Lawrence Berkeley National Laboratory

Recent Work

Title

CANCELLED Scaled beam merging experiment for heavy ion inertial fusion

Permalink

https://escholarship.org/uc/item/6d21w3xn

Authors

Seidl, P.A. Celata, C.M. Faltens, A. et al.

Publication Date

2002-02-20

Scaled beam merging experiment for heavy ion inertial fusion

P.A. Seidl*, C.M. Celata, A. Faltens, E. Henestroza,

Lawrence Berkeley National Laboratory, Berkeley, CA 94720

S.A. MacLaren

Lawrence Livermore National Laboratory, Livermore, CA 94550

Receipt date: June 11, 2003

Abstract

Transverse beam combining is a cost-saving option employed in many designs for heavy ion fusion

drivers. However, the resultant transverse phase space dilution must be minimized so as not to sacrifice

focusability at the target. A prototype combining experiment has been completed employing four 3-mA Cs+

beams injected at 160 keV. The focusing elements upstream of the merge consist of four quadrupoles and a

final combined-function element (quadrupole and dipole). Following the merge, the resultant single beam

is transported in a single alternating gradient channel where the subsequent evolution of the distribution

function is diagnosed. The results are in fair agreement with particle-in-cell simulations. They indicate that

for some HIF driver designs, the phase space dilution from merging is acceptable.

PACS: 41.85.Ne, 52.58.Hm, 52.59.Sa, 52.65.Rr