which is an `p-

analogue of β
(2)
1 (R) + 1. Here β

(2)
1 (R) is the `2-Betti number as defined by Gaboriau in [12].

This number has the property that c
(p)
1,Σ(R) ≤ c(R), where c(R) is the cost of R as defined

by Levitt in [19], and heavily studied by Gaboriau in [11]. Further, µ(A)(c
(p)
1,ΣA

(RA)− 1) ≥

c
(p)
1,Σ(R) − 1. This is if we could find an equivalence relation with vanishing `2-cohomology,

but so that c
(p)
1,Σ(R) > 1, for some p, then we could disprove the conjecture (due to Gaboriau

in [12]) that β
(2)
1 (R) = c(R) + 1. If in addition we could prove that c

(p)
1,Σ(R) > 1 for all Σ,

then R would necessarily have trivial fundamental group. A good reference for most of the

fundamental properties of measurable equivalence relations is [17].

4.1 Definition of the Invariants

We now proceed to state the definition of our extended von Neumann dimension, again

the ideas are parallel to the group case. We remark that the reader will need to recall the

definition of representations of an equivalence relation in 2.1.20, and the definition of sofic

equivalence relation in 2.2.3.

Definition 4.1.1. Let V be a separable Banach space with a uniformly bounded action of

R, and let q : W → V be a bounded linear surjective map where Y has the bounded approx-

imation property. Let Φ ⊆ L(R). For F ⊆ Φ finite, we define Wk(F ) = {φ1 · · ·φj : 1 ≤ j ≤

k, φj ∈ F}. A q-dynamical filtration consists of a pair F =
(
(bφ,j)(j,φ)∈N×W(Φ), (WF,k)F⊆Φ finite

)
where
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bφ,j ∈ W,

sup
(j,φ)

‖bφ,j‖ <∞,

q(bId,j) is dynamically generating,

q(bφ,j) = pvφq(bj,Id),

WF,k ⊆ WF ′,k′ if F ⊆ F ′, k ≤ k′,

WF,k = Span{bj,φ : 1 ≤ j ≤ k, φ ∈ Wk(F )}+ ker(q) ∩WF,k,

ker(q) =
⋃
F,k

WF,k ∩ ker(q).

Definition 4.1.2. A quotient dimension tuple is a tuple ((X,µ),R,Φ, V,W, q,Σ) where

(X,µ) is a standard probability space, R is a discrete measure-preserving equivalence rela-

tion on (X,µ), Φ ⊆ L(R) is of the form Φ = Φ0 ∪ P , where Φ0 ⊆ [[R]] is a graphing, and

1 ∈ P ⊆ Proj(L∞(X,µ)) has W ∗({φpφ−1 : φ ∈ Φ0, p ∈ P) = L∞(X,µ), V is a uniformly

bounded representation of R, W is a separable Banach space with the bounded approxima-

tion property, q : W → V is a bounded linear surjective map and Σ = (σi : [[R]] → [[Rdi ]])

is a sofic approximation.

Definition 4.1.3. Let ((X,µ),R,Φ, V,W, q,Σ) be a quotient dimension tuple. Let F =

((bj,φ,WF,k)) be a q-dynamical filtration. For F ⊆ Φ finite, m ∈ N, δ > 0 we will use

HomR,`p(F , F,m, δ, σi) for all linear maps T : W → `p(di) with ‖T‖ ≤ 1, and such that there

is an A ⊆ {1, · · · , di} with |A| ≥ (1− δ)di so that for all 1 ≤ j ≤ m, for all φ1, · · · , φm ∈ F

we have

‖T (bφ1···φk,j)− σi(φ) · · ·σi(φk)T (bId,j)‖`p(A) < δ

‖T
∣∣
ker(q)∩WF,m

‖ ≤ δ.

The above definition is very similar to the group case. However, we caution the reader

as to the necessary existence of the set A by which we cut down. This procedure will be

necessary in order to pass from one graphing of R to another. The necessity of cutting down
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by A will prevent us from proving some of the analogues of the properties of extended von

Neumann dimension in the group case.

Definition 4.1.4. Let (R, X, µ) be a discrete measure-preserving equivalence relation with

a uniformly bounded representation on a Banach space V. A dynamically generating sequence

is a bounded sequence S = (vj)
∞
j=1 in V such that Span{φvj : j ∈ N, φ ∈ [[R]]} = V. If Σ

is a sofic approximation of R, and Φ = Φ0 ∪ P ⊆ [[R]] with Φ0 a graphing and P a set of

projections so thatW ∗({φ−1pφ−1 : p ∈ P}) = L∞(X,µ), then the tuple ((X,µ),R,Φ, V, S,Σ)

will be called a dimension tuple.

Definition 4.1.5. Let V be a Banach space and n ∈ N. Let ρ be a pseudonorm on

B(V, `p(n)), if A,B ⊆ B(V, `p(n)), for ε,M > 0, we say that A is (ε,M)-contained in

B if for every T ∈ A, there is an S ∈ B, with ‖S‖ ≤ M and C ⊆ {1, · · · , n} with

|C| ≥ (1− ε)n, so that ρ(mχC (T − S)) < ε. Similarly, if ρ is a pseudonorm on `∞(N, `p(n))

and A,B ⊆ `∞(N, `p(n)) we say that A is ε-contained in B if for every f ∈ A there is a g ∈ B

and C ⊆ {1, · · · , n} with |C| ≥ (1 − ε)n so that ρ(χC(f − g)) < ε. We shall use dε(A, ρ),

(respectively dε,M(A, ρ)) for the smallest dimension of a linear subspace which ε-contains

(respectively (ε,M)-contains) A.

Note the difference between ε-containment as stated here and in the group case, this dif-

ference is why we have difficulty proving any sort of relation between extended von Neumann

dimension for groups and for equivalence relations.

Definition 4.1.6. Let ((X,µ),R,Φ, V,W, q,Σ) be a quotient dimension tuple, and F a

q-dynamical filtration. For a sequence of pseudonorms ρ = (ρi) on B(W, `p(di)) we define

opdimΣ,M,`p(F ,Φ, F,m, δ, ε,Φ, ρ) = lim sup
i→∞

1

di
dε,M(HomR,`p(F , F,m, δ, σi)),

opdimΣ,`p(F , ε,Φ, ρ) = inf
F⊆Φ finite,m∈N,δ>0

opdimΣ,M,`p(F , F,m, δ, ε,Φ, ρ),

opdimΣ,M,`p(F ,Φ, ρ) = sup
ε>0

opdimΣ,M,`p(F ,Φ, ε, ρ).
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We also define opdim
Σ,M,`p

(F ,Φ, ρ) in the same way except using a limit infimum instead

of a limit supremum. For later use, we note that if ρ is a norm on `∞(N) and F is as above,

we use ρF ,i(T ) = ρ(j 7→ ‖T (bId,j)‖).

Definition 4.1.7. Let ((X,µ),R,Φ, V,W, q,Σ) be a quotient dimension tuple, and F a q-

dynamical filtration. Define αF : B(V, `p(di)) → `∞(N, `p(di)) by αF (T )(n) = T (bId,n). We

define

f. dimΣ,`p(F , F,m, δ, ε,Φ, ρ) = lim sup
i→∞

1

di
dε(αF(HomR,`p(F , F,m, δ, σi)), ρp,di),

f. dimΣ,`p(F , ε,Φ, ρ) = inf
F⊆Φ finite,m∈N,δ>0

opdimΣ,M,`p(F , F,m, δ, ε, ρ),

f. dimΣ,`p(F ,Φ, ρ) = sup
ε>0

f. dimΣ,`p(F , ε,Φ, ρ).

Definition 4.1.8. Let ((X,µ),R,Φ, V, S,Σ) be a dimension tuple. Let ρ be a norm on

`∞(N). Let ρp,di be the norm on `∞(N, `p(di)) given by ρp,di(f) = ρ(‖f‖p). Let S = (vj)
∞
j=1, set

VF,m = Span{φvj : φ ∈ (F ∪ Id∪F ∗)m, 1 ≤ j ≤ m}. Let αS : B(VF,m, `
p(di))→ `∞(N, `p(di))

be given by αS(T )(j) = χ{l≤m}(j)T (vj). We define

f. dimΣ,`p(S, F,m, δ, ε,Φ, ρ) = lim sup
i→∞

1

di
dε(αS(HomR,`p(S, F,m, δ, σi)), ρp,di),

f. dimΣ,`p(S, ε,Φ, ρ) = inf
F⊆Φfinite,m∈N,δ>0

opdimΣ,M,`p(S, F,m, δ, ε, ρ),

f. dimΣ,`p(S,Φ, ρ) = sup
ε>0

f. dimΣ,`p(S, ε,Φ, ρ).

We shall define f. dim
Σ,`p

(S,Φ, ρ) for the same thing, except replacing all the limit

suprema with limit infima.

Definition 4.1.9. A product norm on `∞(N) is a norm ρ such that ρ(f) ≤ ρ(g) if |f | ≤ |g|,

and such that ρ induces the topology of pointwise convergence on {f : ‖f‖∞ ≤ 1}.

A typical example is

ρ(f) =

(
∞∑
j=1

1

2j
|f(j)|p

)1/p

for 1 ≤ p <∞.
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As in the group case, we will show that

f. dimΣ,`p(S,Φ, ρ) = f. dimΣ,`p(S
′,Φ′, ρ′)

if S, S ′ are two dynamically generating sequences, Φ,Φ′ are two graphings and ρ, ρ′ are two

product norms. Thus we can define dimΣ,`p(V,R) to be either of these common numbers.

The proof of all these facts will follow quite parallel to the proofs in the group case.

4.2 Proof of Invariance

As in the group case, Proposition 3.2.1 will be quite useful. The next Lemma will be crucially

used in passing between opdim and dim .

Lemma 4.2.1. Fix 1 ≤ p < ∞. Let ((X,µ),R,Φ, V,W, q,Σ) be a quotient dimension tuple

and F = (bj,φ,WF,k) a (q,Φ)-dynamical filtration. Let G ⊆ W be a finite-dimensional linear

subspace and κ > 0. Let ρ be a product norm and λ > 0 so that W has the λ-bounded

approximation property. Fix M > λ. Then there is a F ⊆ Φ finite, m ∈ N, δ, ε > 0 and

linear maps

Li : `
∞(N, `p(di))→ B(W, `p(di)),

so that if f ∈ `∞(N, `p(di)), T ∈ HomR,`p(F , F,m, δ, σi) and B ⊆ {1, · · · , di} has |B| ≥

(1−ε)di, and ρ`p(di)(χB(αF(T )−f)) < ε, then there is a C ⊆ {1, · · · , di} with |C| ≥ (1−η)di

such that

‖Li(f)‖W→`p(C) ≤M,

‖Li(f)
∣∣
G
− T

∣∣
G
‖G→`p(C) ≤ κ.

Proof. Note that there is a E ⊆ Φ finite, l ∈ N, so that

sup
w∈G
‖w‖=1

inf
v∈WE,l

‖v‖=1

‖v − w‖ < κ.

Thus, we may assume that G = WE,l for some E ⊆ Φ finite, l ∈ N.
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Fix η > 0 to be determined later. By Proposition 3.2.1, we may let θF,k : W → WF,k be

linear maps such that

‖θF,k‖ ≤ λ,

lim
(F,k)
‖θF,k(w)− w‖ = 0 for all w ∈ W.

Choose F,m sufficiently large so that

‖θF,m
∣∣
YE,l
− Id

∣∣
YE,l
‖ < η.

Let BF,m ⊆ Fm × {1, · · · ,m} be such that {q(bψ,j : (ψ, j) ∈ BF,m} is a basis for VF,m : =

Span{q(bψ,j) : (ψ, j) ∈ Fm × {1, · · · ,m}}. Define L̃i : `
∞(N, `p(di))→ B(VF,m, `

p(di)) by

L̃i(q(bψ,j)) = σi(ψ)f(j).

We claim that if δ, ε > 0 are small enough, then for f ∈ `∞(N, `p(di)), T ∈ HomR,`p(F , F,m, δ, σi),

and C ⊆ {1, · · · , di} with |C| ≥ (1− ε)di and

ρ(χC(f − αF(T ))) < ε,

there is a B ⊆ {1, · · · , di} so that |B| ≥ (1− η)di with

‖L̃i(f) ◦ q
∣∣
WE,l
− T

∣∣
WE,l
‖WE,l→`p(B) ≤ η.

By finite-dimensionality, there is D(F,m) > 0 so that if v ∈ ker(q) ∩WF,m and (λψ,r) ∈

CBF,m , then

sup(‖v‖, |λψ,r|) ≤ D(F,m)

∥∥∥∥∥∥v +
∑

(ψ,r)∈BF,m

λψ,rbψ,r

∥∥∥∥∥∥ .
Thus if x ∈ WF,m, ‖x‖ ≤ 1, and x = v +

∑
(ψ,r)∈BF,m λψ,rbψ,r, with v ∈ ker(q) ∩WF,m, and

C ⊆ B, then
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‖L̃i(f)(q(x))− T (x)‖`p(C) =

∥∥∥∥∥∥T (v) +
∑

(ψ,r)∈BF,m

λψ,r(σi(ψ)f(j)− T (bψ,r))

∥∥∥∥∥∥
`p(C)

(4.1)

≤ ‖T (v)‖`p(C) +D(F,m)
∑

(ψ,r)∈BF,m

‖σi(ψ)f(j)− T (bψ,r)‖`p(C)

≤ ‖T (v)‖`p(di) +D(F,m)
∑

(ψ,r)∈BF,m

‖σi(ψ)f(j)− T (bψ,r)‖`p(C)

≤ D(F,m)δ +D(F,m)
∑

(ψ,r)∈BF,m

‖σi(ψ)f(j)− T (bψ,r)‖`p(C),

where in the last line we use that ‖T‖ ≤ 1.

Let A ⊆ {1, · · · , di} be such that |A| ≥ (1 − δ)di, and for all 1 ≤ j ≤ m, for all

φ1, . . . , φm ∈ F,

‖T (bφ1···φm,j)− σi(φ1) · · · σi(φm)T (bId,j)‖`p(A) < δ

and set C = B ∩ A. Then by (4.1) we have

‖L̃i(f)(q(x))− T (x)‖`p(C) ≤ D(F,m)δ +D(F,m)|F |mmδ +
∑
(ψ,r)

‖f(r)− T (bψ,r)‖`p(C),

so it suffices to choose δ, ε > 0 sufficiently small so that

δ + ε < η,

δ <
η

2D(F,m)(1 + |F |mm)
,

and if g ∈ `∞(N) has ρ(g) < ε then

∑
(ψ,r)∈BF,m

g(r) <
η

2
.

Now suppose that δ, ε > 0 are so chosen and set Li(f) = L̃i(f) ◦ q
∣∣
WF,m

◦ θF,m, then if

T, f, C are as above and w ∈ WE,l, then

‖Li(f)(w)− T (w)‖`p(C) ≤ (1 + η)‖θF,m(w)− w‖+ η‖w‖ ≤ η(1 + 2η)‖w‖,
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so it suffices to choose η so that

η(1 + 2η) < κ,

λ(1 + η) < M.

Our next lemma allows us to switch between two different pseudonorms.

Lemma 4.2.2. Fix 1 ≤ p < ∞. Let ((X,µ),R,Φ, V,W, q,Σ) be a quotient dimension tuple

and F = (bj,φ,WF,k) a (q,Φ)-dynamical filtration. Let F be a (q,Φ)-dynamical filtration,

ρ a monotone product norm, and let C > 0 so that W has the C-bounded approximation

property.

(a) If C < M <∞, then

f. dimΣ,∞,`p(F ,Φ, ρF ,i) = opdimΣ,M,`p(F ,Φ, ρF ,i)

f. dim
Σ,∞,`p(F ,Φ, ρF ,i) = opdim

Σ,M,`p
(F ,Φ, ρF ,i).

(b) If ρ′ is any other product norm, then for all M > 0,

opdimΣ,M,`p(F ,Φ, ρF ,i) = opdimΣ,M,`p(F ,Φ, ρ′F ,i)

opdim
Σ,M,`p

(F ,Φ, ρF ,i) = opdim
Σ,M,`p

(F ,Φ, ρ′F ,i).

Proof. (a) Let F = ((bφ,j), (WF,l)F⊆W(Φ) finite,l∈N). Let A be such that

‖bφ,j‖ ≤ A,

Let 1 > ε′ > 0. Find k ∈ N, so that if ‖f‖∞ ≤ 1, and f is supported on {n : n ≥ k},

then ρ(f) < ε′. Since ρ induces a topology weaker than the norm topology, we can find a

ε′ > κ > 0 so that ρ(f) < ε′, if ‖f‖∞ ≤ κ.

Let Id ∈ E ⊆ Φ be finite ε′ > ε > 0,m ∈ N, with m ≥ k, δ > 0 and Li : `
∞(N, `p(di))→

B(W, `p(di)) be as in the proceeding lemma for this M,κ, and the finite-dimensional subspace

W{Id},k.
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Suppose T ∈ HomR,`p(F , F,m, δ, σi), f ∈ `∞(N, Vi), and B ⊆ {1, · · · , di} has |B| ≥

(1− ε)di with

ρ(χB(f − αF(T )) < ε.

By the preceding Lemma, let C ⊆ {1, · · · , di} be such that |C| ≥ (1− κ)di,

‖Li(f)‖W→`p(C) ≤M,

‖Li(f)
∣∣
W{Id},k

− T
∣∣
W{Id},k

‖W{Id},k→`p(C) ≤ κ.

Then

ρF ,i(χC(Li(f)− T )) ≤ (MA+ 1)ε+ ρ(j → ‖Li(f)(b{Id},j)− T (b{Id},j)‖`p(C)χ{l:l≤m}(j))

≤ (MA+ 1)ε′ + Aε′.

Thus

opdimΣ,M(F , F0,m0, δ0, (MA+ A+ 1)ε′,Φ, ρ) ≤ f. dimΣ(F , F0,m0, δ, ε,Φ, ρ)

if F0 ⊇ F,m0 ≥ m, δ0 < δ. Thus

opdimΣ,M(F , (M + A)ε′,Φ, ρ) ≤ f. dimΣ(F ,Φ, ρ),

and since ε′ was arbitrary, we are done.

(b) This follows from compactness of ‖ · ‖∞ unit ball in the product topology.

We now proceed to show equality when we switching graphings, it is enough to handle

the case of simply increasing the graphing.

Lemma 4.2.3. Fix 1 ≤ p < ∞. Let ((X,µ),R,Φ, V,W, q,Σ) be a quotient dimension tuple

and F = (bj,φ,WF,k) a (q,Φ)-dynamical filtration. Let Φ ⊆ Φ′ ⊆ [[R]] with Φ′ countable. Let

F ′ = ((b′j,φ),W ′
F,k) be a (q,Φ′) dynamical filtration extending F . Suppose that Σ′ is any sofic

approximation then

opdimΣ,∞,`p(F ,Φ, ρ) = opdimΣ,∞,`p(F ′,Φ′, ρ),
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opdim
Σ,∞,`p(F ,Φ, ρ) = opdim

Σ,∞,`p(F
′,Φ′, ρ).

Proof. Let M > 0 be such that for every v ∈ V, there is a w ∈ W so that q(w) = v, and

‖v‖ ≤M‖w‖.

It is clear that

opdimΣ′,`p(F ,Φ′, ρ) ≤ opdimΣ,`p(F ,Φ, ρ).

For the opposite inequality, first note that for any subset E ⊆ ∗ − Alg(Φ) ∩ [[R]] (here

we view [[R]] ⊆ L(R), and ∗−Alg(Φ) denotes the smallest ∗-subalgebra of L(R) containing

Φ) we have

opdimΣ(F ,Φ, ρ) ≤ opdimΣ(F , E, ρ).

Our assumptions imply that for any η > 0, for any ψ ∈ [[R]], there is a ψ′ ∈ [[R]]∩∗−Alg(Φ)

‖ψ − ψ′‖2 < η.

Fix 1 ∈ F ′ ⊆ Φ′ finite, δ′ > 0 and m′ ∈ N. Let η > 0 to be determined later. By our

above observation, we can find a finite subset E ⊆ ∗ − Alg(Φ) ∩ [[R]] such that for every

φ′ ∈ F ′, there is a φ ∈ E so that

‖φ1 · · ·φmaj − φ′1 · · ·φ′maj‖ <
δ′

M
for all 1 ≤ j ≤ m, and φ′1, · · · , φ′m ∈ F ′,

‖φ1 · · ·φm − φ′1 · · ·φ′m‖2 < η for all φ′1, · · · , φ′m ∈ F ′.

Thus we can find a finite subset E ⊆ F ⊆ W(Φ), and an m ∈ N and wφ′1···φ′m,j ∈

ker(q) ∩WF,m so that

‖bφ′1···φ′m,j − bφ1···φm,j − wφ′1···φ′m,j‖ < δ′.

We use W(Φ) for all finite products of elements in Φ ∪ Φ∗ ∪ Id, and we use Wm(Φ) for

[Φ ∪ Φ∗ ∪ Id]m. We may assume that F,m are sufficiently large so that

sup
w∈Ball(WF ′,m′∩ker(q))

inf
v∈WF,m∩ker(q)

‖w − v‖ < δ′,
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E ⊆ Wm(Φ).

Let δ > 0 which will depend upon δ′, F ′,m′ in a manner to be determined later. Fix

T ∈ HomR,`p(F , F,m, δ, σi) and suppose A is such that

‖T (bj,φ1··· ,φm)− σi(φ1) · · ·σi(φm)T (bj,Id)‖`p(A) < δ

for all φ′1, · · · , φ′m ∈ F ′. Let C be the set of j in {1, · · · , di} so that whenever φ1, · · · , φm ∈ F,

then

j /∈ dom(σi(φ1) · σi(φm))∆ dom(σi(φ
′
1) · σi(φ′m))

σi(φm)−1 · σi(φ1)−1(j) = σi(φ
′
m)−1 · σi(φ1)−1(j), if either side is defined.

If η is sufficiently small, then soficity implies that for all large i, |C| ≥ (1− δ′)di.

Thus for all 1 ≤ j ≤ m and φ1, · · · , φm ∈ F we have

‖T (bφ′1··· ,φ′m,j)− σi(φ
′
1) · · · σi(φ′m)T (bId,j)‖`p(A∩C) = ‖T (bφ′1··· ,φ′m,j)− σi(φ1) · · ·σi(φm)T (bId,j)‖`p(A∩C)

≤ δ′ + ‖T (wφ′1···φ′m,j)‖

+ ‖T (bφ1···φm,j)− σi(φ1) · · ·σi(φm)T (bId,j)‖`p(A∩C)

≤ δ′ + δ‖wφ′1···φm,j‖+ δ.

Our assumptions on F ′,m′ ensure that

‖T
∣∣
ker(q)∩WF ′,m′

‖ ≤ δ(1 + δ′) + δ′.

Thus if δ is sufficiently small, we may ensure that T ∈ HomR,`p(F , F ′,m′, 2δ′, σi). So for

any ε > 0, we have

opdimΣ,`p(F , ε,Φ, ρ) ≤ opdimΣ′,`p(F ′, F ′,m′, δ′, ε,Φ′, ρ).

Since F ′,m′, δ′, ε′ were arbitrary, we see that

opdimΣ,`p(F,Φ, ρ) ≤ opdimΣ′,`p(F ′,Φ′, ρ).
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We now show that opdimΣ,∞(F ,Φ, ρF ,i) only depends upon Φ and the quotient map q.

Because of Lemmas 4.2.1,4.2.2,4.2.3 for any other (q,Φ)-dynamical filtration F ′

opdimΣ,∞,`p(F ,Φ, ρF ,i) = opdimΣ,`p(F ′,Φ, ρF ,i),

so the only difficulty is in switching ρF ,i to ρF ′,i. To do this, we will have to investigate how

much our definition of dimension depends on the choice of pseudonorm.

Definition 4.2.4. Let ((X,µ),R,Φ, V,W, q,Σ) be a quotient dimension tuple and F =

(bj,φ,WF,k) a (q,Φ)-dynamical filtration. Let ρi, qi be two sequence of pseudonorms on

B(W, `p(di)), we say that ρi is (F ,Σ) weaker than qi and write ρi �F ,Σ qi, if for every ε′ > 0,

there are ε, δ > 0,m, i0 ∈ N, F ⊆ Φ finite, and linear maps Li : B(W, `p(di))→ B(W, `p(di))

for i ≥ i0, so that if G is a linear subspace of B(W, `p(di)) and HomR,`p(F , F,m, δ, σi) ⊆ε,qi G,

then HomR,`p(F , F,m, δ, σi) ⊆ε′,ρi Li(G).

Lemma 4.2.5. Let ((X,µ),R,Φ, V,W, q,Σ) be a quotient dimension tuple and F = (bj,φ,WF,k)

a (q,Φ)-dynamical filtration.

(a) If ρi, qi are two sequence of pseudonorms on B(W, `p(di)) and ρi �F ,Σ qi, then

opdimΣ,∞,`p(F ,Φ, ρi) ≤ opdimΣ,∞,`p(F ,Φ, qi),

opdim
Σ,∞,`p(F ,Φ, ρi) ≤ opdim

Σ,∞,`p(F ,Φ, qi),

(b) Let F ′ be another q-dynamical filtration, then ρF ′,i �F ,Σ ρF ,i.

Proof. (a) Follows directly from the definitions.

(b) Let F = ((bφ,j), (WE,l)),F ′ = ((b′φ,j), (W
′
E,l)). Let D > 0 be such that W has the

C-bounded approximation property, and

‖bφ,j‖ ≤ D,

‖b′φ,j‖ ≤ D.
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Fix 1 > ε′ > 0. Choose k ∈ N, so that if f is supported on {n : n ≥ k} and ‖f‖∞ ≤ 1,

then ρ(f) < ε′, and let ε′ > κ > 0 be such that ρ(f) < ε′ if ‖f‖∞ ≤ κ. Let F,m, δ, ε,

and Li : `
∞(N, `p(di)) → B(W, `p(di)) be as Lemma 4.2.1 for this κ, M = 2D and the

finite-dimensional subspace W ′
{Id},k. Define αF : B(W, `p(di))→ `∞(N, `p(di)) by αF(T )(n) =

T (bId,n). Set L̃i(T ) = Li(αF(T )). We may assume that m ≥ k.

Suppose that HomR,`p(F , F,m, δ, σi) ⊆ε,ρF,i G, then by Lemma 4.2.1, for every T ∈

HomR,`p(F , F,m, δ, σi) we can find an S ∈ B(W, `p(di)) and a C ⊆ {1, · · · , di} with |C| ≥

(1− κ)di so that

‖L̃i(S)‖W→`p(C) ≤ 2D,

‖L̃i(S)
∣∣
W ′{Id},k

− T
∣∣
W ′{Id},k

‖ < κ.

Thus

ρF ,i(mχC (L̃i(S)− T )) ≤ (2D + 1)Dε′ + ρ(χl≤k(j)‖L̃i(S)(bId,j)− T (bId,j)‖`p(C))

≤ (2D + 1)Dε′ +Dε′

This proves (b).

Corollary 4.2.6. Fix 1 ≤ p < ∞. Let ((X,µ),R,Φ, V,W, q,Σ) be a quotient dimension

tuple, and F a (q,Φ)-dynamical filtration. If F ′ is another (q,Φ)-dynamical filtration, and

ρ, ρ′ are two product norms, then

opdimΣ,∞,`p(F ,Φ, ρ) = opdimΣ,∞,`p(F ′,Φ, ρ′)

opdim
Σ,∞,`p(F ,Φ, ρ) = opdim

Σ,∞,`p(F
′,Φ, ρ′).

Proof. If we combine Lemmas 4.2.2-4.2.5 we obtain

opdimΣ,∞,`p(F ,Φ, ρ) ≤ opdimΣ,∞,`p(F ′,Φ, ρ′)

the result follows by symmetry.
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Because of the above corollary, and Lemma 4.2.3 we may define

dimΣ,`p(q) = opdimΣ,∞,`p(F ,Φ, ρ),

dimΣ,`p(q) = opdim
Σ,∞,`p(F ,Φ, ρ),

where F , ρ are as in the statement of the corollary. Then dimΣ,`p(q) only depends upon q

and the action of R on V.

Lemma 4.2.7. Let ((X,µ),R,Φ, V,Σ) be a dimension tuple, and let ρ be a product norm.

Let S be a dynamically generating sequence in V. Then

f. dimΣ,`p(S,Φ, ρ) = sup
ε>0

lim inf
(F,m,δ)

lim sup
i→∞

f. dimΣ,`p(S, F,m, δ, ε,Φ, ρ),

f. dim
Σ,`p

(S,Φ, ρ) = sup
ε>0

lim sup
(F,m,δ)

lim inf
i→∞

f. dimΣ,`p(S, F,m, δ, ε,Φ, ρ).

Proof. Let S = (aj)
∞
j=1, and C > 0 so that ‖aj‖ ≤ C for all j.

Fix ε > 0, and choose k ∈ N so that ρ(f) < ε if ‖f‖∞ ≤ 2C and f is supported on

{n : n ≥ k}. Fix F ⊆ Φ finite, a natural number m ≥ k and δ > 0. Then if F ′ ⊇ F is a finite

subset of Φ, m′ ≥ m is a natural number and 0 < δ′ < δ, then HomR,`p(S, F
′,m′, δ′, σi) ⊆

HomR,`p(S, F,m, δ, σi). Further, for f ∈ `∞(N, `p(di)) with ‖f‖`∞(N,`p(di)) ≤ C we have

ρ(χ{l:l≤m}(j)f(j)− χ{l:l≤m′(j)f(j)) < ε.

Thus

d2ε(αS(HomR,`p(S, F
′,m′, δ′, σi)), ρ) ≤ dε(αS(HomR,`p(S, F,m, δ, σi), ρ).

This implies that

f. dimΣ,`p(S, 2ε,Φ, ρ) ≤ f. dimΣ,`p(S, F,m, δ, ε,Φ, ρ).

Since F,m, were arbitrarily large, δ > 0 was arbitrarily small we see that

f. dimΣ,`p(S, 2ε,Φ, ρ) ≤ lim inf
(F,m,δ)

f. dimΣ,`p(S, F,m, δ, ε,Φ, ρ)

and taking the supremum over ε > 0 completes the proof.
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Lemma 4.2.8. Let ((X,µ),R,Φ, V,W, q,Σ) be a quotient dimension tuple. Let S be a dy-

namically generating sequence in V. Then for any product norm ρ we have

dimΣ,`p(q,Φ, ρ) = f. dimΣ,`p(S,Φ, ρ),

dimΣ,`p(q,Φ, ρ) = f. dim
Σ,`p

(S,Φ, ρ).

Proof. Let S = (aj)
∞
j=1, and let F = ((bφ,j), (WE,l)) be a (q,Φ)-dynamical filtration such

that q(bId,j) = aj. Let C > 0 be such that

‖aj‖ ≤ C,

‖bφ,j‖ ≤ C,

‖q‖ ≤ C,

for every v ∈ V, there is a w ∈ W such that q(w) = v, and ‖w‖ ≤ C‖v‖,

W has the C-bounded approximation property.

Let θF,k : W → WF,k be such that ‖θF,k‖ ≤ C and

lim
(F,k)
‖θF,k(w)− w‖ = 0 for all w ∈ W .

We first show that

f. dimΣ,`p(F ,Φ, ρ) ≥ f. dimΣ(S,Φ, ρ).

Fix ε > 0, and choose k ∈ N, so that ρ(f) < ε if ‖f‖∞ ≤ 1 and f is supported on

{n : n ≥ k}. Choose κ > 0 so that ρ(f) < ε if ‖f‖∞ ≤ κ. Let Id ∈ E ⊆ Φ finite and l ∈ N,

so that if F ⊇ E,m ≥ l then

‖θF,m(bId,j)− bId,j‖ ≤ κ

for all 1 ≤ j ≤ k.

Fix E ⊆ F ⊆ Φ finite l ≤ m ∈ N, and δ > 0. We claim that we can find a F ′ ⊆ Φ finite,

and m′ ∈ N and δ′ > 0 so that

HomR,`p(S, F
′,m′, δ′, σi) ◦ q

∣∣
WF ′,m′

◦ θF ′,m′ ⊆ HomR,`p(F , F,m, δ, σi)C2 .
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If T ∈ HomR,`p(S, F
′,m′, δ′, σi), B ⊆ {1, · · · , di} is as in the definition of HomR,`p(S, F

′,m′, δ′, σi),

if 1 ≤ j ≤ m and φ1, · · · , φm ∈ F then

‖T ◦ q ◦ θF ′,m′(bφ1···φm,j)− σi(φ1) · · ·σi(φm)T (q(θF ′,m′(bId,j))‖`p(B)

≤ C‖θF ′,m′(bφ1···φm,j)− bφ1···φm,j‖`p(B) + C‖θF ′,m′(bId,j)− bId,j‖`p(B) + δ′.

For w ∈ ker(q) ∩WF,m we have

‖T ◦ q ◦ θF ′,m′(w)‖ ≤ C‖θF ′,m′(w)− w‖,

so it suffices to choose δ′ < δ and then F ′,m′ large so that for all 1 ≤ j ≤ m,ψ ∈ Fm,

C‖θF ′,m′(bψ,j)− bψ,j‖+ C‖θF ′,m′(bId,j)− bId,j‖ < δ − δ′,

‖θF ′,m′
∣∣
WF,m

−WF,m‖ <
δ

C
.

Suppose that F ′,m′, δ′ are so chosen, and that m′ ≥ k. If T ∈ HomR,`p(S, F
′,m′, δ), then

ρ(αF(T ◦ q ◦ θF ′,m′)− αS(T )) ≤ (C2 + 1)ε+ ρ(χ{l:l≤k}(j)‖T ◦ q ◦ θF ′,m′(bId,j)− T ◦ q(bId,j)‖)

≤ (C2 + C + 1)ε.

Thus

f. dimΣ,`p(S, F,m, δ, (C
2 + C + 2)ε,Φ, ρ) ≤ opdimΣ, `

p(F , F ′,m′, δ′, ε, ρ)C ,

since F ′,m′ were arbitrarily large and δ′ arbitrarily small we have

f. dimΣ,`p(S, F,m, δ, ε,Φ, ρ) ≤ opdimΣ(F , ε, ρ)C ,

taking the limit supremum over (F,m, δ) and then the supremum over ε > 0 we find that

f. dimΣ,`p(S,Φ, ρ) ≤ dimΣ,`p(q,Φ, ρ).

For the opposite inequality, let 1 > ε > 0, and let k,E, l, κ be as in the first half of the

proof. Fix E ⊆ F ⊆ Φ finite, m ≥ max(k, l) and 0 < δ < κ. By Lemma 3.2.8, choose a

0 < δ′ < δ a F ⊆ F ′ ⊆ Φ finite, a m ≤ m′ ∈ N so that if E is Banach space and

T : WF ′,m′ → E
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is a contraction with

‖T
∣∣
ker(q)∩WF ′,m′

‖ ≤ δ′′

then there is a linear map A : VF,m → E with ‖A‖ ≤ 2C and

‖T (bψ,j)− A(ψaj)‖ < δ for all 1 ≤ j ≤ m, and ψ ∈ Fm

Let F ′,m′ be as above and T ∈ HomR,`p(F , F ′,m′, δ′, σi) and chose S as in the preceding

paragraph. Let B ⊆ {1, · · · , di} be as in the definition for HomR,`p(F , F ′,m′, δ′, σi). Then

for all 1 ≤ j ≤ m and φ1, · · · , φm ∈ F we have

‖A(φ1 · · ·φmaj)− σi(φ) · · ·σi(φm)A(aj)‖`p(B) ≤ 2δ + ‖T (bφ1···φm,j)− σi(φ) · · · σi(φm)T (bId,j)‖`p(B)

≤ 2δ + δ′

< 3δ.

Further

ρ(αS(A)− αF(T )) ≤ (2C2 + C)ε+ ρ(χ{l:l≤k}(j)‖A(aj)− T (bId,j)‖) ≤ (2C2 + C + 1)ε.

Thus

f. dimΣ,`p(F , (2C2 + C + 2)ε,Φ, ρ) ≤ f. dimΣ,`p(S, F,m, 3δ, ε,Φ, ρ)

so taking a limit infimum over (F,m, δ) and then a supremum over ε completes the proof.

We now prove the necessary invariance to show that `p-dimension is well-defined.

Theorem 4.2.9. Let (R, X, µ) be a sofic, discrete, measure-preserving equivalence relation,

and V a separable Banach space with a uniformly bounded action of R. Let Σ = (σi : [[R]]→

[[Rdi ]]) be a sofic approximation.
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(i): If q : Y → V, q′ : Y ′ → V ′ are two bounded linear surjections where Y, Y ′ have the

bounded approximation property,

dimΣ,`p(q) = dimΣ,`p(q
′),

in the sense of the definition given after Corollary 4.2.6.

(ii): Let S be a dynamically generating sequence in V. There is a separable Banach space

Y with the bounded approximation property, and a bounded linear surjection q : Y → V, so

that

f. dimΣ,`p(S, φ, ρ) = dimΣ,`p(q)

for any graphing Φ and any product norm ρ on `∞(N).

Proof. (i): Let S = (aj)
∞
j=1 be a dynamically generating sequence in V. We may choose

dynamically filtrations F = (WF,m, (bψ,j)),F ′ = (W ′
F,m, (b

′
ψ,j)) for q, q′ so that

q(bId,j) = aj = q′(bId,j).

Now (i) follows from the preceding Lemma.

(ii): It is a standard exercise that there is a bounded linear surjection q : `1(N)→ V. Let

S = (aj)
∞
j=1, there is a dynamically filtration F = (WF,m, (bψ,j)) for q so that

q(bId,j) = aj.

Now apply the preceding Lemma.

By the above Theorem, we can set

dimΣ,`p(V,R) = dimΣ,`p(S,Φ, ρ),

dimΣ,`p(V,R) = dimΣ,`p(S,Φ, ρ),

and this is independent of our choice of S,Φ, ρ.
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4.3 Properties of Extended von Neumann Dimension

Definition 4.3.1. Let (R, X, µ) be as above and V a Banach space representation of R. If

v ∈ V, then since (X,µ) is standard there is a unique (up to measure zero) set A such that

IdA v = v and IdAc v = 0. We call A the support of v, and denote it by supp v.

The following inequality is frequently useful, and will be used to great extent in Section

4.6.

Proposition 4.3.2. Let ((X,µ),R, V,Φ,Σ) be a dimension tuple. Let S = (aj)
∞
j=1 be a

dynamically generating sequence in V, then for any sofic approximation Σ, and 1 ≤ p <∞,

dimΣ,`p(V,R) ≤
∞∑
j=1

µ(supp aj).

Proof. Let Aj = supp aj. Fix ε > 0, let F ⊆ Φ be finite, m ∈ N, δ > 0, if F is sufficiently

large, then there is a Bj ⊆ X measurable with IdBj ∈ Fm so that

‖ IdBj aj − aj‖ < ε,

µ(Bj∆Aj) < δ.

Thus for all large i, and for all T ∈ HomR,`p(S, F,m, δ, σi) we can find a set C ⊆

{1, · · · , di} with |C| ≥ (1− 2δ(1 +m))di so that

‖T (aj)− σi(IdAj)T (aj)‖`p(C) < δ,

for all 1 ≤ j ≤ m. So if δ is sufficiently small (depending only upon ε,m) we have shown

that

(T (a1), · · · , T (am)) ⊆ε
n⊕
j=1

σi(IdAj)(`
p(di)),

so for all large i,

1

di
dε(HomR,`p(S, F,m, δ, σi)) ≤

1

di

n∑
j=1

Tr(σi(IdAj))→
m∑
j=1

µ(Aj).
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Thus

f. dimΣ(S, F,m, ε, δ, σi) ≤
∞∑
j=1

µ(Aj),

since the above is true for all F,m, sufficiently large and δ sufficiently small (depending only

on ε) the proof is complete.

Proposition 4.3.3. Let ((X,µ),R,Φ, V,Σ) be a dimensional tuple, and let W be another

representation of R. If T : W → V is a bounded equivariant map with dense image, then

dimΣ,`p(V,R) ≤ dimΣ,`p(W,R).

Proof. If if S is a dynamically generating sequence in W, then T (S) is a dynamically gener-

ating for W. If φ ∈ HomR,`p(T (S), F,m, δ, σi), then φ ◦ T ∈ HomR,`p(S, F,m, δ, σi) and

αS(φ ◦ T ) = αT (S)(φ)

we are done.

We also handle how dimension behaves under compressions. This implies in particular

that dimension is in fact invariant under weak isomorphism (we recall that two representa-

tions V,W of an discrete, measure-preserving equivalence relation (R, X, µ) are weakly iso-

morphic if for any ε > 0 there is a measurable A ⊆ X with µ(A) ≥ 1− ε and IdA V ∼= IdAW

are isomorphic as representations of RA).

Proposition 4.3.4. Fix 1 ≤ p < ∞. Let ((X,µ),R,Φ, V,Σ) be a dimensional tuple with

R ergodic and (X,µ) diffuse. For a measurable A ⊆ X, let ΣA be defined by σA,i(φ) =

σi(IdA)σi(φ)σi(IdA). Then

µ(A) dimΣA,`p(IdA V,RA) = dimΣ,`p(V,R)

µ(A)dimΣA,`p
(IdA V,RA) = dimΣ,`p(V,R)
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Proof. We will handle the case of dim only. Let SA = (aj)
∞
j=1 be a dynamically generating

sequence for VA. By ergodicity, we may find ψ1, · · · , ψk ∈ [[R]] with ψ1 = IdA, dom(ψj) = A

for 1 ≤ j ≤ k, dom(ψk) ⊆ A, and up to sets of measure zero,

X =
k⊔
j=1

ran(ψj).

Set Aj = ψj(A). Let S be an enumeration of (ψkaj)j,k.

We will first prove that dimΣ,`p(V,R) ≤ µ(A) dimΣA,`p(VA,RA) when µ(A) = 1/n.

It is easy to see that

dimΣAj ,`
p(IdAj V,RAj)

is independent of j. For T : V → `p(di), let TAj : VAj → `p(σ(IdAj)({1, · · · , di})) be given by

TAj(x) = σi(IdAj)T (x).

Fix ε′ > 0, and let ε > 0 depend upon ε′ in a manner to be determined later.

Given F ⊆ ΦA,m ∈ N, δ > 0, there is a F ′ ⊆ Φ,m′ ∈ N, δ′ > 0 so that T ∈

HomR,`p(S, F
′,m′, δ′, σi) implies TA ∈ HomR,`p(SA, F,m, δ, σi,A). If we choose F ′,m′, δ′ ap-

propriately and

αSA(HomRA,`p(SA, F,m, δ, σi,A)) ⊆ε,‖·‖p W,

then

αS(HomR,`p(S, F
′,m′, δ′, σi)) ⊆ε′,‖·‖p

{
n∑
k=1

σi(ψk)ξ : ξ ∈ W

}
.

Since
tr(σi(IdA))

di
→ 1

n
,

we find that

dimΣ,`p(V,R) ≤ 1

n
dimΣ,`p(VA,RA).

dimΣ,`p(V,R) ≤ 1

n
dimΣ,`p(VA,RA).
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We now show that dimΣ,`p(V,R) ≤ µ(A) dimΣA,`p(VA,RA) for general A (not necessarily

with µ(A) = 1/n). Fix F ⊆ [[R]] finite r ∈ N, δ > 0. Fix κ > 0 which will depend upon δ in

a manner to be determined. Let

F ′ ⊇ {ψ−1
i φψq : 1 ≤ i, q ≤ k, φ ∈ F}

Fix r′ ∈ N, δ′ > 0 which will depend upon r, δ in a manner to be determined shortly. Suppose

that T ∈ HomRA,`p(SA, F
′, r′, δ′, σi), define

T̃ (x) =
k∑
j=1

σi(ψi)T (ψ−1
i x).

Then

‖T̃‖ ≤M,

where M > 0 is some constant.

Choose C ⊆ {1, · · · , di} of cardinality at least (1 − δ′)di for T as in the definition of

HomRA,`p(SA, F
′, r′, δ′, σi). It is easy to see that if F ′, r′ are sufficiently large and δ′ is suffi-

ciently small, then

‖T (ψ−1
i φψqψ

−1
q al)− σi(ψ−1

i φψ−1
q )T (ψ−1

q al)‖`p(C) < κ.

We have

ψ−1
j φ =

k∑
q=1

ψ−1
j φψqψ

−1
q ,

hence

T (ψ−1
j φal) =

k∑
q=1

T (ψ−1
j φψqψ

−1
q al),

so ∥∥∥∥∥T (ψ−1
j φal)−

k∑
q=1

σi(ψ
−1
j φψq)T (ψ−1

q al)

∥∥∥∥∥
`p(C)

<
δ

k
,

if κ > 0 is sufficiently small. Since

k∑
i=1

ψjψ
−1
j φψq = φψq,
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for all sufficiently large i we can find a set C ′ ⊆ {1, · · · , di} of size at least (1− δ′)di so that

χC′
k∑
i=1

σi(ψ)σi(ψ
−1
j φψq) = χC′σi(φ)σi(ψq),

as elements of Mdi(C). Then∥∥∥T̃ (φal)− σi(φ)T (al)
∥∥∥
`p(C∩C′)

=

∥∥∥∥∥
k∑
i=1

σi(ψj)T (ψ−1
j φal)−

k∑
i=1

σi(φ)σi(ψj)T (ψ−1
j al)

∥∥∥∥∥
`p(C∩C′)

≤ δ +

∥∥∥∥∥ ∑
1≤j,q≤k

σi(ψj)σi(ψ
−1
j φψq)T (ψ−1

q al)−
k∑
q=1

σi(ψq)σi(ψq)T (ψ−1
j al)

∥∥∥∥∥
`p(C∩C′)

= δ.

Thus T̃ ∈ HomR,`p(S, F, r, δ, σi)M . Further, since ψ1 = IdA,

k∑
j=1

IdA ψjψ
−1
j = IdA,

so

σi(IdA)T̃ (aj) =
k∑
j=1

σi(IdA)σi(ψj)T (ψ−1
j aj),

hence σi(IdA)T̃ (aj) agrees with T (aj) on a set of size at least (1−ε)di if i is sufficiently large.

So, if W is a subspace of `∞(N, `p(di)) which ε-contains αS(HomR,`p(S, F, r, δ, σi)), then

σi(IdA)(W ) 2ε-contains αSA(HomRA,`p(SA, F
′, r′, δ′, σi)). This shows that

dimΣ,`p(IdA V,RA) ≤ 1

µ(A)
dimΣ,`p(V,R).

Note that this implies µ(A) dimΣA,`p(VA,RA) = dimΣ,`p(V,R) when µ(A) is rational. If

µ(A) is not rational, then since (X,µ) is diffuse we may find measurable An ⊆ A ⊆ Bn with

An increasing, Bn decreasing µ(An), µ(Bn) are rational and µ(An), µ(Bn)→ µ(A). Then by

considering compressions

1

µ(An)
dimΣ,`p(V,R) = dimΣAn ,`

p(VAn ,RAn) ≤ µ(A)

µ(An)
dimΣA,`p(VA,RA)
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1

µ(Bn)
dimΣ,`p(V,R) = dimΣBn ,`

p(VBn ,RBn) ≥ µ(Bn)

µ(A)
dimΣA,`p(VA,RA),

let n→∞ to complete the proof.

We now show that dimension is subadditive under exact sequences. Unfortunately, we

cannot handle superadditivity even in the case of direct sums, not even in the case of Hilbert

spaces. Unfortunately, the proof for superadditivity given in Theorem 3.3.7 does not carry

over to our setting. The difficulty is in getting a bound analogous to Lemma 3.3.3 for our

different version of approximate dimension.

Theorem 4.3.5. Let ((X,µ),R,Φ, V,Σ) be a dimensional tuple, and let W ⊆ V be a closed

R-invariant subspace. Then for every 1 ≤ p <∞, we have the following inequalities:

dimΣ,`p(V,R) ≤ dimΣ,`p(V/W,R) + dimΣ,`p(W,R),

dimΣ,`p(V,R) ≤ dimΣ,`p(V/W,R) + dimΣ,`p(W,R),

dimΣ,`p(V,R) ≤ dimΣ,`p(V/W,R) + dimΣ,`p(W,R).

Proof. Let S2 = (wj)
∞
j=1 be a dynamically generating sequence for W, and (aj)

∞
j=1 a dynami-

cally generating sequence for V/W. Let vj ∈ V be such that vj +W = aj, and ‖vj‖ ≤ 2‖aj‖.

Let S be the sequence

v1, w1, v2, w2, · · ·

we shall use S and the pseudonorms

‖T‖S1,i =
∞∑
j=1

1

2j
‖T (aj)‖,

‖T‖S2,i =
∞∑
j=1

1

2j
‖T (wj)‖,

‖T‖S,i =
∞∑
j=1

1

2j
‖T (wj)‖+

∞∑
j=1

1

2j
‖T (vj)‖

to do our calculation.
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Let ε > 0, and choose m ∈ N such that 2−m < ε. Let e ∈ F1 ⊆ Φ be finite, m ≤ m1 ∈ N

and δ1 > 0 to be determined later. By 3.2.8 choose 0 < δ < δ1, and F1 ⊆ E ⊆ Φ finite and

m1 ≤ k ∈ N so that if G is a Banach space and

T : VE,2k → G

has ‖T‖ ≤ 2, and

‖T
∣∣
W∩VE,2k

‖ < δ,

then there is a A : (V/W )F1,m1 → G with ‖A‖ ≤ 3, and

‖A(ψaj)− T (ψxj)‖ < δ1,

for all 1 ≤ j, k ≤ m1 and ψ ∈ (F1 ∪ F ∗1 ∪ {e})m1 .

By finite-dimensionality, we can find a F ′ ⊇ E, m′ ≥ 2k, and 0 < δ′ < δ1 so that if G is

a Banach space and T : VF ′,m′ → G has

‖T (ψxj)‖ ≤ δ′‖ψxj‖

for all 1 ≤ j ≤ m′, ψ ∈ (F ′ ∪ F ′∗ ∪ {Id})m′ then

‖T
∣∣
W∩VE,2k

‖ < δ.

Define Ξ: HomR,`p(S, F
′,m′, δ′, σi)→ HomR,`p(S2, F

′,m′, δ′, σi) by

Ξ(T ) = T
∣∣
WF ′,m′

.

Find

Θ: im(Ξ)→ HomR,`p(S, F
′,m′, δ′, σi)

so that

Ξ ◦Θ = Id .

Then

(T −Θ(Ξ(T ))(ψvj) = 0
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for all 1 ≤ j ≤ m′ and ψ ∈ (F1∪F ′1∪{id})m
′
. Thus our assumption implies that we can find

a A : (V/W )F1,m1 → `p(di) so that

‖T (ψxj)− A(ψaj)‖ < δ1

for all 1 ≤ j ≤ m1, ψ ∈ (F1 ∪ F ∗1 ∪ {Id})m1 , with ‖A‖ ≤ 3.

Thus whenever ψ ∈ (F1 ∪ F ∗1 ∪ {Id})m1 , and C ⊆ {1, · · · , di} we have

‖A(ψaj)− σi(ψ)A(aj)‖`p(C) ≤ 2δ1 + ‖T (ψxj)− σi(ψ)A(aj)‖`p(C),

so A ∈ HomR,`p(S1, F1,m1, 3δ1, σi)3. The rest follows as in Proposition 3.3.2.

4.4 Preliminary Results on Direct Integrals

Definition 4.4.1. Let (X,µ) be a standard measure space, and V = (Vx)x∈X a family of

Banach spaces. We say that V is measurable if there are sequences (v
(j)
x )x∈X,j∈N, (φ

(j)
x )x∈X,j∈N

with v
(j)
x ∈ Vx, φ(j)

x ∈ V ∗x satisfying the following properties

Property 1: x 7→ 〈v(j)
x , φ

(k)
x 〉x∈X is measurable for all j, k

Property 2: Span
‖·‖{v(j)

x : j ∈ N} = Vx for almost every x

Property 3: Span
wk∗{φ(j)

x : j ∈ N} = Vx∗ for almost every x

Property 4: x 7→ ‖
∑

j f(j)v
(j)
x ‖ is measurable for all f ∈ cc(N)

Property 5: x 7→ ‖
∑

j f(j)φ
(j)
x ‖ is measurable for all f ∈ cc(N)

It is a fact that if we are given properties 1− 3, then property 4 is actually equivalent to

property 5.

We define the set of measurable vector fields, Meas(X, V ) , to be all fields (vx)x∈X of

vectors in X such that vx ∈ Vx for all x and x 7→ 〈vx, φ(j)
x 〉 is measurable for all j ∈ N. Note
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that our axioms imply that

‖vx‖ = sup
f∈cc(N,Q[i]),∥∥∥∑j f(j)φ

(j)
x

∥∥∥<1

∣∣∣∣∣∑
j

f(j)〈vx, φ(j)
x 〉

∣∣∣∣∣ .
so that the norm of a measurable vector fields is a measurable function. We also define

Meas(X, V ∗) to be all fields of vectors (φx)x such that φx ∈ V ∗x for all x ∈ X and x 7→ 〈v(j)
x , φx〉

is measurable for all j ∈ N. As above ‖φx‖ is measurable. We leave it as an exercise to verify

that if v ∈ Meas(X, V ), φ ∈ Meas(X, V ∗) then x 7→ 〈vx, φx〉 is measurable.

For 1 ≤ p <∞, we define the Lp-direct integral of V denoted∫ ⊕p
X

Vx dµ(x)

to be all v ∈ Meas(X, V ) so that

‖v‖pp =

∫
X

‖vx‖p dµ(x) <∞.

Hölder’s inequality shows that
∫ ⊕p
X

Vx dµ(x) is a vector space.

Proposition 4.4.2. Let (X,µ) be a standard measure space and V a measurable field of

Banach spaces over X. Then for 1 ≤ p <∞,∫ ⊕p
X

Vx dµ(x)

is a separable Banach space. Further a sequence (w(j))∞j=1 in
∫ ⊕p
X

Vx dµ(x) has

Span{χAw(j) : A measurable, j ∈ N}

dense in
∫ ⊕p
X

Vx dµ(x) if and only if for almost every x, (w
(j)
x )∞j=1 spans a dense subspace.

Proof. Let v
(j)
x , φ

(j)
x be as in the definition of measurable vector field. We first prove com-

pleteness.

Suppose that w(n) in
∫ ⊕p
X

Vx dµ(x) has

∞∑
n=1

‖w(n)‖p <∞.
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Then, ∫
X

∞∑
n=1

‖w(n)
x ‖p dµ(x) ≤ lim inf

N→∞

∫
X

N∑
n=1

‖w(n)
x ‖p dµ(x)

≤

(
N∑
n=1

‖w(n)‖p

)p

≤

(
∞∑
n=1

‖w(n)‖p

)p

<∞.

So for almost every x, wx =
∑∞

n=1w
(n)
x is norm convergent in Vx. It is easy to see by

taking limits that w ∈ Meas(X, V ). By the same inequalities as above we also see that

∥∥∥∥∥w −
N∑
n=1

w(n)

∥∥∥∥∥
p

≤
∞∑

n=N+1

‖w(n)‖p → 0,

as N →∞, and this proves completeness.

For the second fact, first suppose that w(j) in
∫ ⊕p
X

Vx dµ(x) is such that Span{w(j)
x : j ∈ N}

is dense in Vx for almost every x ∈ X. Let v ∈
∫ ⊕p
X

Vx dµ(x) and ε > 0. then up to sets of

measure zero,

X =
⋃

f∈cc(N,Q[i])

{
x ∈ X :

∥∥∥∥∥
∞∑
j=1

f(j)w(j)
x − vx

∥∥∥∥∥ < ε

}
.

Thus by the usual arguments we can find a measurable f : X → cc(N,Q[i]) such that for

almost every x ∈ X, we have ∥∥∥∥∥
∞∑
j=1

f(x)(j)w(j)
x − vx

∥∥∥∥∥ < ε.

Let Fn be finite subsets of Q[i] which increase to Q[i], and so that 0 ∈ Fn for all n. For

n ∈ N, set

Xn = {x ∈ X : f(x)(j) = 0 for j ≥ n, f(x)(j) ∈ Fn for all j}.

If n is sufficiently large then, ∫
Xc
n

‖vx‖p dµ(x) < ε.
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Thus ∫
X

∥∥∥∥∥
∞∑
j=1

χXnf(x)(j)w(j)
x − vx

∥∥∥∥∥
p

dµ(x) < εp + ε,

and it is easy to see that
∞∑
j=1

χXnf(x)(j)w(j)
x

is a finite linear combination of elements of the form χAw
(j)
x . This proves one implication.

Conversely, suppose that χAw
(j)
x densely span

∫ ⊕p
X

Vx dµ(x), but that

A = {x ∈ X : w(j)
x does not densely span Vx}

has positive measure. Then there is a v ∈ Meas(A, V ) so that

d
(
vx, Span{w(j)

x }
)
≥ 1

for all x ∈ A. But we can find λ1, · · · , λk ∈ C, j1, · · · , jk ∈ N and sets A1, · · · , Ak so that∥∥∥∥∥v −
k∑
j=1

λjχAjw
(j)

∥∥∥∥∥
p

< 1/2.

Replacing Aj with A ∩Aj we may assume Aj ⊆ A. This clear implies that there is some

x ∈ A so that ∥∥∥∥∥v −
k∑
j=1

λjχAj(x)w(j)
x

∥∥∥∥∥
p

< 1/2,

and this is a contradiction.

If Vx,Wx are measurable fields of Banach spaces over (X,µ), and Tx : Vx → Wx are

bounded linear operators with

x 7→ (T (v))x ∈ Meas(X,W ) for all w ∈ Meas(W,X)

x 7→ ‖Tx‖Vx→Wx is in L∞

then we let

T =

∫ ⊕p
X

Tx dµ(x)
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denote the operator ∫ ⊕p
X

Vx dµ(x)→
∫ ⊕p
X

Wx dµ(x)

defined by

(T (v))x = Tx(vx) for all v ∈ Meas(X, V ).

Direct integrals arise naturally in the context of representations of equivalence relations.

Definition 4.4.3. Let (R, X, µ) be a discrete measure preserving equivalence relation,

and let x → Vx be measurable field of Banach spaces over X. A representation π of R on

V consists of bounded linear maps π(x, y) : Vy → Vx so that π(z, x)π(x, y) = π(z, y) for

x ∼ y ∼ z, π(x, x) = Id, and for each v ∈ Meas(X, V ), φ ∈ Meas(X, V ∗) we have that

(x, y)→ 〈π(x, y)vy, φx〉 is a measurable map R → C. We say that π is uniformly bounded if

there is a C > 0 so that ‖π(x, y)v‖ ≤ C for all (x, y) ∈ R, v ∈ Vy.

Note that if π is uniformly bounded, then for every 1 ≤ p < ∞, we get a uniformly

bounded action of R on
∫ ⊕p
X

Vx dµ(x) by

(φ · v)x = χran(φ)(x)π(x, φ−1(x))vφ−1(x).

Our work in this section has the following corollary which will allow us to work fiberwise

in the case of representations on measurable fields. This will be used quite heavily in Section

4.6.

Corollary 4.4.4. Let (R, X, µ) be a discrete measure-preserving equivalence relation, with

a representation π on a measurable field of Banach spaces x→ Vx. If w(j) ∈
∫ ⊕p
X

Vx dµ(x) is

bounded, then w(j) is dynamically generating if and only if for almost every x,

Span{π(x, y)w
(j)
y : y ∼ x}

‖·‖Vx
= Vx.

4.5 Computations for Lp(R, µ).

Here we prove that

dimΣ,`p(L
p(R, µ)⊕n,R) = dimΣ,`p(L

p(R, µ)⊕n,R) = n.
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We must take a different approach than the group case, as the operators defined there

will not fill up enough space if we use our different version of ε-dimension. Instead, we shall

take a more probabilistic approach.

Proposition 4.5.1. Fix 1 ≤ p <∞. Let νn be the uniform probability measure on {1, . . . , n}.

Let An ⊆ B(`p(n, νn)), be measurable, where νn is the uniform measure, and suppose that

lim inf
n→∞

(
vol(An)

vol(B(`p(n, νn))

)1/2n

≥ α.

Then there is a κ(α, ε, p) ≥ 0 with

lim
ε→0

κ(α, ε, p) = 1,

so that

lim inf
n→∞

1

n
dε(An, ‖ · ‖p) ≥ κ(α, ε, p).

Proof. If the claim is false, then there is a κ < 1, so that for every ε > 0,

κ > lim inf
i→∞

1

n
dε(An, ‖ · ‖p),

Then for all large n, we can find a subspace W ⊆ `p(n) with dim(W ) ≤ κn, and A ⊆ε W.

This implies that

A ⊆
⋃

B⊆{1,··· ,n},
|B|≤εn

((1 + ε) Ball(χBc(W )) + εBall(`p(Bc, νBc))× Ball(`p(B, νB)).

Since χBc(W ) has dimension at most κn, we can find a ε-dense subset of (1+ε) Ball(χBc(W ))

of cardinality at most
(

2+4ε
ε

)2κn
. Thus

vol((1 + ε) Ball(χBc(W )) + εBall(`p(Bc, νBc)) ≤(
2 + 4ε

ε

)2κn

vol(Ball(`p(Bc, νBc))(2ε)
2|Bc|.

So vol(A)
vol(Ball(`p(n,νn))

is at most∑
B⊆{1,··· ,di}
|B|≤εn

2|B
c|(ε)2(|Bc|−κn)(2 + 4ε)2κnvol(Ball(`p(Bc, νBc)) vol(Ball(`p(B, νB))

vol(Ball(`p(n, νn))
.
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We have that the above sum is

bεnc∑
r=0

2n−r(ε)2(n(1−κ)−r)(2 + 4ε)2κn

(
n

r

)
V (r, n, p)

where

V (r, n, p) =
r2r/p(n− r)2(n−r)/pΓ(1 + 2n

p
)

Γ(1 + 2r
p

)Γ(1 + 2n−2r
p

)n2n/p
.

By Stirling’s Formula we see that

V (r, n, p) ≤ C(p),

where C(p) is a constant which depends only on p.

Further if n is sufficiently large and ε < 1/2, then by Stirling’s Formula(
n

r

)
≤
(

n

bεnc

)
≤ A

(
n

bεnc

)bεnc(
n

n− bεnc

)n−bεnc
,

for some constant A > 0.

Putting this altogether, we have that

α ≤
√

2ε(1−κ)−ε(2 + 4ε)κ
(

1

ε

)ε(
1

1− ε

)1−ε

.

Since κ < 1, the right-hand side tends to zero as ε→ 0 so we have a contradiction.

Theorem 4.5.2. Let R be a sofic discrete measure-preserving equivalence relation on a

standard probability space (X,µ). For all 1 ≤ p ≤ 2, we have

dimΣ,`p(L
p(R, µ)⊕n,R) = dimΣ,`p(L

p(R, µ)⊕n,R) = n.

Proof. We shall present the proof when n = 1. Since our approach is probabilistic, it is not

hard to generalize the proof for general n.

Let Σ be a sofic approximation of R, and let Id ∈ Φ = Φ0 ∪ P , where Φ0 is a graphing

of R, and P is generating family of projections in L∞(X,µ). Let Id ∈ F ⊆ Φ be finite,

m ∈ N, δ > 0. We use S = (χ∆) to do our computation. It is clear that

dimΣ,`p(L
p(R, µ),R) ≤ 1,
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so it suffices to show that

dimΣ,`p(L
p(R, µ),R) ≥ 1.

Let

C = W ∗({vψpv∗ψ : ψ ∈ Fm, p ∈ P ∩ Fm}),

and let χB1 , · · · , χBr be the minimal projections in C. Let {A1, · · · , Aq} be a partition refining

{B1, · · · , Br}, which we will assume to be sufficiently fine in a manner to be determined later.

We may assume that Σ is eventually a homomorphism on W ∗({Aj}qj=1), there are Ej ⊆ [[R]],

OAj : = {(x, y) ∈ R : x ∈ Aj} =
⊔
ψ∈Ej

graph(ψ),

and that

Fm ⊆ E−1
1 + E−1

2 + · · ·+ E−1
q .

We may also assume that for every ψ ∈ Ej and for all large i, we have that dom(σi(ψ)) ⊆

σi(Aj).

Note that if f ∈ Lp(R, µ), then we can uniquely write

IdAj f =
∑
ψ∈Ej

fψχgraph(ψ),

where fψ ∈ Lp(dom(ψ), µ) and the sum converges in ‖ · ‖p. Fix η > 0, and let Fj ⊆ Ej be

finite and so that for all ψ ∈ Fm,

dist‖·‖2(ψ, Fm) < η.

Let νi be the uniform probability measure on {1, . . . , di}. For ξ ∈ `p(di, νi) define

T
(j)
ξ (f) =

∑
ψ∈Fj

Edom(ψ)(fψ)σi(ψ
−1)ξ,

where for a measurable A ⊆ X, and f ∈ L1(A, µ) we use

EA(f) =
1

µ(A)

∫
A

f dµ.
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Finally set

Tξ =

q∑
j=1

T
(j)
ξ (f).

We claim that if {A1, · · · , Aq} is sufficiently fine, and i is sufficiently large, then

µ({ξ ∈ Ball(`2(di, νi)) : ‖Tξ‖Lp→`p ≤ 2, for all 1 ≤ p ≤ 2})
µ(Ball(`2(di, νi)

→ 1. (4.2)

By interpolation it suffices to show that

µ({ξ ∈ Ball(`2(di, νi)) : ‖Tξ‖L1→`1 ≤ 2, )

µ(Ball(`2(di, νi)
→ 1,

µ({ξ ∈ Ball(`2(di, νi)) : ‖Tξ‖L2→`2 ≤ 2, )

µ(Ball(`2(di, νi)
→ 1,

Let us first do the `2 case. We have that

‖T (j)
ξ (f)‖2

2 ≤
∑
ψ∈Fj

|Edom(ψ)(fψ)|2‖σi(ψ)−1ξ‖2
2+

∑
φ 6=ψ∈Fj

|Edom(ψ)(fψ)E(dom(φ)(fφ)||〈σi(ψ)−1ξ, σi(φ)−1ξ〉| ≤

∑
ψ∈Fj

‖fψ‖2
2

µ(dom(ψ)
‖σi(ψ)−1ξ‖2

2+

∑
φ 6=ψ∈Fj

‖fψ‖2‖fφ‖2

µ(dom(ψ)1/2µ(dom(φ)1/2
|〈σi(ψ)−1ξ, σi(φ)−1ξ〉|.

Since

1

vol(Ball(`2(di, νi)

∫
Ball(`2(di,νi)

‖σi(ψ)−1ξ‖2
2 dξ ≤

| dom(σi(ψ)−1|
di

→ µ(dom(ψ)),

1

vol(Ball(`2(di, νi)

∫
Ball(`2(di,νi)

〈σi(ψ)−1ξ, σi(φ)−1ξ〉 dξ =
2n

2n+ 2
tr(σi(φ)σi(ψ))→ 0,

it follows by concentration of measure that P(‖T (j)
ξ ‖ ≤ 2 for all j)→ 1. If ‖T (j)(ξ)‖2 ≤ 2 for

all j, then

‖T (f)‖2
2 =

q∑
j=1

‖T (j)
ξ (IdAj f)‖2

2 ≤ 4

q∑
j=1

‖ IdAj f‖2
2 ≤ 4‖f‖2

2.
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For the `1-case, simply note that

‖T (j)
ξ (f)‖1 ≤

∑
ψ∈Fj

‖fψ‖1

µ(dom(ψ))
‖σi(ψ)−1ξ‖.

Since
1

vol(Ball(`2(di, νi)

∫
Ball(`2(di,νi)

‖σi(ψ)−1ξ‖1 dξ =

| dom(σi(ψ)−1)|
di

1

vol(Ball(`2(di, νi)

∫
Ball(`2(di,νi)

|ξ1|dξ ≤

| dom(σi(ψ)−1)|
di

(
1

vol(Ball(`2(di, νi)

∫
Ball(`2(di,νi)

|ξ1|2 dξ
)1/2

=

| dom(σi(ψ)−1)|
di

(
1

vol(Ball(`2(di, νi)

∫
Ball(`2(di,νi)

‖ξ‖2
2 dξ

)1/2

≤

| dom(σi(ψ)−1)|
di

→ µ(dom(ψ)).

So, again by concentration of measure

P({ξ : ‖T (j)
ξ ‖L1→`1 ≤ 2 for all j})→ 1.

If ‖T (j)
ξ ‖L1→`1 ≤ 2 for all j, it is again easy to see that ‖Tξ‖L1→`1 ≤ 1. Thus (4.2) holds.

Suppose φ ∈ Fm, by our choice of E1, · · · , Eq, we may write

φ =

q∑
j=1

∑
ψ∈Ej

cj,ψψ
−1,

where cj,ψ ∈ {0, 1}, further ∥∥∥∥∥∥φ−
q∑
j=1

∑
ψ∈Fj

cj,ψψ
−1

∥∥∥∥∥∥
2

2

< η2.

So

‖T (χgraph(φ))− σi(φ)T (χ∆)‖2 =

∥∥∥∥∥∥
 q∑

j=1

∑
ψ∈Fj

cj,ψσi(ψ)−1 − σi(φ)

 ξ

∥∥∥∥∥∥
2

.

As in Lemma 3.4.1,∫
S2di−1

∥∥∥∥∥∥
 q∑

j=1

∑
ψ∈Fj

cj,ψσi(ψ)−1 − σi(φ)

 ξ

∥∥∥∥∥∥
2

2

dξ =

∥∥∥∥∥∥
q∑
j=1

∑
ψ∈Fj

cj,ψσi(ψ)−1 − σi(φ)

∥∥∥∥∥∥
2

2
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and so for most ξ, ∥∥∥∥∥∥
 q∑

j=1

∑
ψ∈Fj

cj,ψσi(ψ)−1 − σi(φ)

 ξ

∥∥∥∥∥∥
2

< 2η,

by concentration of measure. Thus we have shown that

vol(αS(HomR,`p(S, F,m, δ, σi)2))

vol(Ball(`2(di, νi))
→ 1,

and since

inf
i

(
vol(Ball(`2(di, νi))

vol(Ball(`p(di, νi))

)1/2di

> 0,

we are done by the proceeding Lemma.

We can prove a nice fact in the case of the action of R on L2(R, µ) but we will need a

generalization of our previous volume packing Lemma.

Proposition 4.5.3. There is a function κ(α, ε) with

lim
ε→0

κ(α, ε) = 1

for all α which has the following property. Let di be a sequence of integers going to infinity,

and let Ai ⊆ Ball(`2(di)), and let pi be a projection on `2(di), so that tr(pi) converges. If

lim inf
i→∞

(
vol(Ai)

vol(Ball(`2(di)))

)1/di

≥ α,

then

lim inf
i→∞

1

di tr(pi)
dε(piAi, ‖ · ‖2) ≥ κ(α, ε).

Proof. If the claim is false, then we can find κ < 1, so that for every ε > 0 there are sets Ai

as in the proposition, and subspaces Vi ⊆ `2(di) with dim(Vi) ≤ κ tr(pi)di, so that piAi ⊆ε Vi.

This implies that

piAi ⊆
⋃

B⊆{1,··· ,di},
|B|≤εdi

[(1 + ε) Ball‖·‖2(χBc(Vi) + εBall(`2(Bc))]× Ball(pi`
2(B)).
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Let qi = tr(pi), q = lim qi, also let V (k) be the volume of the k-dimensional ball in `2(di).

Then we have

vol(piAi) ≤ vol[(1 + ε) Ball(piχBc(Vi) + εBall(`2(Bc))]V (dim(pi`
2(B))).

Let SB be a maximal ε-separated subset of (1 + ε) Ball(piχBc(Vi)), then

|SB| ≤
(

2 + 2ε

ε

)dim(piχBc (Vi))

≤
(

2 + 2ε

ε

)κqidi
.

Thus

vol(piAi) ≤
∑

B⊆{1,··· ,di},
|B|≤εdi

(
2 + 2ε

ε

)κqidi
(2ε)dim(pi`

2(Bc))V (dim(pi`
2(B)))V (dim(pi`

2(Bc))

≤
∑

B⊆{1,··· ,di},
|B|≤εdi

4κqidi2diqiεdi(1−κ)qiV (dim(pi`
2(B))V (dim(pi`

2(Bc)).

Thus

vol(piAi)

V (qidi)
≤

∑
B⊆{1,··· ,di},
|B|≤εdi

4κqidi2diqiεdi(1−κ)qi
V (dim(pi`

2(B))V (dim(pi`
2(Bc))

V (qidi)
.

Now

V (k) =
πk

k!
,

so by Stirling’s Formula there is a constant C > 0 so that

V (dim(pi`
2(B)))V (dim(pi`

2(Bc))

V (qidi)
≤ Cπεdi

(qidi)
qidieεdi

√
2πqidi

(qi − ε)(qi−ε)di
√

2π(qi − ε)di
.

Thus

lim inf
i→∞

(
vol(piAi)

V (qidi)

)1/di

≤ qq

(q − ε)q−εεε(1− ε)(1−ε) 4κq2qε(1−κ)q.
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Since vol(Ai) ≤ vol(piA)V ((1− qi)di) we have

α ≤ qq

(q − ε)q−εεε(1− ε)(1−ε) 4κq2qε(1−κ)q×

lim inf
i→∞

(
vol(qidi)V ((1− qi)di)

V (di)

)1/di

=
(1− q)1−q

(q − ε)q−εεε(1− ε)(1−ε) 4κq2qε(1−κ)q.

Letting ε→ 0, we obtain a contradiction.

Theorem 4.5.4. Let R be a discrete-measure preserving sofic equivalence relation on (X,µ).

Let H be a separable unitary representation of R such that the action of R on H extends to

the von Neumann algebra L(R). For any sofic approximation Σ of R, we have

dimΣ,`2(H,R) = dimΣ,`2(H,R) = dimL(R)(H).

Proof. We first show that

dimΣ,`2(H,R) ≥ dimL(R)(H).

Our hypothesis implies that as a representation of R,

H ∼=
∞⊕
j=1

L2(R, µ)qj,

with qj ∈ Proj(L(R)).

As in Theorem 4.5.2 we shall deal with the case that H = L2(R, µ)q for some q ∈

Proj(L(R)), it is easy to see that our proof generalizes.

Thus H is unitarily equivalent to a subrepresentation of L2(R, µ) so we may as well

assume that it is a subrepresentation of L2(R, µ). Let p be the projection onto H, we use

p̂ = pχ∆ to do our calculation. Fix a graphing Φ of R, and

σi : [[R]]→ [[Rdi ]],
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a sofic approximation. By Lemma 2.2.6 we may extend σi to an embedding sequence

σi : L(R)→Mdi(C).

By perturbing elements slightly, we may assume that pi = σ̃i(p) is a projection for all i. Let

Tξ be the operator constructed in the proof of Theorem 4.5.2. Fix F ⊆ Φ finite, m ∈ N, δ > 0.

We know that for every F ′ ⊆ Φ finite, m′ ∈ N, δ′ > 0 that

vol({ξ ∈ Ball(`2(di)) : Tξ ∈ HomR,`2({χ∆}, F,m, δ, σi)})
vol(Ball(`2(di))

→ 1,

and that Tξ(χ∆) is close to ξ.

It is easy to see that if F ′,m′, δ′ are chosen wisely then

HomR,`2({χ∆}, F ′,m′, δ′, σi))
∣∣
pL2(R,µ)

⊆ HomR,`2({p̂}, F,m, δ, σi),

and that Tξ(p̂) is close to pi. Thus the preceding proposition proves the lower bound.

For the upper bound, let S = (χ∆qj)
∞
j=1. Fix ε > 0, m ∈ N, it is easy to see that if F is

large, and δ > 0 is small enough then

{(T (χ∆q1), · · · , T (χ∆qm)) : T ∈ HomR,`p(S, F,m, δ, σi)} ⊆ε
m⊕
j=1

σi(qj) Ball(`2(di)),

as

tr(σi(qj)))→ τ(qj),

the desired upperbound is proved.

We close this section with a complete computation in the case of direct integrals of

finite-dimensional representations.

Proposition 4.5.5. Let (R,X, µ) be a discrete, measure-preserving equivalence relation.

Suppose that for some n ∈ N, |Ox| = n for almost for every x ∈ X. Let Vx be a measure-

field of finite dimensional vector spaces and π a representation of R on Vx. Then for all

1 ≤ p <∞, and for every sofic approximation Σ of R,

dimΣ,`p

(∫ ⊕p
X

Vx dµ(x),R
)

= dimΣ,`p

(∫ ⊕p
X

Vx dµ(x),R
)

=
1

n

∫
X

dim(Vx) dµ(x).
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Proof. We shall only handle the case when dim(Vx) is almost surely constant, say equal to

k. The general case will follow by more or less the same proof. Without loss of generality

Vx = Ck with the Euclidean norm and π(x, y) is a unitary for almost every (x, y) ∈ R. Let

α ∈ [R] be n-periodic and so that up to sets of measure zero,R = {(x, αj(x)) : 0 ≤ j ≤ n−1}.

Let

b(αjx) = π(x, αjx), x ∈ A, 0 ≤ j ≤ n− 1.

Then

b(αjx)b(αkx)−1 = π(αjx, αkx),

that is

b(y)b(x)−1 = π(y, x)

for x, y ∈ R.

Define T : Lp(X,µ,Ck)→ Lp(X,µ,Ck) by

(Tf)(x) = b(x)f(x).

For φ ∈ [[R]], we have

φ · (Tf)(x) = χran(φ)(x)π(x, φ−1x)b(φ−1x)f(φ−1x) = χran(φ)(x)b(x)f(φ−1x) =

T (f ◦ φ−1)(x).

Thus we may assume that π(x, y) = Id for all (x, y) ∈ R. Find A ⊆ X so that up to sets

of measure zero,

X =
n−1⊔
j=0

αj(A).

Let S = (ej⊗χA)nj=1, where v⊗ f(x) = f(x)v for f : X → C measurable and v ∈ Ck. Set

ρi(f) =
k∑
j=1

‖fj‖,

for f ∈ `∞(k, `p(di)). Fix Φ ⊆ [[R]] containing {Id, α, α2, · · · , αn−1} and a set P of projections

in L∞(A, µ) so that there is a sequence Pn of partitions of A in P so that Pn → Id . Without
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loss of generality, we may assume that for each n, σi is eventually a ∗-homomorphism on

W ∗(Pn, α) with tr(σi(Id))→ 1. Let Pn = {B1,n, · · · , Bmn,n}.

Fix ε > 0, and N ∈ N. Suppose F ⊆ Φ is finite, and contains {Id, α, α2, · · · , αn−1, IdA},

m ∈ N, δ > 0. It is easy to see that αS(HomR,`p(S, F,m, δ, σi)) is almost contained in

`p(σi(IdA){1, · · · , di})⊕k. Thus

dimΣ,`p(F,m, δ, ε, ρi) ≤ lim
i→∞

k tr(σi(IdA)

di
=
k

n
.

Define

Tξ,N : Lp(X,µ,Ck)→ `p(di)

by

Tξ,N(f) =
n−1∑
j=0

mN∑
k=1

(
1

µ(Bk,N)

∫
Bk,N

f ◦ αj dµ

)
σi(α)jσi(IdBk,N )ξ.

Simple estimates prove that

‖Tξ,N(f)‖pp ≤
n−1∑
j=0

m∑
k=1

(∫
αj(Bk,N )

|f |p dµ

)
‖σi(IdBk,N )ξ‖pp

µ(Bk)p
.

As

1

vol(Ball(`p(di, νi))

∫
Ball(`p(di,νi)

‖σi(IdBk,N )ξ‖p dµ = tr(σi(IdBk,N ))→ µ(Bk,N),

there are Ci ⊆ Ball(`p(di, νi) with lim infi
vol(Ci)

vol(Ball(`p(di,νi))
≥ 1/3, so that ‖Tξ,N‖ ≤ 2 if

ξ ∈ Ci.

For all large i,

Tξ,N(αf) = σi(α)Tξ(f).

Tξ,N(IdBk,N f) = σi(IdBk,N )Tξ,N(f)

thus if N is large enough Tξ,N ∈ HomR,`p(S, F,m, δ, σi) if ‖ξ‖p ≤ 1.

As

Tξ,N(χA) = σId(A)ξ,
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we have

αS(HomR,`p(S, F,m, δ, σi)) ⊇ {σId(A)ξ : ξ ∈ Ci}.

so

dimΣ,`p(L
p(X,µ,Ck),R) ≥ k

n
.

Corollary 4.5.6. Let (X,µ,R) be a discrete measure-preserving equivalence relation. Sup-

pose that Ox is infinite for almost every x. Let V be a measurable field of finite-dimensional

vector spaces with an action of R. Then for 1 ≤ p <∞, we have

dimΣ,`p

(∫ ⊕p
X

Vx dµ(x),R
)

= 0.

Proof. This is simple from the preceding proposition, since for every n ∈ N, there is a

subequivalence relation Rn ⊆ R, where Rn has orbits of size n for almost every x ∈ X (see

Proposition 2.1.24)

4.6 `p-Homology of Equivalence Relations

Let G be a locally finite graph. We let E(G) be the set of oriented edges of G, and E(G) the

set of unoriented edges of G, also we let V (G) be the set of vertices of G. If x, y ∈ V (G),

we let (x, y) be the oriented edge from x to y, and [x, y] be the unoriented edge between

x and y. We shall abuse notation and use CE(G) for all functions f : E(G) → C such that

f(x, y) = −f(y, x) for all (x, y) ∈ E(G). We let `p(E(G)) be the functions in CE(G)) so that

‖f‖pp =
∑

[x,y]∈E(G)

|f(x, y)|p <∞

(note |f(x, y)| does not depend on the orientation of [x, y]). Similar remarks apply for

cc(E(G)) and other function spaces.
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If (x, y) is an oriented edge in G, define Ex,y(u, v) = 0 if one of u, v is not x or y, 1 if

(u, v) = (x, y) and −1 if (u, v) = (y, x). If γ : {0, · · · , k} → V (G) is a path (i.e. for all

1 ≤ j ≤ k, (γ(j), γ(j)) ∈ E(G)) we think of γ as a an element of `p(E(G)) by having γ

correspond to
k∑
j=1

E(γ(j−1),γ(j)).

For f : E(G)→ C and γ a path as above, we define∫
γ

f =
k∑
j=1

f(γ(j − 1), γ(j)).

For a general graph G, define δ : CV (G) → CE(G)), ∂ : CE(G) → CV (G) by

δf(v, w) = f(w)− f(v)

(∂f)(v) =
∑

w∈V (G):(w,v)∈E(G)

f(w, v).

Then δ and ∂ are dual in the following sense: if f ∈ cc(E(G)), and g ∈ CV (G) then

〈∂f, g〉 = −〈f, δg〉

where

〈h, k〉 =
∑

[x,y]∈E(G)

h(x, y)k(x, y)

for h ∈ cc(E(G)), k ∈ CE(G), (again this is independent of orientation). Similarly if f ∈

CE(G), g ∈ cc(V (G)), then

〈g, ∂f〉 = −〈δg, f〉.

Let

B1(G) = Span{γ ∈ cc(E(G)) : γ is a loop}.

Z1(G) = {f ∈ cc(E(G)) : ∂f = 0}

Z1(G) =

{
f ∈ CE(G) :

∫
γ

f = 0 for all loops γ

}
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If f ∈ Z1(G) and v, w are vertices in G, and γ : {0, · · · , k} → V (G) is a path from v to w,

then ∫
γ

f

depends only on v and w since f integrates to zero along all loops. We will use∫
v→Gw

f,

for this number. Note that Z1(G) = {δGh : h ∈ CV (G)}. In fact, if f ∈ Z1(G), and (Gj)j∈J

are the connected components, then for fixed xj ∈ V (Gj)

h(v) =

∫
xj→Gv

f,

for v ∈ V (Gj) has δGh = f.

Define the space of `p-cocycles by

Z1
(p)(G) = Z1(G) ∩ `p(E(G)).

Define the space of `p-boundaries by

B
(p)
1 (G) = B1(G)

‖·‖p
.

If G′ ⊆ G is a subgraph we identify CE(G′) ⊆ CE(G) by extending by zero. This allows us

to make sense of all the function spaces above for G′ as subsets of CE(G).

Definition 4.6.1. Let (R, X, µ) be a discrete measure-preserving equivalence relation. A

measurable field of graphs fibered over R is a field {Φx}x∈X of graphs having vertex set Ox,

such that Φx = Φy for almost every (x, y) ∈ R, and
⋃
x∈X E(Φx) is a measurable subset of

R which intersects the diagonal in a set of measure zero.

We set E(Φ) =
⋃
x∈X E(Φx).

If Φ is a measurable field of graphs fibered over R, the cost of Φ by (originally defined

by Levitt in [19]) is defined by

c(Φ) =
1

2

∫
X

deg(x) dµ(x)
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where deg(x) is the degree of the vertex x. This is also

1

2
µ(E(Φ)).

We recall that the cost of R, as defined by Levitt is given by

c(R) = inf c(Φ)

where the infimum is over all measurable fields of graphs fibered over R which are connected

for almost every x. Many important properties of cost are discussed in [11]. In particular,

Gaboriau proves a formula for how cost behaves under compression.

For any Φ = (φj)j∈J , with J countable and φj ∈ [[R]], and for each x ∈ X, we de-

fine a graph whose vertices are Ox and whose oriented edges are {(u, v) : u ∼ x, v =

φ±1(u), for some φ ∈ Φ}. If Φx denotes the corresponding graph note that

c(Φ) =
∑
j∈J

µ(dom(φj)).

Note that Φx is connected almost everywhere if and only if Φ is a graphing, and in this case

c(Φ) Is simply the cost of Φ as previously defined. We leave it as an exercise to use the

measurable selection theorem (Theorem 2.1.18) to show that any measurable field of graphs

over X comes from a graphing of a subequivalence relation.

If x → Φx is a measurable field of graphs over X, let Lp(E(Φ))/B
(p)
1 (E(Φ)) be the Lp-

direct integral of the space `p(E(Φx))/B
(p)
1 (Φx). Note that R has a representation π on

`p(E(Φx))/B
(p)
1 (Φx), given by π(x, y) = Id for all (x, y) ∈ R.

We will show that if R has finite cost and satisfies a “finite presentation” assumption,

then dimΣ(Lp(E(Φ))/B
(p)
1 (E(Φ)),R) does not depend on the choice of finite cost graph Φ.

Definition 4.6.2. Let (X,µ,R) be a discrete measure-preserving equivalence relation. Let

Φ = (φj)j∈J be a graphing of R. We say that Φ is finitely presented if there are measurable

fields of loops (L(j))∞j=1 such that for almost every x ∈ X,

Span{L(j)
y : y ∼ x, j ∈ N} = B1(Φx),
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and
∞∑
j=1

µ(suppL(j)) <∞.

We say that R is finitely presented if it has a finitely presented graphing. For example, if

R is a induced by a free action of a finitely presented group, then R is finitely presented.We

will proceed to show that if R is finitely presented, then in fact every graphing is finitely

presented. It may be useful to consider the group analogue first.

Suppose Γ = 〈s1, · · · , sn|r1, r2, · · · , rm〉 is a finitely presented group. And suppose that

t1, · · · , tk also generate Γ. Choose words wi in t1, · · · , tk so that

wi(t1, · · · , tk) = si

and choose words vi in s1, · · · , sn so that

ti = vi(s1, · · · , sn).

Set

σi = ri(w1, · · · , wn),

ηi = vi(w1, · · · , wn),

then one can show that

Γ = 〈t1, t2, · · · , tk|σ1, · · · , σm, η1t
−1
1 , η2t

−1
2 , · · · , tka−1

k 〉.

Graphically, choosing words wi, vi as above corresponds to finding a path in Cay(Γ, {t1, · · · , tk})

from e to si and vice versa. So we will simply express the above proof in the language of

graphs and this will allow us to generalize to the case of equivalence relations.

Lemma 4.6.3. Let G,G′ be two connected locally finite graphs with the same vertex set.

Choose paths {σy,z}(y,z)∈E(G) in G′ from y to z such that σyz = −σzy. Similarly, choose paths

{γv,w}(v,w)∈E(G′) in G from v to w such that γvw = −γwv. Suppose that {Lj : j ∈ J} is a

family of loops in G so that

B1(G) = Span{Lj : j ∈ J}.
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Define T : cc(E(G))→ cc(E(G′)), by

Tf =
∑

[y,z]∈E(G)

f(y, z)σyz,

Then

B1(G′) = Span{T (Lj) : j ∈ J}+ Span{T (γv,w)− E(v,w) : (v, w) ∈ E(G′)}.

Proof. Note that

cc(E(G)) =
⋃

F⊆E(G) finite

cc(F ),

give cc(E(G)) the direct limit topology with respect to this filtration. That is, if fn ∈

cc(E(G)) then a sequence fn ∈ cc(E(G)) converges to f ∈ cc(E(G)) if and only if there is a

finite subset F ⊆ E(G) so that supp{fn} ⊆ F for all n and fn → f pointwise. It is easy to

see that every subspace of cc(E(G)) is closed in this topology, and that cc(E(G))∗ = CE(G)

with respect to the pairing

〈f, g〉 =
∑

[y,z]∈E(G)

f(y, z)g(y, z)

(the above sum being independent of the orientation of edges).

Let g ∈ CE(G′) be such ∫
T (Lj)

g = 0, g(v, w) =

∫
(T (γv,w))

g.

Note that the topological vector space adjoint

T t : CE(G′) → CE(G),

is given by

T tf(y, z) =

∫
σyz

f,

Thus ∫
Lj

T tg =

∫
T (Lj)

g = 0,
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for all j. As the Lj span B1(G), This implies that there is a h : V (G) → C such that

δGh = T tg. Note that for all (v, w) ∈ E(G′),

h(w)− h(v) =

∫
γvw

T tg =

∫
T (γv,w)

g = g(v, w).

Therefore,

δG′h = g.

This implies that g ∈ Z1(G′). As Z1(G′) is the annihilator of B1(G), and cc(E(G)) is a

locally convex space, the Hahn-Banach Theorem now completes the proof.

Lemma 4.6.4. Let (R, X, µ) be a discrete measure-preserving equivalence relation, if R is

finitely presented then every finite cost graphing of R is finitely presented.

Proof. Let Φ be finitely presented and let L(j) be as in the definition of finitely presented.

By measurable selection, (Theorem 2.1.18 ) we may let (Ek)k∈K be a countable family of

partially defined measurable functions from X to X with the following properties:

1: E(Φ) =
⋃
k∈K{(x, Ek(x)) : x ∈ dom(Ek)} ∪ {(Ek(x), x) : x ∈ dom(Ek)}

2: for all j, k {(x, Ej(x)) : x ∈ dom(Ej)} ∩ {(Ek(x), x) : x ∈ dom(Ek)} = ∅

3: for all j 6= k,{(x, Ej(x)) : x ∈ dom(Ej)} ∩ {(x, Ek(x)) : x ∈ dom(Ek)} = ∅

By measurable selection, we may choose each k ∈ K, a measurable path σ
(k)
x in Ψ so that

for almost every x, σ
(k)
x is a path from x to Ek(x). Define

Tx : cc(E(Φx))→ cc(E(Ψx))

by

Txf =
∑
y∼x

∑
k∈K:y∈dom(Ek)

f(y, Ek(y))σ(k)
y .

Then Tx = Ty if y ∼ x. Let (Dα)α∈A be a countable family of partially defined measurable

functions from X to X in Ψ following properties:
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1: E(Ψ) =
⋃
k∈A{(x,Dk(x)) : x ∈ dom(Dk)} ∪ {(Dk(x), x) : x ∈ dom(Dk)}

2: for all j, k {(x,Dj(x)) : x ∈ dom(Dj)} ∩ {(Dk(x), x) : x ∈ dom(Ek)} = ∅

3: for all j 6= k,{(x,Dj(x)) : x ∈ dom(Dj)} ∩ {(x,Dk(x)) : x ∈ dom(Dk)} = ∅

Let γ
(α)
x be a measurable family of paths in Φ so that for almost x, γ

(α)
x is a path from

x to Dα(x). From the preceding lemma, it then follows that (TxL
(j)
x )∞j=1, (Tx(γ

(α)
x )−E

(x,D(α)
x )

)

is a measurable family of loops in Ψx and

Span{{TyL(j)
y : j ∈ N, y ∼ x} ∪ {(Ty(γ(α)

y )− E
(y,D(α)

y )
) : y ∼ x, α ∈ A} = B1(Ψx),

(note that to apply the preceding Lemma we need to use that TxL
(j)
y = TyL

(j)
x , and similarly

for γ
(α)
y ).Further, ∑

j

µ(suppT (L(j))) ≤
∞∑
j=1

µ(suppL(j)) <∞,

∑
α

µ(supp(T (γ(α))− E(·,Dα(·)))) ≤ c(Ψ) <∞.

We now proceed to prove that dimΣ,`p(L
p(E(Φ))/B

(p)
1 (Φ),R) does not depend upon the

choice of finite cost graphing when R is finitely presented. Our methods are similar to

Gaboriau’s in [12]. We must be more careful, however, since we do not have monotonicity

of our dimension. We will need the following “Continuity Lemma.”

Lemma 4.6.5. Fix 1 ≤ p, q < ∞. Let (R, X, µ) be a sofic, discrete, measure-preserving

equivalence relation, with R finitely presented. If Φ is a finite cost graphing of R, and Φ(n)

is an increasing sequence of subgraphs of R so that

Φx =
∞⋃
n=1

Φ(n)
x

for almost every x, then

dimΣ,`q(L
p(E(Φ(n)))/B

(p)
1 (Φ(n)),R)→ dimΣ(Lp(E(Φ))/B

(p)
1 (Φ),R),
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dimΣ,`q(B
(p)
1 (E(Φ))/B

(p)
1 (Φ(n)),R)→ 0,

dimΣ,`q(L
p(E(Φ(n)))/B

(p)
1 (Φ(n)),R)→ dimΣ(Lp(E(Φ))/B

(p)
1 (Φ),R),

dimΣ,`q(B
(p)
1 (E(Φ))/B

(p)
1 (Φ(n)),R)→ 0.

Proof. Let E : Lp(E(Φ(n))) → Lp(E(Φ)) be defined by extension by zero. It is easy to see

that E descends to a well-defined map, still denoted E

Lp(E(Φ(n)))/B
(p)
1 (Φ(n))→ Lp(E(Φ))/B

(p)
1 (Φ).

By subadditivity under exact sequences, and the fact that E is surjective,

dimΣ,`q(L
p(E(Φ))/B

(p)
1 (Φ),R) ≤ dimΣ,`q(imE),R) + dimΣ,`q([L

p(E(Φ))/B
(p)
1 (Φ)]/imE,R),

≤ dimΣ,`q(L
p(E(Φ(n)))/B

(p)
1 (Φ(n)),R)

+ dimΣ,`q([L
p(E(Φ))/B

(p)
1 (Φ)]/imE,R),

where in the last line we use that dim is decreasing under equivariant maps with dense image.

It is easy to see that there is a R-equivariant map

Lp(E(Φ \ Φ(n)))→ [Lp(E(Φ(n)))/B
(p)
1 (Φ(n))]/imE

with dense image. Thus

dimΣ,`q(L
p(E(Φ))/B

(p)
1 (Φ),R) ≤ dimΣ,`q(L

p(E(Φ(n)))/B
(p)
1 (Φ(n)),R)

+ c(Φ \ Φ(n)).

Since Φ(n) increasing to Φ, and c(Φ) <∞, we know that

c(Φ \ Φ(n)) =
1

2
µ(E(Φ) \ E(Φ(n)))→ 0.

Thus,

dimΣ,`q([L
p(E(Φ))/B

(p)
1 (Φ)]/imE,R) ≤ lim inf

n→∞
dimΣ,`q(L

p(E(Φ(n)))/B
(p)
1 (Φ(n)),R).
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For the opposite inequality, consider the restriction map

R : Lp(E(Φ))→ Lp(E(Φ(n))),

then R descends to an surjective R-equivariant map (still denoted R)

Lp(E(Φ))/B
(p)
1 (Φ(n))→ Lp(E(Φ))/B

(p)
1 (Φ(n)).

Thus

dimΣ,`q(L
p(E(Φ))/B

(p)
1 (Φ(n)),R) ≤ dimΣ(Lp(E(Φ))/B

(p)
1 (Φ(n)),R).

Considering the exact sequence

0 −−−→ B
(p)
1 (Φ)

B
(p)
1 (Φ(n))

−−−→ Lp(Φ)

B
(p)
1 (Φ(n))

−−−→ Lp(Φ)

B
(p)
1 (Φ)

−−−→ 0,

we find that

dimΣ,`q(L
p(E(Φ))/B

(p)
1 (Φ(n)),R) ≤ dimΣ,`q

(
B

(p)
1 (Φ)

B
(p)
1 (Φ(n))

,R

)

+ dimΣ,`q

(
Lp(E(Φ))

B
(p)
1 (Φ)

,R

)
.

So it suffices to prove the second limiting statement. Since R is finitely presented, by

the preceding lemma we can find measurable fields of loops (L(j))∞j=1 which generate B
(p)
1 (Φ)

and so that
∞∑
j=1

µ(suppL(j)) <∞.

Since

dimΣ,`q(B
(p)
1 (E(Φ))/B

(p)
1 (Φ(n)),R) ≤

∞∑
j=1

µ({x : L(j)
x is not supported in Φ(n)

x })

and

µ({x : L(j)
x is not supported in Φ(n)

x })→ 0,

µ({x : L(j)
x is not supported in Φ(n)

x }) ≤ µ(suppL(j)),
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the Dominated Convergence Theorem implies that

dimΣ,`q(B
(p)
1 (Φ)/B

(p)
1 (Φ(n)),R)→ 0,

as desired.

Theorem 4.6.6. Fix 1 ≤ p, q < ∞. Let (R, X, µ) be a sofic, discrete, measure-preserving

equivalence relation with R finitely presented and of finite cost. Let Φ,Ψ be two finite cost

graphings of R. Then

dimΣ,`q(L
p(E(Φ))/B

(p)
1 (Φ),R) = dimΣ,`q(L

p(E(Ψ))/B
(p)
1 (Ψ),R),

dimΣ,`q(L
p(E(Φ))/B

(p)
1 (Φ),R) = dimΣ,`q(L

p(E(Ψ))/B
(p)
1 (Ψ),R),

Proof. Let Φ = (φj)
∞
j=1. Let Φ

(n)
x ,Ψ

(nm)
x be the subgraphs defined by

E(Φ(n)
x ) = {(y, φ±1

j (y)) : 1 ≤ j ≤ n, y ∈ dom(φ±1
j ), y ∼ x}

E(Ψ(n,m)
x ) = {(y, z) ∈ E(Ψx) : d

Φ
(n)
x

(y, z) ≤ m},

here d
Φ

(n)
x

is the graph distance defined as the infimum over all k so that there exists

x0, x1, . . . , xk ∈ V (Φ
(n)
x ), x0 = y, xk = z, (xj−1, xj) ∈ E(Φ

(n)
x ) for all 1 ≤ j ≤ n.

Note that if γyz, γ
′
y,z are two paths from y to z in Φ(n), then their difference is a loop in

Φ(n). Thus for (y, z) ∈ E(Ψ
(n,m)
x ) we have a well-defined element σyz of `p(E(Φ(n))x)/B

(p)
1 (Φ

(n)
x )

given as the equivalence class of any path from y to z in Φ(n).

Then for each n,m we have a well-defined bounded linear map with Tx (whose norm is

bounded uniformly in x)

Tx : `p(E(Ψ(n,m)
x ))/B

(p)
1 (Ψ(n,m))→ `p(E(Φ(n)

x ))/B
(p)
1 (Φ(n))

by

Txf =
∑

[y,z]∈E(Φ(n))

f(y, z)σyz,
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Let

T =

∫ ⊕
X

Tx dµ(x).

It is straightforward to check that Tx = Ty for almost every (x, y) ∈ R so that T is an R-

equivariant map

Lp(E(Ψ(n,m)))/B
(p)
1 (Ψ(n,m))→ Lp(E(Φ(n)))/B

(p)
1 (Φ(n)).

By subadditivity of dim under exact sequences, and the fact that dim decreases under

bounded, linear, equivariant maps with dense image,

dimΣ,`q(L
p(E(Φ(n)))/B

(p)
1 (Φ(n)),R) ≤ dimΣ,`q(imT ,R)

+ dim(Lp(E(Φ(n)))/B
(p)
1 (Φ(n))/imT ,R)

≤ dimΣ,`q(L
p((EΨ(n,m)))/B

(p)
1 (Ψ(n,m)),R)

+ dimΣ,`q(L
p(E(Φ(n)))/B

(p)
1 (Φ(n))/imT ,R).

Now suppose that x ∼ y ∼ z in X, and y, z are in the same connected component in

Ψ
(n,m)
x . Then we can find x1, · · · , xn with y = x1, xn = z which are adjacent and

σyz =
n−1∑
i=1

σxixi+1
x ,

is a path from y to z in Bx. Further, if σyz is any other such path, then again there difference

is a loop, so σyz represents a well-defined element in im(T ). Let

Y (n)
x = Span

‖·‖p{σyz : y, z are connected in Ψ(n,m)
x },

Y (n) =

∫ ⊕p
X

Y (n)
x dµ(x).

Then

dimΣ(Lp(E(Φ(n)))/B
(p)
1 (Φ(n))/imT ,R) ≤ dimΣ(Lp(E(Φ(n)))/B

(p)
1 (Φ(n))/Y (n),R).

Now let V
(n)
x ⊂ `p(GB

x ) be defined by

V (n)
x = Span

‖·‖p{γyz : γyz is a path from y to z in Φ
(n)
x , y, z connected in Ψ

(n,m)
x },
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V (n) =

∫ ⊕p
X

V (n)
x dµ(x)

Then we have a surjective equivariant map

Lp(E(Φ(n)))/V (n) → (Lp(E(Φ(n)))/B
(p)
1 (Φ(n))/Y (n),

so

dimΣ(Lp(E(Φ(n)))/B
(p)
1 (Φ(n))/Yn,R) ≤ dimΣ(Lp(E(Φ(n)))/V (n),R).

Let (Ej)
∞
j=1 be disjoint edges generating Lp(E(Φ(n))) such that

∞∑
j=1

µ(supp(Ej)) = c(Φ(n)).

Writing E
(j)
x = (f(x), g(x)). Then

dimΣ,`q(L
p(E(Φ(n)))/V (n),R) ≤

∞∑
j=1

µ({x ∈ supp(Ej) : (f(x), g(x)) /∈ C(Ψ(m,n)
x )})

= c(Φ(n) \ C(Ψ(n,m)))

where

C(Ψ(n,m)) = {(y, z) ∈ R : y is connected to z in Φ(n)
x }.

Putting this altogether we have

dimΣ,`q(L
p(E(Φ(n)))/B

(p)
1 (Φ(n)),R) ≤ dimΣ,`q(L

p(Ψ(n,m))/B
(p)
1 (Ψ(n,m)),R)

+ c(Φ(n) \ C(Ψ(n,m))),

choose an increasing sequence of integers mn so that

c(Ψx ∩ C(Φ(n))) \Ψ(n,mn))→ 0

c([Φ(n) \ C(Ψx ∩ C(Φ(n)
x ))] \ [Φ(n) \ C(Ψ(n,mn))])→ 0.
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Then Ψ(n,mn) increases to Ψ, and it is easy to see that

c(Φ(n) \ C(Ψ(n,mn)))→ 0.

Thus letting n→∞ and applying the preceding lemma we find that

dimΣ,`q(L
p(E(Φ))/B

(p)
1 (Φ),R) ≤ dimΣ,`q(L

p(E(Ψ))/B
(p)
1 (Ψ),R)

the proposition now follows by symmetry.

Definition 4.6.7. Let (X,µ,R) be a sofic, discrete, measure-preserving equivalence rela-

tion, with R finitely presented and of finite cost, and let Σ be a sofic approximation of

R. By the above Theorem, the number c
(p)
1,Σ(R) = dimΣ,`p(L

p(E(Φ))/B
(p)
1 (Φ),R) is inde-

pendent on the choice of a finite cost graphing Φ. Similar remarks apply to c
(p)
1,Σ(R) =

dimΣ,`p(L
p(E(Φ))/B

(p)
1 (Φ),R).

It is easy to see that c
(p)
1 (R) ≤ c(R). By Theorem 4.5.4, if R has infinite orbits we then

have

β
(2)
1 (R) + 1 = c

(2)
1,Σ(R) = c

(2)
1,Σ(R) ≤ c(R).

In [12], Gaboriau asked the following question “is c(R) = β
(2)
1 (R) + 1?” (see [12] page

129). If we can find an example where

c
(p)
1,Σ(R) > c

(2)
1,Σ(R)

for some 1 < p <∞, this would automatically produce a counterexample to this conjecture.

Theorem 4.6.8. Let (X,µ,R) be a ergodic, finitely presented, sofic, discrete, measure-

preserving equivalence relation, and let Σ be a sofic approximation of R. Let A ⊆ R, and

define σi,A : L(RA)→Mdi(C) by σi,A(x) = σi(IdA)σi(x)σi(IdA). Then

µ(A)(c
(p)
1,ΣA

(RA)− 1) ≥ c
(p)
1,Σ(R)− 1.
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Proof. Let Ψ be a graphing of RA. Let n ∈ N ∪ {0} be such that nµ(A) ≤ 1 < (n+ 1)µ(A).

By ergodicity, we may find A = A1, A2, · · · , An essentially disjoint measurable sets such that

there exists φi ∈ [[R]], 1 ≤ i ≤ n with dom(φi) = A, ran(φi) = Ai, 1 ≤ i ≤ n, and a A′ ⊆ A

such that there is φn+1 ∈ [[R]] with dom(φn+1) = A′, and

ran(φn+1) = X \
n⋃
j=1

Aj.

Let Φ = Ψ ∪ {φj}n+1
j=1 . We use Lp(E(Ψ

∣∣
A

)), B
(p)
1 (Ψ

∣∣
A

), for∫ ⊕p
A

`p(E(Ψ)x) dµ(x),

∫ ⊕p
A

B
(p)
1 (Ψx) dµ(x),

and Lp(E(Ψ)), B
(p)
1 (Ψ), for ∫ ⊕p

X

`p(E(Ψ)x) dµ(x),∫ ⊕p
X

B
(p)
1 (Ψx) dµ(x).

Then

χAL
p(E(Ψ)) = Lp(E(Ψ|A)),

χAB
(p)
1 (Ψ) = B

(p)
1 (Ψ

∣∣
A

),

and

B
(p)
1 (Φ) = B

(p)
1 (Ψ).

Considering the exact sequence

0 −−−→ Lp(E(Φ \Ψ)) −−−→ Lp(E(Φ))

B
(p)
1 (Ψ)

−−−→ Lp(E(Ψ))

B
(p)
1 (Φ)

−−−→ 0,

we have

c
(p)
1,Σ(R) ≤ c(Φ \Ψ) + dimΣ,`p(L

p(E(Ψ))/B
(p)
1 (Φ),R)

= 1− µ(A) + dimΣ,`p(L
p(E(Ψ))/B

(p)
1 (Φ),R).
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By Proposition 4.3.4, we thus have

c
(p)
1,Σ(R) ≤ 1− µ(A) + µ(A) dimΣA,`p(L

p(E(Ψ
∣∣
A

))/B
(p)
1 (Ψ

∣∣
A

),RA)

= 1− µ(A) + µ(A)c
(p)
1,ΣA

(RA).

Rearranging proves the inequality.

Let (R, X, µ) be an ergodic, discrete, measure-preserving equivalence relation. We let

F(R) be the set of all t ∈ R so that there exists measurable subsets A and B of X with

t =
µ(A)

µ(B)

and

RA
∼= RB.

Then F(R) is a subgroup of the positive reals. We call F(R) the fundamental group of R.

Corollary 4.6.9. Let (X,µ,R) be a sofic, ergodic, finitely presented, discrete, measure-

preserving equivalence relation. If for some p we have

inf
Σ
c

(p)
1,Σ(R) > 1,

where the infimum is over all sofic approximations, then the fundamental group of R is

trivial.

We will deduce more about c
(p)
1,Σ(R) in the non-amenable case, but we will first need to

discuss the discrete Hodge decomposition for amenable graphs.

Let G be a countably infinite connected graph of uniformly bounded degree. Since G is

infinite, δ is always injective. We say that G is amenable if for some 1 ≤ p < ∞, we have

δ(`p(V (G)) is a closed subspace of `p(E(G)). Equivalently, there is some C > 0 so that

‖δf‖p ≥ C‖f‖p.
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Note that if p is as above, then for all 1 < q <∞, we have δ(`q(G)) is closed in `q(E(G)).

If δ(`q(G)) were not closed, then we could find fn ∈ `q(G) of norm one so that ‖δfn‖q → 0.

We can argue as in Lemma 3.8.1.

By duality G is amenable if and only if ∂ is surjective as an operator from `p(E(G)) →

`p(V (G)) for some 1 < p <∞, and this is also equivalent to saying that ∂ is surjective as an

operator from `p(E(G))→ `p(V (G)) for all 1 < p <∞. For notation we let ∆ = ∂ ◦ δ.

Proposition 4.6.10. Let G be an infinite amenable graph of uniformly bounded degree, then

∆ is invertible as an operator from `p(V (G))→ `p(V (G)) for all 1 < p <∞.

Proof. Let d(x) be the degree of x, and let Md be the operator on `p(V (G)) given by multi-

plication by d. Define

Af(x) =
1

d(x)

∑
y:[x,y]∈E(G)

f(y),

and note that ∆ = Md(A− Id).

Regard d as a measure on V (G), then since G has uniformly bounded degree we know

that

`p(V (G)) = `p(V (G), d)

with equivalent norms. Regard δ as an operator from `p(V (G), d) → `p(E(G)) and let −∂d

be its adjoint, also let ∆d = ∂d ◦ δ. Since

〈δf, g〉`p(E(G)) = −〈f, ∂g〉`p(V (G)) = −〈f,MdMd−1∂g〉`p(V (G)) =

−〈f,Md−1∂g〉`p(V (G),d),

we find that ∂d = Md−1∂, so

∆d = Md−1∆ = A− Id,

hence it suffices to show that ∆d is invertible for all 1 < p < ∞ as an operator from

`p(V (G), d)→ `p(V (G), d).

Let ε > 0 be such that ‖δf‖`2(E(G)) ≥ ε‖f‖`2(V (G),d), then

ε2 ≤ −∆d,
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as an operator on `2(V (G), d). Since −∆d = 1−A, this implies that A ≤ 1−ε2 as an operator

on `2(V (G), d).

Thus

|〈Af, f〉`2(V (G),d)| ≤ 〈A|f |, |f |〉`2(V (G),d) ≤ (1− ε2)‖f‖2
2.

Since A is a self-adjoint operator, this implies that ‖A‖`2(V (G),d)→`2(V (G),d) < 1. Since

‖A‖`1(V (G),d)→`1(V (G),d) ≤ 1, ‖A‖`∞(V (G),d)→`∞(V (G),d) ≤ 1, by interpolation we find that there

is a Cp < 1 so that

‖A‖`p(V (G),d)→`p(V (G),d) ≤ Cp.

Thus ∆d is invertible on `p for 1 < p <∞ as desired.

Corollary 4.6.11 (Discrete Hodge Decomposition). Let G be an infinite non-amenable graph

of uniformly bounded degree, then for every 1 < p <∞ we have the direct sum decomposition

`p(E(G)) = Z
(p)
1 (G)⊕B1

(p)(G).

A projection onto B1
(p)(G) relative to this decomposition may be given by δ ◦∆−1 ◦ ∂.

To apply this to the case of equivalence relations, we prove the following Lemma.

Lemma 4.6.12. Let (X,µ,R) be a finite cost discrete measure-preserving equivalence rela-

tion with Ox infinite for almost every x. The following are equivalent

(i) There is a finite subset Φ ⊆ [[R]], such that for almost every x, every connected

component of the graph Φx is not amenable,

(ii) for every R-invariant measurable A ⊆ X with µ(A) > 0 we have RA is not amenable,

(iii) for every A ⊆ X with µ(A) > 0 we have that RA is not amenable.

Proof. It is clear that (iii) implies (ii).

The fact that (ii) implies (i) is the content of Lemma 9.5 in [17].
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Suppose (iii) fails and (i) holds. Let A with µ(A) > 0 be such that RA is amenable, let

B be the R-saturation of A. Since (i) holds, we know that

Cx = inf
f∈`1(Ox),
‖f‖1=1

‖δΦxf‖1 > 0,

for almost every x ∈ X and is constant of equivalence classes. Thus replacing A with a

subset, we may assume that there is a C > 0 so that

‖δΦxf‖1 ≥ C‖f‖1,

for all x ∈ B.

Since RA is amenable, we may find measurable fields of vectors ξ
(n)
x ∈ `1(Ox ∩A) so that

‖ξ(n)
x ‖1 = 1, and ‖ξ(n)

x − ξ(n)
y ‖1 → 0 for (x, y) ∈ RA. Let {φj}j∈J ⊆ [[R]] with J countable be

such that {ran(φj)}j∈J is a disjoint family, dom(φj) ⊆ A, and

B =
⋃
j∈J

ran(φj).

Define λ
(n)
x ∈ Meas(`1(Ox) for x ∈ X by λ

(n)
x = ξ

(n)

φ−1
j (x)

if x ∈ B and j is such that

x ∈ ran(φj), and λ
(n)
x = 0 for x /∈ B.

Define ζ(n) ∈ Meas(`1(Ox)), by ζ
(n)
x (y) = λ

(n)
y (x). Then∫

X

‖δΦxζ
(n)
x ‖1 dµ(x) ≤

∫
B

∑
φ∈Φ

‖λ(n)
y − λ

(n)
φ(y)‖1χdom(φ)(y), dµ(y),

and since Φ has finite cost, this goes to zero by the Dominated Convergence Theorem. But

on the other hand,∫
X

‖δΦxζ
(n)
x ‖1 dµ(x) ≥ C

∫
X

‖ζ(n)
x ‖1 dµ(x) = C

∫
R
|λ(n)
x (y)| dµ(x, y) = Cµ(B),

which is a contradiction.

If Φ is a graphing of R, we may define the `p-cohomology space of R as the direct integral

of Z
(p)
1 (Φx)/B

(p)
1 (Φx) and we denote it by H

(p)
1 (Φ). We set β

(p)
1,Σ(φ) = dimΣ,`p(H

(p)
1 (Φ),R),

β(p)

1,Σ
(φ) = dimΣ,`p(H

(p)
1 (Φ),R).
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Corollary 4.6.13. Let (X,µ,R) be a discrete, sofic, measure-preserving equivalence relation

such that RA is not amenable for any A ⊆ X with µ(A) > 0. Suppose R has finite cost and

is finitely presented, and fix a sofic approximation Σ of R. Then for any graphing Φ of R,

we have

c
(p)
1,Σ(R) ≤ β

(p)
1,Σ(Φ) + 1,

c
(p)
1,Σ(R) ≤ β(p)

1,Σ
(Φ) + 1,

Proof. First, express Φ =
⋃
n Φ(n) by the above Lemma, we find that up to sets of measure

zero,

X =
∞⋃
n=1

{x : Φ(n)
x is not amenable },

and each of the above sets is R-invariant. From this, it is not hard to see that we may choose

Φ(n) so that for every n, either Φ
(n)
x is non-amenable or zero.

By the Discrete Hodge Decomposition, we have the following exact sequence

0 −−−→ B1
(p)(Φ

(n)) −−−→ Lp(E(Φ(n)))

B
(p)
1 (Φ(n))

−−−→ Z
(p)
1 (Φ)

B
(p)
1 (Φ(n))

−−−→ 0,

now apply subadditivity under exact sequences, and Lemma 4.6.5 to complete the proof.

Corollary 4.6.14. Fix n ∈ N, suppose R is the equivalence relation induced by a free action

of Fn on a standard probability space (X,µ). Then for any sofic approximation Σ of R, we

have that

c
(p)
1,Σ(R) = c

(p)
1,Σ(R) = n,

in particular for n ≥ 1,

β(p)

1,Σ
(Φ) ≥ n− 1

for any graphing Φ. If Φ is a treeing of R, then

β(p)

1,Σ
(Φ) = β

(p)
1,Σ(Φ) = n− 1.

Thus, if R has infinite orbits and is amenable then

c
(p)
1,Σ(R) = c

(p)
1,Σ(R) = 1.
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Proof. If Φ is the graphing provided by the canonical generating set of Fn, then

B
(p)
1 (Φ) = {0},

Lp(E(Φ)) ∼= Lp(R, µ)⊕n,

and the proof of the first statement is thus complete.

By Lemma 3.8.2, we know that H
(p)
1 (Φ) can be generated by n − 1 elements, and this

proves the upperbound.

The last statement follows from the standard fact that a amenable equivalence relation

with infinite orbits is induced by a free action of Z (see [17] Theorem 6.6).

Proposition 4.6.15. Let (R, X, µ) be a discrete measure-preserving equivalence relation

such that Ox is infinite for almost every x ∈ X. Then c
(p)
1,Σ(R) ≥ 1.

Proof. By the ergodic decomposition (Theorem 2.1.23) , we can find R-invariant measurable

subsets A,B of X so that µ(A ∩ B) = 0, with RA amenable, and RB has no amenable

compression. Let α ∈ [RA] generate RA. Let Φ0 be any countable graphing of RB, and set

Φ = {α} ∪ Φ0. Then as representations of R :

Lp(E(Φ))

B
(p)
1 (Φ)

= Lp(RA, µ)⊕ Lp(E(Φ0))

B
(p)
1 (Φ0)

,

and by the Discrete Hodge decomposition we have a surjective R-equivariant map

Lp(E(Φ0))

B
(p)
1 (Φ0)

→ Lp(E(Φ0))

Z
(p)
1 (Φ0)

∼= Lp(RB, µ).

Thus Lp(E(Φ))

B
(p)
1 (Φ)

has anR-equivariant surjection onto Lp(R, µ) and this completes the proof.

We would like to prove one last property of our `p-Betti numbers. Namely, that

c
(p)
1,Σ(R) ≥ β

(2)
1 (R) + 1.
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As we already know that

c
(p)
1,Σ(R) ≤ c(R),

this gives one more relation between the problem of evaluation c
(p)
1,Σ(R) and the cost versus

`2-Betti number problem.

We need the following Lemma, which is a technical refinement of Proposition 4.5.1.

Lemma 4.6.16. Let νn be the uniform measure on {1, . . . , n}. Let qn be a sequence of

orthogonal projections in Mn(C) such that tr(qn) converges to some q ∈ [0, 1]. Then there is

a function κ : (0, 1]× (0,∞)→ [0, 1] such that

lim
ε→0

κ(α, ε) = 1 for all α > 0

and which satisfies the following. For all An ⊆ Ball(`2(n, νn)), with An measurable and

lim inf
n→∞

(
vol(An)

vol(Ball(`2(n, νn))

)1/2n

≥ α

we have

lim
n→∞

1

n
dε(qnAn, ‖ · ‖p) ≥ κ(α, ε)q.

Proof. Suppose κ > 0 so that for all ε > 0 it is true that for all large n we can find measurable

An ⊆ Ball(`2(n, νn)), with qnAn ⊆ε W and dim(W ) ≤ κn. Fix such An, κ,W, ε. We wish to

get a lower bound on κ. We have

qnAn ⊆
⋃

B⊆{1,...,n},
|B|≤εn

(1 + ε) Ball(χBc(W )) + εBall(`p(Bc, νn) + εBall(`p(B, νn)).

By a volume-packing argument, we may select ε-dense subsets

SB ⊆ Ball(χBc(W ),

TB ⊆ Ball(`p(B, νn),

so that

|SB| ≤
(

2 + 4ε

ε

)2κn
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|TB| ≤
(

2 + 4ε

ε

)2εn

.

Thus

qnAn ⊆
⋃

B⊆{1,...,n},
|B|≤εn

⋃
ξ∈SB ,ζ∈TB

ξ + ζ + 2εBall(`p(n, νn)).

Similarly, we may select a ε-dense (in the `2-norm) subset F of Ball((1− qn)`2(n, νn), ‖ · ‖2)

with

|F| ≤
(

2 + 2ε

ε

)2(n−Tr(qn))

.

Since An ⊆ Ball(`2(n, νn)) we have (1− qn)An ⊆ε,‖·‖2 F so

An ⊆ qnAn + (1− qn)An

⊆
⋃

B⊆{1,...,n},
|B|≤εn

⋃
ξ∈SB ,
ζ∈TB ,
η∈F

ξ + ζ + η + 2εBall(`p(n, νn)) + εBall(`2(n, νn)),

⊆
⋃
ξ∈SB ,
ζ∈TB ,
η∈F

ξ + ζ + η + 3εBall(`p(n, νn)),

where in the last line we use that p ≤ 2. Thus if ε < 1/2, we have

vol(An)1/2n ≤ bnεc1/2n
(

n

bnεc

)1/2n

|F|1/2n|SB|1/2n|TB|1/2n3ε vol(Ball(`p(n, µn))1/2n.

By the calculation on [21] page 11, there is a C > 0 so that

vol(Ball(`p(n, µn))1/2n ≤ C vol(Ball(`2(n, µn))1/2n.

Thus,(
vol(An)

vol(Ball(`2(n, µn)

)1/2n

≤ Cbnεc1/2n
(

n

bnεc

)1/2n

|F|1/2n|SB|1/2n|TB|1/2n3ε

≤ 3Cεκ+1−Tr(qn)bnεc1/2n
(

n

bnεc

)1/2n

(2 + 2ε)1−tr(qn)(2 + 4ε)κ+ε.

By Stirling’s Formula,

lim
n→∞

(
n

bnεc

)1/2n

= (1− ε)−(1−ε)/2ε−ε/2.
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Thus,

α ≤ 3Cε−κ+1−ε/2−q(2 + 2ε)1−q(2 + 4ε)κ+ε(1− ε)−(1−ε)/2,

for all ε > 0. Letting ε→ 0 implies that

−κ+ 1− q ≤ 0,

so

κ ≥ 1− q.

Theorem 4.6.17. Let (R, X, µ) be a sofic, discrete, measure-preserving equivalence relation

with sofic approximation Σ. Let Φ be a countable subset of [[R]], with c(Φ) < ∞ and 1 ≤

p ≤ 2. Let Vx be a measurable field of closed subspaces of `p(E(Φx)), such that Vx = Vy for

almost every (x, y) ∈ R. Set Hx = Vx
‖·‖2

, and

W =

∫ ⊕p
X

`p(E(Φx))/Vx dµ(x),

K =

∫ ⊕2

X

`2(E(Φx) ∩H⊥x dµ(x).

Then,

dimΣ,`p(W,R) ≥ dimL(R)(K).

Proof. Since c(Φ) < ∞, we may argue as in Lemma 3.4.5 to reduce to the case that Φ is

finite. Let Φ = {φ1, . . . , φn}. We may view Lp(E(Φ)) as a subset of Lp(R, µ)⊕n in such a way

that the measurable vector field x 7→ E(x,φj(x)) is identified with Idran(φj) χ∆ ⊗ ej (recall that

f ⊗ ej is the vector on Lp(R, µ)⊕n which is zero in every coordinate except the jth where it

is f). Let

qΦ =
n⊕
j=1

Idran(φj) ∈Mn(L(R))

and

Q : Lp(E(Φ))→ W

209



the canonical quotient map. Fix a graphing Ψ of R and P a set of projections in L∞(X,µ)

so that

W ∗({φpφ−1 : φ ∈ Ψ, p ∈ P}) = L∞(X,µ).

We will use Q-dynamical filtrations to do our calculation. So let V = ker(Q), and F =

(VF,m, S) be a Q-dynamical filtration where

S = (φ Idran(φ1) χ∆ ⊗ e1, . . . , φ Id(rann) χ∆ ⊗ en)φ∈Ψ,1≤j≤n.

By Lemma 2.2.6, extend σi to maps

σi : L(R)→Mdi(C)

such that

sup
i
‖σi(x)‖∞ <∞, for all x ∈ L(R)

tr(σx)→ τ(x) for all x ∈ L(R)

‖P (σi(x1), . . . , σi(xn)− σi(P (x1, . . . , xn))‖2 → 0,

for all x1, . . . , xn ∈ L(R) and all ∗-polynomials P in n non-commuting variables.

Define σi : Mn(L(R))→Mn(Mdi(C)) by

σi(A)jj = σi(Ajj) for 1 ≤ j ≤ n.

Let q be the orthogonal projection onto H, since we view Lp(E(Φ)) ⊆ Lp(R, µ)⊕n, we have

q ∈Mn(L(R)). As in Proposition 3.6.2, we may find qi orthogonal projections in Mn(Mdi(C))

so that

‖σi(q)− qi‖2 → 0.

Set

qφ,i =
n⊕
l=1

σi(Iddom(φl)).

Let F ⊆ Ψ be given, m ∈ N, and δ > 0. Set

C = W ∗({φpφ−1 : p ∈ L∞(X,µ) ∩ F, φ ∈ F}),

210



and let χB1 , . . . , χBr be the minimal projections in C. Let {A1, . . . , As} be a sufficiently fine

partition refining {B1, . . . , Br} in a manner to be determined later. We may assume that Σ

is eventually a homomorphism on W ∗({χAj , χdom(φl)}1≤j≤q,1≤l≤n), there are Ej ⊆ [[R]],

OAj : = {(x, y) ∈ R : x ∈ Aj} =
⊔
ψ∈Ej

graph(ψ),

and that

Fm ⊆ E−1
1 + E−1

2 + · · ·+ E−1
q .

We may also assume that for every ψ ∈ Ej and for all large i, we have that dom(σi(ψ)) ⊆

σi(Aj), and that qi ≤ qφ,i.

Note that if f ∈ Lp(R, µ), then we can uniquely write

IdAj f =
∑
ψ∈Ej

fψχgraph(ψ),

where fψ ∈ Lp(dom(ψ), µ) and the sum converges in ‖ · ‖p. Fix η > 0, and let Fj ⊆ Ej be

finite and so that for all ψ ∈ Fm,

dist‖·‖2(ψ, Fm) < η.

Let νi be the uniform probability measure on {1, . . . , di}. On `p(di, νi)
⊕n we use the norm

‖f‖pp =
1

n

n∑
j=1

‖f(j)‖pp.

For ξ ∈ `2(di, νi)
⊕n, 1 ≤ j ≤ q, 1 ≤ k ≤ n and f ∈ Lp(R, µ),

S
(j)
ξ (f) =

∑
ψ∈Fj

Edom(ψ)(fψ)(qΦ,i − qi)σi(1Mn(C) ⊗ ψ−1)ξ,

where for a measurable A ⊆ X, and f ∈ L1(A, µ) we use

EA(f) =
1

µ(A)

∫
A

f dµ.

For 1 ≤ k ≤ n, let πk : `p(di, νi)
⊕n → `p(di, νi) by

πk(f) = f(k).
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Finally define Sξ : Lp(R, µ)→ `p(di, νi)
⊕n, Tξ : Lp(E(Φ))→ `p(di, νi) by

Sξ =
s∑
j=1

T
(j)
ξ (f).

Tξ =
n∑
k=1

πk(Sξ(f(k))),

in the last line we are using the identification

Lp(E(Φ)) ∼=
n⊕
j=1

Lp(graph(φj), µ).

We claim that if {A1, . . . , As} is sufficiently fine then,

vol({ξ ∈ Ball(`2(di, νi)
⊕n) : ‖Sξ‖Lp→`p ≤ 2 for 1 ≤ p ≤ 2})

vol(Ball(`2(di, νi)⊕n)
→ 1.

As in Theorem 4.5.2, it suffices to do this for p = 1, 2. We have

‖S(j)
ξ (f)‖1 ≤

∑
ψ∈Fj

|Edom(ψ)(fψ)|‖ξ‖2 ≤
∑
ψ∈Fj

|Edom(ψ)(fψ)| ≤ 1.

So we need to do the case p = 2. From the definition of Sξ it follows that we may choose

κ > 0 so that

|〈σi(φ−1)(qΦ,i − qi)ξ, σi(ψ−1)(qΦ,i − qi)ξ〉 − τ(ψ(qφ − q)φ−1)| < κ (4.3)

for all φ, ψ ∈ Fj, 1 ≤ j ≤ n implies

‖Sξ(f)‖2 ≤ α(κ)

∥∥∥∥∥∥
s∑
j=1

∑
ψ∈Fj

Edom(ψ)(fψ)χgraph(ψ)

∥∥∥∥∥∥
2

+

∥∥∥∥∥∥(qΦ − q)
q∑
j=1

∑
ψ∈Fj

Edom(ψ)(fψ)χgraph(ψ)

∥∥∥∥∥∥
2

,

(4.4)

for all f ∈ L2(R, µ) with

lim
κ→0

α(κ) = 0.

By the integral equation, ∫
S2di−1

〈Tξ, ξ〉, dξ = tr(T ),
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and concentration of measure, for any κ > 0 the set of ξ so that (4.3) holds has probability

tending to 1. Thus (4.4) holds with high probability. Thus the set of ξ so that

‖Sξ(f)‖L2→`2 ≤ 2

has probability tending to 1. Thus by interpolation,

vol({ξ ∈ Ball(`2(di, νi)
⊕n) : ‖Sξ‖Lp→`p ≤ 2n for 1 ≤ p ≤ 2})

vol(Ball(`2(di, νi)⊕n))
→ 1.

As in Theorem 4.5.2, if {A1, . . . , As} is sufficiently fine, then the set of ξ ∈ Ball(`2(di, νi)
⊕n)

with

‖Sξ(ψ Idran(φj) χ∆)− ψSξ(Idran(φj) χ∆)‖2 < δ

has probability tending to 1 for all 1 ≤ j ≤ n.

We now show that if {A1, . . . , As} is sufficiently fine then

‖Tξ
∣∣
WF,m
‖Lp→`p ≤ δ,

with high probability in ξ. For this, let F ⊆ Ball(WF,m) be a finite δ
2n(2014)!

-dense set. It is

then enough to show that

‖Tξ(f)‖p ≤
δ

(2014)!
for all f ∈ F ,

for a high probability set of ξ. Using that p ≤ 2, it is enough to show that

‖Tξ(f)‖2 ≤
δ

(2014)!
for all f ∈ F ,

for a high probability set of ξ. Fix f ∈ F by (4.4), we have for any α > 0 that the set of ξ

with

‖Tξ(f)‖2 ≤ α‖f‖2 +

∥∥∥∥∥∥(qΦ − q)
q∑
j=1

∑
ψ∈Fj

Edom(ψ)(fψ)χgraph(ψ)

∥∥∥∥∥∥
2

has probability tending to 1, here EA(f) is defined as before but f is view as a map R → Cn,

and the integral is vector-valued. Since qf = f, we have∥∥∥∥∥∥(qΦ − q)
n∑
j=1

∑
ψ∈Fj

Edom(ψ)(fψ)χgraph(ψ)

∥∥∥∥∥∥
2
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can be made arbitrarily small by making {A1, . . . , Aq} sufficiently fine and η > 0 sufficiently

small.

It now follows that if {A1, . . . , As} sufficiently fine, then with high probability we have

Tξ ∈ HomR,`p(F , F,m, δ, σi). Moreover, the above estimates show that

(Tξ(Idran(φ1) χ∆ ⊗ ej)

is close to

πj((qΦ,i − qi)ξ)

with high probability if {A1, . . . , As} are sufficiently fine and η > 0 is sufficiently small. Thus

(Tξ(Idran(φ1) χ∆ ⊗ e1), . . . , Tξ(Idran(φn) χ∆ ⊗ en))

is close to

(qφ,i − qi)ξ

with high probability if {A1, . . . , As} are sufficiently fine and η > 0 is sufficiently small, so

the desired lower bound now follows from the preceding Lemma.

The following corollary is automatic from the preceding theorem and the definition of

c
(p)
1,Σ(R).

Corollary 4.6.18. Let (R, X, µ) be a sofic, discrete,measure-preserving equivalence relation.

Then,

c
(p)
1,Σ(R) ≥ β

(1)
2 (R) + 1.

As we mentioned before, it is easy from the definition that

c
(p)
1,Σ(R) ≤ c(R),

so one may hope that this inequality and the above corollary shed some light on the cost

versus `2-Betti number problem.
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APPENDIX A

Noncommutative Lp Spaces

A.1 Definition of Noncommutative Lp

In this section, we will define the noncommutative Lp-spaces associated to a von Neumann

algebra. We will not do this in the full generality. For the informed reader we mention that

it is possible to generalize our methods and define noncommutative Lp-spaces in the case of

a semifinite trace, but we will not pursue this. Instead we will only define and prove the

basic properties of Lp(M, τ) for (M, τ) a tracial von Neumann algebra.

Definition A.1.1. Let (M, τ) be a tracial von Neumann algebra, for x ∈M, and 1 ≤ p <∞,

we set

‖x‖pp = τ(|x|p),

if p =∞, we let ‖x‖∞ be the operator norm of x.

Let us give some intuition. If M is abelian, then we know that

(M, τ) ∼= L∞(X,µ)

in this case

‖f‖pp =

∫
|f |p dµ

is the usual Lp-norm.

We wish to prove that ‖x‖p is a norm on (M, τ), and that the usual Holder inequalities

hold true in the usual noncommutative case. We first prove the special case of L1.
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Proposition A.1.2. Let (M, τ) be a tracial von Neumann algebra. Then

(i): |τ(x)| ≤ ‖x‖1 for all x ∈M,

(ii): ‖x‖1 = ‖x∗‖1for all x ∈M,

(iii): ‖xy‖1 ≤ ‖x‖∞‖y‖1 for all x, y ∈M,

(iv): ‖xy‖1 ≤ ‖x‖1‖y‖∞ for all x, y ∈M.

Proof. (i): We first note that following inequality if H is a Hilbert space, and a, b ∈ B(H):

Re(a∗b) ≤ |a|
2 + |b|2

2
.

Indeed this follows from

|a− b|2 = |a|2 − 2 Re(a∗b) + |b|2.

For x ∈M, let x = u|x| be the polar decomposition of x. Then by the above inequality

Re(τ(x)) = τ(Re(u|x|1/2|x|1/2)

≤ 1

2
‖x‖1 +

1

2
τ(u|x|u∗)

=
1

2
‖x‖1 +

1

2
τ(|x|u∗u).

As u∗u = Pker(x)⊥ = Pker(|x|)⊥ , so

|x| = |x|u∗u.

Thus

Re(τ(x)) ≤ ‖x‖1.

Now choose λ ∈ C, |λ| = 1, so that τ(λx) = |τ(x)|, then

|τ(x)| = Re(τ(λx)) ≤ ‖λx‖1 = ‖x‖1.

(ii): Let x = u|x| be the Polar decomposition. Then x∗ = |x|u∗, so

|x∗|2 = xx∗ = u|x|2u∗.
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Additionally,

(u|x|u∗)2 = u|x|u∗u|x|u,

as in part (i), |x|u∗u = |x|, so

(u|x|u∗)2 = |x∗|2

|x∗| = u|x|u∗.

Thus

‖x∗‖1 = τ(u|x|u∗) = τ(|x|u∗u) = τ(|x|) = ‖x‖1.

(iii): We have

|xy|2 = y∗x∗xy ≤ ‖x‖2
∞|y|2,

by operator monotonicity of the square root ([4] Exercise VIII.3.12) we know that

|xy| ≤ ‖x‖∞|y|.

Thus

‖xy‖1 ≤ ‖x‖∞‖y‖1.

(iv): Combine (ii) and (iii).

Our approach to proving that the Lp-norms are norms will be through noncommuta-

tive decreasing rearrangements. The advantage of this approach is that the proofs are very

short and totally general, and reduce to the commutative case. One can use the same tech-

niques to prove that other analogues of Lp-spaces (e.g. Lorenz spaces) have noncommutative

analogues, and moreover this reduces to the commutative case.

Definition A.1.3. Let (M, τ) be a tracial von Neumann algebra. For x ∈M, and t ∈ [0, 1]

define the noncommutative decreasing rearrangement of x, sx : [0, 1]→ [0,∞)} by

sx(t) = inf{λ ∈ [0,∞) : τ(χ(λ,∞)(|x|)) ≤ t}.
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Note that normality of τ implies that

τ(χ(sx(t),∞)(|x|)) ≤ t.

We will prove some basic properties of non-commutative decreasing rearrangements, for

which we need the following Lemma. For projections p, q ∈M ⊆ B(H) we use p ∨ q for the

projection onto pH + qH, and p ∧ q for the projection onto pH ∩ qH.

Lemma A.1.4. Let (M, τ) be a tracial von Neumann algebra, and p, q ∈M. If p∧(1−q) = 0,

then

τ(p) ≤ τ(q).

Proof. The lemma is equivalent to the statement that

dimM(ρ(p)L2(M, τ)) ≤ dimM(ρ(q)L2(M, τ)),

which follows from the fact that ρ(q) restricted to ρ(p)L2(M, τ) has kernel

ρ(p ∧ q)L2(M, τ).

Proposition A.1.5. Let (M, τ) be a tracial von Neumann algebra, and use m for the

Lebesgue measure on [0, 1]. Then

(i): For x ∈M, and λ ∈ [0, 1]

m({t : sx(t) > λ}) = τ(χ(λ,∞)(|x|))

and for 1 ≤ p ≤ ∞,

‖x‖p = ‖sx‖Lp([0,1]).

(ii): For x, y ∈M

sxy ≤ ‖x‖∞sy

sx∗ = sx
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syx ≤ ‖x‖∞sy.

(iii): For a projection p ∈M, and any x ∈M,

‖xp‖1 ≤
∫ τ(p)

0

sx(λ)dλ.

Proof. (i): We have

sx(t) > λ

if and only if

τ(χ(λ,∞)(|x|)) > t.

Thus

{t : sx(t) > λ} = [0, τ(χ(λ,∞))].

The above equality implies that

‖sx‖∞ = ‖x‖∞.

For 1 ≤ p <∞, we have that

|x|p = p

∫ 1

0

λp−1χ(λ,∞)(|x|) dλ

by functional calculus.Thus

τ(|x|p) = p

∫ 1

0

λp−1τ(χ(λ,∞)(|x|)) dλ.

By Fubini,

‖sx‖pp = p

∫ 1

0

λp−1m({t : sx(t) > λ}) dλ,

so the second part follows.

(ii):

First note that

χ(sy(t)‖x‖∞,∞)(|xy|) ∧ χ[0,sy(t)](|y|) = 0.

Indeed, suppose

ξ ∈ λ(χ(sy(t)‖x‖∞,∞)(|xy|) ∧ χ[0,sy(t)](|y|))L2(M, τ)
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and

‖ξ‖ = 1.

Let

xy = u|xy|,

y = v|y|

be the Polar decompositions. Then

sy(t)‖x‖∞ < 〈|xy|ξ, ξ〉

= 〈u∗xv|y|ξ, ξ〉

= 〈|y|ξ, v∗x∗uξ〉

≤ ‖|y|ξ‖‖x‖∞

= 〈|y|2ξ, ξ〉1/2‖x‖∞

≤ sy(t)‖x‖∞,

a contradiction.

By the preceding Lemma, we know that

τ(χ(sy(t)‖x‖∞,∞)(|xy|)) ≤ t,

and thus

sxy(t) ≤ sy(t)‖x‖∞.

If we prove that

sx = sx∗ ,

then it will follow that

syx(t) ≤ sy(t)‖x‖∞.

So it remains to show sx = sx∗ , for this it is enough to show that

τ(χ(λ,∞)(|x|)) = τ(χ(λ,∞)(|x∗|)).
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Let x = u|x| be the polar decomposition. First, we claim that

χ(t,∞)(|x∗|) ∧ [uχ(t,∞)(|x|)u∗]⊥ = 0. (A.1)

We have that

[uχ(t,∞)(|x|)u∗]⊥ = uχ[0,t](|x|)u∗ + Pim(x) = uχ[0,t](|x|)u∗ + Pker(x∗) = uχ[0,t](|x|)u∗ + Pim(x).

Suppose

ξ ∈ λ(χ(t,∞)(|x∗|) ∧ [uχ(t,∞)(|x|)u∗]⊥)L2(M, τ)

and ‖ξ‖ = 1. Let

ξ = ξ0 + ξ1

with ξ1 ∈ ker(x∗), ξ0 ⊥ker(x∗) . We saw in Proposition A.1.2 that |x∗| = u|x|u∗, so

t < 〈|x∗|ξ, ξ〉 = 〈|x∗|ξ0, ξ0〉

= 〈u|x|u∗ξ0, ξ0〉.

Write ξ0 = uη with η ∈ λ(χ(t,∞)(|x|))L2(M, τ) and ‖η‖ = ‖ξ0‖ ≤ 1. Then,

〈u|x|u∗ξ0, ξ0〉 = 〈u|x|η, η〉 ≤ ‖η‖〈|x|2η, η〉1/2 ≤ t,

we thus get a contradiction, and this proves (A.1).

By the Lemma,

τ(χ(t,∞)(|x∗|)) ≤ τ(χ(t,∞)(|x|)u∗u) = τ(χ(t,∞)(|x|))

as

χ(t,∞)(|x|) ≤ u∗u.

The claim now follows by symmetry.

(iii): We have

sxp ≤ sx.
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Also for any t > 0,

χ(t,∞)(|xp|) ≤ pker(xp)⊥ ≤ p.

So sxp(t) = 0 for all t > τ(p). Thus

‖xp‖1 =

∫ τ(p)

0

sxp(t) dt ≤
∫ τ(p)

0

sx(t) dt.

We now have several corollaries which prove many of the analogues of inequalities which

are known in the commutative case.

Corollary A.1.6. Let (M, τ) be a tracial von Neumann algebra. For x, y ∈M and 1 ≤ p ≤

∞, we have

‖xy‖p ≤ ‖x‖∞‖y‖p

‖x‖p = ‖x∗‖p,

‖yx‖p ≤ ‖x‖∞‖y‖p.

Proof. The second inequality follows from part (ii) of the preceding proposition. The third

inequality is a consequence of the first. For the first inequality, by part (ii) of the preceding

proposition,

‖xy‖pp = ‖sxy‖pp =

∫ 1

0

sxy(t)
p dt ≤ ‖x‖p∞

∫ 1

0

sy(t)
p dt.

Corollary A.1.7 (Noncommutative Decreasing Rearrangement Inequality). Let (M, τ) be

a tracial von Neumann algebra. For x, y ∈ (M, τ) we have

‖xy‖1 ≤
∫ 1

0

sx(t)sy(t) dt.

Proof. Let y = u|y|, |xy| = v∗xy be the polar decomposition. By Borel functional calculus,

|xy| = v∗xu|y| =
∫ ∞

0

v∗xuχ(λ,∞)(|y|) dλ.
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By the preceding proposition,

‖xy‖1 =

∫ ∞
0

τ(v∗xuχ(λ,∞)(|y|)) dλ

≤
∫ ∞

0

∫ τ(χ(λ,∞)(|y|))

0

sv∗xu(t) dt dλ

≤
∫ ∞

0

∫ τ(χ(λ,∞)(|y|))

0

sx(t) dt dλ.

By definition, we have that t < τ(χ(λ,∞)(|y|)) if and only if λ < sy(t). Thus by Fubini,

‖xy‖1 ≤
∫ ∞

0

∫ sy(t)

0

sx(t) dλ, dt =

∫ ∞
0

sy(t)sx(t) dt.

Corollary A.1.8. Let (M, τ) be a tracial von Neumann algebra, and 1 ≤ p ≤ ∞ and let

1 ≤ p′ ≤ ∞ be such that 1
p

+ 1
p′

= 1, then

‖xy‖1 ≤ ‖x‖p‖y‖p′ ,

further

‖x‖p = sup{|τ(xa)| : a ∈ Lp′(M, τ), ‖a‖p′ ≤ 1}.

Proof. We have

‖xy‖1 ≤
∫ ∞

0

sx(t)sy(t) dt ≤ ‖sx‖p‖sy‖p′ = ‖x‖p‖y‖p′ ,

by the usual Hölder’s inequality, and Proposition A.1.5.

For the second statement, the preceding and Proposition A.1.2 proves that

‖x‖p ≥ sup{|τ(xa)| : a ∈ Lp′(M, τ), ‖a‖p′ ≤ 1}.

For the reverse, let x = u|x| be the polar decomposition of x, let

a =
|x|p−1u∗

‖x‖p−1
p

.
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Then

τ(xa) =
1

‖x‖p−1
p

τ(u|x|pu∗) =
1

‖x‖p−1
p

τ(|x|pu∗u) = ‖x‖p,

as

|x|pu∗u = |x|p.

By Corollary A.1.6, we have

‖|x|p−1u∗‖p
′

p′ ≤ ‖|x|
p−1‖p

′

p′ = τ(|x|p) = ‖x‖pp.

Thus,

‖a‖p′ ≤ ‖x‖
p
p′−p−1

p = 1.

Corollary A.1.9. Let (M, τ) be a tracial von Neumann algebra. Then, ‖ · ‖p is a norm on

M.

Proof. Let us first prove that ‖ · ‖p is a norm. The only nontrivial fact is the triangle

inequality. For this, let x, y ∈M, let p′ be such that 1
p

+ 1
p′

= 1. For z ∈M,

|τ((x+ y)z)| ≤ |τ(xz)|+ |τ(yz)| ≤ ‖xz‖+ ‖yz‖1 ≤ ‖x‖p + ‖y‖p,

by the preceding corollary. Taking the supremum over all such z and applying the preceding

corollary again proves the triangle inequality.

Definition A.1.10. By the preceding Corollary, we may define Lp(M, τ) to be the comple-

tion of M with respect to the norm ‖ · ‖p, note that this agrees with the previous definition

of L2(M, τ). Also by the preceding corollary, we have a bilinear map

M : Lp(M, τ)× Lp′(M, τ)→ L1(M, τ)

uniquely defined by requiring that M(x, y) = xy for x, y ∈M, and ‖M(x, y)‖1 ≤ ‖x‖p‖y‖p′ .

For ξ ∈ Lp(M, τ), η ∈ Lp′(M, τ) we denote M(ξ, η) by ξη.
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Note that for ξ ∈ L2(M, τ), x ∈M, that by the conventions in the preceding definition

xξ = λ(x)ξ, ξx = ρ(x)ξ,

so we will typically drop the λ, ρ from here on out. We will similarly denote ξ∗ for ξ ∈

Lp(M, τ) the unique isometric extension of the map x→ x∗ on M. We denote τ : L1(M, τ)→

C the unique continuous extension of τ to L1(M, τ).

By density, we have

τ(xy) = τ(yx) x ∈ Lp(M, τ), y ∈ Lp′(M, τ)

〈xξ, η〉 = τ(η∗xξ), ξ, η ∈ L2(M, τ).

A.2 Noncommutative Lp-Spaces as Unbounded Operators

We would like to view Lp(M, τ) as a space of operators instead of a completion of a space

of operators. This will allow us to apply functional calculus arguments to Lp(M, τ). This

will makes certain arguments easier, in particular computing the dual of Lp(M, τ), and

invariant subspaces under the action of M. The price that we have to pay to do this, is to

pass to unbounded operators. This is to be expected as in the commutative case, functions

in Lp(X,µ) are in general unbounded. For basics of unbounded operators, we refer to [4]

Chapter X.

Definition A.2.1. Let (M, τ) be a tracial von Neumann algebra, and viewM ⊆ B(L2(M, τ)).

We let Meas(M) be the set of all closed, densely-defined, unbounded operators T on L2(M, τ)

with xT ⊆ Tx for all x ∈M ′.

Equivalently, the graph of T is invariant under the diagonal action of M ′ on L2(M, τ)⊕2.

We will see later that if (M, τ) = L∞(X,µ), then Meas(M) is equal to all Mf for mea-

surable f : X → C, where Mf is defined by

dom(Mf ) = {ξ ∈ L2(X,µ) : fξ ∈ L2(M,µ)},
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Mfξ = fξ for all ξ ∈ dom(Mf ) .

We proceed to collect some basic properties about Meas(M). For this we need the fol-

lowing definition.

Definition A.2.2. Let (M, τ) be a tracial von Neumann algebra. A linear, M ′-invariant

subspace V ⊆ L2(M, τ) is said to be essentially dense if for every ε > 0, there is a projection

p ∈M so that pL2(M, τ) ⊆ V and τ(p) ≥ 1− ε.

Proposition A.2.3. Let (M, τ) be a tracial von Neumann algebra.

(i): Let T be a closeable, densely-defined unbounded operator on L2(M, τ). Suppose that

A ⊆ M has strong operator topology dense linear span in M and ρ(a)T ⊆ Tρ(a) for all

a ∈ A. Then the closure of T is measurable.

(ii): Let T, S ∈ Meas(M). Suppose that V ⊆ dom(T ) ∩ dom(S) is essentially dense, and

Tξ = Sξ for all ξ ∈ V. Then T = S.

(iii): Let T be an closed operator on L2(M, τ), and let T = U |T | be its polar decom-

position. Then T ∈ Meas(M) if and only if U ∈ M, and χB(|T |) ∈ M for all B ⊆ C

Borel.

(iv): Any essentially dense subset of L2(M, τ) is norm dense.

(v): Let T ∈ Meas(M), and V ⊆ L2(M, τ) essentially dense. Then T−1(V ) is essentially

dense. In particular, dom(T ) = T−1(L2(M, τ)) is essentially dense.

(vi): A countable intersection of essentially dense subspaces of L2(M, τ) is essentially

dense.

Proof. (i): The graph of T is a ρ(A)-invariant subspace of L2(M, τ)⊕2. Hence its closure is

M -invariant.

(ii): Let GT , GS be the graphs of T, S. Since T is densely-defined, we have a M ′-

equivariant injection with dense image

GT → L2(M, τ)
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by

(ξ, T ξ) 7→ ξ,

so

dimM ′(GT ) = 1.

Similarly,

dimM ′(GS) = 1.

By symmetry, it suffices to show that GT ∩ GS = GT . By the above, it suffices to show

that

dimM ′(GT ∩GS) ≥ 1.

For this, let V be an essentially dense subspace of L2(M, τ) on which S and T agree. Given

ε > 0, we can find a p ∈M so that

pL2(M, τ) ⊆ V.

Then

{(pξ, Tpξ) : ξ ∈ L2(M, τ)} = {pξ, Spξ) : ξ ∈ L2(M, τ)},

and so

{(pξ, Tpξ) : ξ ∈ L2(M, τ)} ⊆ GT ∩GS.

Hence, there is a surjective map

GT ∩GS → pL2(M, τ)

given by (ξ, η) 7→ pξ, so

domM ′(GT ∩GS) ≥ τ(p) ≥ 1− ε.

Since ε > 0 is arbitrary, this completes the proof.

(iii): First suppose U ∈ M, and that χB(|T |) ∈ M for all B ⊆ C Borel. Let x ∈ M, and

ξ ∈ dom(T ) = dom(|T |). Let E be the spectral measure on [0,∞) so that

|T | =
∫

[0,∞)

t dE(t).
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For B ⊆ C Borel, we have

〈E(B)xξ, xξ〉 = 〈ρ(x)E(B)ξ, ρ(x)E(B)ξ〉 ≤ ‖x‖∞〈E(B)ξ, ξ〉.

Thus we have the following inequality of measures

d〈E(t)ρ(x)ξ, ρ(x)ξ〉 ≤ ‖x‖∞d〈E(t)ξ, ξ〉,

so ∫
t2d〈E(t)ρ(x)ξ, ρ(x)ξ〉 ≤ ‖x‖∞

∫
t2d〈E(t)ξ, ξ〉 <∞

so xξ ∈ dom(T ). Further, from the equality of spectral measure

d〈E(T )ρ(x)ξ, η〉 = d〈E(T )ξ, ρ(x)∗η〉,

it is straightforward to see that |T |(ρ(x)ξ) = ρ(x)|T |(ξ). Hence

T (ρ(x)ξ) = Uρ(x)|T |(ξ) = ρ(x)U |T |(ξ) = ρ(x)T (ξ),

so T ∈ Meas(M).

Conversely, suppose that T ∈ Meas(M). Let u ∈ U(M), then since T ∈ Meas(M) we

have

ρ(u)T = Tρ(u),

ρ(u∗)T = Tρ(u∗).

Thus,

|T |2 = ρ(u)|T |2ρ(u∗),

hence for all B ⊆ C Borel we have

χB(|T |2) = ρ(u)χB(|T |2)ρ(u∗).

This easily implies that

ρ(u)χB(|T |) = χB(|T |)ρ(u)

for all B ⊆ C Borel. Since M is the linear span of its unitaries, we find that

χB(|T |) ∈M
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for all B ⊆ C Borel. From this, it is not hard to argue as in the first half of the proof that

|T | ∈ Meas(M). Thus, for all u ∈ U(M), we have

T = ρ(u)Tρ(u)∗ = ρ(u)Uρ(u)∗|T |,

and uniqueness of the polar decomposition implies that

ρ(u)U = Uρ(u).

As before, this implies that U ∈M.

(iv): Let V be an essentially dense subspace of L2(M, τ). For all n ∈ N, choose pn ∈ M

with τ(pn) ≥ 1− 2−n, and

pnL
2(M, τ) ⊆ V.

Set

qn =
∧
m≥n

pm,

then

τ(1− qn) ≤ 2−n+1.

As qn are increasing, we have

dimM ′

(
∞⋃
n=1

qnL2(M, τ)

)
= lim

n→∞
τ(qn) = 1,

and this implies that
∞⋃
n=1

qnL2(M, τ) = L2(M, τ).

Since

qnL
2(M, τ) ⊆ V,

it follows that V is norm dense.

(v): Let T = U |T | be the polar decomposition of T. For n ∈ N, set

qn = χ(1/n,n)(|T |).
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Note that

‖Tξ‖ ≥ 1

n
‖ξ‖

on qnL
2(M, τ), thus T

∣∣
qnL2(M,τ)

is an injection with closed image. Set

Hn = T (qnL
2(M, τ)),

and let φn : Hn → qnL
2(M, τ) be the inverse to T.

Let ε > 0, and choose p ∈M so that

pL2(M, τ) ⊆ V,

and

τ(p) ≥ 1− ε.

Choose n so that

τ(qn) ≥ dimM ′((ker(T ))⊥)− ε.

Since

qnL
2(M, τ) ∩ (1− p)L2(M, τ) ⊆ (1− p)L2(M, τ),

we have

dimM ′(qnL
2(M, τ) ∩ pL2(M, τ)) ≥ dimM ′(qnL

2(M, τ))− ε

≥ dimM ′(ker(T )⊥)− 2ε.

Let

Kn = φn(qnL
2(M, τ) ∩ pL2(M, τ)),

then

ker(T ) +Kn ⊆ T−1(V ),

and

dimM ′(ker(T )+Kn) = dimM ′(ker(T ))+dimM ′(Kn) ≥ dimM ′(ker(T )⊥)−2ε+dimM ′(ker(T )) = 1−2ε.
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As ε > 0 is arbitrary, we see that T−1(V ) is essentially dense.

(vi): Let (Vn)∞n=1 be essentially dense subspaces of L2(M, τ), and let ε > 0. For each

n ∈ N, choose pn ∈M so that

τ(pn) ≥ 1− ε

2−n
,

and

pnL
2(M, τ) ⊆ Vn.

Set

p =
∞∧
n=1

pn,

then

τ(p) ≥ 1− ε,

and

pL2(M, τ) ⊆
∞⋂
n=1

Vn.

Let (M, τ) be a tracial von Neumann algebra. Let x, y ∈ Meas(M), consider the two

operators

Pxy : y−1(dom(x))→ L2(M, τ)

Sxy : dom(x) ∩ dom(y)→ L2(M, τ)

by

Pxy(ξ) = xyξ,

Sxy(ξ) = xξ + yξ.

By (v),(vi) of the above proposition, we know that Pxy, Sxy are densely-defined. As

P ∗xy ⊇ Py∗x∗

S∗xy ⊇ Sx∗y∗ ,
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we know that Pxy, Sxy are densely-defined. Thus we may define

xy, x+ y

to be the closures of Pxy, Sxy. By (i) of the above proposition, we know that xy, x + y ∈

Meas(M). One can use the above proposition to argue that these operations turn Meas(M)

into an algebra. For example

(xy)z, x(yz)

agree on z−1(y−1(dom(x)), and so by (v) and (ii) of the above proposition, we know

(xy)z = x(yz).

We leave the similar proofs of the other axioms to the reader.

We can turn Meas(M) into a topological ∗-algebra with a basis of opens neighborhoods

of the identity given by

Uε,t = {T ∈ Meas(M) : τ(χ(t,∞)(|T |) < ε}.

We leave the proofs of the axioms of a topological vector space to the reader (see [24] IX.2

for detailed proofs). We call the result topology the measure topology.

For intuition, let us discuss what the above proposition implies in the abelian case.

Proposition A.2.4. Let X be a compact metrizable space, and let µ a Borel probability

measure on X. View L∞(X,µ) on operators on L2(X,µ). For a µ-measurable f : X → C,

define a densely-defined operator by

dom(Mf ) = {ξ ∈ L2(X,µ) : fξ ∈ L2(X,µ)},

and

Mfξ = fξ

for ξ ∈ dom(Mf ). Thus Meas(M) is indeed a generalization of the algebra of measur-

able functions associated to a measure space. Then a closed operator T on L2(X,µ) is

in Meas(L∞(X,µ)) if and only if T = Mf for some measurable f : X → C.
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Proof. First we note that Mf is a closed operator. Suppose ξn ∈ dom(Mf ), and ξn → ξ

in L2(X,µ), and fξn → g ∈ L2(X,µ). Passing to a subsequence, we may assume that

ξn → ξ, fξn → fξ pointwise almost everywhere. By Fatou’s Lemma,

‖fξ‖2 ≤ lim inf
n→∞

‖fξn‖ <∞

as fξn → g. Thus for almost every x ∈ X,

g(x) = lim
n→∞

fξn(x) = fξ(x).

Hence Mf is closed. It is easy to see that the polar decomposition of f is given by

Mf = MαM|f |

where α(x) = χ{x:f(x)6=0}
f(x)
|f(x)| . Additionally, for all B ⊆ [0,∞) Borel,

χE(M|f |) = MχE(|f |).

Thus, it follows that Mf ∈ Meas(L∞(X,µ)).

Suppose that T ∈ Meas(L∞(X,µ)), and let

T = U |T |

be its polar decomposition. Then U = Mα for some α with |α(x)| ∈ {0, 1} for almost every

x ∈ X. Let

|T | =
∫

[0,∞)

t dE(t)

be the polar decomposition of T. Set

Sn =

∫
[1/n,n]

t dE(t).

Since E(B) commutes with L∞(X,µ) for all B ⊆ [0,∞) Borel, it is not hard to argue that

Sn commutes with L∞(X,µ) and thus not Sn = Mfn for a unique (up to measure zero)

fn : X → [1/n, n]. Further fn ≤ fn+1 almost everywhere. Removing a countable collection

of null sets, we may assume that for all n, for all x ∈ X, we have

fn(x) ≤ fn+1(x).
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Set

f(x) = sup
n
fn(x).

Note that

µ({x ∈ X : f(x) ≥M}) = lim
n→∞

µ({x ∈ X : fn(x) ≥M}).

For each n, we have E((M,n)) = χ{x:fn(x)≥M} for some decreasing sequence of sets An. Since

E((M,n))→ E((M,∞)) in the strong operator topology as n→∞, if we choose AM ⊆ X

measurable so that E((M,∞)) = χAm we find that

µ({x ∈ X : f(x) ≥M}) = µ(AM).

Since E((M,∞))→ 0 in the strong operator topology we find that

µ({x ∈ X : f(x) ≥M}) = µ(AM)→ 0

as M →∞. Hence, we find that f(x) <∞ for almost every x. By construction

Mχ(t,∞)(|f |) = E(χ(t,∞)).

From this, it is not hard to argue that

Mf = |T |.

Setting g = α|f |, we find that

T = Mg.

We now turn to our alternate definition of Lp(M, τ). For 1 ≤ p <∞, let

Lp =

{
T ∈ Meas(M) :

∫
[0,∞)

tp d〈E|L|(t)1, 1〉 <∞
}
,

for T ∈ Lp, set

‖T‖pLp =

∫
[0,∞)

tp d〈E|L|(t)1, 1〉.

By the above Proposition, if (M, τ) is an abelian tracial von Neumann algebra, then

Lp(M., τ) can be canonically and isometrically identified with Lp. It is thus reasonable to

wonder if this is true in the nonabelian case we now proceed to show that this is true.
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Proposition A.2.5. Let (M, τ) be a tracial von Neumann algebra.

(i): We have that Lp is a vector space, and

‖T + S‖Lp ≤ 2p(‖T‖Lp + ‖S‖Lp).

(ii): If Tn ∈ Lp, and ‖T − Tn‖Lp → 0, then

‖T‖Lp ≤ lim inf
n→∞

‖Tn‖Lp .

Proof. (i): As in proposition A.1.5 (ii), we have

τ(χ(t,∞)(|T + S|)) ≤ τ(χ(t/2,∞)(|T |)) + τ(χ(t/2,∞)(|S|)).

Thus,

‖T + S‖pLp = p

∫ ∞
0

τ(χ(t,∞)(|T + S|)) dt

≤ p

∫ ∞
0

tp−1τ(χ(t/2,∞)(|T |)) dt+ p

∫ ∞
0

tp−1τ(χ(t/2,∞)(|S|)) dt

= 2pp

∫ ∞
0

tp−1τ(χ(t,∞)(|T |)) dt+ 2pp

∫ ∞
0

tp−1τ(χ(t,∞)(|S|)) dt

= 2p(‖T‖pLp + ‖S‖pLp).

(ii): As in proposition A.1.5 (ii)

τ(χ(t+ε,∞)(|T |)) ≤ τ(χ(t,∞)(|Tn|)) + τ(χ(ε,∞)(|T − Tn|))

≤ τ(χ(t,∞)(|Tn|)) +
1

εp
‖T − Tn‖pLp .

Thus for all t > 0, ε > 0,

τ(χ(t+ε,∞)(|T |)) ≤ lim inf
n→∞

τ(χ(t,∞)(|Tn|)).

By normality of τ, we know that

τ(χ[t,∞)(|T |)) = τ(χ(t,∞)(|T |))
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for all but countably many t. Letting ε→ 0, we find that

τ(χ(t∞)(|T |)) ≤ lim inf
n→∞

τ(χ(t,∞)(|Tn|)),

for all but countably many t. Thus (ii) follows from Fatou’s Lemma and the equality

‖S‖Lp = p

∫ ∞
0

tp−1τ(χ(t,∞)(|S|)) dt.

Theorem A.2.6. Let (M, τ) be a tracial von Neumann algebra.

Then ‖·‖Lp is a norm which turns Lp into a Banach space, and there is a unique isometry

Lp(M, τ)→ Lp

which is the identity on M.

Proof. For T, S ∈ Lp, let T = U |T |, S = V |S| be the polar decomposition, let Tn =

Uχ[0,n](|T |)|T |, Sn = V χ[0,n](|S|)|S|. Then,

‖Tn‖Lp → ‖T‖Lp , ‖T − Tn‖Lp → 0,

‖Sn‖Lp → ‖S‖Lp , ‖S − Tn‖Lp → 0,

and the preceding proposition implies that

‖T + S‖Lp ≤ lim inf
n→∞

‖Tn + Sn‖Lp .

Since Tn, Sn ∈M, we know that

‖Tn‖Lp = ‖Tn‖p,

‖Sn‖Lp = ‖Sn‖p,

and so the triangle inequality now follows from the fact that ‖ · ‖p is a norm. The existence

and the uniqueness of the isometry follows from the fact that

‖x‖p = ‖x‖Lp
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for x ∈M, and the density of M in Lp, once we prove that Lp is a Banach space.

To prove that Lp, let xn ∈ Lp with ‖xn‖p < 3−n, it is enough to show that

∞∑
n=1

xn

converges in Lp. Let

K =

{
ξ ∈

∞⋂
n=1

dom(xn) :
∞∑
n=1

‖xnξ‖2 <∞

}
,

and define T on K by

T (ξ) =
∞∑
n=1

xnξ.

We claim that T is densely defined and closeable, and that its closure is measurable with

respect to M.

For this, set

pt,n =
∨
m≥n

χ(t2−n,∞)(|xn|),

then

τ(pt,n) ≤
∞∑
m=n

τ(χ(t2−m,∞)(|xn|)) ≤
1

tp

(
∞∑
m=n

(
2

3

)mp)
,

and K ⊇ (1− pt,1)L2(M, τ), this proves that K is dense. As

dom(T ∗) ⊇

{
ξ ∈

∞⋂
n=1

dom(xn) :
∞∑
n=1

‖x∗nξ‖2 <∞

}
,

the same logic implies that T is closeable. It is also straightforward to check that the domain

of K is ρ(M) invariant, and that T (ξx) = T (ξ)x for ξ ∈ K, x ∈ M. Thus the closure of T is

a measurable operator affiliated to M, we let x be the closure of T.

As in Proposition A.1.2

χ(t(1+2−N ),∞)(|x|) ∧ χ(t,∞)

(∣∣∣∣∣
N∑
n=1

xn

∣∣∣∣∣
)
∧ pt,N+1 = 0,

so

τ(χ(t(1+2−N ),∞)(|x|)) ≤ τ

(
χ(t,∞)

(∣∣∣∣∣
N∑
n=1

xn

∣∣∣∣∣
))

+
1

tp

∞∑
n=N+1

2np

3np
,
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as in the preceding proposition this implies that

τ(χ(t,∞)(|x|)) ≤ lim inf
N→∞

τ

(
χ(t,∞)

(∣∣∣∣∣
N∑
n=1

xn

∣∣∣∣∣
))

for all but countable many t. Thus by Fatou’s Lemma

‖x‖Lp = p

∫ ∞
0

tp−1τ(χ(t,∞)(|x|))

≤ lim inf
N→∞

p

∫ ∞
0

tp−1τ

(
χ(t,∞)

(∣∣∣∣∣
N∑
n=1

xn

∣∣∣∣∣
))

dt

= lim inf
N→∞

∥∥∥∥∥
N∑
n=1

xn

∥∥∥∥∥
Lp

≤
∞∑
n=1

‖xn‖Lp ,

so x ∈ Lp.

By the same logic,

τ

(
χ(t,∞)

(∣∣∣∣∣x−
N∑
n=1

xn

∣∣∣∣∣
))
≤ lim inf

M→∞
τ

(
χ(t,∞)

(∣∣∣∣∣
M∑

n=N+1

xn

∣∣∣∣∣
))

,

and thus ∥∥∥∥∥x−
N∑
n=1

xn

∥∥∥∥∥
Lp
≤

∞∑
n=N+1

‖xn‖Lp → 0

as N →∞. This completes the proof.

A.3 Duality

We now extend the usual duality between Lp(M, τ) and Lp
′
(M, τ) from the commutative

case to the noncommutative case. Let us first start with the dual of L1.

Theorem A.3.1. Let (M, τ) be a tracial von Neumann algebra. Under the duality

(x, y)→ τ(xy)
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we have an isometric identification

L1(M, τ)∗ ∼= M.

Proof. For x ∈M, we denote τ(x·) the element of L1(M, τ)∗ defined by

τ(x·)(y) = τ(xy).

We have already seen that for x ∈M, y ∈ L1(M, τ) we have

|τ(xy)| ≤ ‖x‖∞‖y‖1,

thus ‖τ(x·)‖ ≤ ‖x‖∞.

Let φ ∈ L1(M, τ)∗. For ξ, η ∈ L2(M, τ) we have

|φ(ξη∗)| ≤ ‖φ‖‖ξη∗‖1 ≤ ‖ξ‖2‖η‖2‖φ‖.

Thus there is a unique T ∈ B(L2(M, τ)) with ‖T‖ ≤ ‖φ‖ and

〈T (ξ), η〉 = φ(ξη∗).

For y ∈M, we have

〈T (ξy), η〉 = φ(ξyη∗) = 〈T (ξ), ηy∗〉 = 〈T (ξ)y, η〉,

thus T ∈ (M ′)′ = M. For y ∈ L1(M, τ), we have

φ(y) = φ(u|y|1/2|y|1/2) = 〈Tu|y|1/2, |y|1/2〉 = τ(|y|1/2Tu|y|1/2) = τ(Ty).

Further

‖T‖ ≤ ‖φ‖ = ‖τ(T ·)‖.

This proves the theorem.

We have a similar result for M.
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Theorem A.3.2. Let (M, τ) be a tracial von Neumann algebra and φ : M → C a normal

linear functional. Then, there is a unique y ∈ L1(M, τ) so that φ(x) = τ(xy) for all x ∈M.

Proof. It is well known that

(X∗, weak∗)∗ = X,

so it is enough to show that φ is continuous in the weak∗ topology coming from M as the

dual of L1(M, τ). For this, it is enough to show that

ker(φ) ∩M

is weak∗ closed. By the Krein-Smulian theorem (see [4] V.12.1), it is enough to show that

ker(φ) ∩ {x ∈M : ‖x‖∞ ≤ 1}

is weak∗ closed. For this, it is enough to show that φ
∣∣
{x∈M :‖x‖∞≤1} is weak∗ continuous. Let

xi ∈M, with ‖xi‖∞ ≤ 1, and suppose that xi → x weak∗. Given ξ, η ∈ L2(M, τ) we have

〈xiξ, η〉 = τ(xiξη
∗)→ τ(xξη∗),

as ξη∗ ∈ L1(M, τ). Thus xi → x in the weak operator topology, and the normality of φ

implies that

φ(xi)→ φ(x).

This proves the theorem.

Theorem A.3.3. Let (M, τ) be a tracial von Neumann algebra, and 1 ≤ p < ∞, let 1 <

p′ ≤ ∞ be given by
1

p
+

1

p′
= 1.

The duality

(x, y) 7→ τ(xy)

gives an isometric identification Lp(M, τ)∗ ∼= Lp
′
(M, τ).
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Proof. By Theorem A.3.1, we may assume p > 1. For x ∈ Lp′(M, τ), let

τx : Lp(M, τ)→ C

by

τx(y) = τ(xy).

By Corollary A.1.8, we know

‖τx‖ = ‖x‖p′ .

Let φ : Lp(M, τ)∗, note that φ
∣∣
M

is normal. For this, suppose that xi ∈ M, ‖xi‖∞ < 1,

and xi → x in the strong operator topology. If p ≤ 2, then

‖xi − x‖p ≤ ‖xi − x‖2 → 0,

if p > 2, then

‖xi − x‖ppτ(|xi − x|2|xi − x|p−2) ≤ 2p−2‖xi − x‖2 → 0.

So

φ(xi)→ φ(x),

and thus φ is normal. So by Proposition 2.1.8 (iv) and the preceding theorem, we have

φ(x) = τ(xy) for some y ∈ L1(M, τ) and all x ∈ M. We may regard y as a densely-defined

unbounded operator. Let y = u|y| be the polar decomposition, and let

yn = χ[0,n](|y|)|y|p
′−1u∗.

Then,

‖yn‖p‖φ‖ ≥ τ(yyn) =

∫
[0,n]

tp
′〈dE|y|(t)1, 1〉.

As

‖yn‖p ≤ ‖χ[0,n](|y|)|y|p−1‖p =

(∫
[0,n]

tp
′〈dE|y|(t)1, 1〉

)1/p

,

we have

‖φ‖ ≥
(∫

[0,n]

tp
′〈dE|y|(t)1, 1〉

)1/p′

,

letting n→∞ implies that y ∈ Lp(M, τ). By density φ = τy.
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A.4 Interpolation

We wish to generalize the usual Riesz-Thorin interpolation theorem for Lp-spaces to the

more general noncommutative Lp-spaces. We wish actually prove something more general,

using the abstract version of interpolation theory for Banach spaces.

Definition A.4.1. A compatible pair of Banach spaces is a pair of Banach spaces (X, Y )

together with continuous inclusions into a Hausdorff locally convex topological vector space

Z. We will usually identify X, Y with their images in Z. For a ∈ X + Y, we define the norm

‖a‖ = inf{‖x‖+ ‖y‖ : x ∈ X, y ∈ Y, a = x+ y}.

Note that we have a natural isometry

X ⊕ Y
{(x, y) : x = −y}

→ X + Y,

where X ⊕ Y is given the norm

‖(x, y)‖ = ‖x‖+ ‖y‖.

Since the inclusions X ⊆ Z and Y ⊆ Z are continuous, we know that

{(x, y) : x = −y}

is closed. Thus X + Y is a Banach space.

Let Ω = {z ∈ C : 0 < Re(z) < 1}, we let A(X, Y ) be set of all continuous functions

f : Ω→ X + Y such that f
∣∣
Ω

is holomorphic, and f(it) ∈ X for all t ∈ R, f(1 + it) ∈ Y for

all t ∈ R, and

‖f‖ = sup
t

max(‖f(it)‖X , ‖f(1 + it)‖Y ).

For 0 < θ < 1, we set

(X, Y )θ = {f(θ) : f ∈ A(X, Y )},

with the norm

‖p‖θ = inf
f
‖f‖,
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where the infimum is over all f ∈ A(X, Y ) so that f(θ) = p. We call (X, Y )θ the θ-

interpolation between X and Y.

Proposition A.4.2. Let (X, Y ) be a compatible pair of Banach spaces. Then A(X, Y ) and

(X, Y )θ, 0 < θ < 1 are all Banach spaces.

Proof. We first prove that A(X, Y ) is a Banach space, the only nontrivial issue being com-

pleteness. We need a preliminary observation. Let φ ∈ (X + Y )∗, f ∈ A(X, Y ) and consider

the function g : Ω→ C given by

g(z) = φ(f(z)).

Then g is continuous on Ω and holomorphic on Ω. Thus by the Three-Lines Lemma we

have

sup
z
|g(z)| ≤ sup

t
max(|g(it)|, |g(1 + it)|) ≤ ‖f‖‖φ‖.

If we fix z and taking the supremum over all φ we find that

‖f(z)‖X+Y ≤ ‖f‖

for all z ∈ Ω. Thus

sup
z∈Ω

‖f(z)‖X+Y ≤ ‖f‖.

Now suppose that fn ∈ A(X, Y ) are Cauchy. From the above estimates, we see that fn

converges uniformly to a continuous function f : Ω→ X+Y, clearly f(it) ∈ X, f(1+ it) ∈ Y

for all t ∈ R. Further, if φ ∈ (X + Y )∗, then

φ ◦ fn → φ ◦ f

uniformly, and thus φ ◦ f is holomorphic on Ω. Since this is true for all φ, we know that f

is holomorphic (see [4] Exercise VII.3.4) on Ω. Since fn → f uniformly, we have that

‖fn − f‖A(X,Y ) → 0.

Thus A(X, Y ) is a Banach space.
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Fix 0 < θ < 1, then (X, Y )θ can be isometrically identified with

A(X, Y )/{f ∈ A(X, Y ) : f(θ) = 0},

as {f ∈ A(X, Y ) : f(θ) = 0} is closed, we find that (X, Y )θ is a Banach space.

We present the main theorem on interpolation spaces. For a linear operator T : X → Y

between Banach spaces, we use ‖T‖X→Y for the operator norm.

Theorem A.4.3. Let (X1, Y1), (X2, Y2) be a compatible pairs of Banach spaces. Let T : X1 +

Y1 → X2 + Y2 be a linear operator such that T (X1) ⊆ X2, T (Y1) ⊆ Y2 and T
∣∣
X1

: X1 →

X2, T
∣∣
Y1

: Y1 → Y2 are bounded operators. Then for all 0 < θ < 1, we have that T ((X1, Y1)θ) ⊆

(X2, Y2)θ and

‖T‖(X1,Y1)θ→(X2,Y2)θ ≤ ‖T‖
1−θ
X1→X2

‖T‖θY1→Y2
.

Proof. First note that T is a bounded linear operator X1 + Y1 → X2 + Y2 and

‖T‖X1+Y1→X2+Y2 ≤ ‖T‖.

Thus for all f ∈ A(X1, Y1) we have T ◦ f ∈ A(X2, Y2). Fix M1,M2 real numbers so that

M1 > ‖T‖X1→X2 ,M2 > ‖T‖Y1→Y2 .

Fix 0 < θ < 1. Let p ∈ (X1, Y1)θ and f ∈ A(X1, Y1) such that f(θ) = p. Set

g(z) = T (f(z))(M1M
−1
2 )z−θ,

then g ∈ A(X2, Y2) and g(θ) = T (f(θ)). For t ∈ R,

‖g(it)‖ ≤ ‖f‖‖T‖X1→X2M
−θ
1 M θ

2 ≤M1−θ
1 M θ

2‖f‖,

‖g(1 + it)‖ ≤ ‖f‖‖T‖Y1→Y2M
1−θ
1 M θ−1

2 ≤M1−θ
1 M θ

2‖f‖.

Thus

‖T (p)‖θ ≤ ‖f‖M1−θ
1 M θ

2 ,
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and taking the infimum over all f proves

‖T (p)‖θ ≤ ‖p‖θM1−θ
1 M θ

2 .

Thus

‖T‖(X1,Y1)θ→(X2,Y2)θ ≤M1−θ
1 M θ

2

and letting M1 → ‖T‖X1→X2 ,M2 → ‖T‖Y1→Y2 completes the proof.

We wish to apply the above interpolation theory to noncommutative Lp-spaces. For this,

if we view Lp as unbounded operators, we then have continuous inclusions

Lp(M, τ) ⊆ Meas(M)

where Meas(M) is given the measure topology. It then suffices to prove the following theorem.

Theorem A.4.4. Let (M, τ) be a tracial von Neumann algebra, and 1 ≤ p0, p1 ≤ ∞. Define

pθ for 0 < θ < 1 by
1

pθ
=

1− θ
p0

+
θ

p1

.

Then

(Lp0(M, τ), Lp1(M, τ))θ = Lpθ(M, τ),

with equality of norms.

Proof. We may assume that p0 6= p1, hence 1 < pθ <∞.

For 1 ≤ p ≤ ∞ we let p′ be defined by

1

p
+

1

p′
= 1.

Note that
1− θ
p′0

+
θ

p′1
=

1

p′θ

Let f ∈ A(Lp0(M, τ), Lp1(M, τ)). Suppose that x ∈M, and that

|x| ≥ εχ(0,∞)(|x|)
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for some ε > 0. Let x = u|x| be the polar decomposition, and set

g(z) = u|x|
pθ′
p′0

+z

(
p′θ
p′1
− p
′
θ
p′0

)
‖x‖

1− p
′
θ
p′0

+z

(
p′θ
p′1
− p
′
θ
p′0

)
pθ′ .

Since

|x| ≥ εχ(0,∞)(|x|),

we see by functional calculus that

z 7→ |x|
pθ′
p′0

+z

(
p′θ
p′1
− p
′
θ
p′0

)

is holomorphic in ‖ · ‖∞. Thus g(z) is a holomorphic as a Lp0(M, τ) + Lp1(M, τ) valued

function.

Thus ψ(z) = τ(f(z)g(z)) is holomorphic, and

sup
t∈R
|ψ(it)| ≤ ‖f‖ sup

t
‖g(it)‖p′0 ,

for t ∈ R, using ‖ab‖p1 ≤ ‖a‖∞‖b‖p1 for a ∈ M, b ∈ Lp1(M, τ) and the fact that |x|is is

unitary for all s ∈ R,

‖g(it)‖p1 ≤ ‖x‖
1−

pθ′
p0

pθ′ ‖|x|
p′θ
p′1 ‖p′1 = ‖x‖p′θ .

Thus

sup
t∈R
|ψ(it)| ≤ ‖f‖‖x‖pθ′ .

Similarly

sup
t∈R
|ψ(1 + it)| ≤ ‖f‖‖x‖pθ′ .

By the Three-Lines Lemma, we find that

|τ(f(θ)x)| ≤ ‖f‖‖x‖pθ′ .

Thus if y ∈ (Lp0(M, τ), Lp1(M, τ))θ then

|τ(yx)| ≤ ‖y‖θ‖x‖pθ′ .
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Now let y = v|y| be the polar decomposition of y, and let

|y| =
∫

[0,∞)

t dE(t)

be the spectral decomposition of y. For ε > 0, set xε = χ(ε,1/ε)|y|pθ−1v∗. Then,

x∗εxε ≥ εpθ−1vχ(ε,1/ε)(|x|)v∗ = εpθ−1χ(0,∞)(|xε|).

Hence, by what we just saw∫
(ε,1/ε)

tpdτ ◦ E(t) = τ(xεy)

≤ ‖y‖θ‖xε‖pθ′

≤ ‖y‖θ‖χ(ε,1/ε)(|y|)|y|pθ−1‖pθ′

= ‖y‖θ
(∫

(ε,1/ε)

tpdτ ◦ E(t)

)1/pθ′

Thus (∫
(ε,1/ε)

tpdτ ◦ E(t)

)1/p

≤ ‖y‖θ,

letting ε→ 0 and applying the Monotone Convergence Theorem we see that

‖y‖pθ ≤ ‖y‖pθ .

For the reverse inequality, let y ∈ Lpθ(M, τ) and let y = u|y| be the polar decomposition

of y. Define f : Ω→ Meas(M).

f(z) = u|y|
pθ
p0

+z
(
pθ
p1
− pθ
p0

)
‖y‖

1− pθ
p0

+z
(
pθ
p1
− pθ
p0

)
pθ .

Note that f(θ) = y. Using again ‖ab‖pθ ≤ ‖a‖∞‖b‖pθ for a ∈M, b ∈ Lpθ(M, τ) and that |y|is

is unitary for s ∈ R,

sup
t
‖f(it)‖p0 ≤ ‖y‖

1− pθ
p0

pθ ‖|y|
pθ
p0 ‖p0 = ‖y‖pθ .

Similarly

sup
t
‖f(1 + it)‖p1 ≤ ‖y‖pθ .
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We claim that f has image inside Lp0(M, τ) +Lp1(M, τ), that f is a continuous as a map

Ω→ Lp0(M, τ) +Lp1(M, τ) and that f is holomorphic as a map Ω→ Lp0(M, τ) +Lp1(M, τ).

The preceding inequalities then show that

‖f‖A(Lp0 (M,τ),Lp1 (M,τ) ≤ ‖y‖pθ ,

and this will complete the proof.

As ‖u‖∞ ≤ 1, the claim that f maps into Lp0(M, τ)+Lp1(M, τ) reduces to the statement

that

|y|
pθ
p0

+z
(
pθ
p1
− pθ
p0

)

is in Lp0(M, τ)+Lp1(M, τ) which is true by functional calculus. The continuity claim reduces

to the fact that

z 7→ |y|
pθ
p0

+z
(
pθ
p1
− pθ
p0

)

is continuous for the Lp0(M, τ) + Lp1(M, τ) norm which is true by functional calculus and

the commutative case.

Similarly, the holomorphicity claim reduces to the statement that

z 7→ |y|
pθ
p0

+z
(
pθ
p1
− pθ
p0

)

is holomorphic, and for this we may assume that M is abelian and represented on a separable

Hilbert space. Since p0 6= p1, we know that (Lp0(X,µ) + Lp1(X,µ))∗ is identified with

Lp
′
0(X,µ) ∩ Lp′1(X,µ), from this observation it is not hard to argue weak holomorphicity of

the above map. This completes the proof.
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APPENDIX B

Amenable Groups and Equivalence Relations

B.1 Amenable Groups

The concept of an amenable group is probably the most ubiquitous notion in the study

of harmonic analysis on discrete groups. An amenable groups is roughly one over which

you can average, as we will see shortly there are many equivalent ways of phrasing this

(there are even more than the ones we will list below). Each of these different ways lead to

many generalizations: weaker approximation properties for groups, amenability properties

for graphs, equivalence relations, Banach algebras, subfactors, each of which have proved to

be useful in their respective fields. Moreover, amenability of groups has seen tremendous

applications in the study of operator algebras, ergodic theory, L2-invariants, and other related

fields. It turns out that amenable groups are related to the Banach-Tarski paradox, as a

crucial step in the proof of the Banach-Tarski paradox is that F2 is not amenable (here Fn

is the free group on n letters).

Definition B.1.1. Let Γ be a countable discrete group. A Følner sequence for Γ is a

sequence Fn of finite nonempty subsets of Γ. So that

|gFn∆Fn|
|Fn|

→ 0,

for all g ∈ Γ. We say that Γ is amenable if it has a Følner sequence.

A Følner sequence gives a way of averaging functions over a group: given a f ∈ `∞(Γ),

we can consider the sequence of averages

1

|Fn|
∑
g∈Fn

f(g)
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and these will be approximately invariant. This is related to (v) of the next theorem. It

also evokes the usual properties of the intervals {−n, . . . , n} inside Z, and averages over such

intervals are already useful in classical harmonic analysis. Often, properties of the integers

have generalizations to amenable groups. In the next section, a precise and deep relation

between arbitrary amenable groups and Z will be discussed.

We collect many equivalent definitions of amenable in the next theorem.

Theorem B.1.2. Let Γ be a countable discrete group, then the following are equivalent.

(i): Γ is amenable.

(ii): For all 1 ≤ p <∞, there is a sequence fn ∈ `p(Γ) so that

‖λ(g)fn − fn‖p → 0.

(iii): For some 1 ≤ p <∞, there is a sequence fn ∈ `p(Γ) so that ‖fn‖p = 1, and

‖λ(g)fn − fn‖p → 0.

(iv): There is a φ ∈ `∞(Γ)∗ so that φ(λ(g)f) = φ(f) for all f ∈ `∞(Γ).

(v): Every affine action of Γ on a nonempty compact convex set in a locally convex space

by homeomorphisms has a fixed point.

(vi): Every action of Γ on a compact metrizable space has an invariant measure.

Proof. (vi) implies (v): Let X be a locally convex space, and K ⊆ X a compact convex set.

We first prove a two preliminary claims.

Claim 1 : Every action of Γ on a compact Hausdorff space has an invariant measure.

For this, let X be a compact Hausdorff space. For every finite subset F of C(X) contain-

ing the identity, let AF be the C∗-subalgebra of C(X) generated by {gf : g ∈ Γ, f ∈ F}. By

Gelfand Theory, AF ∼= C(YF ), and the action of Γ by automorphisms on AF gives rise to an

action by homeomorphisms on YF . As AF is separable, we know that YF is metrizable. By
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hypothesis, we can find a positive linear functional

φF : AF → C

of norm 1 with φ(1) = 1, and which is invariant under the action of Γ.

Extend φF to a linear functional ψF : C(X) → C by Hahn-Banach with ‖ψF‖ = 1. By

compactness, we can find a weak∗ cluster point ψ of ψF . Then ψ is a positive linear functional,

invariant under the action of Γ. Again, by Gelfand duality we know that ψ corresponds to a

Γ-invariant probability measure on X.

Claim 2 : For every µ ∈ Prob(K), there is a unique x ∈ K, so that∫
K

φ(y) dµ(y) = φ(x)

for all φ ∈ X∗. We shall abbreviate the above statement as∫
K

y dµ(y) = x.

Since X is a locally convex space, uniqueness of x is obvious from the Hahn-Banach

theorem. To prove existence, first suppose that

µ =
n∑
j=1

λjδyj ,

with λj ≥ 0,
∑
λj = 1, and y1, . . . , yn ∈ K. In this case, we have

x =
n∑
j=1

λjyj.

In general, let µα be a net of atomic probability measures on K with µα → µ weak∗. By

what we just saw, there is a xα ∈ K so that∫
K

y dµα(y) = xα.

By compactness, we may assume that there is an x ∈ K so that xα → x. Then for all φ ∈ X∗

φ(x) = lim
α
φ(xα) = lim

α

∫
K

φ(y) dµα(y) =

∫
K

φ(y) dµ(y),
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this proves Claim 2.

By Claim 1, we can find a Γ-invariant measure µ on K. By uniqueness, and the fact that

the action is affine, it is hard to see that∫
K

y dµ(y)

is a fixed point in K.

(v) implies (iv): Given l∞(Γ)∗ the weak∗ topology. Let Γ act on l∞(Γ)∗ by

(gφ)(f) = φ(λ(g)−1f).

Then

K = {φ ∈ l∞(Γ)∗ : φ(f) ≥ 0 for all f ∈ l∞(Γ), φ(1) = 1}

is invariant under the action of Γ. Any fixed point under this action gives an element as in

(iv).

(iv) implies (iii): We take p = 1. We identify Prob(Γ) as a subset of `1(Γ). Let φ be as in

(iv). We first prove the following claim.

Claim: View `1(Γ) ⊆ `∞(Γ)∗, we have

φ ∈ Prob(Γ)
weak∗

.

If the claim is false, then by geometric Hahn-Banach we can find a weak∗ continuous

linear functional

F : `∞(Γ)∗ → C

and real numbers α < β so that

Re(F (φ)) < α < β < Re(F (µ))

for all µ ∈ Prob(Γ). It is a standard functional analysis exercise that F (φ) = φ(f) for a unique

f ∈ l∞(Γ). Replacing f with Re(f), we may assume that f is real. Write f = f+ − f−,

where f+f− = 0, and f+, f− ≥ 0. Taking the infimum over all µ ∈ Prob(Γ), we find that

α < β ≤ −‖f−‖∞.
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However, as f ≥ −‖f−‖∞, we have

α > Re(φ(f)) ≥ −‖f−‖∞,

which is a contradiction.

Let F be a finite subset of Γ, and ε > 0. It suffices to show that there is a f ∈ Prob(Γ)

so that

max
g∈F
‖λ(g)f − f‖1 < ε.

Let

K =
⊕
g∈F

{λ(g)f − f : g ∈ F, f ∈ Prob(Γ)}.

It suffices to show that 0 ∈ K‖·‖1 . By convexity, it suffices to show that 0 ∈ Kweak
. By

the claim, we find a net fα ∈ Prob(Γ) so that

fα → φ

weak∗. Thus, for all k ∈ `∞(Γ), for all g ∈ F,

〈λ(g)fα − fα, k〉 = 〈fα, λ(g)−1k − k〉 → φ(λ(g)−1k − k) = 0.

Thus 0 ∈ Kweak
, and we are done.

(iii) implies (ii): Let fn be as in (iii). By the triangle inequality,

‖λ(g)|fn| − |fn|‖p ≤ ‖λ(g)fn − fn‖p,

for all g ∈ Γ. So we may assume that fn ≥ 0. Let 1 ≤ q < ∞, and set kn = f
p/q
n , we will

show that

‖λ(g)kn − kn‖q → 0

for all g ∈ Γ. Clearly we may assume p 6= q.

Let us first handle the case that p > q. For a, b ∈ [0,∞) we have by elementary calculus:

|ap/q − bp/q| ≤ p

q
max(|a|

p
q
−1, |b|

p
q
−1)|a− b| ≤ p

q
|a|

p
q
−1|a− b|+ p

q
|b|

p
q
−1|a− b|.
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Thus,

‖λ(g)kn − kn‖qq ≤
p

q

∑
g∈Γ

(
|fn|

p
q
−1|fn(x)− fn(g−1x)|+ |fn(g−1x)|

p
q
−1|fn(x)− fn(g−1x)|

)q
≤ 2q

(
p

q

)q∑
g∈Γ

(
|fn|p−q|fn(x)− fn(g−1x)|q + |fn(g−1x)|p−q|fn(x)− fn(g−1x)|q

)
.

Where in the last line we use the inequality (a+ b)q ≤ 2q(aq + bq), for a, b ∈ [0,∞).

Since p > q, we may apply Hölder’s inequality to see that

‖λ(g)kn − kn‖qq ≤ 2q+1

(
p

q

)
‖fn − λ(g)fn‖qp,

as

‖fn‖p = 1.

Thus

‖λ(g)kn − kn‖q → 0

for all g ∈ Γ.

Now we handle the case p < q. We leave it as an exercise to the reader to verify that

|ap/q − bp/q| ≤ |a− b|p/q

for a, b ∈ [0,∞). Thus for all g ∈ Γ,

‖λ(g)kn − kn‖qq ≤ ‖λ(g)fn − fn‖pp → 0.

(ii) implies (i): We take p = 1. Let fn be as the statement of (ii). As in the proof of (iii)

implies (ii), we may assume that fn ≥ 0. Let ε > 0, and K ⊆ Γ be finite. It is enough to

find a F ⊆ Γ finite so that

max
g∈K

|gF∆F |
|F |

< ε.

Take n sufficiently large so that∑
g∈K

‖λ(g)fn − fn‖1 < ε.
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By Tonelli, for each n we have

‖λ(g)fn − fn‖1 =

∫ 1

0

|{fn ≥ t}∆g{fn ≥ t}| dt.

Thus ∫ 1

0

∑
g∈K

|{fn ≥ t}∆g{fn ≥ t}| dt < ε = ε

∫ 1

0

|{fn ≥ t}| dt.

Hence we can find a t > 0 with

∑
g∈K

|{fn ≥ t}∆g{fn ≥ t}| < ε|{fn ≥ t}|,

and so we may take F = {fn ≥ t}.

(i) implies (vi): Let X be a compact metrizable space and Γ y X by homeomorphisms.

Let x0 ∈ X, and let Fn be a Følner sequence for Γ. Set

µn =
1

|Fn|
∑
g∈Fn

δgx0 .

Then,

‖g∗µn − µn‖ ≤
|gFn∆Fn|
|Fn|

hence any weak∗ limit point of µn is a Γ-invariant measure on X.

A φ as in (iv), is called an invariant mean for Γ. Let us use the above theorem to prove

that F2 is not amenable. Suppose F2 is amenable, and let φ be an invariant mean for

F2. Let a, b be free generators for F2. Let A+, (respectively A−) be the set of all words in

F2 beginning with a (respectively a−1), and similarly define B+, B− in terms of b, b−1. Let

S = {1, b, b2, . . . }. Then,

F2 = A+ t A− t (B+ \ S) t (B− ∪ S) = A+ t aA− = b−1(B+ \ S) t (B− ∪ S).
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Thus,

1 = φ(1) = φ(χA+) + φ(χA−) + φ(χB+\S) + φ(χB−tS)

= φ(χA+) + φ(λ(a)χA−) + φ(λ(b)−1χB+\S) + φ(χB−tS)

= φ(χA+ + (λ(a)χA− + λ(b)−1χB+\S + χB−tS)

= φ(2)

= 2,

a contradiction. By (i) of the next proposition, and the fact that Fn embeds into F2 for all

n ≥ 2, we see that Fn is non-amenable for all n.

We now prove various permanence properties of amenable groups.

Proposition B.1.3. (i): Every subgroup of amenable group is amenable.

(ii): Let Γ be a countable discrete group, and let Γn are an increasing sequence of sub-

groups with

Γ =
∞⋃
n=1

Γn.

Then Γ is amenable if and only if Γn is amenable for all n.

(iii): Let

1 −−−→ Λ −−−→ Γ −−−→ ∆ −−−→ 1,

be a short exact sequence of countable discrete groups. Then Γ is amenable if and only if Λ

and ∆ are amenable.

Proof. (i): Let ε > 0, and K ⊆ Λ finite. As a representation of Λ we have

`2(Γ) ∼=
(2)⊕
Γ/Λ

`2(Λ),

where the superscript indicates we are taking the `2-direct sum. By (ii) in the preceding

theorem, we may find Let f ∈ `2(Γ) with ‖f‖2 = 1 such that∑
g∈K

‖λ(g)f − f‖2
2 < ε.
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Let fc, c ∈ Γ/Λ be such that

f =
⊕
c∈Γ/Λ

fc,

under the decomposition

`2(Γ) ∼=
(2)⊕
Γ/Λ

`2(Λ).

Then ∑
g∈K

∑
c∈Γ/Λ

‖λ(g)fc − fc‖2
2 =

∑
g∈K

‖λ(g)f − f‖2
2 < ε = ε

∑
c∈Γ/Λ

‖fc‖2
2.

Thus there is some c ∈ Γ/Λ with‖fc‖2 6= 0, and

∑
g∈K

‖λ(g)fc − fc‖2
2 < ε‖fc‖2

2.

Hence if we set k = fc
‖fc‖2 , then ‖k‖2 = 1, and

max
g∈K
‖λ(g)k − k‖2 <

√
ε.

This proves (ii) for Λ.

(ii): By (i), we have that if Γ is amenable, then so is each Γn. Suppose Γn is amenable

for all n. Let K ⊆ Γ be finite and ε > 0. For n large enough, we have K ⊆ Γn. Thus there

is a F ⊆ Γn finite so that

max
g∈K

|gF∆F |
|F |

< ε.

Now apply a diagonal argument to argue that Γ has a Følner sequence.

(iii): Without loss of generality, Λ/Γ and ∆ = Γ/Λ. By (i), we know that Λ is amenable.

To see that ∆ is amenable, let K be a compact convex set in a locally convex space, and

∆ y K by affine homeomorphisms. The we have a Γ action on K by

gx = (gΛ)x, g ∈ Γ, x ∈ K.

By (v) in the preceding theorem, we know that Γ has a fixed point under this action. Any

fixed point for Γ is one for ∆, so ∆ is amenable.
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Now suppose that Λ and ∆ are amenable. Let K be a compact convex set in a locally

convex space, and let Γ y K by affine homeomorphisms. By amenability of Λ,

K ′ = {x ∈ K : λx = x for all λ ∈ Λ},

is nonempty. Since Γ acts by affine homeomorphisms we know that K ′ is a compact convex

set. Define an action of ∆ on K ′ by

(gΛ)x = gx

for g ∈ Γ, x ∈ K ′. By normality of Λ, and the definition of K ′ we see that this is a well-

defined action of ∆ by affine homeomorphisms. By amenability of ∆, there is a fixed point

x ∈ K ′ for the action of ∆. It is easy to see that x is a fixed point under the action of Γ,

hence Γ is amenable.

Let us now give some examples of amenable groups. First, every finite group is amenable.

This follows because

φ(f) =
1

|Γ|
∑
g∈Γ

f(g),

is easily seen to be an invariant mean for a finite group Γ. The integers are amenable.

Indeed, {−n, . . . , n} is easily seen to be a Følner sequence for Z. By repeated applications

of (iii), and the fundamental theorem of finitely generated abelian groups it follows that all

finitely generated abelian groups are amenable. By (ii), it follows that every abelian group is

amenable. If we let C be the smallest class of countable discrete groups containing all abelian

and finite groups, and which is closed under taking subgroups, extensions and direct unions,

it follows that every group in C is amenable. The class C is called the class of elementary

amenable groups. In particular, every locally solvable group (i.e. every finitely generated

subgroup is solvable) is amenable.

258



B.2 Amenable Equivalence Relations

Following our philosophy that properties of a group should translate into properties of their

induced equivalence relations, we will discuss the concept of an amenable equivalence rela-

tion. We list below as a theorem the following equivalent definitions of an amenable equiva-

lence relation. As it would take us too far afield, we will not prove these equivalences, instead

referring the reader to [23] Theorem 4.10, and [17] Chapter II where the below conditions

are taken from.

Theorem B.2.1. Let X be a standard probability space, and µ a Borel probability measure

on X, and R a discrete measure-preserving equivalence relation over (X,µ). The following

are equivalent.

(i): For every Borel B ⊆ X such that

x 7→ |{(y ∈ X : (x, y) ∈ B}|,

y 7→ |{x ∈ X : (x, y) ∈ B}|,

are in L∞(X,µ), and for every ε > 0, there is a Borel A ⊆ X so that

|{x ∈ Oz ∩ A : (x, y) ∈ B, y for some y ∈ X \ A}|
|Oz ∩ A

| < ε,

for almost every z ∈ X.

(ii): For all 1 ≤ p < ∞, there is a sequence fn ∈ Lp(R, µ) so that ‖fn,x‖p = 1, where

fn,x : Ox → C is defined by fn,x(y) = fn(x, y), and

‖φfn − Idran(φ) fn‖p → 0,

for all φ ∈ [[R]].

(iii): For some 1 ≤ p <∞, there is a sequence fn ∈ Lp(R, µ) so that ‖fn,x‖p = 1, where

fn,x : Ox → C is defined by fn,x(y) = fn(x, y), and

‖φfn − Idran(φ) fn‖p → 0,
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for all φ ∈ [[R]].

(iv): There is a positive linear map P : L∞(R, µ)→ L∞(X,µ) so that

P (gf) = gP (f), for all f ∈ L∞(R, µ), g ∈ L∞(X,µ)

P (φf) = φP (f), for all φ ∈ [[R]].

(v): There is an increasing sequence Rn of subequivalence relations of R, so that {y :

(x, y) ∈ Rn} is finite for almost every x ∈ X, and all n ∈ N, and

µ

(
R \

∞⋃
n=1

Rn

)
= 0.

In the theorem, the conditions (i) through (iv) are the analogues of (i) through (iv) in

Theorem B.1.2. Conditions (v) is not, and in fact is rather surprising. Condition (v) is

analogous to saying that Γ is a union of finite groups. We will discuss later, that when R

has infinite orbits, then there is a free measure-preserving Z y (X,µ) so that R = RZy(X,µ).

This is analogous to saying that Γ ∼= Z! This is another instance where many properties of

groups become simpler when we pass to equivalence relations.

We now turn to permanence properties of amenable equivalence relations.

Proposition B.2.2. Let X be a standard Borel space, let µ be a Borel probability measure

on X, and R a discrete measure-preserving equivalence relation on (X,µ).

(i): If R is amenable, then so is any Borel subequivalence relation.

(ii): If R is amenable, and A ⊆ X is Borel, then RA is amenable.

(iii): Suppose that (φn)∞n=1 is a sequence in [[R]], and 1 ≤ p < ∞. Suppose that fn ∈

Lp(R, µ), and fn,x : Ox → C is defined as in the preceding theorem, and

‖φjfn − Idran(φj) fn‖1 → 0.

If

µ

(
R \

∞⋃
j=1

{(x, φj) : x ∈ dom(φj)}

)
= 0,
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then R is amenable.

(iv): If Γ is amenable group, and Γ y (X,µ) is a measure-preserving action so that

R = {(x, gx) : g ∈ Γ}, then R is amenable.

(v): If Rn are an increasing sequence of amenable subequivalence relations, then

∞⋃
n=1

Rn

is amenable.

(vi): If An are an increasing sequence of measurable subsets of X so that RAn is amenable

and

µ

(
X \

∞⋃
n=1

An

)
= 0,

then R is amenable.

(vii): If A ⊆ X is Borel, and R
∣∣
A

is amenable, then so is RRA.

Proof. (i): Let S ⊆ R be a Borel subequivalence relation. Let Rn be as in (v). Set

Sn = Rn ∩ S.

Then Sn are subequivalence relations of S, and

{y ∈ X : (x, y) ∈ Sn}

is finite for almost every X. Choose a conull X0 ⊆ X so that {y ∈ X : (x, y) ∈ Rn} if finite

for all x ∈ X0, and

{y : (x, y) ∈ R} =
∞⋃
n=1

{y : (x, y) ∈ Rn}

for all x ∈ X0. Then

{y : (x, y) ∈ S} =
∞⋃
n=1

{y : (x, y) ∈ Sn}

for all x ∈ X0. Thus S verifies (v) of the above theorem, and hence is amenable.

(ii): Let P be as in (iv) for the above theorem. For f ∈ L∞(RA, µ), and define f̃ ∈

L∞(R, µ) by f̃(x, y) = χA(x)χA(y)f(x, y). Define P̃ : L∞(RA, µ)→ L∞(A, µ) by

P̃ (f) = P (f̃),
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then it is straightforward to verify (iv) of the above theorem for P̃ .

(iii): Passing to a subsequence, we may assume that

‖φjfn,x − Idran(φ) fn,x‖p → 0

for almost every x ∈ X and all j ∈ N. Since (x, y) 7→ (y, x) preserves R, it follows that

µ

(
R \

∞⋃
j=1

{(x, φ−1
j (x)) : x ∈ ran(φj)}

)
= 0.

Given φ ∈ [[R]], let mφ : ran(φ)→ N ∪ {∞} be defined by

mφ(x) = inf{k : φ−1(x) = φ−1
j (x)}.

Then,

‖φfn − Idran(φ) fn‖pp =

∫
ran(φ)

∑
y∼x

|fn(φ−1x, y)− fn(x, y)|p dµ(x)

=

∫
ran(φ)

∞∑
m=1

χ{x:mφ(x)=m}
∑
y∼x

|fn(φ−1
j (x), y)− fn(x, y)|p dµ(x).

Now ∑
y∼x

|fn(φ−1
j (x), y)− fn(x, y)|p → 0,

almost everywhere by assumption. And since ‖fn,x‖p = 1, we find that∑
y∼x

|fn(φ−1
j (x), y)− fn(x, y)|p ≤ 2p.

Thus, the dominated convergence theorem implies that

‖φfn − Idran(φ) fn‖p → 0.

(iv): Let fn ∈ `1(Γ) be such that

‖λ(g)fn − fn‖1 → 0

for all g ∈ Γ, as in the proof of Theorem B.1.2, we may assume fn ≥ 0. Define f̃n : R → [0,∞)

by

f̃n(x, y) =
∑

g∈Γ:gx=y

fn(g−1),
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then ‖fn,x‖1 = 1 for almost every x ∈ X. Let αg ∈ [R] be defined by αg(x) = gx. Then

‖αgf̃n − f̃n‖1 =

∫
X

∑
y∼x

∣∣∣∣∣∣
∑

h∈Γ:hg−1x=y

fn(h−1)−
∑

h∈Γ:hx=y

fn(h−1)

∣∣∣∣∣∣ dµ(x)

=

∫
X

∑
y∼x

∣∣∣∣∣ ∑
h∈Γ:hx=y

|fn(g−1h−1)− fn(h−1)

∣∣∣∣∣ dµ(x)

≤ ‖λ(g)fn − fn‖1 → 0.

Hence, by (iv) we know that Γ is amenable.

(v): For φ ∈ [[R]], define nφ : X → N ∪ {∞} by

nφ(x) = inf{k : (x, φ(x)) ∈ Rn},

by assumption nφ is finite almost everywhere. Let φ1, . . . , φk ∈ [[R]], and ε > 0. Choose

N ∈ N, and A ⊆ X so that µ(A) ≥ 1− ε, and

nφj(x) ≤ N

for al x ∈ A. For 1 ≤ j ≤ k, define ψj ∈ [[RN ]], by ψj = φj IdA . Let f ∈ L1(RN , µ) be such

that ‖fx‖1 = 1 for almost every x ∈ X, and

max
1≤j≤k

‖ψjf − f‖1 < ε.

Define f̃ ∈ L1(R, µ) by declaring f̃(x, y) = 0 for (x, y) ∈ R \ RN . For any 1 ≤ j ≤ k,

‖φj f̃ − Idran(φj) f̃‖ =

∫
X

|φj f̃x − Idran(φj) f̃x‖1 dµ(x) ≤ 2ε+

∫
A

‖φjfx − Idran(φj) fx‖1

= 2ε+ ‖ψjf − Idran(ψj) f‖1

< 3ε.

By a diagonal argument and (iv), we see that R is amenable.

(vi): This is proved in a similar manner to (v) as above.

(vii): By (v), it is enough to show that if φ ∈ [[R]], dom(φ) ⊆ A, and ran(φ) ∩ A = ∅,

then RA∪φ(A) is amenable. Let us first setup notation. For f ∈ L∞(R, µ), define (fij)1≤i,j≤2
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in L∞(RA, µ) by

f11 = IdA f IdA,

f12 = IdA fφ
−1,

f21 = φf IdA,

f22 = φfφ−1.

For ψ ∈ [[RA∪φ(A)]] define (ψij)1≤i,j≤2 in [[RA]] by

ψ11 = IdA ψ IdA,

ψ12 = IdA ψφ
−1,

ψ21 = φψ IdA,

ψ22 = φψφ−1.

Then for 1 ≤ i, j ≤ 2

(ψf)ij =
2∑
l=1

ψilflj.

For k ∈ L∞(X,µ), set

k1 = IdA k,

k2 = φk.

Then, for i = 1, 2, and ψ, k as above:

(ψk)i =
2∑
l=1

ψilkl.

Let P be as in (iv) of the preceding theorem for L∞(RA, µ). Define P̃ : L∞(RA∪φ(A), µ)→

L∞(X,µ) by

P̃ (f)i =
2∑
l=1

P (fil),
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for i = 1, 2. For ψ ∈ [[RA∪φ(A)]], and f ∈ L∞(RA∪φ(A), µ), i = 1, 2 we have

P̃ (ψf)i =
2∑
l=1

2∑
j=1

ψijP (fjl) =
2∑
j=1

ψij

(
2∑
l=1

P (fjl)

)

=
2∑
j=1

ψijP̃ (f)j

= (ψP̃ (f))i.

It is even easier to show that P̃ (gf) = gP̃ (f), for g ∈ L∞(A∪φ(A), µ), f ∈ L∞(RA∪φ(A), µ).

This proves (vii).

Let us note what amenability means in the context of free actions of groups.

Proposition B.2.3. Let (X,µ) be a standard probability space, and Γ y (X,µ) a free

measure-preserving action. Then, RΓy(X,µ) is amenable if and only if Γ is amenable.

Proof. By the preceding proposition, we know that if Γ is amenable, then RΓy(X,µ) is

amenable.

Now suppose that RΓy(X,µ) is amenable. Let fn be as in (ii) In the above theorem for

p = 1. As

‖φfn − Idran(φ) fn‖1 ≤ ‖φ|fn| − Idran(φ) |fn|‖1,

we may assume that fn ≥ 0. Let f̃n : Γ→ C be defined by

f̃n(g) =

∫
X

fn(gx, x) dµ(x).

As fn ≥ 0, ∑
g∈Γ

f̃n(g) =
∑
g∈Γ

∫
X

fn(gx, x) dµ(x) =
∑
g∈Γ

∫
X

fn(x, g−1x) dµ(x),

where in the last equality we use that the action is measure-preserving. As the action is free,∑
g∈Γ

∫
X

fn(x, g−1x) dµ(x) =

∫
X

∑
g∈Γ

fn(x, g−1x) dµ(x) =

∫
RΓy(X,µ)

fn(x, y) dµ(x, y) = 1,
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since fn ≥ 0 and ‖fn‖1 = 1.

For all g ∈ Γ,

‖λ(g)f̃n − f̃n‖1 =
∑
h∈Γ

∣∣∣∣∫
X

fn(g−1hx, x) dµ(x)−
∫
X

fn(hx, x) dµ(x)

∣∣∣∣
=
∑
h∈Γ

∣∣∣∣∫
X

fn(g−1x, h−1x)−
∫
X

fn(x, h−1x) dµ(x)

∣∣∣∣ ,
where in the last equality we use that the action is measure-preserving. Thus,

‖λ(g)f̃n − f̃n‖1 ≤
∫
X

∑
h∈Γ

|fn(g−1x, h−1x)− fn(x, h−1x)| dµ(x) = ‖gfn − fn‖1,

where in the last line we use the action is free. Thus,

‖λ(g)f̃n − f̃n‖1 → 0,

and so Γ verifies Theorem B.1.2 (iii) for p = 1.

The following is a fundamental and rather surprising theorem about amenable equivalence

relations see [17] for the proof.

Theorem B.2.4 (Dye, Connes-Feldman-Weiss). Let X and Y be standard Borel spaces, and

let µ, ν be Borel probability measures on X, Y respectively. Let R,S, be discrete, measure-

preserving, ergodic equivalence relations over (X,µ), (Y, ν) respectively. Suppose that Ox,Oy

are infinite for almost every x ∈ X, y ∈ Y. Then, R and S are isomorphic.

Thus, from the point of view of equivalence relations there is only one amenable equiv-

alence relation with infinite orbits. This implies that, from the point of view of equivalence

relations, there is only one infinite amenable group. We present this formally below.

Corollary B.2.5. Let X be a standard probability space and µ a Borel probability measure

on X. Let Γ be any infinite amenable group. If R is a ergodic, discrete, measure-preserving

equivalence relation over (X,µ) and Ox is infinite for almost every x, then there is a free
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measure-preserving action Γ y (X,µ) so that R = RΓy(X,µ). In particular, if Λ is any other

infinite amenable group, and Λ y (X,µ) is a free probability measure-preserving ergodic

action, then there is an action Γ y (X,µ) so that RΓy(X,µ) = RΛy(X,µ).

Proof. The in particular part follows from the preceding proposition. Fix some standard

probability space (Y, ν) and a ergodic action Γ y (Y, ν) (for example we can consider a

nontrivial Bernoulli action). By the preceding Theorem, there is a bimeasurable bijection

Φ: Y → X

so that Φ∗ν = µ, and

{Φ(gy) : g ∈ Γ} = {x ∈ X : (x,Φ(y)) ∈ R},

for almost every y ∈ Y. We may define an action of Γ on X by

gx = Φ(gΦ−1(x)).

For this action RΓy(X,µ) = R.

We remark that we may actually remove the ergodicity assumption in the above corollary

by applying the ergodic decomposition and Borel selection. We leave this as an exercise to

the reader. We close this section with a theorem showing that a hyperfinite equivalence

relation is roughly the “smallest” equivalence relation.

Theorem B.2.6. [Jackson-Kechris-Louveau,Lemma 23.2 in [17]] Let (R, X, µ) be a discrete,

measure-preserving equivalence relation such that Ox is infinite for almost every x ∈ X.

Then, there is a amenable subequivalence relation S of R with infinite orbits almost every-

where.
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