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On the Formulation of High-Frequency Dissipative
Time-Stepping Algorithms for Nonlinear Dynamics.
Part I: Low Order Methods for Two Model

Problems and Nonlinear Elastodynamics.

by
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Abstract

We present in this paper the development of a class of time-stepping algorithms for nonlinear
elastodynamics that exhibits a controllable energy dissipation in the high-frequency range, thus
allowing the elimination of the modeling/discretization errors that are known to accumulate in
this range of frequencies. To motivate and illustrate better the developments in this general case,
we present first the formulation and analysis of these methods for two simple model problems.
Namely, we consider a nonlinear elastic spring/mass system and a simplified model of thin elastic
beams. As it is discussed in detail in this paper, the conservation by the numerical algorithm of
the momenta and corresponding relative equilibria of these characteristic Hamiltonian systems
with symmetry is of the main importance. These conservation properties lead for a fixed and finite
time step to a correct qualitative picture of the phase space where the discrete dynamics takes
place, even in the presence of the desired and controlled numerical dissipation of the energy. This
situation is contrasted with traditional “dissipative” numerical schemes, which are shown through
rigorous analyses to not only loose their dissipative character in the general nonlinear range,
but also the aforementioned conservation properties, thus leading to a qualitatively distorted
approximation of the phase dynamics. The key for a successful algorithm in this context is
the incorporation of the numerical dissipation in the internal modes of the motion while not
affecting the group motions of the system. The algorithms presented in this work accomplish
these goals. The focus in this first part is given to low order methods. Representative numerical
simulations, ranging from applications in nonlinear structural dynamics to nonlinear continuum
three-dimensional elastodynamics, are presented in the context of the finite element method to
illustrate these ideas and results.

KEY WORDS: nonlinear elastodynamics; time-stepping algorithms; high-
frequency dissipation; relative equilibria; finite element method.
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1. Introduction

Traditional time-stepping algorithms for the temporal integration of the equations of
elastodynamics and structural dynamics were developed in the context of linear problems
for the most part. Hence, it is not surprising to observe that algorithms that present
excellent stability properties in the linear range lead to numerical instabilities in the general
nonlinear range. These instabilities are usually manifested by an uncontrollable growth
of the energy of the discrete system. This observation has motivated the development
of the so-called conserving schemes, that is, time-stepping algorithms that conserve the
energy and momentum for this general class of Hamiltonian systems with symmetry. Early
examples of these methods can be found in LABUDDE & GREENSPAN [1976] and HUGHES
et al [1978], consisting basically of projection strategies imposing these conservation laws.
We can find in the more recent literature a strong interest in the development of time-
stepping algorithms with these conservation laws built in. Representative examples are
the works of SIMO & TARNOW [1992], CRISFIELD & SHI [1994] and GONZALEZ & SIMO
[1995], among others. We also refer to KUHL & RAMM [1996] for a recent consideration
of projection strategies. Applications to multi-body elastic systems, that is, with a focus
on the conservative approximation of the contact interactions, can be found developed in
ARMERO & PETOCZ [1996,97], and references therein.

Although the conservation of the physical energy is an interesting property for the
numerical scheme to have, the need for the introduction of numerical dissipation in the
resolution of the high-frequency range is commonly recognized. This need arises as a direct
consequence of the error accumulated in this range of frequencies, because of the physical
model (e.g., constrained systems modeled through a penalty formulation) or the spatial
discretization in infinite-dimensional continuum systems. In this way, the formulation of
numerical algorithms that exhibit this numerical dissipation in the high-frequency range
can be found developed in detail for linear problems. A characteristic example of these
methods is the so-called HHT a-method presented in HILBER et al [1977]; we refer to
HuUGHES [1987] for a complete account of these ideas for linear elastodynamics.

The lack of the dissipative character of these classical “dissipative” schemes in non-
linear problems can be found documented in the literature; see e.g. ARMERO & PETOCZ
[1996] and KUHL & CRISFIELD [1997], among others. The need for new time-stepping
algorithms that exhibit these dissipative properties in the fully nonlinear range is therefore
clear. Recent examples of algorithms developed to this purpose can be found in BAUCHAU
& THERON [1996] and BOTASSO & BORRI [1998], where methods based on discontinuous
Galerkin and Runge-Kutta approaches can be found applied to the integration of beam
models. Even though high-order schemes have been proposed in these references, these ap-
proaches seem to apply to particular cases only, usually involving quadratic potentials and
quadratic strain measures. Furthermore, schemes proposed in this framework do not allow
a direct control of the amount of the numerical dissipation introduced in the simulations.
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Motivated by the need of this fully controllable character of the numerical dissipation,
we presented in ARMERO & PETOCZ [1996] a simple modification of conserving schemes
for contact problems that leads to the introduction of numerical dissipation in the sim-
ulation of dynamic contact/impact of solids. These and additional ideas have been later
explored in KUHL & CRISFIELD [1997] and CRISFIELD et al [1997] for general nonlinear
elastodynamics and nonlinear beams. These schemes, however, do not show the added
numerical dissipation in the high-frequency range when applied to the linearized problem.
We present in this paper the formulation of time-stepping schemes that introduce rigor-
ously the numerical dissipation in the high-frequency range for general nonlinear problems,
while preserving the conservation of momentum and relative equilibria associated to the
symmetries of the dynamical system.

A symmetry of a Hamiltonian system, defined by the action of a group that leaves
invariant the Hamiltonian, is known to result in a conservation law (Noether’s theorem) and
the so-called relative equilibria. These equilibria consist of trajectories of the dynamical
system generated by a fixed infinitesimal element of the group’s algebra (its linearization).
The resulting solutions of the system of equations are referred to as group motions. In
this context, a general solution can then be roughly thought as possessing a component
in a group motion and a component in the so-called reduced space of internal modes (the
phase space modulo the momentum preserving group motions). Loosely speaking, for
the problems of interest in this work where the main group of symmetries corresponds to
rotations, the group motions are rigid rotations “locked” at an equilibrium deformation
of the elastic solid, with the internal motions corresponding to internal variations of these
equilibrium configurations. We refer to ABRAHAM & MARSDEN [1978] and MARSDEN
[1992], among others, for complete details of these ideas. The need to conserve these
relative equilibria and, in particular, the need for not introducing any numerical dissipation
in the group motions is apparent. In fact, with the simple model problem of a rigid bar
modeled with a stiff spring in a finite rotation around one of its ends, it can be clearly
observed that the internal motions may even be an artifact of the modelization.

The analysis presented in this paper shows that traditional “dissipative” schemes
loose these conservation properties. The analysis considers the simple model problem of a
point mass connected to a central point with a nonlinear elastic spring and in free motion
around it. This simple example has been also considered in numerous occasions in the
past; see BATHE [1986], CRISFIELD & SHI [1994], GONZALEZ & SIMO [1996] and KUHL
& CRISFIELD [1997], among others. Our goal in the present work is to consider the axial
response of the spring as the “high frequency” component of the solution introduced in
modeling the limit case of a rigid bar (note that the axial vibration is the only natural
frequency introduced in the physical system). In this context, we analyze completely the
properties of the traditional “dissipative” schemes (HHT, Newmark and particular cases
of them). A characterization of the relative equilibria obtained with the midpoint rule
and energy-momentum conserving schemes (two momentum conserving schemes) for this
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model problem has been presented in GONZALEZ & SIMO [1996] through a complete
parametrization of the reduced space. In contrast, the approach taken here explores the
properties of the numerical approximation of the relative equilibria through the global
characterization of these solutions as group motions (rigid rotations). This alternative
approach does not need the conservation of the angular momentum by the numerical
scheme, nor a complex parametrization of the reduced space. In addition, this approach
allows also to characterize completely the relative equilibria in the general context of
nonlinear continuum elastodynamics, as it is pursued herein.

The lack of a dissipative scheme in the high-frequency range that conserves at the
same time the momentum and the relative equilibria of the exact dynamical system is con-
cluded after these analyses. We then propose a simple modification of conserving schemes
that accomplishes these properties in a fully controllable fashion. This control is illustrated
with a closed-form relation between the dissipation numerical parameters and the spectral
radius at infinity for an one-dimensional linear oscillator. We refer to the new method as
the EDMC-1 scheme, which stands for “energy dissipative, momentum conserving” first
order scheme. The proposed time-stepping algorithm is shown to introduce the numerical
dissipation only in the internal motions, leading to the exact relative equilibria in the long-
term. We focus in this first part of the series on the development and complete illustration
of these ideas in several characteristic problems of nonlinear dynamics, including their
treatment by traditional numerical schemes as indicated above. In this way, the methods
considered herein are only first order accurate in time, degenerating to second order accu-
rate conserving schemes along the trajectories of relative equilibria. First order methods
are of practical interest, especially in problems where one is interested in the simulation of
the relative equilibria. The forthcoming second part of this series addresses the extension
of these ideas to the development of high-order methods exhibiting the same conserva-
tion/dissipation properties. The added complexity of the resulting schemes, as well as the
need for complete analyses of their accuracy properties (including spectral analyses in the
linear range), deserves this separate treatment.

The new dissipative schemes consist of a modified stress formula together with a mod-
ified dynamic equation relating displacements and velocities. To illustrate the flexibility
of these ideas, and before considering the general system of continuum nonlinear elastody-
namics, we develop dissipative schemes for a simplified model of thin beams, the second
model problem. For the sake of simplicity, we consider a system of masses subjected
to a system of internal forces arising from axial and bending contributions of nonlinear
hyperelastic springs connecting them. In this very simple setting, we can illustrate the
introduction of the numerical dissipation through the axial part of the problem, while
maintaining conservative the approximation of the bending contributions. This strategy
is shown to be very effective in arriving to robust numerical schemes, avoiding the high
frequency response associated to the sudden changes of the axial response in typical sys-
tems of nonlinear structural dynamics, as it has been observed to lead to difficulties in
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non-dissipative schemes (see, e.g., CARDONA & GERARDIN [1988]). These ideas extrap-
olate to the more general case of geometrically exact theories of rods and shells with the
added rotational updates. We plan to address these cases in forthcoming publications.

An outline of the rest of the paper is as follows. Section 2 describes in detail the first
model problem considered in this work, consisting of the aforementioned nonlinear elastic
spring/mass system. In particular, we include details of the variational characterization of
the relative equilibria in this simple mechanical Hamiltonian system, as it is of the interest
in the following numerical analysis. This analysis is undertaken in Section 3. More specif-
ically, Section 3.1 considers some existing time-stepping algorithms and summarizes their
conservation/dissipation properties in the general setting presented in the previous sec-
tions. Details of these analyses can be found in Appendix I. The formulation and analysis
of the new dissipative EDMC-1 scheme is presented in Section 3.2. Representative nu-
merical simulations illustrating these different results are presented in Section 3.3 for this
first model problem. Next, Section 4 develops these ideas for the aforementioned simplified
model of thin beams, including complete details of the formulation of the newly proposed
schemes and representative numerical simulations in Section 4.3. Finally, Section 5 illus-
trates the formulation and analyses of these methods in the general setting of nonlinear
continuum elastodynamics. Concluding remarks can be found in Section 6.

2. Model Problem I: a Nonlinear Elastic Spring/Mass System

We consider in this section the model problem of a nonlinear elastic spring fixed at
one end with a mass at the opposite end in a force free motion. For large values of the
stiffness of the spring, this system can be understood as a penalty regularization of a
rigid bar rotating around its end. In this simple context, the high-frequency introduced
by the numerical approximation becomes clear. In addition, this simple setting allows to
characterize many of the numerical properties of the time-stepping algorithms of interest
in this work.

We describe in this section in relatively high level of detail the different properties of
the dynamics of the problem under consideration. Our main motivation is the complete
definition of the different concepts and tools of analysis employed in the numerical analyses
presented in the forthcoming sections. To this purpose, Section 2.1 defines the governing
equation of this model problem, with a complete summary of the conservation properties
of the resulting Hamiltonian system described in Section 2.2. The material presented in
this section is a straightforward application of the general theoretical results that can be
found in many textbook on geometric mechanics and symmetry; we refer to ABRAHAM &
MARSDEN [1978], MARSDEN [1992] and MARSDEN & RATIU [1994] for complete details
and further developments and proofs of many of the statements presented herein.
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T = R’ K— o0 T = R?

T T ,,

FIGURE 2.1. Model problem: nonlinear elastic spring/mass system.
Planar definition of the problem under investigation. The case of a
rigid bar ||@(t)|| = lo Vt is recovered in the limit £ — oc.

2.1. Problem definition

Figure 2.1 depicts the problem defined by a nonlinear spring fixed at the end O with
a mass m > 0 concentrated at the opposite end. For the force-free motion considered
herein, the nonlinear oscillation and finite rotation (around O) of the mass takes place in
a plane IT~R?. The state of the system can then be by the phase space P = R? /0 x R?,
consisting of the pairs (g,p) € P with the position vector g € Q := R?/0 of the mass m
with respect to O and its linear momentum p € TéQ =R2.

With this notation at hand, the motion of the mass m (that is, the functions (g(t), p(t)) €
P of the time ¢t € R™) is defined by the simple mechanical Hamiltonian system

. OH .

q= ‘5‘5 =m " p,

p= _OH _ v L 21
oq lqll ’

with the time derivatives () and the length of the spring ! := ||q|| = /g - q for the standard
Euclidean inner product and corresponding norm in R%. Equation (2.1) considers the

Hamiltonian

H(g,p)=gm™' n*+V (1), (2:2)

|
K(m)

for the kinetic energy K (m) depending on 7 := ||p||, and the potential V' (I) (with derivative
denoted by V') modeling the hyperelastic response of the spring (resulting in the internal
force fi. :==V'(l) q/||q|| in the spring, as it appears in (2.1)2). The numerical simulations
presented in Section 3.3 consider the particular case given by

Vi)=1k (1-1)%, Lo (23)
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for a spring stiffness parameter x. Note that I does not define a quadratic function of the
unknown vector g. No additional external forces are assumed in (2.1). The nonlinear first
order system of ordinary equations (2.1) is supplemented by the initial conditions at ¢t = 0

q0)=¢g, and p(0)=p,. (2.4)

The velocity v of the mass m is recovered as v = m™1p.

We observe that the nonlinearity of the dynamical problem under consideration stems
from the nonlinear relation of the internal force vector in terms of the unknown vector g
(material nonlinearity) and the finite rotation of the mass m around the center O (geometric
nonlinearity). In this way, this model problem exhibits the basic nonlinearities character-
istic of the nonlinear elastodynamic problem of interest in this work and considered in
Section 5. In fact, the characteristic error introduced in the high-frequency spectrum in
this infinite dimensional context by typical spatial discretizations can be modeled in the
simple model example presented in this section by the consideration of the limit case of a
rigid bar given by the DAE system

g=m-lp,
15 = —fbar _q_ ) (2.5)
llall
g9(q): =g -lo=0,

for the unknown internal force magnitude fp,, in the bar, the Lagrange multiplier imposing
the holonomic constraint (2.5)3 of constant length of the spring to its initial value [, = ||go||.

Introducing the structure matrix Tin R?2, given by
=~ 0 -1
.]I - [1 O ] ? (2'6)

in a Cartesian basis {e;, ez} of IT~~R?, the exact solution of the system of equations (2.5)
is expressed as

q(t) = exp(t £, j) o and p(t)=m 2, 7 q(t) = exp(t 2, j) Do » (2.7)

for the angular velocity §2, given by

2, =I5 po for 7, :=mlg>0 and :=po-:lf q , (2.8)

the inertia Z, and angular momentum py,, respectively. The magnitude of the internal
force in the bar is given
2 M5 _ M
fbar=ml090=ml =Iolo, o (29)

[SYX]
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as a straightforward calculation shows. We note the skew-symmetry of :]T, that is,

d-Jd=0 VdeR?, (2.10)

for later use.

The system of equations (2.1) for a 0 < kK < oo can be understood as a penalty
regularization of the constrained system (2.5), imposing the constraint (2.5)3 in the limit
Kk — 0o (see e.g. ARNOLD et al [1988], and references therein). The physically motivated
case of a convex potential V'(-) is assumed in the developments that follow, that is, we
have the relation

9 V(ll) + (1 - ’19) V(lz) - V(’l9 ll + (1 - ’19) l2) 2 0 for 9 € [0, 1] y (211)

or, equivalently V" > 0 for the case of a smooth function V(-), as considered herein.
We observe that the potential (2.3) satisfies this relation. The solution of the penalized
system (2.1) involves the rigid rotation similar to (2.7) together with the “high-frequency”
oscillation of the spring, the group and internal motions, respectively.

2.2. Symmetries: energy and momentum conservation, relative equilibria

The system of equations (2.1) is a characteristic example of a Hamiltonian system
with symmetry, leading to several conservation laws. In particular, and motivated by the
numerical analysis presented in Section 3, we have the following properties:

i. Conservation of energy. Given the autonomous character of the Hamiltonian (2.2),
we have the classical law of conservation of energy, namely,

dH O0H ., O0H

E=a_q.q+%.p
_0H OH OH 0H _
~9q Op Op O0q

0 = | H = constant | (2.12)

along the solutions (g(t),p(t)) € P of (2.1).

ii. Rotational symmetry and conservation of angular momentum. The action of the
group of rotations G := SO(2) on Q = R?/0 leads to the action on the phase space P (the
so-called cotangent lifted action) given by

(g,p) +— (Ag,Ap) VA € SO(2) and (g,p)€P. (2.13)

The invariance of the Hamiltonian (2.2) under this action, that is,

H(Aq,Ap)=H(q,p) VA€S0(2), coon (214)
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follows from the invariance of the Euclidean norm under the action of the group of ro-
tations. The dual Lie algebra of G (denoted by G*) corresponds to the linear space of
skew-symmetric matrices G* = so(2) in R%. The consideration of the canonical isomor-
phism ~ : so(2) — R given by the relation

peR — fi=pl= [2 _0“]630(2), (2.15)

leads to the identification so(2)~R. In this context, the momentum map J : P — G*
corresponding to the action (2.13) is given by

(@p)eP — J(gp)=p-JgeR. (2.16)
A simple calculation shows that along the solutions of (2.1)
- ~~ o~ o~ Vl ~
J(q,p)=p-Jd+15-JIq=m‘1p-JIp—I—lq—”q-JIq=0 (2.17)

given the skew-symmetry property (2.10). Equation (2.17) translates in the conservation
of the angular momentum

J(g,p) = constant , (2.18)

for the mechanical system under consideration.

Remark 2.1. The above developments have considered from the start the formulation
of the governing equations of the mechanical system of interest in IT~RZ%. Alternatively, we
may consider the dynamics in the general three-dimensional space through the embedding
IT C R3. Denoting the canonically embedded value § := (g,0) € R? x R~R3, we have

J(g,p)=dxp=p-Jgé.L, (2.19)

for the standard vector product x in R® and the unit vector é, perpendicular to IT in
R? (i.e., G- &, = 0 Vg € IT) with the orthonormal triad {&;,é,&, } defining the positive
orientation of R® through the standard right-hand rule. O

iii. Relative equilibria. Trajectories of the dynamical system (2.1) consisting of group
motions correspond to the so-called relative equilibria, that is, solutions of the form

Q(t) = exp(t()ej) ge , p(t) = eXp(thj) De (2'20)

for fixed 2z, := (ge,pe) € P and a fixed £2, € G (the Lie algebra of G) generating the group
motion. Note that we have the trivial identification G~G*~R, with the duality relation
given simply by the scalar product in R. We introduce the notation

Gu={Ae€G | J(Aq,Ap)=J(q,p) for (q,p)EJ“l(u)}.,A; (2.21)
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J 7 (ne) <P

G

level sets of H,,,
(H = constant) v

J 4(”@)/ Gue

FIGURE 2.2. Sketch of the reduction implied by the symmetry de-
fined by the action of G. The relative equilibria Ze = (ge, Pe) € P can
be characterized as the stationary points of the Hamiltonian H in the
reduce manifold J ~!(ue)/Gp, for the angular momentum p. at the
equilibrium.

that is, the subgroup of rotations preserving the angular momentum . For the mechani-
cal system under study in this section, we trivially have G, = G due to the commutative
character of G; this situation does not hold in the more general setting of nonlinear elas-
todynamics considered in Section 5. With this notation at hand, relative equilibria are
characterized for a given angular momentum g, by the angular velocity 2. € R and
ze € J7Y(ue)/G,., that is, in the subset J~1(u.) C P of states having the equilibrium
angular momentum ., up to rotations preserving p.. See Figure 2.2 for an illustration.

The introduction of the expressions (2.20) in the governing equations leads to the
relations 5
e =Te £2¢ , pe=m!2€jqe, and V’(le)—:r-nHeTs-=0, (2.22)
e
| ——
Vie

where we have introduced the notation le := ||ge||, the locked inertia Z, := m I2 > 0 at the
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equilibrium, and
Vo) = V(D) + L 2 (2.23)
K 2 mli2’
the Smale’s amended potential. Condition (2.22)3 corresponds to the equilibrium of the
internal force in the spring and the centrifugal force (u2/ml3). The analogy of the relations
(2.22) with the limit rigid solution (2.7)-(2.9) is to be noted: the dynamical system is said
to be “locked” at the relative equilibrium, since it corresponds to a rigid rotation at the

fixed stretching [, given by the roots of (2.22).

Equations (2.22) can be obtained as the stationary conditions of the augmented Hamil-
tonian

H, (q,p,?)=H(q,p)+ 2 (p -Jg - ,ue)

= 3lp = Pu (@7 +Viu () (2.24)
Kpe |
where
P =m I u Jg =12 Tq, (2.25)

for the locked inertia Z, = m 12 at g (with I = ||q||), as a simple calculation shows. Relative
equilibria can then be characterized as stationary points of the Hamiltonian H(g,p) in
J~1(ue) /Gy, . Note that

H,.(¢,p)=H(g,p) in J (). (2.26)

These ideas are illustrated in Figure 2.2. The dynamics in the phase space P reduce to
the dynamics in J~!(g)/G,,, which can be shown to be canonically Hamiltonian by the
classical reduction theorem (see ABRAHAM & MARSDEN [1978] or MARSDEN [1992]). The
conservation of the Hamiltonian in the reduced dynamics (that is, following the level sets
of H depicted in Figure 2.2) can be shown to lead to the formal stability of the relative
equilibria z. (in the Liapunov sense) if the Hamiltonian has a definite second variation
at ze. Given the positive definite character of K, in (2.24), one arrives at the classical
stability condition

14 >0 (2.27)

that is, the convexity of the amended potential V,,, at the equilibrium. We refer to MARs-
DEN [1992] (page (106) and SIMO et al [1991] for complete details of these considerations,
where the so-called reduced energy-rﬁomentum method is developed for the characterization
of the stability of simple Hamiltonian systems of the form (2.1). We also refer to ARNOLD
et al [1988] (page 102) for an alternative derivation.

Remark 2.2. The reduced dynamics in J~!(u.)/G,. can be constructed explicitly.
This requires, however, the construction of an appropriate coordinate system in this mani-
fold. For the case of interest, this involves the (Hamiltonian) evolution of the axial stretch
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I = ||q|| of the spring, the so-called internal motions in contrast with the group motions
given by the action of G. This is precisely the methodology considered in GONZALEZ &
S1MO [1996] for the analysis of the stability properties of the midpoint rule and an energy-
momentum conserving time-stepping algorithms applied to the system of equations (2.1).
As it can be seen in this reference, the resulting expressions must be constructed for each
considered numerical algorithm and become algebraically highly complicated even in this
simple model problem. Since the final interest in the current work is the characteriza-
tion of the conservation/dissipation properties in the general and more complex setting of
nonlinear elastodynamics, we consider the more qualitative description presented above.[]

3. Time-Stepping Algorithms for Model Problem I

We describe in this section the numerical analysis of the evolution equations (2.1) in
the qualitative picture depicted in the previous section for the continuum problem. In
particular, Section 3.1 presents the analysis of some classical schemes which motivates the
newly proposed dissipative methods presented in Section 3.2.

3.1. Existing time-stepping integration schemes

Consider a partition UN -4 [tn, tn41] of a time interval to = 0 and ¢ty = T, with a typical

time increment At = t,41 — t, (not necessarily constant). We denote by g, ~ g(t,) and
Pn = p(tn) the discrete approximations of its continuum counterparts at ¢,. With this
notation at hand, we consider the following time stepping algorithms.

i. The generalized a-method. This three-parameter family of methods generalizes the
HHT a—method of HILBER et al [1977] in a way that includes the general Newmark’s
methods as particular cases. For the evolution equations (2.1) under investigation, we
write

0 = mans1 + V' ([|gntall) ortes
”‘Jn+a||
Gnt1 = Go+ Atm~lp, + = [(1 —28)an + Z,Ban_,.l] :
Pn41 = Dn + mAt [(1 — fy)an +,'yan+1:|

where a, =~ §(t,) is the algorithmic approximation to the acceleration of the mass m at
time t,,, and

In+o = (1 — @)gn + 0Gn1 - (3.2)

The following methods are recovered as particular cases:
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Algo.1. The a-method. The widely used HHT a-methods of HILBER et al [1977] are
obtained from (3.2) with the parameters

(@, B,7) = (a, (1— %)2 (g —a)) . 07<a<l1 (3.3)

The resulting schemes define a second order accurate approximation exhibiting
high-frequency dissipation proven rigorously for the case linear elastodynamics
only.

Algo.2. A “dissipative” Newmark scheme. Newmark’s method is recovered by setting
a =1 for 0 < B,7 < 1. The particular one-parameter family of methods given
by

1<Y<SL B=(r+3)7/4 - (3.4)

defines first order accurate methods, exhibiting optimal unconditionally stability
and numerical dissipation in the high frequencies; see HUGHES [1987].

Algo.3. The trapezoidal rule. The member of Newmark’s methods defined by (e, 8,7) =
(1, %, %) corresponds to the so-called trapezoidal rule, defining a second order
method that conserves energy in the context of linear elastodynamics.

Algo.4. The midpoint rule. The combination (e, 8,7) = (3, 3,1) defines a second order
method that conserves angular momentum in the general nonlinear problem, and

energy for the case of linear elastodynamics.

ii. A discrete energy-momentum scheme (Algo.5.) A conserving approximation of
the internal force term can be accomplished with the scheme

dn+1—4qn _  _3
At Paydo
(3.5)
Pn+1 — Pn _ _V(ln+1) —V(ls) Gnt1+ @n
At ln+1 - ln ln+1 + ln ’
where l,+1 := ||@gn+1]| and I, := ||gn||. The scheme (3.5) goes back to LABUDDE &

GREENSPAN [1976] for the canonical Hamiltonian system of interest herein. The limit case
of lp4+1 — 1, in equation (3.5) is well-defined, and leads to the relation

V(ln+1) — V(ln)
ln+1 - ln

l'n+1 + l'n,

VI

) as lpy1 — 1, . (3.6)

The resulting method defines a second order approximation of the dynamics inheriting the
laws of conservation of energy (2.12) and angular momentum (2.18).
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3.1.1. Numerical analysis: summary of the results

Complete analyses of the discrete energy-momentum scheme (Algo.5.) and the mid-
point rule (Algo.4.) can be found in GONZALEZ & SIMO [1996]. These authors showed
through an explicit construction of the discrete reduced dynamical equations (see Remark
2.2.2 above) that Algo.5. inherits the same relative equilibria of the continuum problem
(defined by equations (2.22)), whereas Algo.4. was shown to possess At-dependent rel-
ative equilibria and, thus, different from its continuum counterpart. We note that both
schemes conserve the angular momentum (2.18). The unconditional spectral stability of the
relative equilibria for the discrete energy-momentum scheme Algo.5. was also concluded
in this reference, upon linearization of the discrete reduced equations.

Extending these results, we have included in Appendix I complete analyses of all
the numerical schemes (Algo.1.—5.) without the need of the construction of the reduced
dynamics. The conclusions of this analysis can be summarized as follows:

1. The only relative equilibria that the a-method Algo.1l. exhibits is given by the
trivial static equilibrium pe = 0. For sufficiently small time steps At, the discrete
solution dissipates totally to the static equilibrium: the mass stops. The numerical
simulations presented in Section 3.3 show that the unconditional dissipative character
of the method is lost, and energy growth may appear for large time steps At in the
general nonlinear range.

2. The Newmark schemes Algo.2. show the same numerical properties as discussed in
the previous item for the a-method. The lost of the unconditional dissipative character
in linear problems and the absence of non-static trivial relative equilibria is, therefore,
concluded

3. The trapezoidal rule Algo.3. does possess the same relative equilibria as the con-
tinuum problem. Along these relative equilibria (that is, when the initial conditions
correspond to a relative equilibria), the scheme does conserve energy and angular
momentum. These conservation properties do not hold, however, when starting in
a general state of the system. In this case, uncontrollable growth of energy may be
observed for large time-steps At.

4. The midpoint rule Algo.4. exhibits relative equilibria different that their continuum
counterparts (that is, At-dependent), thus confirming the analysis of GONZALEZ &
S1MO [1996] discussed above. Angular momentum is conserved but not the energy in
the general nonlinear setting, which may lead to uncontrollable growth of energy for
large time-steps At.

5. The discrete energy-momentum Algo.5. conserved energy and angular momentum
for the general nonlinear dynamic system, preserving the relative equilibria of the
continuum problem.
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3.2. A nonlinear energy decaying scheme

The results summarized in the previous section identified the absence of a scheme
exhibiting energy dissipation in the fully nonlinear range for a general potential and, more
specifically, showing the dissipation in the high frequency range. In the context discussed
in Section 2 for the model problem of interest, we consider the variations of the exact solu-
tion (2.7) of the limit rigid case as an artifact of the approximation defined by a finite value
of the stiffness parameter k. The goal is to eliminate this high-frequency of the solution,
while maintaining the different features of (2.7). To this purpose, we develop a modifi-
cation of the discrete energy-conserving scheme Algo.5. exhibiting this high-frequency
energy dissipation by construction. We emphasize again that the current problem is to
be motivated only by analog situations in the more interesting infinite dimensional case of
nonlinear elastodynamics as studied in Section 5 below.

3.2.1. Formulation of the method

A class of time-stepping algorithms that rigorously show energy decaying in the full
nonlinear case can be obtained by the following modification of the original conservative
scheme (3.5). First, we consider the generalized approximation of the derivative of the
potential

(15 336V ns) = (1= 1)V () =, V(22He)

Int1 = ln (3.7)
_ V(1) = V() + Dv

ln+1 - ln

V() ~

b

for a scalar parameter Y, , while maintaining the direction of the force to (gn+1+qn)/(ln+1+
l,) as in (3.5). The last equality in (3.7) follows from straightforward algebraic manipula-
tions for

Dy =x, (% [V(ln+1) + V(ln)] - V(l"—“z’i)) . (3.8)

The residual character of this last expression is to be noted. Expression (3.7), corresponds
then to a dissipative modification of the original momentum conserving approximation for

see Section 3.2.2 below for details. Property (3.9) applies to the case of interest for x, > 0

given the assumed convexity (2.11) of V(-); see Remark 3.1.2 below otherwise. For the
particular potential (2.3), expression (3.7) reduces to

1
V() ~ k [19 Insr+ (1 —0) L, — zo] for 9:=%(1+3%), (3.10)

reminiscent of the so-called ¥-method for linear problems; see e.g. WooD [1990]. Expres-
sion (3.10) can be found proposed originally in ARMERO & PETOCZ [1996] in the context
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of frictionless dynamic contact problems, with the quadratic potential V() corresponding
to a penalty regularization of the contact constraint in terms of the normal gap. This
expression was then employed by KUHL & CRISFIELD [1997] and CRISFIELD et al [1997] in
general continuum and beam problems. As shown in the next section, the expression pro-
posed in (3.14) preserves the dissipative properties of the scheme when applied to general
potentials.

A spectral analysis of the resulting time-stepping scheme applied to a 1D linear oscil-
lator (i.e., the linearized counterpart of (2.1) at ¢ = 0 and p = 0) shows that the above dis-
sipative approximation is not enough to introduce energy dissipation in the high-frequency
range; see Remark 3.2 below. To accomplish this goal (and guided by the aforementioned
spectral analysis) we consider the similar modification of the dynamical update equation
(3-5)1
(0 36K () = (1= ) K () — x, K(Zeptme)

K'(m)
Tn4+l — T (311)
_ K(mn41) — K(mn) + Di
B T4l — Tn ’
for a scalar parameter x,. Equation (3.11) makes use of the notation 41 := ||pn+1ll,
Tn = ||Pnl|, and
Dk =X, (% [K("rn+1) + K(vrn)] - K(“—”“;—“")) , (3.12)

which is non-negative (i.e. Dg > 0) for x, > 0 and convex kinetic energy K (-). For the
typical quadratic kinetic energy (2.2), the dynamic equation resulting of the dissipative
property (3.11) reads

Gn+1—Gn -1 ( 1 g1 — wn)
nr- h oo 1+ = — , 3.13
as a straightforward algebraic calculation shows.
The final time-stepping scheme can then be written in general form as
dn+1 — 4n —m-1 p 1+ Dk Pn+1+ Pn ,
At nt3 Tntl — Tn Tntl + Tn
(3.14)

Pry1=Pn _ _V(ns1) =V(n) +Dv Gni1 + @
At ln+1 - ln ln+1 + l'n.

I

for two dissipation functions Dy = ﬁ(wn,wnﬂ) and Dy = ’l/);(ln,ln_l.l), satisfying the
relations

DK(Wna 7r'n.+1)
Tn4+l — Tn

and
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5;(lna ln+1)

—0 as lpt1 — 1, (3.16)

ln+1 - ln
to assure the numerical consistency of the approximation (3.14). We show in Section
3.2.2 below that the general relation (3.14) exhibits energy dissipation and conservation of
momentum, under certain conditions of the different parameters. For this reason, we refer
to this algorithm as the first order energy dissipative-momentum conserving scheme or
EDMC-1 for short. The energy-momentum conserving scheme (3.5) is recovered by simply
setting x, = x, = 0.

Remarks 3.1.

1. We note that alternative expressions for the dissipation functions Dg and Dy can be
used. For example, an alternative definition of Dy in (3.8) for a smooth potential
V(+) is given by

Dy = 2 (V/(las1) = V'(ln)) (lnt1 = 1n) 20, (3.17)

or by
Dy =22 V(1) (lnsa = 1) 2 0, (3.18)

for the stretch l; at some time ¢. Both expressions (3.17) and (3.18) are non-negative
for x, > 0 and a convex potential V(-) (i.e., satisfying (2.11)). The factors used in
(3.17) and (3.18) are such that for a quadratic potential these expressions coincide
with (3.8). The consistency condition (3.15) can be easily verified for (3.17) and (3.18).

2. As a matter of fact, the dissipation functions Dy and Dk may not be necessarily
based on the real energy functions K (-) and V (-), respectively; see, in this respect, the
discussion in Section for the model problem of thin beams incorporating the numerical
dissipation through only of the potential contributions to the final response of the
dynamical system. In particular for the case of a non-convex potential V'(-) on the
strain measure [, the use of the (lower) convex envelope of V(-) (see e.g. DACOROGNA
[1989], page 35) defined by

CV=sup{g<V | g convex}, (3.19)

in the expression of the dissipation (3.8) assures the dissipative property (3.9).

3. For x, and x, constant, the above approximation is only first order accurate in time.
Second order approximations (in the sense that the truncation error is quadratic in At
as At — 0) can be easily obtained by considering x, = x, = O(wAt) for w = \/k/m.
In this case, however, the numerical properties of the scheme for a fixed and finite
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At are the same of the first order method with corresponding parameters x, and
X,- More complex alternative definitions of these numerical parameters is therefore
required. This issue is the focus of the second part of this series. O

3.2.2. Discrete conservation/dissipation properties
The numerical properties of the time-stepping algorithm (3.14) are summarized in the
following Proposition.

Proposition 3.1 The numerical scheme (3.14) possesses the following conservation/ dis-
stpation properties:

1. The angular momentum is conserved, that is,

Jn+1 = Jn . (320)

2. The total energy H satisfies the relation decreases for any At

H,.,—H,=-[Dg+ Dv] s (3.21)

Hence the scheme is unconditionally dissipative (i.e., the energy decays or is conserved
for any time step At) Dg > 0 and Dy > 0. In particular, these last two conditions
are satisfied by the definitions (3.12) and (3.8) for convez functions K(-) and V(-),
and x, > 0 and x, > 0.

3. The discrete dynamical exhibits the solutions

ge, = Ange , De, = Anpe, (3'22)

for {ge,pe} satisfying the exact equilibrium relations (2.22) and

At o = At
An+1 = An [1-[— ?.Qe :ﬂ] [1 - —5-

—~

2. j] - € S0(2), (3.23)

cay (Atﬂej)

for the arbitrary rotation A,.
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Proof: The proof of these discrete properties follows closely the counterpart proofs of the
continuum system. We have briefly:

i. Conservation of angular momentum. Multiplying equation (3.14); by :]Tpn_l_ 1, we
2
obtain

1=0, (3.24)

(qn+1 - Qn) : Jpn+2

after noting that the right-hand-side vanishes due to skew-symmetry property P 1
2

jp 1 = 0. Similarly, multiplying (3.14)5 by jqn+ 1, we have
2

n+§
(Prn+1— Pn) -an+% =0. (3.25)
Finally, combining (3.24) and (3.25), we obtain
Jn41 = Jn = Pnt1 - IGni1 — Pn - Jan
= (Prs1=Pn) Jg, 1 4P, 1T (1 -00) =0, (3.26)

after some straightforward algebraic manipulations and the use once more of the skew-
symmetry property (2.10). The conservation of the angular momentum (3.20) follows.

ii. Energy dissipation. Multiplying equation (3.14); by (Pn+1 — Pn), (3.14)2 by
(@n+1 — @n) and subtracting the resulting expressions, we obtain after some simple al-
gebraic manipulations the relation

Kn+1 -+ Vn+1 - Kn =+ Vn = - [DK + DV] (327)
N——— N——
Hn+1 Hﬂ
The decay of the energy

follows for Dg > 0 and Dy > 0. As noted in the previous section, these last two relations
follow from the convexity of the (quadratic) kinetic energy and from the assumption of a
convex potential function V'(-), respectively, with x, > 0 and x, > 0. The case of a non-
convex potential is discussed in Remark 3.1.2. The unconditional dissipative character of
the proposed scheme follows.

iii. Conservation of the relative equilibria. We first note that Dx = Dy = 0 for
an incremental rotation between {gn+1,Pn+1} and {gn,pr} like (3.22). Note that 7, =
Tn+1 = Te and l, = l,41 = le, with the limit expression (3.6) applying in this case. A
direct calculation shows that the sequence (1.2) satisfies the discrete governing equations
(3.14), after noting the algebraic relation for the Cayley transform (3.23) with 2, € R

.At -
[Ans1+ 4,]T, L (3.29)

An+1 - A, =
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if the conditions

- 2
Pe = 2.Jq. , and V() = %3 for  pe=mlZ Q2,, (3.30)
m le N~
Z.
are satisfied. We conclude again that [, = ||ge|| and 2. satisfying exactly the relations

(2.22) as in the continuum problem. The only approximation involved in the numerical
approximation reduces then to the consideration of the Cayley transform (3.23) instead of
the exponential mapping (2.20) in the symmetry group G = SO(2). As noted in Remark
1.2 of Appendix I, the resulting equations in this case coincide with the corresponding
equations of the trapezoidal rule and energy-momentum conserving scheme. The relative
equilibria characterized by (3.22), (3.23) and (3.30) correspond also then to these cases.[]

Proposition 3.1 identifies the unconditional stability of the proposed scheme under
the assumptions stated in it. Namely, we observe that the Hamiltonian H(-) of the exact
problem defines a Liapunov function of the discrete dynamical system

(gosP0) +— (@n,pn) n=0,1,2,..., (3.31)

assumed to exist (maybe imposing a restriction on At for the equations (3.14) to define
(@n+1,Pn+1) continuously in terms of (gn,pn)). That is, the exact Hamiltonian H(-)
defines a decreasing function along the flow and, as indicated in Section 2.2 for the exact
problem (independently of the actual algorithm used), H(-) exhibits a stationary point at
Ze = (ge, Pe) in I~ (e)/Gp, - Since by Proposition 3.1 the algorithm also preserves the
angular momentum J(g, p) = u, the dynamical system (3.31) does take place in J ! (u.),
that is,

(Gn,Pn) €I (pe) n=0,1,2,... (3.32)

with simply pe = J(go, Po) for the initial conditions. The stability of the relative equilibria
Ze = (ge,pe) for the discrete dynamical system (3.31) in J~1(pe)/Gp, follows then by
Liapunov theorem (see e.g. HIRSCH & SMALE [1974], page 193) when H| J-1(40)/G. =
H,, exhibits a minimum at z.. This is the same condition as for the exact continuum
system and imposes the convexity of the amended potential (2.27).

We note that for the particular case (2.3), we have

Dy =Dy (ln,lnt1) <0  for lnyy #ln, (3.33)

and similarly for Dg in terms of the quadratic kinetic energy. We also note that if
llgnll = llgn+1ll, then g, and g,4; define the same element of J~(u.)/G,, (that is,
there is a rotation relating both). Therefore, the qualitative picture in J~(ue)/G,, with
a stable relative equilibria z. attracting asymptotically the trajectories of the discrete dy-
namical system (3.31) becomes clear. See Figure 3.1 for an illustration. Following-a similar
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I (ue) <P

GpZe

G. IS discrete
e | [ traj
zjectory

level sets of H,, v

(H = constant) Ze

T (1) / Gy,

FIGURE 3.1. Sketch of the discrete dynamics induced by the nu-
merical scheme. High-frequency energy dissipation is introduced in the
internal motions, while maintaining a second order approximation of
the group motions of the relative equilibria.

argument, we also observe that for the case that the exact continuum system exhibits an
unstable relative equilibria at z., with H| J-1(u0)/G, not exhibiting a minimum at z., the
discrete dynamical system will exhibit the same properties for the relative equilibria.

Proposition 3.1 characterizes completely the stability properties of the resulting dis-
crete dynamical system in the fully nonlinear range. In fact, the final response is fully
depicted in Figure 3.1, where the dissipation of the internal modes in the reduced space
J~Y(ue)/Gy, is shown. The group motions are not dissipated and only approximated by
the Cayley transform (3.23) instead of the exact exponential map of (2.20). The long-term
solution of the discrete dynamical system corresponds then to a second order approxi-
mation, energy and momentum conserving approximation of the relative equilibria of the
exact problem. This situation is to be contrasted with the existing “dissipative” schemes
considered in Section 3.1, leading only at best to the static equilibrium position asymp-
totically in the long-term. As noted in the introductory Section 1, the introduction of
numerical dissipation only in the internal motions of the problem as fundamental for a
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FIGURE 3.2. Spectral radius versus non-dimensional frequency 2 =
wAt for a linear 1D oscillator and different algorithmic parameters.
The presence of high-frequency dissipation poo < 1 for x;,x, > 0 can
be observed.

good integrator in the fully nonlinear range.

Remark 3.2. As also noted in the introduction, it is crucial to assure the presence of
the energy dissipation in the high-frequency range. We evaluate this (linear) property by
performing a spectral analysis of the discrete equations for a 1D linear oscillator with a
natural frequency w (= /k/m). We refer to Part II of this series for additional details
in conjunction with high order methods. These calculations reveal the spectral radius
distribution in terms of the non-dimensional frequency (2 := wAt depicted in Figure 3.2 for
different values of the numerical parameters x, and x,. The spectral radius at infinity peo
is given by the expression

(3.34)

1-2xl 1- %XA)

= max ,
Poo <1+%x1 1+ 1x,

showing the full symmetry of the actual analysis in the parameters x, and x,. For x, # x,
a bifurcation in the high-frequency range can be observed, making optimal the consider-
ation of equal parameters x, = X,. In particular, the consideration of x, = 0 leads to
Poo = 1, thus precluding the presence in the high-frequency range. O
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Midpoint rule
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FIGURE 3.3. Nonlinear mass-spring system. Solution obtained with
the midpoint rule.

3.3. Representative numerical simulations

To illustrate the analytical results presented in the previous sections we present next
the numerical results obtained with the different time-stepping under investigation for a
particular case. We consider a spring characterized by the potential (2.3) with parameters
l, =10 and x = 15. The value of the mass mass is m = 2. The assumed initial conditions

are
a&=[0 107 and p,=[-20 0], (3.35)

leading to an initial angular momentum of u, = p, -jqo = 200 and initial energy of
H, = 100. The relative equilibrium length corresponding to the angular momentum g,,
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Energy-momentum conserving

Mass trajectory Spring length
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FIGURE 3.4. Nonlinear mass-spring system. Solution obtained with
the energy-momentum conserving scheme.

given by (2.22), is [ = 11.001377.

We run the simulations using the previously considered time-stepping algorithms with
a constant time step of At = 1 for 2,000 time steps total. Figures 3.3 to 3.7 show the results
for the midpoint rule, energy-momentum conserving scheme, “dissipative” Newmark (y =
0.611), HHT (a = 0.889) and dissipative EDMC-1 (x1 = x2 = 0.44) schemes. The spectral
radius at infinity of po, = 0.8 has been set for the last three schemes. In all cases, we plot
the trajectory of the mass, the spring’s length, angular momentum and total energy.

Figure 3.3 shows the results for the midpoint rule. We observe the well-known non-
conservation of energy and conservation of angular momentum in this nonlinear range.



On the formulation of high-frequency dissipative schemes 25

“Dissipative” Newmark

Mass trajectory Spring length
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FIGURE 3.5. Nonlinear mass-spring system. Solution obtained with
the“dissipative” Newmark scheme.

The oscillation of the spring’s length is also apparent. An increase of the time step leads
eventually to an unstable response characterized by an uncontrollable growth in the en-
ergy (see GONZALEZ & SIMO [1996]). The results obtained with the energy-momentum
conserving scheme are shown in Figure 3.4. We observe the improved energy response
given by the conservation of the total energy. However, we can still observe the presence
of “high-frequency” response in the solution as illustrated by the oscillation of the spring’s
length.

To eliminate this oscillation in the spring’s and, thus, to obtain a better approximation
of the limit rigid case, we consider two “dissipative” schemes. Figures 3.5 and 3.6 show



F. Armero & I. Romero

26

Angular momentum

10

HHT

Mass trajectory

Spring length

L
[J 200

Angular momentum

. s . L : " L
600 800 1000 1200 1400 1600 1800 2000
Time

Total energy

Energy

S0

L L
200 400

L : 1 : . L L
600 800 1000 1200 1400 1600 1800 2000

s . . " L . " L
[} 200 400 600 800 1000 1200 1400 1600
Time

.
1800 2000 (4

Time

FIGURE 3.6. Nonlinear mass-spring system. Solution obtained with

the HHT scheme.

the results for the “dissipative” Newmark and HHT schemes, both with p, = 0.8. In
both cases, we observe the elimination of the oscillation in the spring’s length after an
initial period. As shown in the analyses presented in Section 3.1.1, this dissipation comes
also with a complete dissipation of both the angular and total energy in the system. The
system tends asymptotically to the static relative equilibrium of a mass at rest. We observe
a much more rapid dissipation in the Newmark scheme, a feature that can be traced back
to the first order accuracy of this scheme in contrast of the second order HHT scheme. In
any case, the computed solutions are unacceptable when compared with the exact rigid

limit solution (2.7).
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Energy-dissipative momentum-conserving (EDMC-1)
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FIGURE 3.7. Nonlinear mass-spring system. Solution obtained with
the (energy-dissipative, momentum-conserving) scheme.

Figure 3.7 shows the results obtained with the new energy-dissipating, momentum-
conserving (EDMC-1) scheme. The conservation of the angular momentum g = pu, at all
times is verified. We can also observe the elimination of the high-frequency dissipation in
the spring’s length after an initial time period, maintaining the spring at an essentially
constant length. The long-term solution corresponds to the relative equilibrium for the
assumed angular momentum, confirming the analyses presented in Section 3.2.2. A mono-
tonic dissipation of the total energy to the equilibrium value is also observed. The spring
continues the equilibrium rigid rotation for ever, approximating closely the exact rigid limit
solution (2.7). In fact, the approximation of this limit solution is second order in time, as



F. Armero & I. Romero 28

HHT (large At)
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FIGURE 3.8. Nonlinear mass-spring system. Solution obtained with
the HHT scheme with a larger time step (At = 1.6775).

discussed in Section 3.2.2. The improved long-term response of the newly proposed scheme
in front of existing schemes is concluded.

To illustrate the lack of unconditional dissipativity in traditional “dissipative” time-
stepping schemes, we include in Figure 3.8 the results obtained with the same HHT scheme
considered before (i.e. with po, = 0.8), but with a larger time step of At = 1.6775. We
observe that, after an initial period of energy decay, the total energy starts increasing
eventually, leading to non convergence of the numerical simulation at a time of ¢ ~ 58.
The lack of dissipativity for this scheme and time step becomes evident.



___On the formulation of high-frequency dissipative schemes 29

2-node axial element 3-node bending element
1 I Y
| | /(
2186
*—p-o o= Or/z"
1 r 2 1 3

FIGURE 4.1. Model problem II: thin beams. Geometric definition of
a simple model for the simulation of the axial and bending contributions
of a thin beam.

4. Model Problem II: a Simplified Model of Thin Beams

We consider in this section a simple model of the bending of thin beams to illustrate
an additional property of the previous ideas in the development of dissipative numerical
scheme: namely, the flexibility of introducing a priori the numerical dissipation in the
desired components of the problem. The numerical model of beam bending developed in
this section considers the axial and bending contributions of the beam deformation through
the simple consideration of axial and bending springs. We plan to present the formulation
of similar schemes in the context of general geometrically exact theories of Cosserat rods
in a forthcoming publication.

4.1. A simple model of beam bending

Consider a system of np.in: point masses connected by axial and bending springs,
modeling the corresponding components of the deformation of a thin beam. The usual
assumption of neglecting the shear deformation is implied in the word “thin” (that is, of
the Euler-Bernoulli type). We consider, for simplicity, the plane case, although the devel-
opments presented herein apply to general three-dimensional problems with the addition,
if desired, of similar contributions modeling the torsion component of the beam or rod.

Figure 4.1 illustrates a typical configuration of the system of point masses m; with
corresponding position vector denoted by g;. Denoting the linear momentum of each mass
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by p;, the governing equations read

d@=m;'p;,

. TNelem (4.1)
pi=— A @+ et
e=1

(no sum in i implied) with q := {ql, Q2; -5 Anpoins }, for a set of external forces f£%* and a
system of internal forces fi(e) acting on mass m; (¢ = 1, Npoint), the latter composed by the
assembly of different neen, “elements” as described below. In particular, we consider the
contribution of 2-node axial elements modeling the stiffness of the system to stretch axially,
and of 3-node bending elements modeling the stiffness of the system to bend. To this
purpose we present next the axial and bending elements depicted in Figure 4.1 separately.

i. A 2-node axial element. Every two masses m; are assumed connected by a nonlinear
spring characterized by a potential

Vaz = Vaz (1) for l:=+r-r (4.2)

for the vector » = g, — ge, connecting nodes 1 and 2 of the axial element; see Figure
4.1. With this notation, the axial forces acting on each node are obtained through the
corresponding derivative of the potential V' (), thus leading to

52 0, V1 1 -
(e) — e1 — de, — =
az’ * { () {aqezv} la‘V{ r } (43)

aze,

as a simple calculation shows. The analogy with the developments of Section 2.1 is
apparent.

ii. A 3-node bending element. In the spirit of the simplicity of the current model
problem, we introduce torsional springs between any three different masses {qe,, Ge,, ges }
to model the bending stiffness. Denoting by ¥ the angle between the relative vectors in
such an element, we can write |

A
cosd = - for A=ry-ro and v:=Ilily, (4.4)
with
Ti:=¢qe; —qe, and lLi=+ri-7r; (i=1,2), (4.5)

following the notation of Figure 4.1. A bending potential

%end = I./';n—:n.d("g) = f/be‘mi()‘a V) A (4'6)
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is introduced. The simulations presented in Section 4.3 consider the particular potential

04 v+ A
V;)end=%0b tan2§=%0b v

for a material constant Cy. The potential (4.7) penalizes the full overlapping of the element
for ¥ — £m. The associated nodal forces are then obtained as

f(e)
bende, qul Viend o
lS:‘r)zd =9 f lszzzdez = 6‘132 Vbend ¢ = 0 Vbend ™
0, Vi —T1— T2
f zf.:r)zdes Teg " bend
+ av%end T 0 + — T2 N (4.8)
L lo
—T1 -T2

as a simple calculation shows.

Remark 4.1.

1. Equation (4.1); assumes no additional contributions to the kinetic energy of the system
but of the linear momenta p;; that is, the kinetic energy is given by

Mpoint

K(p) = > mpl®. (4.9)

i=1

This assumption accounts for neglecting any contribution arising from a rotatory
inertia. It is well-known that this lack of rotatory inertia introduces infinite phase
velocities in the high-frequency range of the bending modes of an Euler-Bernoulli
beam (see e.g. GRAFF [1975], page 181). For the problems considered in Section
4.3, typical in structural dynamics applications, this high-frequency content of the
beam’s response in bending is not manifested, allowing to simplify the forthcoming
developments.

2. The system of equations (4.1) defines also a Hamiltonian system with the conservation
property
H(q,p) = K(p) +Z [V(e)(q + (:,Zd(Q)] = constant , (4.10)

for the case with no external loading f£* = 0 (i = 1, point), as a simple calculation
shows. Similarly, for the case of no external loading and no impose displacements
(i-e., no impose q) straightforward manipulations show the conservation laws

Npoint Mpoint

= Z p; = constant  and z p;i -Jg; = constant, (4.11)

=1
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for the linear and angular momenta, respectively. O

4.2. An unconditionally dissipative time-stepping scheme

Conservative and dissipative approximations of the axial contributions (4.3) are ob-
tained exactly in the same way as in (3.14) for the spring model problem considered in
Section 3.2. In this way, the velocity equation is approximated in time by

Qinyy — Qi - 1 Tint1 ~ Min ,
= (g ) Py P =L, (412
with m;, = ||ps,|| and 7;, ., := ||Pi,.. |- The discrete counterpart of the axial nodal forces
contributions are obtained through the expression
(e)
o é;)ez ln—l—l + ln ln+1 - ln r n+i ’
for a dissipation function Dy, defined as in (3.8). The conservation/dissipation relation
Npoint
Z fa(,:;), ’ (Qin+1 - Qin) = Va(i:n_‘-l) - Va(:lcn +Dvaz (4'14)
=1

follows easily, as it is for the relations

Npoint Npoint N
> f2=0 and > 52 I, =0, (4.15)
=1 =1

showing the momentum conservation properties of the scheme for the Neumann problem,
after following arguments similar to the ones presented in Proposition 3.1; additional details
are omitted.

The bending counterpart is constructed in terms of the two variables A and v intro-
duced in (4.4) as

T ézq)lde 11 Lo o o
(e) (e) 1 3 (V;’(ef;d) + V;z(erid)) -3 (V;)(e'r;,d) + V;;(eﬁd)) +Dy o
Foena = fbe”dez = Ant+1 — An rrl r
—ry — 1y L
flS:r)z.des n+3
1,1 0,1 1,0 0,0
" % (%Eand) + %Eand)) - % (va(end) + ‘/b(end)) +DVV
Un41 — VUn
L) " I 0
L) Ty T2 (4.16)
' T 2 ) 1
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where I; = (I;,,, +1;,)/2, and, for example,
1,1 1,0 0,1 0,0 (3,1) (3,
DV)\ =Xx [ (V;)(end) V;)(end) V;J(e'n,d) V(end)) (V eizd + V;)eizd ):l (4'17)

for a parameter x, > 0 and similarly for Dy, for a parameter x, > 0. The convexification
presented in Remark 3.1.2 is used, if required. We have made use of the notation

V;,(elmli) : Vbend(/\n+1, Vn+1) ’ VE,(el,;g) = V;)end(/\n-i-la Vn) yeo -
4.18)
i1 Ang1+ A (
V;,(eznd) = %end(%—‘n‘a Un41) 5---
in these last expressions. A simple calculation leads to the relation
Npoint 0.0
1,1 ,
Z flfzr)zd (Qinsr — i) = Vb(end) - V;(end) +Dvx+Dv,, (4.19)
=1 .

showing the conservative/dissipative character of the proposed scheme. Similarly, the
momentum conserving relations

Npoint Npoint

> freng, =0 and > Frena, 3@, =0, (4.20)

follows, as it is the conservation of the corresponding relative equilibria for the Neumann
problem. The proof follows the arguments of Proposition 3.1; details are omitted.

The purpose for the consideration of this simple model problem is to illustrate the
flexibility in the introduction of the numerical dissipation in the proposed time-stepping
algorithms. As illustrated by the numerical examples presented in Section 4.3, the axial
part of the deformation leads to a high-frequency response when compared to the bending
contributions. Therefore, the introduction of the dissipation in the axial contributions
(that is, Dy, = Dy, = 0) leads to an efficient way to eliminate the problems associated to
the high-frequency range. We refer to Section 4.3 for complete details of these observations.

4.3. Representative numerical simulations

We present in this section a numerical example to illustrate the performance of the
different time-stepping algorithms considered in this work when applied to the simple model
problem of thin beams developed in the previous section. The problem is illustrated in
Figure 4.2. It consists of two rigid links connected to a thin beam modeled by three
internal equal masses my, with two additional masses m, = 10 - m; located at the ends of
the rigid links. The potential (2.3) is considered for the axial contributions whereas the
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mp = 0.2

1 1 mg = 10 - my
! ! | Kk = 500
Cy = 10

o

F() |

25 +

[ (] .
Y -

]
0.25 050 t

FIGURE 4.2. Thin beams: problem definition. A thin beam is at-
tached to two rigid links in the configuration shown in the top position.
A point force is applied downwards to the right end of the beam for
an initial interval of ¢ = 0.50. Different positions of the deformed
configurations afterwards are shown in the figure as obtained by the
EDMC-1 scheme.

bending potential (4.7) is considered for the bending contributions; the assumed stiffness
parameters k£ and Cp are included in Figure 4.2. The two connections between the beam
and the two rigid links are pinned (i.e. no bending stiffness). An initial triangular force
pulse

100 ¢, 0<t<0.25,
F(t)={50-100¢, 0.25<t<0.50, (4.21)
0, t>0.50,

is applied as shown in this figure. The rigid character of the two links is imposed by a
standard augmented Lagrangian scheme based again on the penalty potential (2.3).

After the application of the load (4.21) the system evolves such that, as shown in the
numerical simulations presented below, the beam oscillates in the low bending modes with
sudden axial forces appearing when the elements modeling the beam are aligned due to
the sudden change of axial stiffness. Note also the large masses at the beam’s ends. The
high-frequency content of this sudden forces introduces significant difficulties for the time-
stepping algorithms not exhibiting a high-frequency energy dissipation, an observation
that can be traced back to CARDONA & GERARDIN [1988]. We also refer to BAUCHAU &
THERON [1996] for a similar problem. The example presented herein has the advantage of
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Midpoint rule

FIGURE 4.3. Thin beams. Solution obtained with the midpoint rule.
Left column: Total energy (—) = kinetic (—) + potential (—) en-
ergies. Right column: axial (—) + bending (—) energies = potential
energy.

exhibiting repeated aligned states thus building the high-frequency content in the solution.

Figures 4.3 and 4.4 depict the results for different time-stepping algorithms. Specif-
ically, the energy evolution obtained by the midpoint rule, energy-momentum conserving
and HHT schemes are presented. The left column in these figures shows the evolution of
the kinetic and potential energies, and their sum, the total energy. The right column shows
the evolution of the axial and bending potential energies, which add to the total potential
energy shown in the left column. All the simulations are run with a constant time step
At = 0.05.

Figure 4.3 includes the solution obtained with the midpoint rule. As depicted in
this figure, the numerical simulation explodes after a relative short time interval. It is
clear from this figure that the failure in this case is associated to an unbounded energy
growth, and more specifically due to an unbounded growth of the axial energy. Figure
4.5 shows the evolution of the norm of the acceleration of the middle node of the beam.
The uncontrollable growth of this quantity is evident.

The results for the energy-momentum conserving schemes are presented in Figure 4.4.
The conservation of the total energy after the initial interval of application of the load is
apparent in this case. The plot of the axial and bending energies illustrates clearly the
oscillation of the beam between states of high energy content in its axial component. The
simulation, however, stops for the given time step at one of these spikes in the axial at
(t = 4.2). The Newton-Raphson scheme used to solve the incremental problem ceases
to converge. Even though a reduction of the time step may possibly lead to converge,
this response illustrates the difficulty in handling the incremental process by time-stepping
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-momentum conserving scheme
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Right column: axial (—) +

Comparison of different numerical
bending (—) energies = potential energy.

Thin beams.
schemes for a model problem. Left column: Total energy (—) = ki-
) energies.

netic (—) + potential (

FIGURE 4.4.



On the formulation of high-frequency dissipative schemes 37

Midpoint rule Energy-momentum conserving
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FIGURE 4.5. Thin beams. Evolution of the norm of the acceleration
in the middle node of the beam obtained with different time-stepping
schemes.

algorithms not exhibiting high frequency dissipation (in the current case, exhibiting a
double unit root at infinite frequency), besides the possible consequences in the dynamic
response of the algorithm in time. The solution obtained in the time step previous to this
lack of convergence is shown in Figure 4.6.a. It clearly shows the aligned configuration of
the beam, leading to the sudden increase in the axial stiffness as described above. Further
proof of the dynamic character of the observed instability is given by the uncontrollable
growth of the acceleration in the later stages of the simulation shown in Figure 4.5. The
norm of the acceleration of the middle node in the beam is depicted versus time. This
lack of control of the acceleration is characteristic in the performance of time-stepping
algorithms not exhibiting dissipative properties in the high-frequency; see e.g. SIMO et al
[1995].
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Energy-momentum conserving HHT
(t =4.2) (t =9.7)
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FIGURE 4.6. Thin beams. Last converged solutions obtained with
the HHT and energy-momentum conserving schemes.

Figure 4.4 also shows the results for the HHT scheme. A large value of po = 0.9 for
the spectral radius at infinity is considered. The resulting evolution of the total energy
clearly depicts an overall energy decay (not monotonic) in the early stages of the simula-
tion. However, this situation changes at a certain instant during the computation with an
increase of the energy (even over the initial energy level), leading eventually to the stopping
of the simulation for the considered time step. The lack of the unconditional dissipative
properties of the scheme in the nonlinear range are evident, in contrast with its well-known
stability in the linear range. The growth in the acceleration can also be observed in Figure
4.5, starting during the stages where an increase of the energy is observed. Figure 4.6.b
shows the final converged solution before the stop of the calculation. The large content of
axial energy is evident.

Figure 4.4 depicts also the solution obtained with the dissipative EDMC-1 scheme. A
value of x, = x, = 0.01 is assumed for the axial terms, leading to the same spectral radius
at infinity of po, = 0.9 for these contributions as assumed previously for the HHT scheme.
The monotonic decay of the total energy can be observed in this figure, passing the time
steps where both the energy-momentum conserving and HHT schemes led to a lack of
convergence. We have not observe any problem with the convergence in this simulation.
We can also observe in Figure 4.4 the elimination of high-frequency in the evolution of the
axial energy for this case when compared with the original energy-momentum conserving
scheme at the stages right before the latter scheme failed to converge. The control of the
evolution of the acceleration during these stages is also apparent in Figure 4.5. We conclude
that the numerical scheme is able to handle better the sudden changes of axial stiffness,
and its associated high-frequency content, thanks to this added numerical high-frequency
dissipation.
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time. Solution obtained with the new EDMC-1 scheme.
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5. Extensions to Nonlinear Elastodynamics

We present in this section the extension of the previous developments to the gen-
eral case of nonlinear elastodynamics. To this purpose, we present in Section 5.1 a brief
description of the governing equations and the dynamical properties of interest. After de-
scribing in Section 5.2 the ideas and analyses presented in the previous sections for the two
considered model problems to the problem of interest in this section, we describe in Sec-
tion 5.3 two representative numerical simulations illustrating the properties of the newly
developed time-stepping schemes.

5.1. The governing equations

We denote by ¢ = @¢(X,t) the deformation of a solid body B C R™™ (ngjy, = 1,2 or
3) with material particles X € B, and by p = p(X, t) the corresponding linear momentum
density. The infinite-dimensional system of nonlinear elastodynamics can then be written
as

e=p;'p,

_ 5.1
/ﬁ-d(de-I-/S:FTGRAD(&p)dB=/poB~5(,odB+/T-&pd[’, 61)
B B B B

for all admissible variations d¢ € V, that is, the space of variations satisfying homogeneous
essential boundary conditions d¢p = 0 on 9, B (the part of the boundary with imposed
deformations), as usual. The standard notation for the reference density of the solid
Po > 0, the deformation gradient F' := GRAD ¢, the second Piola-Kirchhoff stress tensor
S, the external body force B, and imposed tractions T on 878 has been employed in
(5.1). The case of interest corresponds to an hyperelastic solid characterized by a stored
energy function W = W (C), with C := FTF (by frame indifference), and the stress-strain

relation
ow

S=2—. 5.2

5C (5.2)
Equation (5.1)3 has been written in weak form given our interest to develop a finite element
implementation of the resulting methods.

The equations (5.1) define an infinite dimensional Hamiltonian system, exhibiting in
particular the classical law of conservation of energy

o) = [ 40 Il dB+ [ W(C(e) dB= constant,  (53)

in the special case of a Neumann problem (that is, B =T = 0 and 8,8 = @). Similarly
in this case, the symmetry of the Hamiltonian (5.3) under rigid body motions, consisting
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of rigid translations and rigid rotations (G = R™¥™ x SO(ng4im) in the notation of Section
2.2 above), leads to the conservation laws of the associated linear and angular momenta

l :=/ p dB = constant and J = / ¢ X p dB = constant , (5.4)
B B

for the cross product x of two vectors in R® (or its corresponding embedding in lower
dimensions, as employed in the previous sections; see Remark 2.1).

The presence of these symmetries lead to the existence of the associated relative
equilibria characterized by the equilibrium deformation ¢, (up to a rigid body motion),
for the equilibrium angular velocity 2. and translational velocity v.. The equilibrium
trajectories @et(X,t) are generated by the infinitesimal rigid motion corresponding to 2,
and v, that is, they are the solutions of the first order ordinary differential equation

Sbet = £2, x Pet + Ve ( =  Pet = Po [Qe X Pet + ve]) s (5-5)

with, say, @e:(X,0) = pe(X) VX € B. The integration of (5.5) leads to the solutions

Pet(X,t) = exp [tf)e] Pe(X) + u(t) for w(t):= (/Ot exp [nf)e] dn) Ve, (5.6)

consisting of a rigid translation and a rigid rotation with constant axial vector §2. (with
2. denoting the corresponding skew tensor). Carrying on the time integration in (5.6)
leads to the alternative closed-form expression

1 R ' t
u(t) = W (1 — exp [tﬂe]) R X Ve + W (2¢ - ve) 2,

with the well-defined limit u.(t) = vt for ||£2¢]] — 0. Again, the above solutions fix
the arbitrary superposed rigid body motion by assuming, without loss of generality, that

Pet(X,0) = pe(X).

Inserting the expression (5.6) in (5.1), we obtain the weak equation
/ S(pe) : FT GraD(6¢p) dB = / PoS2e X [£2¢ X pe + V] - dp dB, (5.7)
B B

characterizing the relative equilibria. The weak equation (5.7) is to be understood for all
variations d¢ € V/G, ,., that is, and following the notation introduced in Section 2.2, up
to rigid body motions preserving the linear and angular momenta, l. and . respectively.
Using the relations (5.4) with (5.5), we obtain the following equilibrium relations for these

momenta
le=M [ve + £2. x go,(f)] and He = Iéc) .+ <p,(f) xle . (5.8)
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with £2, x I = 0 and 2, x I3 2, = 0 (i.e. §2. is an eigenvector of the locked inertia Z(° ))
for the total mass M = [, p, dB, the position of the center of mass cpe = (f5 PopedB)/M,
and the locked inertia tensor at equilibrium

7 = /B lleel?1 = e ® 0] dB-M [lle@P1-eP @ 6] . (59)

We refer to SIMO et al [1991] for complete details. In particular, all the arguments char-
acterizing these solutions as the stationary points of the corresponding augmented Hamil-
tonian, exactly as for the simple model considered in Section 2, can be found in this
reference. From a physical point of view, we can observe that (5.7) can be understood as
the equilibrium of the solid under the action of the centrifugal force associated to the rigid
motion.

5.2. An energy decaying scheme

The developments presented in the previous sections for the two model problems
considered then translate directly to the system (5.1) of nonlinear elastodynamics. In the
context of the finite element method, the resulting scheme reads

A _ A 4
xh,, — (1+—X lvasall = llvn “) vh, (A=1,...,%00de), (5.10)

At 47 Nlogpall + o2l :
My, ”"“ / Bl,,S5dB ~ fleaty =0, (5.11)
f(mi)

for a typical spatial finite element discretization involving the nodal positions (and corre-
sponding nodal displacements) =4 = @(X4,t,) = X4 + d4 (A = 1,7,04), and nodal
velocities v := {v!,...,v™mode} and the linearized strain operator B, +1 defined by the

relation
B,,10d:= F;;’+% GRAD(d¢) , (5.12)

for an admissible variation d¢ and its corresponding nodal values dd. The stress S in
(5.11) is given by the relation

DW C'n+1 - Cn
||Cn+1 - Cn“ JlCn+1 - CnlL ’

=N

S= Scons + 2

(5.13)

for the Euclidean norm of a rank-two tensor ||C||? := C;;C;; and for a conserving approx-
imation Scons of the stress, that is, satisfying the relation

Seons : 1 (Cny1 — Cn) = W(Cry1) — W(Ch) . . (5.14)
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The simulations presented in Section 5.3 consider the particular expression

_ W(C'n+1) - W(Cn) C'n+1 + Cn
Scons =2 ”Cn+1 — Cn” N +2 [I N® N] aCW( 5 ) B (5.15)
with the well-defined limit
Scons = 2 aCW(Mﬁ) for C, = Cn+1 y (5.16)

2

first proposed in SIMO & GONZALEZ [1996], where IN has been defined in (5.13). The
dissipation function Dy = Dw(Cy,Cpry1) is constructed using the ideas presented in
Section 2 for model problem I. In particular, the consistency condition

Dw (Cr, Cry1)

— 0 as ||Cpy1 —CLll —0, 5.17
1Cors = C. |Cnta = Gl (5:17)

is imposed. The simulations presented in Section 5.3 are based on the residual expression

Cn+1 + Cn

7 )| (5.18)

Dw = x, l:% (W(Cn+1) + W(Cn)) - W(

for a scalar parameter x,, as in model problem I. Alternative expressions following the
arguments in Remark 3.1.1 can also be considered. Finally, equation (5.11) makes use of a
lumped mass matrix Mj, (obtained, for example, by the traditional row sum). This con-
sideration allows to arrive to a nodal form of the update equation (5.11);, thus simplifying
considerably the final numerical implementation.

Remarks 5.1.

1. Formulations involving a consistent mass approximation in (5.11) are constructed as
follows. Denote by N4 the finite element shape function of node A =1,...,ny,0de, SO
the consistent mass block corresponding to two typical nodes is given by

MAB — / poNA NB dB1e Rndimxndim (A, B = 1, .. -,nnode) . (519)
B

Equation (5.11); is then replaced by the relation
A A

T -
T =0y T 0 (A=1 nmoae) (5.20)

where the nodal vectors g4, € R™¥™ are the solution of the system of equations

1 lvnsall = |lvnll
MypgE . == N dB . 5.21
AB9diss 4 X2 /;pa A “vn+1” ¥ “vn”vn-l-% S ( )
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Calculations similar to the ones presented in Proposition 5.1 below show the very
same conservation/dissipation properties for this consistent mass formulation, with
Dy given in this case by

1
Drc =5 % [ po(Ivmsall = o]} dB > 0, (5.22)

and the linear and angular momenta given by the continuum relations (5.4). The
resulting global character of the nodal displacement updates (5.20) by (5.21) leads
to a much more involved implementation. Efficient iterative schemes can be devised;
details are omitted. Nevertheless, the original lumped formulation (5.11) is preferred
due to this added computational cost.

2. The expression resulting of (5.13) and (5.20) for the stress tensor S can be written as

W(Cn+1) — W(Cn) + Dw

S=8+|2
“Cn+1 - Cn“

-§:N|N, (5.23)

for § := 200W ((Cn41+ Cr)/2). We note, however, that any other expression of
S consistent with the continuum stress formula (5.2) can be used. The numerical
properties described in Proposition 5.1 still hold for the resulting first order formula.

O

The proposed numerical scheme exhibit the same properties as presented in Section
3 for the simple model problem of the nonlinear spring-mass system. We summarize these
properties in the following proposition.

Proposition 5.1 The numerical scheme (5.10)-(5.11) possesses the following conser-
vation/dissipation properties for the Neumann problem of nonlinear elastodynamics (i.e.
F®) =0 and 8,B=0):

1. The discrete linear and angular momenta are conserved. That is, given My, = diag(ma)
(A = 1,npode, with myg > 0) with

Mnode Nnode
" = Mpv = Z mv4 and Jh = Z my 4 x v4 (5.24)
A=1 A=1

for the spatial nodal coordinates x4 := (X4), we have
th, =t  and Jh,=J" (5.25)

unconditionally in the time step At.
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2. The total energy

H=1v M+ / W (C) dB, (5.26)
B

satisfies the relation

Hpi1 — H, = — [Dk + Dy] for Dy := / Dw dB , (5.27)
B

with Dw given by (5.18) and

Npoint
1 < 2
Dk =3 x > ma(lvaall - o) >0, (5.28)
A=1

for x, > 0. Hence the scheme is unconditionally dissipative (i.e., the energy decays

or is conserved for any time step At) iff Dy > 0. This last inequality follows from
the convezity of W(C), or its convezification otherwise (see Remark 3.1.2).

The discrete dynamical system preserves the relative equilibria of the continuum sys-
tem. That is, the discrete relative equilibria . satisfy the finite element equation

Nnode

Z ma 2 % (2 % o + ve) +/ BTS(¢.) dB=0, (5.29)
A=1 B

the counterpart of (5.7), with the corresponding group motions (5.6) approzimated by
the discrete relations

A A
z, = Anp, +un,

(5.30)
vi=A, [£2, x o2 + v

where @2 = p(X4) and the sequences {A,}2, and {u,}2, are defined for some
initial value A, and u, (an arbitrary rigid body motion) by the relations

Any1 = Apcay(AtS2,) and  Upy1 = U, + AL A} v, (5.31)

for A% = (An + An+1) /2 and

-1
cay (Atf)e) - [1 + %ffze] [1 _ %ff)e] € 50(3), (5.32)

in the general three-dimensional case.
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Proof: The proof follows arguments similar to the ones presented in Section 3.2.2 for the
proof of Proposition 3.1. Briefly, we have:

i. Conservation of linear momentum. The evolution of the linear momentum for the
Neumann problem of interest is given by

Nnode Nnode
(-1 -a= ZmA(vﬁH—v;f)-a: Z f(‘gnt)—a
A=1 A=1
= / S : F GRAD(a) dB=0  Va € R"im (5.33)
B

after noting that d¢p = a is an admissible variation (0,8 = @). The relation (5.25);
follows.

ii. Conservation of angular momentum. The evolution of the angular momentum for
the Neumann problem of interest is given by

MNnode

h A A A A A A
(Jn_,_1 Jp)w= Z ma (:cm_% X (Vo1 — V) + (Thy1 — 7)) xvn+%) cw =
A=1
Nnode

A
= (“’:34-% X f(int)) Cw

A=1
MNnode A A
1 ”vn+1” - “vn ” A A
-+ mA(1+—x Vo1 XvS, 1w
= 47 flogall +llvdll ) 2Fz_"*s
=0
Nnode
- f(*‘z,lnt)-(wxw /s FT 1GRAD (W¢n+%) dB
A=1 >4
WCB:+§ WFn+%
- / F,.,SFL,: W dB=0 VweR"n (5.34)
Bt 2
symmetric skew

for the skew-symmetric tensor W with axial vector w. Note that dp = W:D;;l 41 is an
2
admissible variation for the Neumann problem (8,8 = @). The relation (5.25)2 follows.

iii. Energy evolution. The evolution of the kinetic energy is given by

Nnode MNnode

Kn+1 Kp= Z ma ("’ﬁlﬂ - ”rf) : ”ﬁ% = Z mA (”f’:’+1 - ”rf) ( Tnt1 — A)
A=1 A=1 .
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LT N U Y
— - - .
e ozl + lo] 2t Tl et
Dx
Nnode
= Yl (@i —20) - Dx (5.35)
A=1

after using once again (5.10) and (5.11). The energy evolution equation (5.27) follows after
noting the relation

Nnode

Z f(:‘lnt) . (a’ﬁ-e-l - ‘Bﬁ) = /B (Wpe1 — W, — Dw) dB (5.36)
A=1

after using (5.20).

iv. Relative equilibria. We first observe that the velocities (5.30); are such that
v 1|l = lv2]] (A = 1,nnode), 50 Dx = 0 Similarly, we have Cpy1 = C,, = C, for the
deformations defined by the nodal displacements (5.29), thus leading to Dy = 0 and the
limit formula (5.16). The existence of the solutions (5.30) and (5.31) satisfying (5.29) can
be verified by direct calculation after noting the relation

At R
An+1 — An = —2— (An -+ An+1) .Qe ) (537)

for the rotations (5.31);. O

5.3. Representative numerical simulations

We illustrate in this section the previous theoretical developments with two repre-
sentative examples, in plane strain and three-dimensional settings, respectively. Figure
5.1 depicts the geometric definition of the problems under consideration, consisting of a
circular cylinder and two panel arms, a configuration in satellite type structures. In both
cases, we consider a Neo-Hookean stored energy function

A
w(C) =3 log® J + 3 p(I1 —3) — plogJ (5.38)

for J = v/det C and I; = tr C. The parameters A = 3,000, x = 750 and density p, = 8.93
are assumed for the cylinder, and A = 100, x = 25 and p, = 0.5 for the arms.

In both the plane and three-dimensional cases, the solids have free boundaries and no
external body or surface loads are applied. The motion is started by imposing an initial
velocity at each node corresponding to a rotation around an axis passing through the
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40.00 20.00 40.00

Plane strain problem Three-dimensional problem

FIGURE 5.1. Nonlinear elastodynamics. Geometric definition of the
solids considered in the plane strain and three-dimensional problems,
respectively.

center of symmetry. That is, the initial nodal velocities are perpendicular to the vector
joining the nodal point to the center, with a magnitude proportional to the radius and the
initial angular velocity 2,. For the plane strain case, this rotation is plane. The initial
nodal displacements vanish. These initial conditions lead to a deformation and rotation
(tumbling in the general three-dimensional case), with the center of the solid being at rest
at all instances by symmetry.

Figures 5.2 and 5.3 depict the solution obtained by the new EDMC-1 scheme for the
plane strain case with 2, = 0.28112. The dissipation parameters of x, = x, = 0.1 have
been chosen, wit a constant time step of At = 0.3. The initial stages of the simulation are
shown in Figure 5.2, where we can clearly observe the bending and axial modes of the more
flexible arms in the initial motion. Figure 5.3 shows later stages of the same simulation.
We can observe the effective elimination of these high-frequency modes, with the solution
consisting essentially of a rigid rotation locked at an equilibrium position. This response
confirms fully the analyses presented in the previous sections for the proposed algorithms.
Indeed, Figure 5.4 includes the evolution of the angular momentum (one component in this
plane problem) and the total energy. The conservation of the former at the initial value of
p = 1.2974 - 10° is verified, with the total energy depicting also a monotonic dissipation to
the asymptotic value of Ho, = 1.5272 - 10%.

For comparison, we also run this same plane strain problem with the HHT scheme (o =
0.9), with the same constant time step of At = 0.3. Figure 5.5 shows the evolution of the
angular momentum and total energy for this case. We observe that the energy dissipation
is not monotonic, and that the angular momentum is not conserved. In fact, the angular
momentum decreases (observe the decreasing trend in the end of the assumed simulation
time, as well), leading to a slow down of the overall rotation of the solid corresponding
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t = 250

t =275

FIGURE 5.2. Plane strain simulation.

Short-term solution ob-

tained with the new energy-dissipative momentum-conserving (EDMC-

1) time-stepping scheme.
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t = 9.900-103 t = 9.925-103

t = 9.950-103 t = 9.975.103

FIGURE 5.3. Plane strain simulation. Long-term solution obtained
with the new energy-dissipative, momentum-conserving (EDMC-1)
time-stepping scheme.

to the group motions of these problems. The deficient dissipative properties of the HHT
scheme obtained in the analyses and numerical simulation of the model problems considered
previously are then also observed in this more general setting of nonlinear elastodynamics.

To illustrate more clearly the conservation of the relative equilibria by the new EDMC-
1 scheme, we obtain the deformation ¢, corresponding to the relative equilibrium by solv-
ing the weak equation (5.7) with a prescribed angular velocity (2. at equilibrium (and
ve = 0). The corresponding angular momentum p, at equilibrium is given by (5.4) and
has the value g = 1.2974 - 10° assumed in the previous simulations started away from
equilibrium. Due to the symmetry in this problem, the imposed essential boundary condi-
tions when solving (5.7) consist of fixing the central node of the cylinder, and constraining
the rotation around it. Figure 5.6 shows the resulting deformed configuration of the solid.

Once the exact solution ¢, at equilibrium is obtained, we repeat the dynamic simula-
tions with the initial nodal displacements corresponding to ¢, = . and the initial nodal
velocities corresponding to v, = f2.e3 X ., with ez being the unit vector perpendicular
to the plane of the problem (. is measured from the center of the solid). As before, no
degrees of freedom are restrained in the dynamic simulations. Therefore, the exact solution
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FIGURE 5.4. Plane strain simulation. Evolution of the angular
momentum and total energy in time along the numerical solution pre-
sented in Figures 5.2 and 5.3 obtained with the EDMC-1 scheme
(x; = x5 = 0.1). Constant time step of At = 0.3.
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FIGURE 5.5. Plane strain simulation. Evolution of the angular
momentum and total energy in time for the HHT method (a = 0.9).
Constant time step of At = 0.3.
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FIGURE 5.6. Deformed configuration corresponding to the relative
equilibrium. Points A, B, and C are marked on the horizontal symme-
try axis. These are the points whose trajectories are depicted in the
following plots.

for these initial conditions should be a uniform rotation about the center of symmetry of
the solid.

Figures 5.7 and 5.8 depict the evolution of the angular momentum and total energy
obtained with the the EDMC-1 (x, = x, = 0.1) and HHT (a = 0.9) schemes. Figure
5.9 depicts the relative errors of the radial distance to the center, that is,

I I
r_r () —r(0)
= — 5.39
prl (0) ’ ( )
for the nodes A, B, and C (see Figure 5.6). The conservation of the energy and the angular
momentum, and the error measures e give a complete idea of how close a motion is to a
relative equilibrium.

From the plots in Figures 5.7 and 5.9, we can clearly observe that the motion obtained
with the EDMC-1 scheme is a rigid rotation about the center of symmetry of the solid,
with constant energy and angular momentum. Notice also that the values of the angular
momentum and the energy during the motion are y = 1.2974-10° and H, = 1.5272-10% re-
spectively. These values correspond to the constant angular momentum g and the asymp-
totic value of the total energy H., in the original numerical simulations starting from
general initial conditions. The deformed configurations at the later stages of the simula-
tion depicted in Figure 5.3 are also to be compared with the equilibrium configuration of
Figure 5.6. These results confirm the conservation by the EDMC-1 scheme of the relative
equilibria, and the dissipation to these (non-static) equilibria in the general case, shown in
the analyses and numerical simulations for the model problems considered previously.
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FIGURE 5.7. Plane strain problem. Energy and angular momentum
with initial conditions corresponding to a relative equilibrium. EDMC-
1 method with x; = x, = 0.1. 300 time steps of size At = 0.3
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FIGURE 5.8. Plane strain problem. Energy and angular momentum
with initial conditions corresponding to a relative equilibrium. HHT
method, a = 0.9. Time steps of size At = 0.3, final time Ty = 500.
Both the energy and the angular momentum decrease in the simulation,
so the relative equilibrium can not be conserved.
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FIGURE 5.9. Relative error in distance to center of the solid of nodes
A, B and C. Left: EDMC-1 scheme (x; = x, = 0.1). Right: HHT
scheme (a = 0.9). Constant time step At = 0.3.

This situation is to be contrasted with the solutions obtained with the HHT scheme.
As shown in Figure 5.8 the angular momentum and total energy of the solid are both
dissipated even though the initial conditions correspond to the exact relative equilibrium.
The appearance of internal modes of vibration for this case is clear in the evolution of the
radial relative errors presented in Figure 5.9.

To conclude we present in Figures 5.10 and 5.11 the results obtained with the EDMC-
1 scheme for a similar problem but in general three dimensions. As in the previous plane
case, the initial conditions are given by zero nodal displacements and the nodal velocities
of a rigid rotation. The initial axis of rotation is (1,1,1) in a Cartesian coordinate system
with origin at the center of cylinder, and two orthogonal directions along the axis of the
cylinder and the middle line of one of the panels, respectively. The initial angular velocity
is £2, = 0.2. These initial conditions do not correspond to a relative equilibrium and lead
to a general motion consisting of a tumbling rotation and internal vibration modes of the
solid. In particular, the deformed configurations of Figure 5.10 clearly show the bending,
torsional and axial oscillations of the solid arms. Figure 5.11 shows the solution at a
much later time for the same numerical simulation. The progressive elimination of these
modes can be observed, without requiring the elimination of the overall rotation of the
solid. Figure 5.12 depicts the evolution of the three Cartesian components of the angular
momentum and the total energy of the solid in time. The conservation of the angular
momentum and the monotonic decay of the energy to the relative equilibria is verified.
The additional fact that these dissipative properties are totally controllable, as shown by
the analyses presented above, make the proposed time-stepping schemes very interesting
for problems involving this type of free motions.
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t=36 t=4.0 t=44

FIGURE 5.10. Three-dimensional problem. Solution obtained with
the new energy-dissipative, momentum-conserving (EDMC-1) time- ~
stepping scheme.
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FIGURE 5.11.
tion obtained with the new energy-dissipative, momentum-conserving
(EDMC-1) time-stepping scheme.

Three-dimensional problem.
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obtained with the EDMC-1 scheme.
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6. Concluding Remarks

We have presented in this paper the formulation of time-stepping algorithms that ex-
hibit numerical dissipation in the high-frequency range in the general context of nonlinear
dynamics. In particular, we have presented analyses of existing and new methods for two
simple model problems and the fully nonlinear case of three-dimensional nonlinear elasto-
dynamics. Several representative numerical simulations have been presented illustrating
the performance of the new schemes as related to the presented analyses.

As a final conclusion, we emphasize once more the importance not only of having rig-
orously proven the dissipative properties in the high-frequency range for general nonlinear
problems, but also the need for the numerical schemes to preserve the relative equilibria of
the exact system. The lack of numerical dissipation in the group motions of systems with
symmetry is of the key importance for the simulation of elastic systems in free motions.
The results presented in this first part of this work show a simple way of introducing this
dissipation, in a fully controlled manner. Even though, the resulting algorithms are only
first order accurate in time (but leading to a second order approximation of the group
motions), we believe that obtaining a correct qualitative picture of the exact dynamics
for a fixed time step, as obtained with the proposed schemes, is even a more important
property, especially after noting the qualitatively distorted picture of the phase space ob-
tained with more traditional numerical schemes, including high order schemes. Extensions
leading to higher order methods that exhibit the aforementioned conservation properties
for general problems of nonlinear elastodynamics (general potentials) and a controllable
numerical dissipation can be obtained by preserving the structure of the numerical algo-
rithms presented herein, but with high-order expressions of the dissipative contributions.
These ideas are the focus of the forthcoming second part of this work.
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Appendix I. Characterization of discrete relative equilibria

Relative equilibria of Hamiltonian systems with symmetries correspond to the tra-
jectories generated by the action of an one-parameter subgroup of the symmetry group,
the so-called group motions. For the spring-mass model problem of interest herein, these
equilibria have been characterized in Section 2.2 as the rigid rotation of the spring, with
a constant angular velocity {2, and constant stretch of the spring [. related by equation
(2.22). The goal of this appendix is to characterize the corresponding solutions of the -
discrete dynamical systems generated by typical time-stepping algorithms. We summarize
only the main ideas involved in the analysis and refer to ROMERO & ARMERO [1999] for
complete details of the derivations involved.

More specifically, we investigate the existence of discrete solutions of the form
de.y, = Age, and  pe,., = Ape, , (I.1)

for a rotation A € G = SO(2), constant for all time increments [tp,tp+1] 7 =0,1,2,.... A
constant time step At = t,4+1 — t, for all n is assumed. Denoting g. = g., and p. = pe,
(note that relative equilibria are defined up to a rotation), we conclude that for the assumed
solution

g, = A"g. and pe, = A"p, : (1.2)

{ 1gen [l = llgell =: Le ,

1Pe, || = [lPell »

for all n = 0,1,... If ¥ denotes the angle between the g, and g,; vectors, we can write

A= (cosﬂ —-sm19) ’ (L3)

sind cos?

in a Cartesian basis {e;, ea}. Without loss of generality, we consider
ge=1l.e;. (14)

The solution (I.1) defines the relative equilibria of the discrete dynamical system defined
by numerical scheme, generated by the constant rotation A € SO(2) (or alternatively by
¥ € R as defined in (1.3)).

1.1. The generalized a-method

We consider first the generalized a-method defined by equations (3.2). In this case,
the generalized midpoint vector gn+o = (1 — @)@, + @gn+1 can be written as

Gnio = G@ny1 = GAq, with G:=(1-a)AT+01, .. . (L5
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and similarly for the generalized midpoint momenta p,+o. We note that the matrix G is
not a rotation, except for @« = 0 or 1, and that it commutes with A that is, GA = AG, as
it can be easily verified from the definition (I.5)2 Introducing the definition

_ APV (gensal) _ AL V(| Ggell)
m “qen-l-a” m Ilee“

; (L6)

the evaluation of equations (3.2) leads, after some algebraic manipulations, to the relation

pe =m/At[A-1+v(: - B)G +vBAG] q., (L7)

for the linear momenta p. at equilibrium and, after using (I.4), the equation

[K,zAz + k1A + KZTAT -+ 1‘601] e =0, (18)

where we have introduced the notation

n0=1+v(%—-2,8+3d,3+7-—2a7),

n1=—2+v(—3aﬂ+,3+%+a'y), L9)

k2 =1+ afv,
kr=v[B-3)1-a)+(1-7(1-0a)] .

Relative equilibria will then exist if equation (I.8) has a solution defining ¥ and I, = ||ge||
through (1.6).

Remarks I.1.

1. The combination A = 1, v = 0 is a solution for every combination (e, 3,%). This
situation corresponds to the trivial solution with the mass at rest 4 = 0 and I, = [,
(the stress-free length of the spring). Any consistent time-stepping algorithm possesses
this solution trivially.

2. Equation (I.8) can be interpreted as the sum of four vectors e;, Ae;, A%e;, ATe; each
one scaled by a factor kg, K1, k2, kT respectively. O

We analyze next the solutions of equation (1.8) for the different time-stepping algo-
rithms identified in Section 3.
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FIGURE 1.1. HHT method. max,|cosd| for 0.2 < o < 1. If
|cos¥| < 1, we must restrict « t0 0.35 < a <1

Algo.1. The HHT-o method. The Hilber-Hughes-Taylor a-method (see HILBER et
al [1977]] corresponds to equations (3.2) with parameters

(2-a)? (3-2a)
4 72

(@, B,7) = (a, ) L 0T<a<l1, (1.10)

The values of the parameters x; are given in this case

Ko = 1+Z—a(3a2—6a+4),

Ky = -2+ Z—(—sa3+9a2 —8a+4),

(L.11)
Ky = 1—|—Z—a(2—a)2,

v
Ky = Zaz(l —-a).
The introduction of these parameters in (I.8) with A given by (1.3) leads to the system of

equations

ko cos(29) + (k1 + k) cosd + Ko, =0

Ko sin(29) + (k1 — kr) sind =0 = cosV = @2;—51— (for 9 #0),
2
(I.12)
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n,Ae,

leAzeJ

FIGURE 1.2. Sketch of relation (I.15). The sum of these three vec-
tors must vanish for the algorithm to have a discrete relative equilibria.

Figure 1.1 depicts this last relation, showing the maximum cos ¥ as a function of a. For
a given o this maximum is attained as v — oo. Furthermore, to have ’ﬂz';—:l <1 for

any value of v, we must restrict a > 0.35. Note that the HHT only considers o > 0.7.
Introducing (I.11) in (I.12); we obtain

1
kT (kT — K1) + K2(ko — K2) = 0 & Z(a -1)a?? =0, (I.13)

This equation is satisfied in three cases: v = 0 (the trivial static equilibrium), & = 1 and
a = 0. The case a = 1 corresponds to the trapezoidal rule and is analyzed below. The
case a@ = 0 is beyond the restriction (I1.10) We conclude that there is no dissipative HHT
scheme possessing a discrete relative equilibrium.

Algo.2. A “dissipative” Newmark scheme. Newmark’s method is recovered from the
general expression (3.2) with @ =1 and 0 < 3,7 < 1. The particular combination

l<y<1, B=(+13)?%/4, (1.14)

defines a one-parameter family of first-order algorithms that are unconditionally stable
and exhibit numerical dissipation in the high frequencies, for linear problems. With the
consideration of oo = 1 in (I.9), equation (I.8) reduces to

[7]2!12 + 771A + 1] e = 0 ) (115)

with
_ 2+v(z+v-28)

m=
1+v(B—v+1)

and Ne = (1+pv)

“ThG D . (1.16)
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We note that 1+ v(8 — v + 1) is always positive if 8 = (v + 3)?/4, 1 <+ < 1. Figure
1.2 depicts the relation (I.15). It becomes clear from this figure that a necessary condition
for (1.15) to have solution is that 7, = 1. Defining € = — 1 > 0, we have

1+ Bv
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5o m3 > 1 strictly for every v > 0. This implies that (I.15) does not have a solution and
hence, this dissipative family of Newmark’s method do not exhibit relative equilibria in
the problem under consideration.

Algo.3. The trapezoidal rule. The consideration of the parameter values (o, 3,7) =

(1, ;11-, %) reduces equation (I.15) to the system of equations

cos29 +ncosd = -1,
{ 7 (L18)

sin 249 + nsind =0,

in terms of the incremental angle ¥ and n = (v/2 — 2)/(1 + v/4). Equations (1.18) have
the nontrivial solution 7 = —2 cos 9. This implies that the trapezoidal rule admits discrete
relative equilibria in the problem under consideration. The corresponding p. is recovered
from (I1.7) by the relation

m ~
Pe= VY I e, (1.19)

where J has been defined in (2.16).

It is interesting to observe that the trapezoidal ezhibits the same relative equilibria as
the eract continuum problem. This statement is shown by observing first that the energy
is conserved along the solution (I.1) by (I.2). Similarly, the angular momentum at the
relative equilibrium is given by

~ m
pe = Pe - Jge = Kt\/; lg ) (1.20)

after using (1.7), and is conserved. Noting that G = 1 in this case, the definition (I1.6)

leads to .
A2 V(1)

= , I.21
trap m le ( )
so (1.20) leads to the equation in .
/ / p2
Vi (le) :==V'(le) - - ;3 =0, (1.22)

e

that is, exactly the same equation (2.22)3 as for the continuum system. We conclude that
the discrete relative equilibria of the trapezoidal rule are the exact ones, with the energy
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and angular momentum conserved along then. It is important to point out that this scheme
does not conserve energy nor the momentum from general initial conditions. Interesting
enough the algorithm still inherits the exact relative equilibria.

Algo.4. The midpoint rule. A similar calculation for the midpoint rule parameters
(o, B,7) = -21-, %, 1) shows that exactly the same system of equation (I1.18) as in the trape-
zoidal rule is obtained. We conclude then that the midpoint rule also exhibits discrete
relative equilibria, characterized also by the expressions (I.19) and (I.20). The nature of
these relative equilibria is completely different when compared with their counterpart of

the trapezoidal rule (that is, the exact ones). The difference stems from the expression

_ AR V(|Ga.l)
midp m “GQe“

= V(IGel) = £ |Gl (L.23)

characterizing the relative equilibria of the midpoint rule. The relations (1.23) are to be
contrasted with (I.21) and the exact equation (1.22). Noting that

|IGg.|| = Le 1+cosd, (I.24)

V2

and that ¥ depends of the time step At, we conclude that the relative equilibria of the
midpoint rule depend on the time step. The same conclusion, together with relation (I.23),
was obtained for this case in GONZALEZ & SIMO [1996] after a complex reduction of the
discrete dynamical system defined by the numerical algorithm to the reduced space of axial
oscillations of the spring/mass system.

Remark I.2. For the newly proposed EDMC-1 scheme (3.14), we note that for the
solution (I.1) under investigation Dy = Dk = 0, given (I.2). The scheme reduces then to
the energy-momentum scheme (3.5) along this solution, leading to a second order, energy-
momentum conserving approximation. In addition, we obtain exactly the same equations
(I.18)-(1.21) of the trapezoidal rule, as a straightforward calculation shows following the
same arguments of the previous section. Note that the expression (3.6) applies in this case,
given (I.2). We conclude that the proposed EDMC-1 scheme inherits the same relative
equilibria of the continuum system. As shown in Proposition 3.1, the corresponding group
motions are given by the Cayley transform (3.23) approximating the exponential map
(2.20). 0O



	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	



