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Abstract

Variable selection for nonlinear regression is a complex problem, made even more

difficult when there are a large number of potential covariates and a limited number

of datapoints. We propose herein a multi-stage method that combines state of the

art techniques at each stage to best discover the relevant variables. At the first stage,

an extension of the Bayesian Additive Regression tree is adopted to reduce the total

number of variables to around 30. At the second stage, sensitivity analysis in Treed

Gaussian Process is adopted to further reduce the total number of variables. Two stop-

ping rules are designed and sequential design is adopted to make best use of previous

information. We demonstrate our approach on two simulated examples and one real

dataset.

Key words: Regression Tree, Gaussian Process, Sequential Design, Sensitivity Anal-

ysis, Sum of Tree.
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1 Introduction

Variable selection is an important task in a wide variety of problems. Much of the literature

focuses on variable selection for linear regression, or for simple parametric models. We are

interested in the case of relationships that are potentially highly nonlinear, where we want to

allow for nonparametric relationships. Such problems occur across many applications. One

particular application that was our original motivation is computer modeling (Santner et al.,

2003), where a computer simulation replaces or supplements a physical experiment. In many

of these problems, there can be a large number of input variables, and one needs to winnow

out the vast number of relatively unimportant variables to focus on the most important ones.

Such a reduction can greatly reduce the computational demands and may be a prerequisite

for further analysis. It can also be helpful to determine the relative importance of each

input variable to find out which of them have crucial influence on the system being studied

(Linkletter et al., 2006). Variable selection can help in three key aspects: improving the

performance of the predictors, providing more time-efficient and cost-effective predictors,

and providing a better understanding of the underlying data-generating processes.

We base our approach on the variable selection literature in the context of computer

experiments, as this literature explicitly focuses on nonlinear effects. Linkletter et al. (2006)

performs variable selection by approximating the simulator with a Gaussian process using a

special correlation structure and prior settings. Then the posterior distribution of the cor-

relation between each variable and the response is used to indicate the relative importance

of each variable. They also include an inert variable to act as a reference to differentiate

real association from that due to chance. Bondell et al. (2009) breaks down the regression

into interpretable main effects and interaction effects. The main effect and interaction effect

are modeled by Gaussian processes with different covariance structures. Morris (1991) de-

signs the experiment using individually randomized one-factor-at-a-time designs, then data
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is analyzed based on the resulting random sample of elementary effects, the changes in an

output caused by changes in a certain input. Oakley (2009) adopts the idea of perfect infor-

mation in decision theory to measure the importance of contributions of the input variables.

The Gaussian process emulator is used to estimate partial EVPIs (expected value of perfect

information) particularly efficiently using Bayesian quadrature.

However, existing statistical methods for variable selection struggle to effectively identify

a few nonlinear variables out of hundreds with high accuracy with only a moderate number

of samples. We develop a multi-stage strategy which employs a state-of-the-art technique

for each of the stages. By making the best use of each technique, in combination they can

accomplish a sophisticated goal that can not be achieved separately. In the first-stage, we

use treed models to reduce the total number of variables to around 30. In the second stage,

we use a sequential design to sample more data points to search for variables with small but

significant contribution to prediction. In the last stage, sensitivity analysis is performed and

two stopping rules are designed to reduce the number of variables further as needed.

While our original motivation was for computer experiment applications, and the method-

ology was developed in the expectation that we would have access to a computer simulator

with a large number of inputs that we could run adaptively, the expected simulator did not

become available. So instead, we have shifted our application to the more general regres-

sion setting. However, many of our modeling choices still reflect this initial motivation of

computer simulation experiments, and we think that our methodology will be most useful

in that context.

In Section 2 we discuss the methodological components underlying our approach: the

sum of trees method, the treed Gaussian Process, and the Monte-Carlo based numerical

procedure for calculating sensitivity indices. The novel multi-stage strategy for variable

selection is illustrated in Section 3. In Section 4, we analyze two simulated examples with

the method proposed, and in Section 5 we analyze a real dataset on crime, followed by some
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concluding remarks.

2 Elements of the methodology

Our approach relies upon recent developments in tree models. Chipman et al. (2010) develops

a ‘sum-of-trees’ model, Bayesian Additive Regression Trees (BART). Each tree is constrained

by a regularization prior to be a weak learner and is modeled independently. The Bayesian

backfitting algorithm is used to generate samples from the posterior distribution. Variables

are selected randomly for splitting and a high splitting frequency represents a high association

of the variable with the response. Gramacy and Lee (2008) proposes a partition model which

divides up the input space and fits independent Gaussian process models to the data in each

subregion.

We combine tree models with sequential design in which the procedures used for selecting

the sample units depend on observations made during the original sampling to make the best

use of information contained in the sample (Thompson and Seber, 1996). Previous research

relevant to sequential design in computer experiments includes Gramacy and Lee (2009),

where data points are sampled in a way to minimize the standard deviation in predicted

output or minimize the expected square error averaging over the input space, and Santner

et al. (2003) and Taddy et al. (2009), where sequential sampling is performed by taking

additional data points maximizing the expected value of an objective function.

2.1 The sum of trees method

BART (Chipman et al., 2010) sums a number of smaller trees to get a flexible and efficient

estimator. For a single tree, let T denote a binary tree consisting of a set of interior node

decision rules and a set of terminal nodes. Let M = {µ1, µ2, . . . , µb} denote a set of parameter

values ready to be assigned to the b terminal nodes of T . The decision rule is to split the
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predictor region into two parts, cutting at a certain point A within the range of a particular

variable x, i.e., x ≤ A and x > A. The splitting rule is used for the whole tree. Each

possible input value is assigned to a terminal node. For a given T and M , we use g(x; T, M)

to denote the function which assigns a µi ∈ Mto x. Thus,

Y = g(x; T, M) + ε, ε ∼ N(0, σ2) (1)

where g(x; T, M) assigns µi = E(Y |x) to the terminal node.

This process is repeated independently for m trees. The sum-of-trees model is:

Y =
m∑

j=1

g(x; Tj, Mj) + ε, ε ∼ N(0, σ2) (2)

where Tj is a binary regression tree, Mj is the terminal node, and g(x; Tj, Mj) is the function

which assigns µij ∈ Mj to x. For the sum of trees model, E(Y |x) is the aggregate of all µij’s

assigned to x by the g(x; Tj, Mj)’s. A regularization prior completes the model:

p((T1,M1), ..., (Tm,Mm), σ) =

[∏
j

p(Tj,Mj)

]
p(σ) =

[∏
j

p(Mj|Tj)p(Tj)

]
p(σ)

where p(Mj|Tj) =
∏

i p(µij|Tj) with µij ∈ Mj. Each tree component (Tj, Mj) and σ are

independent of each other. Thus, the prior choice problem simplifies to the choice of just

p(Tj), the priors for the tree structure, p(µij|Tj), the mean values in the leaves, and p(σ),

the overall variance. The prior of T is specified by three aspects: (i) the probability that

a node at depth d is not terminal, given by α(1 + d)−β, where α ∈ (0, 1) and β ∈ [0,∞)

are pre-specified shape parameters, (ii) the distribution on the splitting variable assignments

at each interior node, (iii) the distribution on the splitting rule assignment in each interior

node, conditional on the splitting variable. The priors for (ii) and (iii) are uniform priors,

p(µij|Tj) is the conjugate normal distribution N(µµ, σ
2
µ), where following Chipman et al.
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(2010), we choose µµ and σµ so that mµµ − 2
√

mσµ = ymin and mµµ + 2
√

mσµ = ymax. The

prior for σ2 is νλ/χ2
ν where we take ν = 3 and choose λ such that the 0.9 quantile of the

prior for is located at a data-based estimate σ̂2. . All p(Tj) and p(µij|Tj) can be considered

as having identical forms. The Bayesian backfitting algorithm (Hastie and Tibshirani, 2000)

is used when implementing BART, and we use the BayesTree package in R Chipman and

McCulloch (2010).

Since the sum of trees model is a nonparametric Bayesian regression approach, it can

perform the tasks of regression, prediction, estimation of partial dependence functions and

detection of low dimensional structure within high dimensional data. When the response is a

binary variable, the sum of trees model can also be used for classification. In either case, the

variables highly associated with the responses will tend to have higher splitting frequencies

in the model fitting process. By selecting variables with high splitting frequencies, we can

select variables highly associated with the response (Chipman et al., 2010).

2.2 Treed Gaussian Process

The standard model in the literature for a computer experiment is a Gaussian process (GP)

(Sacks et al., 1989; Santner et al., 2003). A GP is a collection of random variables Z(x) with

typically multivariate explanatory variable x, having a jointly Gaussian distribution for any

finite subset of explanatory variables. It is specified by a mean function µ(x) = E(Z(x))

and a correlation function K(x, x′) = 1
σ2 E([Z(x) − µ(x)][Z(x′) − µ(x′)]T ) . Usually the

Gaussian process model is of the form Z(x) = ξ(x, β) + w(x) + η(x), where ξ(x, β) is a

simple mean function, w(x) is a random process with mean zero and correlation function

K(xi, xj) and η(x) is Gaussian noise. We use a linear mean trend ξ(x, β) = xβ and an

anisotropic separable Gaussian correlation function, c(xi, xj) = exp[−Σd
k=1

(xik−xj)
2

θk
], where

d is the dimension of the input space and θk is the range parameter for each dimension.

For a deterministic simulator, η(x) is typically omitted, although Gramacy and Lee (2012)
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advocates for always including this term, and we follow that approach.

A Treed Gaussian Process (TGP) (Gramacy and Lee, 2008) is a more flexible non-

stationary process which divides up the input space and fits different base Gaussian Process

models to data independently in each subregion. The model has the advantage that it can

model discontinuities since the partitioning model is more flexible and it can fit different

submodels around the discontinuities and changes in the correlation structure. The second

advantage of the partitioning model is that it is more computationally efficient. If the sample

size is n, the matrix inversion for a GP requires O(n3) computation time. By partitioning the

whole tree into smaller subregions, matrix inversions are now carried out for smaller sample

sizes. The tree grows via recursive binary partitioning, following Chipman et al. (1998, 2010).

In each partition, a GP model is fit independently. A tree T recursively divides the data

space into R distinct subregions. For each subregion in the tree partition rv, the hierarchical

GP model with linear mean is:

Zv|βv, σ
2
v , Kv ∼ Nnv(Fvβv, σ

2
vKv) β0 ∼ Nd+1(µ, B)

βv|σ2
v , τ

2
v , W, β0 ∼ Nd+1(β0, σ

2
vτ

2
v W ) τ 2

v ∼ IG(ατ/2, qτ/2)

σ2
v ∼ IG(ασ/2, qσ/2) W−1 ∼ Wish((pV )−1, ρ)

with Fv = (1, Xv), and W is a (d+1)×(d+1) matrix. The N , IG, and Wish are the Normal,

Inverse-Gamma, and Wishart distributions, respectively. Hyperparameters µ, B, V, ρ, ασ,

qσ, ατ , qτ are deemed as known. Kv is a nv ∗ nv correlation matrix, where nv is the number

of observations in region rv. The mean function coefficients βv are modeled hierarchically

with a common unknown mean β0 and variance for each subregion σ2
vτ

2
v (Gramacy and Lee,

2008). We use the tgp package in R for implementing the Treed Gaussian Process and related

analyses (Gramacy, 2007).
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2.3 Sensitivity indices

Sensitivity analysis is the study of how uncertainty in the output of a model can be ap-

portioned to different sources of uncertainty in the model input. In other words, it is a

technique that systematically changes the parameters of a model to determine the effects of

such changes. Sensitivity analysis is useful for computer modeling for several different aims,

such as making recommendations for decision makers, increasing understanding or quan-

tification of the system and model development (Saltelli et al., 2008). Usually, sensitivity

analysis is measured by the main effects and the total effects. The first order sensitivity

indices measure main (linear only) effects while the total sensitivity indices measure total

effects, which are the main effects plus interaction effects, quadratic effects, and all higher

order effects. A first order main effect is V [E(Y |Xi)]. The conditional expectation E(Y |Xi)

can be calculated empirically by cutting the Xi domain into slices and averaging the values of

(Y |Xi) within the same slice Xi. In this way, if the scatterplot has a pattern, the conditional

expectation E(Y |Xi) has a large variation across Xi values and the factor Xi is considered

as important. The first order sensitivity index for variable Xi is obtained by dividing this

term by the total unconditional variance. The total effect for the input variable Xi is linked

to E[V (Y |X−i)], which is the remaining variance of Y that would be left, on average, if we

could determine the true value of every factor except Xi. Dividing this term by the total

unconditional variance yields the total sensitivity index for variable Xi (Saltelli et al., 2008).

Saltelli et al. (2008) and Saltelli et al. (2010) describe a Monte-Carlo based numerical

procedure for computing first order and total effect sensitivity indices. Assume the input

(N, k) matrix, where N is the number of rows and k is the number of columns, is the

8



following:

A =



x1
1 x1

2 ... x1
i ... x1

k

x2
1 x2

2 ... x2
i ... x2

k

... ... ... ...

xN−1
1 xN−1

2 ... xN−1
i ... xN−1

k

xN
1 xN

2 ... xN
i ... xN

k


A (N, k) resampling matrix is generated which has the same distribution in each dimension

as the input

B =



x1
k+1 x1

k+2 ... x1
k+i ... x1

2k

x2
k+1 x2

k+2 ... x2
k+i ... x2

2k

... ... ... ...

xN−1
k+1 xN−1

k+2 ... xN−1
k+i ... xN−1

2k

xN
k+1 xN

k+2 ... xN
k+i ... xN

2k


A third matrix Bi

A is generated with the ith column of B being replaced by the ith column

of A:

Bi
A =



x1
k+1 x1

k+2 ... x1
i ... x1

2k

x2
k+1 x2

k+2 ... x2
i ... x2

2k

... ... ... ...

xN−1
k+1 xN−1

k+2 ... xN−1
i ... xN−1

2k

xN
k+1 xN

k+2 ... xN
i ... xN

2k


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A fourth matrix Ai
B is generated with the ith column of A being replaced by the ith column

of B:

Ai
B =



x1
1 x1

2 ... x1
k+i ... x1

k

x2
1 x2

2 ... x2
k+i ... x2

k

... ... ... ...

xN−1
1 xN−1

2 ... xN−1
k+i ... xN−1

k

xN
1 xN

2 ... xN
k+i ... xN

k


Four model output vectors are calculated based on these four matrices:

yA = f(A) yB = f(B) yBAi = f(Bi
A) yABi = f(Ai

B)

The formula for calculating first-order sensitivity indices is:

Si =
V [E(Y |Xi)]

V (Y )
=

(1/N)ΣN
j=1y

(j)
A y

(j)

BAi − f 2
0

(1/N)ΣN
j=1(y

(j)
A )2 − f 2

0

,

where f 2
0 = ( 1

N
ΣN

j=1y
(j)
A )2. The formula for calculating total sensitivity indices is:

STi
= 1− V [E(Y |X−i)]

V (Y )
= 1−

(1/N)ΣN
j=1y

(j)
A y

(j)

ABi − f 2
0

(1/N)ΣN
j=1(y

(j)
A )2 − f 2

0

.

3 Multi-stage variable selection tool

The computer modeling literature has traditionally dealt with relatively few possible input

variables. However, with the rapid increase in the role of computer modeling and simula-

tion in scientific discovery, there can be a large number of input variables. Due to the lack

of knowledge of the underlying physical process, a simulation model with high credibility

can only be built through rigorous model validation. Variable selection plays an important

role in the model validation process. For some complex phenomena, such as those which
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simultaneously model multiple physical and chemical processes, the simulators tend to have

several hundreds or thousands of input variables. However, in practice only a few (perhaps

less than 10) of them are typically significantly related to the factors controlling the un-

derlying mechanism of the physical processes. Complicating the matter, these variables are

often non-linearly related to the response. Existing statistical methods for variable selection

struggle to effectively identify a few variables out of hundreds with high accuracy with only

a moderate number of samples. A multi-stage strategy is designed which employs a state-

of-the-art technique for each of the stages. By making the best use of each technique, in

combination they can accomplish a sophisticated goal that can not be achieved separately.

In the first-stage, an extension of the sum of trees method is developed to reduce the total

number of variables to around 30. In the second stage, a sequential sampling strategy is used

to sample more data points to search for variables with small but significant contribution

to prediction. In the last stage, sensitivity analysis is combined with two stopping rules to

reduce the number of variables further as needed.

3.1 The extended sum of trees method

The first stage is based on the BART sum of trees model, and is implemented with the

number of trees set to 10. The rough estimate of the standard deviation of σ is the standard

deviation of y. During a preliminary study, we found that the sum of trees model performed

better for datasets whose input points followed a Latin Hypercube design (Tang, 2008) than

datasets with uniform initial distribution. Thus, the Latin Hypercube design is adopted

when generating simulated datasets.

We extended the sum of trees model to make use of large sample theory. For each run of

BART, when using a small number of trees, the splitting frequencies will be high for those

variables strongly associated with the response. However, there is a random variation among

different runs in the splitting frequencies for the same variable. Therefore, the variables
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selected might be inconsistent between the first run and the second run. By the property of

large sample theory, if BART is run many times, the mean/sum of the splitting frequencies

of each variable will reach its underlying true value. If the ranks of these means/sums are

used instead of the ranks of the splitting frequencies of a single run, the accuracy in ranking

will be remarkably improved (Chipman et al., 2010). Consequently, the extended method of

the sum of trees is proposed to repeatedly run BART 10 times to keep the top 50 variables

with the highest splitting frequencies each time. Then cumulative splitting frequencies from

those runs are reckoned for each variable. The top 25 variables with the highest cumulative

splitting frequencies are singled out together with an extra 5 variables showing the strongest

linear associations (because BART is more focused on finding nonlinear relationships, so

simple linear relationships can get overlooked). By combining the sum of trees with linear

regression, the extended method can select variables with either a strong linear association

or a complicated non-linear relationship. We keep the top 30 variables at this stage to try

to ensure that we include all potentially important variables, as we do not expect to have

more than that many; should more be expected, then more should be retained.

3.2 Adaptive sampling

In some cases, we may be able to collect more data through a sequential experiment. A

computer simulation experiment is a classic example where additional runs can be obtained

iteratively after analyzing the existing data. In such cases, we want to carefully select the

additional runs to maximize the information gained. We design a strategy to sample more

data points efficiently to best identify which of the remaining variables truly are relevant.

We bring in ideas from machine learning to find non-linear effects.

The ALM criterion (MacKay, 1992; Seo et al., 2000) chooses the data point with the

greatest standard deviation in the predicted output. With a nonlinear model, in practice we

sample by selecting the data point with the largest 95% predictive interval, as that approach
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is more robust for irregular predictive distributions. Sampling that location will provide

the most information available about the response surface. We use BART to compute the

posterior distribution of the predicted output. 10,000 candidate data points are generated

from a Latin Hypercube design, and the one with the longest 95% predictive interval is chosen

and a new datapoint is collected at that set of inputs. The sampled data point is then added

to the original observations for making new predictions in BART. A moderate number of

data points, such as 50-150, are sampled in this manner. BART provides a computationally

efficient model to enable quick fitting after each update.

3.3 Two Stopping rules

After selecting 30 variables out of the initial set, we use sensitivity analysis to rank the

30 variables selected. But a question remaining is when to stop removing variables? How

many of the variables are true predictors? We provide two stopping rules here based on the

sensitivity analysis. To obtain an accurate sensitivity analysis including nonlinear effects,

we use the fit from the TGP model, and the sensitivity analysis from the tgp package, func-

tion sens() (Gramacy and M., 2010). We found that we obtain a more accurate sensitivity

analysis using TGP modeling than using BART modeling.

First stopping rule: The first stopping rule used here is to run the sensitivity analysis in

the TGP model 10 times and select those variables which consistently rank highly in these

10 runs. The first stopping rule is to pick variables satisfying the following criteria: (1) over

the 10 runs, the maximum rank minus the minimum rank is less than 5; (2) disregarding the

lowest 2 ranks, the maximum of the remaining 8 ranks minus the minimum of the remaining

8 ranks is less than 4; (3) disregarding the lowest 3 ranks, the maximum of the remaining 7

ranks minus the minimum of the remaining 7 ranks is less than 3. A variable is considered

as significant if any one of the three conditions is satisfied. The last two criteria are similar
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to the first criterion in principle, but they assume that there are at most two (the second

criterion) or three (the third criterion) outliers.

Second stopping rule: The second rule is based on Linkletter et al. (2006), substituting

one input variable with an inert variable each time and comparing the change in the posterior

distribution of the sensitivity indices before and after the substitution. The differences of the

mean of the posterior distributions of the sensitivity indices are computed. Those variables

which yield a difference in mean posterior sensitivities bigger than 0.008 are considered as

the true predictors.

In both cases, the values were determined empirically, after much experience with a

variety of examples.

4 Simulated Examples

A dataset was generated for testing the performance of our proposed method, where the

identity of the true variables was kept unknown to the user as the method was run (hence

the irregular numbering):

y = 2x3
1 − 3 sin[5πx6]− 2(1− x9)× (1− x10) + 4(x43 − 0.5)2 − x88 + x89

The dataset has 100 variables and 150 observations in the initial run. The input values

were chosen as a random Latin hybercube. No noise was added, in order to focus on the

complex function itself (and also keeping with the standard approach in deterministic com-

puter code emulation). The extension of the sum of trees method is used to reduce the total

number of variables to 30. Then sensitivity analysis in the tgp package is used to rank the
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30 variables selected and the stopping rules are used. The results with and without adaptive

sampling are compared and summarized as follows.

For this first test dataset, the first 30 variables selected are (highest rank first, the bolded

ones are the truly significant ones):

Ordered by main effects : 88 9 89 1 93 96 17 3 94 48 47 14 24 51 6 77 50 87 62 10

43 15 35 72 26 74 49 39 8 40

Ordered by total effects: 88 9 1 89 93 87 17 96 47 94 74 49 77 24 62 72 8 3 43 14 35 50 39

51 48 15 40 26 6 10

Figure 1 illustrates the boxplots for the posterior distribution of sensitivity indices generated

by the sensitivity analysis in the tgp package for this dataset. When using the sensitivity

indices for the total effects, the first stopping rule selects variables 88,9,1,89,93,17,96 (high-

est rank first). The second stopping rule selects variables 1,9,17,62,88,89,93. So far, we are

missing predictors 6, 10, and 43, and erroneously including 9,17,62,93 and 96.

We then conduct sequential sampling to better refine our variable selection. 100 addi-

tional data points are sampled via the ALM algorithm. For each new data point, 10,000

candidates are searched. Table 1 presents our results. After obtaining 100 additional points,

the first criterion of the first stopping rule selects variables 1, 10, 43, 88, and 89, and the

second criterion adds in variable 9. We have found these results to be repeatable, in that if a

different random seed and different starting Latin Hypercube Design are used, this sequential

process will usually select the same sets of variables as that in Table 1.

We are pleased that the sequential process is able to filter out the unimportant variables

and identify nearly all of important variables. Variable 43 is difficult to find because its first

order effect is zero. Variable 6 is the one variable that we miss, as it also has a zero first order
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effect, and has a small total effect, and was designed to be difficult to find. Significantly

more data would be needed to detect this variable.

We now consider a second test dataset with 15 relevant variables out of 200, again with

the truth kept hidden from the person implementing the algorithm. The true function is:

y = 3x3 + 4/(x17 + 1) + 2 log(x23 + 1)− 3(x29 + .2)(x34 + .2)(x181 + .3) + 2x43 − 4x2
64(3)

−2x87 + 2.1 sin(x92 × π × 1.2)− 2.8 sin(x100 × π)− (x110 + .7)2 (4)

−2.8I(x141 < .6) + 2.5I(x155 > .6)− 2.7× x199 (5)

where I(·) is the indicator function which takes value one when its argument is true and

value zero otherwise. No noise was added as we were attempting to simulate a deterministic

computer experiment. The first stage of our analysis identifies these 30 variables as poten-

tially important and worthy of further exploration (highest rank first, the bolded ones are

the truly significant ones):

Ordered by main effects: 141 155 64 199 3 87 110 92 43 34 181 17 23 125 130

146 105 165 62 172 29 137 163 52 186 162 103 100 180 73

Ordered by total effects: 141 155 64 199 87 3 43 110 34 92 181 23 17 125 62 146

52 105 163 186 100 180 172 165 73 137 103 29 130 162

Figure 2 is similar to Figure 1 except that it is generated for the second test dataset. The

first stopping rule, which uses the sensitivity indices for the total effects, selects variables

141, 155, 64, 199, 3, 87, 110, 43, 34, 17, 92, 181, 23, 62 (highest rank first).The second

stopping rule uses the sensitivity indices for the main effects and selects variables 3, 17, 23,

29, 34, 43, 64, 87, 92, 100, 110, 141, 155, 181, 186 and 199. It picks all the correct variables
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and erroneously includes variable 186.

Sequential sampling via the ALM algorithm is used to obtain an additional 100 data

points. Then the first stopping rule is used for analyzing the dataset, picking out variables:

3, 17, 23, 29, 34, 43, 64, 87, 92, 110, 141, 155, 181, 199. The ranking of the variables

picked is indicated in Table 2. All the other variables are picked by the first criterion of

the first stopping rule except variable 92, which is picked by the second criterion of the

stopping rule. In the column corresponding to variable 92, after rank 24 is disregarded, for

the remaining nine ranks, the maximum rank (23) minus the minimum rank (18) is 5. After

adaptive sampling, variable 29 is now clearly labeled as relevant. It had a lower ranking

picked originally since it is only part of a three way interaction effect with variable 34 and

variable 181, which is difficult to detect. The extraneous variable 186 is now excluded. The

results are almost perfect except for the omission of variable 100, which is associated with

a sine function. Like in the first example, this mean-zero periodic effect is difficult to detect

without yet more data.

5 Analyzing the Community and Crime dataset

We demonstrate the main part of the methodology on a crime dataset. The Communities

and Crime dataset was taken from UC-Irvine Machine Learning Repository

(http://archive.ics.uci.edu/ml/datasets.html). The data combines socio-economic data from

the 1990 US Census, law enforcement data from the 1990 US LEMAS survey, and crime

data from the 1995 FBI UCR. The data has 128 attributes and 1994 observations. The

128th variable is the total number of violent crimes per 100K population, which is the goal

attribute to be predicted. The other 127 variables are treated as predictors.

Using the extension of the sum of trees method, the 30 variables selected are: 1, 8, 9, 11,

17, 21, 23, 30, 33, 38, 39, 43, 45, 46, 48, 49, 50, 51, 54 , 55, 74, 76, 77, 79, 82, 84, 86, 91,
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94, and 95. These 30 variables are analyzed by the sensitivity analysis in the TGP model,

shown in Figure 3, and the first stopping rule is applied. Overall five variables are selected.

The 33th, 55th and 77th are clearly significant, and the 8th and the 50th are also found to be

significant. The following are the social meaning of these five variables:

8: percentage of population that is African American.

33: number of people under the poverty level.

50: percentage of kids in family housing with two parents.

55: number of kids born to parents who were never married.

77: number of vacant households.

If the 30 variables selected by the extension of the sum of trees method are used as explana-

tory variables, fitting a standard linear regression model yields residuals with variance 0.018.

When following our analysis and reducing the inputs to the five variables listed above, fits

with the TGP and BART packages yield MSEs of residuals of 0.0191 and 0.0185 respectively.

We also performed 10-fold cross validation with the same five explanatory variables and the

BART package, which is the package used when implementing the 10-fold cross validations

throughout this section. For each of the 10 iterations, the variance of the prediction errors

is calculated and the average of the 10 variances is reported, which is 0.0211.

We compared our results to several other available variable selection techniques. When

using the command ‘bootFreq’ in the R package ‘MMIX’ (Morfin and Makowski, 2012) to

analyze the data with the number of samples is set to 50, the top five variables selected are:

8: percentage of population that is African American.

17: percentage of people living in areas classified as urban.

96: number of homeless people counted in the street.

88: rental housing-lower quartile rent.

54: percentage of moms of kids under 18 in labor force.

When using these five variables as explanatory variables, 10-fold cross validation yields BART
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fits with mean variance of prediction errors of 0.0249. We see that our method performs

better in selecting the significant variables with potentially nonlinear effects.

When using the R package ‘spikeslab’ (Ishwaran et al., 2013) to analyze the data, the

top five variables selected are:

8: percentage of population that is African American.

56: percentage of kids born to parents who were never married.

50: percentage of kids in family housing with two parents.

88: rental housing-lower quartile rent.

44: percentage of males who are divorced.

When using these five variables as explanatory variables, 10-fold cross validation yields

mean variance of prediction error of 0.0218, again larger than from our proposed method.

Furthermore, spikeslab does not specify how many variables are the truly significant ones,

so our proposed method has obvious advantages over ‘spikeslab’.

When using the R package ‘foba’ (Zhang, 2008) to analyze the data, the top five variables

selected are:

8: percentage of population that is African American.

50: percentage of kids in family housing with two parents.

70: mean persons per household.

77: number of vacant households.

97: percent of people foreign born.

When using these five variables as explanatory variables, 10-fold cross validation yields mean

variance of prediction error equaling 0.0195, which is actually slightly better than that of our

proposed method. However, the ‘foba’ package does not specify the number of significant

variables, so having a specific selection of variables is an advantage of our method.

19



6 Discussion

The extension of the sum of trees method performs well in picking the top 30 variables which

have the highest association with the response, with very high probability of including all of

the true predictors. An adaptive sampling design using the ALM criterion can detect a broad

range of linear and nonlinear effects. The two stopping rules based on sensitivity analysis

both work very well in determining the total number of true predictors. Their performance

benefits from the high accuracy of ranking the sensitivities of the variables by the sensitivity

analysis in the TGP model.

For future research work, we can focus on how to improve the accuracy of the sensitivity

analysis so that it can detect smaller effects without the adaptive sampling step. Another

direction is to design a test for comparing the equality of two posterior distributions. This

test can be used in the second stopping rule. Other adaptive sampling criteria can be

explored to improve the learning during sequential sampling.
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Table 1: The ranking of the variables picked by the first stopping rule for the test dataset
of sample size of 150 and dimension of 100 by the ALM strategy using 10,000 candidates for
each sampling points.

variable 1 9 10 43 88 89

1 30 21 25 27 28 29
2 30 20 27 25 28 29
3 30 26 23 25 28 29
4 30 26 23 27 28 29
5 30 25 27 26 28 29
6 30 25 27 26 28 29
7 30 26 27 25 28 29
8 30 25 26 27 28 29
9 30 13 27 26 28 29
10 30 26 24 27 28 29
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Table 2: The ranking of the variables picked by the first stopping rule for the test dataset
with sample size of 300 and dimension of 200 by the ALM strategy

variable 3 17 23 29 34 43 64 87 92 110 141 155 181 199

1 26 23 18 17 20 19 29 24 21 25 30 28 22 27
2 27 22 18 17 21 23 29 24 20 25 30 28 19 26
3 26 22 18 17 20 21 29 24 23 25 30 28 19 27
4 26 23 17 16 19 21 29 25 18 24 30 28 20 27
5 26 21 17 16 22 19 28 25 23 24 30 29 20 27
6 26 23 18 17 22 19 29 25 20 24 30 28 21 27
7 27 21 18 16 19 22 29 23 24 25 30 28 20 26
8 27 23 18 17 20 22 28 25 19 24 30 29 21 26
9 26 22 17 16 19 21 28 25 23 24 30 29 20 27
10 26 21 17 16 20 22 29 25 23 24 30 28 18 27
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Figure 1: Boxplots of the posterior distribution of sensitivity indices for the main effects
(a) and total effects (b) for the sensitivity analysis in the tgp package for the first
test dataset.From left to right, the 30 variables are: (1st,3rd,6th,8th,9th,10th,14th,15th,17th,
24th,26th,35th,39th,40th,43th,47th,48th,49th,50th,51th,62th,72th,74th,77th,87th,88th,89th,93th,94th,96th)

Figure 2: Boxplots of posterior distribution of sensitivity indices for the
main effects (a) and total effects (b) for the sensitivity analysis in the tgp
package for the second test dataset(from left to right, the 30 variables are:
3rd,17th,23th,29th,34th,43th,52th,62th,64th,73th,87th,92th,100th,103th,105th,110th,125th,130th,137th,
141th,146th,155th,162th,163th,165th,172th,180th,181th,186th,199th).

Figure 3: Boxplots of posterior distribution of sensitivity indices for the main effects (a) and
total effects (b) for the sensitivity analysis in the tgp package for the communities and crime
dataset.
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