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Abstract

For statistical inference on regression models with a diverging number of covariates, the existing 

literature typically makes sparsity assumptions on the inverse of the Fisher information matrix. 

Such assumptions, however, are often violated under Cox proportion hazards models, leading to 

biased estimates with under-coverage confidence intervals. We propose a modified debiased lasso 

method, which solves a series of quadratic programming problems to approximate the inverse 

information matrix without posing sparse matrix assumptions. We establish asymptotic results 

for the estimated regression coefficients when the dimension of covariates diverges with the 

sample size. As demonstrated by extensive simulations, our proposed method provides consistent 

estimates and confidence intervals with nominal coverage probabilities. The utility of the method 

is further demonstrated by assessing the effects of genetic markers on patients’ overall survival 

with the Boston Lung Cancer Survival Cohort, a large-scale epidemiology study investigating 

mechanisms underlying the lung cancer.

Keywords

cancer epidemiology; debiased lasso; lung cancer; precision matrix; quadratic programming; 
sparsity

1 ∣ INTRODUCTION

The Cox proportional hazards model (Cox, 1972), a semiparametric model with an 

unspecified baseline hazard function, has been widely used for the analysis of censored 

time-to-event data. With a fixed dimension of covariates, Cox (1972) proposed the 

maximum partial likelihood estimation (MPLE) to infer the regression coefficients, and 
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Andersen & Gill (1982) proved the asymptotic distributional results for MPLE using the 

martingale theory.

Technological advances nowadays have made it possible to collect a large amount of 

information in biomedical studies. For example, the Boston Lung Cancer Survival Cohort 

(BLCSC), the motivating study for this work, has acquired abundant clinical, genetic, 

epigenetic and genomic data, which enable comprehensive investigations of molecular 

mechanisms underlying the lung cancer survival (McKay et al., 2017). High-dimensionality 

of the collected covariates has confronted the traditional parameter estimation and 

uncertainty quantification based on Cox models. In high-dimensional settings, where the 

number of covariates p increases with the sample size n or even greater than n, the 

conventional maximum partial likelihood estimation is usually ill-conditioned. Penalized 

estimators have emerged as a powerful tool for simultaneous variable selection and 

estimation (Tibshirani, 1997; Fan & Li, 2002; Gui & Li, 2005; Antoniadis et al., 2010). 

Recently, Huang et al. (2013) and Kong & Nan (2014) derived the non-asymptotic oracle 

inequalities of the lasso estimator in the Cox model. However, none of these works dealt 

with statistical inference for Cox models with high-dimensional covariates.

Existing literature on inference for high-dimensional models mainly concerns linear 

regression. Zhang & Zhang (2014), van de Geer et al. (2014) and Javanmard & Montanari 

(2014) developed inference procedures for linear models, based on debiasing the lasso 

estimator via low-dimensional projection or inverting the Karush–Kuhn–Tucker condition. 

van de Geer et al. (2014) extended the debiased lasso idea to generalized linear models, 

using the nodewise lasso regression. Ning & Liu (2017) focused on hypothesis testing 

and devised decorrelated score, Wald and likelihood ratio tests for inference on a low-

dimensional parameter in generalized linear models based on projection theory.

There has been some existing progress in inference for the Cox model with high-

dimensional covariates. Fang et al. (2017) developed decorrelated tests for hypothesis testing 

of low-dimensional components under high-dimensional Cox models, using ideas similar to 

Ning & Liu (2017). Kong et al. (2021) extended the debiased lasso approach in van de Geer 

et al. (2014) to potentially misspecified Cox models, and used the nodewise lasso regression 

to estimate the inverse information matrix. Yu et al. (2021) proposed a debiased lasso 

approach, by estimating the inverse information matrix with a CLIME estimator adapted 

from Cai et al. (2011). Most of these works restricted the number of non-zero elements 

of each row in the inverse information matrix to be small, i.e., ℓ0 sparsity. However, as 

found in Xia et al. (2021), the sparse inverse information matrix assumption has no practical 

interpretation beyond linear regression models, often fails to hold in the Cox model, and 

these methods cannot perform satisfactorily in high-dimensional Cox model settings. For 

example, as evidenced by our extensive simulations, these methods cannot correct biases of 

lasso estimators or construct confidence intervals with desired coverage probabilities, even 

when the number of regression coefficients is moderate relative to the sample size. Recently, 

Zhang et al. (2022) proposed a projection-based cross-validation approach, which split the 

data into two halves and used one half for model selection and the other half for inference 

by constructing projected partial score functions. This approach relied on model selection 

consistency, for which Zhang et al. (2022) employed weighted lasso.

Xia et al. Page 2

Scand Stat Theory Appl. Author manuscript; available in PMC 2023 July 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Our work is pertaining to the “large n, diverging p” framework where p < n and p is allowed 

to increase with n to infinity, which reflects the setting of the motivating BLCSC with n = 

561 and p = 231. Under this framework, we draw inference based on Cox models without 

imposing sparsity to the inverse information matrix. Specifically, we propose a debiased 

lasso approach via solving a series of quadratic programming problems to estimate the 

inverse information matrix. We use quadratic programming as a means of balancing the 

bias-variance trade-off and avoiding the unrealistic to ℓ0 sparsity assumption for the large 

inverse information matrix in the Cox model. Unlike Zhang et al. (2022), we use lasso 

estimates as initial values rather than for variable selection, and our proposed inference 

is not conditional on the selected model. Our work adds to the literature in the following 

aspects. First, unlike Javanmard & Montanari (2014), our work entails careful treatment 

of the sum of non independently nor identically distributed terms in the empirical loss 

function, and we consider random designs instead of deterministic designs. Second, we 

find that the tuning parameter selection for the inverse information matrix estimation is 

crucial for bias correction. For example, a related work (Yu et al., 2021) proposed to select 

tuning parameters by minimizing the cross-validated difference between the product of the 

information matrix with its estimated inverse and the identity matrix, but was found to 

perform poorly. In contrast, we propose a cross-validation procedure to tune parameters by 

hard thresholding debiased estimates when solving the quadratic programming problems, 

which yields satisfactory numerical performance.

The article is organized as follows. Section 2 introduces the proposed debiased lasso 

approach, where the inverse information matrix is estimated via quadratic programming 

with a novel cross-validation procedure for selecting the tuning parameter. Section 3 lays 

the theoretical foundation for reliable inference on linear combinations of the Cox regression 

parameters using debiased lasso estimators. We examine the finite sample performance of 

our proposed method with simulation studies in Section 4, apply it to analyze the BLCSC 

data in Section 5, and conclude the paper with a few remarks in Section 6. We state several 

useful technical lemmas and provide proofs of the main theorems in the Appendix, and defer 

proofs of all the lemmas to the online Supporting Information.

2 ∣ METHOD

2.1 ∣ Background and set-up

We introduce notation that will be used throughout this article. For a vector 

x = (x1, …, xr)T ∈ ℝr, x⊗0 = 1, x⊗1 = x and x⊗2 = xxT. The ℓq-norm for x is 

‖x‖q = (∑j = 1
r ∣ xj ∣q )1 ∕ q, q ≥ 1, and ‖x‖0 = ∑j = 1

r I(xj ≠ 0). For a matrix A = (aij) ∈ ℝm × r, 

the induced matrix norm is defined as ‖A‖q1, q2 = supx ∈ ℝr, x ≠ 0 ‖Ax‖q2 ∕ ‖x‖q1, q1, q2 ≥ 1. In 

particular, ‖A‖1, 1 = max1 ≤ j ≤ r∑i = 1
m ∣ aij ∣, ∥A∥2,2 = σmax(A), the largest singular value of A, 

and ‖A‖∞, ∞ = max1 ≤ i ≤ m∑j = 1
r ∣ aij ∣. The element-wise max norm is denoted as ∥A∥∞ = maxi,j 

∣aij∣. For two positive sequences {dn} and {gn}, we define dn ≍ gn if there are two bounded 

positive constants C and C′ such that C ≤ dn/gn ≤ C′.

A Cox model stipulates that the hazard function for the underlying failure time T, 

conditional on a p-dimensional vector of covariates X = (X(1), …, X(p)) ∈ ℝp, is h(t∣X) = h0(t) 
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exp{XTβ0}, where h0(t) is an unknown baseline hazard function and β0 = (β1
0, …, βp

0)T ∈ ℝp is 

an unknown vector of regression coefficients. With T subject to right censoring, the observed 

survival time is Y = min (T, C), where the censoring time C is assumed to be independent 

of T given X. Let δ = 1 (T ≤ C) denote the event indicator. Based on n independent and 

identically distributed observations {Y i, Xi, δi}i = 1
n , the goal of the paper is to estimate and 

draw inference on the regression coefficients β0, when p < n but p → ∞ as n → ∞.

2.2 ∣ Debiasing the lasso estimator

When p is fixed, a natural approach for inferring β0 is through maximum partial likelihood 

estimation (MPLE), which maximizes the log partial likelihood function

1
n ∑

i = 1

n
Xi

Tβ − log 1
n ∑

j = 1

n
1 (Y j ≥ Y i) exp(Xj

Tβ) δi, (1)

However, with a diverging p of our interest, MPLE may suffer from numerical instability 

and yield unreliable inference; see Section 4.

A more commonly used approach, when p diverges to ∞ as n → ∞, is a lasso estimator, 

defined to be the minimizer of the following penalized negative log partial likelihood:

β = argminβ ∈ ℝp {ℓn(β) + λn‖β‖1},

where ℓn (β) is the negative log partial likelihood function, i.e., the negative of (1), and λn 

> 0 is a tuning parameter to be decided. The first and second order derivatives of ℓn(β) with 

respect to β, that is, the score function and the information matrix, are respectively denoted 

by

ℓ
.

n(β) = − 1
n ∑

i = 1

n
Xi − μ1(Y i; β)

μ0(Y i; β) δi, ℓ̈n(β) = 1
n ∑

i = 1

n μ2(Y i; β)
μ0(Y i; β) − μ1(Y i; β)

μ0(Y i; β)
⊗ 2

δi,

where μr(t; β) = n−1∑j = 1
n 1(Y j ≥ t)Xj

⊗ r exp{Xj
Tβ}, r = 0, 1, 2. 

We also define the weighted average covariate vector 

ηn(t; β) = μ1(t; β) ∕ μ0(t; β) = ∑j = 1
n 1(Y j ≥ t) exp{Xj

Tβ}Xj ∕ ∑j = 1
n 1(Y j ≥ t) exp{Xj

Tβ}.

The lasso estimates tend to be more stable because of the penalization. However, as the lasso 

estimator β  incurs biases (Javanmard & Montanari, 2014), we consider a debiased lasso 

approach to remove its bias and draw inference. Analogous to van de Geer et al. (2014) for 

generalized linear models, we define a debiased lasso estimator for β0 as

b = (b 1, …, b p)T = β − Θℓ
.

n(β), (2)

with −Θℓ
.

n(β) serving as the bias correction term, where Θ is an estimate of the inverse 

information matrix. A reliable estimator, Θ, is important to ensure the validity of the method. 

However, existing methods, most of which pose ℓ0 sparsity assumptions on the true inverse 
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information matrix and estimate sparse matrices Θ using, for instance, nodewise lasso (Kong 

et al., 2021) or CLIME (Yu et al., 2021), perform poorly for Cox models in numerical 

studies. Inspired by the work of Javanmard & Montanari (2014), we propose to estimate 

each row of Θ by solving the following optimization problem for m:

min {mTΣm :m ∈ ℝp, ‖Σm − ej‖∞ ≤ γn}, j = 1, …, p, (3)

where γn ≥ 0 is a tuning parameter, ej is the vector with one at the jth element and zero 

elsewhere, and the p × p matrix

Σ = n−1 ∑
i = 1

n
δi{Xi − η n(Y i; β )} ⊗ 2 . (4)

We obtain Θ as a p × p matrix consisting of all p solutions to (3) as its corresponding 

row vectors. Of note, we use Σ in (3) in lieu of ℓ̈n(β), which is for theoretical convenience 

that becomes evident in Section 3. In fact, under the assumptions in Section 3, we do 

have ‖Σ − ℓ̈n(β)‖∞ = oP(1) with a desirable convergence rate (see the proof of Theorem 1 in 

the Appendix), and the numerical difference in the resulting debiased lasso estimators is 

negligible.

The objective mTΣm in (3) is quadratic in m, and the constraint ‖Σm − ej‖∞ ≤ γn is equivalent 

to Σm − ej ≤ γn1p and −Σm + ej ≤ γn1p, which are linear in m. Hence, (3) falls into a standard 

quadratic programming problem (Boyd & Vandenberghe, 2004). With a smooth shape of 

mTΣm, (3) is unlikely to produce sparse solutions, as opposed to lasso or Dantzig selectors. 

As in Javanmard & Montanari (2014), we do not impose any sparsity conditions on the true 

inverse information matrix. Computationally, the proposed (3) can be implemented fairly 

fast for moderate dimensions and parallelized for high dimensions by using the R function 

solve.QP. Our simulations demonstrate its computational efficiency.

Our approach extends Javanmard & Montanari (2014) in a linear regression setting to 

survival models. However, as ηn(Y i; β ) involves all subjects, Σ given in (4) is no longer a sum 

of independent and identically distributed terms, posing additional theoretical difficulties. 

We have addressed these challenges in our proofs.

2.3 ∣ Selection of the tuning parameter

Selecting a proper tuning parameter γn is critical for bias correction in b , which can be 

illustrated by a simulation study. We simulate n = 500 independent subjects, each with p = 

100 independent covariates generated from N(0, 1). Only two coefficients in β0 in the Cox 

model are non-zero, taking values of 1 and 0.3. The underlying survival time Y follows an 

exponential distribution with a rate of exp (XTβ0), and the censoring time is simulated from 

an exponential distribution with a rate of 0.2 exp (XTβ0), resulting in a censoring rate of 

about 20%. Figure 1 depicts how the estimation bias and the empirical coverage probability 

from the debiased lasso approach change as γn ranges from 0 to 1, revealing that γn within 

the shaded range would yield desirable inference results.
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We have found that, when evaluating cross-validation criteria for choosing γn, directly 

plugging in debiased estimates produces highly unstable values because of accumulative 

errors from inclusion of the estimates for a large number of noise covariates. Instead, 

we propose a cross-validation procedure by hard-thresholding debiased estimates: splitting 

data randomly into K folds (K = 5 or 10), we use the kth fold to obtain a 

debiased lasso estimate b (k), hard-threshold it and plug in the thresholded values for 

computing cross-validation criteria. Hard-thresholding is based on multiple testing with, 

for example, the Bonferroni correction. That is, we take the hard-thresholded values to 

be b j
(k), HT = b j

(k) if n ∣ b j
(k) ∣ ∕ Θjj > zα ∕ (2p), or 0 otherwise, where zα/(2p) is the upper (α/(2p))th 

percentile of N(0, 1), as determined by the asymptotic result given in Theorem 1. Then, 

letting ℓ(k) be the negative log partial likelihood [defined as in (1) but applied to the kth 

testing set] evaluated at b (k), HT , we choose γn that gives the smallest cross-validated 

negative partial likelihood, ∑k = 1
K n(k)ℓ(k), where n(k) is the number of observations in the kth 

testing set.

3 ∣ THEORETICAL RESULTS

We infer cTβ0 for a loading vector c ∈ ℝp or Aβ0 for a loading matrix 

A ∈ ℝI × p, by studying the asymptotic properties for linear combinations of b . Let 

s0 = ‖β0‖0 = #{1 ≤ j ≤ p : βj
0 ≠ 0} be the true model sparsity. Denote the expectation of μr(t; β)

as μr(t; β) = E[1(Y ≥ t)X⊗r exp{XTβ}], and define population-level counterparts for ηn(t; β)
as η0(t; β) = μ1(t; β)/μ0(t; β), and for Σ in (4) as Σβ0 = E [{X − η0(Y; β0)}⊗2δ] . Denote 

by Θβ0 = Σβ0
−1. We enumerate sufficient conditions needed for establishing the theoretical 

properties of the debiased lasso estimator.

Assumption 1. Covariates are almost surely uniformly bounded, i.e., ∥Xi∥∞ ≤ K for some 

constant K < ∞ for i = 1, 2, … , n.

Assumption 2. ∣ Xi
Tβ0 ∣ ≤ K1 uniformly for all i = 1, ⋯ , n with some constant K1 < ∞ 

almost surely.

Assumption 3. The follow-up time stops at a finite time point τ > 0, where the probability π0 

= P(Y ≥ τ) > 0.

Assumption 4. Let

Σβ0(t) = ∫
0

t
μ2(u; β0) − μ1(u; β0)μ1

T(u; β0)
μ0(u; β0)

dH0(u) .

For any t ∈ [0, τ], we assume

cTΘβ0Σβ0(t)Θβ0c
cTΘβ0c

− v(t; c) 0, as n ∞
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for some fixed function v(·; c) > 0.

Assumption 5. The matrix Σβ0 has bounded eigenvalues, i.e., there exist two constants ζmin 

and ζmax such that 0 < ζmin ≤ ζmin (Σβ0) ≤ ζmax(Σβ0) ≤ ζmax < ∞, where ζmin(Σβ0) and 

ζmax(Σβ0) represent the smallest and the largest eigenvalues of Σβ0.

It is common in the literature of high-dimensional inference to assume bounded covariates 

as in Assumption 1. Fang et al. (2017) and Kong et al. (2021) also posed Assumption 2 
for the Cox model inference, i.e., uniform boundedness on the multiplicative hazard. Under 

Assumption 1, Assumption 2 can be implied by bounded overall signal ∥β0∥1. Assumption 3 
is usually used for survival models with censored data (Andersen & Gill, 1982). Assumption 
4 ensures the convergence of a predictable variation process in the martingale central limit 

theorem and thus the asymptotic normality of the debiased lasso estimator. Σβ0(t) can be 

viewed as the information matrix up to time point t. It is easy to see that Σβ0(τ) = Σβ0 and 

v(τ; c) = 1. This assumption states that the limiting function v(τ; c) also depends on c ∈ ℝp, 

the loading vector of interest, which is reasonable; we discuss a potential replacement for 

Assumption 4 outside the framework of martingale central limit theorem in the online 

Supporting Information. The bounded eigenvalue condition on Σβ0 in Assumption 5 is 

standard in inference for high-dimensional models.

Theorem 1 Assume that the two tuning parameters satisfy λn ≍ log(p) ∕ n and γn 

≍ ∥Θβ0∥1,1s0λn. Furthermore, assume ‖Θβ0‖1, 1
2 ps0 log(p) ∕ n 0 as n → ∞. Under 

Assumptions 1–5, for any c ∈ ℝp such that ∥c∥2 = 1 and ∥c∥1 ≤ a* with some absolute 
constant a* < ∞, we have

n cT(b − β0) ∕ (cTΘc)1 ∕ 2 D N(0, 1) .

Theorem 1 provides the basis for simultaneous inference on the regression coefficients, and 

does not involve the ℓ0 sparsity of the rows of the true inverse information matrix Θβ0. As a 

trade-off, ∥Θβ0∥1,1 plays an important role in the theory and can be viewed as a relaxation of 

the ℓ0 sparsity.

In the following, Corollary 2(i) discusses the type I error and the power of testing H0 : cT 

β0 = a0 based on Theorem 1, and Corollary 2(ii) ensures that the corresponding confidence 

intervals achieve nominal coverage probability asymptotically.

Corollary 2 Suppose that the assumptions in Theorem 1 hold.

(i) To test a null hypothesis H0 : cT β0 = a0 versus an alternative hypothesis H1 : cT 

β0 = a1, where a1 ≠ a0, with a known c ∈ ℝp and constant a0 ∈ ℝ, let the test statistic 

T = n(cTb − a0) ∕ (cTΘc)1 ∕ 2. We construct a test function

ϕ(T) =
1 if ∣ T ∣ > zα ∕ 2

0 if ∣ T ∣ ≤ zα ∕ 2
,
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where zα/2 is the upper (α/2)th quantile of N(0, 1). Then, the type I error rate for the test 
ϕ(T) satisfies P(ϕ(T) = 1∣H0) → α, and the power under the alternative H1 satisfies P(ϕ(T) = 

1∣H1) → 1 as n → ∞.

(ii) The two-sided level α confidence interval for cT β0 can be constructed as 

CI(α) = [cTb − zα ∕ 2(cTΘc ∕ n)1 ∕ 2, cTb + zα ∕ 2(cTΘc ∕ n)1 ∕ 2]. Then P(cT β0 ∈ CI(α)∣H0) → 1 − 

α as n → ∞.

With Theorem 1 and the Cramér-Wold device, we can also conduct simultaneous inference 

on multiple linear combinations, i.e., Aβ0 for some l×p matrix A, as summarized in the 

following Theorem 3, with Assumption 4 replaced by its multivariate version, Assumption 
6. Similarly, Corollary 4 provides the asymptotic results for hypothesis testing and 

confidence region in this setting.

Assumption 6. Let Σβ0(t) be the same as in Assumption 4. For a fixed combination matrix of 

interest A ∈ ℝI × p, it holds that

ωTAΘβ0Σβ0(t)Θβ0ATω
ωTAΘβ0ATω

− v′(t; ATω) 0, as n ∞

for any vector ω ∈ ℝI and any t ∈ [0, τ], where v′(·; AT ω) > 0 is some fixed function 

depending on AT ω.

Theorem 3 Let A be an l×p matrix of full row rank such that the number of rows l is fixed, 

‖A‖∞, ∞ = O(1) and AΘβ0AT → F for some fixed l × l matrix F. Assume that the two tuning 

parameters λn ≍ log(p) ∕ n and γn ≍ ∥Θβ0∥1,1s0λn, and that ‖Θβ0‖1, 1
2 ps0 log(p) ∕ n 0 as n → 

∞. Under Assumptions 1–3, 5 and 6, we have

nA(b − β0) D N(0, F) .

Corollary 4 Suppose the assumptions in Theorem 3 hold.

(i) For the l × p matrix A in Theorem 3, under the null hypothesis H0 : Aβ0 = a0 for some 

a0 ∈ ℝI, the statistic T′ = n(Ab − a0)TF−1(Ab − a0) D χ1
2, where F = AΘAT .

(ii) For α ∈ (0, 1), let the confidence region for Aβ0 be 

CR(α) = {a ∈ ℝI : n(Ab − a)TF−1(Ab − a) ≤ χI, α
2 }, where χI, α

2  is the upper αth percentile from 

χI
2. Then P(Aβ0 ∈ CR(α)∣H0) → 1 − α as n → ∞.

Proofs of Theorems 1 and 3 are provided in the Appendix. Corollaries 2 and 4 are directly 

obtained from Theorems 1 and 3, and their proofs are omitted.
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4 ∣ NUMERICAL EXPERIMENTS

For a total of n = 500 subjects, we simulate p = 20, 100, 200 covariates, respectively, 

and generate these covariates from N(0, Σ), where Σ = Ip and AR(1) with the correlation 

parameter of 0.5 as two different setups. Each covariate is truncated at ±2.5. Concerning 

the specifications of the true regression coefficients β0, the first element β1
0 varies from 0 to 

2 with an equal step size of 0.2, four of the other elements are arbitrarily chosen to take 

values of 1, 1, 0.5 and 0.5, and the rest are set to be zero. The underlying survival times T 
and the censoring times C are independently generated from an exponential distribution with 

hazard h(t∣X) = exp{XTβ0}, and from Uniform(1, 20), respectively. Under each simulation 

configuration, 200 datasets are generated.

The methods in comparison include: i) QP: our proposed debiased lasso with quadratic 

programming for matrix Θ; ii) NW: the debiased lasso with node-wise lasso for matrix Θ
in Kong et al. (2021); iii) CLIME: debiased lasso with CLIME for matrix Θ in Yu et al. 

(2021); iv) Decor: decorrelated Wald test in Fang et al. (2017); v) TPCV: projection-based 

cross-validation approach in Zhang et al. (2022) and vi) Oracle: the estimator when the true 

model is known a priori.

For the lasso estimator, we use 10-fold cross-validation, implemented by the R package 

glmnet, to select the tuning parameter λn; see more details in Simon et al. (2011). Five-fold 

cross-validation is used for tuning parameter selection in CLIME, QP and NW. For the 

hard-thresholding step used to select γn as described in Section 2.3, we adopt the Bonferroni 

correction with the adjusted p-value threshold 0.1/p, where p is the number of covariates.

We compare these methods with respect to the bias of the estimated β1
0 (the parameter of 

main interest), its model-based standard error, coverage probability with a significance level 

of α = 0.05 and mean squared error. Figures 2 and 3 show the results for the independent 

and the AR(1) covariance structures, respectively. When p = 20, our proposed method 

(QP) and the decorrelated Wald test (Decor) perform nearly as well as the oracle estimator 

(Oracle) and MPLE. When the dimension is relatively large compared to the sample size, 

i.e., p = 100, 200, next to Oracle, the proposed estimator (QP) displays the smallest biases 

and the confidence intervals with coverage probabilities closest to the nominal level 95% 

for both covariance structures. On the other hand, NW, CLIME, Decor and MPLE incur 

substantial biases as the true value of β0 increases. In addition, owing to the estimation 

of Θβ0 using penalized approaches, the model-based standard error estimates using NW 

and CLIME are shrunk towards zero, underestimating the true variation. As such, the 

four competing methods, except TPCV, present improper confidence interval coverage 

probabilities, whereas our proposed method retains nearly unbiased estimates with coverage 

probabilities close to the nominal level. For inference on the low-dimensional parameter 

β1
0, TPCV shows the smallest estimation bias and the confidence intervals with coverage 

probability closest to 95% as the true signal β1
0 increases. However, TPCV has higher type 

1 error rates when p is large; for instance, when p = 200 in the independent covariate 

setting, the type 1 error rates are 7.1% and 4.1% for TPCV and QP, respectively. Additional 

simulation results on simultaneous inference for all coefficients via false discovery control 
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are provided in the online Supporting Information; the empirical false discovery proportions 

for QP, NW and CLIME are well below the nominal level.

As the model sparsity s0 may impact the performance of the proposed approach, we conduct 

additional simulations to examine its influence by varying s0 to 3, 5, 15. With n = 500 

subjects and p = 100 covariates simulated with AR(1) covariance (ρ = 0.3), the target 

parameter β1
0 is varied from 0 to 2 as before, and the (s0 − 1) coefficients are arbitrarily 

chosen to be realized from a uniform distribution on [−1, −0.5] ⋃ [0.5, 1]. The other setup 

remains the same. Figure 4 shows that, when the model is more sparse (s0 = 3, 5), the 

proposed method QP performs satisfactorily; when s0 = 15, there is slight a decline in 

the coverage probability by QP. However, QP still outperforms NW, CLIME and Decor; 

as TPCV was designed to estimate a low dimensional set of parameters, whereas our 

method estimates all p variables simultaneously, this may explain the slightly compromised 

performance of our method compared to that of TPCV in a finite sample setting.

We next compare the time spent on computing Θ alone (Table 1) among solve.QP in the R 

package quadprog for the proposed quadratic programming procedure, and two commonly 

used R functions for CLIME, namely, clime in the package clime and sugm in the package 

flare. Three candidate values of γn, namely, 0.3, 1 and 2 times of log(p) ∕ n, are used for 

demonstration. We fix β1
0 = 1 and simulate n = 500 observations, with covariates having an 

AR(1) covariance structure and the rest of the setting being identical to what is described 

in the first paragraph of this section. The time columns in Table 1 report the average 

computing time over 10 replications on a MacBook with 2.7GHz Intel Core i5 processor 

and 8GB memory, and the ratio columns compare the average computing time of each 

programming procedure to that of solve.QP for each simulation setting, respectively. Under 

all of the scenarios examined, our proposed implementation with solve.QP is the most 

computationally efficient; for large dimensions, e.g., p = 200, clime takes the longest time 

per dataset on average.

5 ∣ BOSTON LUNG CANCER DATA ANALYSIS

Lung cancer is the leading cause of cancer deaths in the United States, and non-small 

cell lung cancer (NSCLC), accounting for approximately 80% to 85% among all the 

lung cancer cases, is the most common histological type of lung cancer (Houston et al., 

2018). Identification of genetic variants associated with lung cancer patient survival sparks 

modern translational cancer research, and has the potential to refine prognosis and promote 

individualized treatment and clinical care. Despite numerous studies investigating potential 

predisposing genes to lung cancer risks, studies on patient survival usually have small 

sample sizes and the reported genetic markers associated with lung cancer survival have 

been poorly replicated (Bossé & Amos, 2018). The Boston Lung Cancer Survival Cohort 

(BLCSC) is a large epidemiology cohort for investigating the molecular cause underlying 

lung cancer, where lung cancer cases have been enrolled at Massachusetts General Hospital 

and the Dana-Farber Cancer Institute from 1992 to present. We apply the proposed debiased 

lasso method (QP) to a BLCSC cohort with genetic data and simultaneously investigate the 

joint effects of certain genotyped SNPs on NSCLC patient overall survival.
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Included in the analysis are n = 561 NSCLC patients with available diagnosis dates, follow-

up times and genotypes on Axiom arrays. Among all these patients, 437 (77.9%) died and 

124 (22.1%) were censored. The range of the observed survival time is from 6 days to 

8584 days, and the restricted mean survival and censoring times at τ = 8584 days are 2124 

(SE: 105) and 4397 (SE: 187) days, respectively. Patient characteristics, including age at 

diagnosis, race, education level, gender, smoking status, histological type, cancer stage, and 

treatment received, are provided in the online Supporting Information.

A conventional marginal association analysis (Tanget al., 2020) found two potentially 

functional SNPs in the genes HDAC2 and PPARGC1A that were significantly associated 

with NSCLC overall survival. Using the target gene approach, we focus on 32 genes in 

the CARM ER pathway, which is the largest pathway Tang et al. (2020) considered and 

described in their supplementary document and contains the two reported genes HDAC2 
and PPARGC1A, plus 9 genes that Xia et al. (2021) studied to investigate whether the 

susceptibility loci are also associated with patient survival. We extract 312 genotyped SNPs 

from the 32 genes in the CARM ER pathway and the nine target genes described in Xia et 

al. (2021) from the BLCSC data (minor allele frequency > 0.01, genotype call rate > 95%). 

After a pruning step using PLINK (Purcell et al., 2007) to avoid multicolinearity caused 

by SNPs with high linkage disequilibrium, the number of SNPs is reduced to 217. SNPs 

are coded by the number of copies of the minor allele, i.e., 0, 1 or 2, and assumed to have 

additive effects on the log hazard ratio. Therefore, the subset of the BLCSC data we analyze 

include n = 561 NSCLC patients and p = 231 covariates.

Table 2 summarizes the coefficient estimates in the Cox proportional hazards model for 

all patient characteristics and the top ten SNPs ranked by the p-values from the proposed 

method (QP). Results of two methods, QP versus MPLE, are listed side by side. In general, 

QP results in points estimates of smaller magnitudes and smaller standard errors compared 

to MPLE, which is consistent with our observation in the simulated example. MPLE is 

numerically very unstable when the dimension p is large compared to the sample size n. 

The numerical instability arises primarily from inverting the Hessian matrix, which may be 

closer to being singular. On the contrary, Lasso provides a more stabilized initial estimator. 

As a result, the debiased lasso estimator is numerically more stable than MPLE with 

narrower confidence intervals. When the dimension p is very small, the difference between 

the two methods becomes negligible.

Among various patient characteristics, QP found that the adenocarcinoma subtype is 

significantly associated with better patient survival than large cell carcinoma, consistent 

with the results of Janssen-Heijnen & Coebergh (2001), which was, however, not detected 

by MPLE. QP further identified that AX-11672686 in CHRNA2, AX-11673610 in GRIP2 
and AX-11264571 in BRCA2 are the three most significant SNPs associated with NSCLC 

patient survival, after adjusting for all the other demographic and genetic risk factors. 

Interestingly, AX-11672686 was found to be associated with nicotine dependence by Wang 

et al. (2014). AX-11264571 has been found to be associated with breast cancer (Qiu et al., 

2010) and may also be associated with lung cancer susceptibility, although not achieving 

genome-wide significance in Yu et al. (2011). AX-11673610 or GRIP1 seems to be a new 
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finding as, to our knowledge, they have yet been reported in the lung cancer literature (Bossé 

& Amos, 2018)

To understand the impact of the socioeconomic status on cancer survival, we test for the 

association between education level (no high school, high school, or at least 1–2 years 

of college) and lung cancer patient survival. With a loading matrix A2×p = (e2, e3)T 

corresponding to the contrast of the effects of high school graduate and at least 1–2 years 

of college with the reference level of no high school, the test statistic is 0.259 with a 

p-value of 0.879, suggesting no statistical evidence for the association between education 

level and NSCLC patient survival, after adjusting all other demographic characteristics and 

genetic markers. The results confirm a large-scale clinical trial on lung cancer patients which 

reported “education level was not predictive of survival” (Herndon et al., 2008).

In summary, these results illustrate the utility of our method in providing reliable inference 

for scientific discovery and interpretation, while more in-depth biological investigations are 

warranted to validate our findings.

6 ∣ CONCLUDING REMARKS

We have proposed a debiased lasso approach for reliable estimation and inference in the 

Cox proportional hazards model when p < n but is allowed to diverge to ∞ with n. Unlike 

existing methods (Fang et al., 2017; Yu et al., 2021; Kong et al., 2021), we resort to a 

quadratic programming procedure for estimating the inverse information matrix, without 

imposing an unrealistic sparsity assumption on it. The proposed debiased lasso estimator 

is asymptotically unbiased and normally distributed under mild regularity conditions. Our 

simulations demonstrate that, when p is very small, the proposed method behaves similarly 

to the conventional MPLE; when p is relatively large, it outperforms the competitors in bias 

correction and confidence interval coverage.

The rationale behind using a quadratic programming procedure to estimate the inverse 

information matrix has stemmed from the work in linear models by Javanmard & Montanari 

(2014). The main advantages of this approach are: i) we do not need to impose unrealistic ℓ0 

sparsity assumptions on the true inverse information matrix Θβ0; ii) it can be implemented 

by using existing packages and parallelized. A limitation of the proposed method is that 

the developed theory in Section 3 applies only to the “large n, diverging p” scenario; 

our numerical experience seems to suggest that, although the proposed method can be 

numerically carried out when p > n, only small γn values are feasible for quadratic 

programming in (3) to have stable solutions.

Selection of tuning parameters has been a persistent issue in high-dimensional estimation 

and inference. By theoretical and empirical studies, we have found that the proposed 

inferential method is not very sensitive to the tuning parameter λn, provided that λn lies 

within a reasonable range for sustaining reasonable lasso estimates. In contrast, choices of 

γn may more influence the results. Currently, we use a single tuning parameter γn to govern 

the debiased estimates for all βj’s as shown in (3). Along the line of Cai et al. (2016) and to 
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adapt to the variability of individual coefficients, we may estimate the rows of Θ via a series 

of optimization problems for j = 1, ⋯ , p:

min
m ∈ ℝp

{mT Σ m : ∣ (Σm − ej)k ∣ ≤ γn, jk, 1 ≤ k ≤ p},

where γn,j k’s are adaptively estimated via a properly designed procedure. However, it would 

involve complicated theoretical analysis in the setting of Cox models, e.g., deriving the rates 

of γn,j k and designing an adaptive procedure for estimating γn,j k. This level of complexity 

might be beyond the scope of this article, and we will pursue it more thoroughly in the 

future.

Lastly, we touch upon the important issue of drawing inference with p > n, though not 

a main focus of this paper. Several methods (Fang et al., 2017; Yu et al., 2021; Kong 

et al., 2021) had been developed for handling “p > n” inference problems; however, our 

analytical and simulation studies have pinpointed their possible limitations in providing 

sufficient bias correction and reliable confidence intervals even within the “large n, diverging 

p” framework, likely due to the sparsity assumptions on the inverse information matrix that 

may not hold in survival settings. One possible solution, by going beyond the debiased lasso 

framework, is to perform repeated data splitting for model selection and estimation on two 

separate parts of the data and smooth the resulting estimates from multiple splits; see Fei & 

Li (2021) for inference on high dimensional generalized linear models. The validity of the 

method hinges upon the sure screening property for the initial model selection, and we will 

explore its use in survival settings in the future.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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APPENDIX

We first present the useful lemmas for proving the main theorems, with detailed proofs 

deferred to the online Supporting Information. Some of these lemmas present important 

results in their own right. The proofs of the Theorem 1 and Theorem 3 are presented 

following the lemmas.
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Additional notation from counting processes and martingale theory is defined for the proofs. 

Under the Cox model, define the counting process Ni(t) = 1(Yi ≤ t, δi = 1) and its 

compensator Ai(t; β) = ∫0
t1(Y i ≥ s) exp(Xi

Tβ)dH0(s), where H0(t) = ∫0
tℎ0(s)ds is the cumulative 

baseline hazard function, i = 1, ⋯ , n. Let Mi (t; β) = Ni(t) − Ai(t; β), and Mi(t; 
β0) is a martingale with respect to the filtration ℱi(t) = σ{Ni(s), 1(Y i ≥ s), Xi : s ∈ (0, t]}. It 

follows that ηn(t; β), and in particular, ηn(t; β0), is predictable with respect to the filtration 

ℱ(t) = σ{Ni(s), 1(Y i ≥ s), Xi : s ∈ (0, t], i = 1, ⋯, n}, an observation useful for derivations. 

Notation-wise, we do not distinguish between the usual expectation and the outer 

expectation.

Lemma A1 below characterizes the difference between ηn(t; β0) and η0(t; β0), which 

facilitates the proof of the asymptotic distribution for the leading term ncTΘβ0ℓ
.

n(β0) as 

well as the establishment of the convergence rate for Σ − Σβ0.

Lemma A1 Under Assumptions 1–3, we have

sup
t ∈ [0, τ]

∣ μ0(t; β0) − μ0(t; β0) ∣ = OP( log(p) ∕ n),

sup
t ∈ [0, τ]

‖μ1(t; β0) − μ1(t; β0)‖∞ = OP( log(p) ∕ n),

sup
t ∈ [0, τ]

‖ηn(t; β0) − η0(t; β0)‖∞ = OP( log(p) ∕ n) .

Lemma A2 establishes the asymptotic distribution for the leading term −cTΘβ0ℓ
.

n(β0) in the 

decomposition of cT (b − β0).

Lemma A2 Assume p2 log(p)/n → 0. Under Assumptions 1–5, for any c ∈ ℝp such that ∥c∥2 

= 1 and ∥c∥1 ≤ a* with some absolute constant a* < ∞,

ncTΘβ0ℓ
.

n(β0)
cTΘβ0c

D N(0, 1) .

Lemma A3 provides theoretical properties of the lasso estimator in the Cox model. This is a 

direct result from Theorem 1 in Kong & Nan (2014), and thus the proof is omitted.

Lemma A3 Under Assumptions 1–5, for the lasso estimator β , we have

‖β − β0‖1 = OP(s0λn), 1
n ∑

i = 1

n
∣ Xi

T(β − β0) ∣2 = OP(s0λn
2),

where s0 = ∣ {j :βj
0 ≠ 0, j = 1, ⋯, p} ∣ is the true model size.

Lemma A4 Under Assumptions 1–5, if λn ≍ log(p) ∕ n, with probability going to 1, we have 

‖Θβ0Σ − Ip‖∞ ≤ γn, for γn ≍ ∥Θβ0∥1,1s0λn.
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Lemma A4 shows that, unlike in a linear regression model where the tuning parameter in 

the constraint takes the order of log(p) ∕ n, the Cox model requires a potentially larger γn 

for the feasibility of Θβ0 depending on ∥Θβ0∥1,1, because the information matrix involves the 

regression coefficients.

Lemma A5 Assume lim supn→∞ pγn ≤ 1−ϵ′ for some ϵ′ ∈ (0, 1). Then, under the 
assumptions in Lemma A4, ‖Θ − Θβ0‖∞ = OP(γn‖Θβ0‖1, 1).

Lemma A6 Under Assumptions 1–3 and 5, for each t > 0,

P ‖ℓ
.

n(β0)‖∞ > t ≤ 2pe−nt2 ∕ (8K2) .

Now we complete the proofs of Theorem 1 and Theorem 3.

Proof of Theorem 1. The first order Taylor expansion of ℓ
.

nj(β), the jth component in ℓ
.

n(β), at 

β0, is

ℓ
.

nj(β) = ℓ
.

nj(β0) + [ℓ̈nj(β (j))]T(β − β0), (A1)

where β (j) lies between β  and β0, and ℓ̈nj(β) denotes the jth column in the Hessian matrix 

ℓ̈n(β). Let the p × p matrix Bn = (ℓ̈n1(β (1)), …, ℓ̈np(β (p)))T . Suppose c ∈ ℝp is a p-dimensional 

vector, and the parameter of interest is cT β0. Plugging (A1) in (2), we have

cT(b − β0) = − cTΘβ0ℓ
.

n(β0) − cT(Θ − Θβ0)ℓ
.

n(β0)
− cT(ΘΣ − Ip)(β − β0) + cTΘ(Σ − Bn)(β − β0) .

(A2)

The first term in (A2) is the leading part and is asymptotically normal as shown in Lemma 

A2, and the others will be proved to be asymptotically negligible.

First, we show that ncT (Θ − Θβ0)ℓ
.

n(β0) = oP(1). By Lemma A5 and Lemma A6,

∣ ncT(Θ − Θβ0)ℓ
.

n(β0) ∣ ≤ n‖c‖1 ⋅ ‖Θ − Θβ0‖∞, ∞ ⋅ ‖ℓ
.

n(β0)‖∞
≤ n a∗OP(pγn‖Θβ0‖1, 1)OP( log(p) ∕ n)
= OP(‖Θβ0‖1, 1pγn log(p))
= oP(1) .

Second, we show that ncT (ΘΣ − Ip)(β − β0) = oP(1). By Lemma A3,

∣ ncT(ΘΣ − Ip)(β − β0) ∣ ≤ n‖c‖1‖(ΘΣ − Ip)(β − β0)‖∞

≤ n a∗‖ΘΣ − Ip‖∞‖β − β0‖1

≤ n a∗γn‖β − β0‖1
= OP( nγns0λn)
= oP(1) .

Next, we show that ncTΘ(Σ − Bn)(β − β0) = oP(1). Note that
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Σ − Bn = (Σ − Σβ0) + (Σβ0 − ℓ̈n(β0)) + (ℓ̈n(β0) − Bn) . (A3)

By the proof of Lemma A4, we see that with λn ≍ log(p) ∕ n, ‖Σ − Σβ0‖∞ = OP(s0λn). We 

rewrite

Σβ0 − ℓ̈n(β0) = E∫
0

τ

{Xi − η0(t; β0)} ⊗ 2eXi
Tβ01(Y i ≥ t)ℎ0(t)dt

− ∫
0

τ

μ2(t; β0) − μ1(t; β0)μ1
T(t; β0)

μ0(t; β0)
ℎ0(t)dt

− 1
n ∑

i = 1

n ∫
0

τ μ2(t; β0)
μ0(t; β0)

− μ1(t; β0)
μ0(t; β0)

⊗ 2
dMi(t)

= ∫
0

τ

{μ2(t; β0) − μ2(t; β0)}ℎ0(t)dt

+ ∫
0

τ μ1(t; β0)μ1
T(t; β0)

μ0(t; β0)
− μ1(t; β0)μ1

T(t; β0)
μ0(t; β0)

ℎ0(t)dt

− 1
n ∑

i = 1

n ∫
0

τ μ2(t; β0)
μ0(t; β0)

− μ1(t; β0)
μ0(t; β0)

⊗ 2
dMi(t) .

(A4)

Similar to the proof in Lemma A1, we can 

show that supt ∈ [0, τ] ‖μ2(t; β0) − μ2(t; β0)‖∞ = OP( log(p) ∕ n), and thus 

‖∫0
τ{μ2(t; β0) − μ2(t; β0)}ℎ0(t)dt‖∞ ≤ supt ∈ [0, τ] ‖μ2(t; β0) − μ2(t; β0)‖∞∫0

τℎ0(t)dt = OP( log(p) ∕ n). 
Since

μ1μ1
T

μ0
− μ1μ1

T

μ0
= μ1μ1

T

μ0μ0
(μ0 − μ0) + 1

μ0
[(μ1 − μ1)μ1

T + μ1(μ1 − μ1)T ]

in the second term of (A4), by Assumption 1 and Lemma A1,

∫
0

τ μ1(t; β0)μ1
T(t; β0)

μ0(t; β0)
− μ1(t; β0)μ1

T(t; β0)
μ0(t; β0)

ℎ0(t)dt
∞

= OP( log(p) ∕ n) .

n−1∑i = 1
n ∫0

τ μ2(t; β0) ∕ μ0(t; β0) − [μ1(t; β0) ∕ μ0(t; β0)] ⊗ 2 dMi(t) is a sum of n 

independent and identically distributed mean zero terms, and each term 

∫0
τ μ2(t; β0) ∕ μ0(t; β0) − [μ1(t; β0) ∕ μ0(t; β0)] ⊗ 2 dMi(t)

∞
 is bounded by 2K2(1 + eK1 H0(τ)) 

uniformly for all i and t ∈ [0, τ]. Similar to the proof of ‖An‖∞ = OP( log(p) ∕ n) in Lemma 

A4, by Hoeffding’s concentration inequality,

1
n ∑

i = 1

n ∫
0

τ μ2(t; β0)
μ0(t; β0)

− μ1(t; β0)
μ0(t; β0)

⊗ 2
dMi(t)

∞

= OP( log(p) ∕ n) .
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It is easy to see that

sup
t ∈ [0, τ]

μ2(t; β0)
μ0(t; β0)

− μ1(t; β0)
μ0(t; β0)

⊗ 2
− μ2(t; β0)

μ0(t; β0)
− μ1(t; β0)

μ0(t; β0)

⊗ 2

∞

= OP
log(p)

n .

Then

1
n ∑

i = 1

n ∫
0

τ μ2(t; β0)
μ0(t; β0)

− μ1(t; β0)
μ0(t; β0)

⊗ 2
dMi(t)

− 1
n ∑

i = 1

n ∫
0

τ μ2(t; β0)
μ0(t; β0)

− μ1(t; β0)
μ0(t; β0)

⊗ 2
dMi(t)

∞

= OP
log(p)

n ,

and thus for the third term in (A4),

1
n ∑

i = 1

n ∫
0

τ μ2(t; β0)
μ0(t; β0)

− μ1(t; β0)
μ0(t; β0)

⊗ 2
dMi(t)

∞

= OP( log(p) ∕ n) .

Therefore, by (A4), ‖Σβ0 − ℓ̈n(β0)‖∞ = OP( log(p) ∕ n).

For the (j, k)th element in ℓ̈n(β), denoted as ℓ̈njk(β), by the mean value theorem, we have

ℓ̈njk(β
(j)) − ℓ̈njk(β0) = (β (j) − β0)T ∂ℓ̈njk(β)

∂β β = β(jk),

where β(jk) lies in the segment between β (j) and β0. Under Assumptions 1–3, 

when ∥β − β0∥1 ≤ δ′ for δ′ > 0 small enough, ‖∂ℓ̈njk(β) ∕ ∂β‖∞ is bounded by 

some constant related to δ′ uniformly for all (j, k). Since s0λn = o(1), we have 

‖Bn − ℓ̈n(β0)‖∞ ≤ OP(‖β − β0‖1) = OP(s0λn).

Combining the three parts in (A3), we have that for λn ≍ log(p) ∕ n, ‖Σ − Bn‖∞ = OP(s0λn). 
Then

∣ ncTΘ(Σ − Bn)(β − β0) ∣ ≤ n‖c‖1‖Θ‖∞, ∞‖Σ − Bn‖∞‖β − β0‖1

≤ OP( n‖Θβ0‖1, 1(s0λn)2)
= oP(1) .

We show that the variance estimator is consistent, i.e., cT (Θ − Θβ0)c P 0 as n → ∞.

∣ cT (Θ − Θβ0)c ∣ ≤ ‖c‖1
2‖Θ − Θβ0‖∞

≤ a∗
2OP(γn‖Θβ0‖1, 1) = oP(1) .
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Finally, by the arguments above and Slutsky’s theorem, it holds that 

ncT (b − β0) ∕ (cTΘc)1 ∕ 2 D N(0, 1).

Proof of Theorem 3. We prove Theorem 3 using the Cramér-Wold device. For any ω ∈ ℝI, 

where the dimension l is a fixed integer free of n and p, let c = AT ω in Theorem 1. 

Essentially, we only require ∥c∥1 = ∥AT ω∥1 is upper bounded, and it is not essential 

to force ∥c∥2 = 1. Since ‖A‖∞, ∞ = O(1) (by assumption) and ‖ω‖1 = O(1) (fixed l), then 

‖ATω‖1 ≤ ‖AT‖1, 1‖ω‖1 = ‖A‖∞, ∞‖ω‖1 = O(1).
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FIGURE 1. 
Estimation bias and 95% confidence interval coverage probability for β1

0 = 1 with the tuning 

parameter γn ∈ [0, 1 ] in a simulated example with n = 500 observations and p = 100 

independent covariates, based on 200 simulations. The methods in comparison include the 

proposed debiased lasso with quadratic programming (QP), the maximum partial likelihood 

estimation (MPLE) and the oracle estimator (Oracle) obtained from fitting the true model.
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FIGURE 2. 
Estimation bias, coverage probability, model-based standard error and mean squared error, 

based on 200 simulations, each with n = 500 observations and independent covariance 

structure for covariates.
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FIGURE 3. 
Estimation bias, coverage probability, model-based standard error and mean squared error, 

based on 200 simulations, each with n = 500 observations and AR(1) covariance structure 

for covariates (ρ = 0.5).
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FIGURE 4. 
Estimation bias, coverage probability, model-based standard error and mean squared error, 

based on 200 simulations, each with n = 500 observations and AR(1) covariance structure (ρ 
= 0.3) for p = 100 covariates. The model sparsity parameter s0 = 3, 5, 15.
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TABLE 1

Comparison of the computational time spent on computing Θ. Time (in seconds) is averaged over 10 

replications under each setting. Time ratio is with respect to the proposed method implemented using 

solve.QP.

solve.QP clime flare

p = 20 Time Ratio Time Ratio Time Ratio

γn = 0.3√log(p)/n 0.0016 1.0 0.0392 24.5 0.1898 118.6

γn = √log(p)/n 0.0015 1.0 0.0373 24.9 0.1597 106.5

γn = 2√log(p)/n 0.0012 1.0 0.0338 28.2 0.1522 126.8

p = 100 Time Ratio Time Ratio Time Ratio

γn = 0.3√log(p)/n 0.3159 1.0 4.3452 13.8 5.8860 18.6

γn = 1√log(p)/n 0.0922 1.0 3.4164 37.1 2.0754 22.5

γn = 2√log(p)/n 0.0665 1.0 2.6281 39.5 0.3663 5.5

p = 200 Time Ratio Time Ratio Time Ratio

γn = 0.3√log(p)/n 4.3886 1.0 64.7047 14.7 52.2224 11.9

γn = 1√log(p)/n 0.9039 1.0 47.0320 52.0 21.7229 24.0

γn = 2√log(p)/n 0.6196 1.0 33.0308 53.3 2.5536 4.1
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