
UC Irvine
ICS Technical Reports

Title
Prototyping a process-centered environment

Permalink
https://escholarship.org/uc/item/6d476257

Authors
Richardson, Debra J.
Aha, Stephanie Leif
Yessayan, Harry E.
et al.

Publication Date
1990-04-23

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/6d476257
https://escholarship.org/uc/item/6d476257#author
https://escholarship.org
http://www.cdlib.org/

P_rototyping a Process-Centered
~ Environment

Debra J. Richardson
StephanFeLeif Aha
Harry E. Yessayan
Leon J. Osterweil

April 23, 1990

Department of Information and Computer Science
University of California

Irvine, CA 92717

Technical Report 90-28

Notice: This Material
may be protected
by Copyright Law
(Title 17 U.S.C.)

"

1 .

Abstract

This paper describes an experimental system developed and used as a vehicle for prototyping
the Arcadia-1 software development environment. Prototyping is viewed as a knowledge ac­
quisition process and is used to reduce risks in software development by gaining rapid feedback
about the suitability of a production system before the system is completed. Prototyping a
software development environment is particularly important due to the lack of experience
with them. There is an acute need to acquire knowledge about user interaction requirements
for software environments. These needs are especially important for the Arcadia project, as
it is one of the first attempts to construct a process-centered environment. Our prototyping
effort addresses questions about effective interaction with a process-centered environment by
simulating how Arcadia-1 would interact with users in a representative range of usage scenar­
ios. We built a prototyping system, called PRODUCER, and used it to generate a variety of
prototypes simulating user interactions with Arcadia-1 process programs.

Experience with PRODUCER indicates that our approach is effective at risk reduction.
The prototypes greatly improved communication with our customer. They confirmed some
of our design decisions but also redirected our research efforts as a result of unexpected
insight. We also found that prototyping usage scenarios provides conceptual guides and
design information for process programmers. Most of the benefits of our prototyping effort
derive from developing and interacting with usage scenarios, so our approach is generalizable -·
to other prototyping systems. This paper reports on our prototyping approach and our
experience in prototyping a process-centered environment.

Supporting Agencies

This work was supported in part by the National Science Foundation under grant CCR-
8996102, with cooperation from the Defense Advanced Research Projects Agency (ARPA
Orders 6100, Program Code 7T10) and by the National Science Foundation under grant
CCR-8521398-04.

Trademarks

OpenLook is a trademark of AT&T Bell Laboratories.
Sun and XView are trademarks of Sun Microsystems, Inc.
The X Window System is a trademark of MIT.
Unix is a registered trademark of AT&T Bell Laboratories.
SuperCard and SuperTalk are trademarks of Silicon Beach Software, Inc.
HyperCard and Macintosh are registered trademarks of Apple Computer, Inc.
NeXT and NeXTStep are trademarks of NeXT, Inc.

1 INTRODUCTION

1 Introduction

This paper describes an experimental system developed and used as a vehicle for prototyping
the Arcadia-1 software development environment. Prototyping is used to reduce risks in
software development by gaining rapid feedback from users, customers and designers about
the suitability of a production system before the system is completed. It is rarely possible
to define firm software requirements that will remain unchanged throughout the software
development and usage cycle. Indeed many observers have noted that users' experiences with
a system often change their ways and perceptions of doing their jobs, thereby altering the
requirements for the system itself. This is particularly true for systems that are innovative or
being developed to address problems in a new domain. In these cases, it is particularly useful
to create prototypes to portray accurate impressions of the eventual system. Such prototypes
can be used by customers and prospective users in evaluating both existing requirements
and proposed changes to the requirements [Mou90]. This evaluation may identify the need
for significant changes in requirements before coding and design are completed (or begun),
leading to significant savings due to the avoidance of rework.

Prototyping a software development environment is particularly important. Environments
are relatively new types of software systems and few software developers have had significant
firsthand experience with them. It is unrealistic to expect to definitively establish a firm set
of requirements for an environment at the beginning of developing the environment. Indeed,
it should be expected that continuing contact with an environment will continually migrate
user perceptions of its requirements. Because software environments are such large and ex­
pensive software products, prototyping should be used whenever possible to help stabilize
requirements, thereby reducing effort and cost of rework.

While the preceding rationale for prototyping seems compelling and is widely accepted,
it is far less clear how to prototype effectively. There is virtually no limit to the amount
and variety of feedback one might wish to have on a proposed system. Thus quite a large
and complex prototype might be built to project a faithful image of the eventual system. If
the prototype is very large, the cost of its own development might approach the cost of the
final system, negating the rationale for prototyping. Indeed, there is a considerable history of
aborting the development of production systems in favor of converting elaborate prototypes
into production systems. There is considerable risk in doing this. Prototypes are usually built
with less care and attention to design than is appropriate for full scale system development.
Thus, prototypes often suffer from such ills as poor modularity, inefficiency, and lack of
robustness. These ma,y be acceptable in prototypes but are disastrous in production systems.

In recognition of these problems, efforts are currently underway to create prototyping
support systems (e.g. see [Ba189]) that are intended to facilitate rapid development of in­
expensive prototypes that can be used to explore underlying requirements and be readily
migrated into high quality production systems. Our project was undertaken very much in
this spirit. We have developed a technology to support cost effective experimentation with
software environment prototypes. This technology has been used to prototype the Arcadia-1

1 INTRODUCTION 3

environment. The technology exploits certain characteristics of process-centered software en­
vironments, such as Arcadia-1, to smooth the migration path from prototype to high quality
production system.

1.1 General Approach

Prototyping should be viewed a.s a knowledge acquisition process. Prototype system devel­
opment is software development where the requirement is effective acquisition of particular
knowledge or information that has been identified beforehand. We believe that many proto­
typing activities have gone awry because they fail to identify knowledge acquisition objectives
clearly, leading to increasingly ambitious and uncontrolled prototype development. If, on the
other hand, the goals and requirements for a prototype have been identified clearly at the
outset, it is possible to develop a prototype to address those goals directly and effectively.

Historically, people have used prototypes to acquire a broad range of understanding. Many
prototypes have been aimed at understanding design alternatives (e.g., helping to evaluate
relative merits of competing system architectures and modularization). Many others have
been aimed at understanding system requirements - especially performance requirements
and user interface requirements.

There is an acute need to acquire know.ledge about user interface requirements for com­
plex, innovative systems, such as software environments. These needs are particularly pressing -·
for the Arcadia project [TBC+ss]. Arcadia is one of the first attempts to construct a process­
centered environment [Ost87]. In such environments, the software development process to
be followed is expressed in terms of actual executable code and the environment is charged
with executing the code to invoke tools proactively and assign tasks to humans to carry out
the process. If this is to be done successfully, the system must have a great deal of under­
standing about the ways in which humans will interact with the environment effectively. This
knowledge ranges from low level details about the appearances of windows and menus to
more difficult questions about how humans receive work assignments from the environment,
how they negotiate flexibilities and support in carrying them out, and how they feel about
interacting with an environment in this way. These questions are being addressed through
interactions with a prototype of Arcadia-1 that simulates how Arcadia-1 would interact with
users in a representative range of usage scenarios. Thus, the need to contrive realistic interac­
tion scenarios easily, driven by realistic process programs, was taken as the basic requirement
for a prototype generation system. This system, cal.led PRODUCER, was designed, imple­
mented, and used to generate a variety of prototypes simulating human interactions with
Arcadia-1 process programs.

As shall be described subsequently, our experiments-with PRODUCER indicate that this
approach is effective in risk reduction. The scenarios that we constructed helped communicate
goals and directions among project members a.nd customers. They confirmed some of our
tentative design directions but also helped us to identify some unexpected problems.

One major unexpected benefit was identifying the need for sharply accelerated research
efforts on process visualization. We expected that the availability of an explicit process

2 OPTIONS FOR PROTOTYPING AN ENVIRONMENT 4

representation would improve user effectiveness through clarification of the user's role in the
process. We expected that displaying process code would provide that benefit. We found
that far more powerful process visualizations are necessary. This has led to a significant new
Arcadia research thrust.

Another major benefit was the realization that scena.rio writing is an important step in the
process program development process. We found that developers faced with creating process
programs often had trouble getting started. Our experience shows that developing scenarios
can be an effective way to focus thoughts and begin process program development.

In fact, we also found that scenarios prototyped through the use of PRODUCER include
module interfaces, design and code useful in the production of the final process programs.
Whereas we believe that it is acceptable for a prototype's primary contribution to be knowl­
edge about requirements, it is clearly beneficial when prototypes also contribute modules to
the final implementation. We found that PRODUCER helps achieve this secondary goal as
well as the primary knowledge acquisition goal.

We achieve this secondary goal by considering scenario development to be akin to software
development. Scenario development should begin with the formulation of scenario require­
ments (knowledge acquisition objectives), proceed to scenario design, and then on to imple­
mentation in an executable programming language. This view of scenario development and
the resulting advantages derive as much from the design of PRODUCER as from the inherent .
nature of process-centered environments.

Finally, it is important to observe that most of the benefits of our scenario prototyping
activities derive from developing and interacting with scenarios rather than from developing
the PRODUCER system itself. Our decision to develop PRODUCER was a pragmatic one.
The benefits of scenario prototyping are not specific to this tool but are generalizable to other
tools supporting this approach.

These conclusions will be explored and motivated in detail in the latter sections of this
paper. The next section discusses other options for environment prototyping and why we
developed our own prototyping system. Section 3 discusses the process of using PRODUCER
and provides a detailed description of PRODUCER, while Section 4 illustrates its use. In
Section 5, we describe our experience with PRODUCER. In conclusion, we summarize the
work.

2 Options for Prototyping an Environment

Before deciding to build our own prototyping system, we evaluated a number of existing tools.
We hoped we would be able to use one of these tools in our prototyping effort. After comparing
the capabilities of all the tools to our requirements, however, we recognized deficiencies in
each and decided to build our own system. Looking closely at existing prototyping tools was
worthwhile, because it provided ideas about useful capabilities for PRODUCER.

2 OPTIONS FOR PROTOTYPING AN ENVIRONMENT 5 .

2 .1 Requirements

We identified the following basic requirements for our prototyping system. PRODUCER
should provide:

• maximum :flexibility of screen layout a.nd of graphical representation of objects within
specified guidelines;

• quick turn-around time in the evolution of a prototype, allowing the prototyper to easily
incorporate changes and make enhancements;

• low entry barrier for novice programmers/prototypers;

• facilities for representing a standard look and feel such as Open Look [Mic89], which we
have adopted as the user interface guidelines for the Arcadia-1 environment;

• capabilities for incorporating bitmaps created on any medium;

• capabilities for simultaneously utilizing multiple displays;

• capabilities for activating external software processes, independent of the prototype, so
that actual software environment tools implemented elsewhere could be incrementally -·
included with the prototype as part of the prototype development;

• extensibility such that more support for generating prototypes could be added as needed.

2.2 Available Prototyping Tools

We evaluated several prototyping tools and systems, most notably SuperCard for the Macin­
tosh, Interface Builder for the NeXT, and GUIDE for the Sun workstation. After evaluating
these tools, we decided that building our own prototyping system would provide the greatest
amount of :flexibility, an advantage that might be critic~y important in the evolution and
enhancement of the prototypes. Here, we describe the features of ,these products and our
evaluation.

2.2.1 SuperCard

SuperCard for the Macintosh [Sil89], which is based on Apple's HyperCard _program, has
many features that make it an appropriate tool for building prototypes. SuperCard provides
a full complement of drawing primitives that are useful for designing windows containing col­
lections of graphical objects. It operates in a window-based environment that includes easily
customizable, standard user interface mechanisms such as buttons, menus, a.nd text fields.
The scripting language, SuperTalk, manipulates objects and data in the SuperCard environ­
ment on an event-driven basis. Because SuperTalk was designed as an intuitive, English-like
language, a novice could easily create objects through the use of a graphic editor and could

2 OPTIONS FOR PROTOTYPING AN ENVIRONMENT 6

associate operations with these -objects. SuperTalk scripts can do three fundamental things:
perform actions, get information, a.nd change properties or contents of objects. A script is
executed by an event usually provided by the user. A SuperCard programmer combines ob­
jects and scripts to create "projects", which are executable within the SuperCard run time
environment.

2.2.2 Interface Builder

NeXT's Interface Builder [NeX89] is centered around a graphic editor that provides a col­
lection of user interface building blocks and the capability for connecting graphical objects
so they can communicate with one another. Construction and modification of the window
layout, buttons, and menus is considerably facilitated by support for selecting and dragging
graphical objects. Interface Builder provides an even richer set of predefined graphical ob­
jects than SuperCard. The programmer constructs a complete interface by selecting objects
from a palette, placing and sizing them with the mouse, and defining appropriate object
attributes through graphically oriented dialogs. The programmer uses facilities in Interface
Builder to define relationships between the graphical objects. Interface Builder is a part of the
NextStep programming environment which also includes the Objective-C based Application
Kit. Objective-C and the Application Kit can be used further to link application objects and
complete the application program. Applications created through Interface Builder also have - ·
access to the capabilities of the Mach operating system.

2.2.3 GUIDE

GUIDE [Sun89], an interface building tool which uses the XView toolkit on Sun workstations,
seems to bring many features of N eXT's Interface Builder to the Sun platform. Like Interface
Builder, GUIDE provides a graphic editor for the design and construction of the user interface
portion of a program. The interface can be tested independently of the application code within
the GUIDE environment. GUIDE takes advantage of the XView toolkit which, in turn, utilizes
the X library and the X Window system for lower level graphical and windowing support.
GUIDE supports the Open Look user interface guidelines as the standard look and feel for
its graphical specifications.

2.3 Evaluation

These three prototyping tools meet some of our requirements better than others. All three
systems provide a great degree of :flexibility in manipulating the graphical objects on the
screen. Because screen layouts are maintained as collections of graphical objects, modification
of the screen layouts can be done quickly. The object oriented nature of collections of graphical
objects supports the representation of a standard look and feel by creating object classes for
each window style and inheriting the look and feel for actual windows. All of these systems
have a fairly low user entry barrier because they are graphically oriented systems.

2 OPTIONS FOR PROTOTYPING AN ENVIRONMENT 7

In ma.ny ways, SuperCard is an ideal tool for providing support for early stages of pro­
totyping [Mou90]; the graphical. manipulation facilities and the scripting language allow easy
transformation of rough ideas, in the form of sketches and simple scenarios describing the
behavior of the software, to an executing prototype. In later stages of prototype evolution,
however, more powerful facilities are essential for environment prototyping. In particular,
the scripting language supported by SuperCard is inadequate for meeting the needs of a
process-centered environment. The data typing capabilities in SuperTalk are not sufficient
for describing the software artifacts a.nd relationships between them, both of which are cre­
ated by software processes, as first class objects. Since we are prototyping software processes,
we found it important to ensure that the prototyping system support the expressiveness of
process programming languages such as APPL/ A [Sut89].

Although GUIDE and NeXTStep provide more powerful language capabilities, their de­
pendence on C or Objective-C, respectively, as the native language for programming intro­
duces other problems. Specifically, the need to integrate tools and processes expected to
inhabit the final environment is difficult to address, since many of our tools and processes are
Ada programs. Although we have mechanisms within Arcadia-1 to bridge the Ada/C inter­
face [MS89], dependence on such an interface at an early stage causes unnecessary overhead
and complicates the design of the prototyping system. This problem is even more paramount
for SuperCard, whose scripting language is more difficult to interface with.

We also found that having the capability to display windows on multiple workstations was
critical. Although multi-display capabilities are technically feasible with Macintosh and NeXT
systems, the networking display capabilities available through X Windows, which works on a
client/server basis, are more adaptable to our requirements. Moreover, X Windows has been
widely used on networks of workstations and can be expected to be more reliable. Because
of its reliance on the X Window system, GUIDE is a more suitable prototyping support tool
for our multiple display requirement.

An effective prototype should emulate the look and feel of the actual product as closely
as possible. Arcadia-1 is targeted to use Open Look user interface guidelines and be built
on a platform of networked workstations. SuperCard and Interface Builder are hardware
dependent programs, requiring Macintosh and NeXT computers, respectively; effort must be
put into following the Open Look guidelines on these machines. GUIDE was developed for the
Sun workstations and its default window style is Open Look. Thus, GUIDE is more closely
aligned with the look and feel we intend for our final product.

Many of the features of GUIDE are useful for our purposes, especially GUIDE's use of
Open Look and X Windows. Having the capabilities of automatically constructing an interface
with the same look and feel of the actual product would not only speed up the prototyping
activity but would facilitate reuse of the prototyped interface for preliminary versions of the
actual product.' GUIDE, however, had not yet been released at the time of developing our
prototyping system. Once GUIDE is more readily available, it might behoove us to use it as
our standard means of drawing windows, but continue to employ PRODUCER to prototype
the script actions.

3 THE PRODUCER SYSTEM 8

The inadequacies of SuperCard and Interface Builder and GUIDE's unavailability brought
us to the decision to design a.nd build our own prototyping system. We strove for a. system
that had minimal functionality in the beginning, that could be built on a Unix workstation
platform, that would not be hardware dependent, and that could be enhanced as needed. This
enabled us to rapidly construct rough prototypes focusing mostly on the user interaction
with processes, without investing too much effort in the prototyping process and without
sacrificing an open-ended, upward migration path. PRODUCER was designed so that it could
be incrementally enchanced to a. system that would integrate actual parts of the Arca.dia-1
product.

3 The PRODUCER System

We call our system "PRODUCER" because it provides the means to make a. "moving picture"
of the Arcadia.-! process-centered environment. We refer to the code for a. scenario as the
scenario script. Each script created through the PRODUCER system contains a. collection
of windows that portray using the software environment. A script also defines the actions
that should occur in response to user inputs, thereby controlling when, where, and how the
windows are displayed. The scenario script is accompanied by English language narrative,
referred to as the commentary. The commentary describes the scenario and provides the
reasoning and rationale behind the scenario. The commentary also guides a specific script
execution, which is referred to as a screenplay. By showing specific screenplays accompanied
by commentary, our approach to scenario development facilitates knowledge acquisition.

PRODUCER serves three types of users:

Audience: views screenplays (the audience only watches a screenplay, but does not directly
guide the flow of control);

Director: controls a given screenplay by directing the action with the mouse and keyboard
(the commentary tells the director what a given window represents, what data. is passed
to that window, and the response to each possible window action);

Scriptwriter: writes the commentary and script.

Figure 1 describes the scenario development process, which is similar to the requirements,
design, and implementation processes for producing software. The scenario requirements
should define the process to be prototyped and the objectives of portraying· that process.
The design shows how the scriptwriter plans to satisfy the requirements and should describe
the progression of windows and the look and feel of the screenplay. The implementation
is a script written using facilities provided by PRODUCER. Note that this is an iterative
process, both w1thin and between phases. Screenplay execution or demonstration may prompt
changes in requirements or design. This process, specifically those portions that interact with
PRODUCER, will be described further below.

3 THE PRODUCER SYSTEM

Phase
Transition

Scenario
Requirements

Control
Flow

Scenario
Design

Draw
Windows

Write
Cornmentar

Scenario
Implementation

Translate

Create
Initial W-D-T

Translate W-D-T
to Seri t

Update W-D-T

Elaborate

Elaborate
Cornmentar

Figure 1: Scenario Development Process

Scenario
Demonstration

9

3 THE PRODUCER SYSTEM 10

3.1 Writing a Script

The scriptwriter is, for the most part, the scenario developer, although just like customers
and users have a part in analyzing and modifying software requirements and design, so too
might a director or audience have input to scenario requirements and design.

Scenario design consists mostly of developing an initial commentary for the scenario and
obtaining windows corresponding to the tools invoked in the scenario. Windows a.re drawn
using standard drawing tools or clipped from executing tools. These tools might be provided
on the same platform as PRODUCER or any other platform.

Scenario implementation consists of creating a.nd elaborating the script as well a.s elabo­
rating the commentary where needed. The scenario script consists of windows that have been
translated to X bitmap format and actions in response to user input. We provide translators
from several common window formats into X bitmap format. The PRODUCER system in­
cludes capabilities to create an initial script and then interactively elaborate the script while
it executes. The commentary explains what different options are present in ea.ch window and
where the data. in a. window came from. Execution of the screenplay provides feedback, which
may lead to modification of the windows and script.

Most script actions are window updates (e.g., remove and raise) and control flow between
windows (they may also be process activations, but this is generally only done in highly refined
scenarios). The control flow can be viewed as a function: window x button x state - window, -·
where window is the name of a window, button is the name of a. button within that window,
and state is the internal state of the screenplay.

Scripts include a. window-definition-table (W-D-T}, which consists of the following fields:

key: the name of a. window to be used within the PRODUCER system;

file name: the name of the file on disk that contains the bitmap representation of the window;

window location: the (x,y) screen coordinates for this window;

parent window: enclosing window for a button;

display-id: the identification of the display on which this window should appear.

Scripts are initia.1.ly derived from the window-definition-table. As a first pass, the screenwriter
need not worry about window locations on the screen (she or he might approximate locations
or assign all windows to the origin) and should define a basic window sequence. PRODUCER
automatically translates this window-definition-table into a simple script, which has linear
control flow - that is, a mouse click anywhere in a win,dow would cause display of the next
window in the sequence. Most scenario requirements, however, call for screenplays that do
not simply step through the windows. To create these more sophisticated screenplays, a
scriptwriter elaborates the script.

PRODUCER provides some facilities for elaborating a script interactively while executing
the screenplay. On the first pass, the script with linear control flow ca.n be executed. The

3 THE PRODUCER SYSTEM 11 .

scriptwriter can reposition a window on the screen and save its new coordinates in the window­
definition-table (move is actually a director function, see section 3.4). On the next execution
of this screenplay, the window will appear in the new location. The scriptwriter can also
de:fine buttons, adding them to the table so that actions can be assigned to their selection.

The scriptwriter may also obtain new windows (by drawing or clipping) to modify the
script. These windows must be translated to X bitmaps and the information added to the
window-definition-table.

Screenplay execution is organized around an action table of stimulus-response pairs. Each
stimulus is a user event, and each action is one or more PRODUCER Virtual Machine (PVM)
instructions (see section 3.2). PRODUCER dispatches the action in response to a user event
as specified in the action table. Initially, the action table simply indicates a sequence of
window displays. The screenwriter elaborates the script by adding stimulus-response pairs to
the action table as well as by adding windows and buttons.

3.2 PRODUCER Virtual Machine

A script should be viewed as executable code written in terms of a virtual machine instruction
set. The actions of the script are virtual machine instructions so that the same level of
functionality is provided to all screenplays, X dependent code is hidden, and the migration
path from a screenplay to a system is as straight-forward as possible.

The PVM instructions are

display window: displays the window associated with a given key;

remove window: removes the window associated with a given key;

raise window: redraws a window so that it is in front of any overlapping windows on the
screen;

clear all: removes all windows;

display message: displays text in the message window;

wait: delays for a given amount of time;

fork a process: starts any given process;

spawn a process: the same as fork a process except that spawning a process forces the
screenplay to wait for a return status from the child process;

deactivate: clears any changes made to the appearance of a window, and is used to simulate
user interaction.

3 THE PRODUCER SYSTEM

PRODUCER PRODUCER

Run-time
System

Script

PRODUCER
Virtual

Machine

Event Loop

Action Table

Actions

Inititalize

t
uses

Figure 2: Screenplay Architecture

3.3 Screenplay Architecture

12·

The PRODUCER runtime environment, which supports screenplay execution, is based on a
main event loop that detects mouse button presses and performs actions as specified in the
action table by the scriptwriter.

Figure 2 shows a "uses" hierarchy for a screenplay. Each outer box is a major functional
component, described by the label on the left of the box. PRODUCER interprets scripts as
screenplays. We do not discuss the actual process of interpretation here, only the architecture
of the screenplays. A screenplay is an Ada program. The Ada code can be broken down into
four different components:

initialization: sets 1:1P the displays and assigns attributes to windows and buttons;

event loop: calls the action table to interpret each user event;

action table: specifies the actions in response to each user event;

actions: provide Ada implementation of the virtual machine instructions.

The screenplay architecture was designed so the scriptwriter need only provide some of the
initialization attributes and the action table.

4 EXAMPLE SCENARIO 13

3.4 Directing a Screenplay

The director controls a screenplay execution by selecting window buttons with the mouse.
The window buttons stimulate actions as specified in the action table. Besides selecting
window buttons, the following functions are also available to the director:

quit: terminates screenplay, removing all screenplay windows from all displays;

restart: clears all displays and brings back the welcome window;

move: moves a window to any position on the screen and updates window-definition-table;

clip button: clips a button, associates it with enclosing window, and updates the window­
definition-table;

raise: redraws a window so that it is in front of any overlapping windows on the screen;

remove: deletes a window from the screen.

A scenario script may produce many possible screenplays depending on the director's choice
of events.

4 Example Scenario

In this section, we show artifacts of developing a scenario through the process given in Fig­
ure 1. We refer to this scenario as FIB/FAB or Flnd-a.-Bug/Fix-A-Bug. FIB/FAB is the first
scenario that we developed with PRODUCER. The main objective of FIB/FAB is to illustrate
the testing, analysis and debugging tools that are being developed as a major effort within
the Arcadia project. Other objectives are to portray tool integration capabilities provided
by the Arcadia-! environment, the proactive nature of the environment, and the ability to
trigger activities when stored relations (possibly relating objects created by different tools)
becomes inconsistent. The portion of the screenplay shown here is during test execution and
after an inconsistency between execution results and a module specification is detE;!cted. The
user employs debugging tools to locate the fault and modifies the source code. The process
automatically begins update analysis. The artifacts shown here include screen shots contain­
ing sample windows, a portion of the window-definition-table, and parts of the corresponding
script and commentary.

4.1 Windows

Figures 3 and 4· show two screen shots of a FIB/FAB screenplay. Both are of the screen that
corresponds to the user interaction with the tools and the FIB/FAB process. In Figure 3,
The Ada Source Browser is the active window. The DEBUS (DEsign BUilding System)
window shows that execution for the test case, which is shown in the Test Execution window,

4 EXAMPLE SCENARIO 14

is inconsistent with a module specification, which was part of a DEBUS design. The user
selects Debug a.nd then chooses the Information Flow Analyzer to locate the source of the
inconsistency. The Information Flow Analyzer highlights the dependencies that lead up to
the inconsistent value in the Ada Source Browser window. Figure 4 shows that the user
has completed modifying the source code. The Debug and Information Flow windows are
removed and the FIB/FAB process automatically begins update analysis.

4.2 Window-Definition-Table

Recall that the scriptwriter creates a simple window-definition-table, which doesn't worry
about window coordinates or buttons, before writing the script. Figure 5 shows part of the
initial window-definition-table, which includes some of the windows shown in Figures 3 and 4.

This window-definition-table is translated into a simple script, which can be executed.
During the screenplay execution, the windows are moved, buttons are defined, and the
window-definition-table is updated. We also added process code bitmaps to be displayed
on the second screen. Part of the updated window-definition-table is also shown in Figure 5.

4.3 The Script

The script generated from the window-definition-table consists only of linear control flow. We
next elaborated the script by adding more complex control flow to the actions. Each action
can be any combination of PVM instructions.

The script shown in Figure 6 contains a portion of the refined script, which is grouped
into four sections. The first section shows the test execution process code and the detection
of the DEBUS inconsistency. The second section shows responses to selecting the Debug
button in the DEBUS window and to buttons in the Debug window. Note here that actions
are not assigned to all buttons; this illustrates one form of incomplete prototyping allowed
by PRODUCER. The third section shows the response to selecting the browse button in the
Information Flow Analyzer window (Figure 3) and to clicking on the Ada Source Browser
window, where the fault is corrected magically in screenplay. The fourth section shows the
actions that result from clicking on the Complete button in the Fix/Edit window (Figure 4);
the process activates update analysis and compilation.

4.4 Commentary

The commentary is developed in parallel with the script. It is elaborated as extra windows
are added and buttons are defined. The portion of commentary presented in Figure 7 refers
to the windows and script discussed above.

4 EXAMPLE SCENARIO 15

•Screen Play - 0

Analysts end Testing Process Fix/Edit

~ (Browse1>) DEBUS

(Analysis ...) (Test Generation ...) (THt Execution ...) (Browse 1>) (Defer ...) (Fix/Edit ...)

DBM
(PIC Analyzer ...) (lnfoFlow ...) (Meteor ...) (ARIES ...)

dbm-S~.a. dbm...body .a (Anne Pin Point ...) (Date Bindings ...) (Measurement History ...)

Test Execution

(Browse 1>)
c;.n....Stats

dbm...body.a

(Execute) ~ (Test Generation ...) (History •.•) Ade Source Browser: a.rLStats

Test Case:

OeHved by:

Input Data:

Expected Output:

Actual Output:

DataFlow

Max..Units • 15;
Nwn..Units • 2;

Num....Students • I;
StuJ.ec.CurrenLUnit • 2;
StuJ.ec.Progress(!).Work.• passed;

StuJ.ec.Progress(I J.Qulz •;;,passed===; ===
StuJ.ec.Progress(2). Work

StuJ.ec.Progress(2 J.Qulz •

Unit.Array • (0,0, 1,0,0, I)
Unit.Array• (0,0,1,1,0,0)

DEBUS module specificati

Module: c;.n....Stats

• Tallr•otsrudoftu Yho ha..., compleledeach llllit
-4) CUrnnt..tlnit /• llum....IJnits Of'
- CUrnnt..tlnit • llum....11nits end then Vorlc •NP or QuiJ • llP

itStu..Rec.CUrnnt..tlnit /• llum....11nits Of'
(Stu.Jte<:.Current..tlnit • llum....11nits end then

((Stu.Jte<:.Prolre=(Stu..l!.ec.Curront..tlnit).Vorll: • Possed) or ..
(Stu..l!.ec.Prolre=(Stu.lte<:.Current..tlnit).QuiJ • Possed))) then

:Jf!!lNECWhYN'" I.
lit

12t

File Name: dbm...body.a

Inconsistent Requirement: (Set Yertable) (Sat Location)

Subprogram Annotat1 on:
Unit...Array(unit,3) •

sum (!or all StuJ.ec ID studellt.DataBIM •>
ll (stu.Jtec.Progress(unit). w~ •passed ar

stu.Jtec.Progress(unit).Qulz • passed) tll
I)

(Fix/Edit ...)

Figure 3: Sample Screen Shots and Windows

Module: a.n....Stats

Variable: Unit.Array(Num..Unit, 3)

Location: line • 134

1
··:

j

.!

I

4 EXAMPLE SCENARIO

Ill Screen Play - 0

Analysis and Testing Process

~ (Browse o-)

(Analysis ...) (Test Generation... (Test Execution ...)

DBM

dbm...spec.a, dbm_bOOy.a

Test Execution

(Browse o-)

Fila Name:

Fix/Edit

(llrowse e>)

G.!LStats

dbmJlody.a

16 .

(Execute) (§) (Test Generation ...) Ado Source Browser: ~n__Stats

Module: Gen__Stats

Test Cnse:

Derived by:

Input Date:

DataF!ow

Max.Units • 15;

Num_Units • 2;

Num_$tudents • l;

SbL.Rec.CurrenLUnit • 2;

SbL.Re<:.Progress(l).Worlc. •passed;

SbL.Re<:.Progress(1).Quiz • r,:passea==:===;===
SbL.Rec.Progress(2). Work

SbL.Re<:.Progress(2) .Quiz •

-Toll-,• of :tUdentJ Tl1o 114.., completed each unit
-i) CUrrottL!Jnit /• Num..UnitJ or

CUrrottL!Jnlt • NumJlnltJ and then Vorli: •NP or Quiz• NP

it Stu...Jtec£urrenL!Jnlt /• Num..UnitJ or
(Stu..Rec:.Curren.LO'nit. HUID-.Units and then
9Stu...Rec~(Stu...Jte<:.CurrenLUnlt).Vorl< •Passed) or
~~(Stu...Roc.CurrenLUnlt).Quiz. Passed))) then.

lbr i In 1 . .stu..Ree.CUrrottLUnit - I loop
UnJUrra-,(i. 3),. UniUrra-,(J. 3) + l;

end loop;

-~) CUrrottL!Jnlt • llumJlnitJ. Vork P. Quiz P
else

Expected Output: Unit..Array • (0,0, 1,0,0, 1)

Actual Output: Unit.Array• (0,0, 1, 1,0,0)

DEBUS module specific11ti 0~
Module:

Update Analy.::1,

File Name: dbmJlody.a

Inconsistent Requirement:
Subprogrem Annotation:

UniLArray(unlt,3) •
sum (for all stu.Rec in StudenLDataBase ••

i1 (stu.Rec.Progress(unlt).Worlc. •passed and
Stu....Rec.Progress(unlt).Quiz • pass.<!) tMn

I)

(Flx/EdlL) (Debug ...)

Figure 4: Sample Screen Shots and Windows

4 EXAMPLE SCENARIO 17

Initial Window-Definition-Table
Key File Na.me x y Display
Analysis_Testing "analysis-testing" 0 0 0
Test~ecution "test-exec" 0 0 0
Debus "de bus" 0 0 0
Fix...Edit "fix-edit" 0 0 0
Debug "debug" 0 0 0
Ada...Source 11 ada-source 11 0 0 0
InfoJ'low "info-flow" 0 0 0

[Expanded Window-Definition-Table
l Key File Na.me x lY I Display

Analysis_Testing "analysis-testing" 15 15 0
Test....Execut ion "test-exec" 35 170 0
Debus "de bus" 360 460 0
Fix....Edit "fix-edit" 586 15 0
Debug "debug" 515 45 0
Aries.Debug "aries-debug" 105 45 0
Data...Bindings "data-bindings 11 620 510 0
Debug..Ada...Source "debug-ada-source" 600 235 0
Ada...Source 11 ada-source 11 600 235 0
InfoJ'low "info-flow" 775 510 0
InfoJ'low...A.da....Source "info-flow-ada-source" 600 235 0
Cea ar ..Ada...Source 11 cesar-ada-source11 600 235 0
A_T ..Brows a.Button 11 a-t-browse.b 11 74 36 0
A_T...Analysis.Button "a-t-analysis. b" 14 69 0
A_T _Test_Generat ion.llutton 11 a-t-test-generation.b 11 123 69 0
A_T_Test..Execution.Button 11 a-t-test-execution.b 11 286 69 0
Debug..Info..Flow..Button 11 debug-info-flow.b 11 155 69 0
Info ..Flow .llrowse...Butt on 11 info-flow-browse.b 11 84 37 0
Debug..Aries...Button "debug-aries. b" 364 69 0
Debug.Data..Bindings.llutton 11 debug-data-bindings.b 11 166 102 0
Debug..Qui t..Button "debug-quit. b" 870 810 0
Hierarchy.llutton "hierarchy. b" 227 69 0
p...Assign 11 assign.p 11 20 20 1
p_TestCase 11 testcase .p" 20 20 1
p..RPC 11 RPC.p 11 20 20 1
p..If _Oracle 11 if-oracle.p 11 20 20 1
p..If..Rebus 11 if-rebus.p 11 20 20 1

p..If...Debus 11 if-debus.p 11 20 20 1
p...Debus 11 debus.p 11 20 20 1

Figure 5: Sample (partial) Window-Definition-Tables

4 EXAMPLE SCENARIO

when Quit => Done := TRUE;
-- the director's quit the screenplay action.
-- ** Group 1: Test Execution
when Test..Execution_Button =>
-- show the process code for checking the execution of a test on screen 2

Display...Bitmap (Screen_List(p__Assign), Display.Status); Wait (1.0);
Display...Bitmap (Screen_List(p_TestCase), Display.Status); Wait (1.0);
Display ..Bitmap (Screen_List(p-RPC), Display ..Status); Wait (1.0);
Display...Bitmap (Screen_List(pJLOracle), Display.Status); Wait (1.0);
Display...Bitmap (Screen_List(pJLRebus), Display.Status); Wait (1.0);
Display ..Bitmap (Screen_List(p_If.J)ebus), Display ..Status); Wait (1.0);

-- detect Debus error, show the error and related windows on screen 1
Display ..Bitmap (Screen_ List (p_Debus), Display ..Status);
Display ..Bitmap (Screen_List(Debus), Display ..Status);

-- unhighlight the execution button because execution has stopped
Deactivate (Screen_List(a_UesLexecution_button));

-- ** end Group 1
-- ** Group 2: Debug
when DEBUS.J)ebug...Button =>
-- show the debug tool

Display ..Bitmap (Screen_List (Debug), Display ..Status);
-- The user can debug using any of the tools below
when Debug_FIC-8utton =>

Display ..Bitmap (Screen_List(PIC), Display ..Status);
when Debug.lnfo..Flow-8utton =>

Display ..Bitmap (Screen_List (Info..F low), Display ..Status);
when Debug...Aries.J3utton =>

Display .J3itmap (Screen_List(Aries_Debug), Display ..Status);
when Debug.J)ata.J3indings..Button =>

Display .J3itmap (Screen_List(Data...Bindings), Display ..Status);
when Debug_Quit..Button =>

Remove.Bitmap (Screen_List(Debug));
Remove.Bitmap (Screen_List(Debug..Ada-5ource));

-- ** end Group 2
--**Group 3: Info Flow
-- the user chose to invoke the info flow tool
when Info..Flow...Browse_Button =>
-- display the slice highlighted by the info ft.ow tool

Display ..Bitmap (Screen_List (Info..Flow ..Ada.Source), Display ..Status);
Remove.Bitmap (Screen_List(Debug..Ada_.Source));

when Ada..Source_Browser =>
-- show the corrected source code

Display ..Bitmap (Screen_List(Ada_Source), Display _.Status);
-- ** end Group 9
--**Group 4: Fix/Edit
when Fix..EdiLComplete..Button =>
-- the user has finished making corrections

Display.Message ("Update Analysis ... ");
-- remove debugging windows

Remove.Bitmap (Screen_List(Info..Flow ...Ada.Source));
Remove.Bitmap (Screen_List(Debug));

-- ** end Group 4

Figure 6: Sample (partial) Script

18

4 EXAMPLE SCENARIO 19

Detect failure

• the relationship between a REBUS-recorded performance requirement and the module
execution is inconsistent at run-time

'-+ trigger REBUS Inconsistency window

• user selects Fix/Edit

'-+ call Fix/EDIT

Debug fault(s)

• click left on DEBUG

'-+ call DEBUG

• user's debugging preferences automatically execute in the background

• Debug window display with buttons corresponding to preferences highlighted

• user request help information by shift click left on InfoFlow

<--+ help information on InfoFlow is overlayed

• click left on lnfoFlow

'-+ call INFO-FLOW-ANALYZER

• Information Flow Analyzer window display

• cl~ck left on Browse

<--+ call IF-SOURCE-BROWSER

• IF Source window display highlights the slice of information fl.ow dependencies in the Ada
source

- user scrolls through IF Source window

Fix/Edit

• user edits in IF Source window (click left on fault in IF Source modifying conditional in
Gen_Stats at lines 120, 121)

'-+ call Fix/EDIT

• Fix/Edit window raised

Update analysis

• click left on Complete

<--+ Debug window and all spawned windows removed

<--+ trigger addition of change information to UPDATE LOG

'-+ trigger addition of change information to MEASUREMENT HISTORY

'-+ call COMPILATION

'-+ user's analysis preferences automatically execute in the background

• process code animated on other display

Figure 7: Sample (partial) Commentary

5 OUR PROTOTYPING EXPERIENCE 20

5 0 ur Prototyping Experience

The development of a software development environment of Arcadia-1 's scale is a long process;
many components must come together before we can display any part of the environment.
We felt it important to provide some preview of a working Arcadia-1 environment and repre­
sentative software development processes to elicit useful feedback from potential users. This
motivated our prototyping effort. We did indeed receive feedback. We also generated many
new ideas and in some cases redirected the Arcadia. project research and development efforts.

We began our prototyping effort by developing scenarios that portrayed Arcadia-1 's diverse
capabilities, its process programming concept, and its look and feel. Arcadia is, on the
one hand, an environment architecture project but also incorporates many tool development
efforts. These tools are composed in process programs and interact through the capabilities
provided by the environment infrastructure but also must present a smooth and integrated
view to the product developer. Thus, scenarios were developed to highlight the capabilities
available to all potential Arcadia-1 users: the environment builder, the process programmer,
and the product developer.

We began our experiment with three draft scenarios that highlighted the Arcadia project.
The FIB/FAB (Find-a-Bug/Fix-A-Bug) scenario portrays the testing, analysis and debug­
ging process and focuses on the interaction among various analysis and testing tools with the
development tools. The DEBUS (DEsign BUilding System) scenario demonstrates coopera­
tive work between multiple designers using different design methodologies on the same design
effort. The AAT/AAT (Add-A-Type/Add-A-Tool) scenario shows how a process programmer
or environment builder might add a new tool to an environment. These scenarios were refined
throughout the experiment as PRODUCER's capabilities were expanded. Their current sta­
tus is mentioned at the end of this section. The screenplays were periodically demonstrated to
potential product developers, our sponsor, and other Arcadia project personnel. This inter­
action provided invaluable feedback on both Arcadia-1 's functional capabilities and its look
and feel.

Our first lessons involved discovering the minimal requirements for PRODUCER as a
prototyping vehicle. We began with very simple PRODUCER requirements that allowed a
prototyper to step through a sequence of bitmaps that represent tool and process windows
for a scenario. Thinking that these requirements would enable us to get a prototype running
quickly and that the capabilities were sufficient to portray the look and feel of Arcadia-
1, we developed this simplistic PRODUCER. We then developed a simple script for each
draft scenario, which provided immediate feedback to the prototyping process. We quickly
recognized that such short cuts did not give a potential user a realistic view of the future
Arcadia-1. For instance, our initial PRODUCER provided no functional buttons, but rather
a mouse click anywhere in an active window would pop up the next window de:fined by the
script. This was determined inadequate, so we added capabilities to de:fine buttons that are
highlighted by displaying them in reverse video when they a.re selected. Moreover, our initial
PRODUCER enabled several windows to appear on the screen at any one time, as is required

5 OUR PROTOTYPING EXPERIENCE 21 .

by most scenarios, but there was ·no means of focusing the attention of the user. To avoid
the confusion of a cluttered screen, we added a capability to highlight the currently active
window. Thus, we found we needed a much more complex prototyping vehicle and went on
to develop PRODUCER as described in the previous section.

Our next insight was into the look and feel to the product developer. There was concern
about the tool-driven style of user interaction. Given the wide variety of tools and processes
that we expect to inhabit Arcadia-!, it may be difficult for a project programmer to navigate
through a process. A product developer who might not be aware of specific capabilities of
a tool by its name might be better guided through Arcadia-! in a goal-driven fashion. This
lesson has prompted research into how one might provide a goal-driven user model.

Concern about the difficulty a user might have in determining precisely what role she or
he is expected to play in a process also surfaced quickly. Arca.dia-1 will provide a complex
software development environment consisting of many tools. A software process may activate
several tools at any one time. PRODUCER provides a window highlighting capability to focus
the attention of the user, but it can be difficult to determine why this window is active. We
identified the need for a process tracing facility that tells the user what portion of the process
is active and what sequence of events led up to that point. This can be accomplished in part
by viewing the process program as it is executing. We also realized that the user interaction
within a process-centered environment requires some view of the process. A complementary
feature would be a "you are here map", which would graphically represent the process history.
Effective approaches to both facilities are under investigation.

We further recognized that all Arcadia-! users need a view of the executing process, since
Arcadia-! is an environment with multiple types of users who interact with very different
levels of the environment. Product programmers need to keep track of their progress in the
development process, interact with tools, the see the state of the developing product. Process
programmers need to visualize the process code and analyze the process in execution. Envi­
ronment builders need a "behind the scenes" view that shows the underlying infrastructure
- e.g., object management and message passing. We altered PRODUCER to enable it to
display information relevant to multiple users types on separate workstation displays. By this
mechanism, tool interaction appears on one display, the executing process program appears
on another display, and the underlying infrastructure is displayed on yet another. The need.
to support each view has prompted research efforts into new visualization mechanisms for the
information relevant to the various Arcadia-! user types. We currently support the process
program view simply by stepping through the process source code, which is in APPL/ A, as
each APPL/ A statement executes. Infrastructure views are supported by graphical drawings
of background activity. We realize, however, that new process and infrastructure visualization ·
mechanisms are absolutely essential.

The need to display windows on multiple workstation displays was also arrived at for other
reasons. The complexity of interactions among users of a software development environment
could not be explored fully by a single display interface. Many of the scenarios we envisioned
comprised multi-user processes. In addition, the vast amount of information that must be

5 OUR PROTOTYPING EXPERIENCE 22 .

conveyed even to a. single user is-inadequately handled by a single workstation display. In
the course of building PRODUCER, we explored the options of creating a multi-display
environment.

A welcome insight into the benefits of using PRODUCER wa.s that creating scripts em­
bodied the design and partial coding of Arcadia-1 process programs. Indeed, we found that
developing scenario scripts parallels the development of production process programs, offering
hope that software objects produced in the course of script development can be used in the
final process program. PRODUCER thereby facilitates migration to a process-centered envi­
ronment. This benefit results as much from the design of PRODUCER as from the inherent
nature of process-centered environments. PRODUCER facilitated prototyping a scenario as
a process, which can evolve to a production process program.

In our original plan, PRODUCER was to display drawings of screen shots developed with
diverse other media as windows of a scenario. Some Arcadia-1 tools, however, have already
been implemented and have a running user interaction. Two approaches were taken with
such tools. Screen shots were ta.ken of the tool in action and these were included in scripts.
This first option allows us to provide an image of the tool in action supported by the fa.ct
that the windows are actual tool output. Another option is forking a process that invokes the
tool. This latter option allows us to substitute actual tools and subprocesses for a series of
windows, but maintains independence between production system code and prototype code.
These two options provide a natural migration path from screenplays to running Arcadia-1
processes.

Our selection of the three initial scenarios was by no means meant to be complete. Upon
showing the screenplays to potential users and our sponsors, we heard what they really wanted.
They liked what they saw, but quite naturally asked questions regarding capabilities they did
not see. To some questions, we could safely say the capability will be provided. Other
questions, however, addressed functionality we had not intended but are now considering.
For instance, no explicit process programs were planned to support reverse engineering, but
this has become a new functional requirement of Arcadia-1. PRODUCER, therefore, enables
better communication between Arcadia project personnel and our customers - potential
Arca.dia-1 users and our sponsor. Like [Mou90], we found that showing screenplays to our
customers reduces the risk that their expectations will not be met by Arcadia-1.

Scenario development in our prototyping experiment was an iterative process. From the
original draft scenarios, we identified basic prototyping requirements. As we developed scripts
for scenarios and showed resulting screenplays to customers, we realized the potential of our
activity. Ea.ch new script helped pinpoint additional features that would enhance PRO­
DUCER's capabilities to prototype the Arca.dia-1 environment and software development
processes. New functionality spawned new scripts, etc. Table 1 summarizes the complexity of
the current thre.e scripts. FIB/FAB uses the multiple screen capability. One screen displays
user interaction with various analysis and testing tools and the triggers resulting from rela­
tions that exist between objects created by development tools and the analysis and testing
process. The other screen displays the process code as it executes. We have immediate plans

6 CONCLUSION 23

Script windows displays
FIB/FAB 42 2 (user & process)
DEBUS 83 3 (two users & process)

AAT/AAT 27 3 (user, process & background)

Table 1: Script Complexity

to invoke actual tools from this scenario. DEBUS also uses the multiple screen capability
to show cooperation between two users working on the same product development effort.
The users employ different design methodologies, but interact through the product require­
ments. AAT / AAT uses three screens to portray the environment from the three perspectives
of product developer, process programmer, and environment builder. This scenario requires
the greatest enhancements to alternative visualization mechanisms.

6 Conclusion

We believe that PRODUCER has served as a highly cost-effective risk reduction vehicle.
Important confirmations of key Arcadia objectives and architectural decisions were obtained.
In addition, the need for unexpected major new research initiatives (most notably in the area
of visualization technology) were identified.

Our costs in doing this were relatively modest. PRODUCER and associated support tools
have been developed and iteratively enhanced at a cost of somewhat less than ten person
months. Useful screenplays were running within three or four months of project inception.
We believe they have significantly reduced the risk that Arcadia-1 will not fulfill expectations.

In addition, we have found tha.t the scripts themselves have been very helpful to process
programmers as conceptual guides in designing the process programs that are to ultimately
give substance to the scenarios. In a real sense, scenario scripts are themselves process pro­
grams. The design information they embody turns out to be reusable as process program
design information as well. Scripts function as executable designs. Thus, scenario develop­
ment has become an integral part of our process program development process.

Finally, we should repeat our earlier observation that scenario and script development
and screenplay executions provided the primary benefits of this activity. PRODUCER was
valuable primarily as a vehicle for enabling this development and execution. In that other
systems might serve as similar vehicles, we would expect them to be similarly useful.

Scenario development and PRODUCER enhancements are continuing. We increasingly
view this technology as being essential to effective risk reduction in software environment
development.

6 CONCLUSION 24

Acknowledgments

We would like to acknowledge Billie Bozarth and Xiping Song for their invaluable feedback
throughout their processes of developing scenarios and using PRODUCER. We also appreciate
our audiences - our sponsor, potential Arcadia-1 users, and other Arcadia project personnel
- who have watched screenplays in action and given us useful feedback.

REFERENCES 25

References

[Bal89] Robert Balzer. Draft Report on Requirements for a Common Prototyping Sys­
tem. ACM SIGSOFT/SIGPLAN, 24(3), March 1989. Robert Balzer, Chairman;
Richard P. Gabriel, Editor.

[Mic89] Sun Microsystems. Open Look graphical user interface functional specification
release 1.0. Technical report, Sun Microsystems, May 1989.

[Mou90) S. Joy Mountford. Designers: Meet your users (panel). In Proceedings of the
Conference on Human Factors in Computing Systems, pages 439-442, Seattle,
April 1990. Association for Computing Machinery.

[MS89] Mark Maybee and Stephen D. Sykes. Q: Towards a multi-lingual interprocess com­
munications model. Arcadia Technical Report UCI-89-06, University of California,
Irvine, February 1989.

[NeX89] NeXT, Inc., Palo Alto, CA. Interface Builder Reference Manual, 1989.

[Ost87] Leon J. Osterweil. Software processes are software too. In Proceedings of the
Ninth International Conference on Software Engineering, pages 2-13, Monterey,
CA, March 1987.

[Sil89] Silicon Beach Software, San Diego, CA. SuperCard User Manual, 1989.

[Sun89] Sun Microsystems, Inc., Palo Alto, CA. Open Windows Developer's GUIDE, Beta
Version User's Manual, 1989.

[Sut89] Stanley M. Sutton, Jr. Working report on the revised definition for the appl/a
programming language. Arcadia Document CU-89-05, Department of Computer
Science, University of Colorado, Boulder, Colorado 80309, June 1989.

[TBC+88] Richard N. Taylor, Frank C. Belz, Lori A. Clarke, Leon Osterweil, Richard W.
Selby, Jack C. Wileden, Alexander L. Wolf, and Michal Young. Foundations for
the Arcadia environment architecture. In Proceedings of ACM SIGSOFT '88:
Third Symposium on Software Development Environments, pages 1-13, Boston,
November 1988. Appeared as Sigplan Notices 24 (2) and Software Engineering
Notes 13(5).

1111111111111111111111111111111~1111111111111111r11111111111111 ·

3 1970 00832 1959

