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Abstract

Birds are highly susceptible to aspergillosis, which can manifest as a primary infection in both domestic and wild birds. Aspergillosis in wild
birds causes mortalities ranging in scale from single animals to large-scale epizootic events. However, pathogenicity factors associated with
aspergillosis in wild birds have not been examined. Specifically, it is unknown whether wild bird-infecting strains are host-adapted (i.e. phy-
logenetically related). Similarly, it is unknown whether epizootics are driven by contact with clonal strains that possess unique pathogenic
or virulence properties, or by distinct and equally pathogenic strains. Here, we use a diverse collection of Aspergillus fumigatus isolates
taken from aspergillosis-associated avian carcasses, representing 24 bird species from a wide geographic range, and representing individ-
ual bird mortalities as well as epizootic events. These isolates were sequenced and analyzed along with 130 phylogenetically diverse
human clinical isolates to investigate the genetic diversity and phylogenetic placement of avian-associated A. fumigatus, the geographic
and host distribution of avian isolates, evidence for clonal outbreaks among wild birds, and the frequency of azole resistance in avian
isolates. We found that avian isolates were phylogenetically diverse, with no clear distinction from human clinical isolates, and no sign of
host or geographic specificity. Avian isolates from the same epizootic events were diverse and phylogenetically distant, suggesting
that avian aspergillosis is not contagious among wild birds and that outbreaks are likely driven by environmental spore loads or host comor-
bidities. Finally, all avian isolates were susceptible to Voriconazole and none contained the canonical azole resistance gene variants.

Keywords: Aspergillus fumigatus; azole resistance; avian; bird; population genomics

Introduction
Aspergillus fumigatus is one of the most common causative agents
of animal-associated fungal infections (Seyedmousavi et al. 2015).
The fungus is capable of causing a suite of syndromes ranging
from allergy to fatal invasive infections in hosts as phylogeneti-
cally diverse as humans, harbor seals, honey bees, sea fans, and
birds (Tekaia and Latg�e 2005; Seyedmousavi et al. 2015; Pang et al.
2021). Invasive Aspergillus infection (aspergillosis) in humans is a
growing global health concern, effecting an estimated 300,000
people per year (Leading International Fungal Education 2021).
Aspergillosis causes up to 90% mortality in individuals with com-
promised immune systems and comorbidities such as leukemia,
lung or other organ transplants, obstructive pulmonary diseases,
autoimmune disorders, cirrhosis of the liver, influenza, and
COVID-19 (Vanderbeke et al. 2018; Latg�e and Chamilos 2019;
Koehler et al. 2020). Frontline treatment options are centered on
the use of azole antifungals, but the effectiveness of these

treatments is under threat by the increasing prevalence of tria-

zole-resistant strains (Howard et al. 2006).
Unlike human aspergillosis, avian aspergillosis can manifest

as a primary infection, mainly in the respiratory system, but sys-

temic infections have also been documented in skin, eyes, liver,

kidney, spleen, heart, brain, ovary, joints, and bone (Beernaert

et al. 2010; Leishangthem et al. 2015). It has been proposed that

birds are particularly susceptible to aspergillosis due to physio-

logical and immunological differences such as limited capacity

for mucociliary clearance (lack of ciliated epithelium), the pres-

ence of an oxygen-rich air sac system with scarce immune sur-

veillance cells, and a lack of an epiglottis or diaphragm to block

inhalation and expulsion of spores (Tell 2005; Tell et al. 2019).

Avian aspergillosis includes both acute and chronic forms, which

are thought to be driven by different underlying etiologies.

Whereas acute infections primarily affect young birds and are

thought to be associated with high levels of spore inhalation,
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chronic infection is associated with adult animals and various
levels of immunosuppression (Cacciuttolo et al. 2009). Also
unique among birds is the high prevalence of conidiation during
infection (Tell et al. 2019), increasing the potential dissemination
of infective strains via fecal matter and the decay of infected car-
casses, particularly for migratory birds with wide geographic
ranges (Melo et al. 2020b).

Avian aspergillosis is overwhelmingly caused by the species A.
fumigatus, and infrequently by other Aspergilli including Aspergilli
flavus, Aspergilli niger, Aspergilli glaucus, and Aspergilli nidulans
(Beernaert et al. 2010; Sabino et al. 2019). Aspergillosis is known to
affect both captive and wild birds (Talbot et al. 2018; Melo et al.
2020a), but has been most studied in captive populations, where
it causes high morbidity and mortality, and significant economic
losses (Arn�e et al. 2011). Poultry farms can provide ideal condi-
tions for Aspergillus growth and infection, including the presence
of cellulose-rich feedstuffs and bedding material, warmth, high
humidity, high nutrient levels, and overcrowding that facilitates
the transmission of disease and the inhalation of fungal spores
(Cafarchia et al. 2014). In addition to providing a suitable environ-
ment for the growth of spores arriving from ambient air sources,
high densities of spores may arrive in the form of contaminated
bedding or feedstuffs (Arn�e et al. 2011; Aliyu et al. 2016).

In wild birds, aspergillosis is understudied and infection sour-
ces are less well understood. Aspergillosis deaths in wild birds
range from isolated cases affecting a single individual to large
epizootic events affecting thousands of individuals (Neff 1955;
McDougle and Vaught 1968; Melo et al. 2020a). Previous work has
shown that A. fumigatus is a common contaminant of animal
feed such as silage (Seyedmousavi et al. 2015) and grain (Zulkifli
and Zakaria 2017), and epizootic aspergillosis events in wild
ducks and geese are suspected to result from exposure to these
contaminated feed sources (Bellrose and Hanson 1945; Neff
1955). Community analysis of contaminated grain has shown the
simultaneous cocolonization by multiple species of Aspergillus
(Zulkifli and Zakaria 2017). However, it is unknown whether each
fungal species is represented primarily by homogeneous (clonal)
populations, or by more diverse isolate pools. Similarly, it is un-
known whether epizootic infections are driven by contact with
clonal A. fumigatus that possess unique pathogenesis or virulence
properties, or if epizootic events are associated with diverse fun-
gal populations and driven primarily by environmental and host
life-history factors, such as high spore load or poor host immune
status. In addition, stress is likely to play an important role in
chronic aspergillosis infections, including stress induced by mi-
gration (Ewbank et al. 2021), pollution (Daoust et al. 1998; Jung
et al. 2009), smoke inhalation (Kinne et al. 2010), and malnutrition
(Redig et al. 1980; Deem 2003; Gulcubuk et al. 2018).

The increasing prevalence of azole-resistant strains of A. fumi-
gatus is a growing global concern (Chowdhary et al. 2013; Sewell
et al. 2019; Duong et al. 2021). Azoles are used in the poultry indus-
try as a decontamination agent, occasionally as a prophylactic
agent, and as a prophylactic or therapeutic agent for captive wild
birds kept as pets, in zoos, or in wildlife rehabilitation centers
(Bunting et al. 2009; Krautwald-Junghanns et al. 2015). Because
long-term azole treatment has been associated with acquired A.
fumigatus azole resistance in human patients (Dannaoui et al.
2001), the habitual use of azoles as prophylactic agents for avian
species raises concerns that birds could play a role in both the ac-
quisition of resistant variants and the dissemination of resistant
strains (Beernaert et al. 2009; Melo et al. 2020b).

Here, we investigate 51 isolates of A. fumigatus isolated from
avian carcasses with aspergillosis. These isolates were collected

from 24 species of birds from across the United States (plus 1 iso-
late from New Zealand) and represented both individual bird
mortalities and epizootic events. These 51 isolates were se-
quenced and analyzed along with 130 phylogenetically diverse
human clinical isolates for which genome data was publicly
available to assess: (1) the genetic diversity and phylogenetic
placement of avian associated A. fumigatus relative to human
clinical isolates, (2) whether there were any phylogenetic rela-
tionships based on geography or host species, (3) whether epi-
zootics were associated with clonal strains among wild bird
populations (with implications for a common inoculum source
and differential virulence between strains), and (4) the presence
of mutations in antifungal resistance genes, and the frequency of
Voriconazole resistant phenotypes in avian isolates.

Methods
Isolate information
Fifty-one isolates of A. fumigatus were collected from postmortem
avian sources between December 2014 and October 2019 from
locations across the United States (Fig. 1a). One of the strains,
ICMP_23421, was isolated from a k�ak�ap�o parrot [Strigops habrop-
tila in New Zealand and was obtained from the National Center
for Biotechnology Information (NCBI; BioProject no.
PRJNA726267)]. Including the k�ak�ap�o strain, our avian dataset
represented 24 bird species, classified into 4 host ecology catego-
ries, including freshwater birds (n¼ 39), sea birds (n¼ 4), raptors
(n¼ 7), and parrot (n¼ 1), and included 16 isolates from cases of
individual birds with aspergillosis, 28 isolates from epizootic
events (10 events in total, and 7 events where multiple isolates
were taken from the same event), and 3 isolates from potential
epizootic events (3 separate events) (Fig. 1, Supplementary Table
1). Event size ranged from 2 to 300 individuals, with an average of
82 (Supplementary Table 2). Forty-eight of the 51 isolates origi-
nated from birds for which primary aspergillosis was diagnosed
as the cause of death; the remaining 3 isolates represented sus-
pected cases of secondary infections. Isolates were taken from a
total of 5 tissue types including neck muscle (n¼ 1), heart (n¼ 3),
liver (n¼ 9), lung (n¼ 17), and air sacs (n¼ 18). Two isolates were
taken from pooled samples of lung and air sac tissue. In addition
to the 51 avian-derived isolates noted above, sequence data for
130 publicly available A. fumigatus isolates were obtained from
the NCBI’s Sequence Read Archive (SRA) for population genomic
comparison (Supplementary Table 3). These represented human
clinical isolates from 8 distinct geographic origins including the
United States, United Kingdom, Spain, India, The Netherlands,
Canada, Japan, and Portugal.

Genome sequencing
Biomass was collected from cultures grown for 24 h in liquid
LGMM þ YE media, flash frozen in liquid nitrogen, and lyophi-
lized for approximately 10 h. Lyophilized biomass was homoge-
nized using glass beads, treated with RNAse, and extracted using
Phenol: Chloroform: Isoamyl alcohol. DNA concentration was
quantified using a Qubit 2.0 Fluorometer (Invitrogen, Waltham,
MA, USA) with the Broad Range protocol and stored at �20�C un-
til sequencing. Illumina paired-end DNA sequencing libraries
were prepared at the UCR Institute for Integrative Genome
Biology Genomics Core using the NEBNext Ultra II Library Prep
Kit (New England Biolabs, Ipswich, MA, USA) following manufac-
turer recommendations for paired-end library construction
and barcoding for multiplexing. Genome sequencing was
carried out on an Illumina NovoSeq 6000 machine at the University
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of California Berkeley Vincent J. Coates Genomics Sequencing
Laboratory. All new genome data generated as part of this
project were deposited into the NCBI SRA under BioProject no.
PRJNA773725.

Population genomics
Sequence reads for each strain were aligned to the A. fumigatus
Af293 reference genome downloaded from FungiDB v.39
(Basenko et al. 2018), using BWA v0.7.17 (Li and Durbin 2009) with
the “mem” aligner. The alignments were processed with samtools
v1.10 (Li et al. 2009) using the fixmate and sort commands to store
alignments in the CRAM format. Duplicate reads were removed
using MarkDuplicates from the picard toolkit v2.18.3 (http://
broadinstitute.github.io/picard, accessed Aug 5, 2021).
Alignments were further processed to realign reads around inser-
tion/deletions to reduce false-positive variant calls using
RealignerTargetCreator and IndelRealigner in GATK v3.7 (Van der
Auwera et al. 2013). Single Nucleotide Polymorphisms (SNP) and
short Insertion/Deletion (INDEL) variants were genotyped using
HaplotypeCaller in GATK v4.0, to create a GVCF file for each strain,
which were later combined with the GenotypeGVCFs tool to produce
a Variant Call Format (VCF) file. A subsequent VCF of high quality
variants was selected by filtering variants using GATK’s
SelectVariants and parameters indicated for GATK Best Practices
(window-size¼ 10, QualByDept <2.0, MapQual <40.0, QScore <100,
MapQualityRankSum <-12.5, StrandOddsRatio > 3.0,
FisherStrandBias >60.0, ReadPosRankSum <-8.0. for SNPs, and
window-size¼ 10, QualByDepth <2.0, MapQualityRankSum <-
12.5, StrandOddsRatio >4.0, FisherStrandBias >200.0,
ReadPosRank <-20.0, InbreedingCoeff <-0.8 for INDELs). These

variants were further trimmed by intersecting the VCF with loca-
tions of transposable elements (TEs) annotated in FungiDB to re-
move those overlapping TEs using BEDtools subtract (Quinlan
and Hall 2010). The effect of variants overlapping genes were an-
notated with snpEff (Cingolani et al. 2012). The resulting VCF file
of variants were analyzed using a set of custom scripts in the R
programing language. Pipelines for VCF production and all scripts
used in data analysis are available from the Git repository for this
project.

Phylogenomics
Aligned SNPs from all isolates were used to construct a phylog-
eny using the Maximum Likelihood algorithm in IQ-TREE v2.1.1
(Nguyen et al. 2015), with a þASC to use the ascertainment bias
correction model for SNP data. The GTRþFþASC nucleotide sub-
stitution model was chosen based on Bayesian information crite-
ria (BIC) tested by the ModelFinder function in IQ-TREE.
Confidence in the phylogenetic tree was assessed by 1000 boot-
straps using UFBoot ultrafast bootstrapping approximation
(Hoang et al. 2018) on the 94,704 parsimony informative sites.
Tree visualization and variant mapping were carried out using
the R packages ggtree (Yu 2020), ape (Paradis and Schliep 2019),
and phytools (Revell 2012).

Antifungal resistance
We screened avian isolates of A. fumigatus for previously charac-
terized antifungal resistance genes mentioned in the literature
and MARDy database for this species (http://mardy.dide.ic.ac.uk)
(13 genes in total, Supplementary Table 4). Specific variant scans
were conducted on 6 genes containing characterized amino acid
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Fig. 1. Source information for avian-derived A. fumigatus isolates. a) State of collection for the 50 U.S. isolates used in this study. Location mapping
represents centroid coordinates for each state, jittered to avoid overlap. Note, isolate ICMP-22421 collected from a k�ak�ap�o parrot in New Zealand is not
depicted on the map. b) Phylogenetic distribution of the 51 avian-derived isolates used in this study, highlighting the lack of correlation between host
group or year of collection and phylogenetic placement.
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changes known to facilitate resistance, as well as whole gene
analysis of all amino acid changing variants across these genes
and an additional 7 genes associated with resistance but lacking
a characterized mechanism. Variant scans were accomplished
using a set of custom scripts in R and mapped onto the phylogeny
with the packages ggplot2 and ggtree.

Voriconazole susceptibility was performed as described in the
CLSI M38 microbroth dilution method (Clinical and Laboratory
Standards Institute 2017). Briefly, 1 � 104 conidia per well were
incubated in a 96-well plate using RPMI 1640 culture medium
(with glutamine, without bicarbonate, and with phenol red as a
pH indicator). Spores were treated with a serial dilution of
Voriconazole (1–0 mg/ml) and plates were incubated at 37�C and
5% CO2 for 48 h before being assessed for the presence or absence
of visible growth. This process was repeated a total of 4 times
across 23 avian isolates, representing different combinations of
the unique variants occurring in resistance genes identified

above, plus the control strains Af293 and CEA10 (Supplementary
Table 5).

Results
The phylogeny of A. fumigatus avian isolates demonstrated no clus-
tering by avian host species or year of collection (Fig. 1b). The 181-
strain phylogeny showed that avian isolates were broadly distributed
across the A. fumigatus phylogeny, and routinely interleaved with
human clinical isolates (Fig. 2). Confidence in strain placement for
most isolates was high, with most bipartitions representing >95%
bootstrap support. Avian isolates also displayed no obvious geo-
spatial relationships, with isolates from the same state falling in
disparate locations across the tree. Seven of the 10 epizootic events
were represented by multiple isolates. Isolates from the same event
clustered together in only 2 of the 7 cases, and in both cases the
clusters contained only some of the isolates in each event (Fig. 2).
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Fig. 2. Phylogenetic diversity of avian derived A. fumigatus isolates. Avian-derived A. fumigatus isolates represented phylogenetically diverse strains,
with distribution interleaved with human clinical strains, and no relationship to geography (collection location is noted by the state suffix on each
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To search for signatures of specialization in avian infecting
isolates, we performed comprehensive variant scans across all
avian derived and human clinical isolates. In total, we identified
53,187 missense variants in avian isolates across 8,862 unique
genes. Compared to the full set of 181 isolates, which contained
76,125 missense variants across 9,306 genes. Four hundred and
forty-four genes contained variants in some clinical isolates but
in none of the avian isolates, and 91 genes were mutated in some
of the avian isolates but in none of clinical isolates. However, the
distribution of these variants was unstructured by host-source,
with no variant appearing in all isolates of either the avian or hu-
man clinical strain sets.

Variant scans of 13 genes associated with antifungal drug re-
sistance revealed amino acid changing variants in all 13 genes,
including AFUA_7G01960, atrF, cdr1B/abcC, cox10, Cyp51A, Cyp51B,
fks1, hapE, hmg1, mdr1, mdr2, mdr3, and mdr4. However, all var-
iants represented uncharacterized amino acid changes, of un-
known consequence. None of our avian-derived isolates
contained the canonical Cyp51A variants representing the TR34/
Leu98His or TR46/Tyr121Phe/Thr289Ala genotypes that are com-
monly associated with azole resistance. Similarly, Voriconazole
susceptibility testing revealed no resistant phenotypes among
the 23 avian isolates assessed (Supplementary Table 5).

Discussion
Using a 51-strain collection of A. fumigatus isolates from 24 spe-
cies of wild birds with aspergillosis, paired with 130 publicly
available human clinical isolates, we found that avian associated
A. fumigatus isolates were genotypically diverse, displayed no
phylogenetic distinction from human clinical isolates, no sign of
host or geographic specificity, high strain diversity within single
epizootic events, none of the characterized variants currently as-
sociated with canonical azole resistance, and no indication of
azole resistance via other mechanisms.

Avian aspergillosis associated A. fumigatus isolates displayed
high genotypic diversity with strain placement on disparate loca-
tions across the phylogeny. No variants were universally associ-
ated with avian isolates, and avian isolates were routinely
interleaved with human clinical isolates, as well as with other
avian isolates taken from unique host species, locations, and
dates (Figs. 1 and 2). Similarly, previous work using microsatellite
markers to genotype 65 avian aspergillosis isolates compared to a
large database of mostly human clinical isolates found no associ-
ation between isolate origin and genotype (Van Waeyenberghe
et al. 2011). Interestingly, the high genotypic diversity observed
across all avian isolates was mirrored within individual epizootic
events, where all 7 of the events with multiple representative iso-
lates included phylogenetically distant isolates (Fig. 2). Multiple
genotypes of A. fumigatus have been previously isolated from do-
mestic chickens (Spanamberg et al. 2016), and multiple genotypes
(polyclonal infections) have been isolated from the same individ-
uals in captive penguins (Alvarez-Perez et al. 2010) and wild storks
(Olias et al. 2011). In domestic turkeys, acute aspergillosis infec-
tions have been associated with singular genotypes, and chronic
infections with diverse genotypes (Lair-Fulleringer et al. 2003), but
this result may also be associated with exposure to high spore
density of a single genotype, rather than specific virulence traits
present in the infective genotype. Taken together, these results
support the conclusion that A. fumigatus isolates are broadly ca-
pable of causing infection in birds and that aspergillosis is con-
tracted primarily from environmental sources rather than being
a contagious disease in wild birds. Assuming that isolates are

equally infectious, and given that wild birds are constantly en-
countering A. fumigatus spores in the environment, environmen-
tal and life-history factors, such as host exposure to unusually
high spore density of heterogenous A. fumigatus populations, host
stress, and host comorbidities, are likely to be the primary drivers
of both individual bird mortalities and aspergillosis epizootics in
wild birds. The influence of spore density on aspergillosis is well
known to the poultry industry where conidial abundance has
been converted to an LD50 of 5 � 105/g lung tissue in domestic
turkeys (Richard et al. 1981). It has been suggested that spore den-
sity is also likely to play an important role in aspergillosis in wild
birds, and would serve as an explanation for the higher frequency
of the disease in species such as geese and ducks (Arn�e et al. 2021)
which often forage in fields containing crop residues potentially
contaminated with high numbers of A. fumigatus spores.

Because acquired azole resistance in A. fumigatus has been pre-
viously associated with long-term azole exposure (Dannaoui et al.
2001), the common use of azoles for crop protection and as a de-
contamination and prophylactic agent for poultry and captive wild
birds (Chowdhary et al. 2013) raises concerns that birds could play
a role in both the evolution and spread of azole resistant strains
(Beernaert et al. 2009; Melo et al. 2020b). Here, avian-derived A.
fumigatus isolates harbored none of the canonical (characterized)
variants facilitating azole resistance. However, in avian isolates
genes associated with specific resistance mechanisms contained
many amino acid changing variants that have yet to be character-
ized, and which have unknown impacts on azole resistance
(Fig. 3). To address the potential of these variants to influence drug
resistance, we assessed the minimum inhibitory concentration
(MIC) of the triazole antifungal agent Voriconazole on 23 avian
strains representing the unique variants identified above. We
found that all representative strains were Voriconazole suscepti-
ble, indicating that the uncharacterized variants in resistance-as-
sociated genes identified here do not influence Voriconazole
susceptibility (Supplementary Table 5). However, it should be
noted that Voriconazole susceptibility is not consistently indica-
tive of susceptibility to other triazole antifungals not tested here
(Zhou et al. 2021). To date, azole-resistant isolates of A. fumigatus
have been identified from both wild and domestic birds, but gener-
ally at a low frequency (Beernaert et al. 2009; Barber et al. 2020) and
are sometimes absent from the population entirely (Sabino et al.
2019). Azole-resistant avian isolates are not consistently associ-
ated with the Cyp51A resistance mutations canonically associated
with azole resistance (Melo et al. 2021). Although Cyp51A muta-
tions are by far the most well-studied azole resistance mechanism
in A. fumigatus, these mutations are only found in an estimated
20–43% of azole-resistant isolates (Bueid et al. 2010; Zhou et al.
2021) highlighting the importance of further investigation into the
mechanisms of noncanonical azole resistance. This includes in-
ventories of variants that occur in genes associated with drug re-
sistance but that do not result in resistant phenotypes, such as
those presented here.

Data availability
Pipelines used for VCF generation can be accessed at https://
github.com/stajichlab/PopGenomics_Afumigatus_Global. The spe-
cific release used for this project, along with all relevant code used
for analysis and figure generation are available at https://github.
com/MycoPunk/Afum_avian (DOI: 10.5281/zenodo.5592827).
Sequencing data are available from NCBI’s SRA under BioProject
no. PRJNA773725.

Supplemental material is available at G3 online.
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