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ABSTRACT OF THE DISSERTATION

Extended von Neumann Dimension

For Representations of Groups
and Equivalence Relations

by

Benjamin Richard Hayes
Doctor of Philosophy in Mathematics
University of California, Los Angeles, 2014
Professor Dimitri Shlyakhtenko, Chair

This thesis is on two related research problems, and is divided into 2 parts:

Part 1: Let ' be a countable discrete sofic group, we given an entropic formula for the
von Neumann dimension of a Hilbert space representation of I' contained in a multiple of the
left regular representation. We use our formula to extend von Neumann to any uniformly
bounded representation of I" on a separable Banach space. We give computations for the left
regular representable representation of I' on /P, as well actions on noncommutative LP-spaces
and (P-Betti numbers of free groups. We prove some general results about the properties of
this invariant, including that the extended von Neumann dimension is always zero when the

group is infinite and the representation is finite-dimensional.

Part 2: We work on an analogous problem for representations of a sofic, discrete,
measure-preserving equivalence relation. Again, we are able to find an entropic formula
for von Neumann dimension of a Hilbert space representation of a sofic, discrete, measure-
preserving equivalence relation R. Again, this allows us to extend von Neumann dimension
to actions of R on a Banach space. Following techniques of Gaboriau in [12], we are able to

define the LP-Betti numbers of (finitely presented) equivalence relations. We also indicate

i



how this gives a potential way to solve the cost versus L?-Betti number problem as posed

by Gaboriau.
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CHAPTER 1

Introduction

The thesis is on extending a quantity called von Neumann dimension associated to certain
Hilbert space representations of groups and equivalence relations to more general represen-

tations on Banach spaces.

The original definition of von Neumann dimension is due to Murray and von Neumann
and heavily depends upon Hilbert space structure. For example, one starts with a unitary
representation of a countable discrete group I' which is a subspace of /2(I' x N) with the
left translation action. Then, one takes the orthogonal projection onto this subspace and
notices that it lands in a certain operator algebra with a trace, and then takes the trace of
the projection. This is natural from linear algebra, as it straightforward to verify that the
dimension of a subspace is the trace of the projection onto this subspace. More generally one
can replace I' with a tracial von Neumann algebra and this is what generalizes the theory to

equivalence relations, measure spaces, etc.

The peculiar aspect of this dimension is that it typically takes on all values in [0, 0o]
instead of just integer values. For example, this is the true in the group case described above
if the group is infinite. Moreover, for abelian groups the theory is relatively simple: by
Fourier analysis invariant subspaces of ¢*(T") correspond to measurable subsets of the dual
group, and the dimension is just the measure of the correspond set. A similar theory works
for any abelian von Neumann algebra. This theory of dimension allows one to define £2-Betti
numbers of groups or equivalence relations, and these numbers have tremendous applications

in group theory, orbit equivalence and ergodic theory, as well as operator algebras itself.

With the incredible success of von Neumann dimension, it is reasonable to wonder if one



can extend the theory to more general actions on Banach spaces. However, the definition
of von Neumann dimension highly relies on Hilbert space structure: the existence of projec-
tions, the structure of operator algebras on Hilbert spaces, and properties of traces on these
algebras. It is not clear how one could remove this structure. A possible approach was sug-
gested by Gromov in [15]. For this, it turns out to be useful to view von Neumann dimension
in a different way. Namely, one can view von Neumann dimension as being analogous to

entropy. For example, we have a canonical inclusion

(') C CY,

and we view C' as a Bernoulli shift. Unfortunately, C!" does not have the structure of a com-
pact space or a nice probability space structure that usually allows one to analyze Bernoulli
shifts. However, the spaces ¢(I") clearly have nice analytic structure. Since classification for
Bernoulli shifts is done by entropy, we expect invariants for I' ~ ¢?(I") to have an entropic

flavor.

This is not just a vague heuristic: Voiculescu in [27] discovered an entropic formula for
representations of amenable groups analogous to entropy of an action of an amenable group
on a topological space. His definition allows one to relate entropy for actions on certain
non-commutative spaces (i.e. C*-algebras) to von Neumann dimension. Following up on
comments of Gromov, Antoine Gournay in [13] discovered a different entropic formula for
von Neumann dimension, but this time with the aim of extending von Neumann dimension
to actions on (P-spaces instead of Hilbert spaces. These results make clear the relationship

between entropy and von Neumann dimension in the case of amenable groups.

Quite recently, the theory of entropy of actions on a group on a topological space or
measure space has been extended to the class of sofic groups in the work of L. Bowen [2]
and Kerr-Li [18]. The class of sofic groups is much larger than the class of amenable groups:
it contains all residually amenable (in fact, residually sofic) groups, locally sofic groups,
and is closed under free products with amalgamation over amenable subgroups. Given our

analogy between entropy and dimension it is reasonable to expect one to be able express von



Neumann dimension and entropy for sofic groups, and not just amenable groups. This is the
main content of this thesis, as well as exploring what happens when one drops the Hilbert
space structure of the representation. In particular, this leads us to define /P-Betti numbers
for sofic groups, as well as sofic equivalence relations. Further, the (P-Betti numbers give a
potential approach to the cost versus ¢2-Betti number, a significant and important problem

in orbit equivalence theory.

The thesis is divided into several parts. I have tried as much as possible to keep the
thesis accessible to a general audience. Thus the first chapter contains some preliminaries on
the less standard material: sofic groups, von Neumann algebras, and equivalence relations.
Assuming the reader takes a few things for granted, I have given a self-contained construction
of the classical von Neumann dimension (which isn’t even technically needed for most of the
thesis). The preliminaries are actually a relatively small amount of material, and so I hope
that readers familiar with functional analysis (e.g. locally convex spaces and introductory

C*-algebra theory), will be able to read most of the text.

Interested readers may wish to decide which of the material in the thesis they want to skip.
In particular, the section on noncommutative LP-spaces and any material requiring measure-
preserving equivalence relations is probably the most technical. A reader only knowing basic
functional analysis can read the section on extended von Neumann dimension for groups,

provided they roughly understand the construction of the usual von Neumann dimension.

Because it comprises such a small part of the text, I have delegated preliminaries on non-
commutative LP-spaces to the appendix. The material there is essentially a comprehensive
introduction to the theory of noncommutative LP-spaces. In particular, the (nonobvious)
fact that the noncommutative LP-norms are norms is proved in a fairly short manner and in
a way that can be generalized to other noncommutative spaces analogous to those appearing
with classical analysis, e.g. noncommutative Lorentz spaces. The techniques can also be

used to prove that symmetrically normed ideals are in fact normed ideals in a short manner.



CHAPTER 2

Preliminaries

2.1 Von Neumann Algebras

2.1.1 Basic Definitions

In this section, we discuss the concept of a von Neumann algebra, this is a certain algebra
of operators on a Hilbert space. It turns out to be quite natural to think of a von Neumann
algebra as a “noncommutative measure space”. The commutative von Neumann algebras
will correspond to measure spaces, and the intuition for many techniques in von Neumann

algebra theory come from measure theory.

Definition 2.1.1. Let H be a Hilbert space. The weak operator topology on B(H) is
the locally convex topology defined by the family of pseudonorms p¢,(T) = |(T€,n)|, for

§,n € H. Equivalently, the weak operator topology has the basis of open sets Ur g p. index
by T' € B(H) and finite subsets E, FF C H and € > 0

Urpre= () {S€BH):[(S6n) — (T, n)| <<}
EeEneF
The strong operator topology on H is the locally convex topology on H defined by the family
of pseudonorms p¢(T") = ||T¢|| for £ € H. Equivalently the strong operator topology has the
following basis of open sets Ur g indexed by T' € B(H), E C H finite and € > 0

Urpe= [\ {S€BH):|S¢-T¢|| <e}

(EeEneF

These topologies have the following descriptions in terms of nets: if we have a net T; €



B(H) then T; — T in the weak operator topology if and only if for all £, € H,

(Ti&m) — (T&,n)

similarly, T; — T in the strong operator topology if and only if for all £ € H we have

IT3¢ — T¢|| — 0.

We collect some basic facts about these topologies.

Lemma 2.1.2. Let H be a Hilbert space.

T —WOT
=K .

(i): Let K C B(H) be convez, then K
(i1): Let C' C B(H) be a norm bounded set, then ™o s compact in the weak operator
topology.

Proof. (i): It is clear that T ¢ &Y

&, ,& €H and e > 0. Let

. . —WO
T For the reverse inclusion, let 7' € K v T, let

== {((T = )t (T =)&) : § € K.

—_ . . —WOT —weak
Then = is a convex subset of H®", and since T' € K , we have 0 € 27", As the weak

and norm topologies always have the same closed convex sets (see [4] Theorem V.1.4), we

know that
0=
Thus, there is some S € K so that
(T = 5)&ll < e
. . —SOT
forj=1,---,n,ase>0,&,...,&, are arbitrary we have T'e K .

(ii): As {T € B(H) : ||T|| < R} is closed in the weak operator topology, it suffices by
scaling to show that

{T'e B(H) - |T[| < 1}



is weak operator topology compact. Thinking of
HH
as all functions H — H we have the inclusion
{TeBH) T <1} [[{neH:nll <)}
EEH

Call the right hand side F. If we give F' the product of the weak topology on H, then we

know that F'is compact by Tychonoff’s theorem. Further the subset
{T'e B(H) - [|T]| <1},

corresponds to all linear functions in F. This is easily seen to be a closed subset of F, and
thus
{T'e B(H) - [|T[| <1}

is weak operator topology compact.

]

Definition 2.1.3. A von Neumann algebra is a subalgebra M C B(H) which is closed under

taking adjoints and the weak operator topology and contains the identity of B(H).

For X C B(H) we use X' = {S € B(H) : TS = ST for all T € X}, this is called the
commutant of X. Note that X’ is a von Neumann algebra with the same identity as B(H).
It follows that X” X" ... are all von Neumann algebras with the same identity as B(H).
We would like to prove the double commutant Theorem, which connects commutants to von
Neumann algebras. We first need to collect the following facts. For a closed linear subspace
V C H, we use Py for the orthogonal projection onto V. For a Hilbert space H, we use

(*(N,H) for all functions f: N — H such that

DI < oo,



the inner product
o

(fr9) =Y _(f(n),9(n))

n=1

turns ¢?(N, H) into a Hilbert space. We clearly have a similar notion of £2(k, H). For notation,
we set (?(co,H) = (*(N,H). For n € NU {oo}, Consider the operators Vj.: H — (*(n,H),
for k € N,k < n defined by (Vi€)(j) = d;=x{. For an operator T € B({*(n,H), we let
Ty = V)TV, We can think of T" as the matrix T};, for example

(T = (Tww)",
(TS)kl = Z TkrSrl

reN:ir<n

with the sum converging the strong operator topology when n = oo . For a unital von

Neumann subalgebra M C B(H), we let
M®B(2(n)) = {T € B({*(n,H)) : Tra € M for all k,1 € N, k,l <n}
M®@1pm = {T € B({*(n),H)) : there is a x € M with Ty, = dp—iz}.

Proposition 2.1.4. Let X C B(H) contain the identity and be closed under adjoints.

(i) A closed linear subspace V- C H is invariant under all the operators in X if and only
if Py € X'.

(ii) For any von Neumann algebra M C B(H) with
(M@B(*(n))) = M@,
(M®1p,)) = M'@B(*(n)).
Proof. (i): First suppose that Py € X'. Then for T' € X,v € V we have
Py(Tv) =T(Pyv) =T (v)

so Tv € V. Conversely suppose that V is X-invariant. We first claim that V+ is X-invariant.
For this, suppose that £ € V+, v € V, then

(T€,v) = (£, T"v)



as T* € X by assumption, we know that T*v € V, thus

(&, T*v) =0
so T¢ € V. Now for € € H, let
§=&1&
with & € V, & € V4E so
TE=T& +TEs.

As we already showed that V, V= are T-invariant we have that

Py(T€) =T& = TPy ()

so T" commutes with Py .

(ii): This is a direct computation. O

We also use W*(X) for the smallest von Neumann subalgebra of B(H).

Theorem 2.1.5 (Double Commutant Theorem). Let H be a Hilbert space. Let X C B(H)

be a set which contains the identity and is closed under adjoints. Then,
X" =W*(X).

Proof. 1t is easy to see that our hypothesis implies that X’ is a von Neumann algebra with
the same identity as B(H). Also X’ is closed under adjoints and contains the identity, thus

X" is a von Neumann algebra with the same identity as B(H), and clearly contains X. Thus
X" D W*(X).

For the reversion inclusion, let T € X”. Let A be the subalgebra of B(H) generated by
X. Then X' = A, so X" = A”, and as A is a x-algebra, we know

W (x) =47,



Let &, -+ ,&, € H, and € > 0. Let

K ={(a&, - ,a&,) :a € A}.

Then K is invariant under W*(X)®12(»), so by the preceding proposition Px € W*(X)®1p2().

Applying the preceding proposition again, we see that P commutes with
X H@l 2(n)-

Thus
PK((Tglv o 7T€n)) = T(PK(glv T 7571)) = (Tgla T 7T€n)7

the last equality following from the fact that A is unital. Thus there is some S € A so that
YIS =TGP <.
j=1

As &, -+ &, are arbitrary we find that S € 0T = W*(X).

2.1.2 Abelian von Neumann Algebras

Since it will greatly help with our intuition, we have decided to single out the case of abelian
von Neumann algebras. We shall see that roughly they correspond to measure spaces. Let

us first prove the following proposition.

Proposition 2.1.6. Let (X, u) be a o-finite measure space. View L>(X, u) C B(L*(X, )
via multiplication operators. Then L*(X,u) = L*(X, ), in particular L (X, p) is a von

Neumann algebra.

Proof. Let us first assume that p is a probability measure. It is clear that L>®(X, u) C
L*>(X, ), suppose that T € L>=(X, u). Set



a priori f € L*(X,p), but we claim that f € L®(X,pu) with ||f|le < ||T]]. For all g €
L*>*(X, ), we have

lgfllz = lgT (Wl = 1T (@)l2 < llglllT1]

Suppose that ¢ > 0, and pu({x € X : |f(z)| > ||[T]| +¢}) > 0. Let f = «|f], with « a

measurable function and || = 1 almost everywhere. Set

9 = QX {zeX:|f(2)|>|T|l+<}

then

(ITI+e)p({z € X : [f(2)] 2 ITI+eD' < [ fgllz < gl Tl = p({z € X+ [f(2)] 2 [IT|l+})llgll2.

This is a contradiction, so

[ flloe < IT1|-

Let us now handle the o-finite case. We may find a ¢ € L'(X, ) such that 0 < ¢(z) < oo

for almost every z, and
[ @ duta) = 1.
Set
v=q¢du.

Define U: L*(X, u) — L*(X,v),V: L*(X,v) — L*(X, u) by

U(f) = fo ' 2 V(f) = fo'?,
then U,V are isometries inverse to each other, and so U is a unitary. For f € L>®(X,u) =
L=(X,v),& € L*(X, u) we have
U(f&) = fU(§).
As v, is a probability measure we have by the first case L>(X,v) = L*°(X,v). Pulling this

back via U we find that
L>®(X,p) = L>®(X,n).

10



We now prove a converse of this in the separable case.

Theorem 2.1.7. Let H be a separable Hilbert space, and let M C B(H) be an abelian von
Neumann algebra. Then, there is a compact metrizable space X, a Borel probability measure
poon X, a sequence (f;)52, in L'(X, ), and a unitary
U: H— @ LA(X, f;dp),
j=1
so that if we define

p: L(X, ) — B (é L*(X, f; du)

p(N)&)5% = (F&§)5%

then
UMU* = p(L*=(X, p)).

Further p can be chosen to be an isometry.

Proof. By Zorn’s Lemma and separability, we may find a countable set J, and a maximal
family (&;);es of vectors in H such that ||§;]| = 1, and M¢; L Mg, for j # k in J. By

maximality,

"= Mg

jeJ
Choose A C M a unital separable C*-subalgebra of M with 14 = 1;; and so that

M = ZSOT,

Let X be the Gelfand spectrum of A, and ®: A — C(X) the Gelfand isomorphism (see [4]
Theorem VIII.2.1) . As A is separable, we know that X is a compact metrizable space. By
the Riesz Representation Theorem, we may find Borel probability measures j;,j € J on X

so that
(a&;, &) = / O(a)dp;, foraec A, je J
X

11



Because J is countable, we may find positive numbers b;, j € J so that

1= b,
jeJ

set

=y by

jeJ
By Radon-Nikodym, we find a f; € L'(X, ) so that

dp; = f; dp.
Define unitaries U;: ME; — L*(X, ;) by
Uj(a§;) = P(a), ac A

it is easy to see that the above extends uniquely to a unitary operator. Set U = €D ies Uj-

We claim that these U, (f;);jes, 1t do the trick.

Note that p as defined in the statement of the theorem is an isometry in this case. Indeed,

as in the preceding proposition one sees that

I = inffa € [0,00) : ({x € X : | f(a)| > a}) = 0 for all j}

= inf{a € [0,00) : p({x € X : |[f(z)[ > a}) = 0} = || f]lw-

To show that UMU* = p(L>*(X, pn)) we first prove that p(L>*(X, pu)) is a von Neumann

algebra.

Suppose T € p(L>(X, u))SOT. Let A; = {zx € X : f;j(x) # 0}, define
pj L(X, p) — B(L*(X, f;dp)),

by
p;i(f)E = f¢.

Note that p;(L>(X, u)) = L*(A;, p).

12



It is straightforward to show that there are T; € p,;(L>(X, ,u))SOT such that
T=EPT
jeJ
As L*(A;, p) is a von Neumann algebra by the preceding proposition, we can find f; €
L>(A;, i) so that

T =5 pi(f)

jeJ
Fix j,k € J. We claim that f;(z) = fi(z) for almost every z € A; N Ai. Define S €
B (@, L3(X, f;dp)) by
(Sn)a =0 for a € J\ {j, k},
(Sn>] = XAjﬁAknka
(Sn)k = XApnA,";-

Then S commutes with p(L>(X, 1)), and so S commutes with T Let n € @72, L*(4;, f; dp)
be defined by 1, = xgjr ()1. As

(STn)k = fixa;nag

(T'S); = frxa;na,
SO
ijAijk = kaAijk

almost everywhere. As .J is countable, and || f;jx 4;|/oc < ||T'[|, we may find a f € L*(X, i) so

that fxa, = fjXxa, almost everywhere. Then, T" = p(f), so p(L>(X, 1)) is a von Neumann
algebra.

By construction,

UAU* C p(L>=(X, p)).

Since p(L>°(X, u)) is a von Neumann algebra, and A is strong operator topology dense in
M,
UMU* C p(L™(X, ).

13



Conversely, given f € L>*(X, ), choose f, € C(X) so that |[fulle < ||flle and f,, — f

almost everywhere. If a,, € A is such that ®(a,) = f,, we have

Ua,U* = p(fn) — p(f),

in the strong operator topology. Thus

p(L*(X, 1)) C UMU".

2.1.3 Tracial von Neumann Algebras

Here we define the notion of a tracial von Neumann algebra. Tracial von Neumann algebras
will be the von Neumann algebras we will use to extend the usual dimension theory from
linear algebra. For terminology, we call a bounded linear map 7: M — N between von

Neumann algebras normal if

T

{zeM:|jz]|<1}
is weak operator topology continuous. For future use, we note the following equivalent

conditions for a linear functional to be normal.

Proposition 2.1.8. Let M be a von Neumann algebra, and ¢ € M*. The following are

equivalent.
(i) ¢ is normal,
(11) ker(¢) N {z € M : ||z|| < 1} is weak operator topology closed,
(i11) ker(¢) N {x € M : ||z|| < 1} is strong operator topology closed,

(iv) ¢‘{x€M:”zH<1} 18 strong operator topology continuous.

Proof. We have that (i7) and (iii) are equivalent since the weak operator topology and the
strong operator topology have the same closed convex sets. The implications (i) implies (4)

implies (i7), and (i4¢) implies (iv) are clear.For (i7) implies (i), suppose that x; is a net with
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||| <1, and x; — x in the strong operator topology. If ¢ = 0, the claim is zero. Otherwise,
choose a € M with ¢(a) = 1. Since ¢ € M*, we have that |¢(x;)| is bounded. Let x;) be a
subnet of z; and ¢t € C with ¢(z;(,)) — . Set

Ti(a) — 0P(Ti(a))

Yo = y
L+ [lalll¢(ziga) )]
then ||ya|| <1, yo € ker(¢), and
. x — at
T T Tl

in the weak operator topology. Thus by assumption,

r — at
1+ |lalt € ker(¢)
SO
o(z) =t

We thus find that every subnet of ¢(x;) converges to ¢(z). As |¢(x;)| is bounded, this implies

¢(x;) — ¢(x). The implication (ii7) implies (iv) is done in the same way.

]

Definition 2.1.9. A tracial von Neumann algebra is a pair (M, 7) where 7 € M* satisfies

2: 1(x*z) > 0, with equality if and only if x =0,

3: 1(zy) = Tr@7(yx), for all x,y € M,(L(I")),

4: T is normal.

Given a tracial von Neumann algebra, we define the following inner product on M :

(z,y) = T(y" ).
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We let L?(M, 7) be the Hilbert space completion of M with respect to this inner product.
We define a x-representation \: M — B(L?*(M, 7)), and a *-anti-representation p: M —
B(L*(M, 1)) by

Mz)y = xy for z,y € M

p(x)y = yafor z,y € M.

We need to check that this is well-defined, i.e, that \(z), p(x) are L? — L? bounded. But for

y € M we have

(2y)*(zy) = y'a"zy < ||z]*y"y,

SO
zyll2 < [Jz]|[yll2-
Also,
lyzll3 = T(z*y yx) = T(yza*y*) < ||z|*r(yy*) = [|=]*T(y*y) = [|=]*]y]]3-
Thus
IA(2)]| < ||l
()] < |lyl|-

So A, p extend uniquely to x-representations and x-anti-representations of M. This will
turn out to be a natural way to view a tracial von Neumann algebra, and in fact more
natural than whatever Hilbert space M was originally represented on. Additionally define
J: L*(M,7) — L*(M, ) densely by

J(z) = a7,

for z € M. By traciality we see that ||J(z)||s = ||z]|2 for z € M, so J extends uniquely to a

conjugate linear isometry.

We collect a few basic facts here. We recall that if X C B(#), then

X' ={T € B(H): ST =T8S for all S € X}.
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Proposition 2.1.10. Let (M, 1) be a tracial von Neumann algebra, and let X, p be the maps

constructed above.
(i): A, p are injective and in particular are isometric.

(ii): A, p are normal.

(iii):

(iv): We have J> = 1d. For &1 € LA(M,7) we have (€,n) = (Jn, JE). Additionally
J(A(2)€) = p(x*)JE, J(p(x)€) = Ma*)JE) for x € M, & € L*(M, ).

(v): If T € MMY, then there is a unique ¢ € L*(M,7) so that T(z) = )¢ and
T*(x) = M) JE for x € M. Similarly, if T € p(MY', then there is a unique & € L2(M,7) so
that T(z) = p(2)€, T*(x) = pl(x)JE for all z € M.

Proof. (i): The “in particular” part follows from the fact that an injective *-homomorphisms
between C*-algebras is isometric (see [4] Theorem VIII.4.8, for the statement for p we are
using the C*-algebra MP). To see that \ is injective note that A(z)l = x. Thus A(z) =0
implies that

T(2") = |[zfla = [|A(z)1]]2 = 0.

(ii): Suppose that ||z;]| < 1,2; — 2z in the weak operator topology. To show that
A(z;) — A(z) converges in the weak operator topology, it suffices to by density of M to show

that when a,b € M, ||a||,||b]] < 1, we have

(AMz;)a,b) — (A(x)a, b).

The left hand-side of the above is
T(b*x;a)
since

|0"z;a| <1,
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b*r;a — b*xa, in the weak operator topology

normality of 7 implies that
T(b*z;a) — T(b*za) = (M(x)b, a),

the proof for p is similar.

(iii): We clearly have

for x,y,a € M, the claim now follows by density.

(iv): The identities in question can be all checked directly on M, and the general claims

follow by density and continuity.

(v): Suppose T' € A(M)', set £ = T'(1), then for z € M,

To show that T%(z) = A(z)J¢, it suffices to show that T77*(1) = J¢. For x € M we have
(T7(1),2) = (L, AM@)€) = (2%,§) = (J&, 2),
thus 7%(1) = J¢&. O

Theorem 2.1.11. Let (M, T) be a tracial von Neumann algebra. Let X\, p be the representa-

tion and anti-representation on L*(M,T) corresponding to 7. Then,

Proof. By the double commutant theorem it suffices to show one of the equalities. By the

preceding proposition, we have

p(M) C N(M)'.
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For the reverse inclusion, let T € A(M)’. To show T' € p(M) it suffices, by the double
commutant theorem, to show 7" commutes with any S € p(M)’. By the preceding proposition,

we may find a &, 7 so that
T(x) = Ax)S, T"(z) = Mx)J¢,
S(x) = p(x)n, 5*(x) = p(x)Jn
for any € M. Then, for any z,y € M,
(T'S(x),y) = {p(x)n, My) JE) = (A(y")p(x)n, J&) = Ay )n, p(x") JE),

where in the last equality we use that (M) commutes with p(M). Applying part (iv) of the

preceding proposition we have

(T'S(x),y) = (M@)&, p(y)Jn) = (T(x),5*(y)) = (ST(x),y)

so TS = ST. Thus T € p(M)" = p(M).

2.1.4 Definition of von Neumann Dimension

In this section we define von Neumann Dimension for normal representations of tracial von
Neumann algebras. The idea is to follow the usual linear algebra formula, “dimension is the

trace of a projection.” We need to extend the trace to M@B(¢*(n)) for n € NU {oo}.
Definition 2.1.12. Let (M, 7) be a tracial von Neumann algebra, and n € NU {oo}. Let
T € M®B((*(n)) be a positive operator, set

Trer(T)= Y (T

1<i<n,ieN
If n < oo, we consider Tr @7(T') to be defined by the same formula for all T € M®B({*(n))

(and not just positive T)

Note that if n = oo, the sum is of nonnegative terms, and this is always defined, but may

be infinite.
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Proposition 2.1.13. Let (M, 1) be a tracial von Neumann algebra, and n € NU{oc}, then
we have the following.
Tre7(1) = n,
Tr @7(2*x) = Tr @7(x2"), for all v € MRB(*(n)),
Tr@7(x*z) > 0 for all v € MRB(*(n)), with equality if and only if v =0,
Further we have the following semi-continuity: if 20 € M®B((*(n)) and 0 < 2 < 1, and
2% — x in the weak operator topology, then

Tr@7(z) < liminf Tr @7(z®),

further if n < oo, then
Tr & errpocny

15 weak operator topology continuous.

Proof. The first statement is clear. For the second, note that
(@ 2= Y, (@ )aw= Y, Tk
1<k<n,keN 1<k<n,keN
(with the sum converging in the weak operator topology if n = c0), hence
(")) = Z T (L) ki)-
1<k<n,keN
Thus
Tr@7r(z*x) = Z Z T(x5xK) >0

1<i<ni€N 1<k<n,keN

since 7(zy,;xk;) > 0, further the above sum equals zero if and only if 7(x},x;) = 0 for all k,

which is true if and only if x;; = 0 for all k,7. Thus
Tr@7(z*x) >0

with equality if and only if z = 0.
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Since 7(x},xr;) > 0, we may interchange the sums to see that
*
Tre7(z*z) = E E T(T5xk) = E E T(TriTy;)
1<k<n,keN 1<i<nieN 1<k<n,keN 1<i<nieN

using traciality. As

Tlogry) = Y T(wwy),

1<i<n,ieN

we have that

Tr@7(z*x) = Tr @7 (™).

It is clear if n < oo, then Tr ®T’{I€M:”x”<1} is weak operator topology continuous. Sup-
pose 20 € M®@B({*(n)), with 0 < 2 < 1 and 2 — 2 in the weak operator topology.
Then, 7(x ()) — 7(x), for all j € N. Hence for all k € N,

k k
Z 7(xj;) = lim Z T(xyj)) < liminf Tr @7 (z®).
i=1 R '
Taking the supremum over k£ completes the proof.

]

Let (M, 7) be a tracial von Neumann algebra. By Theorem 2.1.11, we have a trace 7/ on
AM)" = p(M), by
m(p(x)) = ().
Suppose n € NU {oo}, and H C ¢*(n, L*(M, 7)) is invariant under the diagonal action

of M, then by Proposition 2.1.4, we know that Py € p(M)®B(£*(n)). Thus, we may define

the von Neumann dimension of H by
dim(as,-y(H) = Tr @7 (Py),

if 7 is implicit we will often drop it. The next proposition collects some of the basic facts

about von Neumann dimension.
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Proposition 2.1.14. Let (M, 1) be a tracial von Neumann algebra. Let m,n € NU {oo}

(1): If H C K C *(n, L*(M, 7)), we have
(11): If H,K C ¢*(n, L*(M, 7)) are M-invariant for some n € NU {oo}, and there is a

bounded linear M -equivariant map H — K with dense image, then dimy (K) < dimy(K).
In particular, if H = K as Hilbert M-modules, then dimy,(KC) = dimp, (H).

(1ii): If H C 0*(n, L*(M, 7)), K C (*(m,L*(M, 1)), then regarding H & K C (*(n +
m, L?(M, 7)) we have

(w): If Hy, C (*(n, L*(M,T)), are an increasing sequence of closed M-invariant linear

subspaces, then

dim, (U Hk) = sup dimy; (Hyg)-
k
k

(v): If Hx C €*(m,L*(M,T)), are a decreasing sequence of closed M-invariant linear

subspaces, and dimy;(H;) < oo, then

dim, <ﬂ Hk) = inf dim; (Hy).
n=1

Proof. (i) Obvious from the fact that

P < Py.

(ii) Let "= U|T| be the polar decomposition of T" (see [4] Theorem VIII 3.11). We leave

it as an exercise to verify (by the Spectral Theorem) that
U=WOT —lim T(|T| + e) !t
e—
hence we have that U € p(M)®@B(¢*(n)). Since T has dense image,

UrU = Pker(T)J- < Py,
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UU* = Px.

Thus,
dimpy(H) > Tr7(UU) = Tror(UU*) > dimy, (K).

(iii): For this, we note that if H is any Hilbert M-module, and H is isomorphic to a
subspace K of (?(N, L?(M, 7)), then part (i) implies that we can define

dimp (H) = dimy, (K),

and this is independent of the choice of L. Thus we can consider von Neumann dimension
to be unambiguously defined for Hilbert M-modules embeddable in ¢*(N, L?(M, 7)). This in
particular applies to H @ K if m or n is infinite. With these comments part (ii) follows from
the formula

PH@P}C:PH—FP;C

(iv): Set
=M.
k
By part (i),
dimps(H) > Sllip dimps (Hg).
As

Pq.[k — PH

in the strong operator topology, we know by the preceding proposition that

dimy (H) < liminf dimy, (Hx) = sup dimp, (Hy).
k

k—o00

(v): Set Ky = Hi N (Hi)*. Then K}, are increasing, and if we set

K=JKk
k

we have

Kz%ﬂ(O%QL.
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Part (iii) implies that
k

dimy, (KCx) = dimp, (Hq) — dimp, (Hy),
now part (v) follows from part (iv).

[]

As explained in part (ii) of the preceding proposition, if H is a Hilbert M-module embed-
dable in (2(N, L?(M, 7)) then we unambiguously define dimy;(#), by choosing a M-invariant

closed linear subspace K C ¢?(N, L?>(M, 7)) isomorphic to H and setting

Thus we often just assume that H is embeddable into ¢*(N, L?(M, 7)) without using a

specific embedding.

Proposition 2.1.15. Let (M, 7) be a tracial von Neumann algebra.

(i): Let

S

0 \Hl T/HQ /Hg > 0

be a weakly exact sequence (i.e. T is injective, im(T) = ker(S),im(S) = Hsz) of Hilbert
M -modules embeddable into (*(N, L*>(M, T)). Then

dlmM(HQ) == dlmM(H1) + dlmM<H3>

(11): Let H,K be Hilbert M-modules embeddable into (*(N, L*(M, 1)), and T: H — K be

a M -equivariant bounded linear bijection. Then
dimp/(im(7")) = dimp (H) — dimp,(ker(7)).

Proof. (i): Let S = U;|S|,T = Us|S|, as in the previous proposition we have that Uy, Us

are M-equivariant maps. We have that U; induces a unitary M-equivariant isomorphism
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(ker(S))*+ = Hz, and Uy a unitary M-equivariant isomorphism ker(S) = im(7T") & H,. Thus

by the preceding proposition,

dim s (Hs) = dimyy (ker(S)) + dimy, ((ker(S))*) = dimp, (Hy) + dimy, (Hs).

(ii): Apply (i) to the weakly exact sequence

0 —— ker(7) > H > im(7) —— 0.

2.1.5 Group von Neumann Algebras

Let I' be a countable discrete group, define the left regular representation and the right

anti-regular representations of I' by
AT — UR(T)),

p: T — UT))

(X9)f)(h) = f(g~"h),
(p(9)f)(h) = f(hg™").

Let L(I') be the von Neumann algebra generated by A\(I'), and R(I") be the von Neumann
algebra generated by p(I"). Define
7: L(I") — C,

by
T(z) = (26, 0c)-

Theorem 2.1.16. The pair (L(I"), ) is a tracial von Neumann algebra, additionally L(I")" =
R(T). Let
L={clP):&x f el (D) forall f e ?().},
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R={6eP(): fx&e () forall fef*().}.
For £ e L,n e R and f € (*(T') define
M =Ex ],
p(n)f = f=n.

Then X&), p(n) are bounded. Further
L) = {A(E) - € € L},

R(I') = {p(&) : £ € R},

and the map
L — L(I'

defined by
§—= A)

is a bigection with [|£]la = [|A(&)]|2-

Proof. 1t is clear that 7 € L(I')* and is weak operator topology continuous. It is also direct
to check that
T(A(g)A(R)) = T(A(R)A(g)) (2.1)

for g,h € I'. For z,y € L(I'), find nets z;, y; where each z;, y; are in Span{\(g) : g € I'} and

x; — x,y; — y in the weak operator topology. By weak operator topology continuity,
7(xy) = lim lim 7(2;,).
7 %

By (2.1), we know that

T(ziy;) = 7(y;:)-
By weak operator topology continuity again,

lim lim 7(y;z;) = im 7(y;z) = 7(yz).
J % J
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Thus 7(yx) = 7(zy). As 7(z*z) = ||2d.||3, it is clear that 7(z*x) > 0. Suppose that 7(z*x) =
0. Since p(I'") € A(I'), it is not hard to argue by taking weak limits of linear combinations
of A(g), that p(I') C L(I")’. Thus

[20gl[2 = [[p(g)dell2 = llp(g)wdell2 = 0,

as zd. = 0 by assumption. Since Span{d, : g € I'} is dense in ¢*(T"), we find that z = 0.

Since
T(A(R) 7' A(9)) = (39, n)

we have a L(I")-equivariant unitary isomorphism
U: L*(L(T),7) — ¢*(I)

defined by
U(A(g)) = .

If we identify L*(L(T),7) with ¢*(T") via U, then p(\(g)) becomes p(g). Thus

by Theorem 2.1.11.

For the last claim, the fact that A(), p(n) are bounded for £ € £, € R follows from the
closed graph theorem. For z € L(I"), set £ = x(d.). Then

z(0g) = (p(9)de) = p(g)x(de) = & * &y

Hence z(f) = & f for all f € c.(T). If f € ¢*(T), choose f, € c.(I") with

If = full2 = 0.

By Fatou’s Lemma,

& flla < iminf Ig * s < tmin ] full2 = o] ]z
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Thus ¢ € £, and
NOF = lim A©)f = lim x(f,) = (/).

so x = A(€). Further

€115 = llzde |13 = llz]3.

Thus it remains to show that A(§) € L(T') for all £ € L. By the double commutant
theorem, it suffices to show that A(§) commutes with R(I"). Since R(I") is generated by p(I"),
it is enough to show that A(§) commutes with p(g). But this is clear: A() is left convolution

by £, and p(g) is right-convolution by d,.

]

Because of the above Theorem, if H is a unitary representation of I' which is contained
in >(N,¢*(I")) we can define dimyr)(H) € [0, 00| which is an isomorphism invariant with

the following properties:

1: dlmL(F) (62(1—‘)) = 1,

2: dimpry(H & K) = dimp ) (H) + dimg) (K),

3: dimpry(H) < dimgry(K) is there is a I'-equivariant bounded linear map I — H with

dense image.

4: dimpry(H) = sup,, dimgry(H,) if H =, H, and H,, are increasing,

5. dimpmy (Upe; He) = inf, dimpry(H,) if H, is a decreasing sequence of closed I'-
invariant subspaces, and dimp,ry(H1) < oo.

2.1.6 Equivalence Relations and their von Neumann Algebras

Ergodic theory may roughly be stated as the study of group actions on measure spaces. The

consideration of a measure-preserving transformation of a probability space is quite natural
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from probability and statistical mechanics. Considering such a transformation is equivalent
to studying the action of the integers on a probability space, and from a mathematical point
of view it is quite natural to generalize this to arbitrary group actions. Additionally, many
interesting properties of groups may be expressed in terms of their actions. For instance,
in the appendix it is proved that an amenable group may be characterized as one for which
any action on a compact metrizable space has an invariant measure. Other properties such

as Property (T) or the Haagerup property may also be expressed this way.

It turns out to be useful to view the action itself as an analogue of a group. The way
to do this is to consider the orbit equivalence relation. By analyzing symmetries of this
relation a surprising algebraic structure is developed. Further, many properties of a group
are simplified in this way. For example, a group may have that all of its elements have
infinite order and be finitely generated, but not finite. Similarly, there are non-amenable
groups which do not contain free subgroups. However, if we view groups from the point
of view of equivalence relations these complications disappear: every equivalence relation
contains a “copy” of Z (a precise version of this is Theorem B.2.6), and from recent work of
Gaboriau-Lyons (see [5]) the Bernoulli action of a non-amenable group always “contains” a
copy of the free group. Additionally, we know from the appendix that every amenable group
is Z from the point of view of equivalence relations. This often allows us to reduce properties
of amenable groups to Z. Lastly, equivalence relations have connections to operator algebras
as they can be axiomatized by certain maximal abelian subalgebras of finite von Neumann

algebras (see [10]).

We need some standard notions from descriptive set theory. A Polish space is a topo-
logical space X which is separable and has a compatible complete metric (we do not wish
to define a Polish space to be a complete separable metric space, by our definition the irra-
tionals are a Polish space but no sane person would ever call them a complete metric space,
similarly open subsets of Polish spaces are Polish and this is blatantly false for complete
metric spaces). A set X equipped with a o-algebra of subsets B is said to be a standard

Borel space if it is isomorphic (as a measurable space) to a Polish space with its algebra of
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Borel sets. We will abuse terminology and call B the algebra of Borel sets. We will in fact

commit the greater sin of typically not referencing B and simply saying that a set is Borel.

Definition 2.1.17. A discrete, measure-preserving equivalence relation is a triple (R, X, i)
where X is a standard Borel space, i is a Borel probability measure on X, R is a Borel

subset of X x X so that

1: The relation x ~ y if and only if (x,y) € R is an equivalence relation,
2: for almost every x € X, O, = {y : (z,y) € R} is countable

3: for every Borel B C R,
/X {y: (29) € BY|du(z) = /X {z : (2.) € BY|du(y).

We call the above common quantity 7(B), it follows that 7 is a measure on R. If we
fix a standard probability space (X,u) a Borel R C X x X so that (R, X, pu) is a dis-
crete, measure-preserving equivalence relation will be called a discrete, measure-preserving

measure-preserving equivalence relation on (X, ).

Note that equivalence relations have a nice “localization” property that is absent in
discrete groups. Namely, if A C X is measurable, we have a new equivalence relation
(Ra, A, ﬁ) where

Ra={(x,y) € AxA:(z,y) € R}

We call R4 the compression of R by A.

Let R;,i = 1,2 be a discrete, measure-preserving equivalence relation on (X, u1;),7 = 1, 2.

We say that R, is isomorphic to Rs if there is a bimeasurable bijection
0: Xl — X2
with 0,41 = puo and

e(ox) = 09(90)7
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for almost every x € X. A partial morphism on R is a bimeasurable bijection ¢: dom(¢p) —
ran(¢), where dom(¢),ran(¢) are measurable subsets of X, such that (z,¢(z)) € R for
almost every € dom(¢). We let [[R]] be the set of partial morphisms of R, we identify
6,0 € [[R]] if u(dom(gp)Adom(e))) = 0, and ¢(x) = ¢(x) for almost every z € X. We let
[R] be the set of ¢ € [[R]] so that pu(dom(¢)) = .1 For A C X measurable, we let Id4 be
partial morphisms with dom(Ids) = A,ran(Ids) = A, and Ida(x) = x for all z € A.

The space of partial morphisms admits some useful algebraic structure. For ¢, € [[R]]

we define ¢ € [[R]] by

dom(¢y) = ¢~ (dom(¢)) N dom(¥),

and ¢p(x) = ¢(¢(x)) for x € dom(¢pe)). For ¢ € [[R]], we let ¢~ be the element of [[R]]
with dom(¢~!) = ran(¢), ran(¢~!) = dom(¢) and is the inverse to ¢ on ran(¢). We let

graph(¢) = {(z, ¢(z)) : © € dom(¢)}.
If ¢,9 € [[R]] and f(graph(¢) Ngraph(¢y)) = 0, we let ¢ + ¢ € [[R]] be defined by

dom(¢+¢) = {z € dom(¢)\dom(¢) : ¢(x) ¢ ran(y)}U{x € dom(y)\dom(¢) : ¢(x) ¢ ran(¢)},

and

x),if x € dom N dom
s (o) = 4 B € dom(6 )1 dom(o)
Y(x),if z € dom(¢ + 1) N dom())

Lastly, we define a distance on [[R]] by
dir) (9, )* = p(dom(¢)A dom(v)) + 2u({x € dom(¢) N dom(v) : ¢(x) # U(x)}).

We discuss one example. Let X be a standard Borel space and p a Borel probability
measure on X. Suppose that I' is a countable discrete group and I" ~ (X, 1) by measure-

preserving transformations. We can then define the orbit equivalence relation of T' by

Rr~x,p = {(z,92) 1 g €T}
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It is easy to check that this is a discrete-measure preserving equivalence relation on (X, p).
We will call this the orbit equivalence relation of I' ~ (X, ). If the action is free, i.e. for all
g €'\ {e},

p{z e X gz =a}) =0,

then we expect properties of the equivalence relations to reflect properties of the group, (e.g.
see the appendix on amenable equivalence relations and groups). We say that two countable
discrete groups I' and A are orbit equivalent if they admit free actions on standard diffuse

probability spaces whose corresponding orbit equivalence relations are isomorphic.

It will be useful to have the following measurable selection principle first proved by von
Neumann. Recall that a subset of a standard Borel space is said to be analytic if it is the
image of a Borel subset of a standard Borel space under a Borel map. It is known that
such sets are universally measurable (i.e. measurable with respect to every Borel probability

measure) see [22] Theorem 4.3.1.

Theorem 2.1.18 (Measurable Selection Principle). Let X,Y be Polish spaces, and A C
X XY analytic. Let m: X xY — X be the projection onto the first factor. Then there is a

universally measurable function ¢: 7(A) — Y so that mo ¢ = 1d.

We leave it is an exercise to the reader to prove the following from the measurable

selection principle.

Corollary 2.1.19. Let (R, X,pu) be a discrete, measure-preserving equivalence relation.

Then there is a countable (¢;);es of elements of [[R]] with disjoint graphs and such that

fi (R\ U graph(qu)) = 0.
jeJ
For later use, we would like to discuss when an equivalence relation can act on a Banach

space.

Definition 2.1.20. Let V be a Banach space, and (R, X, 1) a discrete, measure-preserving

equivalence relation. A representation of [[R]] on V is a map m: [[R]] — B(V) so that

W(Idx) = IdB(V),
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m(¢Y) = m(@)m () for ¢, ¥ € [R]]
(¢ + ) = (o) + m(v) if ¢, ¢ € [[R]] and fi(graph(v) N graph(¢)) = 0
T(pn)v = 7(@)v for all v € V, if diry) (¢, ) — 0.
m(¢) = 0 if p(dom(¢)) = 0.

We say the representation is uniformly bounded if there is a C' > 0 so that ||7(¢)|| < C for
all ¢ € [[R]]. If V is a Hilbert space, we say the action is unitary if 7(¢~') = 7(¢)* for all

¢ € [[R]]

Since we are identifying two elements of [[R]] if they differ on set of measure zero, implicit
in the above definition is that m(¢) = 7(v) if they differ on a set of measure zero. Also, we
will frequently drop m and write ¢v instead of 7(¢)v. Here is a natural example: for ¢ € [[R]],
and 1 < p < oo, and £ € LP(R, i), we define

(6€)(2,9) = Xean(@)§ (67" (2), ).
We note that for 1 < p < oo, we have a natural way for L>(X, u) to act on LP(R, 1) by
(9f)(z,y) = g(x)f(z,y), fe€LP(R,h),g € L>(X,p).
This gives to the von Neumann algebra of R.

Definition 2.1.21. Let R be a measure-preserving equivalence relation on the standard
probability space (X, ). We let L(R) = W*({¢ : ¢ € [[R]]}), (under the above action of R
on L?(R, 1)) and we define 7: L(R) — C by

T(m) = <xXA>XA>a

where A = {(z,z) : x € X}.
We also define an anti-representation

p: [[R]] — BLA(R, 7))

(P(®) )@, y) = Xdom(e)(y) f (2, D(y)).

33



Theorem 2.1.22. (i): The pair (L(R), T) is a tracial von Neumann algebra.
(ii): L(RY = W(p([R]).
(i11): We have a canonical inclusion L>°(X, u) C L(R) defined densely by x4 — Ida .
(w): If we set N ={u € U(L(R)) : uL>®(X, p)u* = L=(X,n)}, then L(R) = W*(N).

Proof. (i) As in the group case, the linearity and weak operator topology continuity are

clear. For ¢ € [[R]], we have that
7(¢) = u({x € ran(¢) : ¢~ (z) = z})
= pu({z € dom(¢) : ¢(z) = x}),

where in the last line we use the measure-preserving transformation x — ¢(x).

Thus

8

r(6v) = n({e € dom(gw) : ¢ii(x) = })
— j({e € dom() N ¢~ (dom() N ran(y)) : gui(x) = 2})
0)

(G
= n({z € dom(y) N ¥~ (dom(¢) Nran(y))) : ¢h(x) = ¢~ (2)}).

Now apply the measure-preserving transformation x — (z), we see that
T(¢¥) = p({z € ran(¥) Ndom(¢) : d(z) = ¥~ (2)}).
It is not hard to show that
{z € ran(y) Ndom(¢) : ¢(x) = ¢~ (2)} = {= € dom(¥9) : Yo(z) = x}).

Thus
T(¢Y) = p({z € dom(y¢) : Yo(z) = x}) = 7(¥¢).

Playing the same tricks as in the group case with weak convergence shows that

T(xy) = 7(yz)

for y,z € L(R).
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We have that

7(z'7) = [|zxalz 2 0.
Note that p([[R]]) commutes with every v, and thus with L(R). A direct computation shows
that p(¢)xa = Xg(e-1), where G(¢7') is the graph of ¢~'. Thus if 7(z*z) = 0, we find that

X1z = l|p(¢)zXxAall2 =0,

as xxa = 0. Since R can be written as the union (up to sets of measure zero) of graphs of

partial morphisms, we have that

Span{xc() : ¢ € [[RII} = L*(R, 7).

Hence, x = 0. Thus (L(R), 7) is a tracial von Neumann algebra.

(iii) For this, define ¥: L>(X, u) — B(L*(R, 1)) by

(W(NE(x,y) = f(2)é(z,y).

Regarding L°°(X, i) as represented on L?(X, 1) we have that ¥ is weak operator topology
continuous, and V(y4) = vig,. Weak operator topology continuity implies that W(L>(X, u)) C
L(R). Additionally, it is straightforward to check ||V (f)|| = || f]]co-

(iv) This follows from the fact that every partial morphism has an extension to an element

in the full group.

]

Again, as in the group case, the above theorem implies that we have a dimension theory

for representations of R contained in ¢*(N, L*(R,z)).

For later use, we mention another example of representations. Let (X, u) be a standard
probability space and I' ~ (X, pu) a free measure-preserving action. Define the Zimmer
cocycle

g: R - T
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by
0(z,y)y = x.

Given a Banach space V' and a representation p: I' — B(V), for 1 < p < oo, we define a

representation 7: [[Rr~(x,u)]] = B(LP(X, 1, V)) by

(m($)€)(x) = Xran(s) (@) p(0(x, $()))§ (6™ ).

For x,y,2 € X we have
0(x,z) = 0(z,y)0(y, 2),

and from this it is not hard to show that p is a representation.

2.1.7 Basic Properties of Equivalence Relations

Though it will be slightly disjoint from the rest of the material in this chapter, since we have
just introduced equivalence relations we would like to mention some of their basic properties.
These properties will be used frequently in Chapter 4. We first note the following version of

the Ergodic Decomposition.

Theorem 2.1.23 ([26] Theorem 4.2). Let (R, X, 1) be a discrete, measure-preserving equiv-
alence relation. Then, there is a standard measure space (Y,v) a measurable map 7: X —Y

with m.u = v, and probability measures (fu,)yey on X with the following properties.

1: For i-almost every (x,y) € R we have w(x) = 7 (y),
2: for almost every y € Y, u, (v ({y})) = 1,

3: for all B C X measurable, the map y — p,(B) is v-measurable,and
/Y iy (B) duly) = u(B),

4: for almost every y € Y, the equivalence relation R, = {(p,q) : n(p) = 7(q) =
v, (p,q) € R} is a well-defined measurable equivalence relation on (7= *({y}), py,) and

15 ergodic.
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The relations (R, 7' ({y}), 1y) are typically called the “ergodic components” of (R, X, u).
The next property has as particular a consequence that, from the point of view of equivalence
relations, every infinite group “measurably contains” a copy of Z/nZ. This is one instance

in which equivalence relations can be used to fix the complicated subgroup structure of a
group.
Proposition 2.1.24. Let (R, X, u) be a discrete, measure-preserving, equivalence relation

and suppose that O, is infinite for almost every x € X. Then for every n € N, there is a

free, measure-preserving action Z/nZ ~ (X, u) so that
RZ/an(X,,u,) CR.

Proof. Note that almost every ergodic component has infinite orbits almost everywhere.
Thus we may as well assume that R is ergodic. We leave it is an exercise to the reader to
use the measurable selection theorem to show that if A, B C X have equal measure and are
disjoint then there is a ¢ € [[R]] with dom(¢) = A,ran(¢) = B (ignoring sets of measure
zero). Since R has infinite orbits almost everywhere, we must have that (X, p) is diffuse.

Thus, we may find disjoint measurable subsets Aq,..., A, in X so that

1
p(A;) =—for 1 <j<n.
n

Thus our preceding remarks imply that we can find ¢; € [[R]],1 < j < n, with dom(¢,) =
Aj ran(¢;) = Ajpq for 1 < j <n —1, and dom(¢,) = A,,,ran(¢,) = A;. Define a: X — X
by
a‘A]- = )

it is straightforward to check that « induces a free action of Z/nZ. By definition,

Rzmz~xu) € R.
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2.2 Sofic Groups and Equivalence Relations

Definition 2.2.1. Let I' be a countable discrete group. A sofic approximation of T' is a

sequence ¥ = (0;: I' = Sy,) of functions (not assumed to be homomorphisms) such that

1: d; — oo
2: uq,({J : (0:(g9)os(h))(j) = 0i(gh)(j)}) = 1, for all g, h €T

3: uq,({7: 0i(g)(j) # 0i(h)(j)}) = 1, for all g, h € T',g # h.
We say that [ is sofic if it has a sofic approximation.

We could remove the condition d; — oo, and still have the same definition of a sofic
group. However, in order for the definition of topological entropy to be an invariant we need
d; — 00. The condition d; — oo is also implied if I" is infinite, which will be the main case
we are interested in anyway. It is known that the class of sofic groups contain all amenable
groups, all residually sofic groups, all locally sofic groups, all linear groups and is closed
under free products with amalgamation over amenable subgroups. For more see [9],[8],[6].

Let us mention another condition related to soficity for a group. On M, (C) we define
1 n
tr(d) = —~ > Ay,
j=1

this is the canonical tracial state on M, (C). We use ||A||z for the L? norm with respect to

this trace.

Definition 2.2.2. Let I' be a countable discrete group. An embedding sequence of I is a
sequence . = (0;: I' = U(d;)) so that

2: |loi(g)oi(h) — ai(gh)|la = 0 forall g,h €T

3: tr(o;(g)~toi(h)) — 0, for all g,h € T',g # h.
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We say that ' is R¥-embeddable if it has an embedding sequence.

The terminology comes from the Connes Embedding problem, as one can show that L(T")
embeds into a tracial ultrapower of R if and only if it has an embedding sequence. Viewing

Sn C U(n) and using that

for o, 7 € S,, we see that every sofic group is R*-embeddable.

Following our philosophy that one should try to study a group by its action on measure-
spaces it makes sense to study sofic equivalence relations. For notation, we use [[R,]] for

the equivalence relation on ({1,...,n},u,) defined by declaring all points to be equivalent.

Definition 2.2.3. Let (R, X, 1) be a discrete, measure-preserving equivalence relation. A

sofic approxzimation of [[R]], is a sequence of functions o;: [[R]] = [[Ra4,]] such that

1: d; — 0,

2: d[[Rn](Ui(¢w)7 Uz(gb)Uz(w)) — 0 for ¢,¢ € HRH’

3: for all A C X measurable, there is a A; C {1,...,d;} so that o;(Id4) = Id4,,

4: for all ¢ € [[R]], W@ a@WD=N] ({2 € dom(g) : ¢(z) = z}).

7

We say that R is sofic if it has a sofic approximation.

This definition is due to Elek and Lippner in [7], and they proved many important
properties of sofic equivalence relations. We will need such finite approximations to define
extended von Neumann dimension. The point is that since S,, has a natural action on ¢(n),
we can think of these maps as giving an “almost action” of our group or equivalence relation
on ?(d;). Following the spirit of Lewis Bowen, David Kerr and Hanfeng Li, as well as ideas
of Voiculescu we will show that von Neumann dimension of a unitary representation I' ~ H

can be computed as a normalized limit of the “size” of a space of almost equivariant maps
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H — (2(d;). Since the Hilbert space structure places no role, we will be able to remove it
and consider almost equivariant maps X — ¢?(d;), when X is a Banach space and I' ~ X.
We proceed to express the main properties that go into this fact, but we will work in a more

general situation than just groups and equivalence relations.
For the next definition we need some terminology. Fix a set E, the universal C-algebra

generated by elements (X,)ucr, (X )acr Will be called the algebra of #-polynomials in n

noncommuting variables and will be denoted by
C(X,:a € FE).

Elements of this algebra will be called *-polynomials. The algebra C*(X, : a € E) has a
unique conjugate linear involution P +— P* for P € C*(X, : a € E) which maps X, to X}
and such that (PQ)* = Q*P*, for P,Q € C*(X, : a € E). Given (z,)scp in a von Neumann
algebra M there is a unique homomorphism ¢: C*(X, : a € E) — M mapping X, to z, and
such that

o(P*) = ¢(P)*, for P € C*(X, :a € E).
We let P(z, : a € E) denote ¢(P).

Definition 2.2.4. Let (M, 1) be a tracial von Neumann algebra, and F C M. An embedding

sequence for E is a sequence E is a sequence of functions o;: E — My, (C) such that
1: sup; ||oi(2) || < oo forall z € £

2: for all z1,...,x, € E and all x-polynomials P in n non-commuting variables,

tr(P(oi(x1),...,0i(xn))) = 7(P(z1,...,2,)).

Note that sofic approximations and embedding sequences for equivalence relations and
groups are embedding sequences in the sense of the above definition viewing I C L(T"), [[R]] C

L(R). For the proof of the next lemma, we need the following definition.

Definition 2.2.5. Let (M, 7) be a tracial von Neumann algebra, and a € M, (M) a normal
element. The spectral measure with respect to T of a is the measure u, on the spectrum of

a defined by 1, (E) = Tr ®7(xg(a)) for all Borel subsets E of the spectrum of a.
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Lemma 2.2.6. Let (M, 1) be a tracial von Neumann algebra, and let E C M be a subset so
that M = W*(x). Then, every embedding sequence of (0;: E — My, (C)) extends to one of
M.

Proof. Let A ={P(a:a € E): P e C"{X,:ac E)}. We first extend ¢ to A. For each
a € A, choose a P, € C*(X, :a € E) with a = P,(a:a € E). For a € A, set

oi(a) = P,(oi(a) : a € E)

Using that we may “compose” *-polynomials, it is not hard to see that o; is an embedding

sequence for A. Thus, we may assume that £ = A. We first prove some preliminary claims.

Claim 1: Let a € A we claim that If (7,;).ca are in My, (C) and
[Ta: — oi(a)]]2 = 0,
sup [| 75,0 < 00,
then the map o7: A — My, (C) defined by
gi(a) =T,,

is an embedding sequence for A.

The claim follows from the inequality
TS = XYl2 < [[T]lcllS = Yll2 + [|Sllsc [T = X2

for elements 7', S, X, Y in a tracial von Neumann algebra.
Claim 2: For alla € A :

Hoi(a)*oi(a) — Haa-

For this, it is trivial from the definition of embedding sequence that if P is a polynomial

then
/Pdﬂ'gi(a)*ai(a) — /Pdﬂ’a*a-
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The general claim follows from the fact that the measures fiq, (1)« (o) have uniformly bounded

supports and the Weierstrass approximation theorem.

Claim 3: For all a € A, there are a; € My, (C) so that

lailleo < llalloo,

and

||CI,Z' — O'i(a)Hg — 0.

Let o;(a) = u;|o;(a)| be the polar decomposition. Let ¢ € C.([0,00)) be a continuous
function with ¢(t) =t for ¢ € [0, ||a|s], and |¢(t)]| < ||a|| for all ¢ € [0,00). Set

a; = u;¢(|oi(a)l).
Then,

lla; = ai(a) 13 < lloi(a) — ¢(|oi(a) )12 :/[0 )|¢(t1/2) — 2P g, 0y, (1)

— (%) — t12? dptgea(t)
[0,00)

by Claim 2, the fact that ¢(tf) = t on [0, ||a]|], and the fact that pg«, is supported on
[0, llallZ]-

We now prove the Lemma. By Claim 1 and Claim 3, we may assume that
loi(a)lloo < llallo

for all a € A. Let « € M \ A. By Kaplansky’s Density Theorem, we may find a sequence

anz € A so that

HanﬂfHoo < 7]

and

ane — ]2 <27
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Choose an increasing sequence of integers i,, so that if ¢ > 7,,, then for all < j, k < n,
lloi(aje) — oilara)llz = llaje — arell2] <27

Set 0;(x) = ay, where i, < i < i,.1, and define o;(x) arbitrarily for ¢ < ¢. If ¢ > 4, and

k > n is such that i < i < 73,1, then
||0-z(~r> - Gi(an,$)||2 S ||0i(ak,x) - an,:c||2 S 2_k + ”ak,x - an,az||2~
Hence

lim sup |oi(x) — oi(ans)|l2 < || — anzl2
12— 00

For z,y € M,

los()ai(y) = oi(zy)lls < [[z]leolloi(y) = gilany)ll2 + lloi(zy) = gilan )l
+lloi(any)lleclloi(@) = oi(ans)ll2

+ ||Ui(an,m)0i(an,y) - O-i(anaiﬁy)H?'
Letting ¢+ — o0,

loi(@)oi(y) = ou(zy)lls < l2]loclly = anyllz + [y = aneyll2

+ [y lloollz — an,fc“2 + ||an,wan,y - an,zy||2

Letting n — oo completes the proof.
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CHAPTER 3

Extended von Neumann Dimension for Sofic Groups

We now proceed with the first major part of the thesis: the definition of extended von

Neumann dimension for actions of sofic groups on Banach spaces. Let us recall some history.

Voiculescu in [27] and Gournay in [13] noticed that for amenable groups I', we can
compute von Neumann dimension as a limit of normalized approximate dimensions of F,2,
with F,, a Fglner sequence, and €2 C H. This formula is analogous to the definition of entropy
for actions of an amenable group on a compact metrizable space or measure space. Gournay
noted that a formula for von Neumann dimension similar to Voiculescu’s makes senses for
subspaces of ¢?(I", V'), with I amenable. Using this, he defined an isomorphism invariant for
subspaces of P(I", V') agreeing with von Neumann dimension in the case p = 2. In particular,
Gournay shows that if [ is amenable, and there is an injective I'-equivariant linear map of
finite type (see [13] for the definition) with closed image from ¢*(I',V) — (?(I', W) then
dimV < dim W.

Recently, in [2],[18] a theory of entropy for actions of a sofic group on a probability space
or a compact metrizable space has been developed. Using this theory, it was shown for sofic
groups I' that probability measure preserving Bernoulli actions I' ~ (X, u)',T ~ (Y,v)
are not isomorphic if the entropy of (X, u) does not equal the entropy of (Y, r) and that
Bernoulli actions I' ~ X", T" ~ YT are not isomorphic as actions on compact metrizable
spaces if | X| # |Y| (when X and Y are finite). We can think of the action of I on #(I", V) as
analogous to a Bernoulli action, since both actions are given by translating functions on the

group. Combining ideas of Kerr and Li [18] and Voiculescu in [27], we define an isomorphism

44



invariant

dimg,zp (Y, F)

for a uniformly bounded action of a sofic group on a separable Banach space Y. This definition

of dimension has the following properties:

Property 1: dimg»(Y,I') < dimg»(X,I) if there is an equivariant bounded linear map

X — Y with dense image,

Property 2: dimy »(V,T") < dimye(W,I) + dimg e (V/W,T), if W C V is a closed I'-

invariant subspace,

Property 3: dimy (Y & W,T') > dimg (Y, T') + dimy, , (W, T') for 2 < p < 0o, where dim is

a “lower dimension,” and is also an invariant,
Property 4:  dimy  (¢7(I',V),I') = dimy, ,, (¢*(T, V), ') = dim(V') for 1 <p <2,

Property 5: dimy ¢ (X,I") > dimp ) (7‘“'2), when X C (N, /P(T")) and 1 < p < 2.

We also note that for defining dimg (Y, T'), little about soficity of I' is used, and we can
more generally define our invariants associated to a sequence of maps o;: I' — Isom(V;)

where V; are finite-dimensional Banach spaces.

In particular, we can show that dimy 2(Y,I") can be defined for R“-embeddable groups
I'. Because unitaries also act isometrically on the space of Schatten p-class operators, we can

also define an invariant

din’lz,sp (K F),

SP dimension has properties analogous to /7 dimension.

Property 1:  dimy g (Y, I") < dimy ¢ (X, ') if there is a [-equivariant bounded linear bijec-
tion X — Y,

Property 2:  dimy s (V,I") < dimy go(W,I') + dimy o (V/W,T), it W C V is a closed I'-

invariant subspace,
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Property 3:  dimg g (Y @ W,T') > dimy e (Y, I') + dimy; 5, (W, T) for 2 < p < o0,

Property 4:  dimy, 5, (¢*(T', V), I') = dim(V') for 1 < p <2,

Property 5:  dimy, ¢, (W,T') > dimpr (W”'HQ) if W C (N, ¢P(I")) is a nonzero closed invari-

ant subspace and 1 < p < 2,
Property 6:  dimy, »(H,T) = dimy, 2(H,T) = dimyry H if H C (N, ¢*(I)) is I' invariant.

Property 7:  dimy e (X,I') =0, if X is a finite-dimensional Banach space.

In particular ¢?(I", V) is not isomorphic to ¢*(I', W) as a representation of I', if I' is R¥-
embeddable and 1 < p < oo. This extends a result of [13] from amenable groups to R“-
embeddable groups, and answers a question of Gromov (see [15] page 353) in the case of
R“-embeddable groups. Lastly, we shall also define and compute /P-Betti numbers of free

groups, as well as dimensions for actions of I' on noncommutative LP-space.

3.1 Definition of the Invariants

Definition 3.1.1. Let X be a Banach space. An action I' on X by is said to be uniformly

bounded if there is a constant C > 0 such that
|sz|| < Cllz|| for all z € X, s € T.

We say that a sequence S = (:Uj);?‘;l in X is dynamically generating, if S is bounded and

Span{sz; : s € I',j € N} is dense.

If X is a Banach space we shall write Isom(X) for the group of all linear isometries from

X to itself.

Definition 3.1.2. Let V be a vector space with a pseudonorm p. If A C V, a linear subspace

W C V is said to e-contain A, denoted A C. W, if for every v € A, there is a w € W such
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that p(v —w) < e. We let d.(A4, p) be the minimal dimension of a subspace which e-contains

A.

Definition 3.1.3. A dimension triple is a triple (X,I', ¥ = (0;: I' — Isom(V;))), where X is
a separable Banach space, I' is a countable discrete group with a uniformly bounded action
on X, each V; is finite-dimensional, and the o; are functions with no structure assumed on

them.

Definition 3.1.4. Let (X,I',¥ = (0;: I' — Isom(V;))) be a dimension triple. Fix § =

(z7)52, a dynamically generating sequence in X. For e € E' C T finite, [ € N let
Xpg; = Span{sz; : s € E' 1<j<lI}.

If e e F CT finite, m € N, C,6 > 0, let Homp(S, F,m, 9, 0;)c be the set of all linear maps
T: Xpm — Vi such that | 7| < C and

[T (s1 -+~ spay) — oi(s1) -+~ oi(sk)T(x5)]| <6

if 1 < j,k < m,sy,...,8, € F. If C = 1 we shall use Homr(S, F,m,0d,0;) instead of

HOHI[‘(S, F, m, 5, 0'1')1.

We shall frequently deal with inducing pseudonorms on ¢*°(N, V') from pseudonorms on
¢>(N). For this, we use the following notation: if p is a pseudonorm on ¢*°(N) and V' is a

Banach space, we let py be the pseudonorm on ¢>°(N, V') defined by pv(f) = p(j — [|f(H)]])-

Definition 3.1.5. Let >, .S be as in the proceeding definition and let p be a pseudonorm on
(*(N). Let ag: B(Xpm, Vi) = (N, V;) be given by as(T)(j) = Xk<m} (7)1 (x;). We let

~

d.(Homp (S, F,m,d,0;), p) = d-(as(Homr(S, F,m,,0;)), pv,)

define the dimension of S with respect to p by

1~
f.dimg (S, F,m, 0, ¢, p) = limsup Vdg(Homp(S, F,m,d,0;),p),

1—>00 m Vv;
f.dimg(S,e,p) = limsup f.dimg(S, F,m,0d,¢,p)
ecFCT finite

meN
6>0

f.dimg (S, p) = sup f. dimx(S5, ¢, p),

e>0
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where the pairs (F,m, d) are ordered as follows (F,m,d) < (F',m/,§) it FC F',m <m/,§ >
0". We also use

~

da(HomF(S7 Fa m, 5a gi)v p)v

f. dimZ(S, F,m,d,¢e,p) = liminf

1—00 dlm i

f. dimE(S, g,p) = liminf f.dimg(S, F,m,d,¢,p)
— ecFCr finite

meN
6>0

f-dim (S, p) = sup f.dimx (S, ¢, p).

e>0

In section 3.2 we will show that

1~
f.dimg(.S, p) = sup lim inf lim sup ,—Vdg(Homp(S, F,m,0,0;),p),

e>0 (vava) 1—00 1m V;

1 ~
.dim_ (S, p) = supli lim inf ——d.(Homp (S, F,m, 8, 0;), p).
f-dim (5, p) suplim sup lim inf 520 (Homr(S, F,m,d,0:), p)

We introduce two other versions of dimension, which will be used to prove that the above

notion of dimension does not depend on the generating sequence.

Definition 3.1.6. Let X be a separable Banach space, we say that X has the C-bounded
approzimation property if there is a sequence 6,: X — X of finite rank maps such that
10,]] < C and

|0, (z) — z|| — 0, for all x € X.

We say that X has the bounded approximation property if it has the C-bounded approxi-

mation property for some C' > 0.

Definition 3.1.7. Let X be a separable Banach space with a uniformly bounded action
of a countable discrete group I'. Let ¢: Y — X be a bounded linear surjective map, where
Y is a separable Banach space with the bounded approximation property. A g-dynamical
filtration is a pair F = ((as;)(s,j)er=n, (YEal)eeEgr ﬁnite,leN) where a5; € Y, Yg; C Y is a

finite dimensional linear subspace such that

L supg ) [lag ]| < oo,
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2: q(as;) = sq(ae;),

31 (qlae))32y is dynamically generating,

4: YE‘,l g YE'/,Z/ Zf E Q E,,l S l/

5. ker(q) = Ugy Yei Nker(q),

@

Vg, = Span{ay; : s € E',1 < j <1} + ker(q) N Yg,.

Note that if X has the bounded approximation property and Y = X with ¢ the identity,
then a dynamical filtration simply corresponds to a choice of a dynamically generating se-
quence. In general, if S = (xj)J‘?‘;l is a dynamically generating sequence, then there is always
a ¢-dynamical filtration F = ((as;)(sj)erxn, Yry) such that g(ae;) = x;. Simply choose a;
such that |la;|| < C|lz;|| and q(a,;) = sz; for some C' > 0. If (y;)52, is a dense sequence in

ker(q), we can set
!
Yo = Span{ay; : (s,7) € E' x {1,...,1}} + ZCyj.
j=1
We can always find a Banach space Y with the bounded approximation property and a
quotient map ¢: Y — X in fact it is a standard exercise that we can choose Y = ¢}(N).

Definition 3.1.8. A quotient dimension tuple is a tuple (Y,q, X,T,0;: T' — Isom(V;))
where (X,T",0;) is a dimension triple, Y is a separable Banach space with the bounded

approximation property and ¢: Y — X is a bounded linear surjection.

Definition 3.1.9. Let (Y,q, X,T",0;: I' — Isom(V})) be a quotient dimension triple, and let
F = ((asj)(s,j)erxn, Yry) be a g-dynamical filtration. For e € F' C T finite, m € N,6,C > 0
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we let Homp(F, F,m,d,0;)c be the set of all bounded linear maps 7: Y — V; such that
|T|| < C and

1T (s ws505) = 0i(51) - - 0ulsk) T (aey)l| <0

< 4.

HT‘ker(q)ﬁYpyl

As before, if C' =1 we will use Homp(F, F, m, d, 0;) instead of Homp(F, F,m,d,0;)c.

Again, in the case X has the bounded approximation property, we are simply looking
at almost equivariant maps from I' to V;, and this is similar in spirit to the definition of
topological entropy in [18]. In the general case, note that genuine equivariant maps from X

to V; would correspond to maps on Y which vanish on the kernel of ¢, and so that
T(CLSl'--Skj) = Ui(‘sl) o 'Ui(sk)T(aej)7
so we are still looking at almost equivariant maps on X, in a certain sense.

Definition 3.1.10. Fix a pseudonorm p on ¢*°(N), let (Y, q, X,I',3 = (0;: I' = Isom(V})))
be a quotient dimension tuple, and F a g-dynamical filtration. Let az: B(Y,V;) — (< (N, V;)
be given by ar(¢) = (¢(ac;))32, we again use c/i\a(A,p) = d.(ar(A), pv;). We define the

dimension of F with respect to p, ¥ as follows:

o~

f.dimg(F, F,m,d, e, p) = limsup ——d.(Homp(F, F,m, 0, 0;), p),

f.dimy(F,¢e,p) = inf f.dims(F, F,m,d,¢,p),
ecFCT finite
meN
>0
f.dimy(F, p) = sup f.dimx(F, €, p).
e>0

Note that unlike f.dimg(S, F,m,d, e, p) we know that f.dimy(F, F,m,d, e, p) is smaller
when we enlarge F' and m and shrink ¢, thus the infimum is a limit and there are no issues

between equality of limit suprema and limit infima for this definition.
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Definition 3.1.11. Let Y, X be Banach spaces, and let p be a pseudonorm on B(X,Y). For
e>0,0<M <o0,and A,C C B(X,Y), the set C is said to (¢, M) contain A if for every
T € A, there is a S € C such that ||S]| < M and p(S — T') < €. In this case we shall write
A C.y C.o We let d. (A, p) be the smallest dimension of a linear subspace which (e, M)

contains A.

Definition 3.1.12. Let (Y,q, X,T',0;: I' — Isom(V;)) be a quotient dimension tuple. Let
F = (as;, Yr;) be a ¢g-dynamical filtration. Fix a sequence of pseudonorms of p; on B(Y, V)

and 0 < M < oo, set

1
opdimg, 5,(F, F,m, d, ¢, p;) = limsup _—Vde,M(Homp(]:, F,m,9,0;),pi),

i—00 1 %
opdimy, 5, (F, &, pi) = inf opdimy, ,,(F, F,m, 4, ¢, p),
' ecFCT finite ’
meN
5>0

opdimg, ,(F, pi) = sup opdimg, ,(F, €, ).
€

As before, we shall use

opdimg, , (F, p;), f-dim (F, p)
for the same definitions as above, but replacing the limit supremum with the limit infimum.
By scaling,
O<i]\1/[1£oo opdimy, 5, (F, p;), opdimy, . (F, ps), f. dims(S, p), f. dims(F, p)
remain the same when we replace Homrp(F, F, m, §,0;), Homp(S, F,m, d,0;), by Homp(F, F,m, 4, 0;)c,

Homyr (S, F,m,d,0;)c, for C a fixed constant. This will be useful in several proofs.

Note that if p is a pseudonorm on ¢*°(N), then we get a pseudonorm pr,; on B(Y,V;) by
pri(T) = p(j = [T (ae;))-
Further, for 0 < M < oo

opdimg, 5,(F, pr) > f.dims(F, p).
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Definition 3.1.13. A product norm p is a norm on ¢*°(N) such that

1:  pinduces a topology stronger than the product topology,

2:  pinduces a topology which agrees with the product topology on {f € (*°(N) : || f|lec <

1}.

Typical examples are the ¢P-norms:

o0

o7 =3 S IGIP

J=1

We shall show that there is constant M > 0, depending only on Y, so that if F, F’ are
dynamical filtrations of ¢ and S is a dynamically generating sequence, then for any two

product norms p, p/,
opdimy, 5/ (F, pr;) = opdimg (F, pr;) = f.dims(F, p) =

f.dimx(F', p) = dimx(S, p).

and the same with dim replaced by dim. In particular all these dimension only depend of
the action of I' on X, and give an isomorphism invariant. When we show all these equalities
we let

dimy (X, T
denote any of these common numbers.

The equality between these dimensions is easier to understand in the case when X has
the bounded approximation property. When X has the bounded approximation property,
we can take Y = X, ¢ = Id and then the equality

OpdimE,M(Fa Pf,i) = f.dimgx(S, p),

says the data of local almost equivariant maps on X is the same as the data of global

almost equivariant maps on X. This is essentially because if we take 0g;: X — Xg; which
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tend pointwise to the identity, then any almost equivariant map on Xpg; gives an almost

equivariant map on X by composing with 0.

Since the maps o;: I' — Isom(V;) are not assumed to have any structure, this invariant
is uninteresting unless the maps o; model the action of I' on X in some manner. Thus we
note that if I" is a sofic group, then the maps o;: I' = S;, model at least the group I' in a

reasonable manner.

Because S, acts naturally on /?(n) we get an induced sequence of maps o;: I' — Isom(¢?(d;))
and the above invariant measures how closely the action of I' on X is modeled by these
maps. When T is sofic, and ¥ = (0;: T' = S,) is a sofic approximation and £ = (¢;: I' —

Isom(¢*(d;))) are the maps induced by the action of S,, on ¢?(n), we let
dimggp (X, F) = dimz(p) (X, F)
di_mz’ep (Xa F) = di_mz(l)) (Xa F)

Similarly, if I is R“-embeddable, and o;: I' — U(d;) is a embedding sequence, then since

U(d;) is the isometry group of ¢*(d;) we shall let
dimz7g2 (X, F) = dlmz(X, F)
di_mZ:,ﬁ (X7 F) = di_mE(X, F)-

Just as S, acts on commutative fP-Spaces, we have two natural actions of U(n) on non-

commutative LP-spaces. Let SP(n) be M, (C) with the norm
[Alls» = Tr([A[")

where |A| = (A*A)Y2. Then U(n) acts isometrically on SP(n) by conjugation and by left
multiplication. We shall use

dimE,SP,conj (X, F)
for our dimension defined above, thinking of ¢; as a map into Isom(S?(n)) by conjugation

and

dimE,Sl’,mult (Xa F)
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thinking of o; as a map into Isom(S?(n)) by left multiplication.

One of our main applications will be showing that when I' is R“-embeddable
di_nk),SP,conj (gp(r)@n’ F) = dimZ,SP,conj (gp(r)@nv F) =n,

if 1 <p<2, and
dimy, (P(T)®"™,T) = dimg 4 (¢*(T)",T) = n,

if 1 <p <2, In particular the representations ¢7(I")®™ are not isomorphic for different values

of n, if I" is R¥-embeddable.

3.2 Invariance of the Definitions

In this section we show that our various notions of dimension agree. Here is the main strategy

of the proof. First we show that there is an M > 0, independent of F so that

OpdimE,M<f> p}',i) = f dimy; (‘Fa P),

the constant M comes from the constant in the definition of bounded approximation property.

A compactness argument shows that
OpdimE,M(Fv PF.i)
does not depend on the choice of pseudonorm. We then show that
opdimy, o (F, pr,i)
does not depend on the choice of F, this is easier than trying to show that
f.dimg(S, p)
does not depend on the choice of S. This is because the maps used to define

opdimy, o (F, pr,i)
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all have the same domain, which makes it easy to switch from one generating set to another,
since we can use that generators for F have to be close to linear combinations of generators

for 7'. Then we show that

f.dimg(F, p) = f.dimg(S, p),

this will reduce to showing that if we are given an almost equivariant map ¢: Y — V; which
is small on the kernel of ¢, then there is a T: X' — V with X’ C X finite dimensional such

that T o ¢ is close to ¢ on a prescribed finite set.

First we need a simple fact about spaces with the bounded approximation property.

Proposition 3.2.1. Let Y be a separable Banach space with the C-bounded approzimation
property, and let I be a countable directed set. Let (Y, )aer be an increasing net of subspaces

of Y such that

Y:UYQ.

07

Then there are finite-rank maps 6,: Y — Y, such that ||0,| < C and
lim (|60 (y) — yll = 0
forally €Y.

Proof. Fix y1,...,yr € Y and € > 0. Then there is a finite rank 6: ¥ — Y such that

10(y;) — ysll <e,
0] < C.
Write

0=> ¢,
j=1

with ¢; € Y™ and z; € Y. If « is sufficiently large, then we can find 2, € Y,, close enough to

x; so that if we let

b= ¢ @},
j=1
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; o if ||0o]| < C

C % otherwise

then

16(y;) — sl < 2e.
Now let (y;)%2, be a dense sequence in Y, and let

ap Say<ag <

with a; € I be such that for all § € I, there is a j such that 5 < «;. By the preceding
paragraph, we can inductively construct an increasing sequence n;, of integers and finite-rank
maps

Hk: Y — Yank

such that
10k]] < C

16k (y;) =yl <27%if j < k.

Set 0o = b, if kis the largest integer such that o, is not bigger than a. Let 6, = 0 if

a < ay. Then 6, has the desired properties. O

Lemma 3.2.2. Let (Y,q, X, T,2 = (0;: T' — Isom(V}))) be a quotient dimension tuple. Let
F = ((asj)(s,jyerxn, Yry) be a g-dynamical filtration and p a product norm, and let C' > 0 be
such that'Y has the C'-bounded approximation property. Fiz M > C. Then for any V CY

finite-dimensional, and k > 0, there is a F C T finite m € N, 6, > 0 and linear maps
Li: 02(N,V;) = B(Y, V;)
so that if ¢ € Homp(F, F,m,d,0;), f € (>°(N,V;) satisfy py,(ax(p) — f) < €, then
LN < M,

HLl(f)‘V - ¢‘VH < K.

o6



Proof. Note that for every V finite-dimensional there are a E¥ C I finite, [ € N, such that

so we may assume that V = Yg; for some E, .

Fix n > 0 to be determined later. By the preceding proposition let 0py: Y — Yr, be
such that
10pkl < C,

(1}}% 10k (y) =yl =0 for all y € V.

Choose F,m sufficiently large such that

H0F7m|yEJ —1Id ’YE,Z H <.

Let Bpy, € F™ x {1,...,m} be such that {q(as;) : (s,7) € Bpm} is a basis for Xg,, =
Span{q(as;) : (s,7) € F™ x {1,...,m}}. Define

Li: °(N,V;) = B(Xpm, Vi)

by
Li(f)(g(as)) = 0:(s)(j) for (s, ) € Brm.
We claim that if § > 0,¢’ > 0 are sufficiently small, ¢ € Homp(F, F™ m,d,0;) and f €
>°(N, V) satisfy
pvi(f —ax(9)) <<,
then

IZ(Dodly, — oy, lI<n (3.1)

By finite-dimensionality, there is a D(F,m) > 0 such that if v € ker(q) N Ypm, (d) €
CBrm | then

Sup(||v||, |dt7’|) S D(F7 m) v + Z dtra'tr

(t,?“)Eprm
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Thus if z = v+ >, ey, A With v € ker(q) N Y, has ||| = 1, then

ILi(F)(a(@)) = ()| < D(F,m)s + D(Em) Y~ lé(a) — o) f(r)]

(tﬂr)GBF,m

< D(F,m)s + D(F.m)|[F[™ms + Y [lé(ac) — f(r)ll,

(t,r)EBF,m

if6<2D(

and € > 0 is small enough so that p(g) < &’ implies

> let)l <3,

(t,?")EBF,m

n
Em)(1+|F[™m)’

then our claim holds.

So assume that §,&" > 0 are small enough so that (3.1) holds, and set L;(f) = L;(f) o
q!YF,m 0 0p,. Then
ILi(NIl < C(1 +n)

and for ¢, f as above and y € Yg;

IL:(F)(w) — o) < (L +)|0pm(y) — yll + [ Li(f) 0 aly) — W)l < (2 +m)nlly]l.

So we force 7 to be small enough so that (2+ n)n < x,C(1 +1n) < M.

Lemma 3.2.3. Let (Y,q, X,[,X = (0;: I' = Isom(V}))) be a quotient dimension tuple.

Let F = ((asj)(s,j)erxn, YEy) be a g-dynamical filtration, and p a product norm, suppose

that Y has the C'-bounded approximation property.

(a) If oo > M > C, then
f.dims(F, p) = opdimy, 1, (F, p),
[f-dimy (F, p) = opdimy,  (F, p).
(b) If p' is another product norm then for all 0 < M < oo,
opdimy, /(F, pr,i) = opdimg 5 (F, pr,),

opdimaM(}", PF,i) = opdimE,M(}", P}z)
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Proof. (a) First note that
opdimyg, ,(F, p) = opdimy, .(F, p) > f.dimx(F, p)
so it suffices to handle the case that M < oco.
Let A > 0 be such that

|las;|| < A forall (s,5) e ' x N

Take 1 > ¢ > 0. Let k be such that if f € ¢*°(N), and || f|l« < 1, and f is supported on
{n :n >k}, then p(f) < . Since p induces a topology weaker than the norm topology, we

can find an € > k > 0 such that

p(f) <e
if

1flloe < K-

By Lemma 3.2.2, let ¢ € FF C T be finite, m € N, ¢ > & > 0,k > § > 0 and
L;: 12N, V;) — B(Y,V;) be such that if ¢ € Homp(F, F,m,d,0;) and f € (*°(N,V;) has
pv.(a(6) — f) < &, then

HLi(f)}Y{e},k - ¢‘Y{e},k|| <K,

I1Li(HI < M.
Then if ¢, f are as above we have

pri(¢ — Li(f)) < (M +1)Ae + p(xi<k (1) ([|0(ae;) — Li(f)(ae;)[)521)

and for j < k

Ip(ae;) = Li(f)(acy)ll < AM + 1)x.

Thus

pri(é — Li(f)) < (M +1)(A + D,
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This implies that
d(ars1yasne,n (Homp (F, F',m!, 8, 0y), pr,i) < dy(Homp(F, F',m', 8, 0;), pr.:)

for all F” O F,m’ > m, and all 6’ < 0. This completes the proof.
(b) This is a simple consequence of the compactness of the || - ||, unit ball of £*°(N) in

the product topology.

[]

Lemma 3.2.4. Let (Y,q, X, T, 0;: T' = Isom(V;)) be a quotient dimension tuple. Let F,F’
be two q-dynamical filtrations. If p; is any fixed sequence of pseudonorms on B(Y,V;), then

for all 0 < M < o0,

OPdimz,M(]:a pi) = 0pdim2,M(‘F/7 Pi),

. o . /
opdimg . (F, pi) = opdimg, \ (F, pi),

Proof. Let F' = ((alsj)(s,j)erxN, Y}é,z)a F = ((asj)(s,j)eFxN7 YE,l)- We do the proof for opdimy,,
the other case is proved in the same manner. Let C' > 0 be such that ||sz| < C||z]| for all
s € I',x € X and such that [lagl, ||a};|| < C. Fix FF C T finite, and m € N,6 > 0. Fix n > 0

which will depend upon F,m,d in a manner to be determined later.

Choose £ C T finite [ € N, such that for 1 < j < m,s € F™ there are c;j;; with

(t,k) € Ex{1,...,1} and vy € Y5, Nker(q) such that

!
Asj — Usj — § : CitkOspr || <7,

and so that for every w € Yp,, Nker(q) there is a v € Yy, Nker(q) such that ||v —wl| < nljw].
Let A(n) = sup(|ej il sup [[vs]])
Set m’ = 2max(m,l) + 1, F' = (FUF'U{e})(EUETU{e})]*"*!, we claim that we

can choose ¢’ > 0,7 > 0 small so that

Homp(F', F',m/, ', 0;) € Homp(F, F,m, 0, 0;).
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If T'e Homp(F', F',m', 8 ,0;), 1 <j,r <m,and sq,...,s, € F then
[T (@s,s,5) = 0i(s1) -+ - 0il(57) T (aes) || <

20 + [T (vs) | + lloi(s1) - - - ilse) T (veg) |+

S T (dyy ) — oils1) -+ 0i(s)T(a)]|| <
(tR)EEX{ L.}

2n + 0"A(n) + 0" A(n) + 2|E|lA(n)d'.
By choosing 7 < 0/2, and then choosing ¢’ very small we can make the above expression less
than §. If we also force §' < §/2 our choice of 1 implies that
[T (w)]| < oljwl]

for T" as above and w € Yp,,, Nker(q). This completes the proof. H

Because of the above lemma, the only difficulty in proving that opdimy,(F, px;) does not
depend on the choice of F is switching the pseudonorm from pr; to pr ;. Because of this

we will investigate how the dimension changes when we switch pseudonorms.

Definition 3.2.5. Let (Y,q, X,[',3 = (0;: I' = Isom(V;))) be a quotient dimension tuple,
and fix a g-dynamical filtration F. If p;, ¢; are pseudonorms on B(Y,V;) we say that p; is
(F,X)-weaker than g; and write p; <z ¢; if the following holds. For every € > 0, there are
F C T finite, §," > 0, m, iy € N, and linear maps L;: B(Y,V;) — B(Y,V;) for i > i, such that
if ¢ € Homp(F, F,m,d,0;) and ¢ € B(Y,V;) satisfy ¢;(¢ — ) < &', then p;(¢ — L;(¢)) < e.
We say that p; is (F,X) equivalent to g;, and write p; ~zx ¢, if p; <rx ¢; and ¢; <rx p;.
Lemma 3.2.6. Let (Y, X,q,T',%) be a quotient dimension tuple and F a q-dynamical filtra-

tion.

(a) If pi,q; are pseudonorms with p; <rx q;, then
OpdimE,oo(‘Fa p1> < OpdimE,oo(‘Fa qi)a

opdimzm(]—", pi) < Opdimzm(]‘—; @)
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(b) Let F' = ((ay;)(s.jerxn, Yi ), F = ((asj)(s.jerxn, Ye1) be g-dynamical filtrations. Let
p be any product norm. Define a pseudonorm on B(Y,V;) by pri(¢) = p(([[¢(ac;)|)32,), and
similarly define pr ;. Then

PFi 2FY PFi-

Proof. Let ¥ = (0;: I' = Isom(V})).
(a) This follows directly follow the definitions.

(b) Let C' > 0 be such that Y has the C-bounded approximation property and
lag; |l < €
lag;l < C

Choose m € N such that p(f) < e if ||f]loo <1 and f is supported on {n : n > m}, and
let k > 0 be such that p(f) < € if || f]|eo < K-

By Lemma 3.2.2 choose F’ D F finite m < m’ € N, and §,e > 0 and
Li: (°(N,V;) = B(Y, V)

so that if f € (*°(N,V;) and ¢ € Homp(F, F',m/, 9, 0;) has py,(az(¢) — f) < € then

’ Li(f)‘y{/e}‘m - y{/e}’m <K,
1Ll < 2C.

Let L;: B(Y,V;) = B(Y,V;) be given by L;(¢)) = Li(ar(1)).

Suppose ¢ € Homp(F, F',m/, ¢, 0;) and ¢ € B(Y,V;) satisfy pr,(¢ — ) < &'. Then, for

1 <5 < m we have

||¢(a,ej) - Lz(ﬂ))(a;g)n < Ck.
Our choice of m, k then imply that pz (¢ — L;(¢))) < 2C(C + 1)e. This completes the proof.

O
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Corollary 3.2.7. Let (Y,q, X,I',0;: I' = Isom(V;)) be a quotient dimension tuple. Let p, p/

be two product norms. For any two q-dynamical filtrations F, F' we have
0pdim2,oo(‘/r7 p]:,i) = Opdimz,oo(FI7 p]‘—’,i) = OpdimE,oo(‘Flv p;—'/,i)‘

opdimz’oo(]:, PFi) = opdimaoo(]:', pr i) = opdim  (F', o’z ;).

Proof. Combining Lemmas 3.2.3,3.2.6, and 3.2.4 we have

OpdimE,oo(‘F/7 pif’,i) = 0pdim2,oo<'r,7 p]:’,i) < OpdimE,oo(‘F7 p]:,i)'

The opposite inequality follows by symmetry.

O

Because of the preceding corollary f.dimy(F, p) only depends on the action of T and the

quotient map ¢: Y — X. Thus we can define
dimg (¢, I') = opdimy, . (F, pr,) = f.dims(F, p)

where F is any ¢-dynamical filtration and p is any product norm.

We now proceed to show that dimy «(g,I") does not depend on ¢, as stated before the
idea is to prove that
dimy(q,I') = f. dimg(S, p)
where S is any dynamically generating sequence for X.

For this, we will prove that we can approximate maps 7" on Y which almost vanish on
the kernel of ¢, by maps on X. For the proof, we need the construction of ultraproducts of

Banach spaces.

Let X,, be a sequence of Banach spaces and w € SN\ N a free ultrafilter. We define the
ultraproduct of the X,,, written [[* X,, by

HXn = {(@n)nly t T € Xy, sup [|zn|| < 00} /{(zn)ply 20 € Xna}ll_rg |l = 0}
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We use (z,,)n_. for the image of (x,)22; under the canonical quotient map to

I
If aset A C Nisin w, we will say that A is w-large.

Lemma 3.2.8. Let X,Y be Banach spaces with X and q: Y — X a bounded linear surjective
map. Let F C X be finite and Z a finite-dimensional subspace of Y with q(F) C Z. Let
C > 0 be such that for all x € X, there is ay € Y with ||y|| < Cllz|| such that q(y) = x, and
fit A > C. Let I be a countable directed set, and (Yy)aer a net of subspaces of Y such that
Yo CYs ifa<p, and

q(Ya) 2 Z,

ker(q) = U Y, Nker(q),
Fcl v

Then for all € > 0, there are a 6 > 0 and oy with the following property. If « > oy and W

1s a Banach space with T:'Y, — W a linear contraction such that

<,

HT|ker(q)ﬁYa

then there is a S: Z — W such that ||S|| < A and
1T (z) = Soqlx)] <e,
for all x € F.

Proof. Note that our assumptions imply

Y:Un

«

Fix a countable increasing sequence «, in I, such that for every § € I there is an n such

that f < a,,. Assume also that F' C Y,,. Since [ is directed, if the claim is false, then we
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can find an € > 0 and an increasing sequence (3, with 3, > «, and a T,,: Y3, — W,, such

and for every S: X — W, with ||S| < A,

that || 7, < 1,

Y

Tn‘ker(q)ﬂYBn ‘ <2

|Tn(z) — S oq(x)]| > e, for some x € F.

Fix w € SN\ N and let
W =[] Wa

Define
T: Uan — W

by
T(z) = (Tn(2)) nsw,

note that for any k, the map 7, is defined on Y, for n > k, so T' is well-defined. Also
1T (@)]| < |||
T(z) =0on ], Ys, Nker(q).

Our density assumptions imply that 7" extends uniquely to a bounded linear map, still
denoted T, from Y to W, which vanishes on the kernel of ¢. Thus there is S: Z — W such
that 7' = S o ¢, and our hypothesis on C' implies that ||S|| < C.

Since Z is finite dimensional, we can find S,,: X — W,, such that S(z) = (S,(2))n_w-

Compactness of the unit sphere of Z and a simple diagonal argument show that
0> |S] = lim |5,
Thus B = {n : ||S,]| < A} is an w-large set, and by hypothesis

B=|J{neB:|Tu(x) - Sulq())] > <}

zeF
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Since B is w-large, there is some z € F' such that

{n € B:||Tw(x) — Su(q(x))l| = €}

is w-large. But then T'(x) # S o ¢(z), a contradiction.

O

Lemma 3.2.9. Let (Y,q, X, I',¥ = (0;: I' = Isom(V}))) be a quotient dimension tuple. Fizx

a dynamically generating sequence S in X, and p a product norm. Then
dimy (g, I') = f.dimx(S, p).

Proof. We will only do the proof for dim .

Let S = (z;)32, and let F = ((as;)(sj)erxn, Ye1) be a dynamical filtration such that
q(aej) = xj. Let C' > 0 be such that

sup [|ag;|| < C
(s.4)

Sup ] < €
lall < €,
for every x € X, there is a y € Y such that ¢(y) = x and ||y|| < C||z||,
and so that Y has the C'-bounded approximation property. By Proposition, 3.2.1, we may

find 0p;: Y — Yg,; such that ||0g,|| < C and

i 0 — =0f 11 Y.
(EIJH)H e1(y) — Yl orall y €

We first show that
dimy(q,I') > f.dimx(S, p).

For this, fix € > 0, and choose r € N such that

p(f) < e, if fis supported on {n:n >r} and || f|l. <1,
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as before choose € > x > 0 such that if || f||s < &, then
p(f) <e.
Let e € E C T finite and [ € N be such that if £ C F' C I is finite, and k > [ then
107k (ac;) — aej|l <

for1 <j<r.
Now fix £ C F C T finite, ] < m € N,0 > 0. We claim that we can find F C F/ C T

finite m <m/ in N, § > ¢’ > 0 such that

Homp(S, F',m', ' 0;) o q}Y 0 Oy € Homp(F, F,m, 6, 0;)c2.
F!'m!

For T' € Homp(S, F',m/,d',0;), for 1 < 5,k <m and sy,...,s; € F,

1T 0 g 0 Opr o (as,.55) — 0i(1) - - 0i(58) T © ¢ © Opor s (ac) |
< Cll0p (s s05) = sy | + COF e (aes) — aef|

+ T (517~ sezj) — oi(s1) -~ oisk) T ()|

< OO g (Asysp5) — Csyosigl| + CllOFr s (aes) — el

+0'.
Also for y € ker(q) N Y, we have
1T 0 g0 0 m (Yl < CllOFm (y) =yl
So it suffices to choose ¢’ < min(d, k) and then F' O F,m’ > max(m,[,r) such that
CNOr i (s, s5) = syossll + ClOFr s (acj) — agll < d =,

C||6# —1d|,, [I<é.

’
el

for 1 <j,k<mand sy,...,s; € F.
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Suppose that &', F', m’ are so chosen. If ' € Homp(S, F',m’,§',0;) and ¢ =T o q|Y o
F!'m!

HF/,m/ then,

pv,(as(T) — ar(¢)) < C(C* + 1)e + py, (xgji<r (as(T) — ax(6)))
and if 7 <,
Jas(T)G) ~ ar(@) ()l = IT(;) ~ To g0 br(ai)l| < Cx -+ IT(a;) — To o)l = O
Thus
Pv;-(OéS(T) — Oé]:(ﬁb)) S (02 + C+ 1)5

Therefore
C/Z\(C2+C+2)E(HomF<Sa F/7m/75/70-2')7p) < CZ(HOmF(]'—a F7m767 Ui)CQ,/))-

Since F’,m’' can be made arbitrary large and ¢’ arbitrarily small, this implies

1 ~
f.dimg (S, p, (C* 4+ 2C + 1)e) < lim sup dimvdE(Homp(]—", F,m,0,0:)c2,p),

taking the limit supremum over (F,m,d) and then the supremum over € > 0,
f.dimx (S, p) < f.dimx(q, ).

For the opposite inequality, fix 1 > ¢ > 0 and let r, k, £, [ be as before. Fix E C F C T

finite, m > max(r,!) and § < min(k, ¢).

By Lemma 3.2.8 we can find ¢’ < ¢, and FF C F’ C I finite and m < m’ € N such that if
W is a Banach space and

T YF’,m’ - W

has

1T < 1,
HT‘ker(q)ﬁYF/,m/ ” < 6I’

then there is a ¢: X, — W such that

1T (as,.-s50.5) — (s1- - spy)|| <0, for 1 < g,k <m,sy,...,s0 €F
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and ¢ < 2C.

Fix T' € Homp(F, F',m/,§', 0;), and choose ¢: Xp,,, = V; such that ||¢| < 2C and
| T (asy.s5) — @0 qlas,si)|l <0, for 1 <j k<m,sq1,...,s, € F.
Thus for 1 < j,k <m and sq,..., s € F we have

[¢(s1- - sky) — 03(s1) - - os(sp) ()| < 20
+ 1T (as, -s05) — 0i(s1) - - 03(s) T (ae;) |
<25 +0

< 39.

Thus ¢ € Homp (S, F,m, 30, 0;)sc. Furthermore, for 1 < j <r

las(T)(7) — az(@)() = [T(ac;) — ¢ 0 qla;)|| < &,

SO

pv, (ar(T) — ag(p)) < e+ (20% + C)e = (2C* + C + 1)e.

Thus

~

1
f.dimg(F, (20% 4+ C + 2)e, p) < lim sup dides (Homr(S, F,m, 368, 04)2c, p) ,

]

and since F,m, d, ¢ are arbitrary this completes the proof.

Because of the preceding Lemma and Corollary 3.2.7, we know that
f.dimg(S, p), dimy(q,I")
only depend upon the action of I' on X, and are equal. Because of this we will use
dimy (X, I") = f.dimg(S, p) = dimg(q, ')

for any dynamically generating sequence S, and any bounded linear surjective map ¢: Y —

X, where Y has the bounded approximation property. We similarly define dimy, (X, T").
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We now prove a lemma which allows us to treat the limit supremum over (F,m,d) in the

definition of f.dimx(S, p) as a limit.

Lemma 3.2.10. Let (X,I',¥ = (0;: I' — Isom(V;)) be a dimension triple, fix a dynamically

generating sequence S in X and p a product norm. Then

1 ~
f.dimg (S, p) = sagg) 1(1;«“nmlr51)f limisup mde(Homp(S, F,m,d,0;),p),

-~

d.(Homp(S, F,m,d,0;), p).

f dimE(S7 p) = sup lim sup lim inf —
— e>0 (Fym,s) ¢ m V;

Proof. Let S = (;)52,. We do the proof for dim only, the proof for dim is the same. Fixe >0

and choose k € N such that if || f[[oc < 1+ sup,ey [|7;]| and f is supported on {n : n > k},
then p(f) < e. It suffices to show that

1 ~
f.dimx(S, p) < Sl;p l(llrmnmlral)f limisup md{f(Homp(S, F,m,6,0;),p).

Fix ' C T finite m > k,0 > 0. Then for any F° C F’ C T finite, m’ > m,d < § and

¥ € Homp(S, F',m', ¢, 0;) we have b € Homp(S, F,m, 9, 0;).

Furthermore if f, g € ¢>°(N,V;) are defined by

F(U) = Xnemy (1)Y(25), 9(7) = Xnemy ¥ (z5)

then
p(G = I1FG) =9I <e.
Thus
@E(Homp(S, F'om' 8 0y),p) < CZ.;(HOIHF(S, F,m,d,0;),p).
Therefore

~

1
7 d.(Homr (S, F,m,0,0;), p).

7

f.dimg (S, 2¢, p) < lim sup

Since I, m, were arbitrary

1 ~
f' dlmZ(Sv 257/0) < l(anludl)f hm.suP VdE(HomF(Sv F,m,5, Ui)7p)7

) 1m V;

and taking the supremum over £ > 0 completes the proof.
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3.3 Main Properties of dimy(X,I)

The first property that we prove is that dimension is decreasing under surjective maps, as

in the usual case of finite-dimensional vector spaces.

Proposition 3.3.1. Let (Y, I, ¥ = (0;: I' = Isom(V;))), (X, I', X) be two dimension triples.
Suppose that there is a I'-equivariant bounded linear map T:Y — X, with dense image.
Then

dimg (X, ") < dimg(Y,T).

dimy (X, I") < dimg(Y,T).

Proof. Let S = (y;)32, be a dynamically generating sequence for Y. Let S = (T'(z;))%,,
then S is dynamically generating for X. Then

Homp(S, F,m,8,0;) o T C Homp (S, F,m, 8, 0;) 7]
and
ag(poT) = as(),

so the proposition follows.

]

We next show that dimension is subadditive under exact sequences. It turns out to be
strong of a condition to require that dimension be additive under exact sequences. As noted

in [13] if dimy ¢ is additive under exact sequences and
dimy ¢ (7(T)9",T) = n,

then we can write the Euler characteristic of a group as an alternating sum of dimensions of
P cohomology spaces. But torsion-free cocompact lattices in SO(4,1) have positive Euler
characteristic and their /7 cohomology vanishes when p is sufficiently large, so this would

give a contradiction.
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Proposition 3.3.2. Let (V,I,¥ = (0;: I' = Isom(V;))) be a dimension triple. Let W CV

be a closed I'-invariant subspace. Then
dimy(V,T') < dimg(V/W,T') + dimg (W, T),

dimy (V" T) < ndimy(V, T).

o0

Proof. Let Sy = (w;);2, be a dynamically generating sequence for W, and let Sy = (a;)32,

be a dynamically generating sequence for V/W. Let z; € V, be such that z; + W = q;, and

2|l < 2||as||. Let S be the sequence
H JH — J q
T1, W1, T, Wa, *++ .

We shall use the product norm on ¢*°(N) given by

o0

p(f) =3 1G]

i=1

o) = 3 DI+ 30 12 = 1)l

j=1
Let € > 0, and choose m such that 27" < e. Let e € I} C I' be finite,;m < m; € N, and
01 > 0. Let n > 0 to be determined later. By Lemma 3.2.8, we can find a ¢; > d > 0, a

Fy C E CT finite, and a m < k € N, so that if X is a Banach space, and
T: VE,2k — X

has ||T|| < 2, and
||T|WQVE,21€|| S 5’

then there is a ¢: (V/W)g m, — X with ||¢] < 3, and

[p(s1 - spaj) —T(s1---spxy)|| < o1,

forall 1 < j,k <mq, and sq,...,s, € F}.
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By finite-dimensionality, we can find a finite set F' O E,m’ > 2k, and a 0 < ¢’ < 1, so
that if T': Vi, — X, satisfies
1T (s1 -+ swa) || < &

forall 1 < j,k <m/, and sq,...,s, € F’, then

1T sy v I <0
Define
R: Homp(S, F',2m', ¥ 0;) — Homp (S, F',m',§', 0;)
by
R(T) = T\WM,.
Find

©: im(R) — Homr (S, F',2m/, ', 0;)
so that Ro©® =1d.

Then
(T = 6(R(T))(s1 - - - spw;) =0,

forall 1 < j,k <m/, and sq,...,s, € F'. Thus by assumption, we can find a
¢ (V/IW)rm — Vi,
so that ||¢|| < 3, and
[f(s1- - swaz) — (T' = O(R(T)))(s1- - - s5) || < 01,
forall 1 < j,k <my, s1,...,s; € F1, in particular,
[¢(a;) — (T = 6(R(T))) (z;)]| < b,

for 1 <5 <m.

Thus whenever 1 < 5,k < my, s1,...,5x € F},
(s spaj) — oi(s1) -+ oi(sk)P(a;)|| < 201 + 28" < 46;.
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Now suppose that

O[Sz (HOmF(SQ7 Fly m17 (517 0-7/)) gE,Pl,Vi G’

ag, (Homp(Sy, F,m, 401, 0;)3) C F.

—57P1¢Vi

Let E C ¢*(N,V;) be the subspace consisting of all h so that there are f € F, g € G so that
h(2k) = g(k), h(2k — 1) = f(k).
Then dim(FE) = dim(F') + dim(G). It easy to see that

Oés(HOIIlF(S, Flv m/, 5/7 Ul)) g3€+61792,Vi L.

So if §; < €, we find that
as(Homp(S, Fi,mq, 0", 0;)) Cs. E.

From this the first two inequalities follow.

The last inequality is easier and its proof will only be sketched. Let S = (z;)52, be a
dynamically generating sequence for X, and y; = 2, ® e, if j = ng+r, with 1 <r <n, and
T, ® e, is the element of X®" which is zero in all coordinates except for the r', where it is

zq. If FFCT is finite m € N, 6 > 0, then
Homr(S, F,nm, §,0;) C Homp(S, F,m,d, 0;)®".
The rest of the proof proceeds as above. O]
We note here that subadditivity is not true for weakly exact sequences, that is sequences

0 X > Y A > 0,

where X — Y is injective, im(X) = ker(Y — Z), and the image of Y is dense in Z. In fact,

using [F,, for the free group on n letters aq, ..., a,, it is known that the map

9: ()%™ — (1(F,),
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given by
Ofr, - fa) (@) = D fi(w) = ) filwa;?)
j=1 j=1
has dense image and is injective. We will show in section 3.8 that

di_mz,él (51 (Fn)®na Fn) = dimy; o1 (gl (Fn)®n> F,) = n,

dimy, 1 (¢'(F,),F,,) = dimg, 1 (¢'(F,.), F,,) = 1,

this gives a counterexample to subadditivity under weakly exact sequences. This also gives a
counterexample to monotonicity under injective maps, though once should note in this case

that the map defined above does not have closed image.

For 2 < p < oo, we have a lower bound for direct sums, whose proof requires a few more

lemmas.

Lemma 3.3.3 ( [27], Lemma 8.5). Let Hy, Hy be Hilbert spaces and let H = H, @ Hy and let
Q; C H; and suppose Cy,Cy > 0 are such that Cy < ||&|| < Cy, for all§ € Q;. If 0 <6 < Cf,
then

de15( U ®OU0® Q) > der () + der 55(2).

§
S . Q.
{n&u <€ }

we may assume C; = Cy = 1. Let P; be the projection onto each H;, and set Q = (2; ©0)U

Proof. By replacing §2; with

(0 & €3). Suppose that V' is a subspace such that 2 Cs V. and let @) be the projection onto
Vand T = QPIQ‘V. Define

Q) = QU ®0), 2 = Q0D ).

For ¢ € Q) we have
11 -Q)l <0

thus for € € Oy @ {0}
(TQE, Q8) = (QPQE, Q) = [ PLQEI* = (Il — 1P(1 = Q)EIN* = (1 - )™
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Soif T'= [, tdE(t) we have with n = Q¢
V=5 - op < (1= 3512 ) < 1= 5 1B/l
Thus
(0. 1/2)nlP < 201 - (1= 3) < 49

1.e.

ln — E((1/2,1])n]* < 49.

Thus
0 Sy B((1/2,1])V.

Similarly, because QPZQ’V =1—T we have
2 S5 E£((0,1/2)V.
For any projection P’ and any x € H we have ||z — P'z|*> = ||z]|* — ||P'z|*>. So for all

¢ € Q) @0 we have since, QE((1/2,1]) = E((1/2,1]) (and E((1/2,1]Q = E((1/2,1]) by
taking adjoints), that

le — B((1/2,1)QE]? = llg — B((1/2, el = el — I1E((1/2, el =
Il = Q€N + 1QgI? — 1B((1/2, 1)e]1? =
€ — QeI + Q€ — B((1/2, 1)Qe|* < 8 + 45 < 50
Thus with a similar proof for {2, we have
0 D0 C 5 E((1/2,1)V

0@ C e B([0,1/2))V

since

V =E(0,1/2))V & E((1/2,1))V

the desired claim follows.
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Lemma 3.3.4. Let (X,T',X) be a dimension triple. Let S be a dynamically generating
sequence in X, and p a product norm such that p(f) < p(g) if | f] < |g|. Set

p"(f) = p(xjen ).
Then
f.dims (S, p) = lim f.dims(S, P,
f.dim (S, p) = lim f.dim (S, pM).

Proof. Let ¥ = (0;: I' = Isom(V;)). Let S = ()2

21, C = sup; [J;].

(N) < p, for any € > 0

Since p
f.dimy(S, e, p™)) < f.dimg(S, e, p) < f.dimg(S, p),
thus
lim sup f. dimy (S, p™) < f. dimg(S, p).

n—oo
For the opposite inequality, fix ¢ > 0. and choose N such that p(f) < ¢ if f € {*(N,V;)
is supported on {k: k > N} and || f||cc < C. Thus for T' € B(X,V;), and f € (*(N,V;) with

|T| <1, and n > N we have
ovi(as(T) — xgieny) — (08 (as(T) = xgeny )| < v (xprsmyas(T))] < e.
Thus for n > N,
f.dims(S,2¢,p) < f.dimg(S, ¢, p™) < f. dimg(S, p™),

SO

f.dimy (S, 2, p) < liminf f. dimy(S, p™).
n—oo

]

For the next lemma, we recall the notion of the volume ratio of a finite-dimensional

Banach space. Let X be an n-dimensional real Banach space, which we will identify with
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R"™ with a certain norm. By an ellipsoid in R™ we mean a set which is the unit ball for some
Hilbert space norm on R"™. Let B C R" be the unit ball of X. We define the volume ratio of
B, denoted vr(B) by

vi(B) = inf (nggi)w

where the infimum runs over all ellipsoids D C B. It is know that for any unit ball B of a
Banach space norm on R”, there is an ellipsoid D™ such that D™ C B, and D™* has

the largest volume of all such ellipsoids. So we have

o= (ip)

The main property we will need to know about volume ratio is the following theorem.

Theorem 3.3.5 (Theorem 6.1,]21]). Let B C R™ be the unit ball for a norm || -|| on R"™. Let
D C B be an ellipsoid. Set

_ (vol(B) L/n

~ \vol(D) '

Let |- | be a norm such that D is the unit ball of (R™,|-|), in particular ||-|| < |-|. Then for

all k=1,...,n—1 there is a subspace F C R"™ such that dim F = k and for every x € F

7] < (4mA)a-E

] (3.2)
Further if we let G,y be the Grassmanian manifold of k-dimensional subspaces of R", then
P{F € Gy : for all x € F, equation (3.2) holds}) >1—27",

for the unique O(n)-invariant probability measure on G.

What we will actually use is the following corollary.

Corollary 3.3.6. Let B C R" be the unit ball for a norm || -|| on R™, and let B° be its polar.

- (i)
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Let |-| be a norm such that D is the unit ball of (R™,|-]), in particular |-| < ||-||. Then for all
k=1,...,n—1 there is a subspace F C R™ such that dim F = k and for every x € R"/F+

2l @ yrs gy < (ATA)5F |2 @0 e ), (3.3)
where we use || - ||gn/pL .y for the quotient norm induced by || - || and similarly for | - |.
Further,

P({F € Gu: for all x € F, equation (3.3) holds}) > 1 —27".
Proof. This is precisely the dual of the above theorem. O

Here is the main application of the above corollary to dimension theory.

Theorem 3.3.7. Let I' be a countable group with a uniformly bounded action on separable
Banach spaces X,Y. Let ¥ = (0;: I' — Isom(V;)) with dimV; < oo. Suppose that V; is the

complezification of a real Banach space V' such that

sup vr((V/)") < oo,

)

and there are constants Cy,Cy > 0 so that

Ci(|J«

ve + llyllvy) < Nl + iyl < Calllllyy + llyllvy).

for all x,y € V;. Then the following inequalities hold,
dimg (X @ YT) > dimy (X, T') + dimg, x, (Y, T),
dimg (Y1 © Y5, T') > dimg (X, ') + dimy (Y, T),
dimg (Y®" T') > ndimg(Y,T),

Proof. We will do the proof for dim only, the proof of the other claims are the same. Let
S = (2,)221, T = (yn)$2, be dynamically generating sequences, enumerate S @ {0} U{0} T

n=1»

by z1,y1, %2, Yz, ..., and fix integers k, m. By Lemma 3.3.4, it suffices to show that for fixed

m, k € N, and for the pseudonorms p, p1, p2 on ¢>°(N) given by
m+k 1/2
p(f) = (Z |f(j>|2> ,
j=1
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1/2
pl(f)=< If(j)IQ) :

k 1/2
pa(f) = (Z rfw) :

M

we have

fdimg(S®0U0B T, p) > f.dimg (S, p1) + f.dimg(T, p2).

Fix k,e > 0 and fix n > 0 which will depend upon k,e in a manner to be determined
later. By Corollary 3.3.6 there is a constant A, which depends only on «, C, Cy Hilbert space
norms | - |; on Xj;, and finite dimensional complex subspaces F; C V;* of complex dimension

| (1 — k)(dim V;) | such that

1
Fltli < llzll < flzf) < Alz];

for all z € V;/F. Here, as in the Corollary 3.3.6, we abuse notation by using ||z|| for the

norm on X;/F: induced by || - ||, and similarly for | - |.

For m">m € N,6 > 0 and ' C I finite we have
Homp (S, F,2m/, 0, 0;) & Homp (T, F,2m/', 5, 0;)s € Homp((S@ {0}) U ({0} & T), F,m’, 26, 0;).

Thus

~

d, (Homp((S @ {0}) U ({0} & 1), F,2m’, 20, 0;)2, p) >

~

d, (Homr(S, F,2m’, 0, 0;) ® Homp (T, F,2m’, 6, 0;)a, p) -

Let
K, ={(T(z1),...,T(zy)) : T € Homp(S, F,2m’, 6, 0;)}

Ky ={(S(y1),...,S(yx)) : S € Homp (S, F,2m',5,0;)}.

Then, by definition,

d, (Homr(S, F,2m’, 0, 0;) ® Homr (T, F,2m', ¢, 0;), p) =

dy (K1 & Ko, || - | & || - |®)
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where we use the ¢2-direct sum.

Let m;: V; — V;/F: be the quotient map and let

where [=mif j=1,and [ =k if j = 2.

Then
dy (K1 & Ko, || - 1" @ || - |P*) > dy (Gr@ Go, || - | @ || - |P*) >

day (G1® Gy, |- [T @ |- [77)

Set
Bi:{IEGi:lAZ|x|2AZ},

where [l =mifi=1 and [ =k if 1 = 2.

Then
dA?? (Gl D GZ’ | ) |Z b | ’ |’l ) z dmax(l,m)(e/4)*1 5nAmaX(l,m)(Bl’ | ' | )
Dk
+ dmax(l,m)(a/4)*1\/5Anmax(l,m))(BQ’ | ’ ’ )
Setting n = ﬁ/ﬁz)ﬁm we have

dy(Ey @ Ko, || | @ || - 1%%) = ds (Bu, |- [*™) + d5 (Ba, | - [*F)

> de(By, || - I*) + de(Ba, || - %)
Since B; 2 {x € C; : ||z|| > §} we have

de(Bu, || I%%) + de(Bo, || - [1%7) = de(Gu, || %) + de (G, || - 199).
Let E; C (V;/F)®! be a linear subspace of minimal dimension which e-contains C; with
respect to || - [|®! (I = k, if i = 1, and | = m if i = 2.) Let E; C V; be a linear subspace such

that dim E; = dim B, and WEBZ(/EVi) — ;. Set W, = E, + F#'. Then W; has dimension at most

dim E; + lc; with lim; o dlISl_VZ = K, since dim V; — oo, and K; C. . Vi. Thus

Ao (G, || - 1) > do(K, || - |®Y) — les.
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Since € — 0 as n — 0 (and vice versa) we conclude that
dimy (51 @ 52, I, [ - lls70) = —w(k +m) + dimg (51, T || - [ls,0) + dimg (Yo, I |- flze)-

Since k is arbitrary this proves the desired inequality.

Corollary 3.3.8. Let 2 < p < 0.

(a) Let T' be a sofic group with uniformly bounded actions on separable Banach spaces

XY and let X be a sofic approximation. Then
dimy e (X @ Y,T) > dimg » (X, ') + dimy, 4, (Y, T')
dimg, (X ®Y,T') = dimg, 4, (X, T') + dimg, , (Y, T)
(b) Let T be an R“-embeddable group with uniformly bounded actions on separable Banach
spaces X,Y and let X be an embedding sequence. Then
dimg s (X @ Y,T') > dimg » (X, T') + dimy, g, (Y, T)
dimg, o, (X @ Y, T') > dimy, 6, (X, I') 4 dimg, 5, (Y, T').

Proof. For 1 < q < oo, let B, be the unit ball of L¢({1,...,n}, p,) where p, is the uniform

measure.

It is known that for all ¢,

(see the computation on page 11 of [21]). Similarly if we let C, be the unit ball of {A €
M, (C) : A= A"} in the norm || - [| 5L 1y, it is known that for all g,

L (vol(CH\ "
inf (m(@)) >0,

n VO].(OQ) 7

(see [25]) Apply the preceding theorem. O
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We note one last property of £2-dimension for representations, which will be used in a

later section to show that our dimension agrees with von Neumann dimension in the #?-case.

Proposition 3.3.9. Let H be a separable unitary representation of a R“-embeddable group
I'. Let ¥ be an embedding sequence of I'. Suppose that H = |J,_, Hr with Hy, increasing,

closed invariant subspaces, and that each Hj has a finite dynamically generating sequence.
Then
dimy, ;2 (H,T") = sup dimy, 42 (Hy, I'),
k

dimy, ;2 (H,T") = sup dimy, 2 (Hg, ).
k

Proof. We will do the proof for dim only, the other cases are the same. By Proposition 3.3.2

we know that dimy, 2 is monotone for unitary representations, so we only need to show

dimy, 2 (H,T") > sup dimy, 2 (Hy, I').
k

Let {dk), cee fﬁf)} be unit vectors which dynamically generate Hy. Let Sy be the sequence

1 2 N
§)7a€£})7§§ )7757@»,5; )77€7€g)7

i.e. the ¢** term of Sy is
&
if 7 is the largest integer such that
C; = ZTJ' <,
J<i

and

ql:l—er.

J<i
Let S be the sequence obtained by the infinite concatenation of the Sy’s. We will use Sy to
compute dimy 2(Hy,I") and S to compute dimy, ;2(H,I"), we also use the pseudonorms

o0

1
ITls: = 517l

J=1
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[e.9]

1
ITllsya = 5 1T

j=1
Fix ¢ > 0, and let M be such that 2=M < ¢. Suppose F C I is finite,d > 0 and m € N
with m > Cy. Let Py € B(H) be the projection onto Hys. Suppose V is a subspace of

B(Hj;, C%) of minimal dimension such that
Homp (S, Fym, 6,03) Ce s Vs

let V C B(H,C%) be the image of V under the map 7' — ToPy;. If T € Homy @) (S, F,m,0,0;)
then T = T|HM is in Homp (Syy, F, m, 0, 0;), and there exists ¢ € V such that [|[¢—T]|s,,; < €.

Then .
lpoP=Tlsi<2 3 oot 19— Tllsys <27 4o < 3e
n=Ci+1
Thus
Homp(S, F,m, d,04) Cae 1. \7,

SO

dse(Homp(Sar, Fym, 0, 04), || - |Isi) < de(Homp(Sar, Fym, 8, 00), || - lsai)-
Thus

dimy 2(S, T, 3¢, || - [|s,2) < dimy 2(Shr, 3¢, || - || s,i2) < S}\Zp dimy; g2 (1)
and similarly for dim. Taking the supremum over € > 0 completes the proof. O]

Corollary 3.3.10. Let I' be a R“-embeddable group, and let ¥ = (0;: I' — U(d;)) be an
embedding sequence. Let mp: I' — U(Hy) be a representations of I' such that each m has a

finite dynamically generating sequence. Then

o oo
dimgyp (@ 7Tk> S Zdimg’gz (7Tk)
k=1 k=1
(o] o
dims, (@) > S ditg ).
k=1 k=1

Proof. The corollary is a simple consequence of the above proposition and Theorem 3.3.7. [
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3.4 Computation of dimy (7 (I',V),I'), and dimy, gr conj (P(I', V), T).

In this section we show that if X is a sofic approximation of I' and 1 < p < 2, then
dimy, ¢ (¢°(I', V), I') = dim V,

for V finite dimensional. Similarly if > is a embedding sequence of I' and 1 < p < 2, we
show that
dimy, gp conj (P(I,V),T') = dim V,

dimy; 2 (¢*(T, £*(n)),T) = n,
again for V finite dimensional.

The proof for sofic groups will be relatively simple, but the proof for R“-embeddable

groups requires a few more lemmas.

Let v be the unique U(n) invariant Borel probability measure on S?"~! for the next
lemma we need that if 7: C* — C" is linear, then

L) = [ (g ane)

n

This follows from the fact that Tr is, up to scaling, the unique linear functional on M,,(C)

invariant under conjugation by U(n).

Additionally, we will use the following concentration of measure fact (see [?] Page 295),

if f is a Lipschitz function on S™~!, then

77zt2

P(|f —Ef| > t) < 4e'MEw™"

Lemma 3.4.1. Let I' be a R¥-embeddable group, let o;: I' — U(d;) be an embedding se-
quence, and fix E C T finitem € N. For j € {1,...,m},&,n € S*=1 define

Tg,ji EQ(F X {1, R ,m}) — 62(6&),

Tf,'r],j: ép(F X {1, R ,m}) — Sp(dz)
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Tei(f) =D f(s.4)ils)E,

seE

Teni(f) = f(5,5)0:(s)€ @ ai(s)n.

seE

Then for any 6 >0 and 1 < p < o0,
(a)

lim P({¢ € S*™ 1 | Te, : (T x {1,...,m}) = *(d)]| < 1+ 6}) =1,
1—00
(b)
{(&,m) € (S*H 12 | Tep i P x {1,...,m}) — SP(d;)|| < 1+6} D A; x Ay,
where A; C S?%~1 has v(A;) — 1.
Proof. Let k > 0 which will depend upon ¢ > 0, p in a manner to be determined later. Let

A= () {£e ™ (o(s)€,0u(t)E)] < ),

s#t,s,te b

since

[ {900 () = L Tr00) (s 0

%

for s # t, the concentration of measure estimate mentioned before the Lemma implies that
v(A) — L
For the proof of (a), (b) we prove that if {,7 € A then
|T¢ il < 1+,

1 Temillerssr < 140,

if k > 0 is sufficiently small.

(a) For f € (*(T' x {1,...,m}),& € A we have
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ITes (OI3 =D F(s,0)f(t 5){oi(s)E, oi(t)€)

s,telE

<|fxells+ D> Ifl3x

s#t,s,teE
< [ F1I5(1+ [ E*)
< (L+9)fl3

: )
lfl{<w.

(b) Fix € > 0 to be determined later. If x is sufficiently small, then for any (£,7n) € A?
we can find (&)sep(1s)ser such that (&, &) = do=t, (05, me) = d5=¢ and

1€s — ai(s)Ell <&, |Ins — ail(s)nl| <e.

Then
Teni(F) =Y F)& T <Iflp D1 — ai(s)El + lloi(s)n = nll) < 2(Ele] f],-
Note that - ' ) -
ZEﬂs)fs@m = ;Eﬁf@)@,&sm@m:
S 1) @7
Thus = ,
S )| = Ilxellk < IfIE.
So if £ < =% the claim follov‘::.E ' O

2[E|

The following Lemma will allow us to get the lower bound we need and is similar to

Lemma 7.8 in [27].

Lemma 3.4.2. Let H be a Hilbert space, and ny,...,nx an orthonormal system in H, and
V = Span{n; : 1 < j < k} and Py the projection onto V. Let K be a Hilbert space and
T € B(H,K) with ||T|| < 1. Then

d.({T(m),....,T(m)}) > —ke + Te(P, T*TPy).
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Proof. For a subspace E C H we let Pgr be the projection onto E. Let W be a subspace of

minimal dimension which e-contains {7°(n;),...,T(nx)}. Then

Te(PywTT*) = Tr(PywTT* Py) < Tr(Pw),
similarly

= > (AT (). 7))

> —ck + Z(T(m), T(n;))

= —¢ck + TI‘(PvT*Tpv)
]

For convenience, we shall identify L(T') as a set of vectors in ¢*(T"). That is, we shall

consider L(T) to be all £ € ¢*(T') so that

I€llcy = sup || * fll2 < oo.
fGCc(F),
Ifll2<1

Here & * f is the usual convolution product. By Theorem 2.1.16, if £ € L(T"), then for all
fel?), Ex f e’ (T) and
1€ Fll2 < €My 112

By Theorem 2.1.16, L(I") is closed under convolution and

(Exm)* ¢ =E&x(nx()

for &,m,¢ € L(T"). Finally for £ € L(T"), we set
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If ¢ € L(T),¢,m € ¢3(T), then
(€xn,¢) = (& * ().
Finally, for £ € L(T"), f € ¢.(I"),

1 &llz = 1€ = f7ll2 < NF* 20" ey = [1f21€l eem)-
Hence every element of L(I') is bounded as a right convolution operator

Lemma 3.4.3. Let T be a countable sofic group, and X = (0;: T' — Sg,) a sofic approzx-
imation of I'. Faxtend o; to a embedding sequence by Lemma 2.2.6, still denoted o;, of
(L(T"), ) with T the group trace. For r,s € N define o;: My (L(I")) — My (Mg, (C)) by
0i(A) = [oi(an)i<i<hi<i<s. Fixn € N For 1 < j <d;;1 <k <n and E CT finite define
Ty (L)% = £7(d;) by

T =Y fulg)oi(g)e.

ger

Then
(a) For all E and (1 — o(1))nd; of the j,k we have ||Tj(f)||gp_>gp <1 asi— 0.

(b) For 1 < p < oo, for alle > 0, for all f € c.(T'),g € ¢P(I)®", there is a finite subset
E CT, so that if E' O E is a finite subset of I', then the set of (j, k) so that

E’ E
ITEV(f % g) = o T ()l < ellgllys

has cardinality at least (1 — €))nd; for all large 1.

(¢c) For alle > 0, for all £ € M, ,,(L(T")), (identifying My, (L(T)) as a subset of £*(T)*")
there is a finite subset E C T', so that if E' O E is a finite subset of I', then the set of (j, k)
so that

TS () — ) (e; @ el < &,

(here e; ® ey, € £2(d;)®" is e; in the k™ coordinate and zero otherwise). has cardinality at

least (1 — e)nd; for all large i.
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Proof. (a) We have

d;
| =Y e

P r=1 ger,
ai(9)(d)=r

Let C; = {j € {1,...,d;} : 0:(9)(j) # oi(h)(j) for g # h in E}. By soficity, we have

T (f)

|C|—>1 and if 7 € C; we have

T(E) p < P < »
i () . I fell2 < (| f]1E.

(b) For A € Mdi((C),
d.
1 T
141z = — >l 4¢3,
i1
where ¢ is the vector which has j™ coordinate equal to 1, and all other coordinates zero.
Hence by Chebyshev’s inequality, the fact that ||Tj(f) |, <1, and the definition of embedding

sequences, it is enough to verify this for f = 0., g = ¢, for some z,y € I'. But this is trivial

from the definition of soficity.

(c) Let us first verify this when £ € M ,,(c.(I")). In this case, we may again reduce to

€= (0gy,.-.,0q,) for some ay,...,ar € I'. Then if £ D {ay,...,a;} we have
TR(€) = oila)e; = 0:(€)(e; ® ).

In the general case let ¢ > 0, given £ € M, (L(I")) choose f € M, (c.(I')) so that
|f —&ll2 < e. Thus for (1 — (e + o(1)))kd; of the (j, k) we have

IT35(€) = a:(&)(e; @ ez < 22 + [[(03(8) — 0:(f)) (e @ e

By the definition of embedding sequence for all large ¢ we have

n

diz ICEINI RS

thus for at least (1 — \/2)nd; of the (j, k) we have
I(ei(§) — oi(f))(e; @ ex)ll2 < VE,
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combining these estimates completes the proof.

We need a similar lemma for R“-embeddable groups.

Lemma 3.4.4. Let I' be a countable R¥-embeddable group, and ¥ = (o;: I' — U(d;)) an
embedding sequence. Define p;: T — U(S?(d;)) by pi(9)A = 0:(g)Aci(9)~". Extend o, p;
to embedding sequences by Lemma 2.2.6 , still denoted o;, p; of (L(I'), ) with T the group
trace. For h,s € N define o;: My, s(L(T")) — M), (M4, (C)) by Ui(A) = [oi(ar)|1<i<ni<r<s-
Fizn € N. For &, n e (?(d;),1 <k <d; and E CT finite define T, énk S P(T)®" — SP(d;) by

Teon() =D fu(9)oi(9)é ® ai(g)n.

gelE
Then

(a) There exists measurable A; C S?%~1 with P(4;) — 1, so that

{(€,m) € (812 T lwssw < 2} D Ay x A,

for (1 —o0(1))d; of the k.

(b) For alle > 0, for all f € c.(T'), g € (P(T')®", there exists measurable B; C S?%~1 with
P(B;) > 1 —e¢, for all large i, a finite subset E C T, so that if E' O E is a finite subset of T,
then for (1 — €)d; of the k and for all large i,

{(€m) € (S*472 TEN( S+ 9) = (DT < €} 2 By x B

(¢c) For all e > 0, for all ¢ € My, (L(T")), (identifying M ,(L(T')) as a subset of £*(T)®"
) there are measurable C; C S?4=1 with P(C;) > 1 — ¢ for all large i, a finite subset E C T,
so that if E' 2 E is a finite subset of ', so that for at least (1 — e)d; of the k and for all
large 1,

{(€&,m) € (S22 TN — pi(QE @M < €} 2 Ci x i,

has cardinality at least (1 — e)nd; for all large 1.
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Proof. Same as the preceding Lemma, but using Lemma 3.4.1.
[
Finally we need one last lemma, which allows us to reduce to considering subspaces of
finite direct sums of [P(T").

Lemma 3.4.5. Let T be a countable discrete group. Let H C (*(N,(*(T")) be a closed T -

mvariant subspace.
(a) Define my,: (2(N, £2(T')) — (2(T)% by mf(j) = f(j) for 1 < j < k. Then
. . — == |ll2
dimpry(H) = s%p dimp, (Wk(H)H ).

(b) The representation H is isomorphic to a direct sum of representations of the form

(*(T)p with p € L(T') an orthogonal projection.

Proof. (a) Since m(H) is dense in 7 (H) we have

. . — 72
dimpry(H) > sup dimyy(mp(H) ).
k
Let us first handle the case when dimp,)(H) < oo, let P be the projection onto H.
Then

dimyry (m,(H)) = dimL(F(ker(ka)L)

= dimyry(H N (H+ + 2(1)%F))

= dimy(H N (HNCNN\{L,....k5LT)5)).

Let Q. be the projection onto H N ¢*(N\ {1,...,k},T'). Then

dimpy(H N CN\{L ... k1L T)) = (Qu(de @ €n),0c @ €)

hE

<Qk(5e X 6n)7 66 ® 6n>

3
Il
B

WE

<P(56 ® 671)7 56 ® €n>

i
ko

i
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as dimp i (H) < oo.

In the general case, it suffices to show that we may write H as a direct sum of representa-
tions with finite von Neumann dimension. Zorn’s Lemma implies that every representation
is a direct sum of cyclic representations which are contained in ¢(N, ¢*(T")), so it suffices to

show every cyclic representation contained in £(N, £*(T")) has finite von Neumann dimension.

For this, let £ € H be a cyclic vector, then by Theorem A.3.1, there is a y € L*(L(T),7)

so that
(m(9)¢. &) = T(zy).

1/2

It is easy to see that y > 0. Setting ¢ = |y|'/#, we see that

(m(9)€,€) = (9¢, C)

for all g € I'. Thus H is isomorphic to Span”"b(f‘ﬁ’) via the unitary sending g¢ — ¢¢. From

this it clear that H has dimension at most 1.

(b) As in part (a), we may assume that H is a cyclic representation contained in ¢2(T).

We have already seen directly before Proposition 2.1.14 that
H = L*(M,7)p.
O

Theorem 3.4.6. Let I' be a countable discrete group, let 1 < p < 2, and Y a closed I'-
invariant subspace of (P(N, (P(T)), with T acting by gf(x) = f(g~'x). Set H = ylllz:

(a) Suppose 3 is a sofic approximation of I', then

di_mZ,gp (Y7 F) > dimL(F)(H)-

(b)Suppose 3 is an embedding sequence of ', then

di—masz?,conj(yv I') > dimpr) (H).

(c) Suppose % is an embedding sequence of T, and H C (*(N,(*(T")) is [ invariant, then

di_IIlap (H, F) > dlmL(F) (H)
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Proof. We first reduce to the case that Y C ¢P(I')®" with h finite.

Consider the projection
e P(N,T) — P({1,...,h}, 0P(T))
given by
mf(7) = (),

assume we know the result for Y C ¢7(T')®" for each h.

Then,

dimy, ¢ (Y, T) > dimns; oo (V) ”, T

—— k2

> dimy, ) (ma(H)" ),

letting h — oo and applying the preceding Lemma proves the claim. Thus, we shall assume

that Y C ¢7(I")®" with n € N.

By part (b) of the preceding Lemma, we can find vectors (f(q));il € H, so that
(A(9)€9,€) = (\(9)ds,4s) = a5(97"), where g, is a projection in L(T),

> 7(gs) = dimpy (H),

<)\(g)£(”,£(l)> =0forj#1,g€el.

H= é L(T)EW.
j=1

S

These equations can be rewritten as

n

S D s (D) =g, for 1< < oo

i=1
D V() =0if 5 £,
i=1

Let us illuminate these equations a little. Regard a vector £ € £*(T')®" as a element in

M, ,,(¢3(T")) with the product of two matrices induced from convolution of vectors. Then the
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product of elements of M ,,(¢*(T)), M,,1(L(T")) makes sense, but may not land back in ¢*(T").

The above equations then read
f(j)(g(j))* = gjfor 1 < j < oo,

EO(EWy =0 for j #1..

In particular, the above equations imply that
I 2y < 1.

So that ¢9) € M, ,,(L(T)). Extend o; to a embedding sequence of M,, ,,(L(T')) for all n,m

and such that
lo: (€] < 1, for all j
loi(€9)]| < 1, for all j,r
oi(€) oy (W) = 0 for all j # 1.
for all j, 7.

(a)
Let S = (z;)j_, be a dynamical generating sequence for Y.

Fixn > 0,t € N and choose a finite subset F; C I';m; € N, and cé‘;'-) for1 <s<t(g,7) €

Fy x{1,...,my} so that forall 1 < s <t

¢ — N7 Bgay|| <.

gem

1<5<m )

Choose finitely supported functions z’; so that ||z; — 2’|, <7’ . Since p <2, it is easy to

see that if we force 1’ to be sufficiently small then,

€9 = > eon| <n
geEM

1<5<my N
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Let S = (7;)%2, be a dynamically generating sequence for Y. Fix F' C I finite m € N,d >
0. Let £ C T be finite, let Tj(f) be defined as Lemma 3.4.3.

It is easy to see that if F is sufficiently large, then T € Homr(S, F,m,d,0;)s for

Oy,
(1 — o(1))nd; of the j, k, and in fact ||T]k ler—er < 2 for 1 < p < 2. For such (4, k), and for

all small §, for 1 <s<t+1

E E
1T (g2}) — T (g5) 12 < .

Thus by Lemma 3.4.3 for at least (1 — (2014)!e)nd; of the j, k we have

o€ Ne;@er) — . Pa(g) T (x;)|| <e+n.

geM

1<j<my )

Now consider the linear map A: ¢>°(N, (?(d;)) — (*(d;)®* given by

sh=1 > Pagra)|

geF
1<j<mq p=1

from the above it is easy to see that if ag(Homp(S, F,m,d,0;)) Cor V and € is sufficiently

small,
A(V) Dc . {9ilej @ ex) : (4, k) € Ai},

with

A
\dz| — (1 — (2014)!e)nd;,

6i(f) = (@i(€D)(f), a:(€D)(S), - o €D)(S)).
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Thus ¢; is given in matrix form by

_Ui(f(l))

0

¢ =
i 0

As )

oi(§M)os (€M)

0

bip; =
i 0

By our choice of o; we have

By Lemma 3.4.2, we find that

0
a:(€®)

loill <1,

o
0
Uz’(f(t))_
0
0
i (€M) (€W)

dimy o (V,T') > (1 — (2014)!e)n + dimpry Hy.

Letting ¢ — 0,t — oo completes the proof.

(b), (c) Same proof as in (a), one instead uses Lemma 3.4.4, Lemma 3.4.1, and the

formula

= [ WUy,
U(di)

for A C §?%~1 to find an orthonormal system (i, ..., (, with ¢ > (1 —¢)d;, so that TéyE

Homp(-- - ) for most k and all j, p.

Corollary 3.4.7. Let 1 < p < 2,V a finite-dimensional normed vector space, and ' a

countable discrete group.

(a) If T is sofic and ¥ is a sofic approximation of T', then

dimy, ,, (*(T, V), T) = dims, »» (*(T, V), T) = dim V.
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(b) If T is R¥-embeddable and ¥ is an embedding sequence of I, then

dimy, »» (*(T, €*(n)),T) = dimg 2(*(T', ¢*(n)),T) = n.

dims; g5 oon; (P(T, V), T) = dimy, gp. con; (¢°(T, V), T) = dim V.

Proof. The lower bounds are automatic from the preceding Theorem. The upper bounds are

easy since (P(I', V) can be generated by dim V' elements.

]

Corollary 3.4.8. Let ' be a R¥-embeddable group 1 < p < 2. If V,W are finite dimensional
vector spaces with dimV < dim W, then there are no I'-equivariant bounded linear maps
from (P(T', V') to ¢P(T', W) with dense image. Consequently if 2 < p < oo, then there are no
I'-equivariant bounded linear injections from (P(I', W) to (P(I', V).

Proof. For 1 < p < 2 this is immediate from the above corollary and Proposition 3.3.1. The

other result follow by duality. O

Theorem 3.4.9. Let ' be a R¥-embeddable group, and w: I' — U(H) a representation, such

that m < A\¥°. Then for every embedding sequence 3,
dimz‘”ﬁ (7'(') = di_mzlz (7T> = dlmL(F) (7T)

Proof. Let \: T' — U(F*(T")) be given by A(g)f(z) = f(g~'x). We already know from Theo-
rem 3.4.7 that

dimgjz )\GBTL = dim27£2 )\Gan =nNn.

Let us first assume that 7 is cyclic with cyclic vector £, then as in Lemma 3.4.5 we may

find a ¢ € ¢*(T) so that
(m(2)€, &) = (AMx)¢, Q)
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so m < A. Let 7’ be a representation such that A = 7 & n’, then by Theorem 3.4.6 we have

1= dimz,ez A > dimgp T+ di_mzjﬁrl
Z dim27g27r + dimEjQﬂJ
> dimpy 7 + dimp,ry 7

=1
Thus all the above inequalities must be equalities, in particular

dimg 2 7 = dimy, o = dimp ) 7.

In the general case, apply Zorn’s Lemma to write 7 = @~ | m, with 7, cyclic. Then by

Corollary 3.3.10

di_map ) > Z dimy;, ;> (7) Z dimy,ry m, = dimpry 7

dimy, g2 (7) < Z dimy, g2 (7,) Z dimy,y m, = dimpry 7

This completes the proof of the theorem.

3.5 Triviality In The Case of Finite-Dimensional Representations

In this section we prove the following.

Theorem 3.5.1. Let I be a infinite sofic group, and 3 a sofic approximation of I'. Then for
every 1 < p < oo, and for any uniformly bounded representation of I' on a finite-dimensional
Banach space X,

dimy (X, T") = 0.

Here is the outline of the proof. We will begin by studying ¢P-dimension for amenable

groups, using the standard technique of averaging over Fglner sequences. Using this averag-
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ing technique we show that for finite I',

dim(c X
I

dimy, ¢ (X, T) =

This easily implies proves the theorem when I' has finite subgroups of unbounded size. We
then show that
dimg’gp (X, Z) = 0,

if X is finite-dimensional. Since dimension decreases when we restrict to the action of a
subgroup, we may assume that I' has no elements of infinite order, but that there is a
uniform bound on the size of a finite subgroup of I'. A compactness argument will show that

I' has an infinite subgroup which acts on X trivially, so we only have to show that
dimy, »(C,I") = 0,

where I' acts trivially on C. To prove this last statement, we will pass to a sofic equivalence
relation induced by the group, and use that the full group of such an equivalence relation

contains Z/nZ for every integer n.

We first show that in the case of an action of an amenable group, we may assume that the
maps we use to compute dimension are only approximately equivariant after cutting down

by certain subsets. We formalize this as follows.

Definition 3.5.2. Let I' be a sofic group with a uniformly bounded action on a Banach
space X. Let 0;: I' = Sy, be a sofic approximation. Fix § = (aj);‘;l a bounded sequence in
X. Let A; € {1,...,d;}. For FF C T finite, m € N,¢ > 0, we let Homp s (4,)(S, F,m, 0, 0;)
be the set of all linear maps T': Xg,, — ¢*(d;) such that ||| < 1, and 1 < j,k < m, and

S1,...,Sk € F we have
[T (51 spaj) —oi(s1) - oi(sk)T(a;)||ev(a;y < 0.
Set

. _ ) 1
dimy (S, T, (4;), p) =sup __inf limsup —d.(asg(Homr g (a,)(S, F,m,0,0:)), peway))-
e>0 FE finite 00 d;
me
>0

where p is any product norm.
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Proposition 3.5.3. Fiz a product norm p on (*(N). Let T be a countable amenable group,
and ¥ = (0;: I' = Sy,) a sofic approximation. Let A; C {1,...,d;} be such that

@ — 1

d; '
Then for any uniformly bounded action of I' on a separable Banach space X, for every

generating sequence S in X, for every product norm p, and 1 < p < co we have
dimyg ¢ (X, T') = dimg (S, T, (4;), p)
Proof. Fix S = (z;)52, a dynamically generating sequence for X. As
Homp ¢ (S, F,m, 0, 0;) € Homr g (a,)(S, F,m,d,0;)
for m,7 € N, > 0 and F' C T finite, we have

dimg,gp (X, F) < dimE,ﬁp (Sv L, (AZ)’ p)

For the reverse inequality, first fix some notation. For E, F' finite subsets of I' containing

the identity and m € N define

P B(Xgpm, (°(d;)) = B(Xpm, (d;))

(2

1
Pi(E)(T) — @Zf%‘(s) oT os L

seE

Then ||PZ(E)|| < 1. Note that for s1,...,s;, € F and T € B(Xgpg, P(d;)) that

PET) (51 si0) = e D 0(8)T (57 s -+ sr) =

1
3 Z 1 oi(s1---sp8)T (s ).
sEs, sy B
If B; C{1,...,d;} is the set of all 1 < j < d; such that

oi(s1---s18) 1 (j) = 0i(s) loils- - s) (),
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forall s € E,sq,...,s, € F,1 <k <m. Then the above shows that if ' € B(Xpg m, *(B;))
then

|EAs; - sy

1E|
T ; 3.4
7] TN 5], (3.4)

loi(s1 -+ - s1) o P (D) (a5) — PYT) (51 - )| < 2

)

for 1 <j<m.

Let € > 0, and M = sup; ||z;|| < oo. Since p is a product norm, we may choose N € N,

and x > 0 so that if f,g € (>°(N,¢?(d;)) and || f]],]lg|| < M and

max [[f(7) =90y <~

1<j<N

then
p(f—g)<e

Let § > 0 depend upon & to be determined later. Let m > max(2, N) be an integer, and let
e € F be a symmetric finite subset of I'. Let £ C I' be finite, the set F will depend upon

F,m, ¢ in a manner to be determined later. Let T' € Homp g (4,)(S, EF,m,§, 0;) then,

PO T) = o Y ol T o™ =
seE

|E| ZXQ s)B; Uz( )TOS

seE

Set C; = A;NB; N ()(AiﬂB)then L 51, andfor 1 <j<m

SEE
P (0T w3) = Ty < |E|Zum ) = Ty <26 (35)
seE

By amenability of I, we may choose E so that

|EAs. ' s E|
el <.

1<k<m, |E|
Then by (3.4), we know P\™)(yp,(T)) € Homr (S, F,m,d,0;). By (3.5),

max ||xc, (P (x5,T)(x;) = T(x;)l, < 0. (3.6)

1<j<m
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For A C {1,...,n}, we use 1 ® x4 for the operator on ¢>(N, /?(n) given by

[(1 ® XA)f](]) = XAf(])a f € £w<N> €p<n))>] € N.
If we now force § < k, then by our choice of k,m, N and (3.6),

as(Homr v (4,) (S, EF,m, 6,04)) Coc pppiy ) (1 ® X)) as(Homp g (S, Fym, 6, 05)

F{f RN, C(A) () =0, i j > N},
Thus,
dse(ovs(Homp g (4,) (S, EF,m, 8, 0;), per(d;)) < N|AS| + do(ag(Homp g (S, F,m, 6, 05)).

As
| A7
2 — 0,

dividing by d;, taking the limit supremum over i, then the limit supremum over (F,m,?)

and letting € — 0 proves that

dimgjp(s, F, (Az)7 p) S dimgjgp (X, F)

[]

Corollary 3.5.4. Let ' be an amenable group with a uniformly bounded action on a separable
Banach space X. Let ¥ = (0;: I' = Sy,), ¥’ = (0,: I' = Sg;) be two sofic approximations.
Then for all 1 < p < o0,

dimz]’gp (X, F) = dimg/’gp (X, F) .

Proof. An ultrafilter argument using Theorem 1 of [8] shows that we can find 7;: Syg, — Sq,
such that
dHamm(TiUi(s)Ti_la O-i(s)/) — 0.

! we may assume that

Replacing o; by 7, 00,07,
dHamm(Ui(S)v O-;(S)) —0
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for all s € T'. In this case, we can find A; C {1,...,d;} such that

| Ay

—1
d;

and for all s1,...,s, € I', we have

gi(s1-5n)(4) = 0ils1) -+ 0ilsn) (4) = 03(s1) -+ 03(50) () = 0351+ -~ 50) (J)

for all j € A; and all sufficiently large 7. Thus if F' C I' is finite, m € N, 6 > 0 then for all
large 1,

Homr g (4,)(S, F,m, 6, 0;) = Homp g (4,)(S, F,m, 9, 0}).
The corollary now follows from the preceding proposition.

]

Proposition 3.5.5. Let I' be a finite group acting on a finite-dimensional vector space X.
Forn e N, let

n=q|l|+r,
where 0 < 1, < |U| and g,,m, € N. Let A,, be a set of size r,, and define a sofic approzimation

Y=(0p: = Sym((I x ({1,...,¢.} UA,)) by

on(s)(a) = a fora € A,.

Then for any 1 < p < oo

dim(c X
L]

dims o (X, ') = dimy, 4 (X,I) =

Proof. Fix anorm on X. By finite dimensionality we may use the operator norm on B(X, /?(d;))
as our pseudonorm, and we replace Homr(S,T",m, d, 0;) by the space Homp(T', m, d, 0;) of all

operators T': X — (P(d;) such that

||T081 < Sk _Ui(sl)"'ai<5k) OTH )
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forall 1 <k <m,si,...,s, €T

For 1 < ¢ < oo define an action on ¢9(I" x {1,...,¢,}) by
(9f)(h,j) = (g~ h,§),h €T,1 < j < g
Let V,, € B(X, ¢?(n)) be the linear subspace of all linear operators
T: X =P xA{Ll,...,q.})
which are equivariant with respect to the I'-action. Note that we have norm one projections
B(X,(n)) = B(X,P(T x{1,...,q.})

B(X,P(T' x {1,...,q,}) = Vp,

given by multiplication by x{

Let P, denote the composition of these two projections. Since we have a norm one projection

form B(X,¢(n)) — V,, the Riesz Lemma implies that
d-({T eV, ||T|| <1} -]) = dimc V. (3.7)

with the norm being the operator norm. Define an action of I on X* by (g¢)(z) = ¢(g ).
Let W, be the set of all I'-equivariant operators in B(¢?(T" x {1,...,¢,}, X*), then T — T*
(here T* is the Banach space adjoint of T') defines an isomorphism V, = W,. For f €
P(T), ke P({1,...,q,}) let f @k be defined by (f ® k)(g,7) = f(g)k(j). We leave it as an

exercise to the reader to verify that the map
O: W, — BP({L,...,q,), X7)
given by

O(T)(f) = T(xqey @ ),
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is an isomorphism.Thus,

dime(V,,) = dime(W,,) = ¢, dime(X).

For T' € Homp(T', m, §, 0;) we have
|P(T) = Tl Bx er(ny) < 6.

Thus
d.(Homp(T',m, d,0;), | - ||) < (dime X)g, + 70, (3.8)
and (3.7), (3.8) are enough to imply the proposition.

O

Corollary 3.5.6. Let I be a finite group acting on a finite-dimensional vector space X. For
any finite dimensional representation X of I', for any sofic approzimation ¥ = (o;: I' = Sg,)
of ' and 1 < p < 0o we have

dim@ X
I

dimy, (X, T') = dimg, 0, (X, T) =

Proof. Take
¥ = (pdi: ['— Sdz)

where p,, is defined as in the previous proposition, then use the preceding proposition and
Corollary 3.5.4.

O
Proposition 3.5.7. Let X be a finite-dimensional Banach space with a uniformly bounded
action of Z. Let 0,,: Z — Sym(Z/nZ) be given by the quotient map Z — Z/nZ. Then for all
1 <p< oo,

dimy; ¢ (X, Z) = 0.

Proof. Since all norms on a finite-dimensional space are equivalent, we may assume that X is

a Hilbert space. Since X is now a Hilbert space, we will call it H instead. Let 7: Z — B(H)
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be the representation given by the action of Z, and let K = 7(Z). By finite-dimensionality,
K is a compact group. Let (-, )y be the inner product on H. Define a new inner product on

H by
<€777> = / <T€7T77>HdTa
K

where the integration is with respect to the Haar measure on K. We leave it as an exercise to
verify that this is indeed an inner product inducing a norm equivalent to the original norm on
H, and that K acts unitarily with respect to (-,-). Thus we may assume that 7(Z) C U(H),
set U = 7(1). By passing to direct sums, we may assume that 7 is irreducible, so if we fix
any £ € H with ||€|| = 1, then £ is generating. We will take S = (£,0,0,...), and as a

pseudonorm we take
p(T) = 1T ()]l
Fix n € N, we then view ag as a map into 7(n).

Fix 1 > & >0, and let € > § > 0. Choose k such that 0k < e, (if p = oo then let k be

any integer.) Since 7(Z) is compact, we can find an integer m such that
I =1 <4,

for 1 < j < k. We may assume that m is large enough so that {U7¢ : —m < j < —1} spans
H. Let F={jeZ:|j| <m(2k +1)}. Let ¢, € NU{0},0 < r, < k be the integers defined
by

n = qg,mk + r,.

Define );,7 =0,...,k —1 by

m

Qi = Jlim+1+gm:0<q<g,—1}
=1

Pictorially, if we think of {1,...,g,mk} as a rectangle formed out of mk horizontal dots and
qn vertical dots, then Q; is the rectangle from the jm + 1°¢ horizontal dot to the (j + 1)m™
horizontal dot. Let f;: ; = C be given by

fi(1) = T()(on(mj) " (1))
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Note that for 1 < p < oo,

T@)—Eih

p

T
L

HT(f) - Un(m])T(f) HZ(QJ)

=0 P ({1,....qnmk}) =0
k—1
<P+ DT = 1)
=0
< 20k
< 2¢
similarly for p = oo,
k-1
T(e) Z f; < 2e.
=0

Finally note that Z?;S f; is constant on
{i,i+m,....i+m(k—1)}
for each 7 € (Qy. Thus
ag(Homp(S, Fym,6,0,)) Ce o, P({1, .. ont \ {1, ..., ¢umk})+
{f € C(gumk) = f(i+mj) = f(i),i € Q0,0 <j<k—1}

So

M Tn

1
—d H S, F,m,d,0,), | - < :
n 8(a3( OmF( , 415, 70) || ||p)— n n
Letting n — oo, taking the limit supremum over (F, m, ) and then letting e — 0 we conclude
that

1

dE(OéS(HOHlF(S, F’m76a O-n)’ || ) Hp) S E

Since k becomes arbitrarily large when § becomes small (or can be made arbitrarily large

when p = 00), this completes the proof.

]

We will now proceed to prove that if I' is an infinite sofic group, and X is a sofic approx-

imation of I'; then for any finite-dimensional representation V' of I' we have

dimsz(‘/, F) = 0.
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The method is based on passing to an action of the group on a measure space, and then

using that the corresponding equivalence relations contains an action of Z.

We shall first work with the trivial action of I' on C. For this, fix a sofic group I' and
a sofic approximation > . For § = (1,0,0,...), and the trivial action of I' on C, the map
T — T'({1}) identifies Homr (S, F,m, 0, 0;) with all vectors £ € ¢*(d;) such that

loi(9)§ —&llp <0
for all g € F.

Lemma 3.5.8. Let I' be a countable discrete sofic group with a sofic approximation . Let
' ~ (X, pu) be a free, ergodic, measure-preserving action on a standard probability space
(X, p) such that there is a sofic approximation (still denoted ) of Rr~(x,) extending the
sofic approzimation of I'. Let ¥ = (0;: [[R]] = [[Ra;]]). Fiz ¢ € [[R]], and n > 0. Then there
are F' C T finite, m € N, 6 > 0 and C; C {1,...,d;} with |C;| > (1 —n)d; so that for the
trivial representation of I' on C, and T' € Homy, ,((1,0,0,...), F,m,d,0;) with £ = T(1) we
have

|:(¢)€ — o5 (Idvan(e))Ellen(cny < M,

for all large 1.

Proof. Let {A, : g € I'} be a partition of ran(¢) so that

¢ = Tda, oy,

gel’

with the sum converging djizj. Choose I’ C I' finite so that

d[[RH <¢, Z IdAg ag> <n.

geF

For £ € (P(d;), ¢ € [[Ry,]], we use

(6€)(7) = Xran(e) (1)E(E™ (1)),
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for A C {1,...,d;} we also use x4 for the operator of multiplication by A. By soficity, for
all large 7, we may find a C; C {1,...,d;} with |C;| > (1 — 2n)d; so that

Xc.0i(¢) = > xe,0i(1da,)oi(g),

geF

Xc; Uz Idran Z Xc; Uz IdA

geF

as operators on ?(d;). Let m € N, and let § > 0 be sufficiently small in a manner to be
determined later. Thus for T, ¢ as in the statement of the lemma,

oi(9)§ = Zai(IdAg)Ui(g)f

geF

0; (Idran(qS) )5 - Z o) (IdAg )6
geF
SO

|0:(#)§ — oi(Idran(e) ) || er (i) < |FI6.

So if & < il F‘ our claim is proved.

]

Lemma 3.5.9. Let I be a countably infinite discrete sofic group with sofic approrimation

Y. Then for the trivial representation of I' on C, we have

dimsz ((C, F) =0.

Proof. Let R be the equivalence relation induced by the Bernoulli action of I" on (X, u) =
({0,1},u)", u being the uniform measure. Extend ¥ to a sofic approximation of [[R]], (this
is essentially possible by [2] Theorem 8.1, see also [7] Proposition 7.1,[6] Theorem 5.5, [20]
Theorem 2.1). Let S = (1,0,0,...). Since I' is an infinite group, by ([17] Corollary 7.6) we
know that for all n € N, there is a subequivalence relation R,,, generated by a free, measure-
preserving action of Z/nZ on (X, u). Let o € [R,,] generate the action of Z/nZ on (X, u).
Fix n > 0. By the preceding lemma, we may choose a finite subset F' C I';§ > 0 and subsets
C; CA{1,...,d;} with |C;| > (1 — d;)n so that if T € Homr(S, F,1,0,0;) and £ = T'(1), then

loi ()€ — llvcy <myfor 1 <j<n—1
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for all large i. We may assume that there are A; C {1,...,d;} with %—?‘ — %, so that

{o;(a)(A;) : 0 < j <n—1} are a disjoint family.
=1d.

Let

77_20: XA& ZXUZCM A;) )5

Set D; = C; NU;Z, " o;(a)i(A;), then

XD — XD;§ = ZXDﬂaza) ap(oi(@)€ =€),

i=1

SO
p <M.
We may view ag as a map into ¢P(d;), then
OZS(HOIHF(S, F7m7 57 UZ)) gnn,H-HpXDi {Z Uz f f € Ep( )}
j=1
As

Dy

d; ’

|A; R 1

di n

we find that

S

1
lim sup lim sup dnn(aS<HomF(S Fom,o,04), ] - |lp) <
(Fm 5) i—00 dz

Letting 7 — 0, and then n — oo completes the proof.
O

Theorem 3.5.10. Let I' be a countably infinite sofic group with sofic approzimation Y. Then,

for any representation of I' on a finite-dimensional vector space V, and for all 1 < p < oo,

dimg, ¢ (V,T) = 0.
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Proof. As dimension decreases under restricting the action to a subgroup, by Corollary 3.5.6

and Proposition 3.5.7 we may assume that
{|A| : A is a finite subgroup of I'},

is bounded, and that every element of ' has finite order. As in Proposition 3.5.7 we may
assume that V' is a Hilbert space and I" acts by unitaries. Let M be greater than |A| for any

finite subgroup of I'. Choose € > 0 so that if U is a unitary on a Hilbert space and
IU—-1] <e,

then UM # 1 unless U = 1. Let m: ' — U(X) be the homomorphism induced by the action

of I'. By finite-dimensionality, 7(I") is compact, so we may find an infinite sequence (g,)%

of distinct elements of I' with

17 (gn) =1l <.

It
A= {g,:n€eN),

our assumptions then imply that A is an infinite subgroup of I' which acts trivially. Thus

by the preceding lemma and subadditivity under exact sequences,

dimz;,gp(v, F) § dimzj,gp(v, A) =0.

3.6 A Complete Calculation in the Case of (j_; L*(L(T"))q;).

In this section, we show that if I" is R¥-embeddable, ¥ is an embedding sequence and

q,- -, qn € Proj(L(I")), then

dimE,SP,mult (@ LP(L(F)a T)Qj, F) = ME,SP7mu1t (@ Lp(L(F)a T)Qja F) =

j=1 j=1
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> 7(g)
j=1
where 7 is the group trace. See Appendix A for the appropriate background on noncommu-

tative LP-spaces.

Lemma 3.6.1. (a) Let n € N, suppose that A, B € M,(C) are such that |A| < |B|, then for
all B> 0,
tr(| A7) < tx(|BI").

(b) Suppose that A, B € M,(C) and Q is a orthogonal projection in M,(C). Fiz 1 <p <

00, suppose that 6, > 0 are such that
(A= 1)Bll, <4, [|A—=Ql, <n.

Then
1B = X0.v5) (A = 1) Bll, < V5,

and

a4 - 1) < @) + ()

Proof. We first make the following preliminary observation: if P, () are orthogonal projec-
tions in M,,(C) with

PC"NQC" = {0},
then

tr(P) <1—tr(Q).

This follows directly from the fact that 1 — @ is injective on PC™.

(a) First note that
tr(7T%) = a/ M (X 1,00y (1)) dt
0

ifT>0.1f0<T <S5, and

£ € X(t,00)(T)(C") N x10,9(S)(C")
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and £ # 0, then
tIEN® < (T€,€) < (S¢, &) < tl|€]f?,

which is a contradiction. Hence

X(t,00) (T)(C") N x10,9(5)(C") = {0},

so the above integral formula and our preliminary observation prove (a).

(b) Note that

X(v5.00) (14 = 1) BI* = B*X(y5,00)(I1A = 1)) B

1 1 2
<—B*A—1QB:‘—A—1B ,
<5 \ | \/5( )
thus by (a)
1B = X (0.5 (|14 = 1)Bllp = X{v5.00) (|14 — 1) Bl < V5.
Further if

€ € X0, (1A = 1N(C") N (1 = Q)C™) N x4y (1A — QN(C),
is nonzero, then
(1= VoylIEl® = (|4 = QP¢,&) = I A¢)® > (1= V6)* €)%,
which is a contradiction. Thus

tr(xo.va) (14 = 1)) < tr(Q) + tr(X (15,00 (|4 = Q).

Since

[A—-QP
X(1-v5,00)([A = Q) < m,

we have that

(X1 (14— Q1) < ﬁ
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Proposition 3.6.2. Let I' be an R¥-embeddable group and Y an embedding sequence. Let
M = L(T') and T the canonical group trace on M. Then, for all 1 < p < oo and for every

Q- qn € Proj(M) we have

dimiLSP,mult (@ Lp(M7 T)Qja P) S Z T(QJ)
j=1

j=1
Proof. By subadditivity of dimension, it suffices to handle the case of LP(M,7)q. Let 0 <

e,k < 1/2. Let A be the x-algebra in L(T") generated by ¢ and I', by Lemma 2.2.6, we may

extend o; to (potentially nonlinear, nonmultiplicative) maps o;: L(I') — My, (C), so that
sup [|o ()] < o0, for all z € L(T'),
tr(o;(z)) — 7(z), for all z € L(T),
|P(oi(x1),...,0i(x,)) — 0(P(x1,...,2,))||2 = 0,

for all zy,...,z, € L(I'), and all *-polynomials in n-noncommuting variables.

Let p € L(I") be any orthogonal projection. Then
lpi(p) = pi(p)*pi(P)ll2 = O

lpi(p)* pi(p) = (pi(p)*pi(p))?||l2 = 0.

By functional calculus, for any € < 1/2,

I X—e14 (Pi(0)" pi(P) — pi(P)"Pi(P) |2 < |IX[0,000\[1—2,142 (26 (2)" i () pi(P) " pi (D) | 2
+ Ixp—c1te(pi(p)"pi(P)) (1 — pi(p)* pi(p))ll2

1 i 9 lpi(p)pilp) — (pi(p) pi(p))* |12

+ éllpi(p)*pi(p) = (pi(p)"Pi())*2-

<

Thus for all € < 1/2,
1pi(P) = Xp1—e144) (Ps(P)" i (P)) [|2 = O

Applying the above estimates with p = ¢, we see that we may replacing p;(q) with x3/4,5/4)(pi(q)*pi(q)).

Thus, we may assume that p;(¢) is an orthogonal projection for all 7.
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Choose f € c.(I') so that

< K.

q— Zf(5>us

sel

If T: LP(M,7)q — LP(Mg4,(C), tr), define

T(x) =T(zq).

Let F' be the support of f, then if m € N, x, > 0 are sufficiently small we have

' (Z f(s)ai(s) — 1) T(q)

sel
for all T € Homp(S, F,m, d, ;). Thus the proceeding lemma implies that if

< &2,

P

then for all large 7, we have

IT(q) = eT()llp <&,
tr(es) < tr(pr(a)) + 27
We identify ag as a map into LP(My,(C), tr), then

ag(Homp(S, Fym,d,0;)) C. {e;A: A€ LP(My,(C),tr)}.

So
didg(ozg(Homp(S, F,m,d,0;)) < %Tr(ei) = tr(e;) < tr(p;(q)) + 2°xP

i
and

tr(pi(q)) — 7(q)

as ¢ — oo. Taking the limit supremum over (F,m,d) and then letting ¢ — 0 proves that
dimE,Sp,mult(Lp(Mv T)? F) S T(Q) + 2PKP.

Since k > 0 is arbitrary, this proves the claim.
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Lemma 3.6.3. Fiz 1 < p < 00, and a sequence of positive integers d(n) — oo, and let i, be

the Lebesgue measure on LP(Mg.n)(C), ﬁ Tr) normalized so that p, (Ball(LP (Mg, (C), ﬁ Tr))) =

1. Further, let g, € Proj(Mau)(C)) be such that ﬁ Tr(g,) converges to a positive real num-

ber. Then, there is a function
k:(0,1) x (0,00) — [0, 1]

such that

lim k(e ) = 1, for all a > 0,
e—0

which satisfies the following property. For all A, C Ball(V},), and o > 0 with

lim sup i, (Ball(V,,))"/24™° > o,

n—oo

We have for all ¢ > 0,

lim sup

1
MU g O Andns |- llp) 2 (. €).

Proof. Fix 1 > ¢ > 0, and suppose that

lim sup

1
tmSu mds(Aan - 1lp) < &

Then for all large n,

de(Angn; || - [lv,) < d(n)r tr(gn).

Let W,, be a subspace of dimension at most d(n)x tr(g,) which e-contains A,g,, thus

Angn C (14 €) Ball(W,) + £ Ball (LP( M) (C), tr)gy,) -

Let S C (1 +¢)Ball(W,,) be a maximal family of e-separated vectors, i.e. for all z,y € S

with « # y we have ||z — y|| > e. Then the £/3 balls centered at points in S are disjoint and

|S| _ <3+36)2dim(Wn)

so by a volume computation

3
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By maximality, S is e-dense in (1 + ¢) Ball(W,,). Thus

Angn C | = + 22 Ball (P (My(n)(C), tr) g ),
zeS
SO

VOl(Anqn) S 22d(n) Tr(qn)82d(n) Tr(gn)—2 dim(Wy) Tr(gn) (3 + 38)2dim(Wn) ap(Qn>7

where for ¢ € Proj(Mgyu)(C)) we use

a,(q) = vol(Ball (LP( My (C), tr)q)).

Since A,, C A,q, x Ball (Lp(Md(n)((C), tr) , we have

Te(an) (ap<qn)ap(1 — qn>>1/2d<">2

1
a < limsup6 - 29 Tr(gn) (1=K) 425
ap(Idd(n))

n—o0

Hence it suffices to show that

. 1— . 1/2d(n)?
lim sup (ap(q Jap(1 — g )> < 0. (3.9)
n—00 ap(ldd(n))
It is well known that
7T (a)
= d(n)~%™.

Since ﬁ Tr(g,) converges to a positive real number, we may apply Stirling’s formula and

the above equation to see that there is a M > 1 so that

n)2
M- < (a2<qn>a2<1 - qn>>”2d< Ry
- ag(Idd(n))

We know by [25] that there is a constant C' > 0 so that

(ap(qn)ap(l — qn))1/2d(n)2 e (ap(qn)ap(l B qn))uzd(n)z

ap(Idgen)) az(Idgen))
< oM (ap<qn>)”2d<”>2 <a,,<1 - qn>)”2d<">2
B aQ(Qn) a2(1 - Qn) '

Let p’ be such that 117 + ]% = 1. By the Santalo inequality (see [21] Corollary 7.2), and the

fact that ﬁ Tr(g,) converges to a positive real number, we may find a A > 0 so that

(ap(qn)) 1/2d(n)? (ap(l _ qn))l/Qd(n)2 . <a2(qn) >1/2d(n)2 (a2(1 —q) >1/2d(n)2
a2(qn) ax(1 — qn) - ay (qn) ay (1 — qn)
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< AM? ( a(1d) )”2“")2
N ap’(Qn)ap/(l - Qn) ‘

Again by [25], we can find some D > 0 so that

( a(Id) )UM(H)Z <D ( ay (Id) )1/2d(")2
ap (qn)ap (1 — ) N ap (qn)ap (1 — )

Ball(L¥ (Mg, (C), tr)) € Ball(LF' (M, (C), tr)q,) x Ball(LF' (M, (C),tr)(1 — ¢,)),

' (qn)ap (1 — ) B

Putting all these inequalities together, we find that

n)?2
(ap(qn)ap(l - qn))wd( " < acarp
ap(Idd(n)) - ’

we find that

and this proves (3.9).

To complete the calculation, it suffices to prove the following Theorem.

Theorem 3.6.4. Let [' be an R“-embeddable group and ¥ an embedding sequence. Let
M = L(T') and T the canonical group trace on M. Then, for all 1 < p < oo and for every

Qs - - qn € Proj(M) we have

dimE,SP,mult <® LP(M, T)Qj, F) = di_mE,SPymult (@ LP(M’ T)Qj? F) = Z T(QJ)

j=1 j=1 J=1
Proof. We use the generating sequence S = (q1,...,¢s,0,...) to do the calculation. By

Proposition 3.6.2, we have the upper bound. So it suffices to prove the lower bound. By

Lemma 2.2.6, we can find maps (not assumed to be linear) p;: L(I') — Mg, (C) so that

pi(A(g)) = oi(g),for g €T

sup [|pi(7)]|eo < 00, for all z € L(I),
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tr(p;(z)) = 7(x), for all z € L(T")

1P(pi(1), - - pilan) — pi(P(1, .. w0))ll2 = 0,

for all xy,...,2, € L(I'), and all *-polynomials P in n-noncommuting variables. As in

Proposition 3.6.2, we may assume that p;(g;) is an orthogonal projection for all i, j.

Fix F CT finitem >nin N, § > 0. Let £ C T be a finite set which is sufficiently large

in a manner to be determined later. Let
Vg) = Span{u,q : g € E}.

For A € My, (C) E CT finite define

TIE{) (Z cgugq> = chai(g)pi(qj)fl.

geE geE
Note that

< Alloo || > cqoi(9)pilg;)

ger

Tf(lj) (Z Cgugq)

ger

p p

Since o; is an embedding sequence, we know that

Z Cy0 (g)pZ(QJ) — Z CqlUqdj||

geEr p geEr p
pointwise. As VE(j ) is finite-dimensional,

Z Cq0i (g)pi(Qj) — Z CqlUqqj||

geE P geE P
uniformly on the || - ||, unit ball of V,éj ),

If F is sufficiently large, then for all gq,...,gx € F,

1T (g1 gry) — o1(g1) - - 0s(g) T (43) 1y = llosgr - -~ g)pi(a) A — o1 (g1)

<Al lloi(gr -+ gr) — 0i(g1) -

— 0.
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Thus if E is sufficiently large, depending upon F,m,d then for all Ay,..., A, € My (C) with

[Ajlle <1,
Tlgll) DD Tf(ﬁ) € Homr (S, F,md, 0;),.
So
as(Homp (S, F,md, o)) 2 HBaﬂ(Mdi(C)a |- lloo)pi(q;)-
=1
By [25]

( vol(Ball(Mg, (C), || - ||eo) )1/2d§
vol(Ball(My, (C), || - | zr(1/d; ) 7

so the theorem now follows from Lemma 3.6.3.

]

We can prove an analogue for the action of I' on its reduced C*-algebra but first we need

a Lemma.

Lemma 3.6.5. Let I' be a countable discrete group, and X C LP(L(I'),7) a closed T'-
invariant subspace (for the action of left multiplication by elements of I'). Then there is an

orthogonal projection q € L(T") so that X = LP(L(T), 1r).
Proof. We always have the inequality
lzylly < [l llsollyllp-

Note that if z,, € L(T"),sup,, ||zn|lec < 00, and x, — z in the strong operator topology
on ¢*(T'), then z,y — zy. Indeed, this follows by the above inequality and the density of
*(T) in LP(L(T), ). Thus a closed TI'-invariant subspace is the same as an L(T")-invariant

subspace.
It suffices to prove the following two claims.
Claim 1. If v € LP(L(T), 7r), then L)z " = LP(L(T), )X (000 (| 2]).

Claim 2. If e, f are orthogonal projections in L(I"), then

Lr(L(T),mr)e + Lp(L(T), ) f = LP(L(I"), ) (e V f).
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Indeed, if we grant the two claims, then by separability, we can find increasing subspaces
X, of T of the form LP(L(T), mr)g, for some orthogonal projection g,. Setting ¢ = sup ¢, we
see that

X = LP(L(T), m)q.

For claim 2 it suffices to note that by functional calculus

L=V =1—(l=e)A(l= ) =1 lim (1 - e)(1 = )L — )",
the limit in || - ||,. As
1-[1=e)(1—f)(1—e)]" e LP(L(T),m)e+ LP(L(T), ) f

for all n, this implies that

LP(L(T),m)(eV f) C Lr(L(T), m)e + LP(L(T), ) f.

The reverse inclusion being trivial, this proves claim 2.

For claim 1, let = v|z| be the polar decomposition. Since |z| = v*z,

L(F)xwp _ L(F)|x|w||p.

Let
Yn = X(E,w)(|x|>|x|_lv
then by functional calculus

[Ynl 2] = X000 (2]}l = 0.

Thus
— = Illp
L) |z[" ™ 2 LP(T, 70) X (0,00) (|2])-

the reverse inclusion being trivial, we are done.

]

If T" is a countable discrete group we use C}(I") for C[T']

ll-llo

, with the closure taken in

the left regular representation.
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Corollary 3.6.6. Let I' be an R¥-embeddable group and 1 < p < oo. Let I C C5(T") be a
norm closed left-ideal. Let ™ = L(T")q (with the closure taken in L(T")). Then

dimE,SP,mult([a F) Z T(Q)

Proof. 1t suffices to show that the inclusion I C LP(L(T"),7)q has dense image. By the
previous Lemma, Let ¢’ € Proj(L(I")) be such that

' = (), 7).
By the argument in the previous Lemma,
¢ = sup X(0,00)(|2])-
zel

So it suffices to prove the following two claims.

Claim 1. If x € C3(I'), then X(0,00)(|2]) € ™

*

Claim 2. Ife, f € Proj(TWk*), theneV f € Proj(jWk ).

For the proof of claim I, let = v|z| be the polar decomposition. By the Kaplansky
Density Theorem, we can find v, € C5(I') so that ||v,||. < 1 and ||v, — v||2 — 0. But then

|vix — |x]||]2 — 0, so |z| € " Since

Xeoo) (12]) = 2] X0 (|2]) |21,

—wk*

we find that x (o) (|2]) € T .

For the proof of claim 2, we use the formula (proved by functional calculus):

eV f=1- lim ([(1-e)(1—-f)(1-e)])"

n—o0

where the limit is in || - ||2. Since e, f € L(I")q, a little calculation shows that

1= (M=) = )1 =e)))" € L(I)g.

This proves the corollary.
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We can also handle the case p = oo if we assume a little more.

Definition 3.6.7. A Cx-algebra A is said to be a matricial field algebra if there is a

injective x-homomorphism

{(An)pe, Ay € Md(n)(C),Supn [ Anlloo < o0}

o: A— )
{(An)%ozl : An E Md(n)<C)7supn ”ANHOO — 0}

for some d(n) € N and d(n) — oco. A sequence o,: A — M, (C), of potentially nonmulti-
plicative, nonlinear maps, such that o(a) is the image of (o, (a)) is called a norm microstates

sequence.

Theorem 3.6.8. Let I' be a countable discrete group. Assume that there are norm mi-

crostates o;: C5(I') — My, (C) such that
tr(o;(x)) = 7(x)

for all x € C[['). Let I C C%(T') be a norm-closed left ideal, and let IV = L(I')q, with
q € Proj(L(T")). Then,
(1,T) = 7(q).

di_mz,sw,mult
Proof. Let

{(za)2y € T1iZ Ma,(C) : sup; [|o3(2)]| o0 < 00}
{(z1)2y € [1;2 M, (C) = sup; [log(x) [ oo — 0}

then our hypothesis implies that there is an isometric *-homomorphism

A:

o: C(I') — A,

such that
o(ug) = m(01(g), 02(g), . ..)
where

™ {(xo;ﬂ e ] Ma(C) : sup los(a) e < oo} A,
i=1 ¢

is the quotient map.
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As before, we may extend ¢; to an embedding sequence
Wi L(I') — Mg, (C).

Now let € > 0, and choose a finite subset £ C I/l € N, and ¢;; € C, for (g,7) €
E x{1,...,1} so that

q— E CgjUgj < E.
gelE

RESE )

Fix F C F CT finite, I <m € N, > 0. Since all injective x-homomorphisms defined on

o]
C*-algebras are isometric, it is easy to see that if we define p; = ——£7 then

2

IF,m

pi — ¢i|lp,m“ — 0.

For B € M,,(C) define
TBZ [F,m — Mdl(C),

Ty(x) = pi(x) B.

If || Bllo <1, then
1TB(2)] < [|Bloo-

Further if || B|loo < 1, and 1 < j,k <m, and g1,...,gx € F, then

1T5(g1 - gxwj) — 0i(g1) -+ 0i(gx) To () | < | Pilgr -+~ grws) — oi(gr) - - - 7i(gr) di;) || — O

using that
T((@i(g1 - grzy))i2e) = 7((0i(gr) - - - 0ilgr) Pi())i21))-

Now suppose V' C (*°(N, Mg, (C)) e-contains {((pi(z;)B);2; : | Bllc < 1}. Define a map
: (>°(N, My, (C)) — L*(Mg4,(C), tr) by

O(f)= Y cyoil9)f(),

geE1<j<I
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then our hypotheses imply that for all large i,

(V) 23211, {gB : B € Ball(Mg,(C), || - [|)}-

Our methods to prove Theorem 3.6.4 can be used to complete the proof.

3.7 Definition of /’-Dimension Using Vectors

In this section, we give a definition of the extended von Neumann dimension using vectors
instead of almost equivariant operators. Thus may be conceptually simpler, as we do not
have to deal with the technicalities involving changing domains inherent to the definition of
Homrp(- - -). The definition is much simpler and requires fewer preliminaries as well. However,
for many theoretical purposes it will still be easier to use the notion of almost equivariant

operators. We will give this alternate definition after the following lemma.

Lemma 3.7.1. Let V be a finite-dimensional Banach space, let B be a finite set, and
(vg)gep € VB such that V = Span{vs : B € B}. Then for any n > 0, there is a § > 0
so that if Y is a Banach space and (£g)pep € Y have the property that for all ¢ € (*(B)

with ||cll; <1,

> Bl <5+ elB)us

peB BEB
then there is a T:V — Y with |T|| <1, such that

Y

1T (vg) = &sll <,

for all j € B.

Proof. Let A C B be such that {vs : f§ € A} is a basis for X. For Y, (£3)pep, as in the
statement of the Lemma let T: V — Y be defined by

T(vg) = &5
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for g € A. By finite-dimensionality, there is a Cy, > 0 so that

> lesl < Cv 1> cavg

BeA jEA
Thus our hypothesis implies that
IT| < Cyvé +1.
Set T' = mi then || T|| < 1. For each a € B\ A choose a(ﬁa),ﬁ € A so that
Vo = Z a'y
a — g UB
BeA

For a € B\ A, let

BeA
Define ¢ € (*(B) by
(a)
(@)(g) = 8 A
1
(a) —
@) 1+ A

d9(B)=0,8€ B\ (AU {k}).

Then for o € B\ A, [|c!¥||, = 1, and
> (Bug = 0.

Thus by our hypothesis for a € B\ A,

1
1+ A,

I€a = T(wa)ll = || D (B)gs

BeA

<4,

SO
€0 = T(@a) | < (1 + Aa)d.
For all § € B,

1
1+4Cy

1F(v5) — T(s)]| = ]1 - ] 17 (ws)]l < 5Cy [l
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Set

M = max ( max 1+ A,, max C\/HU5||> :
aEB\A BeB

Then M does not depend upon Y, e and for all g € B,
1T (vg) — &l < 2M3,

i N
so if 6 < 517, we are done.

]

Definition 3.7.2. Let X be a Banach space with a uniformly bounded action of a countable
discrete group I' and o;: T' — Isom(X;) with X finite-dimensional. We let Vectr (S, F, m, 0, 0;)

be all m-tuples (;)72, of vectors in X such that for all (cq,, . g, j)1<tj<m.gi....qcr With

: : ‘Cgl""hqm?j S 1’
gl,...,gleF
1<50<m
we have
E : CorrngrjOilg1) - 0i(gm) & <0+ E , Co1,.ngrd91 " " GIT5
g1, GIEF g1, GIEF
1<50<m 1<51<m
Set

vdimy (S, F,m, d, e, p) = limsup d.(Vectr(S, F,m,d,0;), px,),

isoo  dim X;

vdimy (S, €, p) = inf6 vdimy (S, F,m, d, €, p),

)

vdimg (S, p) = sup vdimy(S, €, p).

e>0
Proposition 3.7.3. Let X be a Banach space with a uniformly bounded action of a countable
discrete group I' and o;: T' — Isom(X;) with X; finite-dimensional. Then for any dynamically

generating sequence S, and any product norm p,

dimy (X, T") = vdimg (S, p).
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Proof. Let S = (;)2,. Fix e € F C T finite, m € N, § > 0. Suppose that T €
Homp (S, F,m, 9, 0;) and set £ = T'(x;). Then for all (c4,...6.i)a

Z |Cgl ----- 9l,j| <1,

gieF1<j1<m With

.....

g1, GIEF
1<4,1<m
we have
E: Cor,..., ngUZ(Ql) oi(g)&|| <o+ ||T E, Corrogi1 "~ 9I€;
g1, giEF g1,--,gi€EF

91, UEF
1<5,l<m

So (§;)j, € Vectr(S, Fym,d,0;) and vdim < dim.

For the opposite inequality, let € > 0, and let M = sup; ||z;||. Since p is a product norm,

we may find an N € N, and a k > 0 so that if f € (>°(N) and || f|l < M, and

max [f(7)] <&,

then
p(f) <e.

Fix e € F C T finite and m € N with m > N. Let ¢’ > 0 be sufficiently small depending

upon k, in a manner to be determined later. Set

m

B:U{(gl,...,gl,j) S0l g € F1 <5 <m},
I=1
V = Xpm,
vg=g1--qrj, it f="(g1,...,q1,)) € B,
n=27".
Let § > 0 be as in the preceding lemma for this B, V, (vs)sep, n. If (§;)72, € Vectr(S, F,m, 0, 0;),
then by the preceding lemma, we can find a T': Xp,,, — X; with ||T|| < 1 and

1T (g1 - - - guwg) — oilgr) - -~ oi(g)&ll < &,
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forall g1,...,q0 € F;1 < 7,1 <m. Thusforall 1 < jl<m,g1,...,q, € F,
1T(g1 - gm;j) — 0i(91) -+ 03l gm) T ()| < 20",
Thus 7' € Homr (S, F,m,2d, 0;), and

max |T(x,) — & <4,

1<j<m

since e € F. So if we choose ¢’ < k, then since m > N, our choice of xk implies
as(Homp(S, F,m, 4, 0;) Cepx, Vectr(S, F,m, 9, 0;),
SO
doe(as(Homp (S, Fym, 6, 0;) < d.(Vectr(S, F,m, 6, 0;)).

Taking limits in the appropriate order, we see that dim < vdim .

3.8 (P-Betti Numbers of Free Groups

Let X be a CW complex and let A,(X) be the collection of n-simplices of X. Suppose
that I' acts properly on X with compact quotient, preserving the simplicial structure. For
Vo, ..., Un € X, let

[’Ugﬂ]l, e ,Un]

be the simplex spanned by vy, ..., v,. Let
V(X)) = {(vo, ..., vn) € X : [vg,..., 0] € Ay}

We abuse notation and let #(A, (X)) for 1 < p < oo be all functions f: V,(X) — C such
that

F(Wo(0)s - - -+ Vo)) = (sgno) f(vo,...,v,) for o € Sym({0,...,n})

Z |f(vo, ..., vn)|P < 00, for p < oo

['UO ----- U‘IL]EA‘IL(X)
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sup |f(vo, ..., v)| < 00 p=o0.
[v0,...;vn]EAR(X)

By our antisymmetry condition the above sum is unchanged if we use a different represen-

tative for [vg, ..., v,]. On P(A, (X)) we use the norm

HfH£= Z |f(vo,...,v,)|P, for p < oo

vEAR (X)

[fllo= sup  |f(vo,...,va)l-
[v0,..,Un]EAR(X)

Define the discrete differential §: P(A,_1(X)) — P(A,(X)) by

n

6F) (W0, v) = Y _(=1) f(vo, ... Ty, ..., v),

§=0
where the hat indicates a term omitted, note that J f satisfies the appropriate antisymmetry
condition. Define the n'" fP-cohomology space of X by

H(X) = ker(8) N P(A, (X))
v 5P (Ap (X))

We define the (P-Betti numbers of X with respect to I' by

B (X, T) = ditns o (H, (X), ).

It is known that if X is contractible and 7;(X/T") = I', then the ¢-cohomology space

only depends upon T, (see [14] page 219). If T is sofic, we may use /P-dimension to define
Hy, (') = Hg, (X, T),

BELT) = B, (X.T),
for such X. The definition above for p = 2 goes back to Atiyah in [1].Attaching a number to

(P-cohomology (or homology), requires some dimension theory associated to ¢P-spaces. Since

we have done this in [16], the preceding definition of /?-Betti numbers is a new definition.

We also consider ¢P-homology. Define 9: ?(A, (X)) — P(A,—1(X)) by

Of (vo, -, V1) = Z fvo, ..., vn1,).

@[V, Vn—1,8] €A (X)
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We use T* for the Banach space adjoint of a bounded T: X — Y between Banach spaces

X, Y. By direct computation
(9: 07 (An(X)) = 7 (D1 (X)) = (5 C(An-a(X)) = C(An(X))),

when % + 1% = 1. Define the /P-homology of X by

_ ker(9) N (A4 (X))

0 ) = )

We shall be interested in the ¢P-Betti numbers of free groups. Fix n € N and consider
the free group F, on n letters aq,...,a,. Let G be the Cayley graph of F, with respect
to ay,...,a,, we regard the edges of G as oriented. There is a natural 1-dimensional CW
complex X associated to G, whose 0-simplices are the vertices of (G, and whose 1-simplices
are the edges of G, and whose attaching maps are determined by incidence of edges in the
natural way. Then X is contractible, since G is a tree. Also m(X/F,) = F,, so the (-
cohomology of G is the fP-cohomology of IF,,. Let E(IF,) denote the set of edges of IF,,. Then
(P(E(F,)) as defined above is the set of all functions f: E(F,) — C such that

flz,8) =—f(s,z)if (s,2) € E(F,),

Z Z | f(z,za;)P < oo

=1 z€lF,

with the norm

=" > 1f(w ay)l.

j:1 (EEFn

Note that this is indeed a norm on *(E(IF,)), and that F,, acts isometrically on ¢#(E(F,))
by left translation. Also ¢*(E(F,)) is isomorphic to ¢?(F,) with respect to this action. If
(z,5) € E(F,), we let £, 4 be the function on E(F,) such that

Ews(y,t) = 0if {z, s} # {y, 1}
S(M)(a:, 8) =1

5(%5)(8, ZL‘) =—1.
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We think of &, ,) as representing the edge going from z to s.

The discrete differential 0: ¢*(F,,) — ¢*(E(F,)) we defined above is given by

0f)(z,5) = f(s) = f(x) (x,5) € E(Fn)).

The corresponding ¢P-cohomology space is given by

Hpy (Fy) = °(E(F,))/0(00(Fy).

Also, 0: (*(E(F,,)) — ¢P(F,) is given by

n

0f) (@) = D_ f(z,2a;) = 3 flaa;", ).

J=1

In this section, we compute the (P-Betti numbers

B (F,),

for1 <p<2.

Let T be a countable discrete group, we define p: I' — B(¢*(T")) by
(p(9) (@) = flzg™).
Lemma 3.8.1. Letn € N, withn > 2. Fiz 1 < p < o0o. There is a C > 0 so that
16£1lp = Cll fllps
for all f € ¢P(FF,). In particular, the image of § is closed.
Proof. Assume the lemma is false, then we can find f;, € *(F,,), with || fx||, = 1 and
16 kllp = 0.

By direct computation

16.£ellp = > llplas ) fi = fill?,
j=1
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where aq, ..., a, are the free generators of IF,,. Thus

lp(a; ) fi = fell, = 0.
Since {ay,...,a,} generate IF,,, it follows that

(@) fr = frllh = 0

for all x € F,,. By Theorem B.1.2 (iii), this implies that F,, is amenable. By the argument

following Theorem B.1.2 we know that [F,, is not amenable, so we have a contradiction.
[
Lemma 3.8.2. Fizn € N, 1 <p < oo. Then the set of all images of the elements Ecqy), - - -,
Elean_y) are dynamically generating for Hy, (F,).
Proof. Tt suffices to show that
W = 6(((F,)) + Span{&(s ;) : s €Fp,1 < j <n—1}
is norm dense in P(E(F,)). It is enough to show that
Eny €T
By convexity it is enough to show that £ q,) is in the weak closure of .
We shall prove by induction on k£ that
Elean) = 5(aﬁ7a5+1) mod W.
This is enough since
Elagaktty =0
weakly.

The base case k = 0 is trivial, so assume the result true for some k. Then

n n—1
Eas.a — S0atrty) = D Eiatrtatay) T D Eiak st
j=1 j=1

n—1 n—1

_ k+1 o k+1 -1

= Elait aire) + D Eeay = D a0y ey
j=1 j=1

= (a1 aty;
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Here is a graphical explanation of the above calculation. If we think of the elements of

(?(E(F,)) as formal sums of oriented edges, then —d(x+1) is a “source” at af*'. It is the sum

n

of all edges adjacent to a**1 directed away from af*1. Below is a graphical representation

Of —5()(&51“) :

ana;t akt? Q1

Ve

k+1

n

_5(Xa,]§+1) a

AN
e

anal_l afj Ap Q1
The above computation can be phrased as follows:
—0(Xaht1) + Egg ottty =
k41 k+2 k+1
artta, 4 art arttay
k+1 : k+1
a, : + a,
k1, —1 k k1 ,,—1 k
Ap "0 a, | an
k42 ~1
a’t ana, Ay
altt + ; an, :
~1
apnaq QG

and the second term on the right-hand side is easily seen to be in the span of translates of

E(e,a;),J = 1,...,n — 1. This completes the induction step.
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We shall prove the analogous claim for /’-homology of free groups, but we need a few
preliminary results. These next few results must be well known, but we include proofs for

completeness.

Lemma 3.8.3. Let I' be a non-amenable group with finite-generating set S. Let A: (P(T') —
(P(I") be defined by

1
A:m Z p(s),

seSus—1

then for 1 < p < oo, there is a constant C, < 1 so that |[Af|, < Cpl fllp-

Proof. We use

| Aller v

for the norm of A as an operator from (?(I') — ¢(I"). We know ||Al[2_e2 < 1 from the
non-amenability of I' (see [3] Theorem 2.6.8 (8)). Since ||Al|ge—e < 1, and [|Al|p_ e < 1,

the lemma follows by interpolation. O]

Lemma 3.8.4. Let n € N with n > 2. For 1 < p < oo, the operator 0o d: (P(F,) — ¢P(F,),

18 1nwvertible.

Proof. Let aq,...,a, be free generators for F,,, and let S = {ay,...,a,}. We have that

001w = Y f(rc)—f(:cs)=|SUS‘1l(f(x)—m ) p<s>f<x>).

seSus—1 seSus—1

By the previous lemma,

<1,

1
m Z p(s)

seSus—1 P s fp

for 1 < p < 00, so this proves that 9(9) is invertible for 1 < p < oo. O

For the next corollary we use the following notation: if X,Y, Z are Banach spaces with

Y, ZC X, weuse X =Y dZtomean Y NZ ={0},Y +7 =X.

Corollary 3.8.5. Let n € N with n > 2. For 1 < p < oo, we have the following Hodge

Decomposition:

P(E(F,)) = ker(d: (°(E(F,)) — °(T)) + 6(¢(F,)).
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Proof. By 3.8.1, §(¢?(F,,)) is closed in ¢?(E(F,,)). It is clear that ker(0: ?(E(F,)) — /("))
is closed in (P(E(F,)). If f € ker(0: ?(E(F,)) — ¢°(F,)) N6(¢P(F,)) write f = d(g), then

By the preceding lemma we have that g = 0.

If f € ¢?(E(T')), then by the preceding lemma we can find a unique g so that 9(f) =
9(6(g)). Then f — d(g) € ker(0), and

f=Ff—4d(g)+4d(9).
0

Proposition 3.8.6. Let n € N, and 1 < p < co. Then H{'(F,) can be generated by n — 1

elements.

Proof. The claim for n = 1 is clear since H},(Z) = 0. First, we show how to reduce to the
case n = 2. Let n > 2, and let aq,...,a, be the generators of IF,,. Consider the injective
homomorphisms ¢;: Fo — F, for 1 < j <n —1 given by ¢;(a;) = a;1;. Let f be an element
in ¢?(E(F2)) so that Span(Fyf) is dense in ker(9) N P(E(F2)). Let f; € ?(E(F,)) be the
element defined by

0, if one of z,y & ¢;(F2)
fj(xv y) -
f(%-_l(%), ¢j_1(y)), otherwise.

Then f; € ker(0). It is easy to see from the preceding corollary and the fact that f generates
ker(9) N ¢P(E(Fy)), that
g(e’aj) S ker(@) -+ 5(€p(Fn)).

Again by the preceding corollary we find that fi,..., f,—1 generate ker(d). Thus it suffices

to handle the case n = 2.

We now concentrate on the case n = 2, and we use a,b for the generators of Fsy. Let

f: E(Fy) — R defined by the following inductive procedure. Set
Ji=CEea) T Eep) T E@a1,e) T Ep1,0)-
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Having constructed fi,..., f, so that f; is supported on the pairs of edges which have
word length at most 7, define f,, 1 as follows. For each word w of length n, let ey, e, e3 be
the three oriented edges which have their terminal vertex w and the initial vertex a word of
length n + 1, and let e be the oriented edge which has its initial vertex w and its terminal

vertex a word of length n — 1. Define for j =1,2,3

Fuales) = 3 fule),
and define
fas1(€) = fale)

if both vertices of e have length at most n. It is easy to see that the f,’s as constructed

above converge pointwise to a function f in P(E(F,)) Nker(0) for 1 < p < oo.

The function f is pictured below:

ab™? a? ab
1/3
NG
b 2a b—la a ba b%a
L1/9 j1/3 1 1/3] 1/9T
ps 0t s N | S VN R LI
1/9T 1/3] 1 j1/3 L1/9
b—2a! b~ la™t a” ! ba~* b%a!
1/3 13 ‘;/X
a1t a2 a b

Set V' = Span(Fqf) + 5(€P(IF2))Wk = Span(Fy f) + 5(6}7(]}‘2))”'”.
To show that f generates ker(0) it suffices, by the preceding corollary to show that
5(6,(11)75(57(12) E V

Let B, = {(z,y) € G : ||z||, ||ly|l| < n}. Forn > 0, let g,,: E(F,) — C, be the function defined
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n—1
XBnGn = ( (1/3)") (Eea) + Ee) + Ea—1.e) + Epm10)) »
k=0

(1 —=xB.)gn = (1 —x8,)f,

we first show that g, € Span(Faf) + 0(¢*(FF3)), for all n. We prove this by induction on
n, the case n = 1 being clear since g; = f. Suppose the claim true for some n. Then for
each word w of length n, we can add either (1/3)™0(x{uw}), or —(1/3)"0(X{w}), to f, to make
the value on every edge from w to a word of length n + 1 zero. This now adds a value of
+(1/3)™ to every edge going from a word of length n to a word of length n — 1. Now repeat
for every word of length n — 1 : add on £(1/3)"(x{w}) for every word w of length n — 1 to
force a value of 0 on every edge going from a word of length n — 1 to a word of length n.
Repeating this inductively until we get to words of length 1, we find by construction of f
that g, € Span(FFyf) + §(¢P(FF3)). The first two steps of this process are pictured below:

ab™? a? ab
1/3
» 1/3
b 2a b~ la a ba b%a
L1/9 j1/3 1 1/3] 1/9T
- 1/9 b2 1/3 11 ! 1 ) 1/3 2 1/9 e
1/9T 1/3] 1 j1/3 L1/9
b—2q! b laq~t a~ ! ba~! b2a!
1/3
1/3 ‘UX
a tpt a"? a b

5(00¢{a)+8(xp1) =0 (x (p—13) =8 (x(0-1}))
f—
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b—3

b—3

b—3

ab™! a? ab
b 2a b la a ba b%a
l1/9 lo 4/3 0] 1/9T
1/9 6_2 0 b_l 4/3 ¢ 4/3 b 0 b2 1/9
1/9T 0] 4/3 jo ll/g
b—2a! b~ la=t a”! ba~* b2a!
PN
a~h~t a2 a~'h
5(5(X{b2}*5(X{572})+5(X{G2})+“')
ab™! a? ab
1/9
DN
b 2a b la a ba b%a
lo 11/9 4/3 1/9] OT
0y 1/9 ho1 4/3 ! 4/3 ) 1/9 p2 0
OT 1/9T 4/3 jl/g lo
b—2aq~! b~ la=! a~! ba ! b2a!
1/9 /o \
Pl 1
a 1p1 a2 a~'h
5 (60¢(ay) F00xpy) =8 (x pp-13) —6(x0-13))
ab™! a? ab
0
\0 /
b—2a b~la a ba b%a
Lo lo 13/9 0] OT
0 2 0 o1 13/9 13/9 ) 0 b2 0
OT 0] 13/9 lo Lo
bh—2q~ 1 b laq~t a~ ! ba! b2a 1
0
/0 X
a”tp~t a2 a~ b
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Since sup,, ||gn||, < co we find that g, converges weakly to

3
5(5(67(1) + 5(e,b) + g(bfl,e) + g(afl,e))'

Rescaling we find that
Elea) T Eep) T Ep1e) T 1) €V

By adding +0(x{c}) and scaling we find that
Eea) + Eep) €V,
Eep1ytEea1) EV.
Inductively, we now see that
E(ea) T E((ba=1)n-1b,0a-1)m) €V,

and taking weak limits proves that

g(e,a) eV.

Subtracting £ q) from & q) + Ecp) we find that
E(e,a)ag(e,b) eV.

By Fo-invariance that V' = ¢?(E(Fy)), this completes the proof.

Theorem 3.8.7. Fizn € N, and a sofic approrimation 3.

(a) The dimension of the (P-cohomology groups of F,, satisfy
dimy o (Hpp (Fp), Fr) = dimy, o (Hpp (Fr), Fp) = n — 1, for 1 <p <2,
Hpy (Fn) = {0} form > 2.
(b) The dimension of the (P-homology groups of F,, satisfy:

dimy v (H{ (F,,),Fp) = dimy 0 (H{ (F,),Fn) =n—1, for1 <p<2
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HY (F,,) = ker(d) N ¢ (E(F,)) = {0}.

HY(F,) =0 form > 2.

Proof. The statements about higher-dimensional homology or cohomology are clear, since

we know that the Cayley graph of IF,, is contractible and one-dimensional.

Since the image of ¢ is closed, the sequence

0 — °(F,) —>— *(E(F,)) — HL(F,) — 0

is exact. Subadditivity under exact sequences, and the computation for ¢P-spaces implies

that
n = dimy, , ((°(E(Fy)), Fr)
< di_ijjp (Hﬁlp (]Fn)a Fn) + dimE,ET’ (gp(IFn>
= di_nk),gp<Hzlp (Fn>7 Fn) + 1.
Thus

(ﬁ_mz,zp(Hglp(Fn):Fn) >n— 1.
On the other hand, by the Lemma 3.8.2, H},(FF,,) can be generated by n — 1 elements, so
dim275p<H}p<Fn),Fn) S n — 1,

which proves the first claim.

For the second claim, by surjectivity of 0 for 1 < p < 2, the sequence
0 —— H"(F,) — (*(E(F,)) —> *(F,) — 0,
is exact. As in the first half this implies that
di_mz,zp(pr(Fn),]Fn) >n—1,

for 1 < p < 2. The upper bound for 1 < p < 2 also holds by the preceding proposition.
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We turn to the last claim. If z € F,,, because the Cayley graph of F, is a tree we can

define 7, to be the unique geodesic path from e to z. Let |z| = d(z, e), and define
A: CFE 5 CFn
||
(AN@) =D F0a = D, %()),
j=1

note that 6(Af) = f. A direct computation verifies that A(Eq zq;)) € £°(Fy,), thus 6(£°(F,))
is weak* dense in (*(E(F,)). By duality ker(9) N¢'(E(F,)) = {0}, this completes the proof.

O
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CHAPTER 4

Extended von Neumann Dimension for Equivalence

Relations

Our goal in this section is to follow the methods in the group case, and introduce an extended
version of von Neumann dimension for representations of a discrete, measure-preserving,
sofic equivalence relation. Similar to the group case, this dimension is decreasing under
equivariant maps with dense image, and in particular is an isomorphism invariant. We
compute dimensions of LP(R, )" for 1 < p < 2. We will define a upper and lower notions
of (P-dimension for sofic equivalence relations, denoted dimy ¢ (V, R), dimy, ,»(V, R) (here X
is a sofic approximation). This extended von Neumann dimension shares some of the usual
properties of von Neumann dimension, (it is an interesting problem in general to decide

which properties carry over and which do not):

Property 1:  dimg (W, R) < dimg ¢ (V, R) if there is a R-equivariant bounded map W —

V with dense image and the same for dim,
Property 2:  pu(A)dimy w(Ida V,R4) = dimy »(V, R)and the same for dim

Property 3:  dimy (V. R) < dimy » (W, R) + dimy o (V/W,R), it W C V is a closed R-

invariant subspace.

Property 4:  dimy ., (V,R) < dimg, (W, R) + dimg e (V/W,R), if W C V is a closed R-

invariant subspace.

Property 5:  dimy, ;,(V,R) < dimg e (W, R) + dimy, ,,(V/W,R), if W C V is a closed R-

invariant subspace.
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Property 6:  dimg, »(H,R) = dimg 2 (H, R) = dimyry H if H C (*(N, L*(R, 1)) is a closed

R-invariant subspace.

Property 7. dimy, ,, (LP(R, )", R) = dimy ¢ (LP(R, 2)*",R) = n for 1 <p < 2.

In Section 4.6, if R is a sofic equivalence relation with sofic approximation, which satisfies
a certain “finite presentation” assumption, we define a number cg?)E(R), which is an /P-
analogue of 8% (R)+ 1. Here B (R) is the £*>-Betti number as defined by Gaboriau in [12].
This number has the property that c%’ )Z(R) < ¢(R), where ¢(R) is the cost of R as defined
by Levitt in [19], and heavily studied by Gaboriau in [11]. Further, M(A)(cgf’)m (Ra)—1) >
cf %(R) — 1. This is if we could find an equivalence relation with vanishing ¢?-cohomology,
but so that cgl? %(R) > 1, for some p, then we could disprove the conjecture (due to Gaboriau
n [12]) that 8*(R) = ¢(R) + 1. If in addition we could prove that cgpg(R) > 1 for all X,

then R would necessarily have trivial fundamental group. A good reference for most of the

fundamental properties of measurable equivalence relations is [17].

4.1 Definition of the Invariants

We now proceed to state the definition of our extended von Neumann dimension, again
the ideas are parallel to the group case. We remark that the reader will need to recall the
definition of representations of an equivalence relation in 2.1.20, and the definition of sofic

equivalence relation in 2.2.3.

Definition 4.1.1. Let V be a separable Banach space with a uniformly bounded action of
R, and let ¢: W — V be a bounded linear surjective map where Y has the bounded approx-
imation property. Let ® C L(R). For F' C ® finite, we define Wi (F) = {¢1---¢; : 1 < j <
k,¢; € F}. A qg-dynamical filtration consists of a pair F = ((b¢’j)(j7¢)eNXw(¢), (Wrk)rcao ﬁnite)

where
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b¢>,j € W,
sup ||bg, ;|| < oo,
(j7¢)

¢(bra,;) is dynamically generating,
q(bs.;) = Proq(bja),
Wer € Wprp if FCFE<SFE,

Wiy = Span{b;s 1 1 < j < k, ¢ € Wi(F)} + ker(q) N Wy,

ker(q) = U Wr Nker(q).

Fk

Definition 4.1.2. A quotient dimension tuple is a tuple ((X,pu),R,®,V,W,q,%) where
(X, u) is a standard probability space, R is a discrete measure-preserving equivalence rela-
tion on (X, pu), ® C L(R) is of the form & = &y U P, where &, C [[R]] is a graphing, and
1 € P C Proj(L>®(X,u)) has W*({¢pp~' : ¢ € ®g,p € P) = L>®(X,p), Vis a uniformly
bounded representation of R, W is a separable Banach space with the bounded approxima-
tion property, ¢: W — V is a bounded linear surjective map and ¥ = (o;: [[R]] = [[Ra,]])

is a sofic approximation.

Definition 4.1.3. Let ((X,u), R, ®,V,W,q, %) be a quotient dimension tuple. Let F =
((bj.4, Wgy)) be a g-dynamical filtration. For F C & finite, m € N,0 > 0 we will use
Homg o (F, F,m, ¢, 0;) for all linear maps T': W — 7(d;) with ||T'|] < 1, and such that there
isan A C{1,---,d;} with |A] > (1 —d)d; so that for all 1 < j <m, for all ¢1,--- ,¢,, € F
we have

| T (bgy...6.5) — 0i(@) -+ 7i(Pr) T (brag) v (a) < 6

HT‘ker(q)ﬂWRm H = 0.

The above definition is very similar to the group case. However, we caution the reader
as to the necessary existence of the set A by which we cut down. This procedure will be

necessary in order to pass from one graphing of R to another. The necessity of cutting down
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by A will prevent us from proving some of the analogues of the properties of extended von

Neumann dimension in the group case.

Definition 4.1.4. Let (R, X, i) be a discrete measure-preserving equivalence relation with
a uniformly bounded representation on a Banach space V. A dynamically generating sequence

is a bounded sequence S = (v;)32; in V such that Span{¢v; :j € N,¢ € [R]]} = V. If &

is a sofic approximation of R, and ® = &, UP C [[R]] with ®; a graphing and P a set of
projections so that W*({¢~pop~' : p € P}) = L>=(X, p), then the tuple (X, u), R, ®,V, S, %)

will be called a dimension tuple.

Definition 4.1.5. Let V be a Banach space and n € N. Let p be a pseudonorm on
B(V,tP(n)), if A,B C B(V,¢P(n)), for e, M > 0, we say that A is (¢, M)-contained in
B if for every T € A, there is an S € B, with [|S|| < M and C C {1,--- ,n} with
|C| > (1 —¢)n, so that p(m,,(T —S)) < e. Similarly, if p is a pseudonorm on ¢>*(N, ¢?(n))
and A, B C (*(N, (?(n)) we say that A is e-contained in B if for every f € A thereisa g € B
and C C {1,---,n} with |C| > (1 — ¢)n so that p(xc(f — g)) < . We shall use d.(A4, p),
(respectively d. (A, p)) for the smallest dimension of a linear subspace which e-contains

(respectively (e, M)-contains) A.

Note the difference between e-containment as stated here and in the group case, this dif-
ference is why we have difficulty proving any sort of relation between extended von Neumann

dimension for groups and for equivalence relations.

Definition 4.1.6. Let ((X,u), R, ®,V,W,q,%) be a quotient dimension tuple, and F a
g-dynamical filtration. For a sequence of pseudonorms p = (p;) on B(W, ¢P(d;)) we define
1
opdimg, 5/ 4 (F, @, Fym, d,¢,®, p) = limsup Ede,M(HomR,gp (F,F,m,d,0;)),
i—>00 1

opdimy, 4 (F, e, @, p) = inf opdimy, ys p (F, F,m, 6,6, @, p),

FC® finite,meN,§>0

opdimg, ¢ (F, @, p) = S‘ilg opdimy; 5/ (F, @, €, p).
3
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We also define opdim F,®, p) in the same way except using a limit infimum instead

E,M,EF(

of a limit supremum. For later use, we note that if p is a norm on ¢*°(N) and F is as above,

we use pri(T) = p(j = || T (bia,)l|)-

Definition 4.1.7. Let (X, u), R, ®,V,W, ¢, %) be a quotient dimension tuple, and F a g-
dynamical filtration. Define ar: B(V,P(d;)) — (N, ¢7(d;)) by ap(T)(n) = T'(ban). We
define

f.dimy o (F, F,m, 0,6, P, p) = hrgsup %dg(&;(HomR,gp (F,F,m,0,04)), ppd.),

f.dimg p(F, e, P, p) = reo ﬁniitr;ﬁleN’bo opdimy, ys o (F, F,m, 6, €, p),

f.dimg ¢ (F, @, p) = sup f. dimy v (F, €, D, p).

e>0
Definition 4.1.8. Let ((X,u),R,®,V,S,%) be a dimension tuple. Let p be a norm on
(>°(N). Let pp 4, be the norm on £°(N, £7(d;)) given by p,.q.(f) = p([| fllp)- Let S = (v;)52,,

Vim = Span{¢v; : ¢ € (FUIdUF*)™, 1 < j < m}. Let ag: B(Vim, #(d;)) — (>N, P(d;))
be given by as(T)(j) = xqu<m} ()T (v;). We define

set

1
f.dimy ¢ (S, F,m, d,e,®, p) = limsup Edg(aS(HomR,gp(S, F,m,6,0:)), Ppd;)s

1—00 7

f.dimg (S, e, @, p) = inf opdimy, 57 (S, F,m, 6, €, p),

FCofinite,meN,§>0

f.dimg (S, @, p) = sup f. dimg (S, €, D, p).

e>0

We shall define f.dim_ (S, ®,p) for the same thing, except replacing all the limit

.00

suprema with limit infima.

Definition 4.1.9. A product norm on (*(N) is a norm p such that p(f) < p(g) if | f| < 9],

and such that p induces the topology of pointwise convergence on {f : || fllc < 1}.

A typical example is

o 1/p
o) = (Z %vw)

=1

for 1 <p < 0.
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As in the group case, we will show that
f-dimg (S, @, p) = f.dimg 4 (S, D', p')

if S,S” are two dynamically generating sequences, ®, ®’" are two graphings and p, p’ are two
product norms. Thus we can define dimy ¢ (V,R) to be either of these common numbers.

The proof of all these facts will follow quite parallel to the proofs in the group case.

4.2 Proof of Invariance

As in the group case, Proposition 3.2.1 will be quite useful. The next Lemma will be crucially

used in passing between opdim and dim .

Lemma 4.2.1. Fiz 1 <p < oo. Let (X, pn), R, P, V,W,q,%) be a quotient dimension tuple
and F = (bj ¢, Wri) a (q, ®)-dynamical filtration. Let G C W be a finite-dimensional linear
subspace and k > 0. Let p be a product norm and A > 0 so that W has the \-bounded
approzimation property. Fiz M > X. Then there is a F' C & finite, m € N, d,¢ > 0 and
linear maps

Li: (°(N, (?(d;)) — B(W, (*(d;)),

so that if f € (*(N,¢*(d;)),T € Homg w(F,F,m,0,0;) and B C {1,---,d;} has |B| >
(1—e)di, and pw@)(xs(ar(T)—f)) < e, then there is a C C {1,--- ,d;} with |C| > (1—n)d;
such that

| Li(f)lwercy < M,

|’L2(f>‘g - T|gHG—>€P(C) < K.
Proof. Note that there is a £ C ® finite, [ € N, so that

sup inf |lv—w| < k.
’UEWEJ
[wl|=1[lv]=1

Thus, we may assume that G = Wg, for some E C & finite, [ € N.
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Fix n > 0 to be determined later. By Proposition 3.2.1, we may let 0p,: W — Wpgy, be
linear maps such that

10Fk] < A,

lim ||0px(w) —w|| =0 for all w € W.
(F3F)

Choose F,m sufficiently large so that
||9F’m‘YE,z —1d }YE,ZH <.

Let Bpy € F™ x {1,---,m} be such that {q(by; : (¢,7) € Bpm} is a basis for Vi,,: =
Span{q(by ;) : (¥,j) € F'™ x {1,--- ,m}}. Define Li: (N, 7(d;)) = B(Vig, ((d;)) by

Li(q(by ) = oi() f(4)-

We claim that if §, e > 0 are small enough, then for f € (*°(N, ¢?(d;)), T € Homg o (F, F,m, 6, 0;),
and C C {1,---,d;} with |C| > (1 — €)d; and

p(xe(f —ax(T))) <e,
there is a B C {1,---,d;} so that |B| > (1 — n)d; with
1Zi() 0 alyy, , = Tl Wi <0
By finite-dimensionality, there is D(F,m) > 0 so that if v € ker(¢) N Wg,, and (Ay,) €
CBrm_ then

sup([[oll, Ay l) < DIEm) [jo+ Y Apsbr
(va)GBF,m

Thus if z € Wrp, [[2|| <1, and 2 = v+ 3, epp,, Awrby,r, With v € ker(q) N Wy, and
C C B, then
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ILi(H)a(@) = T@)mey = | T@) + D Aurlou@)f(G) = Tlby.r)) (4.1)

(wvr)EBF,m [p(c)
<N T)llercy + DFm) > Noi(@) f(G) = T (b llevicy
(’LP T)EBFm
<T@y + DEM) D (oi(@) f(5) = Tby)llerce
(¥,r)EBFm
< D(F,m)s+D(F,m) > o) () = T(bya) ey
(,r)EBR,m

where in the last line we use that ||| < 1.
Let A C {1,---,d;} be such that |A] > (1 — J)d;, and for all 1 < j < m, for all
D1y O € F,
1T (b i) — 0i(D1) =+ 0i( D) T (braj) || ena) < 0
and set C' = BN A. Then by (4.1) we have
IZi(H)(a(@) = T(@)]ley < DEm)S + DFEm)|[F|"ms + Y || f(r) = T(by)lencc),
(r)

so it suffices to choose 9, > 0 sufficiently small so that

d+e<m,

Ui

O < DF MmO+ [Fmm)’

and if g € £>°(N) has p(g) < € then

Z g(r) < g

(va)GBF,'m

Now suppose that d,& > 0 are so chosen and set L;(f) = [Tl(f) o q‘WF 0 O m, then if

T, f,C are as above and w € Wg, then

1Li(f)(w) = T(w)lercy < (1 +0)[10mm(w) —wl| + nllw]] < (1 + 2n)|w],
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so it suffices to choose n so that

n(l+2n) < k,

A1 +1n) < M.

Our next lemma allows us to switch between two different pseudonorms.

Lemma 4.2.2. Fiz 1 <p < oo. Let (X, pn),R,®,V,W,q,%) be a quotient dimension tuple
and F = (bjs, Wry) a (g, ®)-dynamical filtration. Let F be a (q, ®)-dynamical filtration,
p a monotone product norm, and let C > 0 so that W has the C'-bounded approximation
property.

(a) If C < M < oo, then

f' dimz,oo,fp (Fa (I)a P]—‘,i) = OpdimE,M,Ep (Fa (I)a P]—',i)

f' dimE,oo,ZP (‘F7 ®7 p]:,’b) = OpdlmZ’M,ZP (‘FJ ®7 p]‘—,’b)

(b) If p' is any other product norm, then for all M > 0,

Opdimz,M,ep (F,®,pri) = Opdimz,M,ep (F 7‘1)70/;,1')

opdim F,®,pr;) = opdim F, @, p,).

3, M., 6P ( ¥, M., 6P (

PTOOf. (a) Let F = ((bqf),j)? (WF,I)FQW(CD) ﬁnite,leN)' Let A be such that

16,51 < A,

Let 1 > ¢’ > 0. Find k£ € N, so that if ||f|l« < 1, and f is supported on {n : n > k},
then p(f) < €’. Since p induces a topology weaker than the norm topology, we can find a
e’ >k > 0so that p(f) <&, if || f]le < .

Let Id € E C ® be finite &’ > e > 0,m € N, with m >k, 06 > 0 and L;: (> (N, ¢*(d;)) —
B(W, ¢P(d;)) be as in the proceeding lemma for this M, , and the finite-dimensional subspace

Wiay k-
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Suppose T' € Hompg ¢ (F, F,m,d,0;), f € (*(N,V;), and B C {1,---,d;} has |B] >

p(xs(f —ar(T)) <e.

By the preceding Lemma, let C' C {1,--- ,d;} be such that |C| > (1 — k)d;,
| Li(f)lwoercy < M,
||Li(f)‘w{1d},k - T|W{Id}yk||w{1d}7k*>£p(c) < K.

Then

pri(xc(Li(f) =T)) < (MA+1)e+p(j — ||Li(f)(bpay.;) — T(bgayi)lle o) X ra<my (4))

< (MA+1)e + Ae'.
Thus
opdimy, ,(F, Fo,mg, 0, (MA+ A+ 1)e", @, p) < f.dimy(F, Fo,mo, 0,¢, P, p)
if Fo O F,mg > m,dy < 6. Thus
opdimy, ), (F, (M 4+ A)e', @, p) < f.dimy(F, @, p),

and since € was arbitrary, we are done.
(b) This follows from compactness of || - ||« unit ball in the product topology.

]

We now proceed to show equality when we switching graphings, it is enough to handle

the case of simply increasing the graphing.

Lemma 4.2.3. Fiz 1 <p < oo. Let (X, pn),R,®,V,W,q,%) be a quotient dimension tuple
and F = (bj ¢, W) a (q, ®)-dynamical filtration. Let & C &' C [[R]] with " countable. Let
F'=((Vf3), Wry) be a (g, ®) dynamical filtration extending F. Suppose that X' is any sofic

approximation then
opdimy; o, s (F, @, p) = opdimy, o, (F', D', p),
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opdim_ _ (F,®,p) = opdim ooep(]:/’ ' p).
Proof. Let M > 0 be such that for every v € V| there is a w € W so that ¢(w) = v, and
[o]l < Mjw]].

It is clear that
opdimyy ,,(F, ', p) < opdimy, 4, (F, @, p).

For the opposite inequality, first note that for any subset £ C x — Alg(®) N [[R]] (here
we view [[R]] € L(R), and * — Alg(®) denotes the smallest x-subalgebra of L(R) containing
®) we have

opdimy,(F, ®, p) < opdimy,(F, E, p).

Our assumptions imply that for any n > 0, for any ¢ € [[R]], there is a ¢’ € [[R]]N*— Alg(®P)
1 = ¢'ll2 <.

Fix 1 € F/ C & finite, 0’ > 0 and m’ € N. Let n > 0 to be determined later. By our
above observation, we can find a finite subset F C x — Alg(®) N [[R]] such that for every
¢’ € F', there is a ¢ € E so that

/

1)
1 -+ pma; — & -~ bl <Mfor all1 <j<m,and ¢}, - ,¢, €F,

|1+ pm — @) Dhlla < mfor all ¢, -+, ¢ € F.
Thus we can find a finite subset £ C F C W(®), and an m € N and wy,..¢ ; €
ker(q) N Wg,, so that
1561645 = 1--gm.j = Wty il <0
We use W(®) for all finite products of elements in & U ®* U Id, and we use W,,(®) for

[© U ®* UId]™. We may assume that F,m are sufficiently large so that

sup inf lw—v| < ¢,
weBall(Wgy ,,,sNker(q)) veWp, mNker(q)
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E C Wy ().

Let § > 0 which will depend upon ', F';m’ in a manner to be determined later. Fix

T € Hompg ¢ (F, F,m,d,0;) and suppose A is such that

1T (bjgy b)) — 0i(D1) =+ i D) T (bj10) ||er 2y < 0

forall ¢, -+, ¢, € F'. Let C be the set of j in {1,--- ,d;} so that whenever ¢y, - , ¢, € F,
then

j & dom(oi(é1) - 0i(dm))A dom(oi () - 04(¢y,))
oi(dm) - 0i(01)H(G) = 0i(@,) - oi(d1) (), if either side is defined.
If n is sufficiently small, then soficity implies that for all large ¢, |C| > (1 — d')d;.
Thus for all 1 < j <m and ¢y, -+, ¢, € F we have
1T (bg; g1,,.5) = 0i( D) -+ 0i(B3,) T (bra ) [l evancy = T (bg, - 4,.5) — il B1) -+ - 0i( D) T (bra ) | er(arc)
<O AT (wg,.0,.5)]
+ T (bgy i) — 0i(@1) = 0i(Pm) T (b1a 5) [l er(anc)

S (5’ + 5Hw¢/1...¢m7jH + 0.

Our assumptions on F’,m’ ensure that

1T

| <O(1+4")+0".

ker(Q)N"Wgr s |

Thus if ¢ is sufficiently small, we may ensure that 7" € Homg ¢ (F, F',m/, 2§, 0;). So for

any € > (0, we have
opdimy, 4, (F, e, ®, p) < opdimy, 4, (F', F',m’, 8 e, ', p).
Since F',m/, ', ¢’ were arbitrary, we see that

opdimy, 4, (F, ®, p) < opdimyy 4 (F', ®', p).
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We now show that opdimy, ., (F, ®, pr;) only depends upon ® and the quotient map gq.
Because of Lemmas 4.2.1,4.2.2,4.2.3 for any other (¢, ®)-dynamical filtration F’

opdimy, o o (F, ®, pr,i) = opdimy 4 (F', @, pri),

so the only difficulty is in switching pr; to ps ;. To do this, we will have to investigate how

much our definition of dimension depends on the choice of pseudonorm.

Definition 4.2.4. Let ((X,pu),R,®,V,W,q,%) be a quotient dimension tuple and F =
(bj ¢, Wgi) a (g, ®)-dynamical filtration. Let p;,¢; be two sequence of pseudonorms on
B(W,?(d;)), we say that p; is (F,X) weaker than g; and write p; <z ¢;, if for every ¢’ > 0,
there are ,0 > 0, m, iy € N, I’ C ® finite, and linear maps L;: B(W, ?(d;)) — B(W, (d;))
for i > 4y, so that if G is a linear subspace of B(W, (?(d;)) and Hompg ¢ (F, F,m,0,0;) C.q, G,
then Homg v (F, F,m,6,0;) Corp, Li(G).

Lemma 4.2.5. Let (X, p), R, @, V., W, q, %) be a quotient dimension tuple and F = (b; 4, Wry)

a (q,®)-dynamical filtration.

(a) If pi,q; are two sequence of pseudonorms on B(W,P(d;)) and p; =rx ¢, then
opdimy, 4 (F, ®, p;) < opdimy, 4 (F, P, q:),
opdimy, (¥, @, p:) < opdimy, _,(F, @, 4:),

(b) Let F' be another q-dynamical filtration, then pr ; Xrx pr..

Proof. (a) Follows directly from the definitions.

(b) Let F = ((bs;), (Wgy)), F' = ((by,), (Wg,)). Let D > 0 be such that W has the

C-bounded approximation property, and

1bs.5l < D,

1bg;1l < D.
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Fix 1 > ¢’ > 0. Choose k € N, so that if f is supported on {n : n > k} and || f|l« < 1,
then p(f) < €, and let ¢ > k > 0 be such that p(f) < &' if ||f]lo < K. Let F,m,0,e¢,
and L;: (*(N,¢P(d;)) — B(W,¢"(d;)) be as Lemma 4.2.1 for this k, M = 2D and the
finite-dimensional subspace Wiy, ;.. Define az: B(W, (#(d;)) — (>(N, £7(d;)) by ax(T)(n) =
T(bian). Set Li(T) = Li(ar(T)). We may assume that m > k.

Suppose that Homg ¢ (F, F,m,d,0;) C.p,, G, then by Lemma 4.2.1, for every T' €
Homg oo (F, F,m,d,0;) we can find an S € B(W,¢*(d;)) and a C C {1,--- ,d;} with |C| >
(1 — k)d; so that

IZi(S) lw—eney < 2D,

IL:(S)]

{1d} .k

~-T|,, <&

{1d} .k

Thus

pri(mye(Li(S) = T)) < (2D + 1)De’ + p(xask ()| Li(S) (brag) — T (bra)llencc)

< (2D +1)De' + D¢’

This proves (b).

]

Corollary 4.2.6. Fiz 1 < p < oo. Let ((X,u),R,®,V,W,q,%) be a quotient dimension
tuple, and F a (q, ®)-dynamical filtration. If F' is another (q, ®)-dynamical filtration, and

p, P are two product norms, then
opdimy; ., s (F, ®, p) = opdimy, o o (F', @, p')
Mg,m,ep(f’q’7p) - mzm,@p(}—/?@’pl)'
Proof. If we combine Lemmas 4.2.2-4.2.5 we obtain
opdimy, o, »» (F, ®, p) < opdimy, o, 4 (F', @, p')

the result follows by symmetry.
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Because of the above corollary, and Lemma 4.2.3 we may define
dimy ¢ (q) = opdimy; o s (F, @, p),

di_mEjP (Q) = OpdimEpo,@P (F7 (1)7 10)7
where F, p are as in the statement of the corollary. Then dimy 4 (¢) only depends upon g

and the action of R on V.

Lemma 4.2.7. Let (X, pn), R, ®,V, %) be a dimension tuple, and let p be a product norm.

Let S be a dynamically generating sequence in V. Then

f-dimg » (S, @, p) = sup liminf lim sup f. dimy, »» (S, F, m, d, &, @, p),

e>0 (F»m»(s) 1—00

f.dim_ (S, ®,p) = suplimsupliminf f. dimyg (S, F,m, d,e, P, p).

2707 >0 (F7m,5) 1—00

Proof. Let S = (a;)32,, and C' > 0 so that [[a;]| < C for all j.

Fix € > 0, and choose k € N so that p(f) < € if ||f]loc < 2C and f is supported on
{n:n >k}. Fix F' C ® finite, a natural number m > k and 6 > 0. Then if F" DO F'is a finite
subset of ®, m’ > m is a natural number and 0 < §' < §, then Homg (S, F',m', ', 0;) C

Homp (S, F,m, d,0;). Further, for f € (N, (?(d;)) with || f||ger(a,)) < C we have
P(Xqra<my (5) F(5) — Xqua<ar (3) f(5)) < e
Thus
doe (g (Hompg 40 (S, F',m’, 0", 0;)), p) < de(ag(Homg 40 (S, Fym, ,0;), p).
This implies that
f.dimyg 4 (S, 2e, @, p) < f.dimyg (S, F,m,d,e, P, p).
Since F,m, were arbitrarily large, 6 > 0 was arbitrarily small we see that

f.dimy ¢ (S, 26, @, p) < 1(11rwn iIél)f f.dimg e (S, F,m, d, e, @, p)

and taking the supremum over € > 0 completes the proof. O
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Lemma 4.2.8. Let (X, pn),R,®,V,W,q,%) be a quotient dimension tuple. Let S be a dy-

namically generating sequence in V. Then for any product norm p we have
dimy, v (¢, @, p) = f. dimg (S, @, p),
di_mEjP (Qa q)v p) = f dim27€p(s7 ®7 IO)

Proof. Let S = (a;)%2,, and let F = ((by;), (Wg,)) be a (g, ®)-dynamical filtration such

i=1
that ¢(bia,;) = a;. Let C' > 0 be such that

lasll < €,

1bg,51 < C,
lall < C,
for every v € V, there is a w € W such that ¢(w) = v, and ||w|| < C||v]|,

W has the C-bounded approximation property.
Let Opj: W — Wgy be such that ||0p| < C and

lim ||0px(w) —w|| =0 for all w € W.
(F3k)

We first show that
f.dimyg o (F, @, p) > f.dimy(S, P, p).

Fix ¢ > 0, and choose k € N, so that p(f) < € if ||f]lc < 1 and f is supported on
{n :n > k}. Choose k > 0 so that p(f) < € if || f]lc < k. Let Id € £ C ® finite and [ € N,
so that if F¥ D E,m > [ then

10Fm(bra;) — buajll < &
forall 1 <j <k.

Fix E C F C ® finite ] <m €N, and § > 0. We claim that we can find a F” C & finite,

and m’ € N and ¢’ > 0 so that

Homg 4 (S, F',m', ¢ 0; 0 Opr y € Hompg oo (F, F,m, 6, 0;)c2.

)o q’WF,,m,
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If T € Homp 4o (S, F',m’,¢',0;), B C {1,---,d;} is as in the definition of Homg ¢ (S, F',m/, ¢, 0;),
if1<j<mand ¢y, ¢, €F then

1T 0 q 0 Op i (bgy i) — i P1) -+ - 03(D) T (q(Or v (brag)) | ev ()
< CllOp i (borpyn.i) = Vorwgmillers) + CllOFr e (brag) = brajller(m) + 8-
For w € ker(q) N Wg,, we have
[0 g0 0p m(w) < Cll0p m(w) —wl,
so it suffices to choose ¢’ < ¢ and then F’,m' large so that for all 1 < j < m,¢ € F™,
CllOp g (b 5) = by jll + CllOp v (brag) — bragll <6 =7,
)

Wem WFJVLH < 5

|05
Suppose that F’,m’, §" are so chosen, and that m’ > k. If T' € Homg ¢ (S, F',m’, J), then

plar(T oqobp ) —as(T)) < (C*+ e + p(xqa<ey ()T © q 0 Opr oy (bra;) — T 0 q(braj)|)

<(C*+C +1)e.
Thus
f.dims (S, F,m, 6, (C* + C + 2)e, @, p) < opdimy, P(F, F',m’, 8¢, p)c,
since [, m’ were arbitrarily large and ¢’ arbitrarily small we have
f.dimy (S, Fym, d,e,®, p) < opdimy,(F, €, p)c,
taking the limit supremum over (F,m,d) and then the supremum over € > 0 we find that

f-dimg ¢ (S, @, p) < dimy (g, P, p).

For the opposite inequality, let 1 > ¢ > 0, and let k, E, [, k be as in the first half of the
proof. Fix £ C F C & finite, m > max(k,l) and 0 < 0 < k. By Lemma 3.2.8, choose a

0<d <daF CF Cofinite,a m <m’' € N so that if E is Banach space and

T Wpl7m/ — F
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is a contraction with

I<¢"

m/

HT‘ker(q)ﬂWF/Y

then there is a linear map A: Vg, — E with [|A|| < 2C and

T (by ;) — A(a;)|| < d forall 1 <j <m, and ¢ € F™

Let F',m/ be as above and T' € Homg o (F, F',m/,d', 0;) and chose S as in the preceding
paragraph. Let B C {1,---,d;} be as in the definition for Homg ¢ (F, F',m’,¢’, 0;). Then

forall 1 <j <mand ¢y, -, ¢, € F we have

[A(1 -+ pmay) — 0i(@) - - - 0 pm) Alay) ey < 26 + [T (bgy6,.5) — Ti(@) ++» 0i( @) T (bra )l er ()
<20+ ¢

< 3.

Further

plas(A) —ax(T)) < (2C° + C)e + p(xqa<ry (1) Ala;) — T(bay)ll) < (207 +C + 1)e.
Thus
f.dimy o (F, (207 + C +2)e, ®, p) < f.dimy (S, F,m, 35, ¢, ®, p)

so taking a limit infimum over (F,m,d) and then a supremum over ¢ completes the proof.

]

We now prove the necessary invariance to show that ¢P-dimension is well-defined.

Theorem 4.2.9. Let (R, X, 1) be a sofic, discrete, measure-preserving equivalence relation,
and V' a separable Banach space with a uniformly bounded action of R. Let ¥ = (o;: [[R]] —
[[Ra,]]) be a sofic approzimation.
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(i): If ¢: Y — V¢ Y' — V' are two bounded linear surjections where Y)Y’ have the

bounded approximation property,
dimzygp (q) = dimgﬂo ((]/),

in the sense of the definition given after Corollary 4.2.6.

(ii): Let S be a dynamically generating sequence in V. There is a separable Banach space
Y with the bounded approrimation property, and a bounded linear surjection q: Y — V. so

that
f.dims (S, ¢, p) = dimg s (q)

for any graphing ® and any product norm p on {>(N).

Proof. (i): Let S = (a;)52, be a dynamically generating sequence in V. We may choose

dynamically filtrations F = (Wg,m, (by;)), F' = (Wg,p, (b, ;)) for ¢, ¢’ so that
q(ba ;) = a; = ¢ (bua ).

Now (i) follows from the preceding Lemma.

(ii): It is a standard exercise that there is a bounded linear surjection ¢: *(N) — V. Let

S = (a;)32,, there is a dynamically filtration F = (Wgm, (by;)) for ¢ so that
q(buaj) = aj.

Now apply the preceding Lemma.

By the above Theorem, we can set
dimz,gp (V, R) = dimg’gp (S, CI), ,0),
di_InZ,ZP (V7 R) = di_ijP (57 (1)7 /))7

and this is independent of our choice of S, ®, p.
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4.3 Properties of Extended von Neumann Dimension

Definition 4.3.1. Let (R, X, i) be as above and V' a Banach space representation of R. If
v € V, then since (X, u) is standard there is a unique (up to measure zero) set A such that

Ids v = v and Idsc v = 0. We call A the support of v, and denote it by suppv.

The following inequality is frequently useful, and will be used to great extent in Section

4.6.

Proposition 4.3.2. Let ((X,p),R,V,®,%) be a dimension tuple. Let S = (a;)32, be a

dynamically generating sequence in 'V, then for any sofic approrimation ¥, and 1 < p < o0,

dimy »(V,R) < Z Supp ;).

Proof. Let A; = suppa;. Fix e > 0, let ' C ® be finite, m € N, ¢ > 0, if F' is sufficiently

large, then there is a B; C X measurable with Idg, € F™ so that
|| IdBj a; — CLjH <eg,

Thus for all large i, and for all " € Homg (S, F,m,d,0;) we can find a set C' C
{1,---,d;} with |C] > (1 —2§(1 +m))d; so that

1T(a;) = os(1da;) T (@) ler ey <6,

for all 1 < 7 < m. So if § is sufficiently small (depending only upon &, m) we have shown

that
(T(@), - T(an)) < Dol )(@(d),
j=1
so for all large i,
1 1 n m
d—idE(HomR,gp(S, F,m,d,0;)) < @ ;Tr(ai(IdAj)) — ;M(Aj).
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Thus
f.dimx(S, F,m,e,0,0;) < Z W(A;),
j=1

since the above is true for all £, m, sufficiently large and § sufficiently small (depending only

on ¢) the proof is complete.

]

Proposition 4.3.3. Let ((X,u), R, ®,V,X) be a dimensional tuple, and let W be another

representation of R. If T: W — V is a bounded equivariant map with dense image, then
dimgjp(‘/, R) S dimz,gp (VV, R)

Proof. 1f if S is a dynamically generating sequence in W, then T'(S) is a dynamically gener-
ating for W. If ¢ € Homg o (T'(S), F, m,d,0;), then ¢ o T' € Homg 4 (S, F,m, d, 0;) and

as(poT) = ars) (o)

we are done.

]

We also handle how dimension behaves under compressions. This implies in particular
that dimension is in fact invariant under weak isomorphism (we recall that two representa-
tions V, W of an discrete, measure-preserving equivalence relation (R, X, u) are weakly iso-
morphic if for any € > 0 there is a measurable A C X with u(A) > 1—cand Idy V =1d, W

are isomorphic as representations of R ).

Proposition 4.3.4. Fiz 1 < p < oo. Let ((X,p), R, ®,V,X) be a dimensional tuple with
R ergodic and (X, u) diffuse. For a measurable A C X, let ¥4 be defined by o4,(p) =
O'l(IdA)Ul(qZﬁ)Uz(IdA) Then

IU(A) dimzA’gp (IdA V, RA> = dimgep (‘/, R)

p(A)dimy, 4 (Ida V. Ra) = dimg, 4, (V, R)
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Proof. We will handle the case of dim only. Let S = (a;)32; be a dynamically generating
sequence for V. By ergodicity, we may find ¢y, - -, ¢y € [[R]] with ¢y = Id4, dom(¢);) = A

for 1 < j < k,dom(¢y) C A, and up to sets of measure zero,
k
X = |_| ran(t);).
j=1

Set A; = 1;(A). Let S be an enumeration of (¢xa;); .
We will first prove that dimy, ;»(V, R) < p(A) dimy,, »(Va, Ra) when p(A) =1/n.
It is easy to see that

dimy, 07 (IdAj v, RAj)

is independent of j. For T': V' — (P(d;), let Ty, : Va, — €P(o(Ida;)({1,--- ,d;})) be given by

Ty, (z) = os(Ida,)T(x).

J

Fix ¢ > 0, and let € > 0 depend upon ¢’ in a manner to be determined later.

Given FF C ®4,m € N,§ > 0, there is a F/ C &,m' € N,0’ > 0 so that T €
Homg o (S, F',m', ', 0;) implies Ty € Hompg 4o (Sa, F,m, 9,0, 4). If we choose F',m’,d" ap-
propriately and

ags, (Homg , ¢ (Sa, Fym,0,0:4)) S, W,

then
aS(HomR,gp(S, F/, m', (5’, Uz)) gE/,H.”p { Uz(wk)f : f S W} .
k=1
Since
tr(o;(Ida)) . l
di 7’L,
we find that

1
dimgggp (V, R) S E dimgjp (VA, RA)

1
dimy, »(V,R) < Edi_mz),ep(VA,RA)-
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We now show that dimy (V. R) < p(A) dimyg, o (Va, Ra) for general A (not necessarily
with p(A) = 1/n). Fix F C [[R]] finite r € N,§ > 0. Fix x > 0 which will depend upon ¢ in

a manner to be determined. Let

F O o, 1<i,q<k,¢cF}

Fix " € N, ¢’ > 0 which will depend upon r, § in a manner to be determined shortly. Suppose
that 7" € Hompg , v (Sa, F', 7", ¢, 0;), define

= Z o3 (V)T (¢ ).

Then
|T]| < M,
where M > 0 is some constant.

Choose C' C {1,---,d;} of cardinality at least (1 — §')d; for T" as in the definition of
Hompg , o (Sa, F',7", 8", 0;). It is easy to see that if F', 7’ are sufficiently large and ¢’ is suffi-

ciently small, then

1T (W5 $ghy ) — ai(ihi ooy )T (g a) ey < .

We have
v;le = Zw RR T
q=1
hence i
Ty da) = T gty ),
q=1
SO

> >

k
T(; " dar) Z (¥ 00T (¥ ar)

v (C)
if k > 0 is sufficiently small. Since

k

D s by = by,
=1
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for all sufficiently large ¢ we can find a set C" C {1,--- ,d;} of size at least (1 — d’)d; so that
Z Uz 1¢¢q) Xcr Ui(¢)0—i (¢q)7
as elements of M, (C). Then

Hmaz) ~0i(é)T(@)

ZP(CHC’)
k
Z w Lpar) Z @)oi ()T Yay)
= =1 (CnCY)
St D aw)ailyy lwqﬁwq‘laz)—Zai<wq>ai<wq>T<w;1al>
st = w(eney)
=

Thus T € Homg ¢ (S, F, 7,9, 0;) . Further, since ¢y = Ida,

k
Z Ida¢je; " =1da,
j=1

SO

k
0i(1da)T(a;) = Y oi(1da)os () T (15 ay),
j=1

hence o;(Id4)T(a;) agrees with T'(a;) on a set of size at least (1—¢)d; if 7 is sufficiently large.

So, if W is a subspace of (>°(N, (?(d;)) which e-contains ag(Hompg ¢ (S, F, 7,6, 0;)), then
oi(Ida)(W) 2e-contains ag, (Homg, w(Sa, F',17,0',0;)). This shows that

. 1
dlmz’[p (IdA V, RA) S m

dimg7gp (‘/, R)

Note that this implies p(A)dimy, »(Va, Ra) = dimg »(V, R) when u(A) is rational. If
1(A) is not rational, then since (X, i) is diffuse we may find measurable A, C A C B,, with
A,, increasing, B, decreasing u(A,), u(B,) are rational and u(A,), u(B,) — u(A). Then by

considering compressions

dingp(v R) :dimzA gp(VA 7RA )<

1 :
) et e T = 4, s e R
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dimg ¢»(V,R) = dims,, »(Vs,,Rs,) > == dimy; , 0 (Va, Ra),

1
1(Bn)
let n — oo to complete the proof.

]

We now show that dimension is subadditive under exact sequences. Unfortunately, we
cannot handle superadditivity even in the case of direct sums, not even in the case of Hilbert
spaces. Unfortunately, the proof for superadditivity given in Theorem 3.3.7 does not carry
over to our setting. The difficulty is in getting a bound analogous to Lemma 3.3.3 for our

different version of approximate dimension.

Theorem 4.3.5. Let ((X,u), R, ®,V,X) be a dimensional tuple, and let W C 'V be a closed

R-invariant subspace. Then for every 1 < p < oo, we have the following inequalities:
dimgjp(‘/, R) S dimg,@ (V/VV, R) + dimwp(VV, R),

di_mz,zp (V,'R) < dimg e (V/W,R) + di_mz,ep (W, R),

dimg, (V. R) < dimy o (V/W, R) + dimg o (W, R).

Proof. Let Sy = (w;)32, be a dynamically generating sequence for W, and (a;)32; a dynami-
cally generating sequence for V/W. Let v; € V be such that v; + W = a;, and ||v,|| < 2a;]|.
Let S be the sequence

V1, Wi, Vg, Wa, -« +

we shall use S and the pseudonorms

o0

1

IT)s05 =Y EIIT(%)II,
j=1
=1

T ,0 =) §|IT(wj)ll,
j=1

ITls: = Z o7 1T (wi)ll + Z AACH]

to do our calculation.
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Let € > 0, and choose m € N such that 27 < e. Let e € F; C ® be finite, m < m; € N
and 6; > 0 to be determined later. By 3.2.8 choose 0 < d < §;, and F; C F C ® finite and

my1 < k € N so that if GG is a Banach space and
T: VE,Qk -G

has ||T|| < 2, and

1] I < 5

then there is a A: (V/W)g, m, — G with ||A]] < 3, and

[A(Paz) = T(;)l| < o,

for all 1 < j,k <my and ¢ € (Fy U F} U {e})™.

By finite-dimensionality, we can find a F' O E, m’ > 2k, and 0 < ¢’ < §; so that if G is

a Banach space and T': Vi, — G has
1T () || < &[]
forall 1 < j <m/,¢p € (F'UF*U{Id})™ then

||T‘W0VE72]€ || < 5

Define =: Hompg ¢ (S, F',m/, ¢, 0;) = Homp 4 (S2, F',m/, &', 0;) by

=(T) = T‘WF/M/‘
Find
©: im(=2) — Homg (S, F',m’, 0", 0;)
so that
=000 =1Id
Then

(T = O(E(T)(Yv;) =0
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forall 1 < j <m and ¢ € (FyUF]U{id})™. Thus our assumption implies that we can find
aA: (V/W)p m, — ¢P(d;) so that

1T () — A(pag)|| < 6y
forall 1 <j <my,¢p € (FyUFU{Id})™, with [|A4| < 3.
Thus whenever ¢ € (Fy U Fy U {Id})™, and C' C {1,--- ,d;} we have
[A(a;) = oi(¥)Alay)llerc) < 201 + [|T(Yx;) — oi(h) Aag)|ler (),

so A € Homg ¢ (S1, F1,m1,301,0;)3. The rest follows as in Proposition 3.3.2.

4.4 Preliminary Results on Direct Integrals

Definition 4.4.1. Let (X, u) be a standard measure space, and V = (V,),cx a family of
Banach spaces. We say that V' is measurable if there are sequences (vg(gj))xex,jeN, (¢9))xex,j€N

with vg(cj ) e Ve, ¢§;j ) e V.’ satistying the following properties

Property 1: z+— <v§;j), gk))mex is measurable for all j, k

Property 2: SpanH.”{vg) : 7 € N} =V, for almost every x
Property 3: Spaan*{qﬁg ) j € N} = V. for almost every x
Property 4: @ || 3, f(j)véj)H is measurable for all f € ¢.(N)

Property 5: 2+ || 32, f(j)¢§;j)H is measurable for all f € c.(N)

It is a fact that if we are given properties 1 — 3, then property 4 is actually equivalent to
property 5.
We define the set of measurable vector fields, Meas(X, V) , to be all fields (v;).ex of

vectors in X such that v, € V,, for all x and = — (v,, 9 )> is measurable for all j € N. Note
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that our axioms imply that

[vall = sup 'Zf )(va, )

fee.(N,Q[7]),
|55 16| <

so that the norm of a measurable vector fields is a measurable function. We also define
Meas(X, V*) to be all fields of vectors (¢, ), such that ¢, € V' forallz € X and z — <vg(cj), Gz)
is measurable for all j € N. As above ||¢,|| is measurable. We leave it as an exercise to verify

that if v € Meas(X,V), ¢ € Meas(X, V*) then z — (v,, ¢,) is measurable.

For 1 < p < 0o, we define the LP-direct integral of V' denoted

Dp
/ V. dp(x)
b
to be all v € Meas(X, V) so that

lollz = /X loall? dulz) < oo

Holder’s inequality shows that [ )? "V, du(x) is a vector space.

Proposition 4.4.2. Let (X,pu) be a standard measure space and V' a measurable field of

Banach spaces over X. Then for 1 < p < oo,
Dp
/ V. dp(x)
X
15 a separable Banach space. Further a sequence (w(j) °.Lin fX Ve du(x) has
Span{xaw" : A measurable, j € N}

dense in ffj” Ve du(x) if and only if for almost every ., (wg(@j))]?’il spans a dense subspace.

Proof. Let oY gzﬁx be as in the definition of measurable vector field. We first prove com-

pleteness.

Suppose that w™ in f” V. dup(r) has
> ™, < oo
n=1
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Then,
00 N
O due) < tymint [ 3 0P duo)
w, w(z) < limin w, p(x
/X;n (o) < it [ 3
N p
< (Z ||w(n)||p>
n=1
o0 P
< (Z ||w(n)||p>
n=1

< oQ.

So for almost every =, w, = > -~ wé”) is norm convergent in V,. It is easy to see by

taking limits that w € Meas(X, V). By the same inequalities as above we also see that

< > e, —o,

D n=N+1

N
we S
n=1

as N — oo, and this proves completeness.

For the second fact, first suppose that w() in f)?" V. du(x) is such that Span{wg) 1 j € N}

is dense in V. for almost every z € X. Let v € f)?p V. du(x) and € > 0. then up to sets of

<g}_

Thus by the usual arguments we can find a measurable f: X — c.(N, Q[¢]) such that for

measure zero,

x= ){xEX:

fece(N,Qli]

> sl e

almost every = € X, we have

<E&.

Let F), be finite subsets of Q[i] which increase to Q[i], and so that 0 € F,, for all n. For
n € N, set
X, ={z € X : f(x)(j) =0 for j >mn, f(z)(j) € F, for all j}.

If n is sufficiently large then,

/ o ll? dia(a) < <.

n
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Thus

oo

> xx @G — v,

j=1

A

and it is easy to see that

> xx f(@) @)y

j=1
is a finite linear combination of elements of the form y Awg ). This proves one implication.

Conversely, suppose that x Awg(gj ) densely span f ;? "V, du(x), but that
A={zc X :wY does not densely span V,}
has positive measure. Then there is a v € Meas(A, V') so that
d (vs, Span{wg(cj)}) > 1

for all z € A. But we can find A\, , A\p € C, j1,--- ,jr € N and sets Ay, -+, Ag so that

k
v— Z)\jXAjw(j) < 1/2.
j=1

P
Replacing A; with AN A; we may assume A; C A. This clear implies that there is some

x € A so that

< 1/2,

k
v — Z Ajxa, (z)wd)
7=1

p

and this is a contradiction.

O

If V,,W, are measurable fields of Banach spaces over (X, u), and T,: V, — W, are

bounded linear operators with
z+— (T(v)), € Meas(X, W) for all w € Meas(W, X)

T — HTIHVIHWI isin L™

then we let

- / T du(e)

X
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denote the operator

Dp ©Dp
/ Vidu(x) — [ W dpu(z)
X X

defined by
(T'(v))s = Ty(vy) for all v € Meas(X, V).

Direct integrals arise naturally in the context of representations of equivalence relations.

Definition 4.4.3. Let (R, X, u) be a discrete measure preserving equivalence relation,
and let x — V,, be measurable field of Banach spaces over X. A representation w of R on
V' consists of bounded linear maps 7w(z,y): V, — V, so that n(z,z)r(x,y) = 7w(z,y) for
x ~y~ z 7m(r,x) = Id, and for each v € Meas(X,V),¢» € Meas(X,V*) we have that
(x,y) = (m(z,y)vy, ¢s) is a measurable map R — C. We say that 7 is uniformly bounded if

there is a C' > 0 so that ||7(z,y)v|| < C for all (z,y) € R, v € V.

Note that if 7 is uniformly bounded, then for every 1 < p < oo, we get a uniformly

bounded action of R on [y* V, du(z) by
(¢ : U)x = Xran(¢) (ZL‘)’]T(ZL', ¢_1($))U¢*1(x)-

Our work in this section has the following corollary which will allow us to work fiberwise
in the case of representations on measurable fields. This will be used quite heavily in Section

4.6.

Corollary 4.4.4. Let (R, X, ) be a discrete measure-preserving equivalence relation, with
a representation ™ on a measurable field of Banach spaces x — V. If w9 € f” Ve du(x) is

bounded, then w%) is dynamically generating if and only if for almost every x,

lI-llv

Span{w(m,y)wz(,j) Ly~ ) =V,.

4.5 Computations for LP(R,[).

Here we prove that

dimy, oo (L7(R, 7)®", R) = dimy; ,» (L”(R, 7)®", R) = n.
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We must take a different approach than the group case, as the operators defined there
will not fill up enough space if we use our different version of e-dimension. Instead, we shall

take a more probabilistic approach.

Proposition 4.5.1. Fiz 1 < p < co. Let v, be the uniform probability measure on{1,...,n}.

Let A,, C B({P(n,v,)), be measurable, where v, is the uniform measure, and suppose that

lim inf vol(4,) o >«
n—oo  \ vol(B(¢P(n,vy,)) -

Then there is a k(a,e,p) > 0 with

ll_r}% k(a,e,p) =1,

so that
1
liminf —d.(A,, || - ||,) > k(a,e,p).

n—oo M

Proof. 1f the claim is false, then there is a kK < 1, so that for every € > 0,

o]
K> h}gg}f ﬁda(Am - 1lp),
Then for all large n, we can find a subspace W C ¢?(n) with dim(W) < kn, and A C. W.
This implies that
AC U ((1 4+ ¢)Ball(xpe(W)) + e Ball(¢? (B¢, vg:)) x Ball({?(B,vg)).

BC{1,n},
|B|<en

Since x ge(W') has dimension at most £n, we can find a e-dense subset of (1+¢) Ball(xg-(W))

of cardinality at most (ﬁi)%n. Thus

vol((1 + ¢) Ball(xpe(W)) 4+ € Ball(¢* (B¢, vge)) <

2+ 4e
€

) " vol(Ball(P (B¢, vge))(2¢)5°.

vol(A) .
So olBaltr (noy 1S at most
Z 2|BCI(€)2(|BC|_nn)(2_'_48)25”

BC{1,,di}
|B|<en

vol(Ball(¢? (B¢, vge)) vol(Ball(¢?(B, vg))
vol(Ball(¢P(n, vy,)) '
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We have that the above sum is

len]
$ g (e g gy (”) V(r,n,p)
T

r=0

where
7"27'/p(n — ,,,.)2(”*7‘)/]’)1"(1 _|_ 2?”)

2r 2n=2r\,,2n/p °
T(1+ Z)0(1 + =2 )n2n/e

V(r,n,p) =
By Stirling’s Formula we see that
V(r,n,p) < C(p),

where C'(p) is a constant which depends only on p.

Further if n is sufficiently large and ¢ < 1/2, then by Stirling’s Formula

O =(o)=a() )

for some constant A > 0.

Putting this altogether, we have that

o < V2= (2 4 4oy (1) ( ! )15.

€ 1—¢

Since k < 1, the right-hand side tends to zero as ¢ — 0 so we have a contradiction.

]

Theorem 4.5.2. Let R be a sofic discrete measure-preserving equivalence relation on a

standard probability space (X, p). For all 1 < p <2, we have

dimy, (L7 (R, 75)®", R) = dimy; ,, (L7 (R, )", R) = n.

Proof. We shall present the proof when n = 1. Since our approach is probabilistic, it is not

hard to generalize the proof for general n.

Let ¥ be a sofic approximation of R, and let Id € ® = &, U P, where P, is a graphing

of R, and P is generating family of projections in L®(X,u). Let Id € F C & be finite,

m € N, > 0. We use S = (xa) to do our computation. It is clear that

dimy, » (LP(R, 1), R) < 1,
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so it suffices to show that

di—mE,ﬁp(Lp(R7ﬁ)7R) > 1

Let
C=W"{vgpvy :p € F™,pe PN F™}),
and let xp,, -, x5, be the minimal projections in C. Let {Ay, - - - , A,} be a partition refining
{By,- -, B.}, which we will assume to be sufficiently fine in a manner to be determined later.

We may assume that ¥ is eventually a homomorphism on W*({A;}9_,), there are E; C [[R]],
Oa: ={(x,y) €R:x € Aj} = | | graph(y),
YEE;
and that

F"CE'"+Ey '+ +E "

We may also assume that for every ¢ € E; and for all large ¢, we have that dom(o;(¢))) C
oi(A;)-

Note that if f € LP(R,7i), then we can uniquely write

Ida, f = ) foXeraph(s),

YEE;
where fy, € LP(dom(¢), 1) and the sum converges in || - ||,. Fix n > 0, and let F; C E; be

finite and so that for all ¢ € F™,
disty., (¢, F™) <.
Let v; be the uniform probability measure on {1,...,d;}. For £ € ¢*(d;, ;) define

TO () = 3 Baowtu(Fo)oi( e,

’LZJGFJ'

where for a measurable A C X, and f € L'(A, i) we use
Ba(f) = o [ 1
B uA) a
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Finally set
q
Te =Y T7(f)
j=1
We claim that if {A;,---, A,} is sufficiently fine, and 7 is sufficiently large, then

n({€ € Ball(2(di, 1)) : | Telloser < 2, for all 1 < p < 2})
1(Ball(2(d;, v;)

1 (4.2)

By interpolation it suffices to show that

p({€ € Ball(®(di, 1)) = || Tel[ 1o < 2,)
w(Ball(2(d;, v;)

— 1,

p({€ € Ball(®(di, 1)) : | Tellr2msee < 2,)
M(Bau(€2<d“ Vi)

— 1,

Let us first do the 2 case. We have that

ITEAE < Baom) (Fo) Plloi() €3+

YEF;

> Eaomw) (fo)Eaom(e) (fo)|[{0:(1) 7', 0i(9) 7€) <

$AUEF;
Lfoll3 a2

Z”(dom(w)ngz(d)) ¢llz+
VEF;
[ foll2lfoll2

2, Wm0 udom(@E () o)

Since
1 _ | dom(c; ()~}
vol(Ball(£2(d;, v;) /Bau(p(dm) loi(¥) ™ €ll2d€ < 7 — p(dom(v)),
1 - _ 2n
vol(Ball(¢2(d;, 1) /]3all(£2(d VZ)(UZ‘W) L€ 0y(0) 1) de = 2n+2tr(ai(¢)ai(¢)) — 0,

it follows by concentration of measure that P(||T§(j)|| < 2 for all j) — 1. If |TW(¢)|, < 2 for

all j, then
q q
TIN5 =D 1T (1da, HIIE <4 1 1da, FI3 < 4] £13-

j=1 j=1
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For the (!-case, simply note that

Tl < 3 o))
YEF,

Since

1 —1
i ¢ =
vol(Ball(2(d;, v;) /Bau(ﬁ(dm) loi(20) 7 €11 d€

| dom(a(¥) )] 1 /
d¢ <
d; vol(Ball(2(ds, 1) Jpantez(a, [§1ld€ <

| dom(a;(¢0)71)| 1 / €12 de "
d; vol(Ball(€2(di, vi) Juane2(d; ) 1 -

| dom(o;(¢) )| 1 / 11€]|2 de 1/2<
d; vol(Ball(¢2(d;, v;) Ball(£2(d;,v;) ’ -

| dom(a(¢) )]
d;

— pu(dom(y))).

So, again by concentration of measure

P{¢ : |T || 1o < 2 for all j}) — 1.

If HTE(J‘)HLI*MI < 2 for all 7, it is again easy to see that ||T¢||z1-p < 1. Thus (4.2) holds.

Suppose ¢ € F™, by our choice of Ey,--- , E,, we may write
q
6= D v
j:l ¢6Ej

where ¢; 4 € {0, 1}, further

2
¢ — Z Z cj’ww_l < n.
j=1 yeF; )
So
1T (Xgrapnien) = oi( )T (xa)l2 = ||| D D ciwos(¥) ™ = 0ul(9) | €
7=1 ’L[JEFJ‘ 9
As in Lemma 3.4.1,
q 2 q ?
/ Z Z Cj,wai(w>71 —oi(¢) | §|| d§ = Z Z Cj,Wi(ID)*l —0i(¢)
SN\ =1 ger; ) =1 YeF, )
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and so for most &,
q

Z Z Cj,lbai(w)il —oi(9) | &Il < 2n,
j=1 ¢€EF; )

by concentration of measure. Thus we have shown that

VOl(Oés(HOmR,ZP(SaFama(svo-i)Q))_>
vol(Ball(¢2(d;, v;)) 7

and since

n
i

vol(Ball(¢2(d;, v;)) v >0
vol(Ball(¢r(d;, v;)) 7

we are done by the proceeding Lemma.

]

We can prove a nice fact in the case of the action of R on L*(R,z) but we will need a

generalization of our previous volume packing Lemma.

Proposition 4.5.3. There is a function k(a,e) with

EB% k(a,e) =1

for all o which has the following property. Let d; be a sequence of integers going to infinity,
and let A; C Ball(¢%(d;)), and let p; be a projection on (*(d;), so that tr(p;) converges. If

lim inf vol(4;) v > o
500 vol(Ball(¢%(d;))) T
then

o 1
hiﬁ_l)glf ditr—(pi)dE(piAi’ |- 1l2) > Kl €).

Proof. 1f the claim is false, then we can find kK < 1, so that for every € > 0 there are sets A;
as in the proposition, and subspaces V; C (?(d;) with dim(V;) < k tr(p;)d;, so that p;A; C. V;.
This implies that

pidi C U [(1 + ) Ballj, (x5 (Vi) + £ Ball(¢*(B°))] x Ball(p;¢*(B)).

BC{l,,di},
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Let ¢; = tr(pi), ¢ = lim g;, also let V (k) be the volume of the k-dimensional ball in ¢?(d;).

Then we have

vol(p;A;) < vol[(1 + ¢) Ball(pixpe (V;) + € Ball(¢2(B))]V (dim(p;*(B))).

Let Sp be a maximal e-separated subset of (1 + ¢) Ball(p;x-(V;)), then

2 2 dil’n(pich(Vi)) 2 2 Kq;d;
1SB| < ( - 8) < ( - 8) -
£

3

Thus

wipa) s 3 (BEE)T e e ey dimp e (8) (i)

BC{1,-.,d;},
‘B‘Sé‘dl

< Y arudiphugh0mRay (dim(p,(*(B))V (dim(pil*(B°)).

BC{1,-d;},
|B|<ed;

Thus

vol(p; A;) < Z rasdi gdias i (1—K)a; V(dim(p;¢*(B))V (dim(p;(*(B°)) _
V(gid;) BC{Im i) V(qid;)
_|B|7§5¢7ii 7

Now

ViR =T

so by Stirling’s Formula there is a constant C' > 0 so that

V(dim(pi(*(B)))V (dim(p;(*(B°)) (qsdy) % e/ 2mqd;

< Credi .
V(qid;) B (q; — e)@—2)di, /27(q; — €)d;
Thus
AN Vi q
i it (YOHPiAD ) T q 4ra9ag(1=r)a_
i—o0 V(dez) (q — 5)q—€€€(1 _ 5)(1—5)
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Since vol(A4;) < vol(p;A)V((1 — ¢;)d;) we have

q‘ kq9q ~(1-k)q
o= (q—e)rees(1 - 5)(1_5)4 2 :
o vol(q;d;)V ((1 — ¢;)d;) e
hirgglf ( V(d;)
(1—q)' kq9q ~(1—K)q
e -geat e

Letting ¢ — 0, we obtain a contradiction.

]

Theorem 4.5.4. Let R be a discrete-measure preserving sofic equivalence relation on (X, p).
Let H be a separable unitary representation of R such that the action of R on H extends to

the von Neumann algebra L(R). For any sofic approximation ¥ of R, we have
dimgjp (7’[, R) = di_map (H, R) = dlmL(R) (H)

Proof. We first show that
dimy, o (H,R) > dimpr)(H).

Our hypothesis implies that as a representation of R,

H = @ L2(R7ﬁ)QJ7

j=1
with ¢; € Proj(L(R)).

As in Theorem 4.5.2 we shall deal with the case that H = L?(R,u)q for some q €
Proj(L(R)), it is easy to see that our proof generalizes.

Thus H is unitarily equivalent to a subrepresentation of L*(R,z) so we may as well
assume that it is a subrepresentation of L?(R, 7). Let p be the projection onto H, we use

P = pxa to do our calculation. Fix a graphing ® of R, and

oi: [[R]] = [[Ral;
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a sofic approximation. By Lemma 2.2.6 we may extend o; to an embedding sequence

oi: L(R) — Mgy, (C).
By perturbing elements slightly, we may assume that p; = 0;(p) is a projection for all 7. Let
T¢ be the operator constructed in the proof of Theorem 4.5.2. Fix F' C & finite, m € N, 0 > 0.

We know that for every F' C ® finite, m’ € N, ¢’ > 0 that

vol({¢ € Ball(¢?(d;)) : Te € Homp 2({xa}, F,m,8,0:)})
vol(Ball(¢2(d;))

— 1,
and that T¢(xa) is close to &.
It is easy to see that if F’,m’,§’ are chosen wisely then

HomR,ZQ({XA}7 Flu ml7 6I7 0; g HOHleQ({]/)\}, F7 m, 57 Ui)?

)) |pL2(R,ﬁ)
and that T¢(p) is close to p;. Thus the preceding proposition proves the lower bound.

For the upper bound, let S = (xaq;)52,. Fix € > 0, m € N, it is easy to see that if F is

large, and 6 > 0 is small enough then

-

{(T(xaq). - . T(xagm)) : T € Homg (S, F,m,8,09)} C. P 0i(qy) Ball(€*(d:)),

1

J
as

tr(oi(gq;))) — 7(q;),

the desired upperbound is proved.

]

We close this section with a complete computation in the case of direct integrals of

finite-dimensional representations.

Proposition 4.5.5. Let (R, X, u) be a discrete, measure-preserving equivalence relation.
Suppose that for some n € N, |O,| = n for almost for every x € X. Let V,, be a measure-
field of finite dimensional vector spaces and 7 a representation of R on V,. Then for all

1 <p < oo, and for every sofic approzimation ¥ of R,

dimy, s ( / %deﬂ(ﬂc)ﬁ) — dimy, ( / @pvzdu(x),R) -1 /X dim(V;) dp(x).

X X n
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Proof. We shall only handle the case when dim(V}) is almost surely constant, say equal to
k. The general case will follow by more or less the same proof. Without loss of generality
V, = C* with the Euclidean norm and 7(z,y) is a unitary for almost every (z,y) € R. Let

a € [R] be n-periodic and so that up to sets of measure zero, R = {(z,a’(x)) : 0 < j < n—1}.

Let
b(alz) =n(x,d’x),r € A,0<j<n-—1
Then
b(al2)b(aFz) ! = m(odz, oFx),
that is
b(y)b(x) ™" = 7(y, )
for z,y € R.

Define T': LP(X, i, C*) — LP(X, p, CF) by
(Tf)(z) = b(x)f ().
For ¢ € [[R]], we have
¢ (Tf)(@) = Xrane) ()7 (2, ¢~ 2)b(¢™ @) f(7'2) = Xean(e) (2)D(2) f(6 ') =

T(fod™)(x).

Thus we may assume that m(x,y) = Id for all (z,y) € R. Find A C X so that up to sets

of measure zero,

n—1
X =|]e(A).
=0
Let S = (e;®xa)}_,, where v® f(z) = f(x)v for f: X — C measurable and v € C". Set
k
pilh) =2 Il
j=1

for f € £>°(k,¢r(d;)). Fix ® C [[R]] containing {Id, o, a?, - - - , @"~ '} and a set P of projections
in L>(A, p) so that there is a sequence P, of partitions of A in P so that P, — Id. Without
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loss of generality, we may assume that for each n, o; is eventually a s-homomorphism on
W*(Py, ) with tr(e;(Id)) — 1. Let P, = {Bis, -+ » B}

Fix € > 0, and N € N. Suppose F' C @ is finite, and contains {Id, o, a?,--- , a1, Id},
m € N,6 > 0. It is easy to see that ag(Hompg (S, F,m,d,0;)) is almost contained in

P(o;(Idg){1, -+ ,d;})®*. Thus

dimy o (F,m, d,¢, p;) < lim —————= =

1— 00 dZ

ktr(o;(Ida) kK
.

Define
Ten: LP(X, p, CF) — ¢7(d;)

1(By,n) BN

n—1 my
T&N(f) = Z ( ! fo a’ d:“) Oi<&)jai(1d3k,1\7)€'

Y i(Id kN b
ENGIEN DS ( [ du) il 61

As

1
Vol(Ball(EP(di, l/z))

/ Jov(1d, )&l dit = tr(0+(1d, ) = 1 B).
Ball(¢? (d;,v;)

there are C; C Ball(¢*(d;, v;) with liminfiﬁgf&u)) > 1/3, so that ||T¢ || < 2 if
£ e

For all large 17,
Ten(oof) = oi(a)Te(f).
Ten(Wdp, y f) = 0i(ldp, ) Ten(f)
thus if N is large enough T¢ y € Homg ¢ (S, F,m, 9, 0;) if ||£], < 1.
As
Ten(xa) = o1a(A)S,
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we have

OéS(HOIIlR,@p(S, F,m,é, Uz)) 2 {O’Id(A>£ : f € CZ}

SO

dimzﬂ’ (Lp(Xa H, Ck)a R) >

RS

]

Corollary 4.5.6. Let (X, 1, R) be a discrete measure-preserving equivalence relation. Sup-
pose that O, is infinite for almost every x. Let V' be a measurable field of finite-dimensional

vector spaces with an action of R. Then for 1 < p < oo, we have

Dp
dimy g (/ de,u(x),R) = 0.
b

Proof. This is simple from the preceding proposition, since for every n € N, there is a
subequivalence relation R,, C R, where R,, has orbits of size n for almost every = € X (see

Proposition 2.1.24)

4.6 (P-Homology of Equivalence Relations

Let G be a locally finite graph. We let £(G) be the set of oriented edges of G, and E(G) the
set of unoriented edges of G, also we let V(G) be the set of vertices of G. If z,y € V(G),
we let (x,y) be the oriented edge from z to y, and [z,y] be the unoriented edge between
x and y. We shall abuse notation and use C#(® for all functions f: £(G) — C such that
f(z,y) = —f(y,z) for all (z,y) € E(G). We let (P(E(G)) be the functions in CF(@) so that

I£2="Y" Ifxy)l <o
[z,y]€E(G)

(note |f(z,y)| does not depend on the orientation of [z,y]). Similar remarks apply for

c.(F(G)) and other function spaces.
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If (z,y) is an oriented edge in G, define &, ,(u,v) = 0 if one of u,v is not x or y, 1 if
(u,v) = (z,y) and —1 if (u,v) = (y,z). If v: {0,--- ,k} — V(G) is a path (i.e. for all
1 <5<k (v(45),7)) € E(G)) we think of v as a an element of (*(E(G)) by having ~

correspond to
k

Z EG-1)0))-

Jj=1

For f: £(G) — C and v a path as above, we define

[ £=3 106 -120).

For a general graph G, define 6: CV(@) — CP@) 9. CP©G) — CV(©) by

(0f)(v) = > fw,v).

weV (Q):(w,v)eE(Q)

Then & and O are dual in the following sense: if f € c.(F(G)), and g € CV(© then

(9f,9) = —([,99)

where

(k)= > hz,yk(z,y)

[z.y]€E(G)
for h € c.(E(GQ)),k € CPE  (again this is independent of orientation). Similarly if f €
CP@) g € c.(V(G)), then

Let
By (G) = Span{y € c.(E(G)) : v is a loop}.

Z1(G) ={f € (E(G)) : 0f = 0}

ZHG) = {f e CP@ . /f = 0 for all loops 7}
Y
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If f € ZY(G) and v, w are vertices in G, and v: {0,--- ,k} — V(G) is a path from v to w,

lf

depends only on v and w since f integrates to zero along all loops. We will use

/U s

for this number. Note that Z}(G) = {dgh : h € CV(@}. In fact, if f € ZY(G), and (G})jes

then

are the connected components, then for fixed x; € V(G;)

for v € V(G;) has 6gh = f.

Define the space of ¢P-cocycles by
Z(lp)(G) =ZHG) NP (BE(Q)).
Define the space of ¢P-boundaries by
= e
BY(G) =Bi(G) "

If @ C G is a subgraph we identify CF(E) C CE() by extending by zero. This allows us

to make sense of all the function spaces above for G as subsets of CF(©),

Definition 4.6.1. Let (R, X, ) be a discrete measure-preserving equivalence relation. A
measurable field of graphs fibered over R is a field {®,}.cx of graphs having vertex set O,,
such that ®, = ®, for almost every (z,y) € R, and J,.y £(®,) is a measurable subset of

R which intersects the diagonal in a set of measure zero.

We set E(P) =, E(P,).

zeX
If ® is a measurable field of graphs fibered over R, the cost of ® by (originally defined
by Levitt in [19]) is defined by

1

dwzﬁémm@wu>
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where deg(z) is the degree of the vertex x. This is also

1

S(E(®).

We recall that the cost of R, as defined by Levitt is given by
¢(R) = inf ¢(P)

where the infimum is over all measurable fields of graphs fibered over R which are connected
for almost every x. Many important properties of cost are discussed in [11]. In particular,

Gaboriau proves a formula for how cost behaves under compression.

For any ® = (¢;)jes, with J countable and ¢; € [[R]], and for each z € X, we de-
fine a graph whose vertices are O, and whose oriented edges are {(u,v) : u ~ z,v =
¢*1(u), for some ¢ € ®}. If &, denotes the corresponding graph note that

(@) = 3 uldom(s,)).
jeJ
Note that ®, is connected almost everywhere if and only if ® is a graphing, and in this case
c(®) Is simply the cost of ® as previously defined. We leave it as an exercise to use the
measurable selection theorem (Theorem 2.1.18) to show that any measurable field of graphs

over X comes from a graphing of a subequivalence relation.

If + — @, is a measurable field of graphs over X, let LP(E(®))/B§p)(E(®)) be the LP-
direct integral of the space (P(E(P,)) /B%p )(CDI). Note that R has a representation 7 on
(E(®,))/BP (®,), given by 7(z,y) = Id for all (z,y) € R.

We will show that if R has finite cost and satisfies a “finite presentation” assumption,

then dimg(Lp(E(qD))/ng)(E(CD)), R) does not depend on the choice of finite cost graph ®.

Definition 4.6.2. Let (X, u, R) be a discrete measure-preserving equivalence relation. Let
¢ = (¢;)jes be a graphing of R. We say that ® is finitely presented if there are measurable

fields of loops (LY))% | such that for almost every z € X,

Span{Lz(f) cy ~x,j € N} = By(P,),
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and

[e.9]

Z p(supp LY) < oo,

j=1

We say that R is finitely presented if it has a finitely presented graphing. For example, if

R is a induced by a free action of a finitely presented group, then R is finitely presented.We
will proceed to show that if R is finitely presented, then in fact every graphing is finitely

presented. It may be useful to consider the group analogue first.

Suppose I' = (s1,- -+, s,|r1, 72, - , 7 is a finitely presented group. And suppose that

ty,--- ,t also generate I'. Choose words w; in tq,--- ,t; so that

wi(tla T 7tk) =5

and choose words v; in s1,---, s, so that
ti = Ui(Sh cee ,Sn).
Set
g; = ri(wl, s ,wn),
i = Ui(wb e 7wn)a

then one can show that
F == <t17t27 e atk’|0_la e 70-m7771t1_1a n2t2_17 e 7tk‘a];1>'

Graphically, choosing words w;, v; as above corresponds to finding a path in Cay (T, {¢1,- -+ ,tx})
from e to s; and vice versa. So we will simply express the above proof in the language of

graphs and this will allow us to generalize to the case of equivalence relations.

Lemma 4.6.3. Let G,G’ be two connected locally finite graphs with the same vertex set.
Choose paths {0y .}y e in G’ from y to z such that 0. = —0.,. Similarly, choose paths
{Yowtwwesey in G from v to w such that Yy = —Yw. Suppose that {L; : j € J} is a
family of loops in G so that

By(G) =Span{L; : j € J}.
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Define T: ¢.(E(G)) — c.(E(G")), by
Tf = Z f(ya Z)Uyza
ly,2€E(G)

Then
Bi(G') = Span{T'(L;) : j € J} + Span{T (Vpw) — Eww) : (v, w) € E(G")}.

Proof. Note that

ce(E(G)) = U e,

FCE(G) finite
give ¢.(E(Q)) the direct limit topology with respect to this filtration. That is, if f, €
c.(E(G)) then a sequence f, € c.(E(G)) converges to f € c.(F(G)) if and only if there is a
finite subset F' C E(G) so that supp{f,} C F for all n and f,, — f pointwise. It is easy to
see that every subspace of c.(E(G)) is closed in this topology, and that c.(E(G))* = CP©)
with respect to the pairing
(f.o)y= > flw.2)9,2)
[y,2€E(G)

(the above sum being independent of the orientation of edges).

/ g=0, g(v,w)z/ g.
T(Lj) (T(’Yv,w))

Note that the topological vector space adjoint

Let g € CP() be such

T': CPE) - PO,

is given by

T f(y, 2) = / S

Thus



for all j. As the L; span B;(G), This implies that there is a h: V(G) — C such that
dgh = T'g. Note that for all (v,w) € £(G"),

h(w) - h(v) = / 1= / g=glo)

Therefore,
5(;/ h = g.

This implies that g € Z'(G’). As Z'(G’) is the annihilator of B;(G), and c.(E(G)) is a

locally convex space, the Hahn-Banach Theorem now completes the proof.

]

Lemma 4.6.4. Let (R, X, p) be a discrete measure-preserving equivalence relation, if R is

finitely presented then every finite cost graphing of R s finitely presented.

Proof. Let ® be finitely presented and let LU) be as in the definition of finitely presented.
By measurable selection, (Theorem 2.1.18 ) we may let (E)rex be a countable family of

partially defined measurable functions from X to X with the following properties:

L E(®) = Upex (@, Ek(x)) : v € dom(E) } U {(Ek(),x) : v € dom(&)}
2: for all j,k {(z,&;(x)) : v € dom(&;)} N {(E(x),x) : v € dom(&)} = @

3: forall j # k{(z,&(z)) : v € dom(&;)} N{(x,E(x)) : z € dom(&)} = @

By measurable selection, we may choose each k € K, a measurable path ag(;k) in ¥ so that

for almost every z, o is a path from 2 to Ex(x). Define

Ty: co(BE(®,)) — co(E(V,))

Tf=Y Y.  fw&y)od.

y~x ke K:yedom(&y)
Then T, =T, if y ~ z. Let (D, )aca be a countable family of partially defined measurable

functions from X to X in ¥ following properties:
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LI E(¥) = Upeal(@, Di(x)) : v € dom(Dy)} U {(Dr(x),x) : x € dom(Dy)}
2: for all j,k {(z,D;(z)) : x € dom(D;)} N {(Dy(z),z) : x € dom(&)} = @
3: forall j # k{(z,D;(x)) : x € dom(D;)} N{(x,Dx(x)) : x € dom(Dy)} = @

Let % ) be a measurable family of paths in ® so that for almost z, %E ) is a path from

2 to Du(z). From the preceding lemma, it then follows that (7, LY )31 (To () = &, D<a)))

is a measurable family of loops in ¥, and

Span{{T, L : j € N.y ~ a} U{(T, (") = €, pe)) 1y ~ w0 € A} = Bi(Vy),

(note that to apply the preceding Lemma we need to use that TxL?(,j ) = Tngcj ), and similarly

for 75,0‘) ).Further,

Zu supp T'(LY)) Si (supp L) < oo,

Zu supp(T(7'Y) = Epa(y)) < e(¥) < oo
O

We now proceed to prove that dimg,gp(LP(E(CID))/B?)((I)), R) does not depend upon the
choice of finite cost graphing when R is finitely presented. Our methods are similar to
Gaboriau’s in [12]. We must be more careful, however, since we do not have monotonicity

of our dimension. We will need the following “Continuity Lemma.”

Lemma 4.6.5. Fiz 1 < p,q < oo. Let (R, X, ) be a sofic, discrete, measure-preserving
equivalence relation, with R finitely presented. If ® is a finite cost graphing of R, and &)

s an increasing sequence of subgraphs of R so that

d, = ch;”)

for almost every x, then

dimy e (LP(E(@™))/BP (0™), R) — dimx(LP(E(®))/BP (@), R),
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dimg, o (B (E(®))/B (@), R) — 0,
dimy, ,, (LP(E(®™)) /B (@™), R) — dimy,(L?(E(®))/B{” (@), R),

dimy, ., (B (B(®))/BP (™), R) — 0.

Proof. Let E: LP(E(®™)) — LP(E(®)) be defined by extension by zero. It is easy to see
that E descends to a well-defined map, still denoted F

LP(E(@M))/ B (@) = LP(E(®))/B{" (2).
By subadditivity under exact sequences, and the fact that E is surjective,

dimy, 4o (LP(E(®))/BP (9), R) < dimg, s (im E), R) + dims, ¢« ([L?(E(®))/BP (9)] /im E, R),
< dimy,(LP(E(®™))/B” (™), R)

+ dimy, ¢ ([LP(E(®)) /B (®)] /im E, R),

where in the last line we use that dim is decreasing under equivariant maps with dense image.

It is easy to see that there is a R-equivariant map

LP(B(®\ @™)) — [LP(E(@™))/BP (&™)]/im E
with dense image. Thus

dimg, g (LP(E(®))/BP (9), R) < dimg ¢ (LP(E(®™))/BP (0™, R)

+¢(®\ ™),
Since ™ increasing to ®, and ¢(®) < oo, we know that

c(@\ @M) = SH(E(@)\ E(@M)) —

[\DI»—t

Thus,

dimy, o ([LP(E(®))/BP (®)]/im E, R) < lim inf dimy, g (L (E(®™)) /B (@), R).

n—oo
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For the opposite inequality, consider the restriction map
R: LP(E(®)) — LP(E(2™)),
then R descends to an surjective R-equivariant map (still denoted R)
L(E(®))/BP(®™) = LP(E(®))/B{ (™).

Thus
dimy, o (L (E(®))/BP (0™), R) < dimy(LP(E(®))/BP (3™, R).

Considering the exact sequence

0 B (®) L7 (%) LP(®)
B (2(m) B (@) " B (@)

we find that

(p)
dimg o (L (E(®))/B{” (@), R) < dimy s (B—Bl - R)

So it suffices to prove the second limiting statement. Since R is finitely presented, by
the preceding lemma we can find measurable fields of loops (LU )51 which generate B§p ) (d)

and so that

Z p(supp LY) < oo,

=1

Since
dimy, o (B (E(®))/BP (™), R) < Z,u({x : LY) is not supported in ®™})
=1

and

p({z : LY is not supported in ®™}) — 0,

p({z : LY) is not supported in ®™}) < p(supp LW),
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the Dominated Convergence Theorem implies that
dimg ¢« (BY (®)/BP (@), R) — 0,

as desired.

]

Theorem 4.6.6. Fiz 1 < p,q < co. Let (R, X, ) be a sofic, discrete, measure-preserving
equivalence relation with R finitely presented and of finite cost. Let ®, U be two finite cost

graphings of R. Then
ity (LP(E(®)) /B (®), R) = dimg,(LV(E(V)) /B (¥), R),
dimy, o (L"(E(®))/ B (@), R) = dimy, » (L (E(¥))/B{" (V). R),
Proof. Let ® = (¢;)52,. Let ™ W™ be the subgraphs defined by
E@M) = {(y, 07 (y) : 1 < j < n,y € dom(¢F"),y ~ x}

EWT™) = {(y,2) € E(V) : dygo(y. 2) < m},
here d<1><") is the graph distance defined as the infimum over all £ so that there exists
o, %1, g € V(OM), 20 = y, 4 = 2, (Tj_1,25) € E(@) forall 1 < j < n.

Note that if +,.,7, . are two paths from y to z in ®™ then their difference is a loop in
@™ Thus for (y, z) € £(T"™) we have a well-defined element o, of 7(E(®™),) /B (&)

given as the equivalence class of any path from y to z in &),

Then for each n, m we have a well-defined bounded linear map with 7, (whose norm is

bounded uniformly in x)

T /(W) B () — (@) /B (@)

Txf - Z f(ya Z)Uyz’

[y,2]€E(2(M)
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Let
@
T:/ T, du(x).

X

It is straightforward to check that T, = T, for almost every (z,y) € R so that T is an R-

equivariant map
LP(B(Um)) /B (00 — LP(B(2)) /B (2).

By subadditivity of dim under exact sequences, and the fact that dim decreases under

bounded, linear, equivariant maps with dense image,

dimy, g (LP(E(®™)) /B (@) R) < dimy o i
+ dim(LP(E(®™))/BP (&™) im T, R)
< dimy oo (LP((BT™™)) /B (9 R)

+ dimy o (LP(E(®™))/BP(&™) im T, R).

Now suppose that x ~ y ~ 2z in X, and y, z are in the same connected component in

"™ Then we can find a1, - - , 2, with y = 21,2, = z which are adjacent and

is a path from y to z in B,. Further, if 0,, is any other such path, then again there difference

is a loop, so oy, represents a well-defined element in im(7"). Let

Y — Span”'”p{ayz -y, z are connected in W™

Dp
Y = / Y™ dp(z).
X
Then
dimy(LP(E(@™))/BP (@) /imT, R) < dimy(LP(E(@™))/BP (@) /Y™, R).
Now let VA™ C 7(G5) be defined by

(n) (n,m)

AR Span”'Hp{yyZ :9Y* is a path from y to z in ®;", y, 2z connected in ;"™ },
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®p
Ve = / VI dp(x)
X

Then we have a surjective equivariant map
LY (B(@™)/V® — (L (E(@™)/B (@) /v,

SO

dimy (L (E(®™))/BP (9™) /Y, R) < dimy(LP(E(®™))/V™ R).

Let (E;)32, be disjoint edges generating LP(E(®™)) such that
> nlsupp(E;)) = c(@).
=1

Writing EY) = (f(z), g(x)). Then
dims . (LP(E(®™))/V ™, R) < Zu({x € supp(E;) : (f(x),g9(x)) ¢ C(T™™)})
= (@ \ C(v™))

where

C(¥™™)) = {(y,2) € R : y is connected to z in ®M}.

Putting this altogether we have

dimy, ¢o (LP(E(®™))/BP (®™), R) < dims; 4o (LP(W™™) /BP (0(m) R)

+e(@™\ cutm)),

choose an increasing sequence of integers m,, so that
(T, NC(BM))\ Tmn)y

c([™ N\ C(W, NC(@M))]\ [\ C(e™ ™)) — 0.
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Then U™ increases to U, and it is easy to see that

(@M c(wimn))y - 0.

Thus letting n — co and applying the preceding lemma we find that
dimy o (L7 (E(®))/BY”(®),R) < dimy,e (L (E(V)) /B (¥), R)

the proposition now follows by symmetry.

]

Definition 4.6.7. Let (X, u,R) be a sofic, discrete, measure-preserving equivalence rela-
tion, with R finitely presented and of finite cost, and let ¥ be a sofic approximation of
R. By the above Theorem, the number cgp)E(R) = dimy o (LP(E(®))/BP (®),R) is inde-
pendent on the choice of a finite cost graphing ®. Similar remarks apply to (_:5{’ )E(R) =
dimy; » (LP(E(®))/ B (©), R).

It is easy to see that cgp ) (R) < ¢(R). By Theorem 4.5.4, if R has infinite orbits we then
have

PR)+1=c%R) = 4(R) < «(R).

In [12], Gaboriau asked the following question “is ¢(R) = 8(R) + 1?7 (see [12] page

129). If we can find an example where

for some 1 < p < oo, this would automatically produce a counterexample to this conjecture.

Theorem 4.6.8. Let (X,u,R) be a ergodic, finitely presented, sofic, discrete, measure-
preserving equivalence relation, and let 3 be a sofic approximation of R. Let A C R, and

define 0; a1 L(Ra) = My, (C) by 0, 4(x) = 0;(Ida)oi(z)o;(Ida). Then

WA (P (Ra) — 1) > B(R) — 1.
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Proof. Let ¥ be a graphing of R4. Let n € NU {0} be such that nu(A) <1< (n+1)u(A).
By ergodicity, we may find A = Ay, Ay, - -+, A, essentially disjoint measurable sets such that
there exists ¢; € [[R]],1 <@ < n with dom(¢;) = A,ran(¢;) = A4;,1 <i<n,anda A’ C A
such that there is ¢, 1 € [[R]] with dom(¢, 1) = A’, and

ran(d,11) = X\ | J Ay
j=1

Let & = W U {¢;}"H. We use LP(E(¥|,)), B" (¥ ,), for

Jj=1

) C(E(W),) du(x),

®p
/ BY(W,) dyu(z),

A

and LP(E(D)), BY (1), for

: " (B(W),) du(x),

/X@p BY (W,) du(z).

Then
XaLP(E(V)) = LP(E(¥]a)),

and

Considering the exact sequence

LP(B(®)) LP(B(V)) 0

0 —— LP(E(® \ \Ij)) ’ ng)(\ll) ng)(q))

we have

APL(R) < ¢(®\ ) + dimy o (LP(E(V)) /B (9), R)

=1 — pu(A) + dimg o (LP(E(V)) /B (®), R).
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By Proposition 4.3.4, we thus have

APL(R) <1 — p(A) + p(A) dims, o (LP(E(2] )/ B (] ), Ra)

=1 — u(A) + (A%, (Ra).

Rearranging proves the inequality.

]

Let (R, X, u) be an ergodic, discrete, measure-preserving equivalence relation. We let

F(R) be the set of all ¢ € R so that there exists measurable subsets A and B of X with

IC)
n(B)

and
Ras= Rp.

Then F(R) is a subgroup of the positive reals. We call F(R) the fundamental group of R.

Corollary 4.6.9. Let (X,u,R) be a sofic, ergodic, finitely presented, discrete, measure-

preserving equivalence relation. If for some p we have
i%f cgpg(R) > 1,

where the infimum is over all sofic approximations, then the fundamental group of R is

trivial.

We will deduce more about c%’j )E(R) in the non-amenable case, but we will first need to

discuss the discrete Hodge decomposition for amenable graphs.

Let G be a countably infinite connected graph of uniformly bounded degree. Since G is
infinite, 0 is always injective. We say that G is amenable if for some 1 < p < 0o, we have

d(lP(V(G)) is a closed subspace of ¢P(E(G)). Equivalently, there is some C' > 0 so that

1551lp = CII -
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Note that if p is as above, then for all 1 < g < oo, we have §(¢%(G)) is closed in £/(E(Q)).
If §(¢4(G)) were not closed, then we could find f,, € ¢9(G) of norm one so that ||0f,|, — 0.

We can argue as in Lemma 3.8.1.

By duality G is amenable if and only if 0 is surjective as an operator from ?(E(G)) —
P(V(@)) for some 1 < p < oo, and this is also equivalent to saying that 0 is surjective as an

operator from P(E(G)) — (?(V(Q)) for all 1 < p < oo. For notation we let A = 90 o 6.

Proposition 4.6.10. Let G be an infinite amenable graph of uniformly bounded degree, then
A is invertible as an operator from (*(V(G)) — *(V(G)) for all 1 < p < oo.

Proof. Let d(x) be the degree of z, and let M, be the operator on ¢*(V(G)) given by multi-

plication by d. Define

and note that A = My(A —1d).

Regard d as a measure on V(G), then since G has uniformly bounded degree we know
that
r(V(G)) = (V(G),d)

with equivalent norms. Regard § as an operator from *(V(G),d) — (?(E(G)) and let —0,
be its adjoint, also let Ay = 0y 0 4. Since

(Of, Qv = —([,09)wvicyy = —(f, MaMy-109) e (v () =

—(f, Mg-109) e (v (G),a),

we find that 0; = My-10, so
Ag=MzA=A-1d,

hence it suffices to show that Ay is invertible for all 1 < p < oo as an operator from
r(V(G),d) = 2(V(G), d).

Let € > 0 be such that ||6f||22(E(G)) > 5||f‘|£2(V(G),d)7 then

52 S _Ada
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as an operator on £2(V(G), d). Since —A; = 1— A, this implies that A < 1—¢? as an operator
on 2(V(G),d).
Thus
(AL, Pleve.al < (AL Dewe.s < (1 =) fI5

Since A is a self-adjoint operator, this implies that ||A|lzw (@)ag—ev@)a < 1. Since
HA”El(V(G),d)ﬁ\ﬁl(V(G),d) < 17 |’A|‘goo(v(G)7d)_>[oo(V(G)7d) < 1, by interpolation we find that there
is a C}, < 1 so that

[Aller(v@),ay—ervicya < Cp

Thus Ay is invertible on /7 for 1 < p < oo as desired.

]

Corollary 4.6.11 (Discrete Hodge Decomposition). Let G be an infinite non-amenable graph

of uniformly bounded degree, then for every 1 < p < oo we have the direct sum decomposition

(B(G)) = Z{"(G) @ BL(G).

1

A projection onto B(p

)(G) relative to this decomposition may be given by 6 o A=1 o0 0.

To apply this to the case of equivalence relations, we prove the following Lemma.

Lemma 4.6.12. Let (X, u,R) be a finite cost discrete measure-preserving equivalence rela-

tion with O, infinite for almost every x. The following are equivalent

(i) There is a finite subset ® C [[R]], such that for almost every x, every connected

component of the graph ®, is not amenable,
(1) for every R-invariant measurable A C X with u(A) > 0 we have R 4 is not amenable,

(#ii) for every A C X with u(A) > 0 we have that R4 is not amenable.

Proof. 1t is clear that (iii) implies (ii).

The fact that (ii) implies (i) is the content of Lemma 9.5 in [17].

203



Suppose (iii) fails and (i) holds. Let A with u(A) > 0 be such that R4 is amenable, let
B be the R-saturation of A. Since (7) holds, we know that

Cx = inf Hd;p f||1 > O
Fel(0n),
||f||1 1

for almost every z € X and is constant of equivalence classes. Thus replacing A with a

subset, we may assume that there is a C' > 0 so that

100, flln = Cll £l

for all z € B.

Since R 4 is amenable, we may find measurable fields of vectors &(En) € (O, N A) so that
1€5 1y = 1, and [|€5 — &5y — 0 for (z,y) € Ra. Let {¢;};es C [[R]] with J countable be
such that {ran(¢;)},cs is a disjoint family, dom(¢;) C A, and

B = U ran(¢;).
jeJ

Define A" € Meas((1(0,) for z € X by A\ = g;’?l o if # € B and j is such that
z € ran(¢;), and AY” = 0 for z ¢ B.

Define ¢ € Meas(£'(0,)), by ¢ (y) = A{” (x). Then

/w% s due (/ZWM—”WMM(%W@7

ped

and since ® has finite cost, this goes to zero by the Dominated Convergence Theorem. But

on the other hand,

[ 168,60l dute) = € [ 16l dnte) = € [ WO @) dnte ) = Cu(B)
X X R
which is a contradiction.

]

If ® is a graphing of R, we may define the ¢P-cohomology space of R as the direct integral
of Z{P(®,)/BY(®,) and we denote it by H{(®). We set 5% (¢) = dims w(H{” (), R),
B87)(9) = dimg, o (H" (®), R).
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Corollary 4.6.13. Let (X, u, R) be a discrete, sofic, measure-preserving equivalence relation
such that R 4 is not amenable for any A C X with p(A) > 0. Suppose R has finite cost and
is finitely presented, and fiz a sofic approximation > of R. Then for any graphing ® of R,

we have

Proof. First, express ® =, ®™ by the above Lemma, we find that up to sets of measure
Zero,
oo
X = U{x - ®(" is not amenable },
n=1
and each of the above sets is R-invariant. From this, it is not hard to see that we may choose
®( so that for every n, either ®{" is non-amenable or zero.

By the Discrete Hodge Decomposition, we have the following exact sequence

s Bl (&M . LP(EE@M)) ARG .
0 B(p)<q) ) ’ B%p)(qt'(”)) B§;)(‘b(n)) 07

now apply subadditivity under exact sequences, and Lemma 4.6.5 to complete the proof.

m
Corollary 4.6.14. Fizn € N, suppose R is the equivalence relation induced by a free action
of F,, on a standard probability space (X, u). Then for any sofic approximation ¥ of R, we

have that
L (R) = df%(R) = .
i particular forn > 1,

(») —
@17”2(@) >n—1

for any graphing ®. If ® is a treeing of R, then
® (@)= 3P (D) =n — 1
B9 (@) = BIL(@) =n — 1.
Thus, if R has infinite orbits and is amenable then

A(R) = ¢%(R) = 1.



Proof. If ® is the graphing provided by the canonical generating set of [F,,, then
B (@) = {0},

LP(E(®)) = LP(R, @)*",
and the proof of the first statement is thus complete.

By Lemma 3.8.2, we know that Hl(p)(qD) can be generated by n — 1 elements, and this

proves the upperbound.

The last statement follows from the standard fact that a amenable equivalence relation

with infinite orbits is induced by a free action of Z (see [17] Theorem 6.6).

]

Proposition 4.6.15. Let (R, X, u) be a discrete measure-preserving equivalence relation

such that O, s infinite for almost every x € X. Then ggp)Z(R) > 1.

Proof. By the ergodic decomposition (Theorem 2.1.23) , we can find R-invariant measurable
subsets A, B of X so that u(AN B) = 0, with R4 amenable, and Rp has no amenable
compression. Let o € [R4] generate R 4. Let &y be any countable graphing of Rp, and set
¢ = {a} U ®Py. Then as representations of R :
PR e LE@)
B, ((I)O)

and by the Discrete Hodge decomposition we have a surjective R-equivariant map

— ng(RB,,l_J,).

Thus %ﬁ;) has an R-equivariant surjection onto LP(R, 1) and this completes the proof.
1

O

We would like to prove one last property of our ¢P-Betti numbers. Namely, that



As we already know that
/%(R) < e(R),

this gives one more relation between the problem of evaluation c% )2 (R) and the cost versus

(2-Betti number problem.

We need the following Lemma, which is a technical refinement of Proposition 4.5.1.

Lemma 4.6.16. Let v, be the uniform measure on {1,...,n}. Let q, be a sequence of
orthogonal projections in M, (C) such that tr(q,) converges to some q € [0,1]. Then there is
a function k: (0,1] x (0,00) — [0,1] such that

lim k(a,e) =1 for all a > 0

e—0

and which satisfies the following. For all A, C Ball({*(n,v,)), with A, measurable and

b (vl N
11m in @
n—oo \ vol(Ball(£2(n,v,)) B

we have

.1
lim Eda(QnAna - 1lp) = K(e,€)q.

n—0o0

Proof. Suppose k > 0 so that for all € > 0 it is true that for all large n we can find measurable
A, C Ball(¢*(n,v,)), with ¢,A, C. W and dim(W) < kn. Fix such A, k, W,e. We wish to

get a lower bound on k. We have

A, C | (L+2)Ball(xpe(W)) + e Ball("(B¢, ) + £ Ball({*(B, 13,)).

By a volume-packing argument, we may select e-dense subsets
Sp C Ball(xg:(W),

Tj; C Ball(®(B, v,,),

so that




Thus
wmA S U &+ ¢+2eBall(P(n, ).

BC{1,..,n}, (€SB (€T
|B|<en

Similarly, we may select a e-dense (in the £2-norm) subset F of Ball((1 — ¢,)¢*(n, vy), || - ||2)

2+2€ 2(n—=Tr(gn))
Fl < .
ne ()

with

Since A,, C Ball(¢*(n, v,)) we have (1 — g,)A, Ce o F 80

An g QnAn + (1 - Qn)An

c U U e+cHnt2eBal((n, )+ Ball((n,v,)),

Bg{l ''''' TL},&ESB7
|B|<en (€T3,
neF

C | ¢+ ¢+ n+3eBall(?(n, 1)),

£€SE,
CeTB,
neF

where in the last line we use that p < 2. Thus if € < 1/2, we have
n 1/2n
vol(A,)'/?" < |ne JW"(L J) | |2 Sp| 2 T | /2" 3e vol(Ball(€7(n, 1)) /"
ne
By the calculation on [21] page 11, there is a C' > 0 so that
vol(Ball(¢?(n, 1,))/*" < C'vol(Ball(¢3(n, i) )Y/

Thus,

olld) N () gy s
vol(Ball(¢2(n, p,) - |ne

1/2n
< 30T | e |12 (L ngJ) (2 + 2¢)171(an) (2 4 ge)rte,
n

By Stirling’s Formula,

n 1/2n
lim = (1 —g)"U=9)/2¢/2,
[ne]

n—00
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Thus,
a < 3Ce™™ T2 4 26)170(2 4 4e) (1 — £) U2,

for all € > 0. Letting ¢ — 0 implies that
—rk+1—-q<0,

SO

k>1—q.
[

Theorem 4.6.17. Let (R, X, ) be a sofic, discrete, measure-preserving equivalence relation
with sofic approzimation . Let ® be a countable subset of [[R]], with ¢(®) < oo and 1 <
p < 2. Let V,, be a measurable field of closed subspaces of (P(E(P,)), such that V, =V, for
almost every (z,y) € R. Set H, = Z‘Hh, and

"= jp ((E(®2))/ Ve dp(),

K= / P(E(D,) NHE du(w).
X
Then,
dimzﬁgp(m R) Z dlmL(R) (IC)

Proof. Since ¢(®) < oo, we may argue as in Lemma 3.4.5 to reduce to the case that @ is
finite. Let ® = {¢1,..., ¢, }. We may view LP(E(®)) as a subset of LP(R,1)®" in such a way
that the measurable vector field z +— & ¢, (x)) 1s identified with Idane,) XA ® €; (recall that

f ®e; is the vector on LP(R,)®" which is zero in every coordinate except the j* where it

is f). Let

qe = @Idran(qﬁj) € MH(L(R>>

J=1

and

Q: LP(E(®) >W
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the canonical quotient map. Fix a graphing W of R and P a set of projections in L>® (X, )
so that

W*({opp~' : ¢ € U, p e P}) = L™(X, ).

We will use @Q-dynamical filtrations to do our calculation. So let V' = ker(Q), and F =
(VEm, S) be a @-dynamical filtration where

S = (¢Idran(¢1) Xa @eq,. .. >¢Id(rann) XA @ en)d)e\ll,lgjgn-

By Lemma 2.2.6, extend o; to maps

o;: L(R) — My, (C)

such that
sup [|oi(2)||oe < 00, for all z € L(R)
tr(o,) — 7(x) for all z € L(R)
|P(oi(x1),...,0i(x,) — 03(P(x1,...,2))|l2 = 0,
for all x1,...,x, € L(R) and all *-polynomials P in n non-commuting variables.

Define o;: M, (L(R)) — M, (M4 (C)) by

Let ¢ be the orthogonal projection onto H, since we view LP(E(®)) C LP(R,)®", we have
q € M,(L(R)). As in Proposition 3.6.2, we may find ¢; orthogonal projections in M, (M, (C))
so that

loi(q) — @ll2 = 0.
Set

0o = EP o:(1ddom(a)-
1=1
Let FF C WU be given, m € N, and § > 0. Set
C=W'({gpe~" :pe L®(X,u)NF, ¢ € F}),

210



and let xpg,,...,Xxs, be the minimal projections in C. Let {A1, ..., As} be a sufficiently fine

partition refining {Bjy, ..., B.} in a manner to be determined later. We may assume that >

Oa: ={(z,y) € R:w € Aj} = | | graph(y),

YEE;
and that
F"CE ' +Ey '+ +E

We may also assume that for every ¢ € E; and for all large ¢, we have that dom(o;(¢)) C

Ui(Aj)u and that q; < qei-

Note that if f € LP(R,7), then we can uniquely write

Ida, f =) foXaraph(v),

Yek;
where f, € LP(dom(%), 1) and the sum converges in || - ||,. Fix n > 0, and let F; C E; be
finite and so that for all ¢ € F™,

diStH.||2(1,D, ™) <.
Let v; be the uniform probability measure on {1, ..., d;}. On ¢*(d;, v;)®™ we use the norm
p 1 - ([P
LI = - S Iroe.
j=1
For € € (?(d;,v;))®",1<j<q1<k<nand f e LP(R,n),

SO =D Baomw)(fo) (@as — 6)oi(Las ) @ 7€,

YerF;

where for a measurable A C X, and f € L'(A, i) we use

Ealf) = ﬁ / f .

For 1 <k <mn, let m: (P(d;,v;)®" — P(d;,v;) by
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Finally define S¢: LP(R, 1) — ¢#(d;, v;)®", Te: LP(E(P)) — (P(d;, v;) by

Se=>_"T(f).
j=1

Te =Y m(Se(f(k))),

in the last line we are using the identification
LP(B(®)) = P L (graph(6;), 7).
j=1

We claim that if {A;,..., As} is sufficiently fine then,

vol({€ € Ball(*(d;, v;)®™) : ||Sellpp—ser <2 for 1 <p < 2})

1.
vol(Ball(¢%(d;, v;)®™) -

As in Theorem 4.5.2, it suffices to do this for p = 1,2. We have

1S < 37 Baomioy(Fod llEl < D Baomiun (fu)] < 1
weF; YEF;

So we need to do the case p = 2. From the definition of S it follows that we may choose

k > 0 so that

(o3¢ ) (qa; — 4:)&, 0 () (qoi — @:)€) — T(W(ge — @)™ ")| < & (4.3)

for all ¢,v € F;,1 < j < n implies

s q

1Se(Hll2 < k) || D Faomw) (fi) Xeraph(n || + [ (@@ =) D > Faomw)(fi:) Xeraph(w || -

Jj=1 peF; 9 Jj=1 ¢YEeF;

for all f € L*(R, ) with

lg% a(k) = 0.

By the integral equation,

[ rede =)
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and concentration of measure, for any £ > 0 the set of £ so that (4.3) holds has probability

tending to 1. Thus (4.4) holds with high probability. Thus the set of £ so that

156 ()llz2sez < 2

has probability tending to 1. Thus by interpolation,

vol({¢ € Ball(¢*(d;, v;)®™) : ||Sellprser < 2n for 1 < p < 2})

vol(Ball(¢2(d;, v;)®")) o

As in Theorem 4.5.2, if {A;, ..., A,} is sufficiently fine, then the set of & € Ball(¢%(d;, v;)®")
with
[19¢ (¥ Idran(s;) Xa) — ¥Se(Idran(s;) Xa)l[2 < 0

has probability tending to 1 for all 1 < j < n.

We now show that if {Ay,..., As} is sufficiently fine then

HTf}WF,mHL”—W <o,

with high probability in &. For this, let F' C Ball(Wg,,) be a finite ; -dense set. It is

(2014

then enough to show that

5

for a high probability set of £. Using that p < 2, it is enough to show that

1Te(f)ll2 < for all f € F,

(2014)!
for a high probability set of . Fix f € F' by (4.4), we have for any « > 0 that the set of £

with

ITe(H)ll2 < el fll2 +{[(ge — @) D D Eaomw) (i) Xeraph(w)

Jj=1 yeF; 9

has probability tending to 1, here E4(f) is defined as before but f is view as a map R — C",

and the integral is vector-valued. Since ¢f = f, we have

(@e =) D Y Eaomw)(fs)Xaraphw)

j=1 Q/JEFJ' 2
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can be made arbitrarily small by making {4, ..., A,} sufficiently fine and n > 0 sufficiently

small.

It now follows that if {Aj,..., As} sufficiently fine, then with high probability we have

Te € Hompg o (F, F,m,d, 0;). Moreover, the above estimates show that

(Te(Idran(sr) Xa @ €5)
is close to
i (g9, — @)§)

with high probability if {41, ..., As} are sufficiently fine and 1 > 0 is sufficiently small. Thus

(Tf(Idran(¢1) XA ® el)a s 7T§<Idran(¢n) XA 2y en))

is close to
(96 — @))€

with high probability if {A;,..., A} are sufficiently fine and n > 0 is sufficiently small, so

the desired lower bound now follows from the preceding Lemma.

]

The following corollary is automatic from the preceding theorem and the definition of

AL(R).

Corollary 4.6.18. Let (R, X, i) be a sofic, discrete,measure-preserving equivalence relation.
Then,
e (R) = 557 (R) + 1.
As we mentioned before, it is easy from the definition that
¢s(R) < c(R),

so one may hope that this inequality and the above corollary shed some light on the cost

versus (2-Betti number problem.
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APPENDIX A

Noncommutative L? Spaces

A.1 Definition of Noncommutative L”

In this section, we will define the noncommutative LP-spaces associated to a von Neumann
algebra. We will not do this in the full generality. For the informed reader we mention that
it is possible to generalize our methods and define noncommutative LP-spaces in the case of
a semifinite trace, but we will not pursue this. Instead we will only define and prove the

basic properties of LP(M, ) for (M, 7) a tracial von Neumann algebra.

Definition A.1.1. Let (M, 7) be a tracial von Neumann algebra, for x € M, and 1 < p < oo,

we set

]l = 7 ("),

if p = oo, we let ||z]|s be the operator norm of x.
Let us give some intuition. If M is abelian, then we know that
(M, 7) = L*(X, )

in this case
1= [ 177 dn
is the usual LP-norm.

We wish to prove that ||z, is a norm on (M, 7), and that the usual Holder inequalities

hold true in the usual noncommutative case. We first prove the special case of L.
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Proposition A.1.2. Let (M, 7) be a tracial von Neumann algebra. Then
(i): |7(z)| < ||z||y for all z € M,
(ii): ||x||1 = ||=*||1for all z € M,
(i) eyl < [lzllsollylly for all z,y € M,

(iw): llzyll < lzllil[ylloe for all z,y € M.

Proof. (i): We first note that following inequality if H is a Hilbert space, and a,b € B(H):

2 b 2
Re(a*b) < M'
2
Indeed this follows from

la — b|* = |a* — 2Re(a*b) + |b]*.
For x € M, let x = u|z| be the polar decomposition of z. Then by the above inequality

Re((x)) = 7(Re(ulz|"/|z['/?)
1

1
SNl + 5 (ulzlu)

IN

1 1
= EH@"Hl + §T(|$|U*U)-

As u*u = Pker(:c)i = Pker(\x|)l7 SO

Thus
Re(7(z)) < [|z]|:.

Now choose A € C, |A\| = 1, so that 7(A\x) = |7(z)|, then
[7(2)| = Re(r(A\z)) < [[Azl[y = [l
(ii): Let = u|z| be the Polar decomposition. Then z* = |z|u*, so

|2*|? = zo* = u|z|*u*.
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Additionally,

(u|lz|u*)? = u|z|u*u|z|u,

as in part (i), |z|u*u = |z|, so
(u|z|u")? = |2"[*
Thus
[2* [l = 7(u|z|u®) = (|z[u*u) = 7(|z]) = [|z]].
(iii): We have
lwyl® = y*awy < llz]Zlyl,
by operator monotonicity of the square root ([4] Exercise VIII.3.12) we know that
|zy| < [lz]loolyl-
Thus
eyl < llzlloollyllr-
(iv): Combine (i) and (7).
[

Our approach to proving that the LP-norms are norms will be through noncommuta-
tive decreasing rearrangements. The advantage of this approach is that the proofs are very
short and totally general, and reduce to the commutative case. One can use the same tech-
niques to prove that other analogues of LP-spaces (e.g. Lorenz spaces) have noncommutative

analogues, and moreover this reduces to the commutative case.

Definition A.1.3. Let (M, 1) be a tracial von Neumann algebra. For z € M, and ¢ € [0, 1]

define the noncommutative decreasing rearrangement of z, s,: [0,1] — [0,00)} by

s2(t) = inf{A € [0, 00) : T(xr0)(2])) < 1},
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Note that normality of 7 implies that
T(X(sa(0.00)(|7])) < 2.

We will prove some basic properties of non-commutative decreasing rearrangements, for
which we need the following Lemma. For projections p,q € M C B(H) we use p V ¢ for the
projection onto pH + ¢H, and p A q for the projection onto pH N ¢H.

Lemma A.1.4. Let (M, ) be a tracial von Neumann algebra, and p,q € M. If pA(1—q) =0,
then

7(p) < 7(q).
Proof. The lemma is equivalent to the statement that
dims (p(p) L*(M, 7)) < dima(p(q) L*(M, 7)),
which follows from the fact that p(q) restricted to p(p)L*(M,T) has kernel
p(p N q)L*(M, 7).

]

Proposition A.1.5. Let (M, 1) be a tracial von Neumann algebra, and use m for the

Lebesgue measure on [0,1]. Then

(i): For x € M, and X\ € [0, 1]

m({t : so(t) > A}) = T(X(r00) ([2]))

and for 1 < p < oo,

]l = [I52 | 0.1y

(ii): For x,y € M

Say < |7 ]| oSy

Spx = Sy
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Syz < [|]|osy-
(iii): For a projection p € M, and any x € M,

7(p)
leplh < / 52 (NdA.
0

Proof. (i): We have
Se(t) > A

if and only if
T(X(ro0) ([2])) > 1.
Thus
{t:s.(t) > A} =[0,7(X(r00))]-

The above equality implies that

182llcc = [|2]]co-

For 1 < p < 0o, we have that

1
2P = p /O XUy (1) dA

by functional calculus.Thus

7(|z[?) :p/o )\pilT(X(,\,oo)(‘xD)d)\.

By Fubini,
Isalg =p [ ¥l o) > Apax
0
so the second part follows.
(ii):
First note that

X(sy 0)l1lloos00) (1ZY]) A X(o,5,1 ([y]) = 0.

Indeed, suppose
€ € MX (s, ®)l2l1or00) (1Y) A X(0,5, 0 (|y1)) L* (M, T)
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and

1€l = 1.
Let
vy = ulzyl,
y = vly|

be the Polar decompositions. Then

sy(t) |l < ([zyl€, €)
= (u"zvlyl¢, &)
= (lyl&, v ug)
< [lylgllizllo
= (ly*¢, )*|1]|

< sy(®)|2]| oo
a contradiction.
By the preceding Lemma, we know that
T(X(sy ®)llzlloerc0) (|79]) < 2,

and thus

Say(t) < 8y()]|%|oo-

If we prove that

Sg = Sg*,

then it will follow that

Sya(t) < 5y(t)]|%|oo-

So it remains to show s, = s,+, for this it is enough to show that

T(Xno0) (12])) = T (00 (127))-
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Let x = u|z| be the polar decomposition. First, we claim that

Xtt.o0) (127) A [ux(r.00) (|2 )u"] = 0. (A1)

We have that

X 1,00y ([2) 0] = uxpon(J2Du* + Prgy = uxpg(J2D)u* + Py = uxjon (2w + Py
Suppose
€ € AMX(too) ([7°1) A fux(t.00) (J2)u*] ) L2 (M, 7)

and [[£]| = 1. Let
§=%+&

with & € ker(2*), &0 Lker(z) - We saw in Proposition A.1.2 that |2*| = u|z|u*, so

t < (lz7|€, &) = (|z%|€o, o)
= (ul|z|u™&o, §o)-

Write §o = un with 1 € AX(t.00)(|2])) L*(M, 7) and [J5]| = [|&]| < 1. Then,

(ulelu* o, &) = {ulzln,n) < lInll(l=*n,m)/> <t

we thus get a contradiction, and this proves (A.1).

By the Lemma,

T(X(to0) (1271)) < 7 (X100 (|70 1) = T(X (1,00 (2]))
as
X(too)([2]) < w'u.
The claim now follows by symmetry.
(iii): We have

Szp < S
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Also for any t > 0,
X(t,oo)<|xp|) S pker(xp)l S D-

S0 S4p(t) = 0 for all ¢ > 7(p). Thus

7(p) 7(p)
llxp|l1 = / Sup(t) dt < / s4(t) dt.
0 0

]

We now have several corollaries which prove many of the analogues of inequalities which

are known in the commutative case.

Corollary A.1.6. Let (M, 7) be a tracial von Neumann algebra. For z,y € M and 1 < p <

oo, we have

lzylly < llzlloollylly
2]l = [l2"lp,

lyllp < llzlloo 1yl

Proof. The second inequality follows from part (ii) of the preceding proposition. The third
inequality is a consequence of the first. For the first inequality, by part (ii) of the preceding
proposition,

1 1
ol = Vsally = [ safe? dt < ol [ s, o
0 0
]

Corollary A.1.7 (Noncommutative Decreasing Rearrangement Inequality). Let (M, T) be

a tracial von Neumann algebra. For x,y € (M, T) we have

oyl < / so(t)s, (1) dt.

Proof. Let y = uly|, |xy| = v*zy be the polar decomposition. By Borel functional calculus,

2y = v auly| = / U BuX ey ([91]) AN
0
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By the preceding proposition,

eyl = / (0" T (o ([])) dA

00 X(A 00) (Iy1)
/ / Suemn(t) dt AN
0 0
00 X()\ 00) (Iy1)
/ / () dtd.
0 0

IA

IA

By definition, we have that ¢ < 7(x (0 (|y])) if and only if A < s,(¢). Thus by Fubini,

sy(t) 9]
eyl < // £ d, df — /sy(t)sm(t)dt.
0

[]

Corollary A.1.8. Let (M be a tracial von Neumann algebra, and 1 < p < oo and let

) T)
1<y <oobesuchthat1 pi—l, then

eyl < o llylly

further
2]l = sup{|r(a)| : @ € L (M, 7), [|ally < 1}.

Proof. We have

eyl < /0 so(8)sy (1) dt < sz lpllsylly = llzllpllyllp

by the usual Hélder’s inequality, and Proposition A.1.5.

For the second statement, the preceding and Proposition A.1.2 proves that

2]l > sup{|r(za)| : @ € L (M, 7). [|ally < 1}.

For the reverse, let = u|z| be the polar decomposition of z, let

o

]l
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Then

1 * 1 *
7(ra) = - T (ulr["u") = o ([ futu) = |z,
] 5
as
|z|Pu*u = |zP.
By Corollary A.1.6, we have
P~ [l < 2P = (2 ) = =]}
Thus,
L —p—1
lally < flll” ~ =1.
[
Corollary A.1.9. Let (M,7) be a tracial von Neumann algebra. Then, || - ||, is a norm on
M.
Proof. Let us first prove that || - ||, is a norm. The only nontrivial fact is the triangle

inequality. For this, let z,y € M, let p’ be such that ]l] + 1% =1. For z € M,
I7((z +y)2)| < |7(@2)[ + |7(y2)| < llzzll + llyzlle < llzllp + vl

by the preceding corollary. Taking the supremum over all such z and applying the preceding

corollary again proves the triangle inequality.

]

Definition A.1.10. By the preceding Corollary, we may define LP(M, 7) to be the comple-
tion of M with respect to the norm || - ||,, note that this agrees with the previous definition

of L*(M, 7). Also by the preceding corollary, we have a bilinear map
M: LP(M,7) x LP(M,7) — LY(M, )

uniquely defined by requiring that M (x,y) = zy for z,y € M, and || M (z,y)|1 < ||z||,lly]ly-
For & € LP(M,7),nm € L (M, 7) we denote M (&, n) by &n.
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Note that for £ € L?*(M, 1),z € M, that by the conventions in the preceding definition

z§ = Mx)€, &z = p(x)¢,

so we will typically drop the A, p from here on out. We will similarly denote &* for £ €
LP(M, 7) the unique isometric extension of the map x — z* on M. We denote 7: L'(M, 1) —

C the unique continuous extension of 7 to L'(M, 7).

By density, we have
T(zy) = r(yx) v € LP(M,7),y € LV (M, 7)

(x&,m) = T(n*x€), &n € L*(M,T).

A.2 Noncommutative LP-Spaces as Unbounded Operators

We would like to view LP(M,T) as a space of operators instead of a completion of a space
of operators. This will allow us to apply functional calculus arguments to LP(M, 7). This
will makes certain arguments easier, in particular computing the dual of LP(M, ), and
invariant subspaces under the action of M. The price that we have to pay to do this, is to
pass to unbounded operators. This is to be expected as in the commutative case, functions
in LP(X,p) are in general unbounded. For basics of unbounded operators, we refer to [4]

Chapter X.

Definition A.2.1. Let (M, 7) be a tracial von Neumann algebra, and view M C B(L?(M,T)).
We let Meas(M) be the set of all closed, densely-defined, unbounded operators T on L?(M, 7)
with 2T C Tz for all x € M.

Equivalently, the graph of T is invariant under the diagonal action of M’ on L?(M,1)%2.

We will see later that if (M, 7) = L>(X, u), then Meas(M) is equal to all My for mea-
surable f: X — C, where My is defined by

dom(M;) = {€ € L*(X, ) : f€ € L*(M, p)},
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M€ = f€ for all £ € dom(My) .

We proceed to collect some basic properties about Meas(M). For this we need the fol-

lowing definition.

Definition A.2.2. Let (M, 7) be a tracial von Neumann algebra. A linear, M’-invariant
subspace V' C L*(M, 1) is said to be essentially dense if for every e > 0, there is a projection

p € M so that pL?>(M,7) CV and 7(p) > 1 —¢.

Proposition A.2.3. Let (M, 7) be a tracial von Neumann algebra.

(1): Let T be a closeable, densely-defined unbounded operator on L?(M,T). Suppose that
A C M has strong operator topology dense linear span in M and p(a)T C Tp(a) for all

a € A. Then the closure of T' is measurable.

(i1): Let T, S € Meas(M). Suppose that V' C dom(T") Ndom(S) is essentially dense, and
T¢ =05 forall € V. ThenT = S.

(1ii): Let T be an closed operator on L*(M, ), and let T = U|T| be its polar decom-
position. Then T € Meas(M) if and only if U € M, and xg(|T|) € M for all B C C
Borel.

(iv): Any essentially dense subset of L*(M,T) is norm dense.

(v): Let T € Meas(M), and V C L*(M, 1) essentially dense. Then T—(V) is essentially

dense. In particular, dom(T) = T~ (L?(M,T)) is essentially dense.

(vi): A countable intersection of essentially dense subspaces of L*(M,T) is essentially

dense.

Proof. (i): The graph of T is a p(A)-invariant subspace of L*(M,7)®2. Hence its closure is

M-invariant.

(ii): Let Gp,Gg be the graphs of T,S. Since T is densely-defined, we have a M'-

equivariant injection with dense image
GT — L2(M , T )
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(&, T€) = &,
SO
dlmM/<GT) = 1.
Similarly,
dlmM/(Gs) = 1.

By symmetry, it suffices to show that Gy N Gg = Gr. By the above, it suffices to show
that

dimM/(GT N Gs) Z 1.

For this, let V be an essentially dense subspace of L*(M, 7) on which S and T agree. Given

€ >0, we can find a p € M so that
pL*(M,7) C V.

Then
{(p€, Tpg) : € € L*(M,7)} = {p€, Sp¢) : € € L*(M, 1)},

and so

{(p€,Tp¢) : £ € L*(M,7)} C Gr N Gs.

Hence, there is a surjective map
GT N GS —>pL2(M,7')

given by (£,1) — pg, so
domy (GrNGg) > 7(p) > 1 —e.
Since € > 0 is arbitrary, this completes the proof.

(iii): First suppose U € M, and that xg(|T|) € M for all B C C Borel. Let 2 € M, and
¢ € dom(T') = dom(|T]). Let E be the spectral measure on [0, 00) so that

| = / LAE (),
[0,00)
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For B C C Borel, we have

(E(B)xg, x8) = (p(x) E(B)E, p(x) E(B)S) < [|lz]lo(E(B)S, £).

Thus we have the following inequality of measures

d{Et)p(2)€, p(2)§) < |2[d(ER)E,E),
[ FaE®pE @) < ol [ EdlBWDEE) < oc
so € € dom(T"). Further, from the equality of spectral measure
d{E(T)p(x)§, n) = d{E(T)S, p(x)n),

it is straightforward to see that |T'|(p(z)&) = p(x)|T|(§). Hence

T(p(x)€) = Up(x)[T|(€) = p(x)UIT|(€) = p(2)T(E),
so T' € Meas(M).

Conversely, suppose that 7' € Meas(M). Let u € U(M), then since T' € Meas(M) we

have
p(u)T = Tp(u),
p(u*)T = Tp(u").

Thus,
T? = p(u)|TI?p(u"),

hence for all B C C Borel we have
xa(IT*) = plu)xs(|T*)p(u").
This easily implies that

pu)xs(|T1) = xs(IT|)p(u)

for all B C C Borel. Since M is the linear span of its unitaries, we find that

xs(|T]) € M
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for all B C C Borel. From this, it is not hard to argue as in the first half of the proof that
|T| € Meas(M). Thus, for all uw € U(M), we have

T = pw)Tp(u)” = p(u)Up(u)*|T],
and uniqueness of the polar decomposition implies that

p(u)U = Up(u).

As before, this implies that U € M.

(iv): Let V be an essentially dense subspace of L?(M, 7). For all n € N, choose p,, € M
with 7(p,) > 1—27", and
po L2 (M,7) C V.

Set

an = /\ Pm,

m>n

then

(1 —¢q,) <277

As g, are increasing, we have

n—oo

dim (U qnL? (M, 7')) = lim 7(¢,) =1,

n=1

and this implies that

| auZ2(M,7) = L*(M, 7).
n=1

Since

g L*(M,7) CV,
it follows that V is norm dense.

(v): Let T'= U|T| be the polar decomposition of T. For n € N, set

qn = X(l/n,n)(|T|)'
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Note that

1
1€l = €]

on ¢,L*(M,T), thus T{anQ(M is an injection with closed image. Set

i)
7'ln = T(Qan(Ma T))a

and let ¢,: H, — g,L*(M,7) be the inverse to 7.

Let € > 0, and choose p € M so that
pL*(M,7) CV,

and

T(p) > 1—e¢.

Choose n so that
7(g,) > dimyp ((ker(T))™) —e.

Since
QRLQ(M7 T) N (1 - p)L2(M, T) g (1 - p)LQ(M, T)?
we have
dim g (g L2 (M, 7) N pL*(M, 7)) > dimpg (¢, L3 (M, 7)) — €
> dimyy (ker(T)*) — 2e.
Let
Ky = ¢n(qnL?(M,7) N pL*(M, 7)),
then
ker(T) + K,, C T '(V),
and

dimyy (ker(T)+K,,) = dimyy (ker(T))4-dimpy (K,) > dimyy (ker(T)*") —2e+dimyy (ker(T)) = 1—2e.
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As e > 0 is arbitrary, we see that 771(V) is essentially dense.

(vi): Let (V,)2, be essentially dense subspaces of L?*(M, ), and let ¢ > 0. For each

n € N, choose p, € M so that

T(pn) 2 1-— %7
and

an2(M, T)CV,

Set
P = /\ DPns
n=1
then
7—<p) Z 1 - 57

and

pL*(M,7) C ﬂ Vi
n=1
0

Let (M, 7) be a tracial von Neumann algebra. Let z,y € Meas(M), consider the two
operators

Py, y~Y(dom(z)) — L*(M, 1)

Sey: dom(x) Ndom(y) — L*(M, )

P:vy(f) = ‘/Eyga
Sxy(&) = QZ& + yf-
By (v),(vi) of the above proposition, we know that P,,, S;, are densely-defined. As

Pr, D Py

S;y 2 S:v*y*7
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we know that P,,, S;, are densely-defined. Thus we may define
Ty, T +y

to be the closures of P,,, S,,. By (i) of the above proposition, we know that zy,z + vy €

Meas(M ). One can use the above proposition to argue that these operations turn Meas(M)

into an algebra. For example
(zy)z, 2(yz)

agree on 2z ' (y~!(dom(z)), and so by (v) and (ii) of the above proposition, we know

(zy)z = x(yz).
We leave the similar proofs of the other axioms to the reader.

We can turn Meas(M) into a topological *-algebra with a basis of opens neighborhoods

of the identity given by
Uep = {T € Meas(M) : T(X(t00)(|T]) < €}

We leave the proofs of the axioms of a topological vector space to the reader (see [24] 1X.2
for detailed proofs). We call the result topology the measure topology.

For intuition, let us discuss what the above proposition implies in the abelian case.
Proposition A.2.4. Let X be a compact metrizable space, and let 1 a Borel probability

measure on X. View L>(X, ) on operators on L*(X,u). For a p-measurable f: X — C,
define a densely-defined operator by

dom(M;) = {€ € L*(X,p) : f€ € L*(X, )},

and
M€ = f¢
for & € dom(My). Thus Meas(M) is indeed a generalization of the algebra of measur-

able functions associated to a measure space. Then a closed operator T on L*(X,p) is

in Meas(L>(X, i) if and only if T = My for some measurable f: X — C.
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Proof. First we note that My is a closed operator. Suppose &, € dom(My), and &, — &
in L2(X,u), and f&, — g € L*(X,u). Passing to a subsequence, we may assume that

& — & fE — fE pointwise almost everywhere. By Fatou’s Lemma,

7]l < liminf | &, | < o0

as f&, — ¢g. Thus for almost every x € X,
9(x) = lim f€.(x) = f€(x).
Hence My is closed. It is easy to see that the polar decomposition of f is given by
My = Mo Mg

where a(z) = X{I:f(a;#o}%. Additionally, for all B C [0, c0) Borel,

Xe(Mp1) = My )-
Thus, it follows that M; € Meas(L>®(X, p)).
Suppose that 7' € Meas(L>(X, p1)), and let
T =UT|

be its polar decomposition. Then U = M, for some a with |a(z)| € {0,1} for almost every

r € X. Let
|T| :/ tdE(t)
[0,00)

be the polar decomposition of 7. Set

S, = / LAE ().
[1/n,n]

Since F(B) commutes with L>(X, ) for all B C [0, 00) Borel, it is not hard to argue that
S, commutes with L>°(X, ) and thus not S, = My, for a unique (up to measure zero)
fn: X — [1/n,n]. Further f,, < f,+1 almost everywhere. Removing a countable collection

of null sets, we may assume that for all n, for all x € X, we have
fn($) < fn+1(l')-
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Set
(@) = s ),
Note that
p{r € X o f(z) > M}) = lim p({z € X fu(z) > M}).
For each n, we have E((M,n)) = X{a:f.(x)>m} for some decreasing sequence of sets A,. Since

E((M,n)) — E((M,00)) in the strong operator topology as n — oo, if we choose Ay C X
measurable so that E((M,o0)) = xa,, we find that

p{z e X f(z) 2 M}) = p(An).
Since E((M,00)) — 0 in the strong operator topology we find that
p{r e X: f(z) =2 M}) = p(Ay) — 0
as M — oo. Hence, we find that f(x) < oo for almost every z. By construction
My oy (15D = E(X(t00))-
From this, it is not hard to argue that
My =1T].

Setting g = «f], we find that
T = M,.

We now turn to our alternate definition of LP(M, 7). For 1 < p < oo, let

LP = {T € Meas(M) : /

[0,00)

tr d<E|L‘(t)1, 1) < OO} ,
for T € LP, set

1T = /[ B L)

By the above Proposition, if (M,7) is an abelian tracial von Neumann algebra, then
LP(M.,7) can be canonically and isometrically identified with £P. It is thus reasonable to

wonder if this is true in the nonabelian case we now proceed to show that this is true.
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Proposition A.2.5. Let (M, 7) be a tracial von Neumann algebra.

(i): We have that LP is a vector space, and
1T+ Sllee < 27T (| 2o + (151 2r)-
(ii): If T,, € LP, and ||T — T,||zr — 0, then
||T||£p S lim inf ||Tn||ﬁp.
n—oo
Proof. (i): As in proposition A.1.5 (ii), we have
T(X(t.00) (1T + 51)) < 7(X(2/2.00) (IT1)) + 7(X(2/2,00)(5]))-
Thus,

IT + 8|12 = p / (X (e (IT + 1)) dt
Sp/ tp_lT(X(tmo)(!Tl))dtﬂ?/ 1 (X (12,000 (1S])) dlt
0 0
— o / U (oo (IT])) dt -+ 27 / 1 (x (1S])) dt
0 0

=22(IT1z0 + 11S1Z0)-
(ii): As in proposition A.1.5 (ii)

T(X(te00) (IT])) < T(X(t,00) (IT0)) + T(X(e,00) (1T = Ta]))

1
< T(X oo (1Tal)) + S IT = TallZs-
Thus for all t > 0, > 0,
(X2 (IT1)) < Himind 7(x ) (T3 ).

By normality of 7, we know that

T(Xitoo) (IT1)) = 7(X(t.00) (IT']))
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for all but countably many t. Letting ¢ — 0, we find that

T(X(too) (IT])) < 1ig£fT(X(t,oo)(\Tn\)),

for all but countably many ¢. Thus (ii) follows from Fatou’s Lemma and the equality

1Sller = p / U (X (1S])) dt.

Theorem A.2.6. Let (M, 1) be a tracial von Neumann algebra.

Then ||-||z» is a norm which turns LP into a Banach space, and there is a unique isometry
LP(M,T) — LP
which 1s the identity on M.

Proof. For T,S € LP, let T = U|T|,S = V|S| be the polar decomposition, let T, =
Uxon(|TDIT], S = VX0, (|S])|S]. Then,

[Tallce = T llze, I T = Toller = 0,

[Snllce = 1ISlee, 1S = Tallcr = 0,

and the preceding proposition implies that

HT + SHﬁp S llﬂi)lnf ||Tn + SnHLP-

Since T,,, S,, € M, we know that

1 Tallee = Tl
1Snllce = 119nllp,
and so the triangle inequality now follows from the fact that || - ||, is a norm. The existence

and the uniqueness of the isometry follows from the fact that
]|y = []]]-
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for x € M, and the density of M in LP, once we prove that £P is a Banach space.

To prove that LP, let x,, € LP with ||z,]||, < 37", it is enough to show that
>
n=1

converges in LP. Let

K= {f € ﬂ dom(z,,) : Z lznél|2 < oo} :
n=1 n=1
and define T" on K by

= Z .
n=1

We claim that 7" is densely defined and closeable, and that its closure is measurable with

respect to M.

For this, set

Ptn = \/ X(tQ*”,oo)(‘ana

m>n

(Pen) ZT X oo (a]) < = (i (;)m> |

m=n

then

and K D (1 — p,1)L*(M,7), this proves that K is dense. As

dom(7™) D {{ € ﬂ dom(z,,) Z |5 €]l < oo}

the same logic implies that T is closeable. It is also straightforward to check that the domain
of K is p(M) invariant, and that T'({x) = T'(§)x for £ € K,z € M. Thus the closure of T is

a measurable operator affiliated to M, we let x be the closure of T.

As in Proposition A.1.2

N
X(t(1+2*N),oo)(|x|) A X (t,00) ( Z% ) Apen+1 =0,
n=1
SO
oo onp
(xra-100(12D) < 7 [ Xoo an I S
n=N+1
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as in the preceding proposition this implies that

N
>
n=1

)

T(X(t00)([2])) < lim inf 7 (X(too) (

for all but countable many ¢. Thus by Fatou’s Lemma

leller =p [ 2 70 (12))
0
< lim inf pl
= limin p/o T (X(t,oo) (
N
:hNHLIOI;f z:lzn
<3 laller.
n=1

N

>

n=1

)«

L

sox € LP.

By the same logic,

N M
T(x@,oo)(x—zlxn> s%n;goff(w( g))

and thus

o

< > lzaller =0

Lp n=N+1

N
xr — E Tn
n=1

as N — oo. This completes the proof.

A.3 Duality

We now extend the usual duality between LP(M,7) and LP (M, 7) from the commutative

case to the noncommutative case. Let us first start with the dual of L'.

Theorem A.3.1. Let (M, 1) be a tracial von Neumann algebra. Under the duality
(z,y) = 7(zy)
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we have an isometric identification
LM(M,7)* = M.
Proof. For x € M, we denote 7(z-) the element of L'(M,7)* defined by
7(a)(y) = 7(zy).
We have already seen that for z € M,y € L'(M, 1) we have

I (zy)l < [zl llylly,

thus |[7(z-)]| < [#|-

Let ¢ € L*(M,7)*. For £, € L*(M, 1) we have
[6(&n7)] < llolllIgn™ Il < ll2linllzllell-

Thus there is a unique T' € B(L*(M, 7)) with ||T|| < ||¢|| and

(T(&),m) = o(&n").
For y € M, we have
(T'(€y),m) = o(&yn") = (T(€),ny") = (T )y, n),
thus T € (M"Y = M. For y € L'(M, 7), we have
o(y) = dulyl"y[V?) = (Tuly%, [y|'*) = 7(ly|"*Tuly|'/?) = 7(Ty).

Further
7] < ol = [I7(T)]]-

This proves the theorem.

We have a similar result for M.
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Theorem A.3.2. Let (M, T) be a tracial von Neumann algebra and ¢: M — C a normal
linear functional. Then, there is a unique y € L'(M,T) so that ¢(z) = 7(zy) for all x € M.

Proof. 1t is well known that
(X", weak™)* = X,

so it is enough to show that ¢ is continuous in the weak® topology coming from M as the

dual of L'(M, 7). For this, it is enough to show that
ker(¢) N M
is weak* closed. By the Krein-Smulian theorem (see [4] V.12.1), it is enough to show that
ker(¢p) N{zx € M : ||z]s < 1}

is weak™ closed. For this, it is enough to show that ¢| (e Mije]le<1) is weak® continuous. Let

x; € M, with ||z;]|s < 1, and suppose that z; — x weak*. Given &, € L?*(M, ) we have

(w:&,m) = 7(x:i&n") — T(2EN"),

as &t € LY (M, 7). Thus z; — = in the weak operator topology, and the normality of ¢
implies that

¢(x:) = o).
This proves the theorem.
O

Theorem A.3.3. Let (M, T) be a tracial von Neumann algebra, and 1 < p < oo, let 1 <

p' < oo be given by

The duality
(z,y) = 7(zy)

gives an isometric identification LP(M,1)* = L' (M, ).
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Proof. By Theorem A.3.1, we may assume p > 1. For z € L” (M, 1), let

7. LP(M,7) — C

o (y) = 7(xy).
By Corollary A.1.8, we know
172l = [l ]l

Let ¢: LP(M,7)*, note that (b!M is normal. For this, suppose that z; € M, ||z;]|«~ < 1,

and x; — x in the strong operator topology. If p < 2, then
lzi = zllp < [lzi — 2f2 = 0,

if p > 2, then
l2; — z||or(|o; — 2P|z — 2|P7?) < 2073 |z; — 22 — 0.
So
P(z:) = ¢(z),
and thus ¢ is normal. So by Proposition 2.1.8 (iv) and the preceding theorem, we have

é(x) = 7(xy) for some y € L'(M,7) and all x € M. We may regard y as a densely-defined

unbounded operator. Let y = uly| be the polar decomposition, and let
Y = Xiom (19D [y 1.

Then,
lynllollol = 7(yyn) = /[ (A (L)
As

1/p
1Ynlly < lIxpom (wDIyP~ I, = </0 t7 (dEy (1)1, 1)) ,

(0,]

1/p’
e ( /[ ]tp’<dEy|<t>1,1>) |

letting n — oo implies that y € LP(M, 7). By density ¢ = 7,,.

we have
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A.4 Interpolation

We wish to generalize the usual Riesz-Thorin interpolation theorem for LP-spaces to the
more general noncommutative LP-spaces. We wish actually prove something more general,

using the abstract version of interpolation theory for Banach spaces.

Definition A.4.1. A compatible pair of Banach spaces is a pair of Banach spaces (X,Y)
together with continuous inclusions into a Hausdorff locally convex topological vector space

Z. We will usually identify X,Y with their images in Z. For a € X + Y, we define the norm

lall = nf{[lz]| +lyll : 2 € X,y € YVia =z +y}.

Note that we have a natural isometry

Xaov
{(z,y) 12 = —y}

where X @Y is given the norm

— X +Y,

G, 9l = Nl + Nyl

Since the inclusions X C Z and Y C Z are continuous, we know that

{(z,y) : 2= —y}
is closed. Thus X + Y is a Banach space.

Let @ = {z € C: 0 < Re(z) < 1}, we let A(X,Y) be set of all continuous functions
f:Q — X 4Y such that f‘ﬂ is holomorphic, and f(it) € X for all t € R, f(1 +it) € Y for
all t € R, and

IF1l= supmax(lL£(it)l|x, (1 + i) ).

For 0 < 0 < 1, we set
(X,Y)o ={f(0) : f € A(X,Y)},

with the norm

Iplle = ir;f £l
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where the infimum is over all f € A(X,Y) so that f(#) = p. We call (X,Y)y the 0-

interpolation between X and Y.

Proposition A.4.2. Let (X,Y) be a compatible pair of Banach spaces. Then A(X,Y) and
(X,Y)y,0 <0 <1 are all Banach spaces.

Proof. We first prove that A(X,Y") is a Banach space, the only nontrivial issue being com-
pleteness. We need a preliminary observation. Let ¢ € (X +Y)*, f € A(X,Y) and consider

the function g: Q — C given by

Then g is continuous on 2 and holomorphic on €. Thus by the Three-Lines Lemma we

have

sup|g(2)| < supmax(|g(it)], [9(1 +t)]) < [ £}l ]l
If we fix z and taking the supremum over all ¢ we find that
1f () xy < (1]

for all z € Q. Thus

Suﬁp 1) x+v < IS

Now suppose that f, € A(X,Y) are Cauchy. From the above estimates, we see that f,
converges uniformly to a continuous function f: Q — X+, clearly f(it) € X, f(1+it) € Y
for all ¢ € R. Further, if ¢ € (X 4+ Y)*, then

pofn— pof

uniformly, and thus ¢ o f is holomorphic on €). Since this is true for all ¢, we know that f

is holomorphic (see [4] Exercise VII.3.4) on €. Since f,, — f uniformly, we have that

Ifn = fllax,y) — 0.

Thus A(X,Y) is a Banach space.
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Fix 0 < 6 < 1, then (X,Y)y can be isometrically identified with
AXY)Hf € AXY) : f(0) = 03,
as {f € A(X,Y): f(0) =0} is closed, we find that (X,Y), is a Banach space.

]

We present the main theorem on interpolation spaces. For a linear operator 7: X — Y

between Banach spaces, we use ||T'||x_y for the operator norm.

Theorem A.4.3. Let (X1,Y1),(Xs,Y2) be a compatible pairs of Banach spaces. Let T': X1+
Y1 — Xo + Y5 be a linear operator such that T(X;) C Xo, T(Y;) C Y, and T’Xlz X, —
XQ,T{Yl Y1 — Y5 are bounded operators. Then for all0 < 0 < 1, we have that T'((X1,Y1)e) C
(Xa,Y32)y and

||T||(X1,Y1)9—>(X27Y2)9 < HT”;’ZZXQ “T|’§/14)Y2'

Proof. First note that T is a bounded linear operator X; + Y; — X5 + Y5 and
1T x 4vi X0 4v2 < (|77
Thus for all f € A(X;,Y)) we have T'o f € A(Xy,Ys). Fix M;, M, real numbers so that
My > ||T [ x,-x0, M2 > || Tlyi-ve-
Fix 0 <6 < 1. Let p € (X1,Y1)p and f € A(Xy,Y1) such that f(6) = p. Set
g(2) = T(f(2)) (M M5 )",
then g € A(Xy,Ys) and g(0) = T(f(0)). For t € R,
g < AT Ny x My My < MMy || f]],

lg(L+ )| < AT lyvsove My "M ™H < M= MY f]]-

Thus
IT(p)llo < [If11M] 003,
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and taking the infimum over all f proves
IT®)lls < lIplledy =M.
Thus
||T||(X1,Y1)9%(X2,Y2)9 < M11_6M29

and letting My — ||T||x,-x,, M2 = ||T||y,—v, completes the proof.

]

We wish to apply the above interpolation theory to noncommutative LP-spaces. For this,

if we view LP as unbounded operators, we then have continuous inclusions
LP(M, 1) C Meas(M)
where Meas(M ) is given the measure topology. It then suffices to prove the following theorem.

Theorem A.4.4. Let (M, 1) be a tracial von Neumann algebra, and 1 < pg,p1 < 0o. Define

po for 0 < 6 <1 by
1 1—-60 6

Do Po Y241

Then
(LPO(Mv T)? e (M7 T))f) = LPG(M7 T)u

with equality of norms.

Proof. We may assume that pg # p;, hence 1 < py < oo.

For 1 < p < oo we let p’ be defined by
1 1
p D
Note that

1—-6 0 1
_l’_

vy B
Let f € A(LPo(M,T), LP*(M,T)). Suppose that x € M, and that
%] 2 ex(0.00)(|])
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for some € > 0. Let = u|z| be the polar decomposition, and set

/ / !
Py (@,@) _@+z(@_@)
g(z) = ulz| 0\ g, 0N

Since
|$‘ Z €X(0700)<|ID7

we see by functional calculus that
”i+z(”—9—p—9>
z > |z P \P1 o

is holomorphic in || - ||s. Thus ¢(z) is a holomorphic as a LP°(M,7) + LP*(M,7) valued

function.

Thus ¢(z) = 7(f(2)g(z)) is holomorphic, and

sup |¢(it)| < [ f[ sup [|g(it) 1y,
teR 4

for t € R, using ||abl|,, < ||lall|lbllp, for a € M,b € LP*(M,7) and the fact that |z|* is

unitary for all s € R,

_ Py Py
. A
[g()lpy < [z llpg ™ N2l Ml = 2]l

Thus
sup [ ()] < [1f 1111y, -
teR
Similarly
sup [ (1 +at)| < || f[lll]lp,-
teR

By the Three-Lines Lemma, we find that

[T (f(O)2)] < | F1llp, -

Thus if y € (LPo(M,7), LP* (M, T))p then

()l < [lyllolllp, -
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Now let y = v|y| be the polar decomposition of y, and let

= [ tdew
[0,00)

be the spectral decomposition of y. For & > 0, set . = x(c,1/5)|y[? 'v*. Then,
wlre > " hox e (7)) 0" = €7 X 0,00 ([2])-

Hence, by what we just saw

/ tPdr o E(t) = 7(x.y)
(e,1/¢)

< ||y||9HCCng9,

< lyllolxer) (y DIyl Iy,

l/pgl
Iyl (/ #dr o E(t))
(e,1/¢)

1/p
([ waroE®) <l
(e,1/¢)

letting € — 0 and applying the Monotone Convergence Theorem we see that

Thus

1Yllpe < 11Yllps-

For the reverse inequality, let y € LP?(M,7) and let y = u|y| be the polar decomposition
of 3. Define f: Q — Meas(M).

_po,,(Po_Pa
f(z) = u|y|%+z<%_%> ||y||1179 p0+Z<P1 p0>.

Note that f(8) = y. Using again ||abl|,, < ||a|l«||bllp, for a € M,b € LPe(M,7) and that |y|*

is unitary for s € R,
. 1-7e 7o
SUp [LF (@)l < 1yllmo ™ 11y170 o = [1ylpo-

Similarly

sup 1AL+ i)y < {[Yllpg-
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We claim that f has image inside LP°(M, 1)+ LP* (M, 7), that f is a continuous as a map
Q — LPo(M, 1)+ LP1(M,7) and that f is holomorphic as a map Q — LP°(M, 1)+ LP(M, 7).

The preceding inequalities then show that

I f Nl aczro (aary, o va,m) < 1|9l

and this will complete the proof.

As ||u||oo < 1, the claim that f maps into LPo(M, 1)+ LP* (M, 7) reduces to the statement
that
ylrete(-5)
is in LP° (M, 7)+ LP* (M, 7) which is true by functional calculus. The continuity claim reduces
to the fact that

P9 Pg

2 s [yt 50)
is continuous for the L (M, 1)+ LP*(M,7) norm which is true by functional calculus and
the commutative case.
Similarly, the holomorphicity claim reduces to the statement that

2 s [yt 50)

is holomorphic, and for this we may assume that M is abelian and represented on a separable
Hilbert space. Since py # p1, we know that (LP°(X,pu) + LP(X,pn))* is identified with
LPo (X, 1) N LP1(X, 1), from this observation it is not hard to argue weak holomorphicity of

the above map. This completes the proof.
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APPENDIX B

Amenable Groups and Equivalence Relations

B.1 Amenable Groups

The concept of an amenable group is probably the most ubiquitous notion in the study
of harmonic analysis on discrete groups. An amenable groups is roughly one over which
you can average, as we will see shortly there are many equivalent ways of phrasing this
(there are even more than the ones we will list below). Each of these different ways lead to
many generalizations: weaker approximation properties for groups, amenability properties
for graphs, equivalence relations, Banach algebras, subfactors, each of which have proved to
be useful in their respective fields. Moreover, amenability of groups has seen tremendous
applications in the study of operator algebras, ergodic theory, L?-invariants, and other related
fields. It turns out that amenable groups are related to the Banach-Tarski paradox, as a
crucial step in the proof of the Banach-Tarski paradox is that Fy is not amenable (here F,,

is the free group on n letters).

Definition B.1.1. Let I" be a countable discrete group. A Falner sequence for I' is a

sequence F;, of finite nonempty subsets of I'. So that

‘anAFn|

— 0,
| Fn

for all g € I'. We say that I" is amenable if it has a Fglner sequence.

A Fglner sequence gives a way of averaging functions over a group: given a f € ¢(T),

we can consider the sequence of averages

|;n| > flg)

gEFn
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and these will be approximately invariant. This is related to (v) of the next theorem. It
also evokes the usual properties of the intervals {—n, ..., n} inside Z, and averages over such
intervals are already useful in classical harmonic analysis. Often, properties of the integers
have generalizations to amenable groups. In the next section, a precise and deep relation

between arbitrary amenable groups and Z will be discussed.

We collect many equivalent definitions of amenable in the next theorem.

Theorem B.1.2. Let I' be a countable discrete group, then the following are equivalent.
(i): T is amenable.

(ii): For all 1 < p < oo, there is a sequence f, € (P(I') so that

(i11): For some 1 < p < oo, there is a sequence f, € (*(I') so that || f,||, = 1, and

(iv): There is a ¢ € (>°(I')* so that p(A(g)f) = &(f) for all f € £>°(I).
(v): Every affine action of I' on a nonempty compact convex set in a locally convex space

by homeomorphisms has a fized point.

(vi): Every action of T' on a compact metrizable space has an invariant measure.

Proof. (vi) implies (v): Let X be a locally convex space, and K C X a compact convex set.
We first prove a two preliminary claims.
Claim 1: Every action of I' on a compact Hausdorff space has an invariant measure.

For this, let X be a compact Hausdorff space. For every finite subset F' of C'(X) contain-
ing the identity, let Ar be the C*-subalgebra of C'(X) generated by {¢gf : g € I, f € F'}. By
Gelfand Theory, Ar = C(Yr), and the action of I' by automorphisms on A gives rise to an

action by homeomorphisms on Y. As A is separable, we know that Yx is metrizable. By
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hypothesis, we can find a positive linear functional
¢Fi AF —C

of norm 1 with ¢(1) = 1, and which is invariant under the action of I'.

Extend ¢p to a linear functional ¢¥p: C(X) — C by Hahn-Banach with ||¢r| = 1. By
compactness, we can find a weak* cluster point 1) of 1. Then 1 is a positive linear functional,
invariant under the action of I'. Again, by Gelfand duality we know that ¢ corresponds to a

[-invariant probability measure on X.

Claim 2: For every p € Prob(K), there is a unique x € K, so that

/K o(y) duly) = ()

for all € X*. We shall abbreviate the above statement as

/K ydu(y) = .

Since X is a locally convex space, uniqueness of x is obvious from the Hahn-Banach

theorem. To prove existence, first suppose that
H= Z AjOy;
j=1
with A; > 0,2 A; =1, and yi,...,y, € K. In this case, we have
xr = Z )‘jyj'
j=1

In general, let u, be a net of atomic probability measures on K with u, — p weak*. By

what we just saw, there is a z, € K so that

/Kydﬂa(y) = Za-

By compactness, we may assume that there is an x € K so that z, — x. Then for all ¢ € X*

() = lim ¢(z,) = lim /K o(y) dpaly) = /K o(y) du(y),
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this proves Claim 2.

By Claim 1, we can find a I'-invariant measure p on K. By uniqueness, and the fact that

/K y du(y)

(v) implies (iv): Given [*°(I")* the weak* topology. Let I' act on [*°(I")* by

the action is affine, it is hard to see that

is a fixed point in K.

(90)(f) = 6(A(9) " ).
Then
K = {6 € I°(D) : 6(f) > 0 for all f € I¥(T), 4(1) = 1)

is invariant under the action of I'. Any fixed point under this action gives an element as in
(1v).

(iv) implies (iii): We take p = 1. We identify Prob(T") as a subset of £!(T'). Let ¢ be as in
(1v). We first prove the following claim.

Claim: View (}(T") C ¢>=(T')*, we have

——weak”

¢ € Prob(I")

If the claim is false, then by geometric Hahn-Banach we can find a weak® continuous

linear functional
F:0>I)"—=C
and real numbers a < [ so that

Re(F(¢)) < o < < Re(F(p))

for all p € Prob(I"). It is a standard functional analysis exercise that F'(¢) = ¢(f) for a unique
f € 1°(T'). Replacing f with Re(f), we may assume that f is real. Write f = f* — f~,
where f*f~ =0, and fT, f~ > 0. Taking the infimum over all u € Prob(I"), we find that

a<f<—|f
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However, as f > —||f7||c, We have

a>Re(d(f)) = —=[|f [loo

which is a contradiction.

Let F be a finite subset of I', and ¢ > 0. It suffices to show that there is a f € Prob(I)
so that

max [A(g)f — ]l < <
ge

Let
K =@{\g)f — f:g € F.f€Prob(I)}.

geF

—weak

It suffices to show that 0 € ' By convexity, it suffices to show that 0 € K. By
the claim, we find a net f, € Prob(I") so that

Ja— ¢

weak*. Thus, for all k € ¢>°(T"), for all g € F,

N9) fa = fark) = (fas Mg) Tk — k) = 6(A(g) "'k — k) = 0.
Thus 0 € Fweak, and we are done.
(iii) implies (ii): Let f,, be as in (i7i). By the triangle inequality,
XISl = allls < 1N = full

for all ¢ € I'. So we may assume that f, > 0. Let 1 < g < oo, and set k, = fﬁ/q, we will
show that
IMG)En — Enllg — 0

for all g € I'. Clearly we may assume p # q.

Let us first handle the case that p > ¢. For a,b € [0, 00) we have by elementary calculus:

@/t = /1] < max((af s o — b < Clal i a = b 4+ 1blE |~ b,
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Thus,

M)k = kally < £ 3 (1ult ) = £l )+ Lulo™ ) ) = ful ™))

gerl

<20 (2) S (b 1hn(o) = fla™ )l + g™ 0P 1£sl0) ~ Sl D),

gerl

Where in the last line we use the inequality (a + b)? < 29(a? + b7), for a,b € [0, 00).

Since p > ¢, we may apply Holder’s inequality to see that

A9k — kol < 2091 <§) 1= Al

as

[ fllp = 1.

Thus
[IA(g)kn — Knllg — 0

forall g € T'.
Now we handle the case p < q. We leave it as an exercise to the reader to verify that
|ap/q _ bp/q| <la-— b‘p/q
for a,b € [0,00). Thus for all g € T,

M) kn = Fallg < M) fr = Sully = 0.

(ii) implies (i): We take p = 1. Let f,, be as the statement of (i7). As in the proof of (ii7)
implies (ii), we may assume that f,, > 0. Let ¢ > 0, and K C I" be finite. It is enough to

find a ' C I finite so that
|gFAF|
max

geK |F’

Take n sufficiently large so that

Z ||)‘(g)fn - fn”l < E.

geK
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By Tonelli, for each n we have

1
IA(9) fr = fulli = /0 {fn > t}Ag{fn > t}] dt.

Thus
1 1
/0Z|{fnzt}Ag{fn2t}|dt<s:e/o > 1} de.

geEK

Hence we can find a ¢ > 0 with

ST > DG fu > Y] < el{fu >t}

geK
and so we may take F' = {f, > t}.

(i) implies (vi): Let X be a compact metrizable space and I' ~ X by homeomorphisms.

Let ¢ € X, and let F,, be a Fglner sequence for I'. Set

1
Hn = m Z 59330'

gE€Fn
Then,
|9 Fn AR, |
1gsttn = pinl < =—m7—
| Fl
hence any weak* limit point of u,, is a I'-invariant measure on X. O]

A ¢ as in (iv), is called an invariant mean for I'. Let us use the above theorem to prove
that 5 is not amenable. Suppose F, is amenable, and let ¢ be an invariant mean for
Fy. Let a,b be free generators for Fo. Let AT, (respectively A7) be the set of all words in
Fy beginning with a (respectively a™!), and similarly define BT, B~ in terms of b,b™'. Let

S ={1,b,0% ...}. Then,

Fo=A"UA UBT\S)U(B US)=ATUaA” =b"Y(B"\S)u (B US).
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Thus,

1 =¢(1) = d(xar) + d(xa-) + o(xB+r\s) + ¢(xB-Us)

(xa+) + d(AMa)xa-) + ¢()\(b>71XB+\S) + ¢(xB-us)
(xa+ + (Ma)xa- + /\<b)_1XB+\S + XB-us)
(

2)

a contradiction. By (i) of the next proposition, and the fact that F,, embeds into Fy for all

n > 2, we see that F,, is non-amenable for all n.

We now prove various permanence properties of amenable groups.

Proposition B.1.3. (i): Every subgroup of amenable group is amenable.

(ii): Let T' be a countable discrete group, and let T',, are an increasing sequence of sub-

groups with
I=|JT.
n=1
Then T is amenable if and only if '), is amenable for all n.
(iii): Let
1 A > I A 1,

be a short exact sequence of countable discrete groups. Then I' is amenable if and only if A

and A are amenable.

Proof. (i): Let € > 0, and K C A finite. As a representation of A we have

(2)
AT =P e,
/A

where the superscript indicates we are taking the ¢*-direct sum. By (ii) in the preceding

theorem, we may find Let f € ¢*(T') with || f||» = 1 such that

ST f - fI3 <=

geK

256



Let f.,c € I'/A be such that

f=@ep fo

cel’/A

under the decomposition

(2)
() = ).

/A

Then

Do) ML fAE= ) IMa S~ flE<e=2 ) ISl

geK cel’/A geK cel’'/A

Thus there is some ¢ € I'/A with|| f.||2 # 0, and

>IN fe = Lol < el fll3

geK

Hence if we set k = Hfﬁ’ then ||k||2 = 1, and

max [|A(g)k — kll2 < Ve.

This proves (i7) for A.

(ii): By (¢), we have that if I' is amenable, then so is each I',,. Suppose I',, is amenable
for all n. Let K C I' be finite and € > 0. For n large enough, we have K C I',,. Thus there
is a F C T, finite so that

Now apply a diagonal argument to argue that I' has a Fglner sequence.

(iii): Without loss of generality, A<’ and A =I'/A. By (i), we know that A is amenable.
To see that A is amenable, let K be a compact convex set in a locally convex space, and

A ~ K by affine homeomorphisms. The we have a I' action on K by
gr = (gMN)z, ge 'z € K.

By (v) in the preceding theorem, we know that I' has a fixed point under this action. Any

fixed point for I" is one for A, so A is amenable.
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Now suppose that A and A are amenable. Let K be a compact convex set in a locally

convex space, and let I' ~ K by affine homeomorphisms. By amenability of A,
K ={z € K:  x=uxforall A € A},

is nonempty. Since I" acts by affine homeomorphisms we know that K’ is a compact convex

set. Define an action of A on K’ by

(gM)z = gz

for g € I',;x € K'. By normality of A, and the definition of K’ we see that this is a well-
defined action of A by affine homeomorphisms. By amenability of A, there is a fixed point
x € K’ for the action of A. It is easy to see that z is a fixed point under the action of I,

hence I' is amenable.

]

Let us now give some examples of amenable groups. First, every finite group is amenable.

This follows because

1
o(f) = I > ).

gerl’

is easily seen to be an invariant mean for a finite group I'. The integers are amenable.
Indeed, {—n,...,n} is easily seen to be a Fglner sequence for Z. By repeated applications
of (ii7), and the fundamental theorem of finitely generated abelian groups it follows that all
finitely generated abelian groups are amenable. By (i7), it follows that every abelian group is
amenable. If we let C be the smallest class of countable discrete groups containing all abelian
and finite groups, and which is closed under taking subgroups, extensions and direct unions,
it follows that every group in C is amenable. The class C is called the class of elementary
amenable groups. In particular, every locally solvable group (i.e. every finitely generated

subgroup is solvable) is amenable.
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B.2 Amenable Equivalence Relations

Following our philosophy that properties of a group should translate into properties of their
induced equivalence relations, we will discuss the concept of an amenable equivalence rela-
tion. We list below as a theorem the following equivalent definitions of an amenable equiva-
lence relation. As it would take us too far afield, we will not prove these equivalences, instead
referring the reader to [23] Theorem 4.10, and [17] Chapter II where the below conditions

are taken from.

Theorem B.2.1. Let X be a standard probability space, and p a Borel probability measure
on X, and R a discrete measure-preserving equivalence relation over (X, ). The following

are equivalent.

(i): For every Borel B C X such that
z [y € X (2,y) € B,

y— {zeX:(z,y) € B},
are in L>®(X, 1), and for every € > 0, there is a Borel A C X so that

Hx e O,NA: (x,y) € B,y for somey € X \ A}|
|0.NA

| <e,

for almost every z € X.

(i1): For all 1 < p < oo, there is a sequence f, € LP(R, i) so that ||fn.ll, = 1, where
fnz: Or — C is defined by fr.(y) = fu(x,y), and

||¢fn - Idran(d)) fn”p — O,

for all ¢ € [[R]].
(i11): For some 1 < p < oo, there is a sequence f, € LP(R, i) so that || fn.|l, = 1, where
fnz: Or = C is defined by fr.(y) = fu(z,y), and

||¢fn - Idran(d)) fn”p — O,
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for all ¢ € [[R]].

(iv): There is a positive linear map P: L>®(R, i) — L>®(X, u) so that
P(gf) =gP(f), for all f € L*(R,11),9 € L=(X, p)

P(of) = oP(f), for all ¢ € [[R]].

(v): There is an increasing sequence R, of subequivalence relations of R, so that {y :

(x,y) € R,} is finite for almost every v € X, and alln € N, and
i <R\ U Rn> = 0.
n=1

In the theorem, the conditions (7) through (iv) are the analogues of () through (iv) in
Theorem B.1.2. Conditions (v) is not, and in fact is rather surprising. Condition (v) is
analogous to saying that I' is a union of finite groups. We will discuss later, that when R
has infinite orbits, then there is a free measure-preserving Z ~ (X, u) so that R = Rz~ (x -
This is analogous to saying that ' = 7Z! This is another instance where many properties of

groups become simpler when we pass to equivalence relations.

We now turn to permanence properties of amenable equivalence relations.
Proposition B.2.2. Let X be a standard Borel space, let i be a Borel probability measure
on X, and R a discrete measure-preserving equivalence relation on (X, ).

(i): If R is amenable, then so is any Borel subequivalence relation.

(ii): If R is amenable, and A C X is Borel, then R4 is amenable.

(i11): Suppose that (¢,)2, is a sequence in [[R]], and 1 < p < oco. Suppose that f,, €
LP(R, 1), and fn.: Or — C is defined as in the preceding theorem, and

65.fn — Idran(e,) fullt — 0.
If
7 (R\ i(w6)) v e dom(asj)}) o,
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then R is amenable.

(i): If T is amenable group, and I' ~ (X, ) is a measure-preserving action so that

R ={(z,gx): g € '}, then R is amenable.

(v): If R, are an increasing sequence of amenable subequivalence relations, then
o0
UR.
n=1
1s amenable.

(vi): If A, are an increasing sequence of measurable subsets of X so that R a,, is amenable

and
m (X\ U An> =0,
n=1
then R is amenable.

(vii): If A C X is Borel, and R|A is amenable, then so is Rra.

Proof. (i): Let S C R be a Borel subequivalence relation. Let R,, be as in (v). Set
S, =R,NS.
Then §,, are subequivalence relations of S, and

{ye X : (z,y) € S,}

is finite for almost every X. Choose a conull Xy C X so that {y € X : (z,y) € R, } if finite

for all z € X, and
{y: (@) eR}=|J{y: (z.9) e R}

n=1

for all x € Xy. Then
{y: (w,y) eSt=J{y: (x,9) €8}

n=1

for all # € Xy. Thus S verifies (v) of the above theorem, and hence is amenable.

(ii): Let P be as in (iv) for the above theorem. For f € L*®(R4,7), and define f €



then it is straightforward to verify (iv) of the above theorem for P.

(iii): Passing to a subsequence, we may assume that

‘|¢jfn,x - Idran(d)) fn,asz — 0

for almost every z € X and all j € N. Since (z,y) — (y, ) preserves R, it follows that

Iz (R\ Ui, 67 (2) s € ran(¢j)}> =0.

j=1

Given ¢ € [[R]], let my: ran(¢) - NU {oo} be defined by

mg(z) = inf{k : ¢ (x) = gb]_l(x)}

Then,
||¢fn_ ran( fn |p = @ Z|fn ¢ x y) fn(x y)|pdu( )

ran(¢) o o
/ 0 - ZX{wm¢ m}Z|fn fn(x y)|pdﬂ( )
ran Y~z

Now
> 1fald; — falz, y)I" =0,
Yy~

almost everywhere by assumption. And since || f, .||, = 1, we find that

> 1fale — falz )l < 2.

y~z

Thus, the dominated convergence theorem implies that

“¢fn - Idran(d)) anp — 0.
(iv): Let f,, € £*(T) be such that

IA9) fn = fulls = O

for all ¢ € T', as in the proof of Theorem B.1.2, we may assume f,, > 0. Define fn: R — [0, 00)
by

Folzy)= > falg™),

gelgz=y
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then ||f, |1 = 1 for almost every z € X. Let o, € [R] be defined by ay(x) = gz. Then

lagFo — Fulls = /X SIS Y- Y A0 dut)

y~z |hel:hg—lz=y hel:hx=y

- /X S S gt = fuh )| i)

y~x |hel:hx=y

< Mg fu = falli = 0.
Hence, by (iv) we know that I is amenable.
(v): For ¢ € [[R]], define ng: X — NU {oo} by
ng(x) = inf{k : (z,¢(x)) € R,.},

by assumption ng is finite almost everywhere. Let ¢1,..., ¢, € [[R]], and € > 0. Choose

N e N, and A C X so that u(A) > 1 —¢, and
n¢j(‘r> <N

for al z € A. For 1 < j <k, define ¢; € [[Rn]], by ¢; = ¢;Ida. Let f € L'(Ry,z) be such

that || f|[1 = 1 for almost every x € X, and

max ||y f — fll1 <e.

1<j<k

Define f € LY(R, 1) by declaring J""v(x,y) =0 for (z,y) € R\ Rn. Forany 1 < j <k,

1637 — 1dango 71l = /X 1635 — Wuanoy) Foll dpr) < 25 + / 1652 — 1dan(ay £l

= 2¢ + [[if = Idsan(w) fl

< 3e.

By a diagonal argument and (iv), we see that R is amenable.
(vi): This is proved in a similar manner to (v) as above.

(vii): By (v), it is enough to show that if ¢ € [[R]], dom(¢) C A, and ran(¢) N A = @,

then R aug(4) is amenable. Let us first setup notation. For f € L*(R,fi), define (fi;)1<ij<2
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in L>®(Ra, i) by
Jin =1d4 f1dy,

fiz=1da fo ',
f21 = ¢fIdA7
for=0fo .

For ¢ € [[Raug(a)]] define (¢;5)1<; <2 in [[Ra]] by

Y11 = Ida ¢ 1dyg,

Yro = lda g,
o1 = @ Idy,
P = Phg .

Then for 1 <14,5 <2
2

(Wf)i =Y vafi.

=1
For k € L*(X, ), set

ki =1da k,
ko = ¢k.
Then, for ¢« = 1,2, and 9, k as above:
2
(k) = k.

=1

Let P be as in (iv) of the preceding theorem for L(R 4, ). Define P: L®(Raupay: ) —

L>(X, p) by )

P(f)i = P(fa).

=1

264



for i =1,2. For ¢ € [[RAUQS(A)Hy and f € LOO('R,Aud,(A),ﬁ),i = 1,2 we have

It is even easier to show that P(gf) = gP(f), for g € L®(AUG(A), n), f € L*(R augpay: 1)

This proves (vii).

Let us note what amenability means in the context of free actions of groups.

Proposition B.2.3. Let (X, pu) be a standard probability space, and I' ~ (X, ) a free

measure-preserving action. Then, Rp~(x ) s amenable if and only if I' is amenable.

Proof. By the preceding proposition, we know that if I' is amenable, then Rr~(x,,) is

amenable.

Now suppose that Rr~(x,) is amenable. Let f, be as in (i) In the above theorem for

p=1.As
||¢fn - Idran(d)) fn”l S ||¢|fn| - Idran(zz)) |fn|||17

we may assume that f,, > 0. Let fn: I' — C be defined by

f, g)z/xfn(gww) dp(x).

As fn 20,

> ful9) Z/fngx:vdu Z/fn:cg ') dp(),

gerl’

where in the last equality we use that the action is measure-preserving. As the action is free,

Z/fn:cg x) dp(x /an:rg ) dp(x) = / falz,y) dp(z,y) = 1,

gerl RreAx,um
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since f, > 0 and || f.]1 = 1.

For all g € T,
IA(9) fu = full = falg™ ha, z) du(z fo(ha, ) dp(z)
1 her / /
= falg™ 'z, b7 ') folz, b t2) du(z)],
23/ -,

where in the last equality we use that the action is measure-preserving. Thus,
N9 = Fulls < | D 1l e, h7 ) = fulw, k™) dp(w) = [lg fu = falh,
X her

where in the last line we use the action is free. Thus,

IN9) fn = fulls = 0,

and so I' verifies Theorem B.1.2 (iii) for p = 1.

[]

The following is a fundamental and rather surprising theorem about amenable equivalence

relations see [17] for the proof.

Theorem B.2.4 (Dye, Connes-Feldman-Weiss). Let X andY be standard Borel spaces, and
let w,v be Borel probability measures on X,Y respectively. Let R,S, be discrete, measure-
preserving, ergodic equivalence relations over (X, p), (Y, v) respectively. Suppose that O,, O,

are infinite for almost every x € X,y € Y. Then, R and S are isomorphic.

Thus, from the point of view of equivalence relations there is only one amenable equiv-
alence relation with infinite orbits. This implies that, from the point of view of equivalence

relations, there is only one infinite amenable group. We present this formally below.

Corollary B.2.5. Let X be a standard probability space and j a Borel probability measure
on X. Let T' be any infinite amenable group. If R is a ergodic, discrete, measure-preserving

equivalence relation over (X, u) and O, is infinite for almost every x, then there is a free
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measure-preserving action I' ~ (X, 1) so that R = Rr~(x - In particular, if A is any other
infinite amenable group, and A ~ (X, ) is a free probability measure-preserving ergodic

action, then there is an action I' ~ (X, 1) so that Rr~(x.u) = Ran(x,pu)-

Proof. The in particular part follows from the preceding proposition. Fix some standard
probability space (Y,v) and a ergodic action I' ~ (Y, v) (for example we can consider a

nontrivial Bernoulli action). By the preceding Theorem, there is a bimeasurable bijection
oY - X

so that ®,v = u, and

{@(gy) g €T} ={r e X : (z,0(y)) € R},

for almost every y € Y. We may define an action of I" on X by

gz = (g0 (x)).

For this action Rr~(x,u,) = R.

]

We remark that we may actually remove the ergodicity assumption in the above corollary
by applying the ergodic decomposition and Borel selection. We leave this as an exercise to
the reader. We close this section with a theorem showing that a hyperfinite equivalence

relation is roughly the “smallest” equivalence relation.

Theorem B.2.6. [Jackson-Kechris-Louveau, Lemma 23.2 in [17]] Let (R, X, i) be a discrete,
measure-preserving equivalence relation such that O, is infinite for almost every x € X.
Then, there is a amenable subequivalence relation S of R with infinite orbits almost every-

where.
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