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ABSTRACT

The previously proved results that every analytically renor-
malized Feynman integral is a regular holonomic function suggests
that the S matrix should be locally expressible as an infinite sum
of regular holonomic functions. A regularity property R is formulated
that expresses the condition thﬁ£ the S matrix be 1ocall§ expressible
near each physical point p asha cdnvergent sum of regular holonomic
functions, with each term enjoying some of the regularity properties
of a corresponding Feynman integral. This property R holds at every
physical point p that has yet been analyzed by the methods of
axiomatic field theory or S matrix theory. Some analyticity properties
of unitarity-type integrals are then examined under the assumption
that the S matrix satisfies property R and a weak integrability condition.
These results rest heavily on sofiie recently‘Proved propertieé of regular

holonomic functions.



"1. INTRODUCTION

Sato [1l] has conjectured that the S matrix satisfies a holonomic
system of (micro)-differential equations with characteristic variety
determined by the Landau equations. Support for this conjecture has
been adduced by Kashiwara and Kawai {2], who have shown that the
analytically renormalized Feynman function FG(p) associated with any
Feynman graph G satisfies such a system of equations with characteristic
variety confined to the extended Landau variety E(G)C.

The Feynman functions enjoy an important additional property:
they are regular holonomic functions. A regular.holonomic function
is, by definition,a hyperfunction that satisfies a holonomic system
of linear differential equations with regular singularities. Kashiwara
and Kawai [3] have developed a microlocal theo;y of holonomic systems
with regular singularities, and have shown, as an immediate by-product
of their theory, that the Feynman functions FG(p) are all Nilsson class
functions. This fact had been believed previously, but the proof had
been blocked by technical difficulties. (Private communication to T. K.
from Professor J. Lascoux and Professor F. Pham.)

The fact that every Feynman functions is a regular holbnomic
suggests that the S matrix may be expressible as an infinite sum of
regular holonomic functions. Indeed, Kawai and Stapp [4] have shown
on the bésis of the general S-matrix discontinuity formulas and weak
analyticity requirements that each point P in a lérge part of the
physical region has a complex mass-shell neighborhood Q(P) such that
the kernel of the connected part of the S matrix restricted to £(P)

can be expressed in the form

Sp(p) = Z aG,P(p)FG(P), (1.1)
GeG
P
where the functions ag P(p) are holomorphic in Q(P), and GP is the
3
collection of connected graphs G such that P lies on the positive-a
Landau surface fI(G). This result immediately entails.the weaker

condition that SP(p) can be expressed in the form

;0 = Ts, ), | (1.2a)

GCGP G,P

where SG P(p) satisfies on Q(ﬁ)'a holonomic system with regular singu-
, ;
larities whose characteristic variety Ch(SG, P(p)) is confined to the

characteristic variety Ch(FG(p)) of the system that FG(p) satisfies.
Ch(SG’P(p)) Cch(F,(p)), (1.2b)

and whose singularity spectrum is confined to the singularity

spectrum of FG(ﬁ),

S.S.(SG’P(p)) < S.S.(Fc(p)). (1.2¢)

At the previously examined points P only a finite number of
nonvanishing terms occur in ;he sums (1.1) and (1.2a), and hence no
convergence problem arises: .But for any point P lying, for example,
on a three-particle threshold.any equations of the form (1.1) or (1.2)

must contain an infinite number of nonzero terms. Hence the question



of convergence must in general be considered.
A formulation of property (1.2) that incorporates an appropriate

convergence condition is provided by the following definition. Let P
» .

be any point in the original real domain of definition of the S matrix.

Then the regularity property RP consists of the following four conditions:

1) There exists a complex product-neighborhood Qi(P) x Qf(P)

of P and a set of bounded operators S_ and SG P(for all GEGP) that
L]

P
transform square integrable functions defined over the initial real
domain Q?(P) into square integrable functions defined over the final

real domain d?(?), where 6§(P) is the restriction of Qj(P) to the

real mass shell.

2) The sum X SG p converges absolutely to SP in the sense that
GeGp 7
[s, - Zs | >0 (1.3a)

P G,P
GeGP

and

z ]sG,P| > By <.

G(-:GP

(1.3b)

3) The kernel of SG,P considered as a hyperfunction SG,P(p)
defined over d?(P) x &?(P) is regular holonomic and satisfies (1.2b)
and (1.2¢).

4) The kernel SP(p) of SP is the restriction to Qi(P) x Qf(P)
of the kernel Sc(p) of the connected part of the S matrix..

The appropriateness of the converge condition specified in’RP

is discussed in section 2.

-
{7

The purpose of this paper is to derive conditions on the
singularity structure of unitarity-~type integr;ls under the condition
that the scattering functions appearing in the integrand enjoy
regularity property RP for certain critical points P in the domain
of integration. These critical points are the critical points
associated with the so-called u = 0 pointsof the integral. Subject
to the validity of property R? at these critical points our result
extends to many u = O points the earlier result [5] on the
singularity spectra of unitarity—ty#e integrals at u # 0 points.

This extensioq tou=20 péints constitutes a significant
improvement over the earlier u # O results. Indeed, there are many
unitarity-type integrals for which the u = 0 points cover the entire
domain of definition. For these integrals the earlier u # 0 result
entails no domain of analyticity at all, whereas our result, when
applicable, restricts the singularities to well-defined codimension—
one subvarieties.

The property RP required for our result has, as noted above, been
derived at many points f from S-matrix arguments. In fact, the

replaced by a, F, has been obtained

stronger property with S ,p'c

G,P
at these points. Similar results have been obtained also from
axiomatic field theory [6]. These stronger results are in accord
with Landau's suggestion [7] that the singularity structure of the

$ matrix is given correctly by the Feymman integrals, quite apart frém
the validity or nonvalidity of the perturbation theory in which they
first arose.

The condition that property RP holds for every physical point

P is called property R. This property can be regarded as a specific



and precise formulation of Landau's suggestion.
The special examples mentioned above yield instead of property

R the stronger property RS’ which is R with S is replaced by

G,P
aG,PFG' Thus one might wish to regard RS as the precise formulation
of Lan&au's suggestion. However, this stronger property Rs is not
compatible with the convergence condition (1.3). This will be
explained in section 2. The essential point is that the conditions
(1.2b) and (1.2¢) on SG,P(p) hold not only for aG,P(p)FG(p) but

also for the similar functions associated with the contractions of

G, and, moreover, for any finite linear combination of such functions.
This flexibility is needed to maintain the convergence property (1.3):
the analogous convergence condition does not hold for the expansion
1.n.

Property R is also a specific and precise formulation of Sato's
conjecture. It adds to Sato's general holonomicity requirement an
appropriate convergence condition, and also the requirement that the
singularities of the holonomic systems be regular.

Property R ié, lastly, a very reasonable ansatz for the physical-
region part of the maximal analyticity property of S-matrix theory
{8]. For this property R is compatible with the stringent requirements
of macrocausality. Moreover, the previous studies [4, 9, 10] suggest
that the S-matrix requirements of unitarity, macrocausality, and
Lorentz invariance require the presence of no singularities other-
than those allowed by R., Furthermore, they suggest that if only
those singularities permitted by R. are allowed then all these

singularities must in fact be present, provided no special selection

rules intervene.

To prdve that property R is in fact compatible with the general
S-matrix (or'field—theoretic) principles one must know the singularity
‘structure of unitarity-type integrals under the condition that property
R holds. Sections 3 and 4 are addressed to this problem, and in parti-
cular to the preliminary problem of extending with the aid of
property R the earlier u # 0 results on the singularity structure of
unitarity-type integrals to the more delicate u = 0 points. Our
earlier works have made clear that-some analyticity property beyond
that provided by macrocausality is needed to cope with these u =0
points.

An alternative approach to the u = O problem has been developed
by Iagolnitzer [11]. It is based on a different assumed regularity
property. Whereas the present approach is within the general
framework of maximal analyticity, where the ultimate aim is to
impose the strongest analyticity assumption. compatible with the
other general principles, Iagolnitzers approach is based rather on a
strengthened formulation of the macrocausality principle. In both
approaches one is faced with fhe task of verifying the compatibility
of the assumption with the other general principles. Our assumption
is known to be compatible with all cases that have yet been studied,
and also with the possibility that the S matrix is locally expressible
as a sum of renormalized Feymman functions with analytic coefficients.
Tagolnitzer's property has not yet been shown to be compatible with the
well-understood analyticity properties near the leading two-particle
threshold. If that property can be shown to be compatible with this and
fhe other detailed results so far derived from field theory and S-matrix

theory then we would expect Iagolnitzer's approachto be complementary to

our own.



We conclude this introduction with a brief review some termi-
nology connected with Landau surfaces.
A Lagdau graph G is an ériénted graph each edge (or.

line) £ of which is associated with a particle-type label t,

The graph G is completely specified by giving for each edge g of G
the corresponding particle-type label tl(G) (which fixes the mass
m, = m(tl),'and distinguish a particle from its antiparticle) and
for each edge % and vertex j of G the incidence matrix element
elj(G) = [j:2], which is +1, -1, O according to whether the edge %
. terminates, on, originates on, or is not incident upon vertex j. A
vertex of G is an internal vertex if more than one edge is incident
upon it and is an external vertex.if.exactly one edge is incident
upon it. An external vertex j is an initial or final vertex
according to whether the one edge incident upon j originates

or terminates on j. The edge incident upon an initial or final
vertex is called -an initial or final (or edge) respectively.

The initial and final lines are called the external lines, and

the other are called the internal lines. Vertices with no edges
incident upon them are excluded. Vertices with exactly two lines
incident upon them are called trifvial vertices, and are excluded
unless otherwise stated.

A Landau diagram D is a ;pacetime diagram obtained by assigning

to each vertex j of some corresponding Landau graph G = G(D) a

spacetime point x_ and assigniﬁg to each edge £ of G = G(D) an

3

oriented spacetime line segment that runs from point xj ( to

2)

+ .
point x ) where [37,2] = * 1. Each line segment % of D is

J+(2

required to have positive Lorentz norm |x )l >0, and

W T Fi-(a
is associated with a momentum-energy vector P, that is defined by

the conditions that be parallel to x and satisfy the
Pl y

3+ T -

mass-shell and positive-energy conditions pi = mi and P, o > 0. The
’
final condition on D is that momentum-energy is conserved at each

internal vertex j:

2 [j: 2] p, = 0. (1.4)
2
The unique graph G(D) associated with any spacetime diagram D
is constructed by extracting from it the incidence matrix and the
set of particle-type labels.
The 4n-vectar formed from the n four-vectors P, associated with
the n external lines of D is denoted by Pext(D)‘
The LandauAsurface Ll(G) consists of the set of the vectors

pext(D) for all D such that G(D) = G:
L@ = {p_, (D; &) = G} (1.5)

The positive-a surface LI(G) is the subset of Ll(G) obtained by
imposing on the diagrams Dl in (1.5) the condition that for each

line 2 of D the vector xﬁ+(l) - xj—(l) has positive time component:

0 0 — : +
> . .
X54(2) ~ X5-(2) The Landau surface Ll(G) is the closure of Ll(G)
These geometric definitions will be supplanted in §3 by

equivalent algebraic ones.
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2. CONVERGENCE

We begin the discussion of convergence by considering a simple
example in which there is only one kind of particle, which is a
sbinless particle, and in which all connected parts involving less
than 'six particles vanish. Then the only contributing graphs G that
give positive-g Landau surfaces that intersect the three-particle
normal-threhold surface in a 3-to-3 amplitude are the graphs g" of

the kind shown in Fig. 1.

ceee Ps

Fig. 1 The (n + 1) -vertex three-particle-threshold

graphs ¢".
In this example the formula for the discontinuity around the three-

particle threshold asserts that in some real neighborhood of any three-

particle threshold point P= (P, ..., I%) one has
+, -
S.(Pg»> Py) - S (e py)
= [sTG,, p ST, p,) dp (2.1)
¢ FE’ fm e m? i m’ :
where Pf = (pl’ pzs p3), Pi = (p4’ PS: P6): Pm = (P7’ ps’ Pg), and

. + - . .
the functions sc(Pf’ pm) and Sc(pm’ pf)) are, respectively, the limits

of the kernel of the connected part of the S-matrix from above and

11

below a cut placed on the positive real axis Re z = X = 0 in the

variable
z(p) = (p, + p, + )2 - om? (2.2
1 Pz p3 . .2)
The Py for je{l, ...,9} are mass-shell four-vectors with p? =V m2 + 33
and
9 d3p,
dp ={ 1T ——1—] . (2.3)

™ \5=7 (zn>3zp§

For real P; one has
3
[2m)78(py + Py + Py - by - Pg - ) dp,
= o(z(p))z(p ) ¥ (2(p,)) (2.4)

where w(z) is analytic in z, and nonzero near z =0,and Y is the

heaviside function. Then the function
2 -ri
£f(z) = w(z)z"] é%—log(ze 1)] (2.5)
is analytic near the origin of the cut z plane, with the cut again
placed along x0, and the boundary values f+(x) and £ (x) of f£(z)

from above and below this cut satisfy

0 - £ = wo ). (2.6)
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For any Lorentz-invariant function a(p) analytic near the three- in our example as the condition that the function Sc(p) should have
particle threshold point P the function this form (2.9).

Accepting this condition and substituting the form (2.9) of'Sc(p)
o0
+1]
Sc(p) = [ z al® ](p)fn(z(pf)ﬁ 2.7 it into (2.1), and using the fact that the functions £7(3) for
=0 . |
n= (0, 1, 2 ...) are linearly independent, in the sense that no

4 4
x (27) '8 (pl + P, + Py ~ Py = Pg - p6) nontrivial linear conbination of these functions multiplied by

analytic functions vanishes, one obtains, using (2.8), recursion

-is a solution of (2.1) near P by virtue of the identity relations that imply that (2.7) is the unique solution of-(2.1) on the
restricted mass-shell variety {p.p? = mg, b, +p, + Py =p, + Pc + P}
n n n-1 m n-m-1 : 33 3’1 2 3 4 ~5 6
(f+) - (D). = = (f+) (f+ - £ . (2.8) We shall not attempt to derive the uniqueness of solution (2.7)
0 from the weaker property R, but rather accept on the basis of
The function a[n+1](p) is defined-only on the restricted mass shell, Landau's suggestion that solution (2.7) is the physically appropriate
and hence is a function of the variables z(pfl), 9(pf), and g(pi), ‘ so}utidn{
where Q(pf) and Q(pi) are z-independent "angular" variables. It is ‘Solution (2.7) provides a simple example of property Rp. The
defined by the equation a[n+1](p) 5<:Q(pf)|a:?; )|Q(Pi) > , where the connection is made by identifying the term a[n+1]fn(2n)464 of (2.7)
operator a:+l is the (n + 1)-th power of the olfaerat:or a,, which is with the term SG,P of (1.2) for G = G'. Then in some sufficiently
defingd by the above equation for the special case a[ll(p) = a(p). small real product neighborhood Q(P) of P the sum (1.2) is absolutely
‘ Solution (2.7) has the general form ‘ covergent in the operator sense (1.3) due to the decreasing factors
7 (zzjn. -On thg»other hand, if this same sum (2.7) were to be
[ %o an(p)fn(z(pf))} . (2.9 arranged in the form (1.1), i.e. as ZaG’P(p)FG(p), then it would not
” ) . in general converge. The convergence in the form (2.7) is due to the
x (21r)464(p1 +pyt Py =P, - P5 - p6), h : fact that each independent‘function £ occurs just once in (2.7), as
compared to an infinite number of times in the rearranged form (1.1).
where the functions an(p) are- holomophic near P. This general form Tﬁe'parsimonidus arrangement (2.7) avoids the divergence associated
holds also for the Feynman function FG corresponding to amy contributing with the infinite multiple counting of like terms.

graph G (i.e., any connected graph G each vertex of which connects at

least six lines). Thus Landau's suggestion is naturally interpreted
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In the context of the Landau condition that Sc(p) should be
_formally representable in the form (1.1) one may describe the
rearrangement that converts the divergent formal sum (1.1) to the
convergent sum (2.7) as follows: for each Feynman function FG(p) one
exhibits a '"leading part" Fg’P(p) by subtracting from FG(p) a sum
of products of analytic functions times functions F l(p), where the

1 G
G~ are contractions of G:

L
FG,P(p) = FG(p) - Za 1 (p)FGl(p)

¢te,p (2.10)

This equation permits a formal rearrangement of (1.1) into the form
() = Gea Sg,p(®)- (2.11)
where the SG,P(p) satisfy (1.2b) and (1.2¢). However, this sum (2.11)
converges only if the leading parts FE’P(p) are appropriately
defined.
L + n
In our example the leading pgrt of FGn(p) is FGn(p) = (f (z(p)» .
This function is characterized by the close connection of its behavior
near the point P to that of the phase-space integral associated with
G": both functions have, up to logrithmic factors, the same power-law
fall off xén when the point x = 0 is approached along the positive
real axis..
The close connection between singularities of Feynman integrals and
those of phase-space integrals is not accidental. It is demanded by

the constraints imposed on the singularity structure of the S matrix

by unitarity. In particular the S matrix is required to have

15

singularities that cancel the explicit singularities arising from the
phase-space factors.that occur in the unitarity equation, and in the
more complex equations that arise by combining the cluster decomposition
property of the S-matrix with multiple applicatiqns of unitarity [9].
The explicit singularities of phése—space integrals thus become the
"driving terms" ‘that force the S-matrix to have singularities [9].

And these S-matrix sipgularities must be of such a form as to be able

to cancel the explicit singularities associated with the phase-space
factors.

In our example the function S, (p) can be identified as the part

G,P
of Sc(P) that exactly cancels the purely positive-a part of the
singularities arising from the phase-space integral associated with
G. This can be seen as follows. Iteration of (2.1) gives the

expression
o«
-
S.= T (8D, (2.12)

which converges absolﬁtely in some sufficiently small real product
neighborhood of P in the operator sense that the sum of the norms of
the terms on the right-hand side of (2.12) converges. Inserting
solution (2.7) into the left-hand side of (2.12), and the énalogous
solution with f replacing f+ into the factors S; on the right—hand
side, and using the representation (f+ - £7) for the phase-space
factors (2.4) occurring on the right, one obtains an identity: every
term on the right-hand side containing a factor £~ can be paired

with an identical term of opposite sign, leaving precisely the sum (2.7).



=
%

16

+
Moreover, each term Sg, P = a[n+l](f )n(21r)464 of this remaining sum

(2.7) enters only once on the right-hand side, and appears in precisely

that term that has the phase-space factor (f+ - f-)n corresponding
", | |

There is a generalization of the expansion (2.12) that expresses
any connected part S: as an infinite sum of unitarity-type integrals
involving only the functions S; [9]. In this sum there is for each
GeGP precisely one term that cerresponds to a bubble diagram that

reduces to G when each bubble is replaced by a point vertex. And in

the unique unitarity-type integral there is percisely one point K(P)

in the domain of integration that gives a contribution to the integral

at point P. The pair (P, K(P)) defines a point in the domain of
definition of each of the functi&ns S; occurring -in the integrand

of this unitarity-type integral. At thesé points each S; has an
analytic background term. The constant parts of these background
terms combined with the conservation law and mass-shell constraints
give a contribtuion to the integral that is a multiple of the phase-
. space integral.corresponding to G. There must be a contribution to
S: that cancels that positive-oa part of the singularity associated

with this phase-space factor. Our example shows that the logrithmic

factors associated with SG P'can be different from those associated
t] .

with the phase~-space factor, which at least in its simplest form has

no logrithmic factors at all. However, the remaining power—léw

behavior of SG P is the same as that of the associated phase-space
] . X Lo

factor.

17

This equality of the power-law parts suggests that one can formu-

late in the following way a small part of the idea that SG P is that
?

part of S; that is generated by the unitarity-induced phase-space

factor assoqiated with graph d:, if for some T, >0 the restrictions
to real multispherical domains [pj - le
space integrals corresponding to the graphs GsGP have, for all

< r (all j) of the phase-

r< T, norms having bounds of the form

1
n
G _G,P
- DP(CP) r (2.13a)
where né is the number of vertices of G, then the norms of the
similarly restricted operators SG P have bounds of the form
. L4
1 -
n, b N
D, Cp) Gy GPog ) © (2.13b)

and ri > 0, where N, is the

for all r_<:ri, for some constaints C1 G

P
number of internal linres of G and A is the maximum value 6f the
analytic parts of the scattering functions S;/(Zw)464 in the relevant
domains. _

o Th£s bound on ISG,P' is far stronger than what is needed to prove
the convergence‘property RP' To see this observe firsg that the

result of Ref. [12] implies that for any P the set of graphs GP

corresponds to a set of space-time diagrams DP that consists of a

finite set of space-time diagrams D;‘together with the diagraqs.that

can be formed by taking some diagram D of D; and inserting extra
vertices<on special subsets of space-time lines of D. Each of these

special subsets consist of a set of space-time lines of D that are
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all parallel. Thus the inserted vertices correspond to zero-emergy
processes in which all the initial and final particles are at rest
in some frame, namely that frame defined by the set of parallel
space-time lines. The insertion of these zero-energy vertices does
not alter the kinematics, and hence infinite numbers of them can
be inserted. The convergence problem arises only because of the
infinite sets of diagrams that can be formed in this way by the
insertion of zero-energy vertices. However, these zero-energy
vertices correspond to operators whose norms fall-off as some power
of p, the radius of the real multi-spherical domain centered on the
zero-energy point defined by (P, K(P)). For the simplest case of
a 2 - to - 2 vertex the fall off is according to the first power of‘
p, and for the general n- to - n vertex the fall-off is like p3n_5

There is no essential loss of generality in considering the case
in which D; consists of just one diagram, and in which this diagram
has just one set of parallel lines: the modifications needed to
pass to the general case are simple. Suppose the set of parallel
lines consists of N' 1ines. It is then sufficient for our purpose
to use a single bound of the form Cl 051 for all n - to - n vertices
with n S N" and for allp < pl, where pl >0 and 81 > 0.

Suppose K is the number of ways in which a vertex can connect

)
some subset of the set of N lines. Then for some constant C2

and sufficiently small Py > 0 one has

€

P € 1

1!1
Z (x CPp) <czp
=1

for allrf<pb. The sum on the left-hand is a_ sum of bounds on the

19

norms of the infinite set of operators corresponding to the infinite
set of ways in which the zero-energy vertices can be inserted into
the set of N' parallel lines.

Let r be the radius of the real multi-spherical domain
[pj - le <r (all j) centered on P. The condition r = 0 forces
p = 0. Hence it follows-—-from the Xojasiewicz inequality--that
P <f(Cr)f holds for some C and £ > 0, in the domain r <z} for
some rg > 0. [See Ref. p.-1971 Thus for some sufficiently small T,
our condition (2.13a) on the norms of the phase-space factors
associated with the phas; space factors GeGP holds, with each
zero-energy vertex contributing a factor Cir8 for some ¢ > 0.
Then the resultant condition (2.13b) on the norms of the lSG,PI

give the required convergence property RP’ since a contraction
Al

of the domain r < r, to a domain r <:r; = r /) converts r&(log Y
to (§Ds(log %)N', which for any fixed ¢>0 and N' is smaller than the
original value for some sufficiently large A. Note that the number
of lines NG can increase no faster than N' times the number of‘
vertices.

This argument uses only a very small part of the condition

stated on the norms |S » and makes the convergence condition R,

c,e!
appear to us very reasonable.

The present work is based p}incipally on property RP' However,
the above arguments suggest the likely validity of a stronger property

L FL where the leading

L . =
RP that includes also the condition SG,P = aG,p G,P

part Fg P of FG has the form (2.10), and is subject to norm conditions
’
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of the kind (2.13). This property, ié considerably stronger than
R, since it specifies not only the locations of the singularities
of SG,P but also their nature to the extent that the naturé of the
singularities of the leading parts FE,P are specified.

Landau's .original suggestion [7] included the idea that the
Feynman functions should determine both the location and the nature

of the singularities of the S matrix. Thus the property RL can be

regarded as a precise formulation of Landau's suggestion that incor-

. porates an appropriate convergence condition.

This property RP can also be regarded as a very reasonable ansatz

in the framewo;k of analytic S-matrix theory, which can be regraded
as a development of Landau's suggestion. For the notion of maximal
analyticity is essentially an instruction to impose the most ’
stringent analyticity properties compatible with unitarity,
macrocausality, and Lorentz invariance. Property‘RL is much more
stringent than R, yet it appears, on the bases of the many studies
done between the time of Landau's 1959 paper and now, to be fully

compatible with these S-matrix conditions. Further studies like

L
those of [4] examining in detail the compatibility of R~ with

unitarity are needed. These demand an understanding of the singularity

L
structure of unitarity integrals, under the assumption that R holds.

Although the present work rests largely on RP we do require also
the local integrability of the relevant integrands. This local
integrability property appears plausible in its own right. Yet it
does not follow immediately from RP’ which says nothing about the
nature of the singularities. In our examples the required

local integrability is shown to follow from the results of [4], or,
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alternatively, from the Landau postulate RL.
A complete formulation of RL would demand the specification

of the leading parts FE of all Feynman functions F
t]

P G Since only

very limited use is made here of RL we shall not develop the general

theory but will be content to specify Fé P
>

These cases cover those that occur in our examples.

in a' few simple cases.

Suppose the Feynman function fG = FG/64 has, near P, the form

£,(p) = a(e) (¥(p) + /-1 0)®* + b(p) (2.14a)
(a non—integer)
or
£4() = a®) (W) + V7T 0) 10g y(p) + b(p) (2.14b)

(v non-negative integer)

Then the leading part of fg P(p) is this same function with b set
t]
equal to zero.
" If a connected graph G can be cut into two connected parts G'

and G" by cutting through a single vertex then

£, =f",  “f , (2.15)
G P G",p"

where P' and P" are the parts of P that refer to G' and G",

respectively. Equation (2.15) can be used iteratively to obtain the
leading parts of the Feynman functions corresponding to iterated

graphs such as those occurring in Fig. 1.
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For a friangle graph G, and a point P lying on thg inpérsection
of the triangle singularity surface LI(G) the two-particle normal
threshold surface LI(G'), where G' is a contraction of G, the
analysis of [4] (See Eq. 4.2) suggests that Fg P

.

ishing analytic function times log((x; + /<1 o)+ xz), where X, and

should be a non-van-

%, are the variables discussed there.

Added Note After this work was completed we received a communication
from D. Iagolnitzer kindly informing us that our assumption that the
general solutions should have the form (2.9), which we extracted from
Landau's suggestion, and which follows also from RL, is entailed in

a field theoretic context by a consideration of the Bethe Salpeter
equation. Details can be found in a forthcoming paper by J. Bros,

D. Iagolnitzer, and D. Pesenti entitled Non-Holonomic Singularities
of the S-matrix and Greens Functions. (Saclay Preprint Dph-5/81/8
Submitted to Comm. in Math. Phys.) 1In that work these authors have
independently examined in great detail the model discussed from a
slightly different viewpoint in beginning of this section. The present
work deals explicitly with the fact, stressed by those authors, that
the S matrix cannot be a single holonomic function: we assume only

that it is locally a. convergent sum of regular holonomic functions.
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3. MICRO-LOCAL ANALITICITY OF BUBBLE DIAGRAM FUNCTIONS

To fix the notations, we first recall the definition of Landau
equations associated with the signed Landau graph G having n external
lines, n' intérnal vertices and N internal lines. Each internal
lipe LZ carries a sign Oé= + I'or - 1), which is distinct from its
orientation. In what follows we label each external vertex by the
same index r tﬁat labels the (external) line incident upén it. The

graph G is assumed to be partially ordered and connected.

Definition 3.1. A set (pl,...,pn; Ujsness un) ~_ (p; u) consisting

def

of n real four-vectors P, and n real four-vectors u, is said to be a
real solution of the Landau equations associated with G if and only

if there are sets of real four-vectors k, (2=1,..., N) and

vj(j =1,..., n') and real scalars a2(£= 1,..., N) and Br(r =1,..., n)

such that the following relations (3.1.a) ~ (3.1.f) are satisfied:

n N

b [j:r]pr + 3 [j:z]kg =0 ,j=1,..., 7 (3.1.a)
=1 =1

2 2 . . ..
P, =k, Pr.0 >0 r=1,..., (3.1.b)
& -m2=0, k, >0, £=1,..., N (3.1.c)

E 9’ > E,O s E] . E]

Visn ~ V5-( - T G.1.4)

u = - [§(0): r1vy 0y - Bp), r=1,...,n (3.1.e)

°z“g>°’ t=1,..., § (3.1.1)
L] i
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The relations (3.1.a) ~ (3.1.f) are called Landau equations. The set
of vectors (p; Y-1lu), where (p; u) is a real solution of Landau
equations is denoted by L(G).

Remark 3.2. We fegard L£(G) as a subset of /:IT*RAH. That is, u is
regarded as a cotangent vector at p.

Definition 3.3. The projection n(L(G)) of L(G) to Iﬁn is denoted
by L(G), where 7 is the canonical projection from /CIT*mén to&én.
Definition 3.4. [£(G)]C denotes the set of all complex vectors

(p; u) that satisfy the relations (3.1) except for the inequalities,
and (L(G))m is its projection onto ¢4n‘

Definition 3.5. The set of equations obtained by replacing the
condition (3.1.d) with the following conditions(3.1.d") is called

the set of pre-~Landau equations:

Vie(n) T Vi-(n T %k T Yy (3.1.d4"

here w, is a real four-vector. The set of all vectors (p, k; V1(u,w),

L

where (p,k; u,w) is a solution of the pre-Landau equations, denoted

by K(G). This set K(G) is called the pre-Landau variety associated

with G.

Definition 3.6. If (p; u) = (p; 0) satisfies the Landau equations

ﬁith some o, # 0, then p is called a u = O point for the graph G.
If (p, k; u, w) = (p, k; 0,0) satisfies the pre-landau equations

(and hence the Landau equations) with some ay # 0, then such (p, k).

is called a u = 0 solution for the graph G.
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The set L(G) is contained in the reduced mass-shell variety

4n 2 _ 2 _
m={mm, E%%—O,%—OaMpr0>O&-lpu,ML
def r=1 >

Here and in what follows €, denotes [j(x):r]. Furthermore Mr is

non-singular outside M {ngr; all pr's are parallel}. Hence,

exc def
if we denote Mr - Mexc by M', then we may regard the Landau
equations (3.1 e) ~(3.1.f) as defining a subset of /=1 T* {' under
the convention that (p; v~Iu) and (p'; v“lu') define the same

point in ¥l T* M' if and only if both

p = pv (3.2.3)

and

u_ - u; = -ea-y0P (r=1,..., n) . (3.2b)

hold for some real four-vector a and real scalars yr(r =1,..., n).
(See e.g. [13] p. 115 for the detailed arguments.)
To state our main results (Proposition 3.16 and Theorem 3.17)

we fix our notations concerning the bubble diagram function FB(p),

~and the bubble diagram amplitude fB(p). This latter function is

obtained from FB(p) by factorizing out the over-all energy-
momentum conservation §-function factor GA(Z[j(r):r]pr):
FB(p) = fB(p)64(E[j(r):r]pr). See [4] for zhe definition of
FB(p) and the notations which are not explained here.

Each bubble of the bubble diagram B is labelled by an indei
b(1 <]:! <bo), and each (explicit) internal line of B is labelled
by an index i(l <i < io) . The mass and the energy-momentum
four-vector associated with the i~th internal line of B are denoted

byui and 4> respectively. We deonte by G(B) the Landau graph
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obtained from B by replacing each bubble with a point. For any set

of Landau graphs Gb(l £b < bo) we denote by @G, the Landau graph
B

G(B):
obtained by inserting Gb into the b-th bubble of B. And define
o(b) to be + or - according whether b-th bubble is a plus-bubble
or a minus-bubble. Each graph Gb must have the same set of external
lines as bubble b. We denote by G(B) the set of all sets (G} °
b : b=1
that fit into B. For {G.} © in G(B) we denote by C({g, }) the set of
b b
b_ b=1 ® 6,
Landau graphs {G'} = , where G' is G._ or its contraction.
b a1 b b B
Example of B, G(B) and @ Gy:
X B +
q)
when G = &02
+ 9% °
2
B: ° 6 = X ond Gy : ®
. o
U 94
: IO . Figure 3 Some Landau graphs
| K3 3 & grap

In what follows we denote by ¢
2 G(B

phase-space integral associdted with G(B), with the over-all energy-

) (p, q) the integrand of the

Fig. 2. A bubble diagram B momentum conservation &-function being factorized out:

(I)G(B) (p, @

i
o] [

= 1 & (ZlG: rlp. + £ [§:ilg) T
. r . i
j=2 r i i=

[

2

+, 2
ld (qi - Hy )

(3.3),
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where p lies in the reduced mass-shell variety M£ and jo denotes the

number of internal vertices of G(B). We denote by MG(B) the
4i
subvariety of Mr xR ° outside of which @é(B)(p,_q) vanishes. The
C

complexification of MG(B) is denoted by MG(B)' If a point (p, q) in
M (B) is got au = 0 point for G(B), then hh(B) is non-singular
near the point. We denote by MG(B),reg the set of all such points.
If a point p in Mr is not au = 0 point for G(B), then the bubble
diagram amplitude fB(p) takes the following form by definition:
b io

fBQﬁ=J ° sp(ps @) ®G(B)(p, q)ig

a“qi (3.4)
b=1

1
where sb(p, q) denotes the scattering amplitude (or its complex con-
jugate if €(b) = -~ 1 associated with the b-th bubble of B and the
product bE: sb(p, q) is a distribution on MG(B)'

Before beginning the study of the singularity structure of the
bubble diagram functions, we introduce some notations concerning a
bubble diagram B and present some preparatory .results.

Definition 3.7. (1) R(b) 3, {r; 1 €r §n,[b: r] # 0}

(ii) I(b)d:_f{i; 1 §:‘n§io, [b: i] # 0}

(1ii) p(b): the 4(#R(b))vector obtained from (pi,...,pn) by
deleting those P, such that [b: r] = 0. Here (#R(b)) denotes the
number of elements in R(b).

(iv) q(b): the 4(#1(b)) vector obtained from (ql,...,qi ) by

o -

deleting those ay such that [b: i] = O.

4oti) | G(#R(D) + #1(b))

(v) Lgt #(b) denote the map from C(p,q)

defined by assinging (p(b), q(b)) to (p, q).

(ot
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P 4(ot+ )
Let Mr(b) denote the subvariety of E(P ? defined by

Z[b: rlp_ + Z[b: i]q, = O, (3.5.a)
T i
r i
2 2
p, = m; for r such that [b: r] # O, (3.5.b)
2 _ 2
q = ouy for i such that [b: i} # O, (3.5.¢)

We denote &(b)Mg(b) by M:ed(b). It follows immediately from the

b,
¢ = R Mc(b) holds. Throughout this section we
G(B) bel T

always assume that the bubble diagram B satisfies the following

definition that M

additional condition: For each bubble b of B, there are at least

two incoming lines and at least two outgoing lines incident upon b.
Iy

(3.6)

Lemma 3.8. Let B be a bubble diagram and let Po be a real point in

MS(bl) for a bubble b, of B. Let U be a sufficiently small neighbor-
hood of Po’ and let ¢(p, q) be a holomorphic function defined on U.

Assume that ¢ has the form Q(p(bl), q(bl)) and that L(bl)de
¢_1(0) nu ’\Mg(bl) is a hypersurface onU’\Ms(bl)- Then
[

L(blj n Q#Ll Mg(b)) does not contain an open subset of MG(B)'

Proof It suffices to show the following property P: there exist an

open neighborhood U(bl) of a(bl)(Po) in M:ed(bl) and a continuous
CV

G(B)
id. For the relation a(bl)f(bl) = id implies that set m(bl)(L(bl))

map £(b;) from U(bl) to M such that ﬁ(bl)f(bl) is the identity map

=1 T MR -
contains f(bl) (}(bl)(\MG(B)), while the continuity of f(bl) implies

that £(b) " L(b) N M

o) contains an open set of U(bl) if
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C €
G(B) G(B) "

is a proper analytic subset of M:ed(bl) the theorem follows from

L(bl) Ny contains an open set of M Since &(bl)(L(bl))
property P by contradiction.
In what follows, we say a bubble b of B is downstream (resp., up-—

stream) from b, if b can be reached from b1 by moving in G(B) in the

1
direction (resp., anti-direction) of the lines of G(B). The map

f(bl) is constructed by just allowing any change in the final

(= outgoing) p;s and qis of bl to propagate downstream through the
bubbles b of B, and allowing any change in the initial (= incoming)
p;s and qis of by to propagate upstream through the bubbles b of

B. To show that this propagation is possible we allow all of the
change of energy-momentum coming into each bubble b that is downstream
from bl to go into the energy-momentum vectors associated with some
two preferred lines outgoing from b. The existence of such lines is
guaranteed by (3.6). Then what we have to show is the existeﬁce of

a solution (p, p') of the following equations (3.7.a) ™~ (3.7.d) that
depénds continuously on (E, fB for (E, 53 sufficiently close to

some original value, which by a suitable choice of coordinate

system can be taken to be (¥, 0) with U a strictly prositive

number. In the following equations my and m, denote the relevant

masses.

2 _ 2
p> - B = my, (3.7.a)
28 2 - n, - ' (3.7.1)
P, + Pé = E, (3.7.¢)
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- - -

p+p' =P, . (3.7d)

2 2 2 2 2 2 '
Denote m; + P, + Py (resp., m, + (P2 - p2) + (P3 - p3) ) by A

(resp. B). Then it suffices to show the existence of a continuous
solution (po, pl) of the equations (3.8) and (3.9) below, where
a continuous solution is required to depend continuously on the

parameters (A, B, E, Pl):

pi - p = A ' (3.8)
(5 -p )% - (2, - pp? = . (3.9)

From (3.8) and (3.9) one obtains

2 2, 2 2 2 2 2 2
4(P1—E)p1+4P1(E —P1+A—B)pl+(E -P1+A-B)
N 2
- 4E°A=0 (3.10)
2 2
Po =P + A, (3.11)

Since Pi # E2 holds on sufficiently small U, the existence of a
continuous solution of (3.10) and (3.11) follows. This implies the
existence of the required f(bl). Q.E.D.

The following lemma is a variant of Theorem 2.8 of [14],

designed to be suitable for our purpose.
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Lemma 3.9. Let U be an open subset of (]:E' and let U be defined by
Ua:ﬂ le. Let Xj (x)(j =1,..., m) be holomorphic functions
defined on ud: which satisfy the following two conditions:

Xj (x) is real-valued on U. ) (3.12)

grad xj (x) ]Mm (j =1,..., m) are linearly independent at each
point in M“dzf{xeu‘” PG =0 G =1, m) (3.13)
Let M be the manifold given by {fxell; X; (x) =0(j=1,..., m)} and
let f be a regular };olonomic hyperfunction on M which is locally
- summable and with characteristic variety A. Let ¢(x)(#0) be a
holomorphic function defined on ut which is real-valued on U and
vanishes on m(A). Let N be a submanifold of U gefined by
{xel; xi(x) = .= )(d(x) =0 (d <m)}. Then B4sf f&(xd+l(x))...
8(x m(x) ) is a well-defined hyperfunction on N and its singularity
spectrum is confined to thg following set: {(x; £)e vY=1 S* N; there
exist a sequence x(V) in MIZ, c(v) in € and cj(\))(j =1,..., m) in -

which satisfy the following:

x(v) — x . (3.14.a)
c(W§x(v))—=0 (3.14.b)
m .
c(v) grad ¢(x(v)) + = e (v) gran X ) ~ ¢ (3.14.¢)
: j=1 .

ol

33

The vector £ in (3.14.c¢) is identified with a cotangent vectors
of N at x by the usual rule, namely, by being considered modulo
’ d
vectors of the form ,X. a, grad y,(x) with a, in R.
51 3y erad xy ) i
This lemma follows immediately from Theorem 2.8 of [l4]. 1In case
m(A) is of codimension 1 in UC the function ¢ can be taken to be a

defining function of w(A). Then the result is independent of the

choice of ¢.

. 41
' o
In what follows we choose MG(B),reg as M and M' x [R as N.
Thus we choose £ = 4(n + io), (p, @) asx,d=n+4m=n+ io +4b0,
2 9 n . )
Xr(x) =p, -m (r=1,..., n), xn_'_j(x) = rzl E'rpr,j-l (G =1,2,3,4),

Xgpg ) =4 -w T =1,..., 1) and X'd+io+(,b-1)j

f [b: 1ilq,

1,9-1 = Zoeeey by 3= 1,2,3,8).

p1:,j—1 *

Definition 3.10. - For a bubble diagram B and a set of Landau graphs -

b b=1 41

subset of V-1 skM' xr ©):

_ b
{6,} © that fits into B, K ({6, }) is, by definition, the following

: 41
{(p, q; /L(u, we /L S* ' xR )3

(1) (P, q)EMG(B),reg

(ii) (p, q@) is a u = 0 point for some & G'.D with {Gl')}
B

bo
in
b=1

C({Gb}) . ,

(iii) For any function ¢ that (a) is holomorphic but not
identically zero on a coﬁplex neighborhood Qc of (p, @ in M:(B)’
(b) is real valued on%(B) n Qm, and (c) vanishes on

» Teg

b
ss. U [Grente, ) n ME )0 2°
der N N6 2 N Fo(m) ’
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where fG is the Feynman function FG with the conservation 64 factored
out, there exists a sequence of complex numbers c(yv),
Br(v)(r =1,..., 1), ai(v) (i=1,..., io), complex four-vectors

vb(v) (b=1,..., bo) and complex vectors (p(v), q(v)) which satisfy

the following conditions (3.15.a) ~ (3.15.¢).}

¢

(P, 9(v)) e MG(B) (3.15.4)
(P(v), q(v))—+ (p, @ (3.15.8)
cv) (p(v), W) — 0 (3.15 y)

.

Zb: lvy () + B Wp, () + o) F (v, a) — v
b r
(r=1,..., n) (3.158)

l)f[b: rlvp (W) + o (Vg (W) + c(v)'%q% (e, q(v) — w;

(i=1,..., io) (3.15.¢)
Remark on (iii). Since n(Ch(be)) is a proper analytic subset of
M:(b), Lemma 3.8 guarantees the existence of functions ¢ that vanish

on S and are not identically zero on 9¢ N MC If for any such ¢

G(B)"
the reality condition is satisfied and (3.15) cannot be satisfied
then (p, q; v~1(u, w)) does not belong to Ko({Gb})

Definition 3.11. For a bubble diagram B and a set of Landau graphs

b, . L
o . .
{Gb]1—1 that fits into B, Kl({Gb}) denotes the set of all points
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(p, q) of that satisfy the following two conditions: The
. b
. _ . Y . 1 o .,
point (p, q) is a u = 0 point for'?? 6y with {Gb}b___l in C({Gb}). (3.16)

There is no open neighborhood w of (p, q) in M such that the

0
by G(B)
bgl Sb,Gb,(p,q)iS an integrable function on w. Here Sb,Gb,(p,q)

the function obtained by factorizing out the conservation dé-function from

product

the function associated with Gy and point (p,q) that appears in the

expansion (1.2.s) of 8ps the scattering amplitude, or of its Hermitian
conjugate if o(b) = ~ 1. (3.17).

Definition 3.1.2. A point (p, q) in M is called a tame point with

Definition 3.13. M (B)

G(B)

respect to a bubble diagram B, if it belongs to MG(B),reg

in G(B). We donote by

and if it is

not contained in Kl({Gb}) for any {G

[o]
blb=l Mo (B) ,tame

the set of all tame points with respect to B.

dzf{peM'; p is not a u = 0 point for G(B),

and for each q such that (p, q) is in MG(B)’ the point (p, q) is

good

contained in MG(B),tame.}

Definition 3.14.. For a bubble diagram B, K(B) is, by definition, the

' v ek 41

closure of {cb}eG(B)[K«§ Gb)LJKo({Gb})] in /21 s (Mx R -

Definition 3.15. For a bubble diagram B, A(B) denotes the subset of
41

/-1 s*M' given by {(p; V~1u)e/<1 S*M'; there exists qe IR ° such that
(p, q; V-1(u, 0)) belongs to K(B).}
Now our main results are stated as follows:

Proposition 3.16. Let B be a bubble diagram that satisfies the condition

bo
(3.6), and let {Gb}b=l in G(B). Let (p, q) be a point in MG(B),reg
that is not contained in Kl({Gb}). Then '
b

° .
(bgl Sb:Gb’(P» q)) ¢G(B) is zero as a microfunction on

s
\1!
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n—l(w) e PP N (K® G')\ K ({G 1)] for an open neighb;rhood
{6 b}sC({Gb}) B P o b .

w of (p, q) that does not intersect Kl({Gb}). Here ¢ denotes the

43 A -
projection from /-1 S*(M' x m.]°)>to M' x R io.
Theorem 3.17. Let B be a bubble diagram that satisfies the
condition (3.6). Then, on the condition that the scattering
amplitude has the property R, fB(p) regarded as a microfunction is

zero on n—lM (B) - A(B), where 7 denotes the projection from

good
V=1 S*M' toM.
Proof of Proposition 3.16. First consider a point (p, q) close
b,
. o
to (p, q) and that is not a u = 0 point for any @ G'b with {Gl;}b=l in
B

C({Gb}). It then follows from the definition that (p, §) is not a

u = 0 point for any Gé. Hence

S.S. s L @
2.6y (0,0 € oicegy P
b b
holds in a neighborhood of (§, q). In this case, by the general
theory of microfunctions ([15] Chap. I), or, essential support ([16]),

we can conclude that S.S.[( ] is confined

e ®

BEL ®b,6,,(p, ) *6(B)
./ oty 3 . -

{Gé}EC({Gb}) KG% Gb) in a neighborhood of (p, ). (See Iagolnitzer

[17] and Kawai-Stapp [4] for the detailed argument in this case.)

Next consider a point (p, §) which is a u = 0 point for some ? Gb

. }bo
with {Gb b=1

to this point. That is, the singularity spectrum of

in C({Gb}), but is not in Kl(TGb}) Lemma 3.9 applies

(g Spr Gb,(p,q)) e(e)

we have verified that (Hs

is confined to Ko({Gb}) at that point. Thus

(] is zero as a microfunction
b,Gb,<p,q)) G(B) "
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. U ! . .
outside {Gé}ec ({ Gb}) (4 (% G'b) U Ko({ Gb}) . This completes the
proof of Proposition 3.16.

Proof of Theorem 3.17. Since p is not a u = 0 point for G(B),

- 4qi
fB(p) has the form f(% sb(p, Q) (p, @) q d . Since we may

G(B)
change the order of summation of absolutely convergent series, we

may assume, on the basis of the property R, that % sb¢G(B) has the

form

>
(&) ® °b,G(k,), (p, @ G(B).

in a neighborhood of a point (p, q) in MG(B;' Since (p, q) is a
tame point with respect to B by the assumption, Proposition 3.16

implies that

s, ]
{gi) g baGb(kb),(Pa Q) G(B)

is zero as a microfunction outside K(B). Then it follows from the
general result on the integration of microfunctions ([15] Chap. I,
Theorem 2.3.1) that fB(p) regarded as a microfunction is zero

outside A(B). This completes the proof of Theorem 3.17.

Remark 3.18. The above proof shows that what is needed is not the

full property R, but merely R(p Q at each point (p, q) in M

b
that isa u =0 point for some & G, with {Gb}b:
: B

G(B)
1 in G(B).

We do not presently have much detailed knowledge about the

geometry of A(B), particularly because of the need to consider
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the closure of the union of infinitely many varieties. Note,
however, that only finitely many terms are needed in the expansion
(1.2a) if no n@<35—partic1e threshold is relevant at the point in (5|
question. - (Zimmermann [18]. Cf. [4] and references cited there.)
In such circumstances the singularities of fB(p) can be attributed
to each Landau graph % Gb’ on the supposition that the scattering
amplitudes satisfy the property R.
The following examples illustrate the effectiveness of our
results in resolving u = O problems. A geometric study of A(B) will
be given in section §4. ' Gz .

Example 3.19. Let B denote the following bubble diagram.

Figure 5 Several Landau graphs
Suppose that the masses associated with pr(r =1,..., 6) and the
internal lines of Gy G2 are all equal to m(>0). Suppose

further the following conditions on ui(i =1, 2, 3) and m.

) .4
Figure 4 A bubble diagram B, ’
4 pj'_= ué >nm (3.18)
Let G1 and 02 be the following Landau graphs. V< (.19
: <}
2 2 2
9m”~ - p3.<8ul (3.20)

2 2
Define M by \i (= “é) and u by ”5’ respectively. Since q = p

holds, the sets L(Gl) (and L(GZ)) can be described in the (s, c)-plane
2 2
as below (e.g. [19], p. 60). Here s = (p1 + Py + p3) = (p4 + ps + pé

2
and ¢g= (q1 + q2) .
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Figure 6 Singularity Surfaces.

In Figure 6, L;(Gl) (= LI(GZ)) denotes the leading positive-o

Landau surface (i.e. all o  are strictly positive, cdrresponding'

2

to G1 and the coordinates of the points A, B, ... , F are given

as follows:

La

3
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A: (92, 4n?), B: (lom’ - 42, 4n?),

e (m2, m? - u5 /2, b (w2, ),

2
E: (s, 4, Fio (M4 ) , 4nd).

Here 8, is the smaller root of tﬁe following equation in s:

2

(s + 502) + aB(s + Sm2)/m> + o2 + 4% - 16 n”

=0, (3.21)
where q = uz - 5m2 and B = 4M2 - 2m2. Here we note the following:

(i) The condition (3.19) guarantees that the s-coordinate
of B is greater than that of A.
(ii) The condition (3.20) guarantees that D is located in

the segment AC and that the s-coordinate of F is smaller than that

of A.

Now let us consider the analyticity of the function f defined

below in the domain @ = {peM; m? <s <is°}:'
fize ISG ®' O EGz(q, P" o5 (p", P", @) dq, (3.22)
1

Where p' = (pl, pz,.p3) gnd p" = (pa, Ps» p6). Note that every
point in @ is a u = 0 point for the graph Gl g Gy- Define N by
o 12, 2 _ ,2 _ ‘

Q x {q = (qla qZ: q3) eR 3 qi ui and qi’o >0 (i = 1, 2., 3)}

and define’Npar by {(p, q)eN; q, is parallel to qz}. If (p, @
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h . t 14 th ent DE. .
belongs to Npar’ then (p, .q) mus e on the open seqmen Example 3.20. Let B be the following bubble diagram and suppose that

+ .
Hence (p', q) does not lie either on Ll(Gl) or on the half line

. 2
{(s, 0); s= 9m2, o%"mz} or on {(s, 0); s=Mm

all the relevant masses are equal to m.
2
,o0=4m}. In

other words, (p', q) does not lie on the singularities of E; orlgg .
: 1 2

the complex conjugate of fGZ. Therefore these points (p', q) can
contribute to singularities of the.integral f only at s = (2M + u)z.
However, (2M + u)z is smaller than 9m2 (by (ii)). Thus this singularity
of f lies outside the domain Q.

r

Next consider the case where (p', q) does not belong to Npa N

but lies on sungularities of the integrand that can lead to u = 0

points of the integrand. In this case (p', q) belongs to the open

curve EC. Since the singularities of £ [i = 1 or 2] are contained

G

i

in the nonsingular hypersurface LI(Gi) the set ¢(Ch(fG )) is confined to
i

Figure 7 A bubble diagram B

Let Gb(b =1, 2, 3, 4) be the following Landau graphs.
thecomplexification Lm(Gi) of LI(Gi), in a complex neighborhood of

EC. Furthermore, the function s. has near EC the form a(p', q

G,
i

(#(p', q) + /11 0)3/2+~b(p', q) for some holomorphic functions a (; .
. |

and b, where ¢ is a defining function of L{(Gi). ([4], Corollary in

p. 222) Hence the point (p, q) in question is a tame point: i.e.,

the local integrability requirement is satisfied. Since gradanpﬁ', 0]

never vanishes on the open curve EE; A(B) is void. Thus we have
verified that f is analytic in Q.
Although we have used here a result of [4], which is based on ’ ql
the discontinuity formula, in order to guarantee that the point q2
(p, q) in question is a tame point, (i.e. that the local integrability 2°

requirement is satisfied), we could have used the property +

L + P.
RG (Png(G.)) with the definition of FL given at the end of 2
i,P i Gi’P

Section 2. That is, we do not need to use the result in [4] if we p|
L .
accept R

Gl,P .

\
W
-

,
B
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Figure 8 Several Landau graphs.

Let p be a point such that some point (p, q) belongs to MG(B)'

Then p is a u = 0 point for & Gb'
B

integrability requirement is satisfied then Theorem 3.17 and property

However, if the local

. o 4
R ensure that the singularities of ngl SGbQG(B)(p’ q) dq are
restricted to a hypersurface H of Mr'
The validity of the local integrability requirement (and also

of R, at the relevant points P) is ensured by the results of [4],

§3.1, or by Zimmermann's result [18], or by assumption R’

c,p applied

to the two-particle threshold graph G and the two particle threshold
points P.

Example 3.21. Let B be the same bubble diagram as in Example 3.20.
Let Gb(b = 2; 3, 4) be the_éame Landau graéhs as in Example 3.20

and let Gl be the following.

Figure 9 A Landau graph

L

45

Let Gi denote the graph obtained from G, by contracting out the

1

internal line Ll. Again each'point (p, @ in MG(B) gives a

u = 0 point for @G, . In this case, f
B —_— G

i

is a locally integrable

: 1
function near L+(G')(\L+(G ), and the function £ (b =2, 3, 4)
11 171 Gy
are bounded. The form of S, near the point in question has the

5,
form demanded by R' (See [4], Eq. (4.2) and Eqs. (2.13) and (2.14)

of the present work). And again the results either of [4] or
alternatively, of the Landau postulate RL, ensure the validity of
the localbintegrability requirement. Then Theorem 3.17 again

shows that the singularities of J dq associated with

4
vf1 %, *c(B)
the indicated graphs are confined to a hypersurface of Mr. Now

let Gi denote the graph obtained from G, by contracting out the

1

internal line Ll’ Again each point (p, @ in MG(B) gives a u =0

point for &) Gb'
B
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4. THE RELATION BETWEEN A(B) AND THE EXTENDED LANDAU VARIETY. Let ;(2)
r(b)

pr(b),vz(b))(vl(b) <vy(B), vy (B),v,(b) # 0,%(b)). Let p, and

(b=1,..., bo) denote the two-vector (pr(b),v ),

The purpose of this section is to study in the simplest case .
a4 denote the three-momentum-vector part of P, and 9 respectively.

hi 3.15 d th .
the relationship between the set A(B) (Definition ) an e set Define ;1 to be the (3n - 4bo)-vector obtained from (Pl"°"Pn) by
~ *
L@@ G,) introduced in [13], (1.50) (p. 114). . . .(2)
B P deleting P:(b)’ replacing Pr(b) with B (b and replacing pr(r ¢ Ro)

In what follows, we consider exclusively a bubble diagram B such with 3r. Then we can choose (B" a)(= (5,’ al’.." ai )) as a
(<]

. > s
that #R(b) = 2 holds for every bubble b of B. For simplicity we local coordinate system-on w;. We call it a preferred local

: . A
consider the problem in the subset Ml of M' where the following coordinate system. The corresponding cotangent vector is denoted

itd tisfied: <
condition is satiafied by (:', ;). This is a [3(n +io) - 4bo]—vectdr and, as usual, it

For each bubble b of B there exist two external non-
) (4.1)
parallel energy-momentum four-vectors touching upon b.

can be identified with a representative of the 4(n + io)-vectoi

(u, w) modulo vectors of the form

It is readily verified that no point of M1 is a u = 0 point ‘b b

- . o .
for G(B). Furthermore, under the assumption (4.1) we can choose a N(v"&(ﬁdéf (bgl[b' r]vb + B P> b§1 [b: i]vb + “iq%z
local coordinate system on MG(B) in an explicit manner as follows:
< < i
Let (po, qo) be a point in MG(B) such that po is in Ml. Then there 1<r<n, 1<i s i, (4.2)

exists a neighborhood wy of (po, qo) where the following condition

is satisfied: .

for some four vectors b and. real numbers Br and oy In what follows

There exist r(b) and r(b b=1,..., b)) such that and
() ) ( ’ * o Pr(b) we denote by (0, ;', o, #) the 4(n + io)—vector which is canonically

- are not parallel on .
PE(b) P “1 assigned to (3', W) by setting to zero the components UL o0 Yp(p)?
>

B shrinkin if necessar we_mal assume further that
y 8 up» I» 4 u and w of the 4(n + i )-vector (u, w).
T (b),v(b) i,o o

‘ - . holds i £ :
pr(b)av(b)/pr(b), 0 ? pr(b),v(b)/pr(b),o oTds Th w ror some We note that the above procedure for constructing a preferred

=1, 2 3). Define R_.by {r; b), £(b) for b=1,..., b }.
v(®) ¢ 2 or 3) erine %o Y {r5 £ # 1B, 2(B) for ’ ’ °} local coordinate system works equally well for the construction of an

* ~
[13] uses the notation L(D). explicit local coordinate system on M'. Such a local coordinate
system is also called a preferred local coordinate system and is
-
denoted by p'.

We now discuss, under the assumption () given below,
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the relationship between L @)Gb) and the part A({Gb}) of A(B) to

_ B
which ® Gb contributes., This part A({Gb}) is, by definition, the
B
following subset of V=1 S* M': {(p; V-1 u)e/=1 S* M';
41

(i) There exists qeR © such that (p, q) is a u = 0 point

for @G

B b

(ii) For any point (p, g) that is a u = 0 point for ®Gb’
(p> a3 /:1(u, 0)) belongs to Ko({Gb}) , ?

We shall examine cases that satisfy the following assumption:
(U) 1If a point (po, qo) is a u = 0 point for %DGb’ then (po, qo)
is in Lo(Gg(b))* for each b(1 §b s bo) and the variety w(Ch(be))
is contained in L(Gb)c in a complex neighborhood of (po, qo) for
each b(1 §b § b)-

The situations considered in Example 3.19 and 3.20 are simple
examples that satisfy the assumption (U).

Now we show that A({Gb}) is contained -in f(? Gb) . We begin our
discussion by preparing a geometric result on Landau surfaces.v Until

the end of the proof of Lemma 4.2 'we abbreviate G by G, for the sake

b

of simplicity of notation. Further we denote G by G(m%) to emphasize

. 2
its dependence on the mass m

) associated with some particular

internal line Lz. As a mathematical device we allow m, to be a
complex number.

In what follows we use a preferred local coordinate system (p")

on M'. Note that its dual vector (4') is in a one-to-one

of LO(G-) is the same except for a change of sign of all ¢'s.

Chandler-Stapp use a script L.

See Chandler-Stapp [20] for the definition of LO(G+). “The definition

49

correspondence with a 4n-vector u modulo vectors of the form.

3G : rla - B p. (agm",grgm.

Lemma 4.1. Let ;'(v) be any sequence of (3n - 4)-vectors

converging to a point P in.Lé(G+)C M' and let L, be any single

1

specified internal line of G. Then there exists a sequence of

complex numbers ml(v) that converges to ml and that is such that

[
the point ;‘(v) is contained in L(G(ml(v)z)) . Futhermore, we

"can find a complex neighborhood  of P and a holomorphic function

f(;', mz) defined on @ x {me€; |m - m1[<ie} so that

[ 4
L@ w= (e £G, 1) = 0} (Ju - m | <e) (4.4)

and

grad(;.’ mZ)f(f;',.mz) # 0 on L(G(mz))f\w. (4.5)

Proof. Let o be the set of Landau constants corresponding to the

solution P of the Landau equations. It follows from the definition -

of LO(G+) that o, is strictly positive. Now, a result of [20]

1
(Theorem 6. See also [4], pp. 197-198.) guarantees the existence
of a holomorphic function f(;', mz) defined in a éomplex neighborhood

of (P, mi) which satisfies conditions (4.4) and (4.5). Furthermore,

it follows from the definition of the Landau equations that

3

e

S, 2 - J' 2
(po, mo) Zd(po, mo) al,O (4.6)

NI

am

-
where % 0 is the Landau constant corresponding to a solution p'o
E]

of the Landau equations associated with G(mi) and d(;', mz) is a



50 )

51
holomorphic function that does not vanish in a neighborhood of Proof. Let us first prove 6.9). Since kl(v)z - m (v)2 holds by
. 9. 1

2 of 2
(e, ml). In particular, ;;E (P, my ) # 0 holds. Hence the definition, it suffices to show
implicit function theorem gudrantees the existence of required ml(v)2

2 s i 2 2 .
for p'(v) sufficiently close to P. Let kz(V)’ vj(“)’ u (v, uz(v) and c(v)al(v)(ml(v) - ml) -+ 0. (4.11)

Br(v) denote the quantities giving the solution ;'(v) of the Landau

. . 2 S
equations associated with G(m(y)“). We now use a (3n - 4&)-vector u' On the other hand, by the Taylor expansion of f, we find

-- -
to represent a 4n-vector u, so that u' may be the dual vector of p'.

Since we are concerned with quantitieé on S*{', we may further . f(;v(v)’ m2) - f(;'(v), ml(v)z)

’ . 1
normalize u' by imposing a normalization condition |G'[= 1. Under
this normalizati dition the quantitie =1l,..., N) and . = 9f = 2 2
R cation con ) quantities ¢, (W = 1,000 W =z ('), ml(v)z)(‘“l - m(7)
u'(y) converge to azand u', respectively. In accordance with this 1

A, 2 A 2 2 l
normalization we normalize f(p', m") so that +g(p'(v), m, ml(v) ), (4.12)
£, A :
|2 70p"] = 1 .7 vhere
holds. Furthermore we have the following lgl /(mZ - m (V)Z) > 0
1 1

Lemma 4.2. Let f(;', mZ) be the:function given by the preceding

lemma. Let c¢(v) be a sequence of complex numbers which satisfy the

Since
following:
> 2y . _
cWE(R™ (), my) > 0. -8 2L G'™, mw?) » 2@, # 0,
Sml
Then we have the following: ' and since £(p'(v), ml(v)z) = 0 holds, (4.12) combined with (4.8)
entails .
oy ) (g 7 = al) > 0 4.9
, e 25 G'o), m )@ - n )0 (4.13)
- 2 N . 2 . ' sm }
- v _ ] 0. 1
C(v)(gradp.f(p (v), m)) gradMi(p’ (v), my (V) )) 0(4010)

X
ko
Y

L)

>
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In view of (4.6), we obtain the required relation (4.11) from
(4.13). This completes the proof of (4.9).
We next show (4.10). For that purpose we first note that (4.11)

actually implies

2 2
W) (m W - mp) > 0, (4.14)
because the limiting value of al(v), i.e. ags is different from

zero. Again, by the Taylor expansion, we find
2 2 > 2
c(v)(grads,f(p'(v), ml) - grad;,f(p'(v), ml»
> 2 2 2 2
= c(Wh(p'(V), n, ml(v) (ml - ml(V) ) (4.15)

with a vector h of holomorphic functions. Then (4.10) immediately
follows from (4.14) and (4.15). Q.E.D. "

Let us now reinstatethe index b of Gb and denote by fb the.
‘corresponding f given in Lemma 4.1. Let fg(;', 53 denote

- -
fb(p', q, m%ub) , where Ll(b) is an internal line of Qb. Then we
may take the function ¢ in Definition 3.10 to be gfg. Using the
set of numbers c(y) given there, we define cb(v) by
B Y -
MOEOEE B CHOREION (4.16)
b b O .

Then the condition (3.15.7Y) implies that

ey MR (W), AW) 0.

! )
|55

53

‘Thus the condition (4.8) of Lemma 4.2 is satisfied for the pair

(cb(v), fg(;'(v), a(v)5>. Then (4.10) guarantees that we may replacé
N [ E) - S 2

g7l (3,9 fp(PT0)> a0 By grad gy 560" (), a0, m, (1) 0)7)

in (3.158) and (3.15¢) without changing the limiting point (G*, ;}.

Here we have used the fact that
S BN -
c(v) grad I £("(v), JOWE e (W) grad £, (M, aM).
b b

Now let us denote by p:(v), ki(v), ai(v), B:(v), v?(v) and
u:(v) the corresponding quantities which appear in the Landau
equations associated with Gb(mz(b)(v)2)° We expand u:(v) to a
4(n + io)—vector,by setting the components irrelevant to Gy to
zero. For the i-th explicit internal line of B, there exists a
unique b+(i)(resp., b (1)) such that [b+(i): il = + 1 (resp.,
[b(i): i] = - 1). Denote by j+(i) (resp., j (i) the unique
vertex of G + (resp., G ) that L, terninates upon (resp., starts

- i
b (1) b (i) o

form). Then it follows from the definition of fb and the normalization

(4.7) that (see [20] Theorem 6.

) ’ > S
0, grad> £° G, Q) =v + B Vg, (v))
( PRI sty B '
(4.16)

and

(0, grads £° 3" Q) =(._ .\ + B, - (Vg (V) (4.17)

. 94 b7 (1) j—(2) i, i
hold with some constants Bi + (V) and Bi - (V). Here

(o, g‘ad3 f°+ (S', 3))denotes the four-vector
i b (i)
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£© £° £© Note also that the left-hand side of (4.18) tends to zero by the
3 3 3
L t.. + B
o, b () , b~ (1) , b~ (4) , and q,(v) = '/q.(v)z + u'z, definition of A(B). Thus we assign {q, (v), c (VB + W)
25,1 %%, 33 t i i * b
E] 3 >
- cb‘(i)(v')ﬁi’“ W), (k) €, (Do, ), (c,(Iv, (M), and

Y
q, (v)) . Since
1 (cb(\))u:(\))), respectively, to the i-th explicit internal line

R of B, the internal line LJL’ the vertex Vj of Gb’ and the external
T o (v) grads £2(p' (W) +c .+, (v)grads £° P'(v),a())
b P qy b( ) b (1)b+(i) v qi,.b+(i)( ’ line L: of G, that is not an external line of B, and obtain, by

virtue of (4.9), (4.18) and (4.19), a sequence needed to define

R Y 2 ~
+c_ () grads £7_ (p'(v), () £(® ¢®) ([13] p. 114, (1.50) and p. 115 (1.50 h.1) and (1.50 h.2) .
E R Y b -
This proves that A(B) ‘G\{B) I® Gb) is contained in L@ Gb) on
B B

holds, (4.16) and (4.17) entail the assumption (U). This is what we wanted to prove.

= o Py
(o, 2 e (¥) grad;ifb(p ™), qv))

= e, ONv,

W+ 8y + (Mg (W)
b (1) i (4) >

e W) v ) HB - ) ). (4.18)
(1) 5T L

We now note that

C, OB+ O -c_ M8 - g -u?) =0

b (D) ’ b (1)

(4.19)

holds, because qj_(\")2 - uiz = 0 holds by the definition of qi(v).
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FIGURE CAPTIONS

The (n + 1)-vertex three-particle-threshold graphs c".
A bubble diagram B.

Some Landau graphs.

A bubble diagram B.

Several Landau graphs.

Singularity Surfaces. .

A bubble diagram B.

Several Landau graphs.

A Landau graph.
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