
UCLA
UCLA Electronic Theses and Dissertations

Title
Fine-grained Structural Testcase Reduction

Permalink
https://escholarship.org/uc/item/6cw1j1wt

Author
Xiao, Liran

Publication Date
2021

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/6cw1j1wt
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA

Los Angeles

Fine-grained Structural Testcase Reduction

A thesis submitted in partial satisfaction

of the requirements for the degree

Master of Science in Computer Science

by

Liran Xiao

2021

© Copyright by

Liran Xiao

2021

ABSTRACT OF THE THESIS

Fine-grained Structural Testcase Reduction

by

Liran Xiao

Master of Science in Computer Science

University of California, Los Angeles, 2021

Professor Jens Palsberg, Chair

Modern programs grow more complicated and consist of a large number of components.

As programs become more integrated, the root cause of program bugs is hidden in tons of

details. For metaprograms taking structural inputs, it could cost many human resources to

dig into a sophisticated testcase, while a small portion of code is enough to reveal the internal

cause. This thesis focuses on reducing structural inputs on metaprograms and showing some

methods for fine-grained structural testcase reduction for better debugging metaprograms.

ii

The thesis of Liran Xiao is approved.

George P. Varghese

Todd D. Millstein

Jens Palsberg, Committee Chair

University of California, Los Angeles

2021

iii

TABLE OF CONTENTS

1 Introduction . 1

2 Background and Prior Work . 3

2.1 Syntax-guided Testcase Reduction . 3

2.2 Domain-specific Testcase Reduction . 4

2.3 Semantic-guided Testcase Reduction . 4

3 Approach and Implementation . 6

3.1 Break Dependency by Reduction Point Stubbing 7

3.1.1 Implementation towards JVM bytecode and decompiler predicate . . 10

3.2 Multi-option Binary Reduction . 11

3.2.1 Application on Java Programming Language 13

4 Evaluation . 15

4.1 Experiment Setup . 15

4.2 Statistics . 16

5 Conclusion . 19

References . 20

iv

LIST OF FIGURES

3.1 Java code example. 7

3.3 Running stubbed binary reduction on Code example 3.1 9

3.4 Dependency graph union process . 10

3.5 A:foo stubbed result. 11

3.6 Denotations used in Figure 3.7 . 14

3.7 Restrictions derived from instructions. 14

4.1 Cumulative frequency diagrams of time cost in reduction. The charts show the

number of instances that terminate within x seconds. Higher is better. 16

4.2 Cumulative frequency diagrams of size reduced after reduction relative to inital

binary size. The charts show the number of instances that reduce x percent of

size after reduction. Higher is better. 17

4.3 Cumulative frequency diagrams of size reduced after reduction relative to baseline.

The charts show the number of instances that reduce x percent of size after

reduction compared to the baseline artifact. Higher is better. 18

v

LIST OF TABLES

4.1 Aggregated results of size reduced. The percent represents the relative size of the

final output compared to the initial binary. 17

4.2 Aggregated results of size reduced relative to baseline. The percent represents

the relative size of the final output compared to the baseline artifact. 18

vi

ACKNOWLEDGMENTS

I want to thank Prof. Jens Palsberg for his kindness, patience, and support during my

graduate years. Thank you for welcoming me to join the testcase reduction project and

leading me into the world of program analysis. Furthermore, you broaden my horizon in

both academics and life.

I would also like to thank Dr. Christian Gram Kalhauge. You are always willing to answer

my questions, and without your help, I will not be able to build my thesis work. You build

the foundation for efficient testcase reduction.

Finally, I want to thank my parents. Though we are not living together, you still support

me and give me life suggestions and encouragement. Words can not express my gratitude to

them.

vii

CHAPTER 1

Introduction

For debugging and fixing program bugs, programmers provide test inputs therefore pro-

grams can reproduce the faults. Many programs are designed to accept structural inputs,

like compilers, interpreters, and web render engines. These programs (often called metapro-

grams) play vital roles in the software development process since their correctness provides

a foundation of interpreted results (often another program) produced by them. However,

these programs are often complicated and hard to debug. For example, GNU C Compiler

(gcc) has more than 14.5 million lines of code [Lar15] and many new codes are pushed to its

base to enable better optimizations and support the new architecture. Meanwhile, hundreds

of bug reports are created over one week and most of them are left unassigned [bug]. Based

on Sun’s report [SLZ16], the average lifetime of GCC bugs is 200 days.

To preserve the correctness of metaprograms, several methods are proposed. Formal

verification builds the mathematical foundation and proves the correctness of metaprograms

in proof assistants, like Coq or TLA+. CompCert [Ler09] is the most well-known verification

project which builds a proven C-compiler. However, because of language design flaws and

the large complexity of proving in proof assistants, this method is not widely employed.

While static analysis seems unrealistic due to the complexity of metaprograms, testing them

through testcases is more popular. Model checkers [RH01] and fuzzing techniques [LLP19]

are used to generating valid structural inputs for metaprograms.

For failure induced by testcases, whether automatically generated or reported by pro-

grammers, the developers still need much time to investigate the root cause. The reproduc-

1

ing testcases can contain a large portion of code that has no relationship with the real bugs.

Testcase reduction is a technique to minimize program test inputs while the essential part

of the code behind the input causing bugs is kept. Given a predicate, the reduction tool will

conduct several runs of the predicate. During the process, the original input will be reduced

and the final output will keep the predicate true.

Zeller and Hildebrandt [ZH02] introduced the delta debugging algorithm as a foundation

for testcase reduction. The delta debugging algorithm focuses on the textual input where

subsets of the original input are likely to be valid input. For example, they simplified an

HTML file to find the failure-inducing line. However, for structural inputs, delta debugging

could generate many invalid attempts if split by tokens. Therefore, syntax-guided [MS06,

SLZ18], domain-specific [RCC12] and semantic-guided [KP19, Kal20] reduction methods are

proposed to handle structural inputs.

The state of art semantic-guided reduction technique [Kal20] reduces the input in a

coarse-grained way. For Java bytecode, it reduces the loosely connected classes and meth-

ods, while leaving the method body untouched. Our approach handles closely connected

dependency and fine-grained testcase reduction by identifying dependency introduced by

the method body.

The remainder of the thesis is as follows. Chapter 2 presents background information

on prior work on testcase reduction and shows the motivation for improving the current

state of art reducer. Chapter 3 describes the approach taken to handle fine-grained and

closely connected dependency introduced from the method body. Chapter 4 demonstrates

the evaluation of the new method on reducing Java bytecode for debugging bugs in popular

decompilers. Chapter 5 concludes the thesis and shares some thoughts on the future work.

2

CHAPTER 2

Background and Prior Work

This thesis builds on an existing testcase reduction tool [Kal20]. In this chapter we describe

the prior work and existing tools on how they handle the testcase reduction steps to avoid

invalid attempts during delta debugging. DDmin [ZH02] algorithm is the first algorithm to

handle testcase reduction. The algorithm splits inputs into tokens or lines and combines

subsets of the elements as the final input. Token-based subsets work well on text inputs,

like HTML or strings. When applied on C programs or Java bytecode, there is no natural

method to split the input into subsets and avoid many invalid test inputs. Understanding

the input helps the reduction problem.

2.1 Syntax-guided Testcase Reduction

Hierarchical delta debugging (HDD) [MS06] concerns tree-like inputs. It parses programs

into syntax trees and conducts DDmin algorithm on nodes of each level of program trees.

After processing all nodes at the same level, the algorithm prunes the unused subtrees. For

example, several statements are at the same level of one program tree, and some unnecessary

statements can be removed after HDD algorithm processes this level. Though HDD leverages

the tree structure of programs, it doesn’t understand the program grammar. For instance,

removing variable names in the declaration will invalidate the program.

Perses [SLZ18] improves HDD by introducing a general method to handle language-

independent grammars. Perses proposes a normal form similar to the extended Backus

3

Normal Form and defines a subsumption relationship between grammar nodes to lift nodes

between different levels. Perses is good at preserving grammar correctness while it fails to

handle semantics like variable declarations must happen before variable usage.

2.2 Domain-specific Testcase Reduction

C-Reduce [RCC12] addresses the testcase invalidity problem in a language-specific way. It

takes advantage of the LLVM C frontend and calls several kinds of C-specific transformation,

such as reducing pointer redirection level and combining variables definitions. C-Reduce also

notices that undefined behavior or program violating program semantics caused by reduc-

tion is a significant issue, and it employs some semantic-checking interpreters to solve this

problem. C-Reduce extends DDmin algorithm by detailed knowledge of the C program-

ming language, and when reducing other programs, this method fails to work. Meanwhile,

C-Reduce uses a passive way to handle invalid programs with semantic violations, meaning

many failed attempts still exist.

2.3 Semantic-guided Testcase Reduction

Binary reduction [KP19] shows leveraging dependency in inputs can avoid invalid attempts

and speed up testcase reduction. It computes the dependency graph of the given program

and calculates the closure of each node. Many semantic violations are avoided by introducing

dependencies and closures between elements, and the testcase reduction is now monotonic.

The monotonicity further helps to reduce the number of attempts since we can employ binary

searching to find failure-inducing closures. However, expressing dependency in graphs is hard

for fine-grained level items, like methods and fields in Java classes.

Logical input reduction [Kal20] introduces propositional logic to describe the dependen-

cies between input elements. Both syntactic and semantic dependencies are collected during

4

static program analysis. These dependencies are fed into the general binary reduction al-

gorithm to identify failure-inducing logical closures. In evaluation, logical input reduction

works better than any other testcase reducer.

Though logical input reduction achieves great success, it only handles the reduction in a

coarse-grained manner. Logical input reduction considers method bodies unbreakable, leav-

ing function parameters and instructions inside methods untouched. Removing instructions,

especially method callings, can further reduce dependencies by removing logical constraints

between logical variables. Directly applying logical reduction on method bodies doesn’t help

much since instructions inside method bodies are closely connected, and very few indepen-

dent logical closures can be identified.

This thesis proposes a solution to remove logical dependencies for further testcase reduc-

tion. We also show a method to do multi-option binary reduction by leveraging monotonic

options. The multi-option binary reduction facilitates the reduction of method parameters

and related dependencies.

5

CHAPTER 3

Approach and Implementation

In this chapter, we describe the approach for fine-grained structural testcase reduction.

Reduction points are the potential candidates we can try to remove from the final output.

We show how to break logical dependencies by stubbing reduction points and improving the

previous logical input reduction. We start from the dependency graph and stub vertices to

remove dependency edges incoming from and towards other nodes. For Java bytecode and

decompiler testcases, we define method calls as our reduction points and NOP substitution

as our stubbing function. If some method calling invokes the actual bugs, we leverage binary

reduction on the potential reduction points to minimize the output test input size.

We also show employing multi-option binary reduction on function arguments can further

remove dependencies to make the final testcase smaller. By considering Java inheritance, we

find that a monotone sequence of potential substitutions of function parameters can be found

and used to do multi-option binary reduction. This process removes the function parameter

type dependencies if only parent types are essential for triggering the potential bugs.

We first propose the algorithms for stubbing reduction points and multi-option binary

reduction in the following sections. In each section, we discuss the implementation towards

JVM bytecode and decompilers predicates.

6

3.1 Break Dependency by Reduction Point Stubbing

public class Example {
public void example() {

int a = func1();
int b = func2();
int c = func3(a, b); // call to func3(a, b) incurs the bug
func4(a, b, c);

}
}

Figure 3.1: Java code example.

Taking Figure 3.1 as an example. From the view of dependencies, the three calls form a

single closure. With logical input reduction, we collect the following propositional statements

and dependency graph (use [[f]] to express the existence of function call f):

(a) Propositional statements (b) Logical dependency graph

From these statements, we find that logical input reduction can not reduce the example

the minimum case (leaving func3 and eliminating the other). Existence of func3 requires

the existence of func1 and func2, where the function calls forms a closure.

Our approach takes a different view. Instead of preserving or removing the entire closure,

we define reduction points as all function calls and define stub function S(r, e). The stub

function S takes the reduction point and environment around the reduction point as input

and returns the replacement for removing this reduction point. The environment stands for

the related information about the reduction point. For function calls, arguments are essential

information in the environment of the reduction point.

7

For our program in Figure 3.1, the reduction points are all function calls, and the en-

vironment of each reduction point is argument information. We can define a simple stub

function S(r, e): ignore all environment and return zero as a replacement for these function

calls returning integer values.

Though stub functions are designed to be semantic preserving, not all reduction points

can be stubbed as some reduction points are the root cause of the bug. We introduce

Algorithm 0 called stubbed binary reduction, a modified version of binary reduction [KP19],

on the stub action and reduction points.

Algorithm 0: Stubbed Binary Reduction
Input: Monotonic reduction point and environment search space R = (ri, ei)

Stub function S : (r, e)→ r
Predicate P : r|R| → {T, F} where P ({r1, · · · , rI}) = T

Output: Failure inducing set of reduction points F
Data: A current failure inducing set F ← ∅

A current stubbed reduction point cache C ← ∅
Current sorted search space D ← R, denote Dj = (rj, ej)

while ¬P (F ∪ {S(D ∪ C)}) do
q ← min q st. q > 0 ∧ P (Fr ∪ {rj : j ≤ q} ∪ {S(Dk) : k > q})
F ← F ∪ {rq}
C ← {rj : j > q}
D ← {Dq : j < q}

end
return F

The idea behind Algorithm 0 is to do binary reduction while transforming the input

to remove dependencies. The algorithm starts with testing stubbing all remain reduction

points. If the test succeeds, return the current failure-inducing set. Otherwise, do binary

searching to find the local minimum point: if any reduction point is stubbed, the predicate

no longer holds. The algorithm assumes the input sequence is monotonic according to the

predicate

∀q, r ∈ {1, · · · , |R|}, q ≥ r ⇒ P ({Di : i ≤ r}∪{S(Di) : i > r}) ≤ P ({Di : i ≤ q}∪{S(Di) : i > q})

8

In actual processing, the condition is easy to meet since we can select individual reduction

points or carefully order the sequence to maintain monotonicity.

Taking Figure 3.1 as a running example again. The initial test stubs all reduction points,

and the predicate returns false. Inside the loop, as Figure 3.3 shows, stubbed binary reduction

runs binary searching for the last element (r2) where if it gets stubbed will make the predicate

fail. It then adds the failure-inducing element to the set F and starts the next run. Finally,

it shows with failure-inducing set elements, and the rest elements all stubbed the predicate

passes, which means the algorithm now terminates and returns the failure-inducing set.

public class Example {
public void example() {

int a = 0; // stubbed
int b = 0; // stubbed
int c = func3(a, b);
func4(a, b, c);

}
}

(a) First run, P (S(r0, r1), r2, r3) = T .

public class Example {
public void example() {

int a = 0; // stubbed
int b = 0; // stubbed
int c = 0; // stubbed
// func4 stubbed

}
}

(b) Second run, P (S(r0, r1, r2, r3)) = F .

public class Example {
public void example() {

int a = 0; // stubbed
int b = 0; // stubbed
int c = 0; // stubbed
func4(a, b, c);

}
}

(c) Third run, P (S(r0, r1, r2), r3) = F , add r2 to
failure-inducing set.

public class Example {
public void example() {

int a = 0; // stubbed
int b = 0; // stubbed
int c = func3(a, b); // kept
// func4 stubbed

}
}

(d) Fourth run, P (S(r0, r1, r3), r2) = T , the pro-
cess terminates.

Figure 3.3: Running stubbed binary reduction on Code example 3.1

9

3.1.1 Implementation towards JVM bytecode and decompiler predicate

We select invoke instructions (method calls) as our target reduction points for implemen-

tation towards JVM bytecode and decompiler predicate. Because of the nature of the JVM

bytecode, the invoke instructions are independent, and the reduction point sequence is

monotonic.

Though we can replace all method call arguments with a sequence of pop instructions,

the outcome bytecode is non-natural, and decompilers could generate more errors in terms

of the artificial bytecode input. We notice that the dependencies between method calls

and arguments are clear under the JVM stack-based virtual machine. Hence, we record

the argument dependencies as a dependency graph and do union on the resulting graph to

minimize the dependency relationship. The process is shown in Figure 3.4. Figure 3.4a

shows the original dependency graph derived from stack argument dependencies, and Figure

3.4b demonstrates the initial union process. We ignore all edges from reduction points and

union all other instructions with one outcoming vertex in this step. In Figure 3.4c, we show

that if B:bar function is stubbed, we can safely union it with A:foo.

(a) Stack argument depen-
dency graph. (b) Union non-reduction point

instructions. (c) Union stubbed reduction
point instructions.

Figure 3.4: Dependency graph union process

Based on the nature of JVM bytecode, we can define stub function S(r.e) for decompilers

10

as

S(r, e) = remove(union argument instructions) (3.1)

= pop(non-union arguments) (3.2)

= insert(return type instruction) (3.3)

Figure 3.5 demonstrates the stubbed result for A:foo. The first argument is always

unioned with A:foo, so no pop instruction is needed. When B:bar is not stubbed, we need

to pop that argument, otherwise we can just ignore that since B:bar is stubbed and removed

along with A:foo.

pop;
aconst_0;

(a) A:foo stubbed result when B:bar is not
stubbed.

aconst_0;

(b) A:foo stubbed result when B:bar is stubbed.

Figure 3.5: A:foo stubbed result.

3.2 Multi-option Binary Reduction

Binary reduction [KP19] provides an efficient way to reduce monotonic sequence by binary

searching. However, each reduction item in the sequence has only two options: exist or

removed. We extend the process to handle multiple options for a single reduction point by

forcing options to be monotonic.

For each reduction point (ri, ei), we define reduction group G(ri) = g0, · · · , gni
represent-

ing the options corresponding to the reduction point. For example, a function call could

be preserved, inlined or removed. To apply multi-option binary reduction, we assume the

reduction group to be monotonic according to predicate P :

11

∀q, r ∈ {0, · · · , n}, q ≥ r ⇒ P (gr) ≤ P (gq)

namely means the latter options are always more likely to preserve the program errors

than the former ones. We define helper function M

M(G, r,D) =


max i st. i > 0 ∧ gi ∈ G(r) ∧ gi ∈ D if ∃gi ∈ D

g0 otherwise

returns the choice of the option given the searching sequence and reduction group. If

none of the other options are present, we use base g0 as our option. We also define a helper

predicate Ph receiving group function, reduction points, and option sequence and returning

the predicate result:

Ph(G,R,D) = P ({M(G, r,D) : r ∈ R})

Algorithm 1: Multi-option Binary Reduction.
Input: Monotonic reduction point and environment search space R

Reduction group function G : r → set〈r〉
Predicate P : r|R| → {T, F} where P ({r1, · · · , rI}) = T

Output: Failure inducing set of reduction options F
Data: A current failure inducing set F ← ∅

Current sorted search space D ← flatten{G(ri) \ {g0} : i ∈ {1, · · · , |R|}}
while ¬Ph(G,R, F) do

q ← min q st. q > 0 ∧ Ph(G,R, F ∪ {Dj : j ≤ q})
F ← F ∪ {Dq}
D ← {Dq : j < q}

end
return F

The idea behind Algorithm 1 is to flatten all options into a sequence and do binary

reduction on the sequence. Since the option group are monotonic, the total sequence is also

monotonic. We use naive flatten function here since, for common cases making option

groups close to each other can help the total running time. If the options are likely to

12

be reduced, we can switch to a round-robin way to add options and keep the sequence

monotonic.

3.2.1 Application on Java Programming Language

Thanks to the single inheritance nature of the Java programming language, we observe a

natural application of multi-option binary reduction: method arguments. When a method

parameter has java.lang.Object as its ancestor, we can choose some of its parent types as

reduction options.

To avoid invalid upcasts of the method parameters, some preprocessing is required. First,

we need to taint the instructions in the method body based on the potential method argu-

ments they use. Second, we should restrict the parent candidates based on the potential

interacting instructions.

Taint step If an aload instruction loads a parameter, we taint the instruction with the

color corresponding to the parameter. Since the local argument slot in JVM is fixed, the

only propagators are dup instructions. After running this step until a fixed point, we have

the information about which instructions are sources of the local arguments.

Restrict step From the method invoking and field manipulation instructions in the

method body, we can soundly restrict the argument parameter. Figure 3.6 and 3.7 demon-

strates the restrictions we pose on the argument types. Note that we do over-approximation

on type casting and arrays by forcing the argument type not to be reduced because of the na-

ture of the Java language. After collecting all restrictions, we examine the lowest superclass

of the argument type and choose it as our reduction base. The other superclasses become

our reduction group options.

13

I(C) reversed inheritance chain of class C
Fo(C,N) first class type in I(C) contains the field named N
Ft(C,N) the type of the field named N in Fo(C,N)
Mo(C,N,D) first class type in I(C) contains the method named N with description D
Mt(C,N,D, i) i-th argument type of the method refered in Mo(C,N,D)
P(V) Boolean result of if the value V is tainted
T(V) the type of the argument corresponding to the tainted color of value V
To(V) the original type of the argument corresponding to the tainted color of value V

Figure 3.6: Denotations used in Figure 3.7

putstatic(C,N, V)⇒ P (V)⇒ T (V) <: Ft(C,N)

getfield(C,N)⇒ P (C)⇒ T (C) <: Fo(C,N)

putfield(C,N, V)⇒ (P (C)⇒ T (C) <: Fo(C,N)) ∧ (P (V)⇒ T (V) <: Ft(C,N))

invoke(C, N, D, V1, ...)⇒ (P (C)⇒ T (C) <: Mo(C,N,D)) ∧ (P (Vi)⇒ T (Vi) <: Mt(C,N,D, i))

checkcast(C, V)⇒ T (V) <: Tc(V)

instanceof(C, V)⇒ T (V) <: Tc(V)

aastore(A, I, V)⇒ T (V) <: Tc(V)

Figure 3.7: Restrictions derived from instructions.

14

CHAPTER 4

Evaluation

This section presents an empirical evaluation of using stubbed binary reduction and multi-

option binary reduction to break dependencies in Java bytecode. We have implemented those

techniques as an external plugin for Java reducer J-Reduce [Kal20]. In the experience, we

will take J-Reduce output bytecode and do further bytecode modifications to allow further

reduction in J-Reduce.

4.1 Experiment Setup

Benchmarks We use the benchmarks and artifacts of the J-Reduce [Kal20] project, which

are collections of 222 Java bytecode instances where the decompilers can produce the Java

source code, but the code fails to compile. The artifact targets on three most popular Java

decompilers: CFR [Ben, version 0.132], Fernflower [Sc, commit 8be977e76] and Procyon [Str,

version 0.5.30].

Implementation Our implementation is written in the Java language and leverages the

ASM [asm, version 9.0] library for stack argument dependency analysis and other static

analyses. We use the latest release of JReduce [Kal, commit ff4bc47] binary. The whole

process works as follows: we take the output bytecode of JReduce and run our stubbed

binary reduction, then feed them back to JReduce for final reduction; after that, we again

provide the output after stubbed binary reduction and JReduce for our multi-option binary

reduction implementation, and finally use JReduce to reduce unused dependencies exposed

15

by our modifications. We find that doing multi-option binary reduction alone is nearly useless

since without function calls reduced, the parameters are highly likely to be preserved.

Machine The whole experiment is conducted on a machine with four Intel 2.0GHz i5

CPUs and 16 GB memory. Note that though the reducer is single-threaded, the decompil-

ers will automatically take all CPUs and the majority of the time is the cost of running

decompiler predicates.

4.2 Statistics

Time The time cost in reduction is highly dependent on the complexity of input and the

running time of the predicate. The number of reduction points is proportional to the number

of running time if the predicate runs in a nearly fixed time. Figure 4.1 demonstrates the

distribution of time cost. The median time cost is 225.916 seconds for a stubbed binary

reduction on function calls and 3.187 seconds for a multi-option binary reduction on method

parameters. As we expect, the complexity of reduction for method parameters is much

smaller than the complexity for reducing function calls, as we have many restrictions on

method parameters, and the method definitions are often restricted to accept few arguments.

(a) Stubbed Binary Reduction (b) Multi-option Binary Reduction

Figure 4.1: Cumulative frequency diagrams of time cost in reduction. The charts show the
number of instances that terminate within x seconds. Higher is better.

16

Size We collect the metrics in two ways, both in the number of classes and size in bytes

after reduction. We choose the artifact from JReduce [Kal20] project as our baseline. Figure

4.2 and Figure 4.3 demonstrate the cumulative results of size reduction for stubbed binary

reduction and it plus multi-option binary reduction. Table 4.1 and Table 4.2 provide the

overall results on the size reduced. We notice that multi-option binary reduction is good at

reducing the number of classes as we anticipated. There are still some classes not reducing

anymore after JReduce operation. After investigation, we find these instances are small, and

it is hard to use a general way to reduce those cases.

(a) Size in bytes (b) Number of classes reduced

Figure 4.2: Cumulative frequency diagrams of size reduced after reduction relative to inital
binary size. The charts show the number of instances that reduce x percent of size after
reduction. Higher is better.

Baseline (JReduce) Stubbed Stubbed + Multi
Median (bytes) 5.1% 3.3% 2.8%
Overall (bytes) 4.6% 2.9% 2.8%
Median (classes) 9.7% 8.1% 7.7%
Overall (classes) 8.4% 7.1% 6.8%

Table 4.1: Aggregated results of size reduced. The percent represents the relative size of the
final output compared to the initial binary.

17

(a) Size in bytes (b) Number of classes reduced

Figure 4.3: Cumulative frequency diagrams of size reduced after reduction relative to base-
line. The charts show the number of instances that reduce x percent of size after reduction
compared to the baseline artifact. Higher is better.

Stubbed Stubbed + Multi
Median (bytes) 69.0% 67.3%
Overall (bytes) 63.8% 61.1%
Median (classes) 94.4% 90.1%
Overall (classes) 86.1% 82.8%

Table 4.2: Aggregated results of size reduced relative to baseline. The percent represents
the relative size of the final output compared to the baseline artifact.

18

CHAPTER 5

Conclusion

This thesis presents two new approaches to break dependencies for failure-inducing input

programs. The stubbed binary reduction breaks closely connected dependencies into in-

dividual components, and the multi-option binary reduction extends the binary reduction

algorithm to enable monotonic options within a single run of reduction. We implement and

evaluate our algorithms on JVM bytecode and decompilers, and they show the potential to

beat state of the art bytecode reducer.

Our implementation now works as a plugin for existing reducers, though they can be

potentially integrated. When we remove some dependencies by stubbing function calls or

replacing method parameters in the program, we can simultaneously remove some depen-

dencies and some entities in the bytecode instead of reducing bytecode in separate two runs.

Furthermore, we can test our methods on normal programs and predicates, which will work

as a code debloater. Meanwhile, dependencies could be unclear for program languages like

pointers in C. In order to generalize our methods, we may need a general representation of

semantics and dependencies similar to a general representation proposed by Perses [SLZ18].

Though applications on different languages and different predicates are still to be done,

we believe our methods demonstrate the potential of fine-grained structural testcase reduc-

tion in how they can break the closely connected dependencies and dig out more reducing

possibilities.

19

REFERENCES

[asm] “ASM: A Java bytecode engineering library.” https://asm.ow2.io/index.html.
Accessed: May 2021.

[Ben] Lee Benfield. “CFR - another Java decompiler.” http://www.benf.org/other/
cfr/. Accessed: May 2021.

[bug] “GCC Bugzilla.” https://gcc.gnu.org/bugzilla/. Accessed: May 2021.

[Kal] Christian Gram Kalhauge. “JReduce.” https://github.com/ucla-pls/jreduce.
Accessed: May 2021.

[Kal20] Christian Gram Kalhauge. Reporting Bugs in Metaprograms. PhD thesis, Univer-
sity of California, Los Angeles, https://escholarship.org/, 2020.

[KP19] Christian Gram Kalhauge and Jens Palsberg. “Binary Reduction of Dependency
Graphs.” In Proceedings of the 2019 27th ACM Joint Meeting on European Soft-
ware Engineering Conference and Symposium on the Foundations of Software En-
gineering, ESEC/FSE 2019, p. 556–566, New York, NY, USA, 2019. Association
for Computing Machinery.

[Lar15] Michael Larabel. “GCC Soars Past 14.5 Million Lines Of Code amp; I’m Real
Excited For GCC 5.” https://www.phoronix.com/scan.php?page=news_item&
px=MTg3OTQ, 2015. Accessed: May 2021.

[Ler09] Xavier Leroy. “Formal Verification of a Realistic Compiler.” Commun. ACM,
52(7):107–115, July 2009.

[LLP19] Xiao Liu, Xiaoting Li, Rupesh Prajapati, and Dinghao Wu. “DeepFuzz: Automatic
Generation of Syntax Valid C Programs for Fuzz Testing.” Proceedings of the AAAI
Conference on Artificial Intelligence, 33(01):1044–1051, Jul. 2019.

[MS06] Ghassan Misherghi and Zhendong Su. “HDD: Hierarchical Delta Debugging.” In
Proceedings of the 28th International Conference on Software Engineering, ICSE
’06, p. 142–151, New York, NY, USA, 2006. Association for Computing Machinery.

[RCC12] John Regehr, Yang Chen, Pascal Cuoq, Eric Eide, Chucky Ellison, and Xuejun
Yang. “Test-Case Reduction for C Compiler Bugs.” In Proceedings of the 33rd
ACM SIGPLAN Conference on Programming Language Design and Implementa-
tion, PLDI ’12, p. 335–346, New York, NY, USA, 2012. Association for Computing
Machinery.

[RH01] S. Rayadurgam and M. P. E. Heimdahl. “Coverage based test-case generation using
model checkers.” In Proceedings. Eighth Annual IEEE International Conference

20

and Workshop On the Engineering of Computer-Based Systems-ECBS 2001, pp.
83–91, 2001.

[Sc] Roman Schevchenko and other contributors. “Fernflower.” https://github.com/
fesh0r/fernflower. Accessed: May 2021.

[SLZ16] Chengnian Sun, Vu Le, Qirun Zhang, and Zhendong Su. “Toward Understanding
Compiler Bugs in GCC and LLVM.” In Proceedings of the 25th International
Symposium on Software Testing and Analysis, ISSTA 2016, p. 294–305, New York,
NY, USA, 2016. Association for Computing Machinery.

[SLZ18] Chengnian Sun, Yuanbo Li, Qirun Zhang, Tianxiao Gu, and Zhendong Su. “Perses:
Syntax-Guided Program Reduction.” In Proceedings of the 40th International Con-
ference on Software Engineering, ICSE ’18, p. 361–371, New York, NY, USA, 2018.
Association for Computing Machinery.

[Str] Mike Strobel. “Procyon Java decompiler.” https://github.com/mstrobel/
procyon. Accessed: May 2021.

[ZH02] A. Zeller and R. Hildebrandt. “Simplifying and isolating failure-inducing input.”
IEEE Transactions on Software Engineering, 28(2):183–200, 2002.

21

