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EUGENE ROBERTS 
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SUMMARY 

L-Glutamate decarboxylase (GAD, EC 4.1.1.15), the enzyme which catalyzes 

the a-decarboxylation of L-glutamate to form 7-aminobutyric acid (GABA), was 
localized both light and electron microscopically in rat  substantia nigra by an im- 
munoperoxidase method. Large amounts of  GAD-positive reaction product were 
seen throughout the substantia nigra in light microscopic preparations, and it ap- 
peared to be localized in punctate structures that were apposed to dendrites and soma- 
ta. Electron microscopic studies revealed that most of  the axon terminals in the sub- 

stantia nigra were filled with GAD-posit ive reaction product and formed both 
axodendritic and axosomatic synapses. Many dendrites were extensively surrounded 

by GAD-posit ive terminals which most commonly formed symmetric synaptic 
junctions, although some formed asymmetric synaptic junctions. 

The results of  this investigation are consistent with biochemical, pharmacologi- 
cal and physiological data which have indicated that neurons of  the neostriatum and 
globus pallidus exert a GABA-mediated,  postsynaptic inhibition upon the neurons 
of  the substantia nigra. These findings provide another example in the vertebrate 

central nervous system where Golgi I projection neurons are inhibitory and use 
GABA as their neurotransmitter.  

INTRODUCTION 

The substantia nigra contains high levels of  both ~,-aminobutyric acid (GABA) 
and its synthesizing enzyme, glutamate decarboxylase (GAD,  EC 4.1.1.15) 5,6,22. 
Recent experimental studies have suggested that most of  the G A D  and GABA 

* A preliminary report of this work was presented at the 55th Annual Meeting of the Association 
for Research on Nervous and Mental Diseases on the subject of the Basal Ganglia. 
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within the substantia nigra is contained in the axon terminals of the neurons that 
give rise to the striatonigralS,13,15, 31 and the pallidonigraP 7,1s pathways. In these 
studies, parts of the basal ganglia were ablated or the striatonigral pathway was 
interrupted, and consequently the quantities of GAD and GABA in the substantia 
nigra were observed to decrease substantially. Electron microscopic studies of de- 
generation following ablation of the neostriatum in rats al, cats1°, 14 and monkeys 29 
have demonstrated the location, morphology and relative number of axon terminals 
in the substantia nigra which are associated with the striatonigral pathway. Also, the 
location and morphology of axon terminals arising from the pallidonigral pathway 
in rats have been described in electron microscopic autoradiographs following an 
injection of tritiated leucine into the globus pallidusaL In addition, physiological 
studies have shown that stimulation of the caudate nucleus produces an inhibition 
of neuronal firing in the substantia nigra which is blocked by picrotoxin 25,~5 and 
which can be mimicked by microiontophoretic application of GABA into the sub- 
stantia nigraL 

Thus, evidence is accumulating from a number of investigative approaches 
that the axons of the striatonigral and pallidonigral pathways monosynaptically 
inhibit neurons within the substantia nigra and that this postsynaptic inhibition is 
mediated by GABA. However, ultrastructural evidence is lacking that GABA is 
localized within axon terminals arising from the striatonigral and pallidonigral 
pathways. Although there is no method for demonstrating the location of endogenous 
GABA with ultrastructural techniques, it is possible to localize the GABA synthetic 
enzyme, GAD, at the synaptic level using immunocytochemical methodslg.20, a4. 
Since the regional activity of GAD in the central nervous system is highly correlated 
with the concentration of GABA ~,9,a6 and since GAD has been demonstrated 
immunocytochemically only within specific axon terminals which are probably 
GABAergiOg,20,2s, 34, it is likely that the presence of GAD is diagnostic of GABA- 
ergic synaptic terminals. Thus, an immunocytochemical localization of GAD in the 
substantia nigra should provide information that can be correlated with the results 
of other investigators who have studied the synaptic relationships of striatal and 
pallidal axons within the substantia nigralO-a2,14, 29. Such a correlation should 
provide a strong indication as to whether or not striatonigral and pallidonigral axon 
terminals possess the enzyme required for GABA synthesis. 

METHODS AND MATERIALS 

Tissue preparation 

Adult Sprague-Dawley rats were anesthetized by intraperitoneal injections of 
chloral hydrate and were then fixed via intracardiac perfusions 24 with a solution 
containing 4 .0~  paraformaldehyde, 0.002~o CaCI2, and varying concentrations of 
glutaraldehyde (Polysciences, Washington, Pa.) in 0.12 M Millonig's phosphate 
buffer 21, at pH 7.2 and 37 °C. Animals were perfused with fixatives containing the 
following concentrations of glutaraldehyde: 0.1, 0.2, 0.4, 1.0 and 5.0 ~ .  Brains were 
dissected from the cranium the following day, and the brain stems were hemisected 
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midsagittally so that specimens from each animal could be used for both light and 
electron microscopy. The hemisected brain stems used for light microscopy were 
immersed overnight in a cryoprotectant 30~ sucrose solution. Following rapid 
freezing, transverse frozen sections of these specimens were cut at 40 #m on a cryo- 
stat 1. The matching hemisected brain stems to be used for electron microscopy 
were cut transversely at 150/~m using a Sorvall TC-2 tissue sectioner. Sections con- 
taining the substantia nigra were selected and placed in the phosphate buffer 2a. 

Immunocytochemical procedure 
The immunocytochemical procedure employed for tissue used in both light 

and electron microscopy was similar to that previously described 1,19,20,a4, except 
that a peroxidase-antiperoxidase procedure modified from that of Sternberger 30 
was used instead of a peroxidase-conjugated goat antirabbit IgG procedure. Briefly, 
sections were incubated in normal rat serum for 30 rain and then rinsed in phosphate 
buffer before being incubated for 30 rain in either rabbit anti-GAD serum or control 
rabbit serum. Following a 2.5 h buffer wash, the sections were incubated 30 rain in 
goat antirabbit serum (Antibodies, Inc., Davis, Calif.). Sections were then washed 
in buffer for 2.5 h, incubated in a peroxidase-antiperoxidase Fab complex z for 30 
rain, and washed again in buffer for 2.5 h before being reacted with 3,3'-diamino- 
benzidine.4 HCI (Sigma, St. Louis, Mo.) and H202 as described previously1,19,20, 34. 
Following the immunocytochemical reactions, the sections for light microscopy were 
poststained 30 sec in 0.1 ~ OsO4 and mounted on glass slides. The sections for elec- 
tron microscopy were incubated in the immunocytochemical reagents twice as long 
as those for light microscopy. Blocks of tissue containing the substantia nigra were 
dissected from these sections and they were postfixed in OsO4, en bloc stained in 
aqueous uranyl acetate, dehydrated and embedded as described previously19,20, 34. 

OBSERVATIONS 

Although previous immunocytochemical studies of GAD localization in the 
cerebellum, retina and spinal cord have successfully employed 0.1 ~ glutaraldehyde 
in the fixative 19,20,34, some parts of the central nervous system require greater 
concentrations ofglutaraldehyde than this in order to achieve adequate ultrastructural 
preservation. The initial experiments on the substantia nigra using 0.1 ~ glutaralde- 
hyde gave a specific localization of the GAD-positive reaction product but did not 
produce adequate ultrastructural preservation. In order to correct this defect without 
adversely affecting the specificity of the immunocytochemistry, a series of experiments 
was carried out using graded concentrations of glutaraldehyde in the perfusing solu- 
tion. Briefly, specific GAD-positive reactions were obtained in specimens perfused 
with solutions containing 0.1 ~,  0.2~o and 0.4~ glutaraldehyde. However, the spe- 
cificity of the immunocytochemistry was deficient in tissue obtained from animals 
perfused with fixatives containing 1.0~ and 5.0~ glutaraldehyde. Specimens per- 
fused with a fixative that contained 4.0 ~ paraformaidehyde and 0.4 ~ glutaraldehyde 
produced the most acceptable compromise between specific immunocytochemical 
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Fig. 1. Nissl-stained, paraffin section of the rat substantia nigra showing the cell-rich pars compacta 
(PC) and the cell-sparse, pars reticulata (PR). The basis pendunculus (BP) is subjacent to the pars 
reticulata, x 75. 
Fig. 2. Frozen section of the substantia nigra incubated in anti-GAD serum showing a dense deposition 
of reaction product in both the pars compacta and pars reticulata. Within the pars reticulata, there 
are dendritic-like processes that appear to be covered by the GAD-positive reaction product (arrows). 
The basis pedunculus (BP) is free of reaction product except for an occasional GAD-positive out- 
lining of dendritic-like processes emanating from the pars reticulata, x 75. 
Fig. 3. A frozen section of substantia nigra incubated in control rabbit serum lacks specific staining. 
The dark spherical structures are red blood cells which are stained because they possess endogenous 
peroxidase-like activity, x 75. 

s t a in ing  a n d  u l t r a s t r uc tu r a l  p r e se rva t ion .  T h e r e f o r e ,  all o f  the  resul ts  to  be p re sen t ed  

in the  f o l l o w i n g  sec t ions  were  o b t a i n e d  f r o m  these  spec imens .  

Light microscopy of GA D localization in the substantia nigra 
T h e  ra t  s ubs t an t i a  n ig ra  is subd iv ided  in to  a dor sa l  po r t i on ,  the  pars  c o m p a c t a ,  

a n d  a l a rge r  ven t r a l  p o r t i o n ,  the  pars  re t icu la ta ,  t ha t  is l oca t ed  a d j a c e n t  to  the  basis 
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Fig. 4. Semithin (I /~m) section of the pars reticulata from a slice incubated in anti-GAD serum. The 
transversely sectioned dendrites are encircled by GAD-positive puncta (arrows). Also shown are 
obliquely and longitudinally sectioned dendrites that have GAD-positive puncta along their surfaces 
(arrowheads). :< 2000. 

pedunculus (Fig. 1). The pars compacta contains most of  the neuronal somata of  the 

substantia nigra, and these somata send many of their dendrites ventrally into the 
pars reticulata3,27, 29. 

At low magnifications, frozen sections of  substantia nigra incubated in anti- 

G A D  serum showed a large amount  of  reaction product (Fig. 2). The pars compacta  
was almost completely blackened by reaction product except for sites occupied by 
neuronal somata. The deposition of  reaction product was not so ubiquitous in the 
pars reticulata, where non-stained neuropil was interspersed with stained neuropil 
in such a way as to produce a reticular pattern. This pattern is reminiscent of  that 
observed in Golgi preparations where the dendrites of nigral neurons are ensheathed 
by a plexus of  afferent fibers zg. Frozen sections of  substantia nigra that were incubated 
in the control serum showed no specific staining (Fig. 3). 

At high magnifications, the GAD-posit ive reaction product appeared as dense, 
punctate structures sharply defined against a relatively clear background in both the 
40 #m frozen sections and the semithin (1 /zm) plastic sections taken from blocks of 
tissue processed for electron microscopy. Previous studies have shown that the punctate 
appearance of GAD-posit ive reaction product is due to its concentration in certain 



Fig. 5. Electron micrograph of substantia nigra incubated in anti-GAD serum showing axon ter- 
minals filled with GAD-positive reaction product. These terminals form symmetric synapses (ar- 
rows) with a dendritic shaft. The unstained terminal contains round synaptic vesicles and forms an 
asymmetric synapse (arrowhead) with the dendritic shaft, x 67,000. 
Fig. 6. Electron micrograph of substantia nigra incubated in control rabbit serum. In contrast to 
Fig. 5, all of the axon terminals lack reaction product although they form symmetric synapses (ar- 
rows) with the dendritic shaft. × 61,000. 
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axon terminals 1,2°,34. In Fig. 4, GAD-positive puncta are shown in close apposition 
to dendritic profiles. In most instances, transversely sectioned dendritic profiles were 
completely encircled with GAD-positive puncta. Longitudinally and obliquely 
sectioned dendritic profiles also showed numerous puncta adjacent to their surfaces. 
In addition, GAD-positive puncta were found to be perisomatic in the pars compacta. 

Electron microscopy of GAD localization in the substantia nigra 
In the pars reticulata, dendritic shafts have been shown to be surrounded by 

axon terminals which form primarily symmetric synaptic junctions and contain 
pleomorphic synaptic vesicles 11 (also see Fig. 6). A similar observation has been re- 
ported in ultrastructural studies of the substantia nigra in rabbits a3, cats 2v and mon- 
keys 29. In thin sections of nigral slices incubated in anti-GAD serum, dendrites 
were surrounded by axon terminals containing GAD-positive reaction product 
(Figs. 5 and 7). This distribution coincides with the location of many of the GAD- 
positive puncta in the light microscopic preparations. 

A majority of these GAD-positive axon terminals form symmetric synaptic 
junctions with the dendritic profiles, although it is not uncommon to observe GAD- 
positive terminals forming asymmetric synaptic junctions. For example, in Fig. 7, 
there are 10 axon terminals synapsing with a dendritic shaft and 8 of these contain 
GAD-positive reaction product. One of the GAD-positive terminals forms an asym- 
metric synaptic junction exhibiting a subjunctional dense body 23. Fig. 8 shows a 
higher magnification of two GAD-positive terminals, one of which forms an asymmet- 
ric synaptic junction that also has an associated subjunctional dense body. However, 
GAD-positive terminals forming asymmetric synaptic junctions also were observed 
without an associated subjunctional dense body. An estimate of the relative propor- 
tions of GAD-positive terminals that form symmetric and asymmetric synaptic 
junctions was obtained by counting and categorizing 60 different GAD-positive 
terminals in random electron micrographs of the substantia nigra. The obtained data 
showed that about 85 ~ of the GAD-positive terminals formed symmetric synaptic 
junctions while approximately 15~ formed asymmetric synaptic junctions. These 
findings further emphasize the need for caution when speculating about functional 
aspects of synapses solely on the basis of their ultrastructural characteristics (cf. 
ref. 19). 

In accord with the light microscopic distribution of GAD-positive puncta, 
some GAD-positive axon terminals also were observed to be presynaptic to somata 
(Figs. 9 and 10). These GAD-positive terminals all formed symmetric synaptic 
junctions and were not nearly so numerous as those that were presynaptic to den- 
drites. Fig. 9 shows an axosomatic synaptic junction formed by a GAD-positive 
'bouton en passant'. This bouton is entirely filled with reaction product, including 
the thin, unmyelinated 'interterminal' part of the axon which also contains some sy- 
naptic vesicles. A similar staining of many transversely sectioned, unmyelinated 
axons was also observed, and such profiles may represent preterminal axons. 

In control sections of the substantia nigra, no GAD-positive reaction product 
was observed in axon terminals (e.g., Fig. 6) or within any other components of the 



Figs. 7 and 8. Electron micrographs of substantia nigra sections that were incubated in anti-GAD 
serum. Note the large number of GAD-positive axon terminals that synapse (arrows) with the trans- 
versely sectioned dendrite in Fig. 7. One of these GAD-positive terminals forms an asymmetric 
synaptic junction which exhibits a subjunctional dense body (arrowhead). x 41,000. 
Fig. 8 shows a higher magnification of another field where two GAD-positive terminals synapse 
with a dendritic shaft. The synaptic junction formed by the terminal on the left is asymmetric while 
that of the terminal on the right is symmetric, x 68,000. 



Figs. 9 and  10. GAD-pos i t ive  terminals  forming axosomat ic  synapses.  Fig. 9 shows a GAD-pos i t ive  
' b o u t o n  en passan t '  which forms symmetr ic  synapt ic  junc t ions  (arrows) with an adjacent  soma.  
Note that  GAD-pos i t ive  reaction product  fills the ' in ter terminal '  (asterisk) - -  as well as the terminal  

part  of  the axon.  × 30,000. In Fig. 10, there is a GAD-pos i t ive  axon  terminal  (arrows) forming 
a symmetr ic  synapt ic  junc t ion  with a cell body of  a nigral neuron.  Note  that  the two axon  terminals  
fo rming  asymmetr ic  synapt ic  junc t ions  with an adjacent  dendrit ic shaft  are not  GAD-pos i t ive  
(asterisks). × 25,000. 
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neuropil. Furthermore, sections incubated in anti-GAD serum exhibited no specific 
staining within nigral neurons. This lack of staining for GAD was anticipated since 
there is evidence that another neurotransmitter candidate, dopamine, is concentrated 
within the neurons of the substantia nigra 3,4,33. 

DISCUSSION 

The results of this study demonstrate that a large proportion of the axon ter- 
minals in the substantia nigra contain the enzyme (GAD) required for GABA 
synthesis. It is likely that many of these GAD-positive terminals arise from the 
striatonigral or pallidonigral pathways because their relative numbers, locations 
and ultrastructural featues all correspond to those terminals described in experimental 
morphological studies of these pathways 10-12,14,29. For  example, GAD-positive 
terminals and axon terminals arising from the striatonigral and pallidonigral path- 
ways both account for a substantial proportion of the axon terminals within the sub- 
stantia nigra. Also, both groups of terminals (i.e., GAD-positive ones and those 
arising from the neostriatum and the globus pallidus) appear to form the vast majority 
of axodendritic and axosomatic synapses in the substantia nigra. Finally, both 
groups of terminals most commonly form symmetric synaptic junctions, although 
both GAD-positive terminals and striatonigral terminals also form some asymmetric 
synaptic junctions with dendritic shafts. Thus, on a correlational basis, it is likely 
that many of the GAD-positive axon terminals observed in this study of the substantia 
nigra arise from neurons located in the neostriatum and the globus pallidus. 

This conclusion is consistent with those biochemical studies which have suggest- 
ed that most of the GAD and GABA within the substantia nigra is probably contained 
in the axon terminals of the neurons that give rise to the striatonigral 8,13,15,31 and the 
pallidonigraP 7,~8 pathways. Furthermore, it is also consistent with the physiological 
and pharmacological evidence that striatonigral axons exert a GABA-mediated, 
monosynaptic inhibition upon neurons of the substantia nigraT,25, 32,35. 

Generally, GABAergic inhibition has been considered to be a function of local 
circuit neurons 26. Now there is evidence for two exceptions to this generalization; 
namely, the Purkinje cells of the cerebellum 2o and the neurons in the neostriatum 
and globus pallidus that project to the substantia nigra. Thus, it may be that projec- 
tion neurons play a larger role in GABAergic inhibition within vertebrate central 
nervous systems than was thought previously. 
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