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Analogical Similarity: Performing Structure
Alignment in a Connectionist Network

Jonathan B. Handler
The Institute for the Learning Sciences
1890 Maple Ave
Evanston, IL 60201
jhandler@ils.nwu.edu

Abstract

We describe a connectionist network that performs a com-
plex, cognitive task. In contrast, the majority of neural net-
work research has been devoted to connectionist networks
that perform low-level tasks, such as vision. Higher cogni-
tive tasks, like categorization, analogy, and similarity may
ultimately rest on alignment of the structured representa-
tions of twodomains. We model human judgments of simi-
larity, as predicted by Structure-Mapping Theory, in the
one-shot mapping task. We use a localist connectionist
representation in a Markov Random Field formalism to
perform cross-product matching on graph representations
of propositions. The network performs structured analo-
giesinits domain flexibly and robustly, resolving local and
non-local constraints at multiple levels of abstraction.

Introduction

The process of structure-matching may underlie a broad
range of cognitive phenomena, ranging from analogy and
metaphor through visual recognition [Gentner, 1983; Falk-
enhainer, Forbus & Gentner, 1986; Medin, 1989; Cooper,
1990]. The development of biologically plausible models
of structure matching may offer additional insights into
how this important process can be computed.

In this paper, we develop a structured connectionist
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1890 Maple Ave
Evanston, IL 60201
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model that performs structure matching on a well-studied
task — one-shot mapping under conditions of cross-map-
ping (Figure 1)[Markman & Gentner, in press; Gentner &
Toupin, 1986; Goldstone, Medin & Gentner, 1991]. The
psychological evidence shows both that structure align-
ment must play arole in the human performance of this task
and that there is a subtle interaction of local and non-local
constraints at multiple levels of abstraction intrinsic to its
solution. These are the kinds of computational characteris-
tics that lend themselves naturally to modelling by a con-
nectionist network. Even so, the inherently non-local and
relational nature of structure matching offered an interest-
ing challenge for connectionist modelling.

Unlike most neural network research, our model
performs a real high-level cognitive task. It is a localist,
structured, connectionist model [Feldman, Fanty & God-
dard, 1988; Feldman & Ballard, 1988; Hinton, McClelland
& Rumelhart, 1986], where network entities represent
natural problem constituents. The key constraints in the
task, exemplified by the rules of structure mapping theory
[Gentner, 1983; Falkenhainer, Forbus & Gentner, 1986]
such as the necessity to construct a 1-to-1 mapping, are in-
stantiated directly by the system of connections. The archi-
tecture closely follows that of earlier connectionist models
that addressed the problem of structure recognition in
vision [Cooper, 1990]. In particular, the matching is
computed by a cross-product network that considers part-
part and relation-relation matches in parallel. We adopted
Markov Random Fields as the formal basis of our network,
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Figure 1: The one-shot mapping task. Which one trom the set of the right best
“goes with” the shape selected from the left set? Both literal and structural
properties of the problem play a roje in the answer.

522


mailto:jhandler@ils.nwu.edu
http://ils.nwu.edu

which provides a robust and principled framework for
resolving systems of simultaneous soft constraints [Coo-
per, 1992].

Our large network model successfully solves prob-
lems in the domain, and conforms to human performance
on the task. Furthermore, it seems naturally suited to ex-
pressing the relevant constraints that determine task per-
formance. Asaresult, we suspectthatitcould be easily and
naturally modified to model related tasks and predict
performance. In addition, the evidential nature of the un-
derlying formal framework suggests that it could naturally
incorporate real perceptual input, a possibly significant
advantage when compared to other models [Falkenhainer,
Forbus & Gentner, 1986; Holyoak &Thagard, 1989;
Hofstadter & Mitchell, 1992].

SMERF: Network Definition
Overview

Structure-mapping theory predicts, and experiment has
borne out, that people prefer mappings that preserve re-
lated sets of predicates over mappings that preserve only
isolated predicates. This is the systematicity principle.
There are two additional constraints on mapping. First, we
want our mapping to be 1:1. Second, if we choose to map
two predicates, then we must map their arguments. At a
computational level, this implies that we mustconstrain the
possible matches for a predicate such that it never matches
two predicates from the other set (nor any from its own set).
We must also find a way to propagate the information that
amatch has occurred at superordinate levels down to lower
levels [Gentner, 1983; Falkenhainer, Forbus & Gentner,
1986].

We wanted a network formalism that simplified ex-
pressing these constraints. A distributed representation
would have been inappropriate since it would notallow the
direct representation of the interaction of differing values
in a computation. Further, we wanted our network to be
flexible in the type of mapping that it could make, which
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Figure 2: Relational Networks. Objects are represented
as feature vectors at the bottom of the diagram. Rela-
tions are indicated by connections between levels.

required explicitly representing the potential matches and
constraints between them. Thus, we chose a localist model
— Markov Random Fields (MRF’s) [Kindermann & Snell,
1980] - that can represent the structure-mapping con-
straints via their connection structure. MRF’salso embody
soft-constraint satisfaction, making them noise-resistant,
and are stochastic, potentially allowing the integration of
this model with perception.

In a Markov random field, each variable is assigned
to one processor in the network, a site. The value for each
site comes from a set of possible values, called labels. A
site changes its label in response to pressure from its
nearest neighbors, grouped into cliques. N-cliques are sets
of n nodes that mutually constrain one-another. Con-
straints are implemented by assigning, prior to calculation,
a numeric score to each constraint, called the potential.
Input to the network is in the form of evidence that a set of
label(s) should be applied to a set of site(s). Finally, each
site is influenced by a prior probability — a measure for
each label at each site that that site will take that label.
SMEREF is not currently implemented in parallel hardware
(For a parallel implementation of Markov Random Fields,
see [Swain, Wixson & Chou, 1990]). Instead, the network
was simulated serially, using Chou’s highest-confidence-
first (HCF) algorithm [Chou & Brown, 1990]. HCF is guar-
anteed to converge to a local minimum; empirical observa-
tion has established its performance as excellent on a wide
range of tasks [Cooper, 1990].

Representing the Source and Target: Relational
Networks

In the one-shot mapping task (Figure 1), subjects are
presented with the two sets of figures and the experimenter
points to the figure indicated by the arrow. Subjects are
then asked which of the figures in set B “goes with” the one
indicated. We used the structure implicit in the possible
relations for the two domains to dictate the structure of the
network representation. Thus, we had predicates on three
different levels, or orders'.

Figure 2 shows the layout for nodes in the relational
networks. They are organized by object, predicate order,
and attribute dimension. In the diagram, each object is
represented by a vector of six attributes, one for each of six
attribute dimensions. Attribute dimensions were size, shape,
color, orientation of short axis, orientation of long axis, and
regularity of figure. In the diagram, each node represents

! Structure mapping theory defines order as follows. The
order of objects is zero. The order of a predicate is one
more than the highest order of any of its arguments.
Attributes are defined as one-place, first-order predicates.
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one attribute dimension. Objects are represented by the
three full vectors at the bottom of the structure. The second
level represents twelve possible second-order binary rela-
tions over the attributes. Relations are computed, within
the same dimension, for left-middle and middle-right pair-
ing of objects. Finally, the third level represents six binary
relations over second-order predicates, for within-dimen-
sion pairings. The overall effectis of six unconnected tree-
like structures, each one representing a possible relational
hierarchy for one attribute dimension.

Label sets for the nodes depended on level, but,
interestingly, not dimension. This is because the third-
order predicates that we were modeling were ordinal
predicates. We could thus allow attributes to range over a
set of ordinal values that was the same for each attribute
dimension. Second-order nodes calculated the ordinal
difference between the attributes of the objects they com-
pared. There were seven possible labels at this level, three-
less-than through three-greater-than (including equal). The
third-order predicates were “Monotonically Increasing/
Decreasing,” “Symmetric (two valences as well),” “Flat
(no ordinal change),” and “No Relation.”

Matching Networks

The matching networks in SMERF perform the work of
aligning the relational structure between the two domains.
They are based on the concept of the cross-product match-
ing network [Cooper, 1990; Feldman, Fanty & Goddard,
1988]. There is one node for each potential match between
predicates from the two domains. As with simple cross-
product matching networks, we use inhibition between
match nodes for objects that require a unique match.

Simple cross-product matching networks seek to
place two sets of items in one-to-one correspondence. In
contrast, SMEREF seeks to match relations on three objects
to relations on three objects. This results in a conceptual
sub-division of each node of a simple cross-product match-
ing network into a six-by-six matrix. All nodes have the
label “*“Match/NoMatch.”

There are two types of connection in the matching
networks — vertical and horizontal. Vertical constraints

express the structural-consistency constraint of structure-
mapping theory and horizontal constraints express the 1:1
matching constraint.

There are two types of vertical connection —encour-
aging and discouraging. Encouraging connections act to
strengthen relational matches that are consistent with
decisions about higher-order relational matches. Discour-
aging vertical connections are connections between asingle
match node at one level and all nodes in each of the sub-
grids that correspond to matches between objects that are
inconsistent with the matching node at the higher level.
These connections act to discourage matches for these
predicates.

Horizontal connections within the matching net-
works are alsoof two types. The first type are normal cross-
product matching connections. They act within sub grids of
the matching networks, insuring that within-object predi-
cate matches are unique. The second type of horizontal
connection acts between related predicates for different-
object matches. Thus, if we match predicates for the size of
anobject and the color of an object, we do not want a match
between the size of the same object and any predicate in
any other object than the one to which it is already matched.

Putting it All Together

We have described, so far, two networks that perform the
tasks of structure instantiation and cross-product match-
ing. Performing structure alignment with these tools is
simple. We merely connect predicates from the relational
networks to the appropriate match nodes in the cross-
product matching networks, as shown in Figure 3. The
relational networks are on the left and right of the figure,
with the matching networks in the center. The arrows
represent the most normal flow of information in the
network. That is, information is received, as evidence, at
the bottom of the relational networks. It flows both up -
allowing the relational networks to instantiate the appro-
priate structure — and at the same time across to the
matching networks. These arrows are not uni-directional
— information is free to flow across any connection, a fact
that we hope to exploit in the future.

~[ |l
[ _E— >’ F< | - ]
U= P

Figure 3: SMEREF, an abstract view. Relational networks are to the left and right of the matching networks (center).
Information flows according to the arrows.
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Figure 4a: SMERF, before running.
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Figure 4b:SMEREF, final state.

The empty network shows the layout of matching nodes into grids and sub-grids. Relational nodes are shown so
that the matching nodes for those relations are in the same row/column.

Figure 4a (next page) shows a full view of the
network before performing any calculation (see [Handler,
1992] for a fuller description). We can see that there are
three levels of nodes, corresponding to the three predicate
orders. These are arranged “top down” — highest order to
lowest order. Arranged vertically on the left is the rela-
tional network for the top set of polygons in Figure 1. The
relational network for the bottom set of polygons is repre-
sented horizontally, below each matching grid. Matching
grids are represented in between the relational networks of
the appropriate level. Note that matches for horizontal
nodes are represented by nodes in the matching levels that
are vertically above them (horizontal nodes are repre-
sented by columns). Similarly, vertical relational nodes are
represented by rows of the matching network. Also note
that the second- and first-order matching grids are sub-
divided by groups of predicates that refer to the same
object. The six predicates are ordered down vertically (or
across horizontally) at each level for each object as fol-
lows: Size; Shape; Color; Orientation of Short Axis; Ori-
entation of Long Axis; and Regularity of Figure. Finally,
we have placed the objects to the left of and below their

respective feature vectors.

Figure 4b shows the network in its final state for the
problem given in Figure 1. For this experiment, the evi-
dence for attribute labels amounted to certainty. Attributes
are represented as squares proportional to their ordinal
value. There are two different second-orderrelations in the
example —all relations but size in the vertical set and color
in the horizontal set are labeled “equal.” The size/color
predicates are labeled “1-greater-than” for both sets. There
are also two third-order relations — “flat” for all predicates
but size and color; and “Monotonic Increase” for size/
color. The matching network labels were “Match,” repre-
sented by white nodes and “No Match”, represented by
black nodes. We can see that the network has chosen to
match the small circle to the white circle, the medium circle
to the grey circle, and the large circle to the black circle,
corresponding to their places in the matching monotonic
relations in each of the two domains.

There are two interesting facts to note. First, the
match between “Monotonic Increase” predicates forces a
match at lower levels for size and color predicates that
would not match otherwise. Second, since the labels are the
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same for predicates (within order) the network has no
means of selecting which are the correct matches for
predicates not constrained by higher-level matches. This
was, in fact, a shortcoming in earlier versions of SMERF.
However, discouraging vertical connections insure that
matches for under-constrained predicates take place within
object grids that are consistent with higher-level predi-
cates. It 1s the unified functioning of these two abstract
constraints thatallows the network to come up with a good
solution for the two sets, rather than a disconnected set of
matches for underconstrained predicates along with cor-
rectly constrained matches for one predicate.

The network converges in time that is on the order of
the total number of nodes. The simulation runs in approxi-
mately 40 seconds on a Sparcstation 1, about half of which
1s initialization of data structures. More importantly, the
network grows only as O(n?), where n is the number of
attributes.

Related Work

The current modelis a very close theoretical match to SME
[Falkenhainer, Forbus & Gentner, 1986]. Like SME, the
network attempts every match between predicates. How-
ever, as with all connectionist models, there is a trade-off
made between time and space. Every match is “tried” only
in the sense that there is a matching site for every possible
combination of predicates. Space is used to represent
matches, rather than time to compute them. Since the
network converges without backtracking, we expect that
the algorithm would complete in constant time in a fully
parallel implementation. SME is input a set of proposi-
tional statements about the base and the target. Knowledge
for the structure of the relations in both the base and target
isprovided explicitly. In contrast, the input to SMERF is in
the form of feature vectors. The decision about labels for
higher-order predicates is made during the calculation.
This should allow for greater flexibility in modeling the
analogy process in domains where a propositional repre-
sentation is not available beforehand.

ACME [Holyoak & Thagard, 1989] is also an exten-
sion of structure-mapping theory. It too attempts to pre-
serve relational structure and disregard attributional infor-
mation. As in SMEREF, all matches are explicitly repre-
sented. However, there is a deep difference in the method
of specifying the constraints between the two systems.
ACME takes its inputs in propositional form. Because of
this, it constructs a different network for every problem.
This seems to us to be a somewhat restrictive method for
modeling analogy in humans. In a sense, ACME must
solve the analogy problem — construct a network —in order
to solve the analogy problem — draw an analogy. In con-
trast, SMERF attempts to express the constraints in the

matching processitself. We attempt to leave open the ques-
tion of the type of input. In general, since SMERF is
probabilistic in nature, it extends naturally to domains that
behave well for evidential treatment,

Discussion

The chief challenge addressed in this work was the devel-
opment of a connectionist network that expressed the
constraints of structure-mapping theory for a real task.
There were three relevant constraints that we drew from
structure-mapping theory. The cross-product matching
networks enforce 1:1 mapping. SMERF’s propagation of
information on matches vertically in its matching networks
works to encourage/discourage matches that involve the
same/different predicates enforce systematicity and struc-
tural connectedness.

The second question was really part of the first: how
can structure-mapping theory and parallel architecture be
combined? Specifically, it is an assumption of structure-
mapping theory that non-local, relational information is
the basis of analogy. How could local information be
unified with non-local information in a parallel framework
so that it could override attribute similarity? The network
provided a mechanism for the propagation of high-order
information downward, so that high-order matches over-
rode attribute matches.

There are several directions for future work. It might
be interesting to allow matching information to move
upward through the matching levels and then out to the
relational networks. We imagine that this might help solve
traditional analogy problems of the form “a:b::c:?" It
would also be interesting to provide conflicting evidence at
the attribute level to see how the network would deal with
1t

Prior probabilities for sites, especially the matching
sites, provide a further arena for exploration. Consider the
relational shift. Markman and Genter found that the
number of relational similarity responses rose as their
experiment progressed (see also [Goldstone, Medin &
Gentner, 1991]). This fact can be explained if we assume
that the prior probability distribution is modified after each
judgment, so that the network “expects” to make a rela-
tional response.

Processing symbolic information in parallel systems
provides a powerful method for modeling high-level
cognitive functions. This paper has described a network
capable of modeling human performance on the one-shot
mapping task. We hope that in the future the methods
described here will provide leverage for giving computers
the ability to solve these larger problems.
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