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ABSTRACT 

 

Linking Seasonal Foliar Chemistry to VSWIR-TIR Spectroscopy  

Across California Ecosystems 

 

by 

 

Susan Kay Meerdink 

 

Potential ecological impacts of disturbance, land use, and climate change have driven 

many studies to evaluate ecosystem functions through the measurement of vegetation 

biochemical properties that provide integral information on nutrient cycling, litter 

decomposition, and plant productivity. The use of spectroscopy in quantifying vegetation 

biochemistry shows promise with faster analytical speed than traditional methods. Synergies 

between the Visible Near Infrared/ Short Wave Infrared (VSWIR) and Thermal Infrared 

(TIR) spectra for identifying plant species’ foliar chemistry have been largely unexplored. 

Here we evaluate the capability of VSWIR and/or TIR spectra to predict leaf levels of lignin, 

cellulose, nitrogen, water content, and leaf mass per area. We specifically examined how 

these predictive relationships might change seasonally and among plant functional types. 

Lastly we determined whether these relationships between spectra and foliar chemistry could 

be extended to the reduced spectral resolution available in airborne sensors, including the 

Airborne Visible/Infrared Imaging Spectrometer (AVIRIS), the Hyperspectral Thermal 

Emission Spectrometer (HyTES), and the combined AVIRIS and MODIS/ASTER 
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(MASTER) sensors used in the Hyperspectral Infrared Imager (HyspIRI) preparatory flight 

campaign.  

In the 2013 spring, summer, and fall seasons, fresh leaves from sixteen common shrub 

and tree species in California representing three broad plant functional types were sampled 

from the Sierra Nevada Mountains, the Central Valley at the Sedgwick Reserve, and coastal 

Santa Barbara. Partial least squares regression (PLSR) analysis was used to relate spectral 

response at wavelengths from 0.3 – 15.4 µm to laboratory-measured biochemical and 

biophysical properties. For each component, three PLSR models were fit using different 

portions of the spectrum: VSWIR (0.3 – 2.5 µm), TIR (2.5 – 15.4 µm), and the full spectrum 

(0.3 – 15.4 µm). Three additional models were fitted using spectra resampled to AVIRIS 

(0.4 – 2.5 µm), HyTES (7.5 – 12 µm), and the combined AVIRIS and MASTER (0.38 – 12 

µm).  

The majority of the highest performing laboratory spectra models used either the TIR 

or full spectrum. When using simulated sensor spectra, the combined AVIRIS and MASTER 

produced the highest performing models, followed by HyTES. From both laboratory and 

sensor simulated model results, the combination of VSWIR and TIR increased the R
2
 value 

of regression models compared to VSWIR alone, signifying that the inclusion of TIR data 

would improve predictions of foliar chemistry. We also found that model precision varied by 

seasons and across plant functional types. Models developed for all seasons resulted in a 

decreased R
2
 value, but still had high precision (R

2
 > 0.85) and accuracy (RMSE < 10%) 

when predicting cellulose, nitrogen, and water content. These results indicate that the TIR 

could augment the VSWIR in advancing identification of leaf properties of the world’s 

ecosystems by helping to set the foundation for future use of the full spectrum represented by 

the proposed HyspIRI space-borne sensor. 
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I. Introduction 

Many studies aim at quantifying and characterizing ecosystem functions, especially with 

concern of the effects of climate, human disturbances, and land use (Ustin, 2013). 

Knowledge and understanding of these functions allow us to assess the health of an 

ecosystem. Vegetation characteristics such as chlorophyll, lignin, and nitrogen provide an 

insight into how ecosystems function through their role in nutrient cycling, gas exchange, 

and plant productivity (Curran, 1989; Townsend et al., 2003).  However, traditional methods 

of collecting and processing vegetation characteristics on large scales for an extended period 

can be expensive and time consuming. Using relationships derived between spectra and 

laboratory measured components, imaging spectroscopy is an alternative method which 

shows promise in addressing these issues (Lawler et al., 2006).  

To date, most spectroscopic studies have relied on only the Visible Near 

Infrared/Shortwave Infrared (VSWIR) spectrum to measure plant chemistry and biophysical 

properties. Laboratory VSWIR spectroscopy began in the field of agriculture to measure 

forage quality (Shenk et al., 1979), but has since been extended to other biochemical and 

biophysical properties of vegetation from the leaf to canopy scale. For example, Asner et al. 

(2011) used spectroscopy at 61 sites located in humid tropical forests to predict 21 leaf 

chemical properties with success ranging from an R
2
 value of 0.62 – 0.88. Martin et al. 

(2008) developed canopy nitrogen prediction models for eight forests on four continents 

using NASA’s Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) and Hyperion 

instruments with the site-level R
2
 values ranging from 0.69 – 0.85. Despite these 

achievements in predicting components, large portions of the VSWIR spectrum are obscured 
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by water and pigment absorption features, which hinder success in spectroscopic studies 

(Ribeiro da Luz and Crowley, 2010). 

For this reason, studies have begun to use the Thermal Infrared (TIR) spectrum to answer 

questions about plant characteristics. Salisbury (1986) was the first to show that four plant 

species have spectral signatures that varied in the 8 – 14 µm range. However, use of the TIR 

in spectroscopic studies was not adopted as widely as the VSWIR due to low signal to noise 

ratio, limited availability of TIR sensors, and subtle features of plant spectra (Riberio da Luz 

and Crowley, 2007). More recently with technological advancements, Ullah et al. (2012a) 

showed that plant species from the Netherlands have spectral diversity in the mid wave 

infrared from 2.5 – 6 µm and the TIR from 8 –14µm, which could be used for species 

discrimination. Another study conducted by Fabre et al. (2011) found that leaf spectroscopy 

in the 3– 15 µm region was impacted by variations in leaf water content. These studies 

suggest that TIR could be utilized to improve species discrimination, thus opening doors to 

other applications such as quantification of biochemical properties. In fact, a study 

conducted by Ribeiro da Luz and Crowley (2007) found spectral features in the TIR (8 – 14 

µm) associated with cellulose, cutin, xylan, silica, and oleanolic acid. Additionally, Ullah et 

al. (2014) used the full spectrum (0.39 – 14 μm) to retrieve leaf water content from eleven 

different plant species successfully. Integration of the VSWIR and TIR to cover a much 

larger range of wavelengths could allow researchers to utilize the strengths of each spectral 

region while minimizing limiting factors.  

Very few studies have measured the full spectrum due to lack of sensors, but a satellite 

imaging spectrometer that measures 0.38 – 12 µm has been proposed by the National 

Aeronautic and Space Administration (NASA; Riberio da Luz and Crowley, 2007; Ullah et 

al. 2014). In 2013, NASA launched a preparatory campaign to determine if a satellite 
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imaging spectrometer known as the Hyperspectral Thermal Imager (HyspIRI) would be 

appropriate for studying ecosystem characteristics. A unique feature to this proposed mission 

is the inclusion of two instruments: an imaging spectrometer measuring the VSWIR 

spectrum and a multi-spectral imager measuring the TIR spectrum. This new spectrometer 

presents an opportunity to use a larger portion of the spectrum to address questions about 

ecosystem functions explained by biochemistry. Before determining if a satellite such as 

HyspIRI would in fact improve quantification of vegetation chemistry, a need exists to 

determine synergies between the VSWIR and TIR spectra. 

The purpose of our study was to evaluate synergies between the VSWIR and TIR spectra 

for assessing plant species’ foliar chemistry. Here we evaluate the capability of VSWIR 

and/or TIR spectra to predict leaf levels of lignin, cellulose, nitrogen, water content, and leaf 

mass per area (LMA). We specifically examined how these predictive relationships might 

change seasonally and among plant functional types. Lastly we determined whether these 

relationships between spectra and foliar chemistry could be extended to the reduced spectral 

resolution available in airborne sensors, including AVIRIS, the Hyperspectral Thermal 

Emission Spectrometer (HyTES), and combined AVIRIS and MODIS/ASTER (MASTER) 

sensors used in the HyspIRI preparatory flight campaign. We had three hypotheses for this 

study. First we hypothesized that spectra using the full spectral range would improve 

predictions of lignin, cellulose, nitrogen, water content, and LMA. Additionally, we 

predicted that one model created from all samples would provide high accuracy (R
2
 > 0.85) 

to predict leaf components from all seasons and locations. We also hypothesized that the 

reduced spectral resolution of simulated sensors would retain high enough accuracy (R
2
 > 

0.8) to predict lignin, cellulose, nitrogen, water content, and LMA. To test these hypotheses, 

we compared partial least squares regression (PLSR) models using coefficient of 
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determination (R
2
) and percent root mean squared error (RMSE %) created from different 

subsets of samples and regions of the spectrum. 

II. Methods 

A. Study Sites  

We collected and analyzed plant samples from three different ecosystems located across 

California. The sites chosen provide a wide range of biochemistry and spectral values for 

analyses and represent a large change in elevation and ecosystem characteristics. Included in 

these analyses are the following sites: coastal Santa Barbara, Sedgwick Reserve, and Sierra 

Nevada Mountains (Figure 1).  

The coastal Santa Barbara site was comprised of three sub-sites that surrounded the city 

of Santa Barbara, California to capture the diverse ecosystems of coastal California (Figure 

1). These sub-sites were located at three elevations: 5, 515, and 1080 m. The lower elevation 

sub-site was located at the University of California Santa Barbara campus where we 

collected Baccharis pilularis (BAPI), a very common coastal shrub that does not grow at 

higher elevations (Table 1). The mid-elevation sub-site was located in the Santa Ynez 

Mountains, while the highest elevation sub-site was located in the Los Padres National 

Forest. Species collected at these sites include: Adenostoma fasciculatum (ADFA), 

Arctostaphylos glandulosa (ARGL), Ceanothus cuneatus (CECU), Ceanothus megacarpus 

(CEME), Ceanothus spinosus (CESP), Heteromeles arbutifolia (HEAR), and Umbellularia 

californica (UMCA). Many of these species and other dominant vegetation at these sub-sites 

are classified as chaparral, which is a product of the region’s Mediterranean climate. These 

chaparral species form a nearly impenetrable thicket of shrubs with hard leaves and stiff 
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twigs, which makes them well adapted for the hot, dry summers and unpredictable 

precipitation during the winter (Quinn and Keeley, 2006). Most chaparral species are 

drought and fire adapted evergreen shrubs. 

The Sedgwick Reserve site is located in the Santa Ynez Valley in Santa Barbara County, 

California (Figure 1). Created in 1996, the Sedgwick Reserve is the largest reserve managed 

by the University of California Natural Reserve System. With an annual precipitation of 38 

cm, the three main vegetation communities are coastal sage scrub, oak woodland, and exotic 

grasses (Boot et al., 2013). Our sites within Sedgwick Reserve are located at elevations of 

382 and 400 m. The lower elevation sub-site was the location of a large patch of Salvia 

leucophylla (SALE), while at the upper elevation sub-site Quercus agrifolia (QUAG), 

Quercus douglasii (QUDO), and Quercus lobata (QULO) were collected (Table 1). 

The Sierra Nevada Mountains site is located in the Sierra National Forest at an elevation 

of 1400 m (Figure 1). At this elevation the site is composed of mixed conifer forest with 

shrub-dominated rocky outcrops (Dahlgren et al., 1997). We sampled four needleleaf 

evergreen species at this location: Abies concolor (ABCO), Calocedrus decurrens (CADE), 

Pinus lambertiana (PILA), and Pinus ponderosa (PILA) (Table 1). This area presents a 

much moister and cooler climate than our other study areas with an average of 101 cm of 

precipitation per year (Dahlgren et al., 1997).  

B. Field Collection 

We harvested a total of 288 samples from sixteen shrub and tree species common to the 

three areas (Table 1). Each species was represented by three individual plants that were 

stratified by season and leaf age. Each plant was sampled once during the 2013 spring, 

summer, and fall season with sampling dates timed to match HyspIRI airborne preparatory 
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flights (Table 1). During the fall season, due to the original plants being removed, three 

different BAPI plants were sampled. In all other cases, leaves were sampled from the same 

individuals each season. Because individual leaves may live for several years, but may 

change chemically over that time, leaves from each plant were divided into two age classes: 

the current year’s new growth and previous year’s growth. Leaf age was determined by leaf 

location on branch. Individual samples were composed of multiple randomly selected full-

sun leaves because in all cases more than one leaf was needed to complete chemical and 

spectral analysis. A portion of individual samples were designated for lignin, cellulose, and 

water content, another for nitrogen and leaf mass per area (LMA), while the last was for 

spectroscopic analyses. The portion for spectroscopy and nitrogen analyses were placed in 

polyethylene bags with damp paper towels. These samples were then kept cool using an ice 

chest, and a towel was used to prevent from direct contact with ice. The portion destined for 

lignin, cellulose, and water content analyses were sealed tightly in a nalgene bottle. 

C. Spectroscopy 

Spectral response was measured at the NASA Jet Propulsion Laboratory within 48 hours 

of collection in order to preserve integrity of the samples. The VSWIR spectrum was 

obtained using an Analytical Spectra Device Full Range (ASD) spectrometer which covered 

the 0.3 – 2.5 µm range with a sampling interval of 1 nm (Analytical Spectra Devices, Inc., 

Boulder, CO USA). Spectralon was used as a calibrated reflectance standard to convert from 

raw radiance to reflectance (Labsphere Inc., Durham, NH). All samples were illuminated by 

a calibrated quartz halogen light source purchased from ASD, positioned at a 23 degree 

zenith angle and distance of 23 cm from the target. Spectra were collected using bare fiber 

(no foreoptic) with the fiber positioned at a 27 degree view zenith at a distance of 5 cm from 
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the target, producing a 1.5 cm diameter field of view. This configuration results in bi-

directional reflectance with a 50 degree phase angle. All samples were collected with a < 5% 

reflectant black mat as a substrate to minimize substrate effects. Each set of spectra included 

five replicates, followed by rotation of the target and a second or third set of replicates 

depending upon heat loads. When applicable, spectra were collected of the upper and lower 

leaf surfaces. Here we only report reflectance from upper leaf surfaces. 

The TIR spectrum was acquired using a Nicolet Model 520 Interferometer Spectrometer 

which measured from 2.5 – 15.4 µm with a sampling interval of 1 nm (Thermo Electron 

Corp., Madison, WI) . The spectrometer uses nitrogen gas to purge water vapor and carbon 

dioxide. Gold and distilled water were used as a TIR reflectance standard. Each spectrum 

was calculated from the average of 300 scans placing leaves on a tin foil to minimize 

substrate effects. In most cases leaves were clustered in order to obtain a large enough area 

to cover the field of view of both instruments. The full spectrum (0.3 – 15.4 μm) was 

obtained by combining the VSWIR and TIR spectra (Figure 2).  

To test if the loss of spectral resolution would affect prediction of foliar properties, 

laboratory spectra were convolved to three sensors: AVIRIS, HyTES, and combined AVIRIS 

and MASTER. To simulate the AVIRIS sensor, VSWIR lab based measurements were 

convolved using a Gaussian model to 10 nm full-width half maximum bandwidth spanning 

400 – 2500 nm (Green et al., 1998). In addition, to more closely simulate airborne 

measurements, the wavelengths falling within the 1350 – 1450 and 1850 – 1975 nm 

atmospheric water vapor regions were removed from AVIRIS simulated spectra (Gao and 

Goetz, 1995).  

To simulate HyTES spectra, TIR lab based measurements were convolved using a 

Gaussian model to 256 spectral bands that ranged between 7.5 – 12 μm (Hook et al., 2013). 
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To determine the water vapor regions in this portion of the spectrum, H2O transmittance was 

generated using MODTRAN for a sensor altitude of 1 km with a mid-latitude summer 

atmosphere. Wavelengths with less than 20% transmittance were removed.  

To represent the full spectrum, the combination of AVIRIS and MASTER spectra were 

used because these sensors were flown on the HyspIRI preparatory flight campaign in 2013- 

2014 (Green et al., 2013). This flight campaign includes two instruments: an imaging 

spectrometer measuring 0.38 – 2.5 µm and a multispectral imager measuring from 3 – 12 

µm. The imaging spectrometer used is the AVIRIS sensor, while the multispectral imager 

used is the MODIS/ASTER (MASTER) airborne sensor (Hook et al., 2001). To obtain the 

MASTER spectrum, the TIR spectrum was convolved using a Gaussian model to 

MASTER’s 25 channels from 2.5 – 12.876 μm. The combined AVIRIS and MASTER 

spectra will be referred to as AVIRIS + MASTER or AVMA throughout. 

D. Biochemistry 

Lignin and cellulose were analyzed using a sequential acid digestion lignin procedure 

with the Ankom Fiber Digestion Analyzer (ANKOM, Fairport, NY, USA). This method has 

been used in a diversity of studies to evaluate lignin and cellulose concentrations (Hatfield 

and Fukushima, 2005; Lawler et al. 2006). For this method, samples are oven-dried at 60˚C 

for at least 48 hours and ground using a 1 mm (20 mesh Wiley mill) screen. Sample weights 

for analysis were approximately 0.5 g.  

Leaf water content was calculated using the formula from Ullah et al. (2014): leaf water 

content = 100(Mw – Md)/Mw, where Mw is the mass of the wet leaf and Md is the mass of 

the completely dried leaf. Fresh leaf samples were weighed both before and after being dried 

at 60˚C for at least 48 hours.  
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To obtain LMA, enough leaves were used to cover a sheet of white 8.5x11 inch paper. 

These samples were photographed and placed into a nalgene bottle. Samples were oven-

dried at 70˚C for 72 hours and weighed. ImageJ software was used to measure leaf area of 

photographed samples (Schneider et al., 2012). 

After LMA analysis, samples were then ground into a fine, homogeneous powder using a 

roller milling device for nitrogen analysis (Arnold and Schepers, 2004). Nitrogen content 

was obtained using a combustion method with the NA 1500 Series 2 Nitrogen and Carbon 

analyzer (COSTECH Analytical, Valencia, CA). This method is efficient for determining 

nitrogen concentration in plants with high precision compared to other methods (Da Silva 

Dias et al., 2013). Sample weights for analysis were approximately 8 mg. A one-way 

ANOVA was used to determine whether or not leaf lignin, cellulose, nitrogen, water content, 

and LMA for each species varied significantly throughout all three seasons (Table 3).  

E. Statistical Methods 

We analyzed relationships among spectra and lignin, cellulose, nitrogen, water content, 

and LMA using the partial least squares regression (PLSR) method. This method is similar 

to traditional regression models because a linear multivariate model is used to relate two 

data matrices, X and Y (Haaland and Thomas, 1988). However PLSR’s ability to analyze 

data with many, noisy, correlated variables in both X and Y separates this method from 

traditional regression methods (Wold et al., 2001). PLSR has been used in many 

spectroscopic studies and shows consistently high R
2
 values compared to other commonly 

used methods (Bolster et al., 1996; Doughty et al., 2011; Ferwerda et al., 2005; Martens et 

al., 1987). 
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We used reflectance spectra as the independent variables instead of first or second 

derivative spectra which have been suggested in the literature (Townsend et al., 2003). To 

determine the number of factors for each regression we used leave-one-out cross validation. 

This method reduces the possibility of over fitting the model with too many factors and 

produces a predicted residual error sum of squares (PRESS) statistic for total number of 

factors. The model with the minimum PRESS statistic is considered to have the optimum 

number of factors (Martens et al., 1987). If there was a local minimum of the PRESS 

statistic in addition to global minima, the lowest number of factors was chosen.  

 Models were validated by holding out 10% of the data during each iteration, until all 

samples had been removed once. To determine the performance of the models, predicted 

components from the spectra were compared to laboratory measurements of its 

corresponding component using R
2
 and RMSE % to report the accuracy of the models. 

RMSE % was used to enable model comparison across leaf components, as it is normalized 

by the percentage of the response data range (Feilhauer et al., 2010). Models were 

considered to have high precision if R
2
 > 0.75 and high accuracy if RMSE < 15% (Asner et 

al., 2011). 

We developed an equation using all samples collected and compared this to equations 

developed for seasons and functional types to determine whether predictive relationships 

might change seasonally and among plant functional types. The seasonal equations were 

divided into samples collected in the spring, summer, and fall. The functional type equations 

were divided into broadleaf deciduous, broadleaf evergreen, and needleleaf evergreen 

(Table1). In summary, samples were divided into seven model classes for each component: 

All Samples (AS), Spring, Summer, Fall, Broadleaf Deciduous (BD), Broadleaf Evergreen 

(BE), and Needleleaf Evergreen (NE). 



 

11 

 

 Each model class was run six times with a different region of the spectrum: VSWIR, 

TIR, Full, AVIRIS, HyTES, and AVIRIS + MASTER. Three regression models were fitted 

using different portions of the available laboratory spectrum: VSWIR spectrum (0.3 – 2.5 

µm), TIR spectrum (2.5 – 15.4 µm), and the full spectrum (0.3 – 15.4 µm). Finally, to test if 

these relationships could translate to larger scale remote sensing applications, three more 

regression models were fitted using simulated spectra from three sensors: AVIRIS, HyTES, 

and AVIRIS + MASTER (AVMA). Individual models will be referred to throughout this 

paper as model_spectrum. For example, the model created using only broadleaf deciduous 

plant functional type samples and the AVIRIS + MASTER spectrum will be referenced as 

BD_AVMA. 

III. Results 

A. Lignin 

For all species, lignin content varied from 2.6 – 22.5% and had a mean of 10.3% with a 

standard deviation of 3.4% (Table 2). On average, these values are generally lower than 

values reported in other studies due to our method of measuring lignin. There is a 

discrepancy between lignin determination methods because lignin is not easily quantified 

within various types of plant material (Hatfield and Fukushima, 2005). Currently there is not 

a preferred lignin determination method, but the sequential digestion method is known to 

produce lower lignin concentrations (Hatfield and Fukushima, 2005).  

Throughout the year, species’ lignin content varied by seasons. The following species 

had the highest lignin content in the fall season (p < 0.05): CADE, CECU, CESP, PILA, 

PIPO, and QULO (Table 3; Figure A1). The increased lignin content in sampled leaves can 
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be explained by the fact that lignin concentration increases as these leaves lignify with age 

(Martin and Aber, 1997). Not all species followed this pattern. BAPI had the highest lignin 

content in the summer (p < 0.01), but the pattern may not hold true due to the fall season 

samples being collected from different shrubs. HEAR was unique in that lignin content was 

similar for spring and summer, but the fall season showed a decrease (p = 0.004).  

The models predicting percent lignin had R
2
 values ranging from 0.40 – 0.90. The 

number of factors ranged from 4 – 23 and the RMSE ranged from 6.11 – 10.58% (Figure 2; 

Table A1). At first glance, two model classes stand out as having the lowest precision (R
2
 < 

0.6) across all spectra: All Samples (AS) and Needleleaf Evergreen (NE). On the other hand, 

one of the best model classes was Broadleaf Deciduous (BD), which was predicted well (R
2
 

> 0.9) for most spectral divisions. The consistently high prediction of lignin in BD could be 

contributed to the smaller amount of variation in lignin content for these species compared 

to other plant functional types. When predicting leaf lignin content, no spectrum domain was 

top performing for all model classes. In general, most models had fewer than 10 

components. Outliers included the AS_Full, BE_VSWIR, and BE_AVIRIS models. The 

models using the TIR spectrum consistently had a lower number of factors compared to 

other spectra. This same pattern is true for simulated sensor spectra where the HyTES 

spectrum had the lowest number of factors.  

The highest precision model for each model category using laboratory spectra to predict 

lignin are ranked from high to low as BD_Full, BE_VSWIR, Summer_TIR, Spring_Full, 

Fall_TIR, NE_Full, and AS_Full (Table 4). For the laboratory-based spectra, the division of 

samples into seasons or functional types increased the precision of predicting lignin 

compared to models created from all samples. By dividing the samples by season, a more 

consistent prediction was achieved with R
2
 values ranging from 0.82 – 0.89 and RMSE 
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ranging from 6.54 – 9.12%. For samples divided up by season, the TIR spectrum appears to 

be important in quantifying lignin. The division of samples into functional types resulted in 

higher precision, compared to the seasonal division, for two of the three functional types. 

The lignin content of NE was not easily predicted. On the other hand BE model had high 

precision, but also used 23 factors, which is twice the number of factors as the other models.  

The models using sensor simulated spectra to predict lignin are ranked from high to low 

as: Spring_HyTES, BD_AVMA, Summer_HyTES, Fall_HyTES, NE_HyTES, BE_HyTES, 

and AS_HyTES (Table 5). In all categories, except for the broadleaf deciduous plant 

functional type, the best models used wavelengths associated with the HyTES sensor. 

Dividing the samples into seasonal models resulted in the highest precision compared to the 

AS model. The division of samples into plant functional types also improved prediction, but 

not as much as the seasonal division. While some precision was lost with the reduction of 

spectral resolution, lignin was still predicted with high precision (R
2
 >= 0.8) using the 

HyTES spectrum if samples were analyzed by season or plant functional type. 

To determine whether the models identified known absorption features of lignin, 

regression coefficients for AS_VSWIR, AS_TIR, and AS_Full models were plotted in 

relation to the average reflectance spectrum (Figure 3). In addition this figure shows the 

corresponding precision of the AS_VSWIR, AS_TIR, and AS_Full models through the 

predicted versus laboratory measured lignin plots. The wavelengths related to the four 

largest regression coefficients and the structures associated with those wavelengths were 

identified for VSWIR, TIR, and full spectrum (Table 6). The VSWIR and TIR spectra 

models identified absorption features not necessarily related to lignin, but other components 

such as starch, protein, and wax. The full spectrum’s largest coefficients identified 

wavelengths in the TIR spectrum that are known absorption features of either lignin or 
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cellulose. The AS_Full model had the highest precision of this model class and also 

identified the most wavelengths directly related to lignin absorption features.  

B. Cellulose 

Percent cellulose for all species ranged from 4.20 – 27.33% and had a mean of 11.82% 

with a standard deviation of 4.81% (Table 2). CESP had the lowest mean cellulose content, 

while QUAG had the highest mean. In general most species’ cellulose content remained 

consistent throughout the year, but a few species had variations from season to season. Six 

species had statistically significant variations in cellulose content over time (Table 3; Figure 

A2). ADFA, PILA, PIPO, and UMCA had the highest cellulose content in the fall (p < 0.05). 

The fall samples of BAPI had the lowest cellulose content, but since a new set of shrubs was 

collected for the fall season, this result may not be caused by a seasonal change (p = 0.03). 

CECU was unique in that it was the only species that had significantly higher cellulose 

content in summer as opposed to fall and spring (p = 0.002).  

The R
2
 values for cellulose predictions ranged from 0.26 – 0.98, the number of factors 

ranged from 4 – 34, and RMSE ranged from 3.32 – 11.61% (Figure 4; Table A1). Cellulose 

prediction models did very well (R
2
 > 0.9) across the majority of models using laboratory 

spectra. While prediction models using simulated sensor spectra did not do as well as the 

laboratory spectra, most models still performed well as defined by the threshold of R
2
 > 

0.75. One of the only exceptions was the broadleaf deciduous plant functional type, which 

only achieved R
2
 values of approximately 0.75 for all laboratory and simulated sensor 

spectra. The last exception was the TIR and HyTES, which had accuracies below 0.75 for 

most models. All models created with the TIR, HyTES, and broadleaf deciduous plant 
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functional type had the lowest number of factors. The models using the highest number of 

factors were the AS_VSWIR and AS_AVIRIS models (Table A1).  

For laboratory spectra, the models are ranked from high to low as Summer_TIR, 

NE_VSWIR, AS_VSWIR, BE_Full, Spring_Full, Fall_VSWIR, and BD_Full (Table 4). The 

AS_VSWIR model had high precision, but required approximately twice the number of 

factors to explain the variation. When samples were divided into seasons or functional types, 

the number of factors required for the model decreased but the precision did not. Each 

season used a different portion of the spectrum with similar accuracies and factors. As for 

the division of samples into functional types, BE_Full and NE_VSWIR performed on par 

with the AS_VSWIR model. However, BD_Full had the lowest R
2
 value of all models using 

the laboratory spectra. When predicting cellulose using laboratory spectra, the VSWIR and 

full spectrum had the highest performing models.  

Translating this to sensor simulated spectra, the ranking of models from high to low 

changes to: NE_AVIRIS, Summer_AVMA, AS_AVIRIS, Fall_AVMA, BE_AVMA, 

Spring_HyTES, and BD_HyTES (Table 5). Three of the seven models used AVIRIS + 

MASTER, while the other four models were evenly split between AVIRIS and HyTES 

spectra. The AS model used the AVIRIS spectrum with high precision of R
2
 = 0.93, but 

again required the most number of factors to explain the variance. These models decreased 

in precision slightly compared to laboratory wavelength ranges, but the sensor simulated 

spectra retain a high enough spectral resolution to predict cellulose content. 

The AS model regression coefficients for VSWIR, TIR, and full spectrum were plotted 

in relation to the average reflectance spectrum to determine whether the models were 

associated with known absorption features of cellulose (Figure 5). The precision, shown 

through predicted versus measured cellulose, of the resulting models are shown next to the 
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corresponding regression coefficients (Figure 5). The wavelengths related to the four largest 

regression coefficients and the structures associated with those wavelengths were identified 

for VSWIR, TIR, and Full spectrum (Table 6). The regression coefficients from the TIR 

model included wavelengths directly related to cellulose absorption features. The Full 

spectrum model also included wavelengths related to cellulose absorption, but did not 

perform as well as the TIR model. The VSWIR model used the least number of wavelengths 

associated with cellulose, but chose absorption features related to protein, starch, and .CH2. 

This model had the highest precision, but also needed more than twice the number of 

components compared to the TIR to explain the variance.  

C. Nitrogen 

For all samples, nitrogen content ranged from 0.45 – 3.81% with a mean of 1.4% and 

standard deviation of 0.6% (Table 2). ARGL had the lowest mean nitrogen content, while 

BAPI had the highest. Throughout the year, nitrogen changed from season to season for most 

species. The following species have nitrogen content that were statistically differed by 

season (p < 0.05): ADFA, BAPI, CEME, PIPO, QUDO, QULO, and SALE (Table 3; Figure 

A3). In general these species had higher nitrogen content in the spring season. The only 

exception is PIPO, where the summer season had the highest amount of nitrogen. In general, 

the needleleaf evergreen tree species did not vary much in nitrogen content, compared to 

other functional types. 

The models’ R
2
 values for nitrogen predictions ranged from 0.35 – 0.96, the number of 

factors ranged from 4 – 26, and RMSE ranged from 4.70 – 12.25% (Figure 6; Table A1). 

The broadleaf deciduous plant functional type had the highest precision across all spectra 

except for the TIR. The fall season was not predicted well by most spectra (R
2
 < 0.65), with 
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the only exception being the TIR spectrum (R
2
 = 0.90). All other models had a very similar 

number of factors, excluding the AS and BE models which had the highest number of 

factors.  

For laboratory spectra, the models are ranked from high to low as: BD_Full, Spring_Full, 

Fall_TIR, NE_TIR, AS_VSWIR, Summer_TIR, and BE_VSWIR (Table 4). All highest 

performing models predicted nitrogen content well (R
2
 > 0.8). The AS model used more 

than double the number of factors. By dividing up samples into seasons or functional types, 

fewer factors were needed because there was less variation in the dataset. In most cases this 

also improved the precision of the model. Models using the TIR spectrum required fewer 

factors to explain the variation compared to the VSWIR or full spectrum. When predicting 

nitrogen using laboratory spectra, our models had the highest precision if they incorporated 

the TIR spectrum either through the full spectrum or stand alone. 

For sensor simulated spectra, the models are ranked from high to low as BD_HyTES, 

Spring_AVMA, AS_AVIRIS, NE_HyTES, BE_AVMA, Summer_AVIRIS, and 

Fall_AVMA (Table 5). Switching to wavelengths associated with known or proposed 

sensors decreases the prediction of nitrogen, but models still retain R
2
 values above 0.8 

except for the summer or fall season. The TIR spectrum, by way of HyTES, is not as widely 

implemented in the best models as in the laboratory spectra models, although the model with 

the highest R
2
 value was predicted using the TIR spectrum and broadleaf deciduous 

functional type. With the decrease of spectral resolution, the AS_AVIRIS model is ranked 

higher and would be more appropriate for predicting nitrogen. 

Regression coefficients for VSWIR, TIR, and full spectrum AS models were graphed in 

relation to the average reflectance spectrum to determine whether the models detected 

known absorption features of nitrogen (Figure 7). The precision of nitrogen prediction using 
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the resulting models are shown next to the corresponding regression coefficients (Figure 7). 

The wavelengths related to the four largest regression coefficients and the structures 

associated with those wavelengths were identified for VSWIR, TIR, and full spectrum 

(Table 6). The AS_VSWIR model had the highest precision compared to the TIR or full 

spectrum. This was also the only model to identify absorption features related to nitrogen 

specifically. All other models identified wavelengths related to absorption features of 

cellulose or lignin. 

D. Water Content 

Water content ranged from 20.22 – 76.85% for all sixteen species with a mean of 51.0% 

and standard deviation of 9.3% (Table 2). Throughout the year, water content varied by 

season for almost all species. The following species did not have a significant change in 

water content by season (p > 0.05): CADE, PIPO, and QUAG (Table 3; Figure A4). The 

other thirteen species had a least one season in which water content values were statistically 

significant. All species collected from the Santa Barbara area had lower water content in the 

fall season, which corresponds to the driest time of year for the area. In addition, for species 

collected from the Sedgwick Reserve we observed a large decrease in water content as the 

seasons progressed from spring to summer to fall. The only exception was QUAG, a 

broadleaf evergreen tree species, where foliar water content was fairly consistent throughout 

the year. Species collected in the Sierra Nevada Mountain range had the highest water 

content in the fall.  

The R
2
 value for water content predictions ranged from 0.29 – 0.99, the number of 

factors ranged from 5 – 19, and RMSE ranged from 2.6 – 11.21% (Figure 8; Table A2). 

Water content models exceeded the threshold of a good prediction model as R
2
 > 0.85 for 
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almost all models and all spectra. The exceptions were a few models using the TIR or 

HyTES spectrum, where eight of the fourteen models had low precision. The broadleaf 

deciduous plant functional type had high precision for all spectra with models exceeding the 

threshold of R
2
 > 0.75. The number of factors used in each model were consistent, except for 

the AS models with 25 factors.  

Ranked by high to low precision, the models using laboratory spectra are: Spring_TIR, 

BD_TIR, Fall_TIR, NE_TIR, BE_Full, Summer_Full, and AS_Full (Table 4). The four 

highest ranked models used the TIR spectrum, while the lowest three utilized the full 

spectrum. The use of the TIR spectrum, compared to the full spectrum, did reduce the 

number of factors used to create the model, showing that the TIR spectrum can explain the 

same amount of variance with fewer factors for water content. The best models using 

laboratory spectra had very high precision with an R
2
 value above 0.9. The model created 

from AS ranked low compared to the season or functional type models, but still had an R
2
 

value of 0.92.  

For sensor simulated spectra the best models for each category are ranked as: 

BD_HyTES, AS_AVMA, BE_AVMA, Summer_AVMA, Spring_AVIRIS, Fall_AVMA, 

and NE_AVMA (Table 5). In general the predictive power is reduced compared to 

laboratory spectra, but still retains high precision with R
2
 values that are above 0.86 for the 

best models in each category. The AVIRIS + MASTER spectrum is used most often in the 

best models instead of the TIR which was used predominately in the laboratory spectra. The 

model constructed using AS had the second highest ranked R
2
 at 0.93, which is higher than 

the AS model using the laboratory spectra.  

Regression coefficients for AS_VSWIR, AS_TIR, and AS_Full models were plotted in 

relation to the average reflectance spectrum to determine whether the models distinguished 
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wavelengths related to known absorption features of water content (Figure 9). The precision 

of water content predictions using the resulting models are shown next to the corresponding 

regression coefficients (Figure 9). The wavelengths related to the four largest regression 

coefficients and the structures associated with those wavelengths were identified for 

VSWIR, TIR, and full spectrum (Table 6). The TIR model’s largest coefficients were related 

to water content absorption features. The VSWIR and full spectrum also had a large 

coefficient based on one water absorption feature, but also used wavelengths that correspond 

to cellulose, lignin, starch, chlorophyll b, and urea.  

E. LMA 

Leaf mass per area (LMA) varied from 0.4 – 7.13 g/m
2
 for all sixteen species with a 

mean and standard deviation of 2.34 and 1.39 (Table 2). Species showed slight variations in 

LMA from season to season. The following species had a statistically significant change in 

LMA by season (p < 0.05): BAPI, CADE, CECU, CEME, PIPO, QUAG, QUDO, and SALE 

(Table 3; Figure A5). In general BAPI had the lowest LMA, while PIPO had the highest 

values. The summer collection of PIPO showed the largest variation, which corresponds to 

the new growth occurring at this time (p = 0.048). This pattern is similar for ADFA, CADE, 

and CECU where a clear distinction in the spring season occurs between new leaves and old 

leaves. The fall collection of BAPI had the lowest LMA ( p = 0.009); however, since a new 

set of shrubs were collected for the fall season, this may not be caused by a seasonal change.  

The R
2
 for LMA predictions ranged from 0.47 – 0.98, the number of factors ranged from 

3 – 12, and RMSE ranged from 3.03 – 12.81% (Figure 10; Table A2). The TIR spectrum 

yielded the best model results (R
2
 > 0.8) compared to other spectra.These results did not 

translate to the reduced spectral resolution of the HyTES sensor, with only summer and 
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broadleaf deciduous plant functional type achieving an R
2
 > 0.8. In general the AS models 

for all spectra produced less precise and accurate models compared to seasonal or plant 

functional type models. All models had a similar number of factors and a relatively small 

range compared to other biochemical properties in this paper.  

Ranked by R
2 

value from high to low, the best models for each category using laboratory 

spectra are: Fall_TIR, Summer_TIR, BE_TIR, BD_TIR, Spring_VSWIR, AS_Full, and 

NE_Full (Table 4). The top four best models for each category used the TIR spectrum. The 

AS_Full model was the second lowest performing model. For predicting LMA with 

laboratory spectra, the AS_Full model had a low precision (R
2 

= 0.78) while dividing 

samples by season or plant functional type generally resulted in the highest R
2
 value. 

However, compared to other models the NE_Full model has a lower precision (R
2 

= 0.76) 

and accuracy (RMSE = 9.95%) when predicting LMA.  

Ranked by R
2
, the best models for each category using sensor simulated spectra are: 

BD_HyTES, Summer_AVMA, Spring_AVMA, BE_AVMA, AS_AVMA, Fall_AVIRIS, 

and NE_HyTES (Table 5). Transitioning to sensor simulated spectra, the majority of the top 

performing models used the AVIRIS + MASTER spectrum. All other models’ precision 

suffered with decreased spectral resolution except for the BD model, for which the R
2
 

increased from 0.83 using the TIR spectrum to 0.98 using the HyTES spectrum. Dividing 

samples up into seasons or functional types along with using the AVIRIS + MASTER 

spectrum improved prediction of LMA in most cases compared to the AS model.  

Regression coefficients for AS_VSWIR, AS_TIR, and AS_Full models were plotted in 

relation to the average reflectance spectrum to determine whether the models identify known 

absorption features (Figure 11). The precision of LMA prediction using the resulting models 

are alongside to the corresponding regression coefficients (Figure 11). The wavelengths 
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related to the four largest regression coefficients and the structures associated with those 

wavelengths were identified for VSWIR, TIR, and full spectrum (Table 6). While LMA does 

not have any specific absorption features, other biochemical absorption features were 

identified. The full spectrum’s largest regression coefficients were associated with cellulose, 

CH2, and humic acid. The VSWIR model uses wavelengths associated with water, cellulose, 

starch, lignin, chlorophyll a, and aromatics. The TIR model, which had the highest precision 

of the AS models, used features related to lignin, water, cellulose, and humic acid.  

IV. Discussion 

A. Lignin 

The majority of the highest precision models for predicting lignin use the full spectrum 

at fine spectral resolution and the HyTES spectrum at coarser spectral resolution. The 

VSWIR and AVIRIS spectra were not prominently used in predicting lignin, while the TIR 

and HyTES spectra were used frequently in models with the highest precision. This is related 

to the majority of known lignin absorption features residing in wavelengths 2.5 – 13 µm 

(Elvidge, 1988). Of these absorption features, the strongest and largest lie in the mid-infrared 

range of 2.5 – 6 µm (Elvidge, 1988). We see this in the largest regression coefficients of the 

AS_Full model. 

With reduced spectral resolution, the precision of predicting lignin decreased for most 

model classes. The larger bandwidths that are used in the sensor simulated data are not able 

to capture the subtle spectral features that are related to lignin. However, prediction 

accuracies still retain an R
2
 > 0.75 and RMSE < 10% which are classified as above the good 

prediction model threshold, except for the AS model. The AVIRIS + MASTER model for 

AS, spring, BD, and NE outperformed the AVIRIS model, showing that although the 
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AVIRIS + MASTER spectrum contains only 25 wavelengths in TIR, these still improve 

predictions of lignin for these classes. 

Our model results are in line with other studies’ lignin prediction results. The lowest 

performing model (AS model with R
2 

= 0.59 and RMSE = 6.20%) is similar to Asner et al. 

(2011), where model results were an R
2
 value of 0.62 and RMSE of 10.0% for plants located 

at 61 sites distributed throughout the world. Martin and Aber (1997) developed models with 

a prediction precision of R
2
 = 0.77. Models reached accuracies of R

2 
> 0.8 and RMSE < 10% 

when samples were divided into groups such as by season or plant functional type. When 

samples were divided into seasons, model accuracies more closely resembled studies such as 

Bolster et al. (1996) where samples were mostly collected in June 1992 and included 25 

deciduous and 14 conifer species (Bolster et al., 1996). Their final models had a precision of 

R
2
 = 0.88, which reflects our seasonal model results that ranged from R

2
 of 0.82 – 0.89. 

B. Cellulose 

For cellulose content prediction, the top performing models for laboratory spectra 

models used the VSWIR and full spectrum. For sensor simulated spectra, the majority of the 

top performing models chose the AVIRIS + MASTER spectrum. While model precision 

decreased with spectral resolution, our models found that the wavelengths available in the 

AVIRIS + MASTER sensors are still able to predict cellulose contents with high precision 

(R
2
 > 0.75) and high accuracy (RMSE < 10%), above the good prediction model threshold. 

Additionally, the AVMA’s TIR spectrum contributed to a higher prediction of cellulose 

content compared to just the AVIRIS sensor for spring, summer, fall, BD, and BE. For both 

resolutions, the AS models had both high precision (R
2
 > 0.9) and high accuracy (RMSE < 

8%). While, dividing samples into seasonal and plant functional types did not improve 
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model accuracy and precision. Cellulose forms one third to one half of the dry weight in 

most plants making it the most abundant organic compound in terrestrial ecosystems 

(Elvidge, 1988). This may contribute to a larger spectral signal related to cellulose that 

allows this component to be predicted using the AS models and with higher accuracies 

compared to other components such as lignin and nitrogen.  

A larger number of factors are needed in the models to predict cellulose content 

compared to lignin, nitrogen, LMA, and water content. The VSWIR and AVIRIS models 

required the largest number of factors and had the best cellulose prediction models. 

However, the majority of the top performing models used portions of the TIR spectrum 

which is consistent with other studies (Ribeiro da Luz, 2006; Ribeiro da Luz and Crowley, 

2007). Cellulose is one of the few components being analyzed using the TIR spectrum 

because of strong absorption features in this region (Ribeiro da Luz and Crowley, 2007).  

Our model results are similar to other studies that have predicted foliar cellulose content. 

For fresh leaf samples, Asner et al. (2011) reported a precision using AVIRIS simulated 

spectra of R
2
 = 0.77, and Bolster et al. (1996) reported a precision of R

2
 = 0.89. While most 

of our models reported higher accuracies than models measuring fresh leaf samples, a study 

done by Kokaly and Clark (1999) found coefficients of determination from 0.75 – 0.93 for 

dried leaf samples.  

C. Nitrogen 

Known absorption features related to nitrogen are located in the VSWIR spectrum 

(Curran, 1989). However in our study we found that the majority of the best performing 

models for predicting nitrogen used the TIR spectrum at fine spectral resolution. The model 

classes that chose TIR were summer, fall, and needleleaf evergreen plant functional type. 
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These sample divisions have the lowest amount of nitrogen, suggesting that at low nitrogen 

content, models that use the TIR spectrum maybe more useful compared to the VSWIR. The 

largest regression coefficients for the TIR spectrum relate to structural leaf components such 

as lignin and cellulose (Elvidge, 1988). 

Of all biochemical and biophysical components analyzed in this thesis, nitrogen model 

precision was reduced the most by the lower spectral resolution of the sensor simulated 

spectra. A possible reason could be that spectral features related to nitrogen are masked with 

the averaging of bands over a larger width. The majority of the best performing models for 

predicting nitrogen used the AVIRIS + MASTER spectrum at coarser spectral resolution. 

For some model classes, reduction of spectral resolution reduced nitrogen prediction 

precision, such as the fall season which had a prediction precision of R
2
 = 0.90 and dropped 

to 0.56. The Fall_AVMA and Summer_AVIRIS models, while the best for these seasons 

still had the lowest performance compared to other models. This could be caused by leaf 

senescence that was occurring for many species during these seasons creating a large 

variation in nitrogen that the models are not able to capture. When predicting nitrogen 

content, our study found that the AS_AVIRIS model produced a high precision (R
2
 = 0.86) 

and high accuracy (RMSE = 7.82%), which was better than the majority of models where the 

samples were divided into seasons or plant functional types. Adding wavelengths in the TIR 

spectrum to AVIRIS contributed to higher predictions for AVIRIS + MASTER models 

compared to AVIRIS models for spring, fall, BD, BE, and NE.   

Nitrogen prediction models have a wide range of precision over many studies. Other 

studies reported model accuracies ranging from R
2
 values of 0.75 – 0.97 (Bolster et al., 

1996; Dury and Turner, 2001; Huang et al., 2004; Smith et al., 2003; Yoder and Pettigrew-

Crosby, 1995). On the lower end, Asner et al. (2011) reported a nitrogen prediction result of 
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R
2
 = 0.77. In the middle range, Martin and Aber (1997) modeled prediction of seasonal 

variation of foliar nitrogen and found a model precision of R
2
 = 0.87. The highest PLSR 

model result for nitrogen prediction was an R
2
 = 0.97 from Bolster et al. (1996). These 

studies encompass our model results, which ranged from R
2
 values of 0.71 – 0.92. While our 

model results fall into the range reported by other studies, discrepancies may be a result of 

the leaf nitrogen content of species sampled. Our study had lower mean nitrogen content 

averaged for all species compared to the studies mentioned above (Asner et al., 2011; 

Bolster et al., 1996; Martin and Aber, 1997) 

D. Water Content 

Our leaf water content prediction models had high precision with R
2
 values above 0.86 

and had the highest model accuracies compared to lignin, cellulose, nitrogen, and LMA. In 

fresh green leaves, water is a major constituent and can account for 40 – 80% of weight 

(Elvidge, 1988). This could result in a larger spectral signal of water that models were able 

to capture and result in higher prediction accuracies compared to other components that 

account for a smaller portion of leaf composition. When predicting water content, the 

AS_AVMA model produced a very high precision (R
2
 = 0.93), outperforming many of the 

seasonal or plant functional type model classes. The literature supports this high accuracy 

model for prediction of water content. Asner et al. (2011) and Asner and Martin (2008) 

using AVIRIS simulated spectra reported a prediction R
2
 value of 0.88 and 0.91, 

respectively. Curran at al. (2001) reported an even higher model result of 0.94 for slash pine 

needles. All of these studies used the VSWIR spectrum to obtain water content predictions.  

In our study, top performing models predicting water content used the TIR spectrum at 

fine spectral resolution and the AVIRIS + MASTER spectrum at coarser spectral resolution. 
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For the prediction of water content, the TIR spectrum was beneficial to the model precision, 

as all but one of the highest performing models for laboratory and sensor simulated spectra 

used the TIR alone or the full spectrum. This is true even for the reduced spectral resolution 

of the AVIRIS + MASTER spectra in the TIR region, where all but one model class had this 

spectrum as performing better than the AVIRIS spectrum alone. This agrees with newly 

released studies that have analyzed foliar water content in the TIR spectrum. For example, a 

couple studies examined how leaf spectral signatures change with variations of leaf water 

content and found that in the 3 – 5.5 µm region spectral signatures are increasingly sensitive 

to leaf water content (Fabre et al., 2011; Ullah et al., 2012b; Ullah et al., 2013). More 

recently Ullah et al. (2014) analyzed leaf water content in different portions of the full 

spectrum (0.39 – 14.0 μm) by running PLSR models. The final models predicting leaf water 

content contained a similar number of factors (8, 9, and 10) to our final models. The MIR 

(2.5 – 6 µm) spectral region resulted in the highest R
2
 = 0.96, which corresponds to the same 

region that contained the highest regression coefficients of our models.  

E. LMA 

The TIR spectrum at fine spectral resolution and the AVIRIS + MASTER spectrum at 

coarser spectral resolution was used in the majority of the highest precision models for 

predicting LMA. Model precision decreases at the lower spectral resolution, especially for 

some model classes more than others. For example, the Fall model prediction went from the 

highest performing of the laboratory spectra at R
2
 = 0.98 to one of the lowest performing 

using the AVIRIS spectrum at an R
2
 value of 0.74. Additional TIR wavelengths available in 

the AVIRIS + MASTER spectrum improved accuracy compared to the AVIRIS spectrum 

alone, showing that the TIR spectrum played a role in predictions of LMA. 
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Including both the laboratory and sensor simulated spectra, the AS model did not 

perform as well as the seasonal models. The plant functional types were expected to perform 

better than seasonal models because LMA are most easily explained by functional groups 

(Poorter et al., 2009). However, the plant functional type models had the lowest and highest 

accuracies ranging from NE with R
2
 = 0.66 to BD with R

2
 = 0.98. These results might be 

explained by the needleleaf evergreen plant functional type having twice the range of LMA 

values compared to the other plant functional types. This wide range of LMA could be 

attributed to aging of leaves as they were collected during the three seasons and result in the 

model’s inability to accurately capture this wide variation.  

In our study the sensor simulated spectra models had an R
2
 value ranging from 0.66 – 

0.98. Many studies do not report R
2
 values as low as some of our models, but there are many 

to support the higher accuracies with R
2
 values generally ranging from 0.8 – 0.9 (Asner et 

al., 2009; Asner et al., 2011; Asner and Martin, 2008; Doughty et al., 2011). All of these 

studies used the VSWIR, while we achieved similar accuracies using the AVIRIS + 

MASTER or HyTES simulated spectra.  

F. Considerations for HyspIRI 

To harness the temporal and spatial scale that is available using aerial and space-borne 

sensors, a generalized and transportable model should be developed to map canopy 

biochemical and biophysical properties (Asner et al., 2011). We tested the feasibility of this 

for three California ecosystems when developing the AS model which incorporates all 

seasons and plant functional types. The AS models using AVMA or AVIRIS spectra 

predicted cellulose, nitrogen, and water content at high accuracies (R
2 

> 0.85) and precisions 

(RMSE < 8%). These models are considered to have high precision because R
2
 > 0.75 and 
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high accuracy because RMSE < 15%  (Asner et al. 2011).When predicting LMA and lignin, 

the AS_AVMA model had moderate success with an accuracy of R
2 

= 0.75 and 0.58, which 

might not be suitable for prediction over many seasons and plant functional types. By 

dividing LMA and lignin prediction models into seasons, the accuracy of model predictions 

increased above a R
2
 value of 0.80 suggesting that separate equations may be needed for 

different seasons for LMA.  

While simulated sensor models assess how well reduced spectral resolution can 

discriminate foliar components, there are other considerations to be made when up-scaling to 

canopy level spectroscopy using a full spectrum satellite sensor such as the proposed 

HyspIRI sensor. The impact of spatial and temporal resolution on our ability to predict 

vegetation properties at this level is still being researched. Using full spectrum spectroscopy 

on a global scale poses several challenges caused by the atmosphere, lighting geometry, 

temperature-emissivity separability, canopy structure, and variability of vegetation 

characteristics. In a laboratory there is a controlled environment and lighting geometry, but 

spectral reflectance measurements are sensitive to a variable atmosphere and light geometry 

that fluctuates by time of year and location. While we attempted to correct for the 

atmosphere’s effect by removing water vapor regions of the spectrum, ultimately there is still 

enough interference from the atmospheric attenuation and emission to obscure surface 

spectra (Young et al., 2002). Temperature variations, leaf angle, and shading inside a canopy 

would complicate emissivity retrievals, which need to be retrieved using atmospheric 

compensation and temperature-emissivity separation methods (Ribeiro da Luz and Crowley, 

2010). Our study attempted to capture a wide range of leaf variations by sampling two age 

classes, replicates of species, and seasons. However, this study was focused on only three 

California ecosystems and is not representative of the total variation that would be captured 
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by HyspIRI. Lastly, our study used the AVIRIS and MASTER sensors to simulate the full 

spectrum from an airborne sensor perspective. The MASTER sensor has 25 channels for the 

TIR region, while the proposed HyspIRI satellite only has 8 channels (Green et al., 2013). 

Further analysis is needed using aerial imagery spectroscopy from the HyspIRI preparatory 

flight campaign to determine if this further spectral reduction would negatively affect 

vegetation biochemistry predictions. While there are challenges to overcome before using 

full spectrum spectroscopy on a global scale, this study does present a foundation for 

understanding how the full spectrum can improve prediction of vegetation properties using 

airborne and satellite sensors.  

V. Conclusions 

The first goal of this study was to use VSWIR and TIR spectra alone and combined to 

create PLSR models based on all samples, seasons, and plant functional types in order to 

evaluate each spectrum’s ability to predict lignin, cellulose, nitrogen, water content, and 

LMA. The top performing model for each component using laboratory spectra showed high 

precision (R
2
 > 0.9) and high accuracy (RMSE < 6.5%). These models for all biochemical 

and biophysical components used either the TIR or full spectrum and identified known 

absorption features. As seen in model results, the combination of VSWIR and TIR increased 

the R
2
 value of regression models compared to VSWIR alone, signifying that the inclusion 

of TIR data would improve predictions of foliar chemistry and physiology.  

The second goal was evaluating how these predictive relationships might change 

seasonally and among plant functional types. We found that model precision varied by 

season as well as across plant functional types, though the amount of variation depended on 

the analyzed component. Models developed for all samples generally resulted in decreased 
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R
2
 values or required twice the number of factors compared to a single season or plant 

functional type. While AS model accuracy and precision was lower than seasonal or plant 

functional type models, these models are still appropriate to use for prediction of cellulose, 

nitrogen, and water content due to high model precision (R
2
 > 0.85) and accuracy (RMSE < 

7%). Models predicting foliar lignin content and LMA performed best when samples were 

divided into seasons or plant functional types.  

To evaluate whether these relationships between spectra and foliar chemistry could be 

extended to the reduced spectral resolution available in airborne and proposed spaceborne 

sensors, we created PLSR models using AVIRIS, HyTES, and AVIRIS + MASTER 

simulated spectra. The models created from these spectra had reduced precision and 

accuracy compared to laboratory spectra. However, the top performing model for each 

component still had a high precision (R
2
 > 0.9) and high accuracy (RMSE < 8%). When 

using simulated sensor spectra to predict biochemical contents, AVIRIS + MASTER 

produced the highest performing models, followed by HyTES. Similar to results using the 

laboratory spectra, the full spectrum as expressed using the AVIRIS + MASTER sensors 

increased the R
2
 value of regression models compared to AVIRIS alone for the majority of 

models, signifying that the inclusion of TIR spectrum would improve predictions of 

vegetation properties.  

In summary these results indicate that the TIR spectrum could augment the VSWIR in 

advancing identification of leaf biochemical and physical properties. Advancing this 

research beyond the leaf level will help determine if the full spectrum can outperform the 

VSWIR in predicting vegetation properties. The results we have seen using leaf level 

spectroscopy help set the foundation for the future use of full spectrum aerial and satellite 

imagery from instruments such as AVIRIS/MASTER and HyspIRI. This will expand the 
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possibilities for using full spectrum spectroscopy to quantify and characterize the world’s 

ecosystems. 
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Figure 1. Map showing locations of study sites 
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Figure 2. Mean spectra of sixteen vegetation species, each spectrum is the average of 18 

samples measured.  
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Table 3. Results of one-way ANOVA for seasonal foliage collections.  

Species Lignin Cellulose Nitrogen Water Content LMA 

ABCO 0.613 0.441 0.766 0.002** 0.174 

ADFA 0.054 0.015* 0.006** 0.000** 0.998 

ARGL 0.825 0.598 0.201 0.004** 0.624 

BAPI 0.000** 0.030* 0.000** 0.000** 0.009** 

CADE 0.000** 0.139 0.915 0.100 0.048* 

CECU 0.000** 0.002** 0.129 0.011* 0.003** 

CEME 0.937 0.157 0.020* 0.000** 0.007** 

CESP 0.028* 0.931 0.308 0.000** 0.675 

HEAR 0.004** 0.798 0.600 0.018* 0.252 

PILA 0.000** 0.027* 0.837 0.004** 0.090 

PIPO 0.008** 0.042* 0.040* 0.385 0.048* 

QUAG 0.389 0.710 0.590 0.121 0.038* 

QUDO 0.748 0.991 0.000** 0.000** 0.038* 

QULO 0.032* 0.672 0.002** 0.000** 0.059 

SALE 0.205 0.983 0.002** 0.000** 0.003** 

UMCA 0.053 0.031* 0.213 0.008** 0.638 

Note: Values reported are p-values that represent the level at which significant 

differences occurred among the three seasons. One asterisk (*) indicates p < 0.05 and 

two asterisks (**) indicate p <0.01. 
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Figure 3. Visual representation of model results predicting lignin with (a) R
2
, (b) 

number of factors, and (c) % RMSE used in each model. 
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Figure 4. The PLSR coefficients (blue line) showing the importance of each wavelength 

in developing the PLSR model for retrieving lignin content from the (a) VSWIR, (c) 

TIR, and (e) full spectrum. The average reflectance spectrum (black line) is shown for 

reference purpose. Predicted versus laboratory measured lignin content is shown using 

the (b) VSWIR, (d) TIR, and (f) full spectrum. 
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Table 6. PLSR model created from all samples for lignin, cellulose, nitrogen, water 

content, and LMA with wavelength (µm) and corresponding chemical structure. Data 

shown are wavelengths that had the top four largest PLSR coefficients listed from 

largest to smallest magnitude.  

 

 
Full Spectrum VSWIR Spectrum TIR Spectrum 

L
ig

n
in

 

6.21 Lignin 1.21 .CH
2
 * 6.19 Lignin 

5.70 Lignin 1.65 Lignin^ 8.56 Wax 

2.99 Lignin, Cellulose 2.50 Starch * 14.21 Cellulose 

9.95 Cellulose 2.31 Protein * 10.52 Wax 

C
el

lu
lo

se
 

3.42 .CH
2
 2.48 Cellulose* 14.21 Cellulose 

3.02 Cellulose 2.48 .CH
2
 , Protein* 3.42 .CH

2
 

3.07 Cellulose 0.99 Starch^ 2.96 Cellulose** 

11.47 Wax 1.23 .CH
2 
* 15.03 Cellulose** 

N
it

ro
g
en

 

3.16 Cellulose 2.49 Cellulose* 2.97 Lignin 

3.05 Cellulose 1.00 Starch^ 3.02 Cellulose 

3.42 H-C Vibration Bands** 1.66 Nitrogen^ 3.16 Cellulose 

5.67 Lignin 2.13 Protein^ 13.00 Lignin 

W
at

er
 C

o
n
te

n
t 3.16 Cellulose 1.00 Water^ 2.97 Water** 

2.97 Water** 0.52 Chlorophyll b^ 14.44 Water 

3.42 H-C Vibration Bands** 1.59 Starch^ 3.17 Cellulose 

4.23 Lignin 2.04 Urea* 6.20 Water** 

L
M

A
 

3.42 .CH
2
, Cellulose 1.21 

Water, Cellulose,  
Starch, Lignin^ 

6.20 Lignin 

2.99 
Cellulose,  

Humic Acid 
0.41 Chlorophyll A^ 2.99 

Cellulose,  
Humic Acid 

3.05 OH Stretching 1.41 Aromatic* 6.19 Water 

3.51 .CH
2
, Cellulose 1.91 Starch^ 11.87 Lignin 

Note: Chemical structures are within 0.01 µm of specified wavelengths according to 

Elvidge (1988), except where marked with * (Burns and Ciurczak, 2008), ** (Fabre et 

al., 2011), and a ^ (Curran, 1989). 
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Figure 5. Visual representation of model results predicting cellulose with (a) R
2
, (b) 

number of factors, and (c) % RMSE used in each model. 
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Figure 6. The PLSR coefficients (blue line) showing the importance of each wavelength 

in retrieving cellulose content using the (a) VSWIR, (c) TIR, and (e) full spectrum. The 

average reflectance spectrum (black line) is shown for reference purpose. Predicted 

versus laboratory measured cellulose content is shown using the (b) VSWIR, (d) TIR, 

and (f) full spectrum. 
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Figure 7. Visual representation of model results predicting nitrogen with (a) R

2
, (b) 

number of factors, and (c) % RMSE used in each model. 
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Figure 8. The PLSR coefficients (blue line) showing the importance of each wavelength 

in developing the PLSR model for retrieving nitrogen content from the (a) VSWIR, (c) 

TIR, and (e) full spectrum. The average reflectance spectrum (black line) is shown for 

reference purpose. Predicted versus laboratory measured nitrogen content is shown 

using the (b) VSWIR, (d) TIR, and (f) full spectrum. 
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Figure 9. Visual representation of model results predicting water content with (a) R

2
, 

(b) number of factors, and (c) % RMSE used in each model. 
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Figure 10. The PLSR coefficients (blue line) showing the importance of each 

wavelength in developing the PLSR model for retrieving water content from the (a) 

VSWIR, (c) TIR, and (e) full spectrum. The average reflectance spectrum (black line) 

is shown for reference purpose. Predicted versus laboratory measured water content is 

shown using the (b) VSWIR, (d) TIR, and (f) full spectrum. 
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Figure 11. Visual representation of model results predicting LMA with (a) R
2
, (b) 

number of factors, and (c) % RMSE used in each model. 
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Figure 12. The PLSR coefficients (blue line) showing the importance of each 

wavelength in developing the PLSR model for retrieving LMA from the (a) VSWIR, (c) 

TIR, and (e) full spectrum. The average reflectance spectrum (black line) is shown for 

reference purpose. Predicted versus laboratory measured LMA is shown using the (b) 

VSWIR, (d) TIR, and (f) full spectrum. 
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Appendix 

 

Figure A1. Seasonal distribution of lignin content for all species. 
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Figure A2. Seasonal distribution of cellulose content for all species. 
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Figure A3. Seasonal distribution of nitrogen content for all species.  
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Figure A4. Seasonal distribution of water content for all species.  
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Figure A5. Seasonal distribution of LMA for all species. 

 

 

 

 

 

 

 

 

 

 



 

60 

 

Table A1. Statistics for partial least squares regressions (PLSR) for lignin, cellulose, 

and nitrogen. 
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Table A2. Statistics for partial least squares regressions (PLSR) for water content and 

LMA. 

 
 




