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Meaning in brains and machines: Internal activation update in large-scale
language model partially reflects the N400 brain potential

Alma Lindborg (lindborg@uni-potsdam.de

Milena Rabovsky (milena.rabovsky@uni-potsdam.de)
Department of Psychology, University of Potsdam, Karl-Liebknecht-Str. 24-25,

14476, Potsdam, Germany

Abstract

The N400 brain potential has been used as a neural corre-
late of meaning-related processing in the brain, but its under-
lying computational mechanism is still not well understood.
Although efforts to model the N400 as an update of a prob-
abilistic representation of meaning have been promising, the
limited scope of earlier models has restricted experiments to
highly simplified sentences. Here, we expand modelling of
the N400 to naturalistic sentences using a large-scale, state-of-
the-art deep learning language model (GPT-2). We investigate
the correspondence between updates in the internal state of the
model and the N400 in one quantitative experiment and four
qualitative experiments. Our findings suggest that activation
updates in the model correspond to several N400 effects, but
cannot account for all of them.
Keywords: sentence comprehension; event-related potentials;
N400; deep neural networks; language models

Introduction
Language ultimately aims to convey meaning. The brain po-
tential that is most commonly used to investigate the process-
ing of meaning in language is the N400 component of the
event related brain potential (ERP), a negative deflection over
centro-parietal electrodes peaking around 400 ms after the
presentation of a potentially meaningful stimulus. N400 am-
plitudes have been shown to be modulated by a large number
of lexical-semantic variables, being larger for sentences with
semantic violations (‘I take my coffee with cream and dog’
as compared to ‘sugar’), low cloze as compared to high cloze
probability continuations, earlier rather than later positions of
a word in a sentence, target words presented after an unrelated
as compared to a related prime (table – dog rather than cat –
dog), and words that generally occur with lower as compared
to higher lexical frequency, among many others (see Kutas &
Federmeier, 2011, for review). Despite its widespread use
and even though it seems relatively clear that the N400 is
somehow related to meaning processing, the functional ba-
sis of the N400 continues to be actively debated. Recently,
Rabovsky, Hansen, and McClelland (2018) and Rabovsky
(2020) simulated a broad range of overall 17 distinct em-
pirically observed N400 effects using the Sentence Gestalt
(SG) model (St. John & McClelland, 1990), a neural net-
work model of sentence comprehension that maps from se-
quentially incoming words to the situation or event described
by a sentence. N400 amplitudes were simulated as the mag-
nitude of change of an internal hidden layer activation state
that implicitly represents expected sentence meaning. The

observed correspondence between N400 amplitudes and this
activation change was taken to suggest that N400 amplitudes
reflect the change of a probabilistic representation of meaning
corresponding to an implicit semantic prediction error (see
also Rabovsky & McRae, 2014).

A limitation of this previous modelling work was that the
SG model was trained on a small synthetic corpus and thus
could not be presented with the same naturalistic stimuli pre-
sented in empirical experiments. There are various ways to
address this limitation. One way is to scale up the SG model
(Lopopolo & Rabovsky, 2021). The other way, which we
pursue here, is to ask whether the change of a probabilistic
representation of meaning as implemented in the SG model
can be similarly captured by state-of-the-art large-scale lan-
guage models, which bear some family resemblance to the
SG model, such as e.g., GPT-2 (Radford et al., 2019).

The GPT-2, released by OpenAI in 2019, is a state-of-the-
art deep neural network language model trained for next-word
prediction (Radford et al., 2019). Like most current state-of-
the-art language models, the GPT-2 is based on the Trans-
former architecture (Vaswani et al., 2017). Although not ex-
plicitly trained to perform other tasks than next-word predic-
tion, the GPT-2 performs surprisingly well in a variety of lan-
guage tasks such as text summarisation, machine translation
and question answering (Radford et al., 2019). This makes it
an interesting candidate for modelling sentence comprehen-
sion in a more naturalistic setting than the limited universe of
the small scale SG model.

The GPT-2 relies on masked self-attention, whereby the
model remembers all previous inputs in a text segment and
dynamically assign attention to words which are deemed to
be important in processing the current word. This means that
even distant previous words can attract the model’s attention
when it processes complex material with long-range depen-
dencies. Although this unreasonably large memory buffer
means that Transformer models process language in a less
biologically plausible fashion compared to recurrent models
such as the SG, recent studies suggest that they outperform
recurrent models in predicting N400 amplitudes (Merkx &
Frank, 2020) as well as psychometric measures such as read-
ing times (Wilcox, Gauthier, Hu, Qian, & Levy, 2020; Merkx
& Frank, 2020). However, these studies focus on the output of
the models (such as model-derived lexical surprisal), and say
little about how meaning is represented internally by Trans-
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former models. Another strand of recent work suggests that
activation patterns in Transformer models such as the GPT-2
can accurately predict activity in the human language system
(Schrimpf et al., 2020; Caucheteux & King, 2020). These
results are particularly surprising given the relatively low bi-
ological plausibility of Transformer models compared to re-
current models, and raise the question of whether these mod-
els form on-line semantic representations similar to those of
the human brain. This question has not yet been directly ad-
dressed.

For the purposes of modelling processing of meaning
in general, and the N400 specifically, it is clear that the
SG model and the GPT-2 are two very different creatures.
Whereas the SG model is prompted to map a sentence to the
corresponding described situation or event, and thus learns
by linking language to the world, the GPT-2’s training is
language internal and the model is only implicitly engaged
in interpreting the meaning of the sentence insofar as it is
needed for the prediction of its continuation. Nonetheless,
its (mostly) coherent continuations of stories in response to
prompts and its performance in a variety of language compre-
hension tasks suggest that it does implicitly represent mean-
ing. Furthermore, several recent studies have argued that it
is exactly this principle of prediction that underpins the cor-
respondences between Transformer models and brain activity
(Caucheteux & King, 2020; Schrimpf et al., 2020; Heilbron,
Armeni, Schoffelen, Hagoort, & de Lange, 2020). Thus, the
prediction-driven spontaneous interpretation the GPT-2 is en-
gaging in may be an interesting model of human language
processing, but it is most likely carried out within a subspace
of the model (for example, certain layers of the deep neural
network), and may be associated with certain computational
stages. For example, in analogy with evidence of hierarchical
processing within deep neural networks for image classifi-
cation (Khaligh-Razavi & Kriegeskorte, 2014), one may hy-
pothesise that integrated semantic representations may arise
at deeper layers of the GPT-2. Finally, the notion of ’update’
may have different meanings in the two models due to the
differences in how they process text. Although they both read
a sentence from left to right and interpret each word in the
context of previous words, the SG model forms a single, inte-
grated representation of the sentence which is updated incre-
mentally, whereas the GPT-2 retains access to previous states
by the attention mechanism. Thus, in the GPT-2, the interpre-
tation of a sentence may not be fully contained in its last state,
but rather distributed over many of its states. This means
that the GPT-2 could employ other strategies than incremen-
tally updating a single representation of meaning. Although
recent work suggests similarities between recurrent models
and transformers (Katharopoulos, Vyas, Pappas, & Fleuret,
2020), it remains to be investigated whether activation up-
dates in the GPT-2 show similarly interpretable patterns as
those of the SG model.

In this study, we test whether the correspondence between
the N400 and updates in the probabilistic representation of

meaning in the SG model (Rabovsky et al., 2018) can be ex-
tended to the GPT-2. If this is the case, representations of
meaning in the GPT-2 may provide insight into those of the
human brain. Our investigation is two-pronged. In a quantita-
tive experiment, we compare updates in the GPT-2 to electro-
physiological responses in an EEG experiment containing no
explicit experimental manipulations of the N400. Here, we
quantitatively evaluate the evidence for a correspondence be-
tween the N400 potential and updates in internal states of the
GPT-2 on naturalistic sentence stimuli. Additionally, in four
qualitative experiments, we investigate the effect of explicit
experimental manipulations on the internal dynamics of the
GPT-2.

Experiments
Experiments were run using the pre-trained GPT-2 model
gpt2-large publicly available from the Huggingface
transformers library (Wolf et al., 2020). This model imple-
mentation contains an embedding layer followed by a stack of
36 Transformer decoder modules, which each has 1280 units
in its output layer. These activations are used as inputs to
the next decoder module, and finally used to estimate a prob-
ability distribution over possible next words. Although the
model contains more units – notably the attention modules –
we focus our analyses on the decoder output activations. We
investigate whether the finding by Rabovsky et al. (2018) that
the amplitude of the N400 correlates with the size of the up-
date in the representation of sentence meaning generalises to
the GPT-2. In analogy with their study, we define the size in
network update u(n) at word position n as

u(n) =
D

∑
i=1
|a(n)i−a(n−1)i|= ‖a(n)−a(n−1)‖1 (1)

where ai(n) is the activation of unit i in some D-
dimensional layer, to the presentation of word n. In our N400
experiments, n will be the position of the target word, for ex-
ample sugar in the stimulus sentence ’I take my coffee with
cream and sugar’, which will be compared to the activation at
word n−1, i.e. and. We calculate the update at each decoder
output layer separately, resulting in one update measure for
each of the 36 decoders. As the GPT-2 may split words into
multiple tokens each associated with an internal state, we de-
fined the update at word wt as the change in activation from
the first token of wt and the last token of the previous word
wt−1.

We tested the correspondence between the N400 and ac-
tivation update in the GPT-2, defined in Equation (1), using
two complementary approaches. In the quantitative experi-
ment, we compared the GPT-2 update to the N400 using ex-
perimental data collected by Frank and colleagues (Frank, Ot-
ten, Galli, & Vigliocco, 2015, 2013). We presented the same
stimuli to the GPT-2 as to the subjects in the electrophysiolog-
ical study and investigated whether the update significantly
predicted the N400 amplitude of the subjects. Moreover, we
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Figure 1: Results of the quantitative experiment, plotted by layer in the GPT-2. The left panel shows evidence for the GPT-2
update predicting the N400, indicated by the χ2 test statistic. Significant χ2 values are indicated with triangles. The right panel
shows the influence of three lexical and sentence level variables on the GPT-2 update. Significant coefficients, marked with
triangles, have the same sign as the corresponding regression coefficients for the N400, indicating that the GPT-2 update and
the N400 are similarly influenced by these variables.

investigated whether lexical-semantic variables that naturally
vary across the stimuli such as word frequency, sentence po-
sition and lexical surprisal, have a similar influence on the
GPT-2 update as on the N400.

In the qualitative part of the study, we investigated whether
the GPT-2 update is sensitive to explicit experimental manip-
ulations of semantic congruence, expectancy, role reversals
and priming. These manipulations have all produced clear ef-
fects on the N400 in earlier electrophysiological experiments.
Here, in the absence of EEG data we tested whether experi-
mental conditions differed in the same direction as reported
in previous experiments. The stimuli in the qualitative exper-
iments may be less familiar to the GPT-2 than those in the
quantitative experiment, as the GPT-2 is trained on texts from
the internet, reflecting the statistical patterns in online texts.
Thus, although the ’unnatural’ stimuli in such experiments
may mean that they are less representative of language com-
prehension under naturalistic conditions, they are a test of the
generality of the model’s behaviour. The priming experiment
lies furthest away from the GPT-2’s training data, probing
the model on word pairs rather than the sentence stimuli it is
trained to parse, in contrast to previous sentence-based prim-
ing experiments on transformers (Misra, Ettinger, & Rayz,
2020). Ideally, a model correlate of the N400 would give re-
liable and clear effects also for stimuli which are relatively
unfamiliar to the model.

Quantitative experiment
In the quantitative experiment, we investigated whether up-
dates of the GPT-2 can predict the N400 amplitude in re-
sponse to naturalistic sentences. Additionally, we investi-
gated whether the GPT-2 updates are similarly modulated by
three naturally varying lexical and sentence level variables as
the N400: sentence position, lexical frequency, and lexical
surprisal. The N400 is known to decrease through the course

of a sentence, with lower amplitudes for words presented late
in the sentence (Van Petten & Kutas, 1991). Moreover, infre-
quent words yield a larger N400 compared to frequent words
(Van Petten & Kutas, 1990), as do words which are surprising
given the previous words in the sentence (Frank et al., 2013).

We used a publicly available EEG dataset, collected for a
previous study conducted by Frank et al. (2013). The ex-
periment material consisted of 205 sentences, which did not
contain semantic or syntactic violations, or other types of
unnatural language. Event-related potentials were collected
from 24 subjects, who read the sentences word by word in
a pseudo-random order. Lexical frequency was calculated as
each word’s log-transformed word frequency in the British
National Corpus, and surprisal was estimated using an n-gram
model, following the original study (Frank et al., 2015). For
more details on the data acquisition and EEG pre-processing,
see Frank et al. (2013, 2015).

Investigating first whether the GPT-2 update can predict the
N400, we computed the GPT-2 updates in response to the ex-
perimental stimuli, at each of the model’s 36 decoder output
layers. For each set of GPT-2 updates representing a layer of
the model, we fit a linear mixed effects model predicting the
N400 of the experimental subjects from the updates. In addi-
tion to the GPT-2 updates, we included a fixed effect of the
ERP baseline amplitude, which was not subtracted from the
N400 component following the original study (Frank et al.,
2015). Random intercepts for each subject and lexical item
were furthermore included in the model. Subsequently, each
of these 36 linear mixed effects models were compared to a
base model including only the fixed effect of ERP baseline
and the random effects of subject and lexical item. The ev-
idence for the effect of the GPT-2 update was estimated for
each layer using a likelihood ratio test between the model in-
cluding the GPT-2 update and the base model. The evidence
was deemed significant if the χ2 statistic satisfied p < 0.05
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after Bonferroni-Holm correction for multiple comparisons.
Results of the model comparison are displayed in the left
panel of Figure 1. The model evidence for the GPT-2 up-
date was significant in 31 of the model’s 36 layers, with in-
significant layers all being close to either the input layer or
the output layer of the GPT-2. The evidence appeared to be
largest (as indicated by a large χ2-value) in the deep interme-
diate layers 21−25.

Secondly, investigating the influence of the three lexical-
semantic variables on the GPT-2 update and the N400, we
estimated the contribution of each variable to the GPT-2 up-
date and the N400, respectively, and compared the direction
of the effects. To this end, we fit a linear mixed effects
model at each layer of the GPT-2, predicting the GPT-2 up-
date at each item from its sentence position, lexical frequency
frequency and surprisal, with a random intercept for lexical
item. Regression coefficients were extracted at each layer
and deemed significant if their t-value satisfied p < 0.05 after
correction for multiple comparisons. Similarly, we fit a lin-
ear mixed-effects model predicting subjects’ N400 amplitude
from the same independent variables, additionally including a
fixed effect of the baseline ERP amplitude and random inter-
cepts for lexical item and subject. As the N400 is a negative
ERP component, we multiplied the amplitudes by −1 in or-
der to facilitate comparison with the GPT-2 updates (which
are non-negative). The mixed effects model of the N400 re-
vealed a positive coefficient for surprisal (β= 0.064, t = 7.49,
p < 0.0001) and a negative coefficient for sentence position
(β = −0.058, t = −10.42, p < 0.0001). Additionally, there
was a negative regression coefficient for lexical frequency
(β = −0.007, t = −0.514, p > 0.05 ), but this was not sig-
nificant in the current dataset, contrary to other N400 studies
(Van Petten & Kutas, 1990).

The regression coefficients for the lexical and sentence
level variables on the GPT-2 updates are plotted in the right
panel of Figure 1. Apart from the 5 deepest layers, the vari-
ables significantly affect the GPT-2 update in the same di-
rection as the N400: regression coefficients for surprisal are
positive, whereas those of lexical frequency and sentence po-
sition are negative.

Qualitative experiments

In the qualitative experiments, we followed classical N400
experimental paradigms, recording the response to a target
word wt presented in a context w1, . . . ,wt−1. We conducted
four experiments, listed in Table 1. Experimental conditions
were compared statistically by one-sided paired t-tests in the
direction of the hypothesis, using a significance level of α =
0.05 corrected for multiple comparisons by the Bonferroni-
Holm method.

Table 1: Qualitative N400 Experiments

Experiment Hypothesis
1. Semantic violations violation > congruent
2. Cloze probability unexpected > expected
3. Reversal anomalies incongruent > reversal

≥ congruent
4. Priming unrelated > related

In Experiment 1, we tested the effect of semantic viola-
tions (such as ’I take my coffee with cream and dog’) on the
GPT-2 activation updates. In line with the well-known result
from Kutas and Hillyard (1980) on the N400, we predicted
that semantically incongruent sentence continuations elicit a
larger update compared to congruent continuations (such as ’I
take my coffee with cream and sugar’). This hypothesis was
tested using a set of 350 congruent and 350 incongruent sen-
tences, collected by Valderrama, Beach, Sharma, Appaiah-
Konganda, and Schmidt (2020).

In Experiment 2, we tested the effect of the cloze proba-
bility on target words, as demonstrated by Kutas and Hillyard
(1984). Here we compared the update for expected endings
(’The children went outside to play’) to improbable, but not
strictly incorrect endings (’The children went outside to talk’).
We used a set of 498 sentences with high-cloze endings con-
structed by Block and Baldwin (2010), with manually added
low-cloze completions of the same sentences. We predicted
a larger N400 (and thus a larger update in the GPT-2) for low
cloze compared to high cloze endings.

In Experiment 3, we tested whether reversal anomalies
produced similar effects on the GPT-2 update as on the N400.
In reversal anomalies, such as ’For breakfast the eggs would
only eat. . . ’, despite the implausibility of eat in this context,
only a small increase in the N400 is observed compared to
congruent sentences such as ’For breakfast, the boys would
only eat. . . ’ (Kuperberg, Sitnikova, Caplan, & Holcomb,
2003). Thus, we tested whether the GPT-2 update is smaller
for reversal and congruent conditions compared to a fully
incongruent condition (’For breakfast, the boys would only
plant. . . ’). Moreover, we tested whether the reversal condi-
tion produces a larger update in the GPT-2 compared to the
congruent condition. We used a set of 180 sentences in con-
gruent, incongruent and reversal anomaly conditions in this
experiment, constructed by Kuperberg et al. (2003) 1.

In Experiment 4, we tested whether the GPT-2 network
update could simulate the N400 reduction for semantically
(eg. ’school – university’) or associatively (eg. ’school –
teacher’) primed words compared to unrelated word pairs
(Koivisto & Revonsuo, 2001). We selected the set of 1000
most strongly associated word pairs from the English Small
World of Words project (De Deyne, Navarro, Perfors, Brys-

1The stimuli, kindly provided by the authors upon request, over-
lapped with those of the 2003 study but were not completely identi-
cal with them.
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Figure 2: Results of the qualitative experiments, plotted by layer in the GPT-2. The solid lines represent the mean difference in
update between conditions, with error bands representing a 95% confidence interval. In the Priming experiment, each condition
is plotted separately, instead of their difference. The dotted lines indicate layers where significant effects in line with the
hypotheses were found.

baert, & Storms, 2019) and used the first and second words
as prime and target words, respectively. We compared the
primed condition to an unrelated condition, containing the
same set of targets with scrambled primes. Scrambling was
done prior to tokenization, in order to avoid that words split
up into multiple tokens were separated.

Results of the qualitative experiments are displayed in Fig-
ure 2. In Experiments 1−2, we find the predicted differences
(incongruent > congruent in the semantic violations experi-
ment, unexpected > expected in the cloze probability exper-
iment) localised mainly to the deeper intermediate layers of
the model. In Experiment 3, effects are similarly located in
the deeper intermediate layers of the GPT-2, but results are
more mixed. Incongruent targets elicited a larger GPT-2 up-
date than congruent targets, in line with the hypothesis – how-
ever, contrary to our prediction there was no significant differ-
ence between the incongruent condition and the reversal con-
dition. Finally, in the priming experiment, the model’s update
is larger for unrelated target words as compared to primed, in
line with the hypothesis. In contrast to the other experiments,
the effect was significant in all layers of the GPT-2, indicat-
ing that word pair associations are encoded already at initial
processing stages of the model.

Discussion
In this study, we investigated whether internal state changes
in a deep learning language model – the GPT-2 – can be used
to model on-line representations of meaning in human lan-
guage comprehension, as measured by the N400 potential.
Prompted by earlier research using the SG model (Rabovsky,
2020; Rabovsky et al., 2018), we used the update in internal
representation as a potential correlate of the N400.

In the quantitative experiment, we investigated whether the
GPT-2 update could predict N400 amplitudes from a reading
experiment using naturalistic sentences. Here, we found sig-
nificant evidence for the GPT-2 update predicting the N400 in
all but the outer (shallowest and deepest) layers of the model

(see Figure 1). However, this does not imply that all layers
of the GPT-2 are necessarily engaged in meaning-related pro-
cessing. Rather, as we found in our investigation into the ef-
fect of lexical-semantic variables on the GPT-2 update, early
stages of processing are dominated by effects of lexical fre-
quency and sentence position. As these variables also influ-
ence the N400, it is not surprising that even shallow layers
of the GPT-2 can predict the N400 to some extent. How-
ever, the effects at the shallow layers may follow relatively
trivially from the architecture and training objective of the
GPT-2. First, prior probabilities for single words should be
well-represented in a statistical model for next word predic-
tion such as the GPT-2. Second, as Transformer models ex-
plicitly encode the position of each word token in the text
input (Vaswani et al., 2017), it is plausible that the GPT-2 has
learned to grade the importance granted to a word by its po-
sitional embedding. On the other hand, in humans sentence
position effects on N400 amplitudes are presumably not due
to direct position encoding, but rather due to increasing pre-
dictability of later as compared to earlier parts of the sentence.

The layers for which the evidence is highest are located
deeper within the network, coinciding with an increase in the
influence of surprisal on the updates. These layers seem to
provide the best candidates for an N400 correlate within the
GPT-2. A notable difference between the GPT-2 update and
the N400 is the effect of lexical frequency on each measure.
Whereas lexical frequency has the numerically largest effect
on the GPT-2 update of all three variables, its effect on the
N400 amplitudes in the corresponding EEG experiment was
non-significant. Although a significant effect of lexical fre-
quency on the N400 has been established in other studies (cf.
Van Petten & Kutas, 1990), it is possible that the GPT-2 may
be more focused on lexical frequency than human readers,
due to its training on next word prediction. Further study is
needed in order to ascertain whether this discrepancy between
the model and human subjects is limited to the current EEG
dataset or an indication of a general pattern.
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In the second part of our investigation, we investigated the
effect of specific experimental manipulations on the GPT-2
and tested whether experimental conditions differed in the
same direction as the N400. Manipulating semantic con-
gruence and expectation, respectively, we found significant
N400-like responses in the deeper intermediate layers of the
GPT-2 (see Figure 2). Here, we found that a larger update
was elicited for semantic violations compared to congruent
target words, and for unexpected compared to expected tar-
get words. Interestingly, these effects were observed at layers
overlapping with those that most strongly predicted the N400
in our quantitative experiment.

In the reversal anomaly experiment, we expected a larger
update for incongruent targets compared to the congruent and
reversal condition. This prediction was not fulfilled, as we
found no significant difference between the incongruent and
reversal conditions. Thus, whereas the role reversal is not
reflected at the N400 processing stage in humans, the GPT-
2 seems to process these inputs differently. In this sense
they resemble measures of surprisal, which have also been
shown to capture N400 amplitudes quite well in general, but
fail in some specific situations such as reversal anomalies
(Rabovsky et al., 2018). Here, semantic update in the SG
model is more in line with empirical N400 data, possibly be-
cause the SG model is not trained on next word prediction
but rather is trained to estimate sentence meaning based on
both syntactic and plausibility based constraints such as word
order and event probability; see (Rabovsky et al., 2018) for
discussion.

Finally, in the priming experiment, we found that related
word pairs induced a smaller update in the GPT-2 compared
to unrelated pairs, at all layers. This more wide-spread effect
could potentially arise because the association between words
is already represented at the stage of word embedding, and –
it seems – preserved as the information is passed through the
deep neural network.

In summary, we have found partial evidence for similari-
ties in on-line semantic updates in the GPT-2 and the human
brain, as indicated by correspondences between GPT-2 net-
work updates and the N400 brain potential. In our quantita-
tive experiment, we found that the GPT-2 update predicted
N400 amplitudes from a reading experiment, with strongest
evidence at deeper intermediate layers. Moreover, in our
qualitative experiments we found modulations of semantic
congruence and expectancy overlapping with the quantitative
N400 effects, and finally we found a wide-spread effect of
priming. These findings are notable, given that the GPT-2
(in contrast to the SG model) is not explicitly trained to es-
timate sentence meaning, nor is it architecturally constrained
to incremental processing. Thus, the effects we found at deep
intermediate layers of the GPT-2 suggest that incrementally
updated semantic representations may to some extent be an
emergent property of prediction-based language processing,
even in the absence of the memory constraints imposed in re-
current neural networks. However, the absence of difference

between the incongruent and reversal sentences in the reversal
anomaly experiment suggests differences between the GPT-2
update and the N400, pointing to possible limitations to the
validity of such a model as an analogy for how humans under-
stand language. All in all, our results suggest that the Trans-
former architecture may not provide a perfect model for the
neural process underlying the N400, but may well be useful
in modelling certain types of meaning-related processes at a
level of comprehension performance currently unmatched by
more biologically plausible deep learning language models.
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