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Induced through Dispersion at an RF Cavity
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We propose a possible scheme to realize three-dimensional laser cooling of stored
and circulating ion beams in a storage ring. The idea is based on creating a linear
synchro-betatron coupling, such thét the longifudinal laser cooling effect can be extended
to transverse degfees of freedom through the coupling. The idea of indirect transverse
laser cooling was recently studied employing a so-called coupling cavity as a source of
the forced coupling. In the present paper, we theoretically explore the possibility of using |
naturfﬂ dispersion of a ring as a new coupling source, setting an ordinary RF cavity at a
position with non-zero dispersion. .It is found that effect of the dispersion-induced
coupling is essentially equivalent to that of the coupling cavity, and that the coupling can
be considerably enhanced under resonance conditions. Cooling rates of longitudinal and
transverse modes are evaluated. An approximate formula is derived to estimate an
optimum value of dispersion at the cavity location. Validity of the present theoretical
predictions is confirmed by tracking simulations demonstrating effective transverse laser
cooling. |
PACS numbers: 29.20.Dh, 29.27.Fh

* On leave from Accelerator Léboratory, Institute for Chemical Research, Kyoto
University, Gokanoshou, Uji, Kyoto 611, Japan.
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1. INTRODUCTION

To date, several techniques are available to cool down the temperature of stored
and circulating beam of particles. Electron cooiing[l] and stochastic cooling[2] are the
~ well-known and well-established methods which have been widely employed to provide
stored beams with very small emittances. These two techniques work fairly effectively in
all three degrees of freedom, reducing beam temperatures typically to the 101~102 K
range[3]. On the other hand, there exists a third promising method known as laser
cooling[4], which is the result of veiocity-selective photon-momentum transfer from a
laser beam to a moving atom or ion. Effectiveness of this mechanism has already been
experimentally demonstrated[5], achieving longitudinal temperatures in the mK range,
the lowest ever reported, with a stored beam of 100 keV 7Li+ ions{6]. Laser cooling of a
circulating beam is, however, limited to longitudinal motion. No effective damping of
transverse emittances has, so far, been accomplished, in contrast with its successful
operation upon longitudinal momentum spread. In fact, in the above-mentioned
experiment, the transverse temperature of the laser-cooled 7Li+ beam was about 106 times
higher than the longitudinal temperature. -

Recently, a méthod has been proposed to realize three-dimensional laser éooling
in a storage ring{7]. The idea is based on forcibly developing a synchro-betatron
coupling; namely somehow opening up a path which connects the longitudinal degree of
freedom directly with the transverse ones such that the longitudinal damping action due
to the laser cooling mechanism can be transferred into transverse directions. For this
purpose, in the previous work, a so-called coupling cavity excited in the TM 219 mode was
introduced. The longitudinal electric field of the mode has a linear transverse-coordinate
dependence which makes it possible to get an efficient coupling between longitudinal and

transverse motions. It has been found that, to enhance the coupling, it was necessary to
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drive the operating pOint of a storage ring onto a difference resonance. This idea,
however, involves a difficulty in designing the coupling cavity itself when the energy of
laser-cooled ions is very small. For a low-energ)-/ beam, a rather small operating
frequency must be chosen because of some beam-dynamical reasons, but the cavity
dimension may then become impracticably large due to its operating mode. The
difficulty can be overcome by uéing a specially-designed caQity which might be a re-
entrant type with lumped impedancés suppiied by a coil.

In this paper, we exploré zi new scheme for three-dimensional laser cooling. The
basic idea is the same as before, that is, deve’lo.ping a forced coupling betwqeri
longitﬁdinal and transverse motion under a resonance condition, but here natural
dispersion of a bring is considered as the coupling source. It is, in principle, always
possible to induce a synchro-betatron coupling by putting: some time-dependent or
horizontal-coordinate-dependent potential at a ﬁosition with non-zero dispersion. An RF
| cavity is again utilized for this pu?pos‘e. The operativn.g mode is, however, not a special
| one like TM ;¢ but a coaxial or ’I’Mmo mode which has long been employed for ordinary
accelerating cavities. Therefore, wé do not have to worry about the cavity size problem
even if the required RF frequency is low. The use of a coaxial-mode strﬁcture allows ué
to design a cavity of modest dimension.

Compared to the idea of the coupling cavity, the significance of the new scﬁeme is
its simplicity. Clearly, there is no component we must newly devise, while, in the
previous idea, desigh of the coupling ca\/ity is not so straightforward and is left for future
work. All we need to do under the present-scheme is to design a proper lattice satisfying
the theoretically requiréd conditions and, then, to install an ordinary»RF cavity at a
— positjon having a finite dispersion. Provided that the existing rings employed for laser
cooling experiments, i.e. ASTRID'in Denmark[6,8] and TSR in Germany[5], are
sufficiently tunable and have a free section with non-zero dispersion, it is only neéessary

to set an additional cavity in the section or, simply, to bring the existing accelerating



cavity to that section. As demonstrated later, the magnitude of dispersion at the cavity
position is not essentially important, because coolihg rates of longitudinal and transverse
motions can be controlled with the strength of a skew quadrupole introduced to give a
horizontal-vertical coupling. |

In principle, the dispersive-coupling scheme enables us to cool transverse beam
- temperatures down to the same level as longitudinal temperature. In the ASTRID ring,
the longitudinal temperature of 1 mK has already been achieved, so we can reasonably
anticipate the same order of temperatures simultaneously in both horizontal and vertical |
direction. If this kind of ultra-cold beam becomes available, we might then consider
some important applications of such a beam. First, analogous to electron coolin‘g, the
laser-cooled beam could be used to cool another beam to an extremely low temperature.
Second, the achievable level of beam temperature should be theoretically sufficient to
observe beam crystallization{9].

The paper is organized as follows. In Sec. I, we give the linearized equations of
motion derived from the Hamiltonian including the potentials of an RF cavity and a pure
skew quadrupole. Then, a simple model is presented to incorporate the laser cooling
effect. The céupling caused by the skew quadrupole is in{lestigated in Sec. III, switching
off the RF cavity. In Sec. IV, we first confirm effectiveness of the lon.gitudinal-
horizontal coupling induced through dispersion at the RF cavity, leading to the results
similar to those obtained in the previous work[7]. Three-dimensional effect is then
studied, and an optimum operating point is theoretically predicted. In Sec. V, tracking
results are given, demonstrating validity of the present theoretical predictions. Effect of
finite dispersion at the skew quadrupole position as well as that of finite dispersion-
derivative at the cavity are briefly discussed in Sec. Vi. A second possible operating
point for effective three-dimensional laser cooling is also described in the section. We

then summarize the main results of the paper in Sec. VIL



II. EQUATIONS OF MOTION

A. Linearized equations without laser cooling effect

Since a single RF cavity and a single skew quadrupole turn out to be sufficient to
achieve our final goal, we simply put N,=1=Ny in the Hamiltonian (A7) given in

Appendix A to obtain

1,5 . 1 . . h\? EoW?
Hy == (B2 + 9,2 +=[K, (s)R* + Ky(s)yz]—(——) 15—0——
2 2 R 2 @D
Al A hn o) rq th . ~ h ~ A )
‘ﬂ“}’(x-"R—W)K%(S—Sq)*msm W-E(ﬂpx —M'X)+ Yy [65(s —sp),

L

where ihe new phase variable has been defined as = &) -y, with the synchronous phase
VY. The ions susceptible to laser'cboling are heavy particles for which the synchfotrori
radiation loss is negligible, so it is uﬁnecessary to accelerate to compensate for energy
loss. The RF cavity is then introduced here for two reasons; namely creating a
longitudinal-horizbntal coupling, and forcing particles to execute synchrotron oscillations
as an origin of the resonance needed to enhance the coupling[10]. In addition, the energy
of stored heavy ions is, in general, below transition, i.e. £0<0, and , must then be
positive in the definition adopted here. Accordingly, to make the RF bucket as large as
possible, we choose the synchronous phase y,=n/2 in the following. We also assume
throughout this paper, in thé numerical wérk,' that £p=-0.947 and 27R=40 m, |
corresponding to the ASTRID ring parameters.

Scaling the canonical variables and changing the independent variable to 6=s/R,

Eq.(2.1) results in the Hamiltonian
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where the dot denotes differentiation with respect to 6, {g=1(8=64)/R, {,=1(6=6,)/R,
f;b =7(0=6,)/R, and the hats on the variables have been dropped. Here, the betatron
motions have been smoothed introduéing the one-turn tunes, Vx in the horizontal direction
and vy in the vertical direction. Note that all the canonical variables have now become
dimensionless due to the scaling performed. Neglecting the highf:r order terms in

Eq.(2.2), we reach the linearized Hamiltonian equations of motion

=2 .
%= py + 22201 (1 £yx = Dy )5,(0—6y), @.3)
0

: 2l Vi 2
Py = —vxz_x—l“qy-Sp(G—Gq)+——n-§—‘iL—(\|l+Cbx = LPx)0,(6-6y), (2.4)

0
7 =py. 2.5)
By = -V, 2y T (x=LgW)-8,6-6,), 26)
\.V = _§OW ,—quqy'Sp(e_eq )a (27)
: 27'CVL2 "
W= (\V + Cbx - Cbpx )6p (6 - eb)v ‘ (2 8)

So

where V; ? = hql€|V, / 2npBoc corresponding to the one-turn averaged tune of the
synchrotron motion. A more accurate value of the longitudinal tune vy is evaluated under

a thin lens approximation, and can be related to the averaged tune as

cos2mvy ) =1-27%V; 2. .9

Specifically, V, gives roughly the same value as v, when the tune is small.
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Provided that the phase spread of a stored beam is sufficiently small, we are well
justified in starting with the linearized equations given above, since the terms Cbx and
Copx mostly take quite small values in our applications[11]. Although the laser cooling
mechanism itself does not require us to bunch an initial continuous beam, it may be better
to bunch it first to get in the simple linear regime. For this purpose, the RF cavity
originally intended for generating a synchro-betatron coupling can be employed without
any sévere nonlinear effect setting in. In fact, an RF cavity sitting at a position where
Mb=2.72 m has been used in the ASTRID ring to bunch a beam of 100 keV 24M gt
ions[12]. Further, tracking simulations indicate that an initial phase spread of even more

than 100 degrees is acceptable, so the beam is not necessarily well-bunched. We recall

- this problem in Sec.V, linking it to beam-size growths due to an initial emittance

unbalance.
B. Model

We are now in a position to incorporate the effect of laser cooling into the
equations of motion. Because of Liouville's theorem, damping of phase-space volﬁme,
1.e. cooling, is not possible as far as the given motion is derivable from a Hamiltonian.
We must, therefore, take into account something additional which enables us to have a
dissibative process like coqling. in' our rﬁodel, the cooling effect is expressed as a simple
frictional force. Noting the fact that laser cooling operates only in the longitudinal

direction, the damping term is added to Eq.(2.8), yielding

_ 27{\7[.2

R

(W + C:»bx - Cbpx )Sp(e - eb) - AW. 8(eent’eext ), (210)

where B and 6.y, represent the 6-coordinates of the entrance and exit of the cooling

section respectively, and €(6ent,8ex:) 1S the step function defined by



1, for8,, <6<6,,,

€0t 0ext) =
Ocnt>Bext) {O, for other regions.

To get a damping motion, the constant A must be always positive. The value of A can be

determined by comparing simulation results with actual experimental data.
Let us construct the transfer matrix of a laser cooling section. Eq.(2.10) together
with Eq.(2.7) results in either \y + Ay =0 or W+ AW = 0 fOr 0o <0<0ex: Clearly, these

equations have a damping solution when A>0. Since the betatron oscillations are

completely decoupled in the section, the damping matrix can be written as

Mp(8p) =

cos(v,08p)  sin(v,0p)/ vy

0 0
-v,sin(v,0p)  cos(v,0p)

cos(vyGD) sin(vyeD) /vy

0 . 0
-Vy “sm(vyGD) cos(v,0p)
—-A8p _
0 0 1 [e _A(I)]ﬁo /A
\ 0 € D
2. 1»1)

where 0p=0ex;-8en. This matrix is, of course, not symplectic.

Egs.(2.3)-(2.8) indicate that a coupling between the longitudinal and horizontal

motion can be induced through the dispersion {}, and/or its derivative éb at the cavity
position. Specifically, we do not have to make { and &b non-zero simultaneously. Thus
we simply aésumc éb =0 in the following discussions. From a practical point of view,
this simplification is quite reasonable, because most storage rings have straight sections
with a flat dispersion, and that is the region where RF cavities are usually installed. In
fact, the two storage rings, ASTRID and TSR, belong to the case. Moreover, if a finite

value of Cb is employed, the cavity must then be set at the exact design position. The use

of a flat dispersion allows us to avoid this extra effort.
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Finally, for later reference, we give the approximate equations of the synchro-

betatron motion studied here, averaging the damping term and longitudinal kick at the

cavity over one-turn. Under the assumption éb =0, Egs.(2.3)-(2.7) and (2.10) lead to

x+vxz[l—(—§-%i}x = LV 2W —[1 —ﬁ;ﬁL)—Ll —-c—q)]rqy-ap(e—eq), (2.12)

0 §0 Cb
§+vyly = =(x={ W), -8,(6-8,), - (213)
o 2 ‘
W+ A, W+v W= %{vﬁx + (1 - %i)rqy -8,(8 -6, )], (2.14)
. 0 b

where A,y denotes the averaged damping constant. Note that we have replaced V| by v

to reduce the discrepancy between the real and averaged synchrotron frequency.

III. COUPLING THROUGH SKEW QUADRUPOLE

It is clear frorh the equations of motion that, even if the RF cavity is switched off,
we still have synchro-betatron coupling, provided Cq;&O'T In this section, we briefly
discuss the effect, checking whether the coupling caused by a skew quadrupole can be
helpful to achieve transverse laser éooling. Without any averaging procedure, the

equations of motion are written as

X+v,2x=-T,y-8,(6-6,), | (3.1)
§+vyly ==T(x={W)3,(0-8y), (3.2)
W+ AW - £(8,,0.x) = 0. : (3.3)

Eq.(3.3) can be readily solved, leading to a damping solution independent of any

transverse parameters. Inversely speaking, this suggests that the betatron motions are not



affected by the longitudinal motion and, therefore, we will observe no cooling in the
transverse directions. In fact, if the longitudinal damping motion could induce transverse
damping effect through the_coupling terms, the longitudinal damping rate must then be
influenced by some transverse parameters.

This observation can be proven by evaluating the eigenvalues of the coupled
motion. Applying, for simplicity, a thin lens approximation to the damping matrix in
Eq.(2.11) and then calculating the one-turn matrix Mj, we find, »frovm the characteristic

equation det(M; -AD=0,
A-DA—-e o)) =0, (3.4)

where Ap=A-6p, and f(A) is a forth-order algebraic equation involving neither {g and A.
While the root A=e-Ap obviously corresponds to longitudinal mode, the cooling rates of
transverse modes are evaluated from the equation f(A)=0 whose roots are totally
independent of the parameter A characterizing damping motion. It can, therefore, be
concluded that transverse damping is not achievable by means of the coupling originating

from the skew quadrupole potential.

IV. THREE DIMENSIONAL COOLING SCHEME

We have found in the last section that the dispersion tq can not be a source for
transverse momentum cooling. The skew quadrupole is, therefore,'introduced only for
the purpose of coupling the hori'zontal motion to the vertical motion. Thus we put, for
simplicity, {4=0 in this section. The effect of {4 on cooling rates is briefly discussed in
Sec. VI, showing that a finite {4 causes no remarkable change to the results presenied

below.
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A. Longitudinal-horizontal coupling

Let us now turn on the RF cavity. Unless there exist vertical bending magnets,
dispersion-induced coupling occurs only between the longitudinal and horizontal
. direction. Since the skew quadrupole coupling has turned out to be useless in obtaining
transverse cooling effect, the mdst important key is whether or not the coupling génerated
by the cavity dispersion {}, can provide sﬁfﬁciently high cooling rates in the longitudinal
and horizontal direction simultaneously. Thus we first try td investigate these two
motions neglecting the vertical betatron oscillation. J

From Eqs.(2.12) and (2.14), the starting equations read -

‘ 2
%+ vx{l - SC—“—?-)—]x ==L,V AW, @
0 o
2
WAL W v 2w = S0V (4:2)

8o

These equations are essentially equivalent to those discussed in Ref.[7] while the kick
force at the cavity here has been averaged over one-turn. Similar damping properties can
then be expectéé. Following the results of the previoué work, the transverse-emittance
damping inducéd through the dispersive coupling should be most enhanced under the

condition of a difference resonance

_ _
v”/l —-(&’%IL —v| =integer. - (4.3)
0

Noting that (vaQ2ﬂ§OI<<1, Eq.(4.3) can be simplified, to a good approximation, as V-

v =integer.

11



In our case, the best way to evaluate the damping rates is to use the matrix
method. Because the kick force at the cavity is linearized here, we can easily construct
the corresponding transfer matrix My, as given in the Appendix B. Using M}, and the drift
matrix Mp together with the damping matrix in Eq.(2.11), a one-turn matrix can be

represented as
M, =My(8;)-M, - M, (6;)-Mp(6p), (4.4)

where, setting the origin of 8-coordinate at the center of the clooling section, 9; and 0, are
defined by 0,=6,-6p/2 and 6,=27(0;+6p). Neglecting the vertical motion which is

decoupled right now, the equation det(M»-AI)=0 yields the dispersion relation

1 C—AD —-A — 1
7»+-x—2cosux A+ x =2cospy +(1-e "°)(1-27V “6;)
= 2¢ 2 (4.5)
_M(l;l)(k_e—AD )sinp, =0,
€o A '

where Ly=27V, uL=21tvL, and the thin lens approximation have been again applied to the
damping matrix. The damping rates numerically evaluated from the matrix M, are
shonn in Figs.1. Heré, T represents dispersion at the RF cavity, i.e. N, =1(6=6;), and v
is the eigentune satisfying the relation A=e'2™. The behavior of Im(V) as a function of the
dispersion My is quite similar to the previous results in Ref.[7] where Im(v) has been
plotted as a function of the field strength of the coupling cavity. As mentioned above, the
most effective cooling situation, where horizontal damping rate becomes roughly equal to
longitudinal damping rate, is provided when the operating point is on resonance.
Obviously, Fig.1(c) is the case. We see that, except for the region 1N, <0.25 m, both

damping rates stay close to each other around a constant level.
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Considering practical applications, we are interested in the smaller-{p, region. We
then approximately solve Eq.(4.5), employing perturbation analysis with respect to 2.
Assuming the resonance condition in Eq.(4.3) and again writing A=e¢™, the imaginary

parts of the first-order solutions to Eq.(4.5) can be given by

—— 2 2 . . .
Im(v,) = 2k C“( — —ﬂ) e - @9
2ol \1-e 2n 1—(1—cos’u0)—n1—(l—2—l)
T
Im(vz)zi:—;)——_lm(vl), (4.7)

where, in order to lé-t the tunes satisfy the simplified resonance condition vx-vL=integér,
we have put pLx=lg aﬁd Up=Ho-2nT (nfinteger). Here, vi denotes the eigentune of the
horizontal mode while v, corresponds to the longitudinal mode.

| Some examples of Im(Vv) under the reSonahce condition are illustrated in Figs.2.
The dotted curves are obtéined from Eq.s.(4.6) and (4.7), yielding good agreements in thé
small-n;, region. Analogous to the results in Ref. [7],‘the dampiﬁg rates of both modes are
rapidiy saturated at the level Ap/8n which is exactly half of the longitudinal damping rate
without the cdupling. Further, unless the dispersion My is too big, all damping rates
remain positive and, accordingly, we can always obéerve, more or less, cooling effect in
both directions. Of particular importance is the minimum dispersion value 1y, desirable
to achieve the damping rétes close to the saturation level. Nm 1s readily estimated by

. equating Eq.(4.6) with Eq.(4.7), resulting in

l—(l—cosuo)gl(l—gl)
v T

oo BoR®_Ap L @)

- 4TCVXVL2 AD—l - (91 /2m) Sinuo

Nm

where we have used the approximation e-AP=]1-Ap. M, gives an approximate value of the

minimum dispersion at the cavity required for efficient horizontal laser cooling.

13



Eq.(4.8) also allows us to predict the preferable position for installing the cavity.

The value of 0; minimizing 1, is evaluated as

-
Op o L 1—\/1—AD +(i\2cosec&) . (4.9)
2 Ap 2 2 _

Eq.(4.9) implies that 8, always takes a value close to © except for the region cos}ly=1
because we usually have Ap«l. Thus, to make 1N, smallest, the cavity should be set at
the position opposite to the laser cooling section. It is obvious from Figs.3 that the best

situation has been actually established when 6,=m.
B. Three-dimensional laser cooling

We now proceed to three-dimensional analysis. In order to evaluate the damping
rates of the three modes, we first try to obtain a dispersion relation based on the general 6
X 6 matrices given in Appendix B and Eq.(2.11). Since the damping rates are not so

sensitive to the location of the skew quadrupole having a modest value of I'y, we simply

multiply M, by My to introduce the one-tum matrix

M3 = Mq ° Mz. . (4.10)

Taking det(M3-AI)=0 yields , after considerable algebra, the dispersion relation



X e_AD ‘ -Ap N, 2
+ T —2cosuL+(1—¢ Y1 =27V, “6,)

X (k+l—2cos )(k+l—2cos )— I“qz'sin sin
Y Hx | A uy vay Hx Hy
_ 29 % (1 _ l)Q ey 4.11)
Eo A

T';% cos(v,8;)cos(v,H,) A :l
sinfly | =0,
VyVy

x[(x + % —2cosH, )sin Ly —
where ly=2mvy, and we have used the thin Mp. Without the quadrupole coupling, i.e.
I'4=0, the vertical mode is, of course, découp]ed, and Eq.(4.11) is reduced to Eq.(4.5).
Similarly to the last subsection, the damping rates of all modes can be found through
evaluating the eigenvalue A. Figs.4 shows some typical features of the damping-rate
curves plotted as a function of the dispersion 7.

As pointed out already, the resonance condition in Eq.(4.3) is required to increase
horizontal damping rate. Here, in addition to the longitudinal-horizontal coupling, wé
must consider a coupling between the two transverse motions. Comparing. the coupling
terms in Egs.(4.1) and (4.2) with those in Eqs.(2.12')'and (2.13), it is readily recognized
that, under the averaging approximation with {4=0, the skew-quadrupole potential yields
the effect mathematically equivalent to the linearized dispersive coupling at an RF cavity.
An enhanced coupling between the: horizontal and vertical motion is, therefore,

anticipated under the condition

oGevi)®

£ y = integer, 4.12)
0

Vx

which can be approximated as vy-vy=integer. Provided that the resonance conditions in

‘Eqgs.(4.3) and (4.12) are simultaneously satisfied, it is actually possible to establish an

15



ideal situation as seen in Fig.v4(b), where the damping-rate curves of the three modes
intersect roughly at a single point. The optimum dispersion of the example is Np=0.6 m.

If one of the two conditions is completely failed, three-dimensional cooling is no
longer achievable as suggested by Fig.4(c), where Im(Vv) of the vertical mode is almost
equal to zero. Fig.4(a) shows a situation in case where both conditions are missed.
Needless to say, the damping rates of both transverse modes are too small to accomplish
efficient transverse cooling even if the coupling is strengthened. It should also be noticed
that, in all cases, we do not have a negative damping rate which leads to exponential
emittance growth.

Writing Ux=[lp, Ly=Ho-2mm, and [y =Ho-2n7T (m,n=integer) on the assumption of

the two resonance conditions, Eq.(4.11) becomes

-A 2 12

I:?u+ c ° —-(1+e"A°)cosuo} (k+i—2cosu0) -—9 sin? Lo
A A xVy

(4.13)

_ 2meL2§b2

So

Fq2(1+cosu0):| _o.

(1 —%)(X—e"\b)sinuolk+-}%——ZCosuo - vy

y

Here, we have put 8;=r, since, as mentioned in the last subsection, this cavity location is
most preferable to reduce the required minimum value of the dispersion 1. We see that
the longitudinal mode is nearly decoupled in the region {p«1, while the two transverse
modes almost degenerate. As before, Eq.(4.13) can be approximately solved treating the
term proportional to Cbz as a perturbation applied to the non-perturbed decoupled
motions. After some al gebra, the first-order solutions of the transverse damping rates are

found to be

16
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« Ho q
_ tan — & ——"ee
Im(v)—-:v"VLZC“z | 2 v ?.vavy . (4.14)
4] r, Ap r,? :
1 cotl, [tanh + -
vavy - -2 2vyvysinhAp

We now have enough information to estimate the optimum dispersion value TMgp:.
It is unnecessary to know the explicit functional form of the longitudinal-mode curve if

we notice the fact that the sum of the three damping rates should always be equal to the
maximum achievable damping rate, Ap/4rn, the same as the longitudinal one without the
coupling. Under the two resonance conditions, the damping-rate curves generally show

the property similar to Fig.4(b); i.e. the curves of two transverse modes grow initially as

b2, staying close to each other, and they eventually intersect the longitudinal-mode curve
at roughly the same point. The maximum damping rate is then distributed almost equally
to all three modes. Therefore, at the optimum point, the three modes should be given

one-third of the maximum rate, namely

Im(vy) = %‘% | (4.15)

Equating Egs.(4.14) with Eq.(4.15) gives an approximate formula for the optimum

dispersion

noptz = _|§_9.|___(AD2 + -__q_.J'cotu—zo-, (416)

3. 2
6mv, VL VyVy

where we have dropped some small terms, assuming‘ that Ap«l and I'y/ ﬂ/vxvy «l.

Although the value of 1y predicted by Eq.(4.16) may not always be sufficiently accurate
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because of the first-order approximation, it permits us to make an initial estimate of the
optimum dispersion.

In Figs.5, we show several examples of damping rates with the parameters
simultaneously satisfying the two resonance conditions. The dotted curves are obtained
from Eqs.(4.14) While the broken line parallel to the abscissa indicates the level in
Eq.(4.15). The validity of Eqgs.(4.14), (4.15) and (4.16) has been beautifully confirmed in
the presentvexamples. ' |

Eq.(4.16) also gives us important insight into the parameter-dependence of the
optimum operating point. In particular, the equation indicates the controllability of gy
by means of the skew quadrupole strength I'y (see Fig.6). Thus, even if the actual
dispersion deviates from its design value, it is straightforward to recover.an optimum
operating situation, compensating for the error. All we need in the case is simply to

increase or to decrease the skew quadrupole gradient.

V. TRACKING RESULTS

- We now show tracking results, confirming the validity of the theoretical
predictions given so far. Apart from the laser coolinvg section, the particle motion
governed by the nonlinear Hamiltonian in Eq.(2.2) is simulated in the tracking code
employed here. To incorporate the laser cooling effect, the matrix'in Eq.(2.11) is used.

Damping rates are related substantially.to the product of A and Op, i.e. Ap, rather
than A itself. The value of Ap reflecting actual experimental results can not be uniquely
determined because it strongly depends on the initial state of a stored beam[13]. The
fundamental feature of the damping-rate curves in Figs.5 is, however, not affected even if
a different value of Ap is chosen. Only the magnitudes of the damping rates are changed,

maintaining the similar figures. Thus the value of Ap is not essential to how transverse

18



damping rates are enhanced, although cooling time ié indeed altered depending on Ap. In
the present paper, we assume that A=0.2 and 8p/2n=0.05 representing a cooling section
of two meter lehgth.

First of all, let us consider the parameters adopted in Figs.4, checking whether the
dispersion relation enables us to correctly.predict the damping' properties of the three
motions. The corresponding simulation results are shown iﬁ Fig$.7. In all cases, the
dispersion 1y, is fixed at 0.6 m, which approximately agrees with the optimum value
" indicated in Fig.4(b). Eq.(4.16) actually gives Nopr=0.57 m. It is obvious that the fesults
are in accord with the expectations drawn vfrom Figs.4.

- It is practically important to know how much error around the resonance
conditions is allowable to keep the damping rates of all three motions sufficiently high.
We do not have to pay much attention to dispersion error, since the shift of fhe optimum
operating point due to thé error is adjustable with the skew quadrupole gradient as
pointed out in the last section. As an example, we here investigate the case given in
Fig.5(a), slightly changing the transverse tunes around the shown values. The damping
rates are plotted in Figs.8 as a function of the longitudinal tune vy. Specifically, Fig.8(a)
indicates that the optimum vy is 0.12. Slight shifts are now applied to the transverse
tunes, fixing Ny, at 1 m. The deviation va-vyI$0.004 appears to be permissible to ensure a
high level of damping rate for all modes. In the case.(c) and (e) where lvx-vyI=0.006,
Im(v) of one mode seems too small, while it still remains positive. These figures also
suggest that the rigorous tuning of v is not necessary. The VL-error_of, say +0.002, looks
acceptable[14].

| The tra;:king results corresponding to Figs.8(a)-(d) are shown in Figs.9. We
observe thalt even the case (c) is fine while the vertical damping is a little slow as
expected. Notice that, in these simulations, the initial parameters different from those
used in Figs.7 have been adopted. When assuming a 100 keV 24Mg* ion and the

harmonic number h=26, the employed initial parameters represent a beam having the
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transverse radius of ~5 mm, the divergence of ~0.8 mrad, and a momentum spread of
about 8p/po~4x107. These values are even larger than those of the actual beams injected
into ASTRID. As for the initial phase spread dy, we have taken dy~+25 degrees, but
much larger phase spread is allowable.

Phase space configurations are illustrated in Figs.10, starting with the parameters
identical to Fig.9(a) except for the twice larger phase spread. The initial emittances of all
three directions have been remarkably compressed after 300 turns. It has been confirmed,
in additional simulations, that a total phase spread greater than 100 degrees is still
acceptable, and that the theoretical predictions based on the present linear approach hold
quite valid even for such a beam.

Compared to Fig.7(b), much more significant initial growths of transverse
emittances are observed in Figs.9. This is due to the larger initial phase spread assumed.
Fig.11 demonstrates emittance oscillations when the longitudinal emittance is initially ten
times greater than the transverse emittances. Since operating point must be set on or
close to the coupling resonances to enhance transverse cooling rates, a considerable
amount of emittance exchange takes place whenever there exists an emittance unbalance.
Although a circulating beam is, in principle, stable on a difference resonance, even such a
resonance might be avoided between longitudinal and transverse motions in most high
energy synchrotrons, because the longitudinal emittance of an accelerated beam is usually
much higher than the transverse emittances and, as a result, a rapid increase of the
transverse beam size occurs leading to a beam loss.

In our case, the beam-size growth due to resonant emittance transfer is avoidable
simply by pre-cooling the longitudinal temperature with a laser cooler. During the pre-
cooling process, longitudinal tune is set at an off-resonance value by supplying a proper
RF power to the cavity. Once the beam is bunched and pre-cooled to a longitudinal

emittance comparable to the transverse values, we then adjust the tune so as to generate a
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synchro-betatron resonance for three-dimensional cooling, increasing or decreasing the
RF power. |

Even if emittance oscillations with large amplitudes arise as seen in Fig.11, the
emittances have reached, aftef 400 turns, a level of more than 100 times smaller than their
initial values. It is intéresting to note that the longitudinal emittance always takes its
minima around the timing when the sum of the transverse emittances comes tb ité
maxima. This implies the exis:éhce of a constant of motion in the absence of the laser
cooling term.

Finally, we plot, in Fig.12, the RF-voltage amplitude V as a function. of the
longitudinal tune vi. While longitudinal tunes of rather large values have been used in
. the examples so far, the corresponding RF voltages are always within a reasonable rénge

owing to the small velocities of laser-cooled beams.

V1. SOME ADDITIONAL REMARKS

A. Effects of {q and éb
We here briefly explore the effects of finite {q and f;b neglected so far. Let us
first assume a non-zero {4, which is of practical importance because we often have finite

dispersion everywhere along the circumference of a storage ring. In fact, the dfspers_ion
functions of both ASTRID and TSR never vanish. Further, provided that the value of {q
suitable for three-dimensional cooling is uniquely determined, or strongly dependent
upon othér ring parameters, a rigorous restriction might be imposed on lattice design.

Fortunately, Fig.13 gets rid of this concern. In the figure, the dispersion ny at the cavity

is fixed at 1 m approximately equal to the optimum value indicated in Fig.5(a). It is seen
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that the damping rates are almost unchanged even if the value of the dispersion 1q=R-{4
is varied over a wide range. |

Effect of dnp/ds= éb is now investigated neglecting ng. Figs.14, employing the
same parameters as Fig.5(a), illustrate the 1,-dependence of damping rates with various
values of the derivative dnp/ds. No noticeable change is observed when dnp/ds takes a
small value. However, as the derivative becomes larger, the three modes tends to be split
up and, eventually, completely spread out as seen in thercase (c) and (d). A large value of
dnp/ds must, therefore, be avoided to make sure of a sufficiently high cooling rate in each
mode.

It is worth while plotting Im(v) as a function of the derivative dny/ds. The results
are given in Figs.15, assuming several different values of the dispersion ny. It is
interesting to note that Figs.15 are quite similar to Figs.14. Analogous to the pattern
illustrated in Figs.14, the damping-rate curves ére gradually split out with the increasing
Tb- In particular, note that case (a) shows exactly the same characteristic as the curves in
Figs.5. This corresponds to the fact that the coupling originating from éb is equivalent to
that from {,. It is actually clear from the Hamiltonian (2.2) that, apart from constant

coefficients, the mathematical roles of Cb and p to the horizontal canonical variables are

symmetric.
B. Another possible operating point

Careful numerical calculations reveal the existence of another possible operating
point which enables us to have the damping rate in Eq.(4.15) in all three modes
simultaneously. Again, the. three motions must be close to the coupling resonance, but
the resonance conditions are not exactly satisfied. We give a typical example in Fig.16

assuming the parameters of Figs.5. Although the tunes are almost identical to those of
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Fig.5(a), the fundamental feature of' the graph appears to be completely different.
Clearly, the optimum point is not predictable based on the first-order analysis. |

| Plotting Im(v) és a function of the longitudinal tune vy, we obtain Fig.17 rather
different from Fig.8(a). While Fig.8(b), 8(d), and 8(f) are somewhai similar to it, the
employed dispersion 1y is 1.9 m twice larger than the value assumed in Figs.8. Notice
that the optimum point described here is also controllable by changing the skew
quadrupole Strength 'y as demonstrated in Figs.18. However, there exists a lower limit in
the optimum dispersion TNopt adjustabie with T. Althdugh we can decrease Mopt by
- reducing I‘q,v the use of too small I'q causes a sudden spiit-off of two modes seen in the

case (a) considerably affecting the damping rate of a transverse mode.

VII. SUMMARY

It has been shown that the dispersion-i.nduced coupling at an RF cavity is a
possible way to extend the longitudinal laser cooling effect to transverse degrees of
~ freedom, based on the idea of enhanced synchro-betatron coupling. We have found that
the dispersive coupling is, under a linear approximation, mathematically equivalent to the
coupling generated i)y a coupling-cavity potential, but the present scheme hés turned out
to be more uéeful when considerihg practical applications. In fact, the scheme can be
applied, without any difficulty, to very low-energy beams, while design of a coupling
- cavity is not so easy for such a beam. In addition, the previous scheme requires us to
provide two different RF cavities; i.e. a coupling cavity operating in TMj3j9 mode, and an
ordihary bunchir;g cavity for the purpose of creating an RF bucket. A single ordinary
cavity introduced here plays the roles not only of the coupling cavity but also of the

bunching cavity. Further, the synchrotron oscillation induced by the cavity field is

beneficial to simplifying laser cooling system. It has been vexperimentally proven in the
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ASTRID ring that the ions executing synchrotron oscillations can be cooled with only
one laser as efficiently as with two lasers co-propagating and counter-propagating with
the stored beams[12].

The RF cavity can also be utilized, with a laser cooler turned on, for preventing
undesirable nonlinear effects as well as a large amount of emittance transfer from
longitudinal to transverse directions. After the pre-cooling process, the longitudinal
phase space of an initial continuous beam is compressed achieving a small emittance with
a small phase spread. Consequently, we can make a simple linear regime set in.

Until coming close to an ultra-cold beam state, the linear analysis described in the
paper holds very well. Space-charge force will not affect the present results because the
stored beams employed so far for laser cooling experiments have very low intensity.
However, once an ultra-low temperature is reached, the beams get in a space-charge-
dominated state. Effects of intra-beam scattering and so on, which is generally negligible
for a low-intensity beam with a normal temperature, become important[15].

The space-charge dominated state of a low-intensity ultra-cold beam may be

'éonsidered as a first stage toward a cfystalline beam. Theoretically, a crystalline beam
forms a continuous structure[16], while a laser-cooled beam obtained under the present
scheme has been bunched. It is, however, an easy matter to debunch the beam as we have
an RF cavity already set on the ring. A procedure to observe a beam crystallization may,
therefore, be as follows. First of all, turn on a laser cooling system as well as an RF _
cavity without the condition in Eq.(4.3) satisfied. After the beam is bunched and
longitudinally pre-cooled to some degree, adjust the RF power supplied to the cavity such
that the longitudinal tune satisfies the resonance condition. We now also turn on a skew
quadrupole magnet and increase the field strength up to the optimum level theoretically
predicted. After a ter;qperature in the mK range is achieved, turn off the laser, and switch
the synchronous phase to a debunching one. During the debunching process, we may

hopefully transform the beam-plasma to a liquid state or, eventually, to a crystalline state.
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APPENDIX A
HAMILTONIAN OF THE SYSTEM

Since the Hamiltonian including effect of an RF cavity has been derived in
previous works[17], we only outline the derivation here for completeness, considering
additionally the potential of pure skew quadrupole magnets.

Let us consider a storage ring of the averagé radius R. Our starting point is the

general Hamiltonian of the form

' - 2
H, = (P 294)
(1+x/p)

1/2 )
+(px—qAx)2+(py—qu)2+mozcz] . (AD

where mg and q are, respectively, the rest mass and charge state of ions, p is the local
curvature of the ring, and A=(Ay, Ay, Ay) represents the total vector potential of the

system. We now install RF cavities at the positions s=s,(™ (n=1,2,--,Np) and skew



quadrupoles at s:sq(n) (n=1,2,--,N4) where s 18 the distance along the reference particle

orbit. The vector potential of the n-th RF cavity is given by

(n)

A, = (o, 0, sin(wt + ¢b<">)), (A2)

where V® and ¢, ™ (n=1,2,---N,) are, respectively, the voltage amplitude and initial
phase of the n-th cavity. From a practical point of view, all thé cavities have been
assumed to be identical, writing the common RF angular frequency as ®. Taking the
distance s as the independent variable,. instead of time, and considering only dipole and
quadrupole magnets installed on the ring, the Hamiltonian H, can be approximated,

together with Eq.(A2), as

X px2+p 2 p 2 2
H2="P+(P0'P)—+—2p'y—+—0[Kx(S)x +Ky(s)y’]
I (@ (A3)

+p0xy2——-5 (s-s (“))—EZV (")sm((x)t+¢b(“))5 (s— sb("))

n=1

where Fq(") is the coupling strength of the n-th skew quadrupole, K xy)(s) is related to the
quadrupole field strength, d(s) denotes the periodic delta function whose periodicity is
the ring circumference 27R, and the total momentum p is expressed as p=[(W/c)?-
mo2c2]V2 with the total particle energy W. In the following analysis, quantities with the
subscript 0 are used to represent those corresponding to the reference particle.

We now introduce the canonical transformation from the variables (X,y,t;px,Py,

-AW =W =W;s) to ()'(,Sl,f;f)x,f)y,—AW;s) yielded by the generating function

AW |+ 7 +—’AW——— wW)2, ' A4)
] PyI BCX Po(BoC)z( (

Fi =D x-
b x( PoBoc
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where n(s) is the dispersion function of the ring, B and y are the usual relativistic
parameters, and the prime stands for the derivative with respect to s. After applying this

transformation to Eq.(A3), we scale the canonical momenta to obtain

PR | 2,_AW
Hy =2 (Bx" +by") + S (K ()X 24K, (93] Boc
11 (AW)? n r,m -
+— +——AW |Y —24—3 (n) AS
Boc(% p) > y( Boc )Z b (s=5,™) (AS)

-—va‘”sm[mt —E—mpx -1 x>+¢b‘"’]6 (s—sp'™).

Po® 5 o€

The Hamiltonian Hj is further transformed with the generating function

~n ~n ~ S—Sh(l) M ] .
F, =Xp,+ypy, +| 0] t - B +d," (W, (A6)

o€

The use of F; leads to the Hamiltonian

H4=—(Px +py2)+ (K, (%% + K, (5)§°]

. h W2 . r.m
O (R )Z——S (5=5,) A7)

——Zv <">sm[¢-—(npx -n x>+¢b<">}6p(s—sb‘“>).

Po® =

where h is the harmonic number of the cavities, &g is the so-called phase slip factor

defined as £g=a-1/Yp? with the momentum compaction o, and

b -
@™ EE(Sb(n) =5 M)+ 0, -0, (A8)
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APPENDIX B

TRANSFER MATRICES

Here, we give the explicit expressions of the transfer matrices employed in the

paper. Based on Eqs.(2.3)-(2.8), the transfer matrix at an RF cavity located at a position

with non-zero dispersion can be represented as

1+ AChéb "Ac..bz_ Agb 0
AL,2 1- AL, Al, 0
M, = 0 0 | (B)
0 0 1 O
AL, -A A1l
| AL -ag )

Id

where A = 21:VL2 /&g, and I and 0 denote, respectively, the 2 x 2 unit matrix and zero

matrix. Similarly, the pure skew quadrupole matrix My and the drift matrix My can be

given as
I 0 O A
-Tqy O
M 0 0 0 O (i32)
11-ry 0 0 G g7 _ _
-Clq O I
\ 0 0 )
cos(v,8p)  sin(v,0,)/ vy 0 0 A
-V, sin(v,8g)  cos(v,08;) :
M. 0 0 cos(vyeo) sin(vy0p)/ v,
0(%)= -vysin(vy8,)  cos(v,8) I
1 -£,0
0 0 €0Bo
\ ' 0 1 )
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(B3)
where 6 is the angular'extem of a drift space. Needless to say, all these matrices are

symplectic.
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Figure Captions

Fig.1. Imaginary part of the eigentunes describing longitudinal and transverse motions as
a function of the dispersion m, at the RF cavity position. The horizontal tune vy is
chosen to be vx=2.17 in all cases. The cavity is set at the location opposite to the
laser damping section which has the cooling rate Ap/2r=0.01. We use, in all figures
presented in this paper, the slip factor =-0.947 roughly corresponding to the recent
ASTRID experiments for 100 keV 24Mg+ ions. In addition, we assume the

circumference of the storage ring to be 40 m, the same as in the ASTRID ring.

Fig.2. The same as Fig.1, but now the tunes are chosen in each case such that the

resonance condition, Vx-v =integer, is satistied. The solid curves are obtained from

solving 4 x 4 determinant while the dotted curves result from Eqgs.(4.6) and (4.7).

Fig.3. The dependence of the damping rates on the RF-cavity position. The location of
the cavity is varied fixing the tunes at vi.=0.29 and v,=2.29. This valqe of vy is the
same as the vertical tune of the ASTRID ring. The center of the laser cooling section
is loéated at 6=0°. The dotted curves again correspond to the results from EQs.(4.6)

and (4.7).

Fig.4. Imaginary part of the eigentunes evaluated from the 6 x 6 one-turn transfer matrix
vs. the dispersion M, at the cavity position. The origin of 0-coordinate is taken again
at the center of the laser cooling section which has the cooling rate Ap/2n=0.01. The
RF cavity sits at 6,=r, the position opposite to the cooling section, while the
quadrupole location is 6;=3%/2. The quadrupole coupling constant is fixed at

I'4=0.1. Only the case (b) satisfies the two resonance conditions given in Eqgs.(4.3)
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and (4.12) simultaneously. Note that, in<the case (a) and (c), one of the two
transverse modes is nearly decoupled having the imaginary part almost equal to zero.
Fig.5. The same as Fig.4, but the longitudinal and horizontal tune are here set at the
values identical to those adopted in Figs.2. In addition, the vertical tune is chosen.
such that the resonance condition, vx-Vy=integer, is satisfied. The dotted curves
représent the first-order theoretical solutions given in Eqgs.(4.14), yiélding close
agréements with the numerical results in all céses. It is shown, as expected, that

three curves always intersect at the level Im(v)=Ap/12x.

Fig.6. The optimum dispersion evaluated from Eq.(4.16) vs. the skew quadrupole
sirength ['q. The same parameters as used in Fig.5(a) are chosen. rThe magnetic- ‘
field gradient corresponding to a specific value of I'y depends on various parameters,
but it can be shown that, as far as the ions employed so far for laser cooling
eXperimems are concerned, Iy of the present range can be easily realized with a

single skew quadrupole.

Fig.7. Tracking results, i.e. the solutions of the nonlinear equations derived from the.
Hamiltonian‘in Eq.(2.2), in which 500 particles are followed ahd, froh them,
lohgitudinal (solid line) aﬁd transverse (broken lines) RMS emittances are evaluated.
The employed parameters in each figure are identical to those in Fig.4, but the
dispersion is fixéd at Np=0.6 m approximately corresponding to the optimum value
indicated in Fig.4(b). Initially, particles are randomly distributed inside the three

phase-space circles whose scaled radius is 0.1 (See Fig.lO.)ﬁ

Fig.8. Imaginary part of the eigenfunes evaluated from the 6 x 6 one-turn transfer matrix

~vs. the longitudinal tune vi. The horizontal tune vy and the vertical tune vy are
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varied around the values shown in the case (a), fixing the dispersion M, at 1.0 m
which is approximately equal to Nop. “Other parameters, except for the tunes, are
identical to those in Fig.4. The case (a) represents the best case where vy and vy

satisfy the resonance condition. Clearly, the optimum situation is achieved when

v =0.12.

Fig.9. Tracking results exactly corresponding to the case (a) to (d) given in Fig.8. The
longitudinal tune vy is fixed at 0.12. In horizontal and vertical phase-space, the
assﬁmed initial beam has a circular shape with the scaled radius of 0.02, which is 1/5
of the injection beam radius in Fig.7. The longitudinal phase-space projection is an
ellipse having the total phase spread of 0.8 radian and the maximum absolute W of

0.001. 500 particles are randomly distributed in the initial state.

Fig.10. Phase space configurations. (al), (bl), and (cl) represent two-dimensional phase-
spaCe projecpions of an injection beam, while (a2), (b2), and (c2) are those after 301
turns. The employed parameters are exactly the same as those in Fig.9(a), but the

initial phase spread is taken twice as large.

Fig.11. The same as Fig.9(a), but here the initial transverse emittances are set at 1/4 of
Fig.9(a), while the longitudinal emittance is taken ten time larger than the transverse

value.

Fig.12. The voltage amplitude V, of an RF cavity vs. the ‘longitudinal tune vp. The

following RF frequency has been assumed for each curve; i.e. ~581 kHz for 100 keV
2Mg*, ~1.24 MHz for 100 keV 7Li*, ~46.7 MHz for 7.29 MeV 9Be*, and ~103.6
MHz for 13 MeV 7Li*.
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Fig.13. Dependence of damping rates on the dispersion Mq at the skew quadrupole

position. The same parameters as employed in Fig.5(a) have been assumed fixing

the dispersion 1y, at 1.0 m.

Fig.14. The same as Fig.13, but Im(v) is now plotted as a function of the dispersion np.

Finite values of the dispersion-derivative at the cavity position have been assumed

neglecting ng.

Fig.15. The same as Fig.13, but Im(v) is plotted as a function of the derivative of

dispersion, dn/ds, at the cavity position, varying the dispersion Mp.

Fig.16. The same as Fig.14, except that the employed transverse tunes are slightly

different. M4 and dnp/ds are both neglected here. y

Fig.17. The same as Fig.14, but Im(v) is now plotted as a function of the longitudinal
tune vi. The dispersion has been chosen as M,=1.9 m close to the optimum value

indicated in Fig.16. .

Fig.18. The same as Fig.14, but the skew quadrupole strength is varied around I'q=0.1.
| The optimum dispersion in the case (b) is shown to be about 1.85 m while, in the

case (d), it becomes around 2.05 m.
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