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ABSTRACT OF THE DISSERTATION
Independent Position and Attitude Control on Multirotor Aerial Platforms
by

Lecheng Ruan
Doctor of Philosophy in Mechanical Engineering
University of California, Los Angeles, 2020
Professor Tsu-Chin Tsao, Chair

Multirotor aerial platforms have obtained growing attentions in industry and academia,
for its simplicity in mechanical structure, agility in maneuverability and ability for vertical
take-off and landing (VTOL). Conventional multirotor has underactuated dynamics, and
can not be fully controlled in 6 Degree-of-Freedom (DoF). In fact, only its three-dimensional
position and yaw angle, called the flat outputs, can be controlled independently. However, for
certain applications, such as perching on a vertical vertical wall or flying in a narrow space,
the the non-flat outputs, the roll and pitch angles, are independently specified from the
position requirements at some particular time. These tasks require the independent control
of position and attitude at least partially for certain instants, and are generally challenging

for multirotor platforms.

This dissertation addresses this issue in two aspects. Firstly, an algorithm is designed for
the conventional quadcopter platforms to generate trajectories for tasks with requirements
on both position and attitude. It is formulated as an optimization, and converted into a
series of convex problems to solve. Constraints on dynamics, space limitations, inputs and
states are explicitly included. The algorithm is verified numerically on the task of quadcopter

perching at the specified location on a vertical wall.

Secondly, a fully actuated multirotor aerial platform is proposed. Commercial quad-
copters and passive hinges are used to generate tiltable thrust vectors during flight. This

platform has a salient feature for mechanical simplicity, as it does not require additional ac-
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tuators to control the directions of thrust vectors. A controller for the proposed multirotor

platform is designed to enable independent control of position and attitude.

The proposed multirotor platform has overactuation in dynamics, which renders a redun-
dancy of 2 DoF for inputs. A new controller is proposed, under which the input allocation
scheme searches within this redundancy for smaller thrust forces required to hover at differ-
ent attitudes. The range of achievable attitudes is enlarged under this new scheme compared
with the previously proposed controller, under the same thrust saturation limit for the plat-

form actuators.

These controllers are validated with both simulation and experiments and demonstrated
by the proposed multirotor aerial platform hovering at non-horizontal attitudes, or tracking

independent trajectories for position and attitude simultaneously.
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CHAPTER 1

Introduction

1.1 Unmanned Aerial Vehicles

An Unmanned Aerial Vehicle (UAV) is defined as a powered aerial platform which does
not have a human pilot onboard. It usually flies automatically or is remotely piloted. It
is obtaining growing attentions in industry and academia, and has been widely applied in
various fields, including agriculture [TVM16], fire suppression [HSS18], surveillance [GSW18],
search and rescue[NKO17], delivery [CKC18], exploration [NJL16], mobile sensor network
[Z7717] and photography. High demands and increasing diversity in UAV market has pushed

its development and extension in different shapes, sizes and functionalities.

Popular UAV configurations include fixed-wing, helicopter and multirotor. Fixed-wing
UAV ([RTL18][PWM17][SSL17]) occupies a large portion of the current market, for its ad-
vantages of dynamic stability, high reliability, long fight duration and large load capacity.
However, the long distance required for take-off and landing, in addition to its low ma-
neuverability during flight, constrains its operation mostly within open-area, non-stopping

scenarios.

Helicopter UAV ([OOP16]|[KPJ16][WZT18]) has the abilities of vertical take-off and land-
ing(VTOL), hovering, in addition to high agility for maneuvering. While these features en-
able its operations in narrow space, the size and cost of helicopter UAV is hard to reduce

due to its high sophistication in actuation mechanism.

Multirotor UAV is actuated by the thrusts forces generated from spinning propellers,
the magnitudes of which are controlled directly with spinning speeds. This configuration

inherits the functionality of VTOL, hovering and high maneuverability from helicopter, but



has much simpler mechanism and thus more possibility for smaller size and lower cost.

1.2 Underactuation of Multirotor

Multirotor UAV has advantages in tasks which require agile operations in complicated en-
vironments. The mechanical simplicity makes it easy to build and maintain. Intensive
investigations have been conducted on its control and analysis, as surveyed in [MKC12] and
[HHM13]. Applications of multirotor UAV include aerial manipulation, inspection, mobile

network, delivery and rescue ([SNT19][LST18][KPL20][SKB16][AN19]).

Conventional multirotor is lifted with thrust forces against the air, which are generated
by the spinning propeller-motor actuators. The thrust forces are usually aligned parallelly
upwards to efficiently compensate for gravity. However, under this configuration, the actu-
ators can only provide the total thrust force at one fixed direction for one specific pose. To
provide thrust force in 3D space, the multirotor has to present different attitude. This is
called the underactuation of multirotor dynamics, which shows that its position and atti-
tude can not be controlled independently simultaneously. The motion outputs of multirotor
usually consist of a 3D position vector and a set of Euler angles, which are usually named
roll, pitch and yaw angles, to describe the orientation. In fact, it has been proved in [MK11]
that multirotor dynamics is differential flat. Only a subset of the motion outputs (the 3D

position and yaw angle, called the flat outputs) are able to be controlled independently.

However, not all applications can be satisfied with only specifications on the flat outputs.
For certain tasks, such as perching on a vertical wall [MMK12], flying in a narrow space
[PBH20] or interacting with the environment [RCS19], the the non-flat outputs, the roll and
pitch angles, are independently specified from the position constraints at some particular

time.

These tasks require the independent control of position and attitude on the multirotor,
at least at some certain time. There has been some works addressing this issue, either by
designing specific control or trajectory planning algorithms, or making mechanical modifi-

cations.



1.3 Previous Works

For tasks that require independent control of position and attitude of the multirotor aerial
platform, two categories of solutions were proposed in the previous works. One designs
control or trajectory planning algorithms under task requirements for the conventional mul-

tirotor platforms. The other made mechanical modifications to the platforms.

1.3.1 Solutions with Algorithm Design

This category of solutions design control or trajectory planning algorithms on conventional
multirotors, to meet independent requirements of position and attitude. Without the modi-
fications on mechanical structure, these solutions are more general to platforms and quicker

to realize in implementation.

It has been indicated in [MK11] that specifying position and attitude independently for
the entire flight is impractical. However, if the non-flat outputs are only partially desig-
nated, it is possible to search for a feasible trajectory whose position path complies with
the constraints of roll and pitch angles. It should be noticed that the algorithms do not
solve the underactuation problem and achieve independent control of position and attitude.
In reality, they only seek for trajectories in accordance with requirements on both in the

underactuated dynamical space of multirotors.

Not many works have successfully addressed the underactuation problem in this direc-
tion. One representative work was elaborated in [MMK12]. As fully actuated control is not
applicable in principle, this work designed five controllers, each of which only regulated a
subset of the outputs. The entire trajectory was initialized by manually design a sequence
of these controllers with proper triggers for switching. An updating policy was developed
to refine the controller parameters with errors. This algorithm has been demonstrated with
a few scenarios with requirements on both position and attitude. However, the trajectory
generation process involves intensive human efforts and intelligence, and is difficult to extend
to different tasks. The constraints of states and inputs can not be included in the planning

process and are only considered in the errors when refining the parameters.



Therefore, an algorithm which can automatically generate trajectory under explicit con-

straints can greatly reduce the design burden and increase the generality, and is thus desired.

1.3.2 Solutions with Mechanical Modification

This category of solutions make mechanical modifications based on conventional multirotor
platforms. The new platforms directly increase the actuation capability of system dynamics

in certain sense, thus attenuate the underactuation in the aforementioned tasks.

Generally, the modifications are made either by installing add-on mechanisms, or design-
ing new structures. The first type usually focuses on one specific task, such as perching on a
surface in [KMR15], [PJW18], [DM19] and [HLS19]. Additional forces are provided by the
interaction of add-on mechanisms with the environment. While simple and robust for one

specific scenario, these modifications are not flexible for different tasks.

The second type attempts to design mechanical structures with fully actuated dynamics.
The conventional multirotors can only provide total thrust force at one certain direction
without changing the attitude. These modifications use different approaches to change the
direction of the total thrust force. One group of platforms deploy propeller-motor actuators
at diverse orientations, as shown in [JVC18], [RRB15], [RMP17] and [PLA18]. The total
thrust force is the join force with components in different angles, so its direction can be
changed by the manipulation of component magnitudes. These modifications maintains the
simple mechanical structure of multirotors, but generally have larger size due to the addi-
tional propeller-motor actuators required for full actuation. Orientations of these actuators
also remains a challenging problem in research, and usually need to be changed for different

tasks for better efficiency.

The other group of structural modifications change the orientations of the propeller-
motor actuators actively, thus the direction of thrust forces, during the flight, as shown in
[RBG14], [KVE18], [GT18] and [RBF16]. Additional actuators and mechanisms are required
for this online thrust vectoring. While able to achieve full actuation with less propeller-motor

actuators and flexible to different tasks compared with the previous group of platforms, this



configuration has much more complicated mechanical structure.

Therefore, a fully actuated multirotor platform with mechanical simplicity and flexibility

regarding various scenarios is desired.

1.4 Dissertation Organization

This dissertation addresses the underactuation problem in both directions mentioned in the
previous section. The goal is to find multirotor solutions for tasks where both position and

attitude are specified.

A solution with algorithm design is proposed in Chapter 2. The overall trajectory plan-
ning process of conventional quadcopters under position and attitude requirements is formu-
lated as an optimization problem, with the inclusion of explicit state or input constraints. It
is then converted into a series of convex problems for efficient and deterministic calculation.
The algorithm is applied in a numerical example, where the quadcopter is required to perch
at a specific location on the vertical wall. The planned trajectory demonstrates that it meets

all the constraints in position and attitude.

A solution with mechanical modification is proposed in Chapter 3. It creates a mechanical
design procedure, using commercial quadcopters and passive hinges to construct multirotor
platforms with the ability of active thrust vectoring during flight. A prototype with four
tiltable thrusting actuators is constructed for demonstration. Its full actuation is dynamics

is derived.

Chapter 4 designs a control architecture to realize independent control of position and
attitude for the proposed platform. The ability is demonstrated in different flight cases with

simulation and experiments.

Chapter 5 analyzes the achievable attitude range of the proposed platform with satura-
tion consideration on quadcopter thrust forces. The overactuation in dynamics renders a
redundancy of 2 DoF in space to be explored. Therefore, a controller, which searches for

smaller thrust forces to lift and actuate the platform, is proposed. Simulation and experi-



ments verify that the achievable attitude range is enlarged by this controller compared with

Chapter 4.

The works of this dissertation are concluded in Chapter 6.



CHAPTER 2

A Convexified Trajectory Planning Algorithm for

Quadcopter with Position and Attitude Requirements

2.1 Introduction

Among multirotor aerial platforms, quadcopter is one of the most popular configurations,
as it is able to achieve smaller size compared with hexacopter ([BAB17][LPW17]) and octo-
copter ([BSF18][WHF17]) aerial platforms.

The trajectory planning techniques of quadcopter platforms have been heavily investi-
gated in previous works. The underactuation of quadcopter dynamics makes it impractical
to plan for trajectories for all six motion outputs. Generally, planning algorithms mainly
focus on the position trajectories, which are constrained with both spacial and dynamical
constraints. One typical planning process consists of two steps. At first, a geometric position
path is generated under spatial constraints, and parameterized with time. The time scale
is then updated to ensure dynamical feasibility. Examples can be found in [CYWO07] and
[HWTOS].

It was proved in [MK11] that the quadcopter dynamics is differential flat. Its flat outputs
are the 3D position and the yaw angle. Therefore, the quadcopter dynamics can be rewritten
in the flat outputs and their higher order derivatives. Another set of algorithms make use
of this property, and formulate an optimization problem under flat dynamics. Spatial and
dynamical constraints are converted into the flat space. The trajectories of four flat outputs

can be planned in these algorithms, such as [HD11], [NPL20] and [TK20].

However, if the non-flat outputs, the roll and pitch angles, also need to be specified while



planning for the flat outputs, the aforementioned algorithms do not work. One representa-
tive application under this category is to drive a quadcopter to perch at a specific location
on a vertical wall. Obviously, for this case, the terminal point of the position trajectory is
fixed at that required location, and the roll/pitch angle at this point is also determined as
the quadcopter has to perch with attitude parallel to the surface of the wall. An algorithm
was proposed in [MMK12| regarding the vertical wall perching task. Given the underactu-
ation in quadcopter dynamics, five controllers were defined, each of which only controlled
either the position or the attitude of the quadcopter. The entire perching trajectory was
manually composed by a sequence of these controllers with proper triggers defined as events
or time instants to switch from one control phase to the next. The process is simulated,
and the controller parameters were updated based on the regulation errors. This algorithm
demonstrated the success in vertical wall perching. However, the initialization of trajectory
needs to be manually designed, and there are no general rules for this process. The state

and input constraints can not be explicitly included in the planning process.

This chapter proposes a novel trajectory planning algorithm for the conventional quad-
copter platform, so that requirements on both position and attitude can be specified. The
algorithm is in an optimization form. Techniques are applied to rewrite it as a series of
convex problems, and thus can be efficiently solved with existing convex solvers such as
CVX package ([GB14][GB08]). Constraints on states and inputs are explicitly included in
the optimizations. The algorithm is demonstrated by generating a trajectory, under which

the quadcopter perches t a certain location on a vertical wall.

The rest of this chapter is organized as following. Section 2.1 reviews the conventional
quadcopter platform and its dynamics. Section 2.3 describes the perching task and shows
how it is formulated into optimization format. Section 2.4 addresses the non-convexity in
the formulation, and proposes techniques to convert it into a series of convex problems. The
algorithm is is elaborated in details in 2.5 to plan for a trajectory for the perching problem.

Section 2.6 concludes this chapter.
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Figure 2.1: A conventional quadcopter platform built in UCLA MacLab.
2.2  Quadcopter

2.2.1 Platform

Figure 2.1 shows the picture of a conventional quadcopter platform. This quadcopter was
built in UCLA MacLab. The quadcopter is mainly composed of the central frame, the
propeller-motor actuators and the electronic system which generally includes the control
board, sensors, motor drivers and battery. The central frame is the picture is made of car-
bon fiber. Brushless DC motors are utilized to reduce friction and heating at high spinning
speed, and are driven with electronic speed controllers (ESCs) for commutation and speed
regulation. The inertial measurement unit (IMU) is the major sensor onboard that measures
the accelerations and angular velocities of the quadcopter during flight. The data are pro-

cessed in the controller and usually fused with external positioning systems such as motion



capture systems for indoor applications and global positioning system (GPS) module with
barometer for outdoor uses. Additional sensors can also be deployed for specific usages. For
example, the picture shows a camera for visual measurement and four laser sensors to mea-
sure the spinning speed of the motors. The quadcopter is generally arranged in a symmetric

manner for both geometry and mass distribution.

2.2.2 Actuators

Jp, Ip

Propeller
< >

w

Motor

Copter Arm

Figure 2.2: Sketch of a typical propeller motor actuator set.

The external thrust forces and torques to drive the quadcopter is generated with propeller-
motor actuators, the sketch of which is shown in Figure 2.2. The spinning propeller provides
a thrust force fp and a drag torque tp, both along the normal direction of the spinning

plane. When the propeller pitch angle is fixed, their magnitudes are directly determined by

10



the spinning speed w as

fp = KTQJ2,
t 2 (2.1)
P = W

Therefore, when the desired thrust force f& or the desired drag torque t% is known, the

d

desired spinning speed of the motor w® can be calculated as

Wt =\ 18/ K = \J1h/ K. (2:2)

Brushless DC motors are widely applied, with an example shown in Figure 2.1, because
they have lower friction, smaller heating effect and wearings, and thus longer lifetime for
high-speed and long-term operations in contrast with the brushed DC motors. As mentioned
previously, a ESC module is utilized to deal with the commutation and also establish the
control loop for motor speed regulation. A Pulse-Width-Modulated (PWM) servo command
with specified frequency is sent to the ESC as the reference spinning speed. This servo
command is usually constrained within a small portion of the PWM duty cycle range, and

represents a certain reference signal through a one-to-one mapping, shown as
w® = f(D). (2.3)

Here D refers to the PWM servo command. f(-) is the mapping function from PWM
servo command to spinning speed reference, which is monotonically increasing, and usually

identified experimentally. Due to one-to-one mapping, the inverse function of f(-) exists as
D = f~Hw?). (2.4)

Therefore, when the desired thrust force f& is known, the required PWM servo command

D can be calculated reversely as

D= ;' 14/Kr). (2.5)

The inner dynamics of motors are largely determined by its rotation inertia and the
inductance in circuit. As both are relative small and often neglected in quadcopter appli-

cations, it is generally assumed that the motor speed can be regulated without dynamics.
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Therefore, the spinning speed of the motor w can be directly calculated as

w=w! = f(D) = F(f 0/ f8/Kn)). (2.6)

Finally, by (2.1), the thrust force fp is determined by the desired thrust force f& as

fp=Krf*(f 7 (\/ f3/Kr)). (2.7)

The same property applies for the propeller drag torque. Therefore, it can be reasonably
assumed from (2.7) that the thrust force and drag torque can be directly controlled without

inner dynamics.

It should be noticed that although brushless motors are widely applied, brushed motors
are also used in scenarios where small size or low cost are required. However, the assumption

of direct thrust/drag torque control applies in both cases.

2.2.3 Body Frame and Rotation

0,

Figure 2.3: Sketch of a conventional quadcopter with coordination system.
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The quadcopter body frame is defined on the ”X” configuration for flight, as
FB . {Op;xp,y5,25}. (2.8)
The frame is visualized in Figure 2.3. The four propeller-motor actuators are ordered
j=0,1,2,3 (2.9)

respectively. As each propeller-motor actuator generates a thrust force and a drag torque
simultaneously while spinning, the four actuators collectively provide four independent inputs

for the quadcopter platform as

T KT KT KT KT Cx.)g

T K aK K K 2
M — _aTQT TQT QTQT _QTQT wl . (210)

aK aK aK aK 2

2ol I v v M ol [

_MZ_ i K, -K, K, —KT_ _w%_

Here the total thrust force T is always along the zg direction. The torques M*, MY and M~

are along g, yp and zp directions respectively.
The body frame is related with the global frame
FV i {O;z,y,2} (2.11)
by a rotation, which can be represented with the Euler angle set
T
n=ls 0 | . (2.12)
representing roll, pitch and yaw angles respectively, as shown in Figure 2.3.

Defining elementary rotation matrices

cp —s¢ 0 cd 0 —s0 1 0 0
R.=|s¢p ¢ O|.Ry=[0 1 0|, R=1]0 v —sv|, (2.13)
0 0 1 s 0 b 0 s c

the rotation matrix from body frame to global frame can be calculated as

ccy —clsy s6
YRp =R.R,R, = |cosip + spsOcp coc) — spsOsth —sde | - (2.14)
spsh — cpsbcy)  sopch + cpsbsy  coch

13



Here

s =sin-, ¢ = cos- (2.15)
for notation simplicity.

The three axes of the body frame F? can be represented by vectors in the world frame

as

YRp = [mB Yn zB} . (2.16)

2.2.4 Equation of Motion

The quadcopter equation of motion is constructed from Newton-Euler method. Define the

position of quadcopter center of mass (CoM) as

£— [g; y z]T, (2.17)

the quadcopter total mass as m and the gravitational acceleration as g, then the quadcopter

translational dynamics can be expressed as

0 0 0
. 4 T
§=—1|0|+— Rp|0|=—|0] +—25 (2.18)
m m
g T g

The rotational dynamic equation is constructed in the body frame FP. Defining the

angular velocity vector in the body frame as

v=1p q T}T (2.19)

and the constant inertia matrix of the quadcopter as I, the rotation dynamics can be de-
scribed as

v=I"(~vx(Iv)+ M), (2.20)

where
T

The angular velocity vector in the body frame v can be further related with the derivative

of the Euler angle set 9 by transformations, details of which are shown in [Ald95].
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2.2.5 Underactuation of Quadcopter Dynamics

Equation (2.10) shows that the conventional quadcopter platform has four independent in-
puts for motion control. However, there are six motion outputs in 3D space, the position
vector £ and the Euler angle set 5. So the quadcopter is underactuated, as the number of in-
puts is smaller than the number of outputs. Therefore, the outputs are not fully controllable

in 3D space.

Furthermore, from the observation of equation (2.18), it can be concluded that the direc-
tion of total thrust force in the translational dynamics is merely determined by the direction
of zp. As the vector

2p = [59 —s¢pch cqbc@]T (2.22)

is a function of the roll angle ¢ and pitch angle 0, these two Euler angles are coupled with the
translational dynamics, and thus can not be controlled independently without influencing

the quadcopter position.

In fact, as mentioned previously, quadcopter has the property of differential flatness,

under which only the four flat outputs

Yy = [:c y z w]T (2.23)

are able to be controlled independently.

2.3 Problem Formulation

This section aims to formulate the vertical wall perching problem as an optimization. The
quadcopter dynamics, input and state constraints, terminal conditions and the fly zone are
all rewritten as constraints. By solving this optimization, a trajectory that meets all these
requirements can be obtained, under the condition of feasibility. The constraints can be

separated into dynamical ones and spatial ones, and are elaborated respectively.

15



2.3.1 Dynamical Constraints

All feasible trajectories must satisfy the quadcopter dynamics in position and attitude. How-
ever, as the total dynamics is underactuated and the translational equation are coupled with
roll and pitch angles, a two-step approach is proposed, each step of which is fully actuated,

or has equal number of inputs and outputs in dynamics.

2.3.1.1 Two-Step Approach for Fully Actuated Dynamics

It can be observed from equation (2.20) that the rotational dynamics itself is fully actuated,
and does not have coupling with the quadcopter position, despite underactuation of the
whole system. Therefore, feedback linearization can be applied on the quadcopter attitude

control to achieve perfect tracking in principle.

The rotational dynamics has three inputs M € R? and three outputs v € R3. Assign
M=vx (Iv)+IM?, (2.24)

where M" refers to the virtual input torque vector, then the rotational dynamics can be

rewritten as

v=M" (2.25)

Given any desired trajectory of angular velocity v¢, perfect tracking can be conducted
by setting
MY = (2.26)

Therefore, any trajectory of v always has its corresponding trajectory of M, thus is always

feasible without the consideration of input saturation.

It has been shown that the translational dynamics (2.18) is driven by the total thrust
force T, the roll angle ¢ and the pitch angle 6. If these two Euler angles are regarded as

inputs, the translational dynamics becomes fully actuated.

Therefore, a two-step approach is designed. In the first step, the position trajectory is

planned with inputs 7', ¢ and 6. The resulting trajectories of roll and pitch angles are then

16



Step 1

Plan for translational dynamics
* Inputs: 7, 0, ¢
* Outputs:x, y, z

Step 2 Additional
Plan for rotational dynamics constraints

* Inputs: M, MP, MF ond, ¢
* Outputs: 0, ¢,

Feasible?

Figure 2.4: The two-step approach for dynamical constraints. It breaks down the quadcopter
dynamics into two parts, both of which have full actuation in dynamics, as the number of

inputs is equal to the number of outputs.

substituted into the rotational dynamics to test the feasibility of input torque saturation. If
the constraints are violated, additional constraints on ¢ and 6 are added and the translational
planning is redone. If not, the result successfully generates a feasible trajectory for the task.

The dynamics for both steps is fully actuated. This process is demonstrated in Figure 2.4.
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2.3.1.2 Saturation

The saturation constraints are considered in two aspects. By observation of (2.10), it can be
concluded that the all input limitations are essentially determined by the spinning capability

of the propellers, as

w? Kr Ky Kr Kr T
w2 __aKr aKr aKr  aKr Mac
w?1< o= V2 V2 V2 V2 <w? -1, (2.27)
(.U2 _QKT _QKT aKr & My
2 V2 V2 V2 V2
_w%_ i K, -K, K, —KT_ _MZ_

where w,; and w,, refers to the minimum and maximum spinning speeds of the propeller
respectively. ws can be simply set zero, or tuned as a larger number to improve flight

performance.

The trajectories of virtual inputs roll angle ¢ and pitch angle 6 in the translational
dynamics are implicitly constrained by the limitations of corresponding torque inputs in the
rotational dynamics. In order to make these trajectories feasible, the angular velocities and

accelerations of these two angles are constrained as an alternative, as

8] < dm,
0] <6,
8 <o 22
6] <6,

where g.bm, 9m, gbm and Qm are selected maximum values for these variables.

2.3.1.3 Discretization

To make the optimization a finite dimensional problem, the desired trajectory is discretized
with respect to time. So is the dynamics. Assume the total time duration of the trajectory
is ¢, in which we select N — 1 time instants of equal distance, then the sampling time can
be calculated as

(2.29)



Define time instant

kelo, NNz, (2.30)

then
zq(k) =z.(k - t5), (2.31)

where x4 and z. refer to the state variables in discrete time and continuous time respectively.
The dynamics is discretized with Euler’s method as

z(k+1)=z(k)+t, z(k) (2.32)

for all state variables.

The higher order derivatives of state variables, such as those shown in (2.28), can be

represented by the discrete time state variables, as

o(k) = (¢(k +1) = ¢(k)) /s,
0k) = (006 +1) 08 1 .
o(k) = (d(k+2) —20(k + 1) + ¢(k))/t2,
O(k) = (0(k +2) —20(k + 1) + 0(k)) /2.
2.3.2 Spatial Constraints
The fly zone can be defined with a set of inequalities on quadcopter positions, as
Cp(§) <0. (2.34)

For example, as the real quadcopter is not a point mass, avoiding quadcopter collating

the wall in the £Oz plane can be expressed as
z(k) + acost < Ty, (2.35)

where a is the quadcopter arm length defined in Figure 2.3.
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In addition, the position and attitude of initial and final states can be constrained as

6(0) :§07
n(0) = no, (2.36)
E(N) =¢&;,
n(N) =mny.

2.3.3 Formulation in SE(2) Space

To better visualize the trajectory planning process, the task of quadcopter perching on a
vertical wall is constrained within the Oz space. The dynamics and constraints are therefore
formulated in SE(2). The formulation is elaborated in this section, and shall be utilized for

all later sections in this chapter.

In the SE(2) space, set

(2.37)

at all time. The quadcopter dynamics is rewritten as

= (1/m)Tsinb,
= (1/m)T cosf — g, (2.38)
6 = (1/ Iyy)M Y,
where I, is the quadcopter inertia along yp axis, or the (2,2) element of the quadcopter
inertia matrix I.

The translational dynamics is then discretized as

sk+1)] [zk) k)] (16 0 ol [t 0
Bk D) |#E)| [0 0 10 o) i) | (/m)T() s (k)
z(k+1) z(k) Z(k) 0 0 1 t5f [2(k) 0
kD] 2] (2] o 0 0 1] [ER)] [(/m)T(R) cosO(k) — g

(2.39)
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The rotational dynamics is discretized as

0k+1)| _ [6(k) » 0(k) U | |6R) N 0 YR (2.40)
de+n] [ow] liw] o 1] [dw]  [e/n, | |

The constraints for position and attitude states, inputs saturation and terminal states

are same with those in SE(3), and are omitted here for brevity.

Specifically, the terminal constraints on pitch angle for perching in SE(2) can be formu-

lated as

(2.41)

2.4 Convexification

One remaining challenge for the optimization formulated in the previous section lies on its
non-convexity. The non-convex problem is highly based on the initialization of variables,
and is usually intensive for computation. Therefore, several techniques are proposed in this

section to transform it into a series of convex problems.

2.4.1 Standard Constrained Convex Optimization

A constrained optimization formulation generally consists of the cost function, equality and
inequality constraints. If it is convex, the cost function and all inequality constraints must
be convex, and all equality constraints must be affine. The general form of a constrained

convex optimization is shown as

min f(z)
s.t.
(2.42)
h(z) <0

Az +b=0

where f(z) and h(z) are convex functions of x, A and b are constant matrices/vectors.
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2.4.2 Convexity Analysis

It is obvious from (2.39) that the discrete time translational dynamic equation is nonlinear
equality constraint with respect to the input and state variables, thus non-convex as affine
constraints are linear. The nonlinearity, or equivalently, the non-convexity has two aspects.
Firstly, the equation contains nonlinear functions, the triangular functions, of the pitch angle
variable (k). Secondly, these functions of #(k) are nonlinearly coupled with the thrust force

variable T'(k).

The inequality constraints are convex with respect to variables T'(k), MY(k), x(k), z(k)
and 0(k).
2.4.3 Convexification of Dynamical Constraints

Based on previous analysis, the convexification of dynamic constraints (2.39) has two major

points. Firstly, to eliminate the nonlinear function of #(k), two new input variables are

defined as
Us(k) =sinf(k),
() (k) (2.43)
te(k) = cosf(k),
which are naturally constrained by
-1 <ask) <1,
(2.44)

However, it should also be noticed that these two inputs are dependent of each other by

the coupling equation

a(k) + (k) = 1. (2.45)

Secondly, to deal with the nonlinear multiplication of T'(k) with the two new inputs (k)
and 4.(k), in addition to the coupling between (k) and u.(k) shown in (2.45), a two-stage

process is designed, as shown in Figure 2.5.

In stage 1, a pre-known trajectory for thrust force T'(k) from either previous optimization

or initialization is substituted into the translational dynamics for z(k) or z(k). The dynamic
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Initialize T(k)=mg

Stage 1: Fix 7(k)
Plan for sinf(k) / cosO(k)
0(k)
Stage 2: Fix (k)

1(k) Plan for 7(k)

Final position
error<g?

Figure 2.5: The two-stage alternating convexification process to decouple the multiplication

of T'(k) and functions of 0(k).

equation thus becomes linear equality constraint with respect to us(k) or u.(k). For instance,

the dynamic equation for z(k) can be written as

[x(k—i—l)] _ [1 ts] [x(k)] n [ 0 ]ﬂs(k‘)a (2.46)
(k4 1) 0 1| |@(k) (ts/m)T (k)

which is affine on state and input variables.

Before entering stage 2, a trajectory of 0(k) has already been available by reverse calcu-

lation from either u4(k) or u.(k) trajectories. Therefore, in stage 2, both (k) and u.(k) can
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be calculated with the trajectory of #(k), and substituted into the dynamic equation. The
thrust force T'(k) is now the solo input. For example, if the 44(k) trajectory was obtained

from stage 1, the dynamical constraints can be written as

N N I R N ELC
x(( * )> R x(()) m _ (2.47)
z(k+1 1 ts] |2(k 0 0
- | T(k) -
k)] [0 1] [k) ! LVIEE " gts

The distance between the trajectory and desired final locations are minimized in stage 2

as the cost function, as

mind = V(@ —2(V)2 + (27 — (V)2 (2.48)

Define the error tolerance of perching location as €, then when
d> e, (2.49)

the trajectory of T'(k) is recorded and substituted into stage one. The whole process is

repeated.

When
d<e, (2.50)

the planned trajectory is considered feasible, and the process is terminated.

2.4.4 Convexification of Constraints on Pitch Angle

Before the convexification of dynamical constraints, all inequality constraints are convex
with respect to state and input variables. However, after the change of variables in (2.43),

the constraints for higher order derivatives of the Euler angles becomes non-convex.

For example, the angular acceleration of the pitch angle is primarily constrained by

0(k)| < O, (2.51)
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Initialize 7(k)=mg

’—-——_———-—————\

f

: Stage 1: Fix T(k)

[ Plan for sinf(k) / cos@(k)
I
\

--1--

S 7 09

Stage 2: Fix (k)

1tk) Plan for 7(k)

Final position

error < 8?

Figure 2.6: The overall convexification process of the trajectory planning optimization. The
dashed box refers to the self-iterative process for the convexification of constraints on the

angular velocity and acceleration of pitch angle.

which is converted to

—ty O < O(k+1) —0(k) <ty O, (2.52)
after discretization from (2.33).

However, due to the change of variables in (2.43), the constraint becomes
—t, - 6,, < arcsintiy(k + 1) — arcsin (k) < t, - O, (2.53)
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which is non-convex with respect to the new input variable u4(k).

The convexification is conducted through variations. Make (2.52) as an example. Taking

variation of the new input variable 4 (k), we obtain
dus(k) = o(sinO(k)) = cos 0(k)db (k). (2.54)

In discrete time , the variation of u(k) can be approximated with

30(k) =~ 0(k+1) — 0(k),

(2.55)
dus(k) = ug(k+1) —a,(k).
Therefore, the inequality constraint (2.52) can be reformulated as
—ty - Oy - cosO(k) < Qg(k 4+ 1) — dy(k) < ty- O, - cosO(k). (2.56)

If cos (k) is known, the constraint (2.56) is convex with respect to us(k). In practice,
this can be realized by self-iteration of stage 1, as shown in Figure 2.6. The trajectory of 0(k)
in the previous iteration is used to calculate for the cosf(k) sequence in the new iteration

for the constraint (2.56).

The case for . is identical to i, and is omitted here for brevity. The angular acceleration
of the pitch angle can be refined using the same iterative process with the second-order
variation

6205 (k) = 6*(sin 0(k)) = cos 0(k)5%0(k) — sin 0(k)(660(k))>. (2.57)
The term sin 6(k)(66(k))? is usually very small and can be ignored for simplicity.
Similarly, the second-order variation can be approximated in discrete time as
620(k) =~ 0(k+2)—20(k+1)+0(k),

(2.58)
5%0(k) ~ (k4 2) — 2a,(k + 1) + ay(k).

2.5 Numerical Example

2.5.1 Task Description

The goal of this task is to plan generate a trajectory under which the quadcopter perches at

a specified location on a vertical wall. Some parameters used in this numerical example are
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listed in Table 2.1. Notice that some parameters used in this example are artificially made

up, just to demonstrate the effectiveness of the algorithm.

Table 2.1: Parameters used for the numerical example of the vertical wall perching task.

Parameter Value
m 0.74 kg
a 0.15 m
tf 0.8 S

The quadcopter start at (0,0) in the 20z plane, with horizontal initial pitch angle 6(0) =
0. The perching location is selected at (1, 1) and the pitch angle for perching is 6(ty) = —m/2.
In order to perch successfully, the quadcopter is required to have a velocity in the x direction

at the perching instant as

0.05m/s < #(ty) < 0.1m/s. (2.59)
The fly zone is defined as
0 <z <1,
(2.60)
0 <z <1

The CVX package in Matlab is utilized to solve this problem. Details of CVX package
can be found in [GB14] and [GBO0S].

2.5.2 Initialization

As shown in Figure 2.6, to initialize the planning process, the thrust force T'(k) is initialized

as

T(k) = mg, (2.61)

and substituted into the translational dynamic equation for x(k) in discrete time, as

- N i (k). (2.62)
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Time(s)

Figure 2.7: The history of (k) trajectories during the self-iterative convexification process.

The trajectory from initialization is colored in red, and the trajectory after five iterations is

colored in black.

The first and second order derivatives of the input @s(k) are minimized in this optimiza-

tion, as

s.t.

min s

(2.63)

A2 (k) = tg(k 4+ 2) — 20(k + 1) + Gy (k)
—vs < A%,(k) < s

where v is a tuning parameter.
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0.3

=0—max(J0(k))
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Iteration

Figure 2.8: The maximum first-order and second-order variations of #(k) along the self-

iterative convexification process.

2.5.3 Constraints on Angular Velocity and Acceleration of Pitch Angle

The self-iteration process proposed in section 2.4.4 is applied in this section to convexify the
constraints on angular velocity and acceleration of the pitch angle. During these iterations,
most of the constraints are same as the initialization process, except that (2.63) is replaced

with

min s
s.t.
Adig(k) = ag(k + 1) — af(k)
—s-/T—ay (k) < Adj(k) < s-\/T—a; (k)
A% (k) = at(k +2) — 245 (k + 1) + a7 (k)

—ys - /L —art (k) < A%(k) < s - /1 =g (k)

where 47 (k) and 47! (k) refer to the trajectories of 4is(k) in the 7'* and (r — 1) iterations

(2.64)

respectively.
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Time(s)

Figure 2.9: The generated trajectories of motion outputs x, z and 6 for the task of quadcopter

perching at a specified location on a vertical wall in the SE(2) space.

Specifically for the numerical example, the history of pitch angle trajectory (k) during
the self-iterative convexification process is shown in Figure 2.7. The maximum first-order and
second-order variations of the generated pitch angle trajectories (k) along these iterations
are shown in Figure 2.8, which shows that the maximum values of both variations decrease
and gradually converge with more iterations.

2.5.4 Generating Trajectory for 7'(k)

The trajectory of pitch angle 6(k) is calculated reversely from (k) as

0(k) = arcsin(us(k)), (2.65)
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Figure 2.10: Visualization of the planned trajectory.
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and conveyed to stage 2, acting as known values in the dynamic equation (2.47). The cost

function of stage 2 is

mind = /(a; —2(N)P + (25 = =(N)), (2.66)

where

l’f = Zf =1 (267)
for this case.

The optimization can be solved, with a perfect optimal solution
dPt =0, (2.68)

indicating that the trajectory has met all requirements on position and attitude. The pitch
angle trajectory is further substituted into rotational dynamics to check input saturation.
Finally, the generated feasible trajectory is shown in Figure 2.9. Its visualization is shown

in Figur