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ABSTRACT

Linking Seasonal Foliar Chemistry to VSWIR-TIR Spectroscopy

Across California Ecosystems

by

Susan Kay Meerdink

Potential ecological impacts of disturbance, land use, and climate change have driven
many studies to evaluate ecosystem functions through the measurement of vegetation
biochemical properties that provide integral information on nutrient cycling, litter
decomposition, and plant productivity. The use of spectroscopy in quantifying vegetation
biochemistry shows promise with faster analytical speed than traditional methods. Synergies
between the Visible Near Infrared/ Short Wave Infrared (VSWIR) and Thermal Infrared
(TIR) spectra for identifying plant species’ foliar chemistry have been largely unexplored.
Here we evaluate the capability of VSWIR and/or TIR spectra to predict leaf levels of lignin,
cellulose, nitrogen, water content, and leaf mass per area. We specifically examined how
these predictive relationships might change seasonally and among plant functional types.
Lastly we determined whether these relationships between spectra and foliar chemistry could
be extended to the reduced spectral resolution available in airborne sensors, including the
Airborne Visible/Infrared Imaging Spectrometer (AVIRIS), the Hyperspectral Thermal

Emission Spectrometer (HyTES), and the combined AVIRIS and MODIS/ASTER
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(MASTER) sensors used in the Hyperspectral Infrared Imager (HyspIRI) preparatory flight
campaign.

In the 2013 spring, summer, and fall seasons, fresh leaves from sixteen common shrub
and tree species in California representing three broad plant functional types were sampled
from the Sierra Nevada Mountains, the Central Valley at the Sedgwick Reserve, and coastal
Santa Barbara. Partial least squares regression (PLSR) analysis was used to relate spectral
response at wavelengths from 0.3 — 15.4 pm to laboratory-measured biochemical and
biophysical properties. For each component, three PLSR models were fit using different
portions of the spectrum: VSWIR (0.3 — 2.5 um), TIR (2.5 — 15.4 um), and the full spectrum
(0.3 — 15.4 um). Three additional models were fitted using spectra resampled to AVIRIS
(0.4 —2.5 pm), HyTES (7.5 — 12 um), and the combined AVIRIS and MASTER (0.38 — 12
pum).

The majority of the highest performing laboratory spectra models used either the TIR
or full spectrum. When using simulated sensor spectra, the combined AVIRIS and MASTER
produced the highest performing models, followed by HyTES. From both laboratory and
sensor simulated model results, the combination of VSWIR and TIR increased the R* value
of regression models compared to VSWIR alone, signifying that the inclusion of TIR data
would improve predictions of foliar chemistry. We also found that model precision varied by
seasons and across plant functional types. Models developed for all seasons resulted in a
decreased R” value, but still had high precision (R* > 0.85) and accuracy (RMSE < 10%)
when predicting cellulose, nitrogen, and water content. These results indicate that the TIR
could augment the VSWIR in advancing identification of leaf properties of the world’s
ecosystems by helping to set the foundation for future use of the full spectrum represented by

the proposed HyspIRI space-borne sensor.
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I. Introduction

Many studies aim at quantifying and characterizing ecosystem functions, especially with
concern of the effects of climate, human disturbances, and land use (Ustin, 2013).
Knowledge and understanding of these functions allow us to assess the health of an
ecosystem. Vegetation characteristics such as chlorophyll, lignin, and nitrogen provide an
insight into how ecosystems function through their role in nutrient cycling, gas exchange,
and plant productivity (Curran, 1989; Townsend et al., 2003). However, traditional methods
of collecting and processing vegetation characteristics on large scales for an extended period
can be expensive and time consuming. Using relationships derived between spectra and
laboratory measured components, imaging spectroscopy is an alternative method which
shows promise in addressing these issues (Lawler et al., 2006).

To date, most spectroscopic studies have relied on only the Visible Near
Infrared/Shortwave Infrared (VSWIR) spectrum to measure plant chemistry and biophysical
properties. Laboratory VSWIR spectroscopy began in the field of agriculture to measure
forage quality (Shenk et al., 1979), but has since been extended to other biochemical and
biophysical properties of vegetation from the leaf to canopy scale. For example, Asner et al.
(2011) used spectroscopy at 61 sites located in humid tropical forests to predict 21 leaf
chemical properties with success ranging from an R? value of 0.62 — 0.88. Martin et al.
(2008) developed canopy nitrogen prediction models for eight forests on four continents
using NASA’s Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) and Hyperion
instruments with the site-level R values ranging from 0.69 — 0.85. Despite these

achievements in predicting components, large portions of the VSWIR spectrum are obscured



by water and pigment absorption features, which hinder success in spectroscopic studies
(Ribeiro da Luz and Crowley, 2010).

For this reason, studies have begun to use the Thermal Infrared (TIR) spectrum to answer
questions about plant characteristics. Salisbury (1986) was the first to show that four plant
species have spectral signatures that varied in the 8 — 14 pm range. However, use of the TIR
in spectroscopic studies was not adopted as widely as the VSWIR due to low signal to noise
ratio, limited availability of TIR sensors, and subtle features of plant spectra (Riberio da Luz
and Crowley, 2007). More recently with technological advancements, Ullah et al. (2012a)
showed that plant species from the Netherlands have spectral diversity in the mid wave
infrared from 2.5 — 6 um and the TIR from 8 —14pm, which could be used for species
discrimination. Another study conducted by Fabre et al. (2011) found that leaf spectroscopy
in the 3— 15 pm region was impacted by variations in leaf water content. These studies
suggest that TIR could be utilized to improve species discrimination, thus opening doors to
other applications such as quantification of biochemical properties. In fact, a study
conducted by Ribeiro da Luz and Crowley (2007) found spectral features in the TIR (8 — 14
um) associated with cellulose, cutin, xylan, silica, and oleanolic acid. Additionally, Ullah et
al. (2014) used the full spectrum (0.39 — 14 um) to retrieve leaf water content from eleven
different plant species successfully. Integration of the VSWIR and TIR to cover a much
larger range of wavelengths could allow researchers to utilize the strengths of each spectral
region while minimizing limiting factors.

Very few studies have measured the full spectrum due to lack of sensors, but a satellite
imaging spectrometer that measures 0.38 — 12 um has been proposed by the National
Aeronautic and Space Administration (NASA; Riberio da Luz and Crowley, 2007; Ullah et
al. 2014). In 2013, NASA launched a preparatory campaign to determine if a satellite
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imaging spectrometer known as the Hyperspectral Thermal Imager (HyspIRI) would be
appropriate for studying ecosystem characteristics. A unique feature to this proposed mission
is the inclusion of two instruments: an imaging spectrometer measuring the VSWIR
spectrum and a multi-spectral imager measuring the TIR spectrum. This new spectrometer
presents an opportunity to use a larger portion of the spectrum to address questions about
ecosystem functions explained by biochemistry. Before determining if a satellite such as
HyspIRI would in fact improve quantification of vegetation chemistry, a need exists to
determine synergies between the VSWIR and TIR spectra.

The purpose of our study was to evaluate synergies between the VSWIR and TIR spectra
for assessing plant species’ foliar chemistry. Here we evaluate the capability of VSWIR
and/or TIR spectra to predict leaf levels of lignin, cellulose, nitrogen, water content, and leaf
mass per area (LMA). We specifically examined how these predictive relationships might
change seasonally and among plant functional types. Lastly we determined whether these
relationships between spectra and foliar chemistry could be extended to the reduced spectral
resolution available in airborne sensors, including AVIRIS, the Hyperspectral Thermal
Emission Spectrometer (HyTES), and combined AVIRIS and MODIS/ASTER (MASTER)
sensors used in the HyspIRI preparatory flight campaign. We had three hypotheses for this
study. First we hypothesized that spectra using the full spectral range would improve
predictions of lignin, cellulose, nitrogen, water content, and LMA. Additionally, we
predicted that one model created from all samples would provide high accuracy (R* > 0.85)
to predict leaf components from all seasons and locations. We also hypothesized that the
reduced spectral resolution of simulated sensors would retain high enough accuracy (R* >
0.8) to predict lignin, cellulose, nitrogen, water content, and LMA. To test these hypotheses,

we compared partial least squares regression (PLSR) models using coefficient of
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determination (R?) and percent root mean squared error (RMSE %) created from different

subsets of samples and regions of the spectrum.

I1. Methods

A. Study Sites

We collected and analyzed plant samples from three different ecosystems located across
California. The sites chosen provide a wide range of biochemistry and spectral values for
analyses and represent a large change in elevation and ecosystem characteristics. Included in
these analyses are the following sites: coastal Santa Barbara, Sedgwick Reserve, and Sierra
Nevada Mountains (Figure 1).

The coastal Santa Barbara site was comprised of three sub-sites that surrounded the city
of Santa Barbara, California to capture the diverse ecosystems of coastal California (Figure
1). These sub-sites were located at three elevations: 5, 515, and 1080 m. The lower elevation
sub-site was located at the University of California Santa Barbara campus where we
collected Baccharis pilularis (BAPI), a very common coastal shrub that does not grow at
higher elevations (Table 1). The mid-elevation sub-site was located in the Santa Ynez
Mountains, while the highest elevation sub-site was located in the Los Padres National
Forest. Species collected at these sites include: Adenostoma fasciculatum (ADFA),
Arctostaphylos glandulosa (ARGL), Ceanothus cuneatus (CECU), Ceanothus megacarpus
(CEME), Ceanothus spinosus (CESP), Heteromeles arbutifolia (HEAR), and Umbellularia
californica (UMCA). Many of these species and other dominant vegetation at these sub-sites
are classified as chaparral, which is a product of the region’s Mediterranean climate. These

chaparral species form a nearly impenetrable thicket of shrubs with hard leaves and stiff



twigs, which makes them well adapted for the hot, dry summers and unpredictable
precipitation during the winter (Quinn and Keeley, 2006). Most chaparral species are
drought and fire adapted evergreen shrubs.

The Sedgwick Reserve site is located in the Santa Ynez Valley in Santa Barbara County,
California (Figure 1). Created in 1996, the Sedgwick Reserve is the largest reserve managed
by the University of California Natural Reserve System. With an annual precipitation of 38
cm, the three main vegetation communities are coastal sage scrub, oak woodland, and exotic
grasses (Boot et al., 2013). Our sites within Sedgwick Reserve are located at elevations of
382 and 400 m. The lower elevation sub-site was the location of a large patch of Salvia
leucophylla (SALE), while at the upper elevation sub-site Quercus agrifolia (QUAG),
Quercus douglasii (QUDO), and Quercus lobata (QULO) were collected (Table 1).

The Sierra Nevada Mountains site is located in the Sierra National Forest at an elevation
of 1400 m (Figure 1). At this elevation the site is composed of mixed conifer forest with
shrub-dominated rocky outcrops (Dahlgren et al., 1997). We sampled four needleleaf
evergreen species at this location: Abies concolor (ABCO), Calocedrus decurrens (CADE),
Pinus lambertiana (PILA), and Pinus ponderosa (PILA) (Table 1). This area presents a
much moister and cooler climate than our other study areas with an average of 101 cm of

precipitation per year (Dahlgren et al., 1997).

B. Field Collection

We harvested a total of 288 samples from sixteen shrub and tree species common to the
three areas (Table 1). Each species was represented by three individual plants that were
stratified by season and leaf age. Each plant was sampled once during the 2013 spring,

summer, and fall season with sampling dates timed to match HyspIRI airborne preparatory



flights (Table 1). During the fall season, due to the original plants being removed, three
different BAPI plants were sampled. In all other cases, leaves were sampled from the same
individuals each season. Because individual leaves may live for several years, but may
change chemically over that time, leaves from each plant were divided into two age classes:
the current year’s new growth and previous year’s growth. Leaf age was determined by leaf
location on branch. Individual samples were composed of multiple randomly selected full-
sun leaves because in all cases more than one leaf was needed to complete chemical and
spectral analysis. A portion of individual samples were designated for lignin, cellulose, and
water content, another for nitrogen and leaf mass per area (LMA), while the last was for
spectroscopic analyses. The portion for spectroscopy and nitrogen analyses were placed in
polyethylene bags with damp paper towels. These samples were then kept cool using an ice
chest, and a towel was used to prevent from direct contact with ice. The portion destined for

lignin, cellulose, and water content analyses were sealed tightly in a nalgene bottle.

C. Spectroscopy

Spectral response was measured at the NASA Jet Propulsion Laboratory within 48 hours
of collection in order to preserve integrity of the samples. The VSWIR spectrum was
obtained using an Analytical Spectra Device Full Range (ASD) spectrometer which covered
the 0.3 — 2.5 pm range with a sampling interval of 1 nm (Analytical Spectra Devices, Inc.,
Boulder, CO USA). Spectralon was used as a calibrated reflectance standard to convert from
raw radiance to reflectance (Labsphere Inc., Durham, NH). All samples were illuminated by
a calibrated quartz halogen light source purchased from ASD, positioned at a 23 degree
zenith angle and distance of 23 cm from the target. Spectra were collected using bare fiber

(no foreoptic) with the fiber positioned at a 27 degree view zenith at a distance of 5 cm from



the target, producing a 1.5 cm diameter field of view. This configuration results in bi-
directional reflectance with a 50 degree phase angle. All samples were collected with a < 5%
reflectant black mat as a substrate to minimize substrate effects. Each set of spectra included
five replicates, followed by rotation of the target and a second or third set of replicates
depending upon heat loads. When applicable, spectra were collected of the upper and lower
leaf surfaces. Here we only report reflectance from upper leaf surfaces.

The TIR spectrum was acquired using a Nicolet Model 520 Interferometer Spectrometer
which measured from 2.5 — 15.4 pm with a sampling interval of 1 nm (Thermo Electron
Corp., Madison, WI) . The spectrometer uses nitrogen gas to purge water vapor and carbon
dioxide. Gold and distilled water were used as a TIR reflectance standard. Each spectrum
was calculated from the average of 300 scans placing leaves on a tin foil to minimize
substrate effects. In most cases leaves were clustered in order to obtain a large enough area
to cover the field of view of both instruments. The full spectrum (0.3 — 15.4 um) was
obtained by combining the VSWIR and TIR spectra (Figure 2).

To test if the loss of spectral resolution would affect prediction of foliar properties,
laboratory spectra were convolved to three sensors: AVIRIS, HyTES, and combined AVIRIS
and MASTER. To simulate the AVIRIS sensor, VSWIR lab based measurements were
convolved using a Gaussian model to 10 nm full-width half maximum bandwidth spanning
400 — 2500 nm (Green et al., 1998). In addition, to more closely simulate airborne
measurements, the wavelengths falling within the 1350 — 1450 and 1850 — 1975 nm
atmospheric water vapor regions were removed from AVIRIS simulated spectra (Gao and
Goetz, 1995).

To simulate HyTES spectra, TIR lab based measurements were convolved using a

Gaussian model to 256 spectral bands that ranged between 7.5 — 12 um (Hook et al., 2013).
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To determine the water vapor regions in this portion of the spectrum, H,O transmittance was
generated using MODTRAN for a sensor altitude of 1 km with a mid-latitude summer
atmosphere. Wavelengths with less than 20% transmittance were removed.

To represent the full spectrum, the combination of AVIRIS and MASTER spectra were
used because these sensors were flown on the HyspIRI preparatory flight campaign in 2013-
2014 (Green et al., 2013). This flight campaign includes two instruments: an imaging
spectrometer measuring 0.38 — 2.5 um and a multispectral imager measuring from 3 — 12
um. The imaging spectrometer used is the AVIRIS sensor, while the multispectral imager
used is the MODIS/ASTER (MASTER) airborne sensor (Hook et al., 2001). To obtain the
MASTER spectrum, the TIR spectrum was convolved using a Gaussian model to
MASTER’s 25 channels from 2.5 — 12.876 um. The combined AVIRIS and MASTER

spectra will be referred to as AVIRIS + MASTER or AVMA throughout.

D. Biochemistry

Lignin and cellulose were analyzed using a sequential acid digestion lignin procedure
with the Ankom Fiber Digestion Analyzer (ANKOM, Fairport, NY, USA). This method has
been used in a diversity of studies to evaluate lignin and cellulose concentrations (Hatfield
and Fukushima, 2005; Lawler et al. 2006). For this method, samples are oven-dried at 60°C
for at least 48 hours and ground using a 1 mm (20 mesh Wiley mill) screen. Sample weights
for analysis were approximately 0.5 g.

Leaf water content was calculated using the formula from Ullah et al. (2014): leaf water
content = 100(Mw — Md)/Mw, where Mw is the mass of the wet leaf and Md is the mass of
the completely dried leaf. Fresh leaf samples were weighed both before and after being dried

at 60°C for at least 48 hours.



To obtain LMA, enough leaves were used to cover a sheet of white 8.5x11 inch paper.
These samples were photographed and placed into a nalgene bottle. Samples were oven-
dried at 70°C for 72 hours and weighed. ImagelJ software was used to measure leaf area of
photographed samples (Schneider et al., 2012).

After LMA analysis, samples were then ground into a fine, homogeneous powder using a
roller milling device for nitrogen analysis (Arnold and Schepers, 2004). Nitrogen content
was obtained using a combustion method with the NA 1500 Series 2 Nitrogen and Carbon
analyzer (COSTECH Analytical, Valencia, CA). This method is efficient for determining
nitrogen concentration in plants with high precision compared to other methods (Da Silva
Dias et al., 2013). Sample weights for analysis were approximately 8 mg. A one-way
ANOVA was used to determine whether or not leaf lignin, cellulose, nitrogen, water content,

and LMA for each species varied significantly throughout all three seasons (Table 3).

E. Statistical Methods

We analyzed relationships among spectra and lignin, cellulose, nitrogen, water content,
and LMA using the partial least squares regression (PLSR) method. This method is similar
to traditional regression models because a linear multivariate model is used to relate two
data matrices, X and Y (Haaland and Thomas, 1988). However PLSR’s ability to analyze
data with many, noisy, correlated variables in both X and Y separates this method from
traditional regression methods (Wold et al., 2001). PLSR has been used in many
spectroscopic studies and shows consistently high R? values compared to other commonly
used methods (Bolster et al., 1996; Doughty et al., 2011; Ferwerda et al., 2005; Martens et

al., 1987).



We used reflectance spectra as the independent variables instead of first or second
derivative spectra which have been suggested in the literature (Townsend et al., 2003). To
determine the number of factors for each regression we used leave-one-out cross validation.
This method reduces the possibility of over fitting the model with too many factors and
produces a predicted residual error sum of squares (PRESS) statistic for total number of
factors. The model with the minimum PRESS statistic is considered to have the optimum
number of factors (Martens et al., 1987). If there was a local minimum of the PRESS
statistic in addition to global minima, the lowest number of factors was chosen.

Models were validated by holding out 10% of the data during each iteration, until all
samples had been removed once. To determine the performance of the models, predicted
components from the spectra were compared to laboratory measurements of its
corresponding component using R* and RMSE % to report the accuracy of the models.
RMSE % was used to enable model comparison across leaf components, as it is normalized
by the percentage of the response data range (Feilhauer et al., 2010). Models were
considered to have high precision if R* > 0.75 and high accuracy if RMSE < 15% (Asner et
al., 2011).

We developed an equation using all samples collected and compared this to equations
developed for seasons and functional types to determine whether predictive relationships
might change seasonally and among plant functional types. The seasonal equations were
divided into samples collected in the spring, summer, and fall. The functional type equations
were divided into broadleaf deciduous, broadleaf evergreen, and needleleaf evergreen
(Tablel). In summary, samples were divided into seven model classes for each component:
All Samples (AS), Spring, Summer, Fall, Broadleaf Deciduous (BD), Broadleaf Evergreen
(BE), and Needleleaf Evergreen (NE).
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Each model class was run six times with a different region of the spectrum: VSWIR,
TIR, Full, AVIRIS, HyTES, and AVIRIS + MASTER. Three regression models were fitted
using different portions of the available laboratory spectrum: VSWIR spectrum (0.3 — 2.5
um), TIR spectrum (2.5 — 15.4 pm), and the full spectrum (0.3 — 15.4 pm). Finally, to test if
these relationships could translate to larger scale remote sensing applications, three more
regression models were fitted using simulated spectra from three sensors: AVIRIS, HyTES,
and AVIRIS + MASTER (AVMA). Individual models will be referred to throughout this
paper as model_spectrum. For example, the model created using only broadleaf deciduous
plant functional type samples and the AVIRIS + MASTER spectrum will be referenced as

BD AVMA.

II11. Results

A. Lignin

For all species, lignin content varied from 2.6 — 22.5% and had a mean of 10.3% with a
standard deviation of 3.4% (Table 2). On average, these values are generally lower than
values reported in other studies due to our method of measuring lignin. There is a
discrepancy between lignin determination methods because lignin is not easily quantified
within various types of plant material (Hatfield and Fukushima, 2005). Currently there is not
a preferred lignin determination method, but the sequential digestion method is known to
produce lower lignin concentrations (Hatfield and Fukushima, 2005).

Throughout the year, species’ lignin content varied by seasons. The following species
had the highest lignin content in the fall season (p < 0.05): CADE, CECU, CESP, PILA,

PIPO, and QULO (Table 3; Figure A1). The increased lignin content in sampled leaves can
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be explained by the fact that lignin concentration increases as these leaves lignify with age
(Martin and Aber, 1997). Not all species followed this pattern. BAPI had the highest lignin
content in the summer (p < 0.01), but the pattern may not hold true due to the fall season
samples being collected from different shrubs. HEAR was unique in that lignin content was
similar for spring and summer, but the fall season showed a decrease (p = 0.004).

The models predicting percent lignin had R? values ranging from 0.40 — 0.90. The
number of factors ranged from 4 — 23 and the RMSE ranged from 6.11 — 10.58% (Figure 2;
Table A1). At first glance, two model classes stand out as having the lowest precision (R* <
0.6) across all spectra: All Samples (AS) and Needleleaf Evergreen (NE). On the other hand,
one of the best model classes was Broadleaf Deciduous (BD), which was predicted well (R
> (.9) for most spectral divisions. The consistently high prediction of lignin in BD could be
contributed to the smaller amount of variation in lignin content for these species compared
to other plant functional types. When predicting leaf lignin content, no spectrum domain was
top performing for all model classes. In general, most models had fewer than 10
components. Outliers included the AS_Full, BE VSWIR, and BE_AVIRIS models. The
models using the TIR spectrum consistently had a lower number of factors compared to
other spectra. This same pattern is true for simulated sensor spectra where the HyTES
spectrum had the lowest number of factors.

The highest precision model for each model category using laboratory spectra to predict
lignin are ranked from high to low as BD Full, BE VSWIR, Summer TIR, Spring_Full,
Fall TIR, NE Full, and AS Full (Table 4). For the laboratory-based spectra, the division of
samples into seasons or functional types increased the precision of predicting lignin
compared to models created from all samples. By dividing the samples by season, a more
consistent prediction was achieved with R? values ranging from 0.82 — 0.89 and RMSE
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ranging from 6.54 — 9.12%. For samples divided up by season, the TIR spectrum appears to
be important in quantifying lignin. The division of samples into functional types resulted in
higher precision, compared to the seasonal division, for two of the three functional types.
The lignin content of NE was not easily predicted. On the other hand BE model had high
precision, but also used 23 factors, which is twice the number of factors as the other models.

The models using sensor simulated spectra to predict lignin are ranked from high to low
as: Spring HyTES, BD AVMA, Summer HyTES, Fall HyTES, NE HyTES, BE HyTES,
and AS _HyTES (Table 5). In all categories, except for the broadleaf deciduous plant
functional type, the best models used wavelengths associated with the HyTES sensor.
Dividing the samples into seasonal models resulted in the highest precision compared to the
AS model. The division of samples into plant functional types also improved prediction, but
not as much as the seasonal division. While some precision was lost with the reduction of
spectral resolution, lignin was still predicted with high precision (R* >= 0.8) using the
HyTES spectrum if samples were analyzed by season or plant functional type.

To determine whether the models identified known absorption features of lignin,
regression coefficients for AS VSWIR, AS TIR, and AS Full models were plotted in
relation to the average reflectance spectrum (Figure 3). In addition this figure shows the
corresponding precision of the AS VSWIR, AS TIR, and AS Full models through the
predicted versus laboratory measured lignin plots. The wavelengths related to the four
largest regression coefficients and the structures associated with those wavelengths were
identified for VSWIR, TIR, and full spectrum (Table 6). The VSWIR and TIR spectra
models identified absorption features not necessarily related to lignin, but other components
such as starch, protein, and wax. The full spectrum’s largest coefficients identified

wavelengths in the TIR spectrum that are known absorption features of either lignin or

13



cellulose. The AS Full model had the highest precision of this model class and also

identified the most wavelengths directly related to lignin absorption features.

B. Cellulose

Percent cellulose for all species ranged from 4.20 — 27.33% and had a mean of 11.82%
with a standard deviation of 4.81% (Table 2). CESP had the lowest mean cellulose content,
while QUAG had the highest mean. In general most species’ cellulose content remained
consistent throughout the year, but a few species had variations from season to season. Six
species had statistically significant variations in cellulose content over time (Table 3; Figure
A2). ADFA, PILA, PIPO, and UMCA had the highest cellulose content in the fall (p < 0.05).
The fall samples of BAPI had the lowest cellulose content, but since a new set of shrubs was
collected for the fall season, this result may not be caused by a seasonal change (p = 0.03).
CECU was unique in that it was the only species that had significantly higher cellulose
content in summer as opposed to fall and spring (p = 0.002).

The R values for cellulose predictions ranged from 0.26 — 0.98, the number of factors
ranged from 4 — 34, and RMSE ranged from 3.32 — 11.61% (Figure 4; Table A1). Cellulose
prediction models did very well (R* > 0.9) across the majority of models using laboratory
spectra. While prediction models using simulated sensor spectra did not do as well as the
laboratory spectra, most models still performed well as defined by the threshold of R* >
0.75. One of the only exceptions was the broadleaf deciduous plant functional type, which
only achieved R* values of approximately 0.75 for all laboratory and simulated sensor
spectra. The last exception was the TIR and HyTES, which had accuracies below 0.75 for

most models. All models created with the TIR, HyTES, and broadleaf deciduous plant
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functional type had the lowest number of factors. The models using the highest number of
factors were the AS VSWIR and AS_AVIRIS models (Table Al).

For laboratory spectra, the models are ranked from high to low as Summer TIR,
NE VSWIR, AS VSWIR, BE Full, Spring Full, Fall VSWIR, and BD Full (Table 4). The
AS VSWIR model had high precision, but required approximately twice the number of
factors to explain the variation. When samples were divided into seasons or functional types,
the number of factors required for the model decreased but the precision did not. Each
season used a different portion of the spectrum with similar accuracies and factors. As for
the division of samples into functional types, BE Full and NE_VSWIR performed on par
with the AS_ VSWIR model. However, BD_Full had the lowest R value of all models using
the laboratory spectra. When predicting cellulose using laboratory spectra, the VSWIR and
full spectrum had the highest performing models.

Translating this to sensor simulated spectra, the ranking of models from high to low
changes to: NE_AVIRIS, Summer AVMA, AS AVIRIS, Fall AVMA, BE AVMA,
Spring HyTES, and BD_HyTES (Table 5). Three of the seven models used AVIRIS +
MASTER, while the other four models were evenly split between AVIRIS and HyTES
spectra. The AS model used the AVIRIS spectrum with high precision of R* = 0.93, but
again required the most number of factors to explain the variance. These models decreased
in precision slightly compared to laboratory wavelength ranges, but the sensor simulated
spectra retain a high enough spectral resolution to predict cellulose content.

The AS model regression coefficients for VSWIR, TIR, and full spectrum were plotted
in relation to the average reflectance spectrum to determine whether the models were
associated with known absorption features of cellulose (Figure 5). The precision, shown

through predicted versus measured cellulose, of the resulting models are shown next to the
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corresponding regression coefficients (Figure 5). The wavelengths related to the four largest
regression coefficients and the structures associated with those wavelengths were identified
for VSWIR, TIR, and Full spectrum (Table 6). The regression coefficients from the TIR
model included wavelengths directly related to cellulose absorption features. The Full
spectrum model also included wavelengths related to cellulose absorption, but did not
perform as well as the TIR model. The VSWIR model used the least number of wavelengths
associated with cellulose, but chose absorption features related to protein, starch, and .CHj,
This model had the highest precision, but also needed more than twice the number of

components compared to the TIR to explain the variance.

C. Nitrogen

For all samples, nitrogen content ranged from 0.45 — 3.81% with a mean of 1.4% and
standard deviation of 0.6% (Table 2). ARGL had the lowest mean nitrogen content, while
BAPI had the highest. Throughout the year, nitrogen changed from season to season for most
species. The following species have nitrogen content that were statistically differed by
season (p < 0.05): ADFA, BAPI, CEME, PIPO, QUDO, QULO, and SALE (Table 3; Figure
A3). In general these species had higher nitrogen content in the spring season. The only
exception is PIPO, where the summer season had the highest amount of nitrogen. In general,
the needleleaf evergreen tree species did not vary much in nitrogen content, compared to
other functional types.

The models’ R? values for nitrogen predictions ranged from 0.35 — 0.96, the number of
factors ranged from 4 — 26, and RMSE ranged from 4.70 — 12.25% (Figure 6; Table Al).
The broadleaf deciduous plant functional type had the highest precision across all spectra

except for the TIR. The fall season was not predicted well by most spectra (R* < 0.65), with
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the only exception being the TIR spectrum (R? = 0.90). All other models had a very similar
number of factors, excluding the AS and BE models which had the highest number of
factors.

For laboratory spectra, the models are ranked from high to low as: BD Full, Spring_Full,
Fall TIR, NE TIR, AS VSWIR, Summer TIR, and BE VSWIR (Table 4). All highest
performing models predicted nitrogen content well (R* > 0.8). The AS model used more
than double the number of factors. By dividing up samples into seasons or functional types,
fewer factors were needed because there was less variation in the dataset. In most cases this
also improved the precision of the model. Models using the TIR spectrum required fewer
factors to explain the variation compared to the VSWIR or full spectrum. When predicting
nitrogen using laboratory spectra, our models had the highest precision if they incorporated
the TIR spectrum either through the full spectrum or stand alone.

For sensor simulated spectra, the models are ranked from high to low as BD_HyTES,
Spring. AVMA, AS_AVIRIS, NE HyTES, BE AVMA, Summer AVIRIS, and
Fall AVMA (Table 5). Switching to wavelengths associated with known or proposed
sensors decreases the prediction of nitrogen, but models still retain R* values above 0.8
except for the summer or fall season. The TIR spectrum, by way of HyTES, is not as widely
implemented in the best models as in the laboratory spectra models, although the model with
the highest R* value was predicted using the TIR spectrum and broadleaf deciduous
functional type. With the decrease of spectral resolution, the AS AVIRIS model is ranked
higher and would be more appropriate for predicting nitrogen.

Regression coefficients for VSWIR, TIR, and full spectrum AS models were graphed in
relation to the average reflectance spectrum to determine whether the models detected
known absorption features of nitrogen (Figure 7). The precision of nitrogen prediction using
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the resulting models are shown next to the corresponding regression coefficients (Figure 7).
The wavelengths related to the four largest regression coefficients and the structures
associated with those wavelengths were identified for VSWIR, TIR, and full spectrum
(Table 6). The AS_ VSWIR model had the highest precision compared to the TIR or full
spectrum. This was also the only model to identify absorption features related to nitrogen
specifically. All other models identified wavelengths related to absorption features of

cellulose or lignin.

D. Water Content

Water content ranged from 20.22 — 76.85% for all sixteen species with a mean of 51.0%
and standard deviation of 9.3% (Table 2). Throughout the year, water content varied by
season for almost all species. The following species did not have a significant change in
water content by season (p > 0.05): CADE, PIPO, and QUAG (Table 3; Figure A4). The
other thirteen species had a least one season in which water content values were statistically
significant. All species collected from the Santa Barbara area had lower water content in the
fall season, which corresponds to the driest time of year for the area. In addition, for species
collected from the Sedgwick Reserve we observed a large decrease in water content as the
seasons progressed from spring to summer to fall. The only exception was QUAG, a
broadleaf evergreen tree species, where foliar water content was fairly consistent throughout
the year. Species collected in the Sierra Nevada Mountain range had the highest water
content in the fall.

The R value for water content predictions ranged from 0.29 — 0.99, the number of
factors ranged from 5 — 19, and RMSE ranged from 2.6 — 11.21% (Figure 8; Table A2).

Water content models exceeded the threshold of a good prediction model as R* > 0.85 for
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almost all models and all spectra. The exceptions were a few models using the TIR or
HyTES spectrum, where eight of the fourteen models had low precision. The broadleaf
deciduous plant functional type had high precision for all spectra with models exceeding the
threshold of R? > 0.75. The number of factors used in each model were consistent, except for
the AS models with 25 factors.

Ranked by high to low precision, the models using laboratory spectra are: Spring_ TIR,
BD TIR, Fall TIR, NE TIR, BE Full, Summer Full, and AS Full (Table 4). The four
highest ranked models used the TIR spectrum, while the lowest three utilized the full
spectrum. The use of the TIR spectrum, compared to the full spectrum, did reduce the
number of factors used to create the model, showing that the TIR spectrum can explain the
same amount of variance with fewer factors for water content. The best models using
laboratory spectra had very high precision with an R* value above 0.9. The model created
from AS ranked low compared to the season or functional type models, but still had an R
value of 0.92.

For sensor simulated spectra the best models for each category are ranked as:

BD HyTES, AS AVMA, BE_ AVMA, Summer AVMA, Spring_ AVIRIS, Fall AVMA,
and NE_AVMA (Table 5). In general the predictive power is reduced compared to
laboratory spectra, but still retains high precision with R* values that are above 0.86 for the
best models in each category. The AVIRIS + MASTER spectrum is used most often in the
best models instead of the TIR which was used predominately in the laboratory spectra. The
model constructed using AS had the second highest ranked R” at 0.93, which is higher than
the AS model using the laboratory spectra.

Regression coefficients for AS VSWIR, AS TIR, and AS Full models were plotted in

relation to the average reflectance spectrum to determine whether the models distinguished
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wavelengths related to known absorption features of water content (Figure 9). The precision
of water content predictions using the resulting models are shown next to the corresponding
regression coefficients (Figure 9). The wavelengths related to the four largest regression
coefficients and the structures associated with those wavelengths were identified for
VSWIR, TIR, and full spectrum (Table 6). The TIR model’s largest coefficients were related
to water content absorption features. The VSWIR and full spectrum also had a large
coefficient based on one water absorption feature, but also used wavelengths that correspond

to cellulose, lignin, starch, chlorophyll b, and urea.

E. LMA

Leaf mass per area (LMA) varied from 0.4 —7.13 g/m2 for all sixteen species with a
mean and standard deviation of 2.34 and 1.39 (Table 2). Species showed slight variations in
LMA from season to season. The following species had a statistically significant change in
LMA by season (p < 0.05): BAPI, CADE, CECU, CEME, PIPO, QUAG, QUDO, and SALE
(Table 3; Figure AS5). In general BAPI had the lowest LMA, while PIPO had the highest
values. The summer collection of PIPO showed the largest variation, which corresponds to
the new growth occurring at this time (p = 0.048). This pattern is similar for ADFA, CADE,
and CECU where a clear distinction in the spring season occurs between new leaves and old
leaves. The fall collection of BAPI had the lowest LMA ( p = 0.009); however, since a new
set of shrubs were collected for the fall season, this may not be caused by a seasonal change.

The R* for LMA predictions ranged from 0.47 — 0.98, the number of factors ranged from
3 — 12, and RMSE ranged from 3.03 — 12.81% (Figure 10; Table A2). The TIR spectrum
yielded the best model results (R* > 0.8) compared to other spectra. These results did not

translate to the reduced spectral resolution of the HyTES sensor, with only summer and
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broadleaf deciduous plant functional type achieving an R* > 0.8. In general the AS models
for all spectra produced less precise and accurate models compared to seasonal or plant
functional type models. All models had a similar number of factors and a relatively small
range compared to other biochemical properties in this paper.

Ranked by R? value from high to low, the best models for each category using laboratory
spectra are: Fall TIR, Summer TIR, BE TIR, BD TIR, Spring VSWIR, AS Full, and
NE_Full (Table 4). The top four best models for each category used the TIR spectrum. The
AS Full model was the second lowest performing model. For predicting LMA with
laboratory spectra, the AS_Full model had a low precision (R*= 0.78) while dividing
samples by season or plant functional type generally resulted in the highest R* value.
However, compared to other models the NE_Full model has a lower precision (R* = 0.76)
and accuracy (RMSE = 9.95%) when predicting LMA.

Ranked by R?, the best models for each category using sensor simulated spectra are:

BD HyTES, Summer AVMA, Spring AVMA, BE AVMA, AS AVMA, Fall AVIRIS,
and NE_HyTES (Table 5). Transitioning to sensor simulated spectra, the majority of the top
performing models used the AVIRIS + MASTER spectrum. All other models’ precision
suffered with decreased spectral resolution except for the BD model, for which the R?
increased from 0.83 using the TIR spectrum to 0.98 using the HyTES spectrum. Dividing
samples up into seasons or functional types along with using the AVIRIS + MASTER
spectrum improved prediction of LMA in most cases compared to the AS model.

Regression coefficients for AS VSWIR, AS TIR, and AS Full models were plotted in
relation to the average reflectance spectrum to determine whether the models identify known
absorption features (Figure 11). The precision of LMA prediction using the resulting models
are alongside to the corresponding regression coefficients (Figure 11). The wavelengths
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related to the four largest regression coefficients and the structures associated with those
wavelengths were identified for VSWIR, TIR, and full spectrum (Table 6). While LMA does
not have any specific absorption features, other biochemical absorption features were
identified. The full spectrum’s largest regression coefficients were associated with cellulose,
CH,, and humic acid. The VSWIR model uses wavelengths associated with water, cellulose,
starch, lignin, chlorophyll a, and aromatics. The TIR model, which had the highest precision

of the AS models, used features related to lignin, water, cellulose, and humic acid.

IV. Discussion

A. Lignin

The majority of the highest precision models for predicting lignin use the full spectrum
at fine spectral resolution and the HyTES spectrum at coarser spectral resolution. The
VSWIR and AVIRIS spectra were not prominently used in predicting lignin, while the TIR
and HyTES spectra were used frequently in models with the highest precision. This is related
to the majority of known lignin absorption features residing in wavelengths 2.5 — 13 pm
(Elvidge, 1988). Of these absorption features, the strongest and largest lie in the mid-infrared
range of 2.5 — 6 um (Elvidge, 1988). We see this in the largest regression coefficients of the
AS_Full model.

With reduced spectral resolution, the precision of predicting lignin decreased for most
model classes. The larger bandwidths that are used in the sensor simulated data are not able
to capture the subtle spectral features that are related to lignin. However, prediction
accuracies still retain an R? > 0.75 and RMSE < 10% which are classified as above the good
prediction model threshold, except for the AS model. The AVIRIS + MASTER model for

AS, spring, BD, and NE outperformed the AVIRIS model, showing that although the
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AVIRIS + MASTER spectrum contains only 25 wavelengths in TIR, these still improve
predictions of lignin for these classes.

Our model results are in line with other studies’ lignin prediction results. The lowest
performing model (AS model with R*=0.59 and RMSE = 6.20%) is similar to Asner et al.
(2011), where model results were an R? value of 0.62 and RMSE of 10.0% for plants located
at 61 sites distributed throughout the world. Martin and Aber (1997) developed models with
a prediction precision of R* = 0.77. Models reached accuracies of R*> 0.8 and RMSE < 10%
when samples were divided into groups such as by season or plant functional type. When
samples were divided into seasons, model accuracies more closely resembled studies such as
Bolster et al. (1996) where samples were mostly collected in June 1992 and included 25
deciduous and 14 conifer species (Bolster et al., 1996). Their final models had a precision of

R” = 0.88, which reflects our seasonal model results that ranged from R of 0.82 — 0.89.

B. Cellulose

For cellulose content prediction, the top performing models for laboratory spectra
models used the VSWIR and full spectrum. For sensor simulated spectra, the majority of the
top performing models chose the AVIRIS + MASTER spectrum. While model precision
decreased with spectral resolution, our models found that the wavelengths available in the
AVIRIS + MASTER sensors are still able to predict cellulose contents with high precision
(R* > 0.75) and high accuracy (RMSE < 10%), above the good prediction model threshold.
Additionally, the AVMA’s TIR spectrum contributed to a higher prediction of cellulose
content compared to just the AVIRIS sensor for spring, summer, fall, BD, and BE. For both
resolutions, the AS models had both high precision (R* > 0.9) and high accuracy (RMSE <

8%). While, dividing samples into seasonal and plant functional types did not improve
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model accuracy and precision. Cellulose forms one third to one half of the dry weight in
most plants making it the most abundant organic compound in terrestrial ecosystems
(Elvidge, 1988). This may contribute to a larger spectral signal related to cellulose that
allows this component to be predicted using the AS models and with higher accuracies
compared to other components such as lignin and nitrogen.

A larger number of factors are needed in the models to predict cellulose content
compared to lignin, nitrogen, LMA, and water content. The VSWIR and AVIRIS models
required the largest number of factors and had the best cellulose prediction models.
However, the majority of the top performing models used portions of the TIR spectrum
which is consistent with other studies (Ribeiro da Luz, 2006; Ribeiro da Luz and Crowley,
2007). Cellulose is one of the few components being analyzed using the TIR spectrum
because of strong absorption features in this region (Ribeiro da Luz and Crowley, 2007).

Our model results are similar to other studies that have predicted foliar cellulose content.
For fresh leaf samples, Asner et al. (2011) reported a precision using AVIRIS simulated
spectra of R? = 0.77, and Bolster et al. (1996) reported a precision of R* = 0.89. While most
of our models reported higher accuracies than models measuring fresh leaf samples, a study
done by Kokaly and Clark (1999) found coefficients of determination from 0.75 — 0.93 for

dried leaf samples.

C. Nitrogen

Known absorption features related to nitrogen are located in the VSWIR spectrum
(Curran, 1989). However in our study we found that the majority of the best performing
models for predicting nitrogen used the TIR spectrum at fine spectral resolution. The model

classes that chose TIR were summer, fall, and needleleaf evergreen plant functional type.
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These sample divisions have the lowest amount of nitrogen, suggesting that at low nitrogen
content, models that use the TIR spectrum maybe more useful compared to the VSWIR. The
largest regression coefficients for the TIR spectrum relate to structural leaf components such
as lignin and cellulose (Elvidge, 1988).

Of all biochemical and biophysical components analyzed in this thesis, nitrogen model
precision was reduced the most by the lower spectral resolution of the sensor simulated
spectra. A possible reason could be that spectral features related to nitrogen are masked with
the averaging of bands over a larger width. The majority of the best performing models for
predicting nitrogen used the AVIRIS + MASTER spectrum at coarser spectral resolution.
For some model classes, reduction of spectral resolution reduced nitrogen prediction
precision, such as the fall season which had a prediction precision of R* = 0.90 and dropped
to 0.56. The Fall AVMA and Summer AVIRIS models, while the best for these seasons
still had the lowest performance compared to other models. This could be caused by leaf
senescence that was occurring for many species during these seasons creating a large
variation in nitrogen that the models are not able to capture. When predicting nitrogen
content, our study found that the AS_AVIRIS model produced a high precision (R” = 0.86)
and high accuracy (RMSE = 7.82%), which was better than the majority of models where the
samples were divided into seasons or plant functional types. Adding wavelengths in the TIR
spectrum to AVIRIS contributed to higher predictions for AVIRIS + MASTER models
compared to AVIRIS models for spring, fall, BD, BE, and NE.

Nitrogen prediction models have a wide range of precision over many studies. Other
studies reported model accuracies ranging from R values of 0.75 — 0.97 (Bolster et al.,
1996; Dury and Turner, 2001; Huang et al., 2004; Smith et al., 2003; Yoder and Pettigrew-
Crosby, 1995). On the lower end, Asner et al. (2011) reported a nitrogen prediction result of
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R? =0.77. In the middle range, Martin and Aber (1997) modeled prediction of seasonal
variation of foliar nitrogen and found a model precision of R* = 0.87. The highest PLSR
model result for nitrogen prediction was an R* = 0.97 from Bolster et al. (1996). These
studies encompass our model results, which ranged from R? values of 0.71 — 0.92. While our
model results fall into the range reported by other studies, discrepancies may be a result of
the leaf nitrogen content of species sampled. Our study had lower mean nitrogen content
averaged for all species compared to the studies mentioned above (Asner et al., 2011;

Bolster et al., 1996; Martin and Aber, 1997)

D. Water Content

Our leaf water content prediction models had high precision with R* values above 0.86
and had the highest model accuracies compared to lignin, cellulose, nitrogen, and LMA. In
fresh green leaves, water is a major constituent and can account for 40 — 80% of weight
(Elvidge, 1988). This could result in a larger spectral signal of water that models were able
to capture and result in higher prediction accuracies compared to other components that
account for a smaller portion of leaf composition. When predicting water content, the
AS_AVMA model produced a very high precision (R* = 0.93), outperforming many of the
seasonal or plant functional type model classes. The literature supports this high accuracy
model for prediction of water content. Asner et al. (2011) and Asner and Martin (2008)
using AVIRIS simulated spectra reported a prediction R* value of 0.88 and 0.91,
respectively. Curran at al. (2001) reported an even higher model result of 0.94 for slash pine
needles. All of these studies used the VSWIR spectrum to obtain water content predictions.

In our study, top performing models predicting water content used the TIR spectrum at

fine spectral resolution and the AVIRIS + MASTER spectrum at coarser spectral resolution.
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For the prediction of water content, the TIR spectrum was beneficial to the model precision,
as all but one of the highest performing models for laboratory and sensor simulated spectra
used the TIR alone or the full spectrum. This is true even for the reduced spectral resolution
of the AVIRIS + MASTER spectra in the TIR region, where all but one model class had this
spectrum as performing better than the AVIRIS spectrum alone. This agrees with newly
released studies that have analyzed foliar water content in the TIR spectrum. For example, a
couple studies examined how leaf spectral signatures change with variations of leaf water
content and found that in the 3 — 5.5 um region spectral signatures are increasingly sensitive
to leaf water content (Fabre et al., 2011; Ullah et al., 2012b; Ullah et al., 2013). More
recently Ullah et al. (2014) analyzed leaf water content in different portions of the full
spectrum (0.39 — 14.0 um) by running PLSR models. The final models predicting leaf water
content contained a similar number of factors (8, 9, and 10) to our final models. The MIR
(2.5 — 6 um) spectral region resulted in the highest R* = 0.96, which corresponds to the same

region that contained the highest regression coefficients of our models.

E. LMA

The TIR spectrum at fine spectral resolution and the AVIRIS + MASTER spectrum at
coarser spectral resolution was used in the majority of the highest precision models for
predicting LMA. Model precision decreases at the lower spectral resolution, especially for
some model classes more than others. For example, the Fall model prediction went from the
highest performing of the laboratory spectra at R* = 0.98 to one of the lowest performing
using the AVIRIS spectrum at an R? value of 0.74. Additional TIR wavelengths available in
the AVIRIS + MASTER spectrum improved accuracy compared to the AVIRIS spectrum

alone, showing that the TIR spectrum played a role in predictions of LMA.
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Including both the laboratory and sensor simulated spectra, the AS model did not
perform as well as the seasonal models. The plant functional types were expected to perform
better than seasonal models because LMA are most easily explained by functional groups
(Poorter et al., 2009). However, the plant functional type models had the lowest and highest
accuracies ranging from NE with R* = 0.66 to BD with R* = 0.98. These results might be
explained by the needleleaf evergreen plant functional type having twice the range of LMA
values compared to the other plant functional types. This wide range of LMA could be
attributed to aging of leaves as they were collected during the three seasons and result in the
model’s inability to accurately capture this wide variation.

In our study the sensor simulated spectra models had an R value ranging from 0.66 —
0.98. Many studies do not report R” values as low as some of our models, but there are many
to support the higher accuracies with R” values generally ranging from 0.8 — 0.9 (Asner et
al., 2009; Asner et al., 2011; Asner and Martin, 2008; Doughty et al., 2011). All of these
studies used the VSWIR, while we achieved similar accuracies using the AVIRIS +

MASTER or HyTES simulated spectra.

F. Considerations for HyspIRI

To harness the temporal and spatial scale that is available using aerial and space-borne
sensors, a generalized and transportable model should be developed to map canopy
biochemical and biophysical properties (Asner et al., 2011). We tested the feasibility of this
for three California ecosystems when developing the AS model which incorporates all
seasons and plant functional types. The AS models using AVMA or AVIRIS spectra
predicted cellulose, nitrogen, and water content at high accuracies (R*>0.85) and precisions

(RMSE < 8%). These models are considered to have high precision because R* > 0.75 and
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high accuracy because RMSE < 15% (Asner et al. 2011).When predicting LMA and lignin,
the AS_ AVMA model had moderate success with an accuracy of R?=0.75 and 0.58, which
might not be suitable for prediction over many seasons and plant functional types. By
dividing LMA and lignin prediction models into seasons, the accuracy of model predictions
increased above a R? value of 0.80 suggesting that separate equations may be needed for
different seasons for LMA.

While simulated sensor models assess how well reduced spectral resolution can
discriminate foliar components, there are other considerations to be made when up-scaling to
canopy level spectroscopy using a full spectrum satellite sensor such as the proposed
HysplIRI sensor. The impact of spatial and temporal resolution on our ability to predict
vegetation properties at this level is still being researched. Using full spectrum spectroscopy
on a global scale poses several challenges caused by the atmosphere, lighting geometry,
temperature-emissivity separability, canopy structure, and variability of vegetation
characteristics. In a laboratory there is a controlled environment and lighting geometry, but
spectral reflectance measurements are sensitive to a variable atmosphere and light geometry
that fluctuates by time of year and location. While we attempted to correct for the
atmosphere’s effect by removing water vapor regions of the spectrum, ultimately there is still
enough interference from the atmospheric attenuation and emission to obscure surface
spectra (Young et al., 2002). Temperature variations, leaf angle, and shading inside a canopy
would complicate emissivity retrievals, which need to be retrieved using atmospheric
compensation and temperature-emissivity separation methods (Ribeiro da Luz and Crowley,
2010). Our study attempted to capture a wide range of leaf variations by sampling two age
classes, replicates of species, and seasons. However, this study was focused on only three
California ecosystems and is not representative of the total variation that would be captured
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by HyspIRI. Lastly, our study used the AVIRIS and MASTER sensors to simulate the full
spectrum from an airborne sensor perspective. The MASTER sensor has 25 channels for the
TIR region, while the proposed HyspIRI satellite only has 8 channels (Green et al., 2013).
Further analysis is needed using aerial imagery spectroscopy from the HyspIRI preparatory
flight campaign to determine if this further spectral reduction would negatively affect
vegetation biochemistry predictions. While there are challenges to overcome before using
full spectrum spectroscopy on a global scale, this study does present a foundation for
understanding how the full spectrum can improve prediction of vegetation properties using

airborne and satellite sensors.

V. Conclusions

The first goal of this study was to use VSWIR and TIR spectra alone and combined to
create PLSR models based on all samples, seasons, and plant functional types in order to
evaluate each spectrum’s ability to predict lignin, cellulose, nitrogen, water content, and
LMA. The top performing model for each component using laboratory spectra showed high
precision (R*>0.9) and high accuracy (RMSE < 6.5%). These models for all biochemical
and biophysical components used either the TIR or full spectrum and identified known
absorption features. As seen in model results, the combination of VSWIR and TIR increased
the R? value of regression models compared to VSWIR alone, signifying that the inclusion
of TIR data would improve predictions of foliar chemistry and physiology.

The second goal was evaluating how these predictive relationships might change
seasonally and among plant functional types. We found that model precision varied by
season as well as across plant functional types, though the amount of variation depended on

the analyzed component. Models developed for all samples generally resulted in decreased

30



R? values or required twice the number of factors compared to a single season or plant
functional type. While AS model accuracy and precision was lower than seasonal or plant
functional type models, these models are still appropriate to use for prediction of cellulose,
nitrogen, and water content due to high model precision (R? > 0.85) and accuracy (RMSE <
7%). Models predicting foliar lignin content and LMA performed best when samples were
divided into seasons or plant functional types.

To evaluate whether these relationships between spectra and foliar chemistry could be
extended to the reduced spectral resolution available in airborne and proposed spaceborne
sensors, we created PLSR models using AVIRIS, HyTES, and AVIRIS + MASTER
simulated spectra. The models created from these spectra had reduced precision and
accuracy compared to laboratory spectra. However, the top performing model for each
component still had a high precision (R* > 0.9) and high accuracy (RMSE < 8%). When
using simulated sensor spectra to predict biochemical contents, AVIRIS + MASTER
produced the highest performing models, followed by HyTES. Similar to results using the
laboratory spectra, the full spectrum as expressed using the AVIRIS + MASTER sensors
increased the R* value of regression models compared to AVIRIS alone for the majority of
models, signifying that the inclusion of TIR spectrum would improve predictions of
vegetation properties.

In summary these results indicate that the TIR spectrum could augment the VSWIR in
advancing identification of leaf biochemical and physical properties. Advancing this
research beyond the leaf level will help determine if the full spectrum can outperform the
VSWIR in predicting vegetation properties. The results we have seen using leaf level
spectroscopy help set the foundation for the future use of full spectrum aerial and satellite

imagery from instruments such as AVIRIS/MASTER and HyspIRI. This will expand the
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possibilities for using full spectrum spectroscopy to quantify and characterize the world’s

ecosystems.
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Table 3. Results of one-way ANOVA for seasonal foliage collections.

Species Lignin Cellulose Nitrogen Water Content LMA
ABCO 0.613 0.441 0.766 0.002%** 0.174
ADFA 0.054 0.015* 0.006** 0.000** 0.998
ARGL 0.825 0.598 0.201 0.004** 0.624
BAPI 0.000%*%* 0.030* 0.000** 0.000** 0.009**
CADE 0.000%** 0.139 0.915 0.100 0.048*
CECU 0.000%*%* 0.002** 0.129 0.011* 0.003**
CEME 0.937 0.157 0.020* 0.000%** 0.007**
CESP 0.028* 0.931 0.308 0.000** 0.675
HEAR 0.004** 0.798 0.600 0.018* 0.252
PILA 0.000%%* 0.027* 0.837 0.004** 0.090
PIPO 0.008%** 0.042* 0.040* 0.385 0.048*
QUAG | 0.389 0.710 0.590 0.121 0.038*
QUDO 0.748 0.991 0.000** 0.000** 0.038*
QULO 0.032* 0.672 0.002** 0.000** 0.059
SALE 0.205 0.983 0.002%** 0.000%** 0.003**
UMCA | 0.053 0.031* 0.213 0.008** 0.638

Note: Values reported are p-values that represent the level at which significant

differences occurred among the three seasons. One asterisk (*) indicates p < 0.05 and

two asterisks (**) indicate p <0.01.

42




£F 0T ¥ 990 SHLSH 379 6 L8370 WMHHMHMWV 98°¢ 9 30 SHLSH Tee 9T 360 STIIAV 8 9 080 | SHISH |veasieag peappaan
- HHLSVIN o , - HHLSVIN o - HHLSVIN - - HHLISVIN| - I & YL ap——
6L 0r 080 STIAY 6T9 L 680 SSTMIAY L08 91 130 FSTUIAY 65 L 91 680 wnav | & 8 8 6L 0 | SHIAH d Fes[peotg
ST'E IT 360 SHIAH 89T IT 660 SHIAH 65°L 6 60 SHIAH €001 9 LLo SHIAH L69 01 w60 WMH% snonprs( jesfpeorg
. . . 5 HALSVIN . . HALSVIN . . HALSVIN . 5
L 7 A < g g L g Il A UoSEa
16'8 L ¥L0 STATAV 9 3 880 STAIAY S8 s 950 S STATAY 10°L ST 06°0 STHIAV 89°L 3 080 | SHIAH S med
- o HALSVIN . ; - HALSVIN It c — cp HALSVIN| - Iy s S .
(4 0t ¥8°0 STIIAY 989 L 6870 STMIAY g 01 L0 | STHIAV 00s T £6°0 renav |56 8 ] L3°0 | SHIAH S S
. 8 YALSYIN T L i yi g YEISYIN - g & ral - A] woseaq Sund
1re 3 80 STIAY FoL 6 680 STHIAV 9e'L 1 680 FSTUIAY 968 6 980 SHIAH 79 01 €60 | SHIAH S subdg
. . HHLSVIN : ) HALSVIN . . . B ;
7 gL oF 8L 7T L ¢ A] sajduwe
906 Tl sL0 SSTHIAV ey 6l 60 FSTAIAY 8L 9T 98°0 | SHHIAV 133 €60 SHIAV LT'8 8 650 | SHIAH [owes IV
IS % siopeqg | .y | umnoadg |gsing oe| sopeg | Ly | ummoadg |gSIATg op| siopEg | ummoadg |HSIATH % | siopeg M| ummoadg |HSIATE %% | siopeg g | ummoadg
- = = = = voRdus2(] [PPO
YINT JU2UO) 2MSIOTA uaBoming 250y urusry

*A1039)8) [opouw Yoed

10J €1)d3ds pajenuurs a1osuds ururio)rdd doj Surpnpour (JYSTJ) SuoIssaL3aa saaenbs jsed [enaed a10j sonspe)s s dqe L

566 01 9L 0 md 9 w60 L 3 680 L LT9 6l 960 | dIMSA 138 1 9L 0 WA | veesiiong jeappeaN
or 9 4 330 gL L 760 mq ¥l 1870 | dIMSA 9F s i1 F6°0 mq e £T 160 | MIMSA | veemmag papeoig
El'8 9 3370 gL L L60 dIL 1 960 mq 1,01 3 9.0 mg 9 01 £6°0 mq SnonpR3( Espeolg
E0E 01 8670 gL 0§ 3 60 dIL 3 060 dIL 0oL 5T 680 | dIMSA 0F'L L 30 dIL uosesy e
9¢9 6 6370 gL 0€9 01 160 mq L £80 |IL T 4 L60 MIL &9 01 630 |IL uoses§ Iaummg
¥I'6 L €80 | dIMSA 9Tt €1 L60 Il 4! £6°0 mq 09 91 €60 mi [N 1 £8°0 mq voseag Fuudg
L98 [4 8L70 ma 65 €1 60 mq 5T 88°0 | WIMSA ¥9F 143 S6°0 | dIMSA 0T9 1 90 mq sapdueg v
HSINY %/| siopeq | o | wnmoadg |HSIN %[ sioneq - |womoadg siopeg | wnmoadg [HSIN % | stoweg | | womoadg |HSIA %) sioweq | | wmaoadg i —
VINT U2U0T) IMLSIOTN EEERETN ) ST T

*A1033)8) [9powt

[oed 10J e1)dads Ar0jeaoqe| suruio)idd doy Surpnpur (JYSTd) SU0ISSA33.a saaenbs ysed| (enaed 10 sORsSNLIS *H qe L

43



(a)

Full Spectrum

VSWIR Spectrum

TIR Spectrum

AVIRIS + MASTER Spectrum -
AVIRIS Spectrum

HYyTES Spectrum

fﬁﬁﬁf

q \
¢ G:’Q;’\Q é“ aib \.,)
Q?‘db & &

& e:‘

<

(b)

Full Spectrum

VEWIR Spectrum

TIR Spectrum

AVIRIS + MASTER Spectrum
AVIRIS Spectrum

HYyTES Spectrum

(C]

AVIRIS Spectrum

HYTES Spectrum

«Q
coo&@‘@#’ %&f cﬁ@ o q@_‘:&\ Qé@o"P ‘p\‘&e? ﬁaé\
@ & & T LK
S & &

Q‘:‘& @ .\;@ap

Figure 3. Visual representation of model results predicting lignin with (a) R?, (b)

number of factors, and (¢) % RMSE used in each model.
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Figure 4. The PLSR coefficients (blue line) showing the importance of each wavelength
in developing the PLSR model for retrieving lignin content from the (a) VSWIR, (c¢)
TIR, and (e) full spectrum. The average reflectance spectrum (black line) is shown for
reference purpose. Predicted versus laboratory measured lignin content is shown using
the (b) VSWIR, (d) TIR, and (f) full spectrum.
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Table 6. PLSR model created from all samples for lignin, cellulose, nitrogen, water
content, and LMA with wavelength (um) and corresponding chemical structure. Data
shown are wavelengths that had the top four largest PLSR coefficients listed from
largest to smallest magnitude.

Full Spectrum VSWIR Spectrum TIR Spectrum

6.21 Lignin 1.21 .CH,_ * 6.19 Lignin

go 5.70 Lignin 1.65 Lignin® 8.56 Wax

3] 2.99 Lignin, Cellulose 2.50 Starch * 14.21 Cellulose
9.95 Cellulose 231 Protein * 10.52 Wax
3.42 .CH, 2.48 Cellulose* 14.21 Cellulose

% 3.02 Cellulose 248 | .CH,,Protein* | 3.42 .CH,

§ 3.07 Cellulose 0.99 Starch” 2.96 Cellulose**
11.47 Wax 1.23 .CH, * 15.03 Cellulose**
3.16 Cellulose 2.49 Cellulose* 2.97 Lignin

ég}) 3.05 Cellulose 1.00 Starch” 3.02 Cellulose

-‘E 3.42 | H-C Vibration Bands** | 1.66 Nitrogen” 3.16 Cellulose
5.67 Lignin 2.13 Protein® 13.00 Lignin

‘g 3.16 Cellulose 1.00 Water” 2.97 Water**

S 1297 Water** 0.52 Chlorophyll b~ | 14.44 Water

E 3.42 | H-C Vibration Bands** | 1.59 Starch® 3.17 Cellulose

§ 4.23 Lignin 2.04 Urea* 6.20 Water**
342 | .CH,, Cellulose 121 ‘zi‘;fzhcﬁﬂg‘ﬂﬁff 6.20 Lignin

%ﬂ 2.99 H(fl‘:nul‘f:l‘:cel ] 041 | Chlorophyll A* | 2.99 Hi‘;ﬂl‘il‘:; ;
3.05 OH Stretching 1.41 Aromatic* 6.19 Water
3.51 .CH,, Cellulose 1.91 Starch” 11.87 Lignin

Note: Chemical structures are within 0.01 pm of specified wavelengths according to
Elvidge (1988), except where marked with * (Burns and Ciurczak, 2008), ** (Fabre et
al., 2011), and a * (Curran, 1989).
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Figure 5. Visual representation of model results predicting cellulose with (a) R2, (b)

number of factors, and (¢) % RMSE used in each model.
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Figure 6. The PLSR coefficients (blue line) showing the importance of each wavelength
in retrieving cellulose content using the (a) VSWIR, (c¢) TIR, and (e) full spectrum. The
average reflectance spectrum (black line) is shown for reference purpose. Predicted
versus laboratory measured cellulose content is shown using the (b) VSWIR, (d) TIR,
and (f) full spectrum.
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Figure 7. Visual representation of model results predicting nitrogen with (a) R2, (b)
number of factors, and (c) % RMSE used in each model.
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Figure 8. The PLSR coefficients (blue line) showing the importance of each wavelength
in developing the PLSR model for retrieving nitrogen content from the (a) VSWIR, (¢)
TIR, and (e) full spectrum. The average reflectance spectrum (black line) is shown for
reference purpose. Predicted versus laboratory measured nitrogen content is shown
using the (b) VSWIR, (d) TIR, and (f) full spectrum.
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Figure 9. Visual representation of model results predicting water content with (a) R?,

(b) number of factors, and (c) % RMSE used in each model.
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Figure 10. The PLSR coefficients (blue line) showing the importance of each
wavelength in developing the PLSR model for retrieving water content from the (a)
VSWIR, (¢) TIR, and (e) full spectrum. The average reflectance spectrum (black line)
is shown for reference purpose. Predicted versus laboratory measured water content is
shown using the (b) VSWIR, (d) TIR, and (f) full spectrum.

52



(a)

Full Spectrumf
VEWIR Spectrum 09
TIR Spectrum 08 o
AVIRIS + MASTER Spectrum 0.7
AVIRIS Spectrum 06

MNumber of factors

Full Spectrum

VEWIR Spectrumf

TIR Spectrum

RMSE (%)

AVIRIS + MASTER Spectrum
AVIRIS Spectrum -

HYTES Spectrum}

: . -
66\\@@ a&é\ p & ‘5&6?0 r 55 Q@Q&E ﬁéﬁ
» g & & O & @

Figure 11. Visual representation of model results predicting LMA with (a) R2, (b)
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Figure 12. The PLSR coefficients (blue line) showing the importance of each
wavelength in developing the PLSR model for retrieving LMA from the (a) VSWIR, (c¢)
TIR, and (e) full spectrum. The average reflectance spectrum (black line) is shown for
reference purpose. Predicted versus laboratory measured LMA is shown using the (b)
VSWIR, (d) TIR, and (f) full spectrum.
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Figure A2. Seasonal distribution of cellulose content for all species.
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Figure A3. Seasonal distribution of nitrogen content for all species.
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Figure A4. Seasonal distribution of water content for all species.
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Figure AS. Seasonal distribution of LMA for all species.



Table Al. Statistics for partial least squares regressions (PLSR) for lignin, cellulose,
and nitrogen.

Lignin Cellulose Nitrogen
R fol | o MSE%| R #ol | e MSEY% R ol MSE%
Factors Factors Factors

Full 0.84 18 6.20 0.89 19 6.65 0.81 16 7.52

% VSWIR | 0.56 11 8.35 0.95 34 4.64 0.87 25 6.20
£ TIR 0.40 6 7.68 0.90 16 6.18 0.74 10 8.20
“ | HyspIRI | 0.58 10 7.63 0.83 18 7.78 0.78 18 7.82
< | AVIRIS | 0.53 9 7.63 0.93 33 7.78 0.86 26 7.82
HyTES | 0.59 8 8.17 0.60 9 5.48 0.51 7 6.61

Full 0.83 11 9.12 0.93 16 6.04 0.93 12 6.61
VSWIR | 0.77 10 10.10 | 093 17 6.70 0.84 9 8.61

s TIR 0.74 7 9.36 0.92 11 7.26 0.80 8 9.39
& | HyspIRI | 0.81 11 9.32 0.80 12 1022 | 0.89 11 7.36
AVIRIS | 0.78 11 9.93 0.75 12 11.16 | 0.85 10 8.31
HyTES | 0.93 10 6.23 0.86 9 8.96 0.77 8 10.00

Full 0.78 9 8.68 0.90 13 7.36 0.82 12 7.82

5 | VSWIR | 0.80 12 9.52 0.87 13 8.01 0.67 8 927
= TIR 0.89 10 6.54 0.97 12 422 0.85 7 7.71
§ HyspIRI | 0.82 12 9.07 0.95 22 5.00 0.64 7 9.64
AVIRIS | 0.84 13 8.78 0.82 13 9.01 0.71 10 8.71
HyTES | 0.87 9 8.25 0.64 7 1143 | 0.57 7 10.08

Full 0.76 10 8.08 0.88 11 7.63 0.69 8 11.35
VSWIR | 0.61 9 9.51 0.90 15 7.00 0.63 7 11.62

= TIR 0.82 7 7.40 0.68 6 1094 | 0.90 8 7.43
= | HyspIRI | 0.67 10 8.98 0.90 15 7.01 0.56 5 11.85
AVIRIS | 0.71 11 8.69 0.86 15 8.01 0.52 4 12.25
HyTES | 0.80 8 7.68 0.26 4 9.45 0.35 5 12.06

Full 0.93 10 6.42 0.76 8 10.71 | 0.96 11 5.38

w % | VSWIR | 0.86 8 8.97 0.71 8 11.21 0.92 10 7.38
= 2| TR 0.92 7 6.76 0.75 4 10.86 | 0.71 4 10.09
S '3 | HyspIRI | 0.91 10 6.97 0.72 7 1126 | 0.90 9 8.35
A A AVIRIS | 0.90 10 7.73 0.65 7 11.61 0.90 8 8.49
HyTES | 0.82 6 10.02 | 0.77 6 10.03 | 0.92 9 7.59

Full 0.73 10 8.46 0.94 17 5.46 0.72 10 9.51

< g | VSWIR | 0.90 23 6.11 0.91 19 6.91 0.81 14 7.76
%% TIR 0.79 9 7.74 0.80 9 941 0.63 8 9.82
S © | HysplRI | 0.70 10 9.68 0.89 16 7.59 0.81 16 8.07
A= AVIRIS | 0.77 16 8.73 0.86 16 8.49 0.79 15 8.28
HyTES | 0.79 8 8.52 0.79 9 9.71 0.40 6 10.25

Full 0.76 11 8.81 0.93 12 6.27 0.63 8 6.22

S g | VSWIR | 0.60 10 8.81 0.96 19 6.27 0.47 5 6.22
s 2| TR 0.59 4 9.97 0.74 4 10.73 | 0.89 8 470
S 8 | HysplRI | 0.57 10 10.50 | 0.87 12 8.36 0.63 9 6.69
Z H | AVIRIS | 0.55 9 10.58 | 0.98 26 3.32 0.50 5 7.80
HyTES | 0.80 6 8.42 0.88 7 7.90 0.82 6 5.86
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Table A2. Statistics for partial least squares regressions (PLSR) for water content and

LMA.
Water Content LMA
R2 i of RMSE% R2 ft of RMSE %
Factors Factors

Full 0.92 13 459 0.78 12 8.67

i’i VSWIR 091 15 4.66 0.75 12 8.90
= TIR 0.86 12 5.82 0.71 9 9.55
@ HyspIR1 0.93 19 423 0.75 12 9.06
< AVIRIS 0.90 15 423 0.73 10 9.06
HyTES 0.29 5 4.89 0.52 6 9.19

Full 0.89 8 7.04 0.83 8 9.46

VSWIR 0.88 8 751 0.83 7 9.14

2 TIR 0.97 13 3.26 0.63 6 12.14
= HyspIRI 0.89 9 7.36 0.82 8 9.41
AVIRIS 0.89 9 7.24 0.82 7 9.47

HyTES 0.80 8 9.41 0.55 5 12.81

Full 091 10 6.30 0.85 9 7.58

y VSWIR 0.88 7 7.07 0.83 10 7.82
= TIR 0.81 7 8.59 0.89 9 6.36
E HyspIRI 0.89 7 6.86 0.84 10 7.52
AVIRIS 0.88 7 7.23 0.84 10 7.80

HyTES 0.55 6 11.21 0.82 8 7.88

Full 0.87 7 6.45 0.92 12 5.66

VSWIR 0.86 6 6.51 0.75 7 8.81

= TIR 0.92 8 5.01 0.98 10 3.03
~ HyspIRI 0.88 8 6.22 0.72 6 921
AVIRIS 0.85 6 6.91 0.74 7 8.91

HyTES 0.75 7 8.10 0.48 5 9.89

Full 0.93 9 6.61 0.72 7 11.27

“ 3 VSWIR 0.92 8 6.98 0.64 6 9.92
% g TIR 0.97 7 4.18 0.88 6 8.13
S g HyspIRI 091 8 7.16 0.62 3 11.73
e AVIRIS 0.92 8 6.90 0.55 3 11.78
HyTES 0.99 11 2.68 0.98 11 3.15

Full 0.92 7 5.75 0.82 11 7.63

< = VSWIR 0.88 6 6.57 0.77 9 8.33
%é go TIR 0.74 7 8.69 0.88 12 6.46
g 3 HyspIRI 0.89 7 6.29 0.80 10 7.90
s AVIRIS 0.88 6 6.66 0.77 9 8.10
HyTES 0.52 6 9.72 0.47 6 10.20

Full 0.90 9 5.46 0.76 10 9.95

el VSWIR 0.86 8 5.46 0.53 8 9.95
s & TIR 0.92 6 4.77 0.64 4 10.78
B HyspIRI 0.86 9 6.28 0.56 10 12.04
Z | AVIRIS 0.86 9 6.33 0.53 8 12.32
HyTES 0.55 3 8.35 0.66 4 10.43
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