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Cardiorespiratory Fitness and Sleep, 
but not Physical Activity, are Associated 
with Functional Connectivity in Older Adults
David Wing1,2*   , Bart Roelands6,10, Julie Loebach Wetherell4,5, Jeanne F. Nichols1,2, Romain Meeusen6,10,11, 
Job G. Godino1,2, Joshua S. Shimony9, Abraham Z. Snyder9, Tomoyuki Nishino3, Ginger E. Nicol3, Guy Nagels8, 
Lisa T. Eyler5,7 and Eric J. Lenze3 

Abstract 

Background  Aging results in changes in resting state functional connectivity within key networks associated 
with cognition. Cardiovascular function, physical activity, sleep, and body composition may influence these age-
related changes in the brain. Better understanding these associations may help clarify mechanisms related to brain 
aging and guide interventional strategies to reduce these changes.

Methods  In a large (n = 398) sample of healthy community dwelling older adults that were part of a larger inter-
ventional trial, we conducted cross sectional analyses of baseline data to examine the relationships between several 
modifiable behaviors and resting state functional connectivity within networks associated with cognition and emo-
tional regulation. Additionally, maximal aerobic capacity, physical activity, quality of sleep, and body composition were 
assessed. Associations were explored both through correlation and best vs. worst group comparisons.

Results  Greater cardiovascular fitness, but not larger quantity of daily physical activity, was associated with greater 
functional connectivity within the Default Mode (p = 0.008 r = 0.142) and Salience Networks (p = 0.005, r = 0.152). Better 
sleep (greater efficiency and fewer nighttime awakenings) was also associated with greater functional connectivity 
within multiple networks including the Default Mode, Executive Control, and Salience Networks. When the population 
was split into quartiles, the highest body fat group displayed higher functional connectivity in the Dorsal Attentional 
Network compared to the lowest body fat percentage (p = 0.011; 95% CI − 0.0172 to − 0.0023).

Conclusion  These findings confirm and expand on previous work indicating that, in older adults, higher levels of cardiovas-
cular fitness and better sleep quality, but not greater quantity of physical activity, total sleep time, or lower body fat percent-
age are associated with increased functional connectivity within key resting state networks.

Keywords  Functional connectivity, Brain health, Maximal cardiovascular fitness, Successful aging, Physical activity, 
Body composition, Sleep quality, Sleep quantity
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Key Points

•	 Cardiovascular fitness is associated with younger/
healthier brains assessed in terms of functional 
connectivity of key resting state networks associ-
ated with cognitive capacity and emotional regula-
tion.

•	 Stronger functional connectivity is associated across 
multiple regions with increased total sleep quality.

•	 Quantity of physical activity is not associated with 
stronger functional connectivity in any of the regions 
associated with cognition although there is an associ-
ation of increased connectivity in the Motor Control 
Network.

•	 Higher body fat percentage is associated with greater 
functional connectivity in the Dorsal Attentional 
Network.

Background
Preservation of cognitive performance and emotional 
wellness are critical for successful aging [1, 2]. While 
lifestyle behaviors are considered important to slowing 
age-related changes and preserving brain function, rela-
tively little is known about the physiological mechanisms 
underlying the associations between lifestyle behavior 
and brain aging. Given the worldwide increases in lon-
gevity [3] there is a need to consider methods to slow 
declines associated with aging and better preserve func-
tion across the lifespan.

Although certain brain structures are thought to be 
critical for cognition [4], they do not work in isolation. 
Instead, these structures are functionally connected to 
other structures and regions. Functional connectivity 
(FC) is measured by evaluating temporal correlations in 
spontaneous activity between widely separated regions 
of the brain [5]. A network can then be identified as 
groups of neurons that repeatedly “fire” together. The 
activity within, and between, networks can be observed 
while resting or completing mental or physical tasks [5]. 
Meaningful differences in FC between younger versus 
older adults have been found across a broad range of 
resting state networks, with less functional connectiv-
ity generally associated with older individuals. The bulk 
of the research suggests that differences are most pro-
nounced in the Default Mode Network (DMN) [6–9], the 
Executive Control Network (ECN) [7] and the Salience 
Network (SAL) [7, 10] with lesser, but still significant dif-
ferences in the Dorsal Attentional Network (DAN) [7]. 
In contrast, networks associated with sensory functions, 
including visual processing (VIS), and motor control 
(MOT) show minimal associations with older age [7, 8, 
11].

Cardiorespiratory fitness (CRF), assessed as the 
amount of oxygen that the body can utilize during 
maximal effort (V02max), depends on several integrated 
processes including ventricular function, pulmonary 
sufficiency, vascular ability to accommodate and trans-
port hemoglobin in blood, and cellular ability to accept 
oxygen and make it available to the mitochondria [12]. 
Although cardiorespiratory fitness is somewhat modifi-
able through training, it has been estimated that genetics 
contribute between 44 and 68% of variance across indi-
viduals [13, 14]. When considered in absolute terms (i.e. 
independent of body weight). In contrast, physical activ-
ity is the quantity of activity an individual accumulates 
throughout the day, often assessed in terms of intensity 
levels. Moderate to vigorous intensity is widely recog-
nized as beneficial to overall health [15]. A substantial 
body of research indicates that both overall cardiovas-
cular fitness and regular physical activity (PA) have pro-
tective and restorative effects on age-related cognitive 
decline and the development of neurodegenerative dis-
eases. [16–22]. However, other literature indicates that 
both fitness and physical activity have minimal effects on 
BrainAge, a synthetic measure derived from the volume 
of 435 brain structures [23, 24] or that there are no differ-
ences in cognitive outcomes after substantial changes in 
fitness [25]. Furthermore, studies relating physical activ-
ity to measures of brain integrity have reported variable 
findings with generally small effect sizes, if relations are 
detected at all [26–28].

Links between CRF, PA, and functional connectivity, 
both within- and between-networks, have been described 
in several previous publications [7, 9, 29]. In particular, 
higher levels of CRF and PA have been associated with 
greater functional connectivity in regions associated with 
the ability to focus attention, organize sensory input, and 
apply memory to complete complicated muti-stage tasks 
[29–32]. However, other studies have reported discord-
ant results, including no changes in FC with changes 
in cardiovascular fitness [33] and negative associations 
between FC and physical activity [34].

Being overweight or obese, estimated via the body 
mass index (BMI), is commonly associated with poor 
brain health, independently of the impact on measures 
of fitness (i.e., V02max). Specifically, higher BMI has been 
associated with lower volume of grey matter across sev-
eral brain regions [35] and obesity, particularly central 
obesity, is associated with increased risk of developing 
Alzheimer’s Disease (AD) [36, 37]. Similarly, high BMI 
has been associated with reduced FC in key resting state 
brain networks associated with cognitive function [38, 
39]. Further, recent systematic reviews of cross-sectional 
studies have concluded that central obesity, measured via 
waist circumference, is correlated with brain structural 
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declines [40] and impaired cognition [41]. It is worth 
noting that the majority of included studies have relied 
on relatively crude measures of obesity, such as BMI and 
waist circumference. However, recently published stud-
ies using more sophisticated Dual X-Ray Absorptiom-
etry (DXA) based measures of body composition have 
reported similar findings, with visceral adiposity being 
associated with brains that appear to be older than pre-
dicted based on chronological age [23, 24].

Finally, both sleep quality and quantity have exhibited 
equivocal associations with measures of brain health. 
Specifically, lower values for both sleep quantity and effi-
ciency (a marker of sleep quality) were associated with 
reduced functional connectivity in the DMN in children 
[42], while only efficiency had the same association in 
adolescents [43]. Similarly, associations between poor 
sleep and lower functional connectivity were observed in 
working age, but not older adults [44]. Other studies have 
found that, in older adults, poor sleep predicts deteriora-
tions in brain microarchitecture independently of other 
lifestyle factors [45, 46]. Additionally, in older adults, 
both very short (< 6 h) and very long (> 10 h) sleep dura-
tion are associated with deteriorated brain structure [47, 
48] and worse performance on cognitive tests [49, 50]. 
Sleep related disease may also be related to neurodegen-
eration. Indeed, obstructive sleep apnea (OSA) is asso-
ciated both with increases in blood markers associated 
with the development of AD [51] and with reduced FC in 
cognitively normal adults [52, 53] but not those with mild 
cognitive impairment [53].

To better understand differences in functional connec-
tivity in sedentary older adults, we examined cross-sec-
tional differences in FC in the DMN, ECN, SAL, DAN, 
MOT and VIS resting state networks (RSNs) in relation 
to physiological and behavioral traits. Specifically, these 
analyses replicate/expand on the findings of Voss and 
colleagues [7] by exploring the associations between fit-
ness and FC and physical activity and FC using a some-
what larger, and similarly well characterized population 
of older adults. Further, we extend those findings by 
also examining associations between body composition 
and sleep respectively with FC in these key networks. 
Although there is some collinearity between some of 
these behavioral characteristics, we believe that they can 
be explored both independently and collectively, as was 
done for the closely associated physical activity and fit-
ness by Voss et  al. [7]. Additionally, to our knowledge, 
all these lifestyle factors have not been objectively char-
acterized in the same healthy older adult population. We 
hypothesized that superior cardiorespiratory fitness, as 
measured by V02max, is associated with greater FC in the 
DMN, ECN, and SAL, and that higher levels of physical 
activity are associated with greater resting state activity 

in the MOT network. Additionally, we hypothesized that 
higher levels of adiposity, particularly visceral adipose tis-
sue (VAT), would be associated with lower levels of func-
tional connectivity in the DMN, ECN and SAL. Finally, 
we hypothesized that more sleep, both in terms of overall 
minutes of sleep and sleep efficiency, would be associated 
with increased functional connectivity in those regions.

Methods
Participants: These analyses were conducted on data 
gathered during the baseline measurement of a longitu-
dinal intervention set in two urban areas and approved 
by the Institutional Review Board at both The University 
of California, San Diego (UCSD), and Washington Uni-
versity in St. Louis (WUSTL). All participants provided 
informed consent to participate. The larger group of 607 
older adults has been extensively described elsewhere 
[25, 54]. Key details meaningful to the current analyses 
include that participants were between ages 65 and 84 
and had self-reported cognitive complaints but were free 
from assessed cognitive impairment (defined as < 11 on 
Short Blessed Test [55]) or diagnosed neurodegenerative 
disease. Additionally, participants were excluded if they 
were currently using glucocorticoid or diabetes medica-
tion, were too physically active (defined as > 60 min/week 
of moderate to vigorous exercise any week within the last 
6  months), reported alcohol or substance abuse within 
the previous six months, or reported having a disease or 
condition that would make it impossible to participate in 
the (exercise and/or mindfulness) intervention(s). Addi-
tionally, participants completed a maximal exercise test 
(see below) during their measurement visit and were 
excluded if they exhibited substantial cardiac arrhythmia 
or ischemia.

Physical Measures (GXT, DXA, Accelerometery)
Graded Exercise Testing (GXT): The majority of par-
ticipants completed a GXT using a treadmill (Quinton 
QStress, Cardiac Science, Chelmsford, Mass) with a 
substantially smaller number (< 10%) who were unable 
to walk without holding onto the treadmill handrails 
using an electronically braked cycle ergometer (LODE 
Excalibur, Netherlands) to volitional maximal exertion. 
The testing protocol has been described previously [23, 
54]. In brief, under the supervision of a physician, par-
ticipants warmed-up for three to five minutes and then 
intensity was increased at a level equal to approximately 
0.6 change in the metabolic equivalents of task (METS) 
per two-minute stage with active motivation from study 
staff (n = 2 minimum offering ongoing and enthusias-
tic verbal encouragement). Exercise grew progressively 
harder until the physician ended the test based upon 
potentially dangerous changes in the ECG reading or an 
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extreme hypertensive response (SBP > 220 or DBP > 110), 
or the participant indicated that they were unwilling/
unable to continue. Individuals were excluded if they 
did not reach a minimum of 85% of their age predicted 
heart rate maximum (220-age) or testing was stopped by 
the physician prior to volitional fatigue. Maximal capac-
ity was calculated in METs using the American College 
of Sports Medicine’s algorithm [56] designed for walking 
or cycling as appropriate based upon testing methodol-
ogy. Based on the presumed linear relationship in oxygen 
consumption while coming to a metabolic steady state in 
response to a new workload, partial stages were scored 
in 30  s increments using the formula METs last_completed_

stage + 0.25* METs difference_between_stages* number of 30  s 
increments completed in the new stage.

Dual X-Ray Absorptiometry (DXA) to estimate body 
composition: A GE Lunar Prodigy at one location and an 
iDXA (both GE/Lunar, Madison, WI) at the other were 
used to estimate segmental body composition and pro-
vide absolute values (measured in grams or kilograms) 
for fat and lean tissue and bone mass for the arms and 
legs and trunk as well as secondary height-dependent 
regions titled android (centered on the abdomen) and 
gynoid (centered on the upper thighs). Visceral fat values 
were also derived from the android region. This method 
of estimating visceral fat has had good agreement com-
pared to 3-D imaging techniques in both men and 
women [57, 58].

Participants were positioned in line with best prac-
tice recommendations [59] and external artifacts were 
removed whenever possible. For participants who were 
larger than the available scan field, a “hemi-scan” was 
acquired by scanning only the right side of the body and 
replicating those values for the “missing” limb.

Accelerometry: Measurement of physical activity: Par-
ticipants were asked to maintain their normal behaviors 
during a 10 day period during which they were equipped 
with an Actigraph GT9X + Link (ActiGraph Inc, Pensa-
cola, FL) deployed in line with best practice recommen-
dations [60–63] worn on the participant’s non-dominant 
wrist continuously except when engaging in water-based 
activities like swimming or bathing. This tri-axial accel-
erometer has been shown to be both valid and reliable 
across the age span [60, 64, 65]. After 10 days of deploy-
ment, devices were recovered and data were downloaded 
and screened for completeness and potential device mal-
function in line with established practice [60, 62, 66]. 
Data processing included applying a screening algorithm 
to detect non-wear [67, 68] and aggregating raw data into 
“counts per minute” in the x, y and z axes independently 
using Actilife (Actigraph’s proprietary software). Vec-
tor magnitude was calculated using the square root of 
the sum of the squares of the three axes to incorporate 

intensity, frequency, and duration of movement. This 
metric, henceforth referred to as Vector Magnitude 
Counts Per Minute (VM CPM) has been recommended 
for use in assessing physical activity during a 24-h 
wear period [69] particularly when the device has been 
deployed at the wrist.

Accelerometry: Measurement of sleep: The same device 
was used to calculate sleep time in total minutes, wake 
after sleep onset (WASO) both in terms of number of 
awakenings and number of minute awake, and sleep effi-
ciency using an algorithm that has been validated for 
use in adults [70]. Participants were specifically asked 
to maintain their normal sleep rhythms during the wear 
period. The window of observation was derived from 
sleep journals in which participants indicated the time 
that they had begun trying to sleep, and the time that 
they first woke up in the morning (i.e. there was no effort 
to record incidental, or undesired, nighttime awakening). 
All records were manually entered and inspected by a 
specifically trained research assistant. If, based on visual 
inspection more than 50% of a period at the immediately 
following the “go to bed” or preceding the “first waken-
ing” time appeared to have substantial amounts of move-
ment indicative of poor subject record keeping, in-bed 
or first awakening time was adjusted to reflect the period 
when movement appeared to (mostly) cease. If a sleep 
journal was not maintained, previously validated meth-
ods were utilized to estimate the time of sleep onset and 
wake time [71]. Individuals with obstructive sleep apnea 
(OSA) were identified and sleep variables were compared 
against those without OSA.

Imaging Measures
Imaging Acquisition: Three magnetic resonance imaging 
(MRI) scanners at two sites were used to acquire resting 
state functional MRI (rs-fMRI) data (UCSD: GE MR750 
3  T scanner (GE, Milwaukee, WI) with an 8-channel 
head coil; WUSTL: Siemens 3  T Trio and 3  T Prisma-
FIT (Erlangen, Germany) with a 20-channel head coil. 
T1-weighted (T1w) and T2-weighted (T2w) structural 
scans were performed for purposes of image registration 
and radiological screening of the participants (UCSD: T1 
MPRAGE, TE = 3.036 ms, TI = 1.000 ms, 1.0 mm3 voxels; 
T2 CUBE, TR = 3.300  ms, TE = 73.37  ms, 1.0  mm3 vox-
els; WUSTL: T1 MPRAGE, TR = 2.400 ms, TE = 3.16 ms, 
TI = 1.000 ms, 1 mm3 voxels; T2 SPACE, TR = 3.200 ms, 
TE = 458  ms, 1  mm3 voxels). Four rs-fMRI scans (140 
frames per run) were acquired per subject using a multi-
echo sequence (UCSD: TR = 2.740  ms, TE = 14.8, 28.4, 
42, 55.6  ms; 4.0  mm3 voxels; WUSTL: TR = 2.960  ms, 
TE = 15, 31.3, 47.6, 63.9 ms; 4.0 mm3 voxels) with a total 
run time of 6.4 min (UCSD) or 6.9 min (WUSTL) per run 
or 25.6 and 27.6 total scan minutes respectively. Gradient 
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echo field maps were acquired for later use in correction 
of susceptibility-related image distortion. During fMRI, 
participants were shown a neutral video without audio 
(e.g., nature scenes) synchronized to the start of each run 
and were asked to stay awake without engaging in any 
sort of meditation.

Image Preprocessing: fMRI data processing largely fol-
lowed previously described methods [72] which makes 
use of several FSL modules [73]. Briefly, rigid body 
motion correction both within- and across-runs was 
computed on data summed over all echos. Slice tim-
ing correction was applied to each echo. Bias field 
inhomogeneities were corrected using the FAST mod-
ule in FSL [74]. Atlas transformation was computed by 
composition of transforms (individual frame → frame 
average → T2w → T1w → atlas representative target). 
T1w → atlas registration was computed with FSL FNIRT. 
Three atlas representative targets, all representing the 
711-2B version of Talairach space, had been previously 
prepared for each of the scanners to accommodate scan-
ner-specific differences in T1w contrast. Final resam-
pling of the fMRI data in 3 mm3 voxel 711-2B space was 
accomplished in one step incorporating distortion cor-
rection, previously computed bias field correction, and 
the composition of all spatial transforms.

The multi-echo data were then modeled according to 
standard theory [75] fitting the four echoes to a mono-
exponential model S_t = S_0t⋅exp(− R_2t^⋆⋅TE_k:, 
where indexes frame, indexes echo, and is reconstructed 
intensity extrapolated to echo time 0. Frame-to-frame 
variation in was suppressed by averaging over the whole 
run and the fMRI data were modeled at a TE of 30  ms 
according to S_t = (S_0) ̅⋅exp(− R_2t^⋆⋅30 ms). The mod-
eled data in each run then were intensity normalized (one 
multiplicative scalar applied to all voxels and frames) to 
achieve an intensity mode value of 1000.

Denoising was effected on the fMRI data virtually con-
catenated across the 4 runs. Frame censoring was com-
puted on the basis of DVARS [76], with the criterion 
adjusted to compensate for baseline variability using a 
previously described method based on fitting the distri-
bution DVARS values to a gamma function [77]. Subse-
quent steps ignored all censored frames. The data were 
denoised using a CompCor-like scheme with regres-
sors derived from motion correction temporally filtered 
to suppress respiration-related factitious head motion 
[78], white matter, ventricles, extra-axial cerebral spinal 
fluid (CSF), and the whole brain global signal [79]. Image 
derived regressors were based on tissue class segmen-
tations computed by FreeSurfer 6.0.0 [80]. Additional 
denoising included bandpass temporal filtering retaining 
frequencies in the range 0.01–0.1  Hz and spatial filter-
ing (Gaussian blur of 6  mm in each cardinal direction). 

Finally, the (scanner-specific) response evoked by the 
movie was averaged over all participants and subtracted 
from each individual’s data.

ROI/Network Creation: Relevant voxel locations were 
initially identified using the Big Brain 300 parcellation 
described by Seitzman and colleagues [81] excluding sub-
cortical and cerebellar RIO’s. In an effort to confirm/rep-
licate earlier findings we projected the regions described 
by Voss and colleagues [7] onto the Seitzman ROI’s. Thus, 
three networks were defined; the salience (SAL), motor 
control (MOT), and visual (VIS) networks. Two addi-
tional networks described by Voss et  al. [7] the default 
mode network (DMN) and the dorsal attention network 
(DAN) were substantially different when compared to 
Seitzman and colleagues parcellation [81]. Accordingly, 
we utilized both with labels DMN and DAN for Voss 
defined regions and BSDMN and BSDAN for Seitzman. 
Finally, because Seitzman and colleagues did not iden-
tify an executive control network (ECN) we utilized the 
Voss visual representations and included voxels identified 
as frontoparietal and DMN within the Sietzman desig-
nations. The voxel locations and network designates are 
included in the supplementary materials. A visual repre-
sentation of Seitzman-Voss mapping for SAL is shown in 
Fig. 1 below, and mapping for all five examined networks 
are shown in supplementary Figs. 1 through 5. The aver-
age correlation value, defined as the average correlation 
across the ROI x ROI pairs within each network was cal-
culated and assessed as the within network connectivity 
value for subsequent analyses.

Statistics
Statistical Analysis: SPSS version 28 was used to conduct 
all statistical analyses. Participants were excluded from 
any analysis for which they had missing values. Descrip-
tive statistics (proportions, mean ± standard deviation) 
were used to characterize the population, and t-tests 
were used to compare differences by study site and sex. 
Correlations between physiological/behavioral variables 
and FC with age were examined with Pearson product-
moment correlations. In addition, inter-relationships 
among the physiological/behavioral variables and among 
the networks of interest were evaluated while controlling 
for chronological age, sex, location, and years of educa-
tion with Bonferroni adjustments applied to correct for 
multiple comparisons.

For examination of the relationship between physiolog-
ical/behavioral variables and the regional FC variables, 
we used multiple linear regressionto create unstandard-
ized residual values for the resting state functional net-
works after controlling for sex, chronological age, years 
of education, and location. Further, unstandardized 
residual values were created for physiological/behavioral 



Page 6 of 16Wing et al. Sports Medicine - Open          (2024) 10:113 

variables using multiple linear regression that controlled 
for covariates. Specifically, we controlled for chrono-
logical age, sex, and location for all variables. Years of 
education was not included as a covariate as it was not 
hypothesized to be associated with any of these vari-
ables, whereas including it was appropriate when consid-
ering FC. Additionally, based on the known association 
between physical activity and fitness, in order to create 
appropriate residuals we included physical activity as a 
covariate for analyses involving fitness. With this associa-
tion in mind, and the known association between fitness 
and body composition, fitness was included as a covari-
ate for creating physical activity and body composition 
unstandardized residuals. Finally, we also included both 
sleep efficiency and total sleep time as a covariate for 
creating both fitness and PA residuals. Similarly, fitness 
and PA were included as covariates for creating all sleep 
residuals. In both directions, this decision is based on the 
growing evidence regarding a dynamic interplay between 
these sleep, fitness, and activity variables in relation to 
brain health [82, 83]. The final unstandardized residuals 
then represent the individual differences in the variable 
of interest after variance from the covariates has been 
accounted for.

We then conducted continuous linear regression using 
the unstandardized residuals of the behavioral variables 
of interest as the independent variable and the unstand-
ardized residuals of the FC networks of interest as the 
dependent variable. Additionally, in line with the work of 

Voss and colleagues [7] on physical activity and fitness, 
we divided participants into the top and bottom 25% of 
the cohort based upon the unstandardized residual val-
ues for each physiological/lifestyle variable of interest to 
further evaluate the potential differences in unstandard-
ized FC residuals at key networks as a function of fitness 
(and activity, body composition, and sleep each consid-
ered independently). We then compared these groups 
with independent samples t-tests following the hypoth-
esis that the “best” 25% would have greater FC than the 
“worst” 25% using Bonferroni adjustments to correct for 
multiple comparisons.

Results
Population Descriptives
A total of 398 participants (195 San Diego, 203 WUSTL) 
were included in the overall analyses. Of these 398, forty-
five participants who did not continue to maximal effort 
(determined as not reaching 85% of age predicted heart 
rate max or having the study physician end the test prior 
to volitional fatigue) were excluded from the analysis of 
fitness (n = 353 for fitness measures). Five participants 
did not have enough night-time accelerometer wear and 
three insufficient daytime wear for inclusion (4 night or 
days respectively) leaving 393 participants included in 
analyses regarding sleep and 395 in daily physical activity. 
Sleep variables for individuals with OSA were not signifi-
cantly different from those without (p range from 0.228 
to 0.982) so all sleep data was considered for the entire 

Fig. 1  Seitzman and Voss coordinates and ROI’s—salience network. Seitzman ROI’s as designated by different colors on the top left (A) and Voss 
ROI’s are designated on the bottom right (B). The overlay areas of the two are shown on the top right (A’). Note: Visual representation of overlay 
between other networks of interest are available in supplementary materials
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population. A graphical representation of sample size 
with reasons for exclusion is included in the supplemen-
tary materials.

The sample self-identified largely as white (n = 314, 
79%) with a smaller percentage identifying as black 
(n = 37, 9%), white with Hispanic ethnicity (n = 24, 6%) 
and Asian (13, 3%) with the remaining 10 individu-
als refusing to answer or indicating that they identified 
with multiple racial/ethnic categories. The sample was 
predominantly female (78%), and females in the sample 
population were younger than males. As expected, based 
on population level statistics, women had lower maximal 
cardiovascular fitness, higher overall body fat percent-
age and lower lean body mass. However, men had greater 
VAT and less overall physical activity as measured in 
VMCPM. Finally, although FC across the majority of 
the networks was not significantly different by gender, 
women had greater connectivity in the DMN. Variables 
with statistically significant difference, along with confi-
dence intervals are included in supplementary materials 
Table 1.

Locational Differences
There was a significant difference between the loca-
tions for participants’ maximal cardiovascular fitness 

and connectivity with WUSTL having a population with 
higher fitness and less connectivity. Means, standard 
deviations and p values for difference by location for all 
demographic, physiological, and connectivity values 
are shown in Table  1. Mean differences and confidence 
intervals of the difference for variables with significant 
differences for both location and sex are shown in sup-
plementary materials Table 1.

Correlations
Significant correlations between age and the SAL, VIS 
and BSDMN networks were observed (p = < 0.001, 0.026 
and 0.016 respectively). As such, age was included as 
a covariate in other correlational analyses. After con-
trolling for age, sex, and location all resting state func-
tional networks had significant positive correlation 
(p = < 0.001–0.005) except for between VIS and BSDAN 
(p = 0.763).

Similarly, many physiological variables were associated. 
Specifically, cardiorespiratory fitness was associated with 
total physical activity (p < 0.001 r = 0.374) and all metrics 
of body composition (p range < 0.001 and = 0.024). Addi-
tionally, all metrics of body composition were associated 
with each other (p < 0.001 for all). All sleep-based vari-
ables were also significantly associated (p < 0.001 for all). 

Table 1  Sample characteristics by intervention location

Bold values indicate statistical significance

Yrs years; METS metabolic equivilant of task; VM vector magnitude; CPM counts per minute; g grams; min minutes; DMN default mode network; ECN executive control 
network; DAN dorsal attentional network; SAL salience network; MOT motor control network; VIS visual network; BS Ben Sietzman defined network

Total group UCSD WUSTL P = 

% Female 78 79 73 0.610

Age (yrs) 71.3 (4.7) 71.6 (4.7) 71.1 (4.8) 0.246

Education (yrs) 16.2 (2.2) 16.2 (2) 16.2 (2.3) 0.791

Maximal cardiovascular fitness (METS) 7.1 (1.8) 6.6(1.5) 7.6(1.9) < .001
Body fat (%) 40.2 (7.4) 40.3 (7.5) 40.2 (7.4) 0.902

Lean tissue (g) 42,786.2 (8486) 42,556.5 (8870) 43,006.8 (8115.9) 0.597

Visceral adipose tissue (g) 1257.3 (866.9) 1276.3 (871.6) 1239.2 (864.1) 0.671

Sleep efficiency (%) 84.5 (6.3) 84.2 (6.2) 84.8 (6.4) 0.317

Total sleep time (min) 387.9 (51.8) 385.4 (52.1) 390.3 (51.5) 0.348

Nightly awake time (min) 71.3 (30.9) 72.8 (31.4) 69.8 (30.4) 0.341

Nighly awakenings (n) 18.4 (6) 18.7 (6.2) 18 (5.9) 0.218

Total movement (VM CPM) 1956.8 (502.9) 2005 (512) 1910.7 (490.9) 0.062

DMN connectivity 0.225 (0.066) 0.251 (0.063) 0.199 (0.058) < .001
ECN connectivity 0.084 (0.032) 0.101 (0.031) 0.067 (0.024) < .001
DAN connectivity 0.106 (0.033) 0.123 (0.03) 0.090 (0.027) < .001
SAL connectivity 0.339 (0.103) 0.384 (0.092) 0.295 (0.095) < .001
MOT connectivity 0.272 (0.112) 0.319 (0.109) 0.228 (0.095) < .001
VIS connectivity 0.204 (0.068) 0.235 (0.07) 0.174 (0.051) < .001
BSDMN connectivity 0.131 (0.045) 0.151 (0.043) 0.112 (0.039) < .001
BSDAN connectivity 0.176 (0.062) 0.19 (0.061) 0.162 (0.061) < .001
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In addition to the relationship to CRF mentioned above, 
total daily physical activity was negatively associated with 
metrics of body fatness (i.e. more movement = less fat-
ness). Further, PA was negatively associated with sleep 
efficiency and time, and positively associated with wake 
after sleep time (i.e. more movement = less sleep time 
and lower sleep quality). A scatterplot showing the signif-
icant associations between fitness and DMN is shown in 
Fig. 2 below. All other correlation matrix tables and scat-
terplots for both network to network associations and 
associations between physiological variables are provided 
in the supplementary materials.

Cardiorespiratory fitness was correlated with DMN 
(p = 0.008 r = 0.142), SAL (p = 0.005, r = 0.152) and 
BSDMN (p = 0.008 r = 0.143) but not with ECN, DAN, 
MOT, VIS, or BSDAN (p range = 0.248–0.982). Total 
physical activity was not significantly associated with 
greater MOT connectivity (p = 0.060; r = 0.124), or any 
other network (p range = 0.156–0.862).

When exploring associations between FC and body 
composition, the only significant associations were 
between percent body fat and the VIS (p = 0.03, r = 0.117), 
DMN (p = 0.05; r = 0.105), and DAN (p = 0.047; r = 0.107) 
networks.

Greater sleep efficiency was associated with greater 
connectivity in the SAL (p = 0.007; r = 0.137) and BSDMN 
(p = 0.016; r = 0.122) networks. Total sleep time was 
inversely associated with ECN, MOT and VIS connectiv-
ity (p = 0.016, 0.025 and 0.027 and r = − 0.121, − 0.114 and 
− 0.112 respectively). Total amount of time awake during 
(attempted) sleep periods was negatively associated with 
multiple networks including SAL (p = < 0.001, r = − 0.18), 
MOT (p = 0.007; r = − 0.136), BSDMN (p = 0.038; 
r = − 0.105) and BSDAN (p = 0.043; r = − 0.102). The 

number of times awakening during a sleep period 
(regardless of total length of time awake) was negatively 
associated with ECN (p = 0.001; r = − 0.162) and MOT 
(p = 0.013; r = − 0.126).

Results of Residual Based Linear Regressions 
and Comparisons of Best vs. Worst Quartiles
In an effort to provide a visual representation of the 
potential ways that difference can be observed with these 
analyses, Fig.  2 shows graphical representations of the 
data shown both continuously and grouped into best v. 
worst groupings between CRF and DMN connectivity.

Linear regression using unstandardized residuals for all 
variable categories yielded significant results related to 
multiple behavioral variables and the SAL and MOT net-
works, with a smaller number showing significant pre-
dictive association with the DMN or ECN. Table 2 below 
provides details regarding the model fit, and beta values 
for continuous regressions that achieved statistical sig-
nificance after correction. For those interested in greater 
detail, the model fit, standard error, and beta values for 
all of the variable combinations are available in the sup-
plementary materials.

Modest predictive associations exist indicating that 
CRF significantly positively contributes to DMN connec-
tivity (p = 0.040). Additionally, body fatness contributes 
significantly to reduced connectivity in the SAL network. 
This is true both in terms of total body fat percentage, 
and visceral adiposity (p = 0.035 and 0.028 respectively). 
Greater amounts of total daily physical activity are asso-
ciated with increased connectivity within the MOT net-
work (p = 0.005). Finally, sleep quality expressed both 
as percent of time in bed spent asleep and number of 
nightly awakenings are predictive of connectivity across 

Fig. 2  Cardiorespiratory fitness and DMN connectivity shown both continuously and split into best and worst quartile. Left-hand 
graph = Continuous comparison of unstandardized residuals of the CRF and DMN connectivity (p = 0.040). Right-hand graph = T-test based 
comparison of the best and worst CRF residual groups with DMN connectivity (p = 0.049). CRF = Cardiorespiratory Fitness; DMN = Default Mode 
Network
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multiple networks in a manner in which better sleep is 
associated with greater connectivity.

Results of the t-tests comparing the best versus worst 
quartiles within key metrics of interest are shown in 
Table 3. The most fit participants had significantly higher 
connectivity in the DMN, SAL and BSDMN compared 
with the least fit (p = 0.049, 0.015 and 0.023 respectively). 
Additionally, the quartile with the highest body fat per-
centage had higher connectivity in the DAN (p = 0.011) 
with no differences in any networks observed for lean 
tissue or VAT (p > 0.05). Individuals with the most 
overall physical activity had higher MOT connectivity 
(p = 0.001). The quartile with the best sleep efficiency 
showed greater connectivity in the DAN (p = 0.050), SAL 
(p = 0.003), BSDMN (p = 0.032) and MOT (0.024) The 
quartile with the lowest amount of time awake during 
sleep had greater connectivity in the SAL (p = < 0.001), 
and MOT (p = 0.004) networks while those with the 

fewest number of times awakening showed greater con-
nectivity only in the BSDAN (p = 0.020).

It is worth noting that the choices made for the spatial 
location of component ROIs within key networks have 
some impact on the analyses findings and resulting con-
clusions. In general, both correlative and comparative 
significance (or non-significance) was observed in both 
the Seitzman and Voss defined DMN and DAN concur-
rently. However, that was not always the case (see Table 2 
for differences in significance by definitional region). We 
focused on the Voss defined regions to better position 
our conclusions with existing literature regarding fitness, 
body composition, activity, and sleep.

Discussion
Overall Findings
The present data suggest that some, but not all, of the 
lifestyle-based behaviors assessed here are associated 
with differences in FC within key brain networks in a 

Table 2  Linear regressions: unstandardized continuous variables

CRF cardiorespiratory fitness; CPM counts per minute; DMN default mode network; ECN executive control network; g grams; min minutes; MET metabolic equivilant of 
task; MOT motor control network; SAL salience network; VIS visual network; VM vector magnitude

Behavioral variable Functional 
network

Model summary 
R2

Unstandardized β SE p value

CRF (METS) DMN 0.012 Constant 0.002 0.003 0.040

CRF (METS) 0.005 0.002

Body fat (%) SAL 0.011 Constant 1.909E-16 0.005 0.035

Body fat (%) − 0.002 0.001

VAT (g) SAL 0.012 Constant 0.001 0.005 0.028

VAT (g) − 1.36E-05 0

PA (VM_CPM) MOT 0.023 Constant 0.001 0.005 0.005

PA (VM_CPM) 3.44E-05 0

Sleep quality (%) SAL 0.021 Constant 0.000 0.005 0.007

Sleep quality (%) 0.002 0.001

Sleep quality (%) MOT 0.014 Constant 0.001 0.005 0.026

Sleep quality (%) 0.002 0.001

Sleep time (min) ECN 0.025 Constant 0.001 0.001 0.003

Sleep time (min) − 8.69E-05 0

Sleep time (min) VIS 0.017 Constant − 7.01E-05 0.003 0.015

Sleep time (min) 0.000 0

Wake time (min) SAL 0.033 Constant 0.000 0.005  < .001

Wake time (min) − 0.001 0

Wake time (min) MOT 0.025 Constant 0.001 0.005 0.003

Wake time (min) − 0.001 0

Wake number (n) ECN 0.018 Constant 0.001 0.001 0.011

Wake number (n) − 0.001 0

Wake number (n) SAL 0.014 Constant 0.000 0.005 0.030

Wake number (n) − 0.002 0.001

Wake number (n) MOT 0.022 Constant 0.001 0.005 0.005

Wake number (n) − 0.003 0.001
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population of sedentary older adults. More specifically, 
better fitness and sleep efficiency, but not greater daily 
physical activity or total sleep quantity, were associ-
ated with greater functional connectivity in the DMN 
and SAL networks. Further, good sleep quality, defined 
as fewer nightly awakenings, was associated with 
greater connectivity in the SAL network. Although 
less powerful than the associations seen between FC 
and sleep efficiency and fitness, we found that, con-
trary to expectations, higher percentage body fat was 
associated with greater FC in the DAN, and that less 
total sleep time was associated with greater FC in the 
ECN. Although causality cannot be determined from 
these cross-sectional analyses, these results further 

inform the associations between lifestyle factors and 
brain aging and provide additional insight into possible 
mechanisms underlying age related differences in brain 
physiology.

Cardiorespiratory Fitness
We found relations between greater aerobic fitness and 
stronger FC in the DMN and SAL networks. Interest-
ingly, we did not find a predictive association when 
CRF and the SAL network are considered continuously, 
but did find significant differences in this network 
when comparing “best” and “worst”. This suggests that, 
at least for some networks, there is a threshold above 
which fitness is protective. These data strengthen, 

Table 3  T-tests and confidence intervals comparing first (top 25%) vs fourth (bottom 25%) quartile for each behavioral variable

Bold values indicate statistical significance

Note, desirability of first vs. fourth quartile varies according to metric

The lowest quartile is presumed to be healthier for body fat, VAT, Wake-time and Wake number

The highest quartiles is presumed to be healthier for fitness, PA, Sleep Quality, and Sleep Time

All variables controlled for sex, age, location

Fitness variable controlled for physical activity and sleep time and sleep efficiency

Physical activity variable controlled for fitness, sleep time, and sleep efficiency

Sleep variables controlled for physical activity, and fitness

METS metabolic equivalent of task; VM vector magnitude; CPM counts per minute; kg kilograms; min minutes; DMN default mode network; ECN executive control 
network; DAN dorsal attentional network; SAL salience network; MOT motor control network; VIS visual network; BS Ben Sietzman defined network

Fitness Body fat VAT Physical 
activity

Sleep quality Sleep time Wake time Wake number

p =  (METS) (%) (kg) (CPM) (%) (min) (min) (n)

DMN 0.049 0.811 0.839 0.564 0.366 0.146 0.419 0.257

ECN 0.250 0.120 0.260 0.192 0.251 0.072 0.169 0.051

DAN 0.469 0.011 0.123 0.322 0.050 0.304 0.189 0.449

SAL 0.015 0.082 0.094 0.954 0.003 0.878  < .001 0.083

BSDMN 0.023 0.204 0.423 0.499 0.032 0.066 0.121 0.199

BSDAN 0.935 0.890 0.531 0.148 0.077 0.691 0.199 0.020
Mot 0.753 0.757 0.823 0.001 0.024 0.209 0.004 0.287

Vis 0.595 0.186 0.432 0.400 0.725 0.123 0.862 0.442

95% Confidence Intervals

DMN − 0.0349 to 
− 0.0001

− 0.0133 
to 0.0169

− 0.0167 
to 0.0136

− 0.0229 
to 0.0125

− 0.0271 
to 0.0101

− 0.0315 
to 0.0047

− 0.0106 
to 0.0253

− 0.012 to 0.0445

ECN − 0.0035 
to 0.0133

− 0.0126 
to 0.0015

− 0.012 
to 0.0033

− 0.0026 
to 0.0129

− 0.0138 
to 0.0036

− 0.0007 
to 0.0159

− 0.0026 
to 0.0148

0 to 0.0288

DAN − 0.0119 
to 0.0055

− 0.0172 to 
− 0.0023

− 0.0131 
to 0.0016

− 0.0136 
to 0.0045

− 0.0173 to 
− 0.001

− 0.013 
to 0.0041

− 0.0028 
to 0.0139

− 0.0088 
to 0.0197

SAL − 0.0589 to 
− 0.0064

− 0.0027 
to 0.0459

− 0.0035 
to 0.0445

− 0.0297 
to 0.0281

− 0.0702 to 
− 0.0152

− 0.0297 
to 0.0254

0.0205 to 
0.0747

− 0.0054 
to 0.0872

BSDMN − 0.0261 to 
− 0.0019

− 0.0034 
to 0.0158

− 0.0061 
to 0.0145

− 0.0162 
to 0.0079

− 0.026 to 
− 0.0011

− 0.024 
to 0.0008

− 0.0024 
to 0.0203

− 0.0064 
to 0.0301

BSDAN − 0.0196 
to 0.018

− 0.0158 
to 0.0182

− 0.0218 
to 0.0113

− 0.0321 
to 0.0049

− 0.0357 
to 0.0018

− 0.0225 
to 0.015

− 0.0061 
to 0.0291

0.0057 to 
0.0646

Mot − 0.0273 
to 0.0377

− 0.035 
to 0.0255

− 0.0247 
to 0.031

− 0.0763 to 
− 0.0193

− 0.0673 to 
− 0.0047

− 0.011 
to 0.0498

0.0142 to 
0.075

− 0.0244 
to 0.0817

Vis − 0.0221 
to 0.0127

− 0.0276 
to 0.0054

− 0.0226 
to 0.0097

− 0.0103 
to 0.0256

− 0.0162 
to 0.0232

− 0.0035 
to 0.0293

− 0.0212 
to 0.0178

− 0.0186 
to 0.0423
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through replication, previous results [7, 84, 85] indicat-
ing that the most fit individuals had stronger connec-
tivity in the DMN and SAL networks than the least fit, 
and that greater connectivity in these regions is associ-
ated with “younger” brains [7]. The significance of these 
associations is further strengthened by the fact that the 
mean difference in connectivity was greater than 7% in 
these networks relative to the FC mean over the total 
population.

These observed associations are consistent with the 
cardiovascular fitness hypothesis, which postulates that 
to meaningfully impact health, physical activity must be 
at an intensity sufficient to improve fitness [7, 84, 85], 
and thus light physical activity is unlikely to be beneficial. 
There are several mechanisms that could possibly con-
tribute to the observed associations. Potentially the most 
widely studied is the increased/improved cerebral blood 
flow related to greater microvasculature associated with 
better fitness. [86]. Others have suggested that individu-
als with higher CRF may have actually have lower blood 
flow needs within key regions associated with the DMN 
and SAL [87]. Alternatively, given that higher levels of 
fitness are often associated with less systemic inflamma-
tion ([88], it may be that greater CRF is also protective 
against neuroinflammation and its negative downstream 
effects [89]. Regardless of mechanism, given the known 
associations between the ability to reflect/learn and FC in 
the DMN [90, 91] and to regulate emotions and FC in the 
SAL network [92, 93], aerobic capacity may be important 
to successful aging of the brain in addition to its role in 
cardiovascular and metabolic health.

Physical Activity
In contrast, we did not find that daily quantity of physi-
cal activity was significantly associated with FC in cogni-
tively important networks. Although wrist worn devices 
limited our ability to differentiate activity intensity, Bas-
sett and colleagues [69] found that this metric was suf-
ficient to identify meaningful differences in health across 
the NHANES population and recommended it as a met-
ric to accurately measure total daily physical activity. 
Our results contrast with previous results which have 
found increased FC in the DMN, SAL, and ECN and 
with greater amounts of self-reported physical activity 
[94] and in the DMN with greater accelerometer meas-
ured activity [95, 96]. It is worth noting that none of these 
papers included/controlled for measures of fitness or 
sleep in their analyses, which may help to explain the dis-
cordant findings. Additionally, and in line with the cardi-
ovascular fitness hypothesis introduced earlier it is likely 
that not enough of our (exclusively sedentary) popula-
tion had a sufficiently large amount of activity (particu-
larly moderate to vigorous activity) to detect meaningful 

differences in FC that might occur with more intense 
activity. However, the present results do further validate 
prior [7] findings that differences in FC attributable to 
cardiovascular fitness are independent of regular physical 
activity.

The observed association between all day physical 
activity and increased FC in the MOT network is intui-
tively reasonable. Although there is ample literature con-
cerning changes in motor performance with age [97, 98] 
and exercise-based interventions [98, 99], there is little 
scholarship on the links between exercise/physical activ-
ity and MOT network functional connectivity in healthy 
human populations. In one of the few extant studies, sed-
entary youth had significantly higher MOT connectiv-
ity at rest compared to age-matched endurance runners 
[100]. In clinical populations, greater MOT connectiv-
ity has been observed in stroke survivors compared to 
healthy controls [100, 101]. Studies in both rats [102] and 
humans [103] following stroke suggest that these effects 
may reflect new neural pathways in the MOT network 
to compensate for lesions of the primary motor tracts. 
This, along with findings suggesting that older age is not 
associated with differences in the MOT network [7] sug-
gest that increased resting state functional connectivity 
may not always represent a positive biomarker, depend-
ing on brain region/network and clinical status of the 
participant.

Body Composition
The present sample indicates minimal associations 
between body composition and FC. When viewed con-
tinuously, there does appear to be some association with 
higher body fat predicting reduced connectivity. How-
ever, these contributions are not sufficiently robust to 
establish a significant difference between the most and 
least fat quartiles in this relatively large sample. This con-
flicts with previous results by Kullman et  al. [104] who 
found significantly increased connectivity with increasing 
BMI in a continuous fashion and with other group based 
work that showed increased functional connectivity in 
the SAL network in an obese compared with non-obese 
population [38]. In contrast, although not significantly 
associated when viewed continuously (p = 0.061, see 
supplementary materials) when top vs. bottom quartiles 
were examined, we found that the highest fat quartile 
had significantly greater connectivity in the DAN, a net-
work associated with attentional focus [98, 99]. Although 
minimal declines in DAN FC have been observed with 
advancing age [7], significantly weaker FC has been 
observed both in children [105] and adults with obesity 
[104] Thus, the current findings do not replicate certain 
prior results. This discrepancy could reflect popula-
tion differences, as the current study sample consisted 
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entirely of older adults with approximately one third of 
women, and just over half of men having body fat per-
centages qualifying them as obese using gender and age 
specific cut points derived from DXA that correspond 
with the traditional BMI values designating obesity. Fur-
ther, it may be that the presence of additional (non-vis-
ceral) body fat is protective in older age in a way that it 
is not for younger adults. This has been shown in a sys-
tematic review looking at all-cause mortality and mor-
bidity where older adults that were overweight or mildly 
obese had the lowest mortality [106]. The advantages of 
(slightly) higher non-visceral body fat may translate to 
brain health as well, as the associations between higher 
body fat and leptin production, and the associations 
between increasing age and decreased leptin production 
are both well documented [107, 108]. Although far from 
conclusive, there is some evidence suggesting that main-
taining normal levels of leptin into older age may help to 
preserve memory and attentional focus [107].

Sleep
In agreement with our a priori hypothesis, better sleep, 
defined as more minutes of total sleep, greater sleep effi-
ciency, and less nightly wakeful periods, was positively 
associated with FC across multiple networks. This is true 
of sleep quality, defined as greater efficiency and less time 
awake during the attempted sleep period, when the data 
are viewed both continuously and in “best” vs “worst” 
quartiles. In contrast, sleep quantity (i.e. total sleep 
time) was only associated with ECN connectivity when 
viewed continuously. Although some literature suggests 
that more minutes of sleep minutes of sleep are associ-
ated with greater FC, and improved cognitive outcomes, 
particularly in working age adults [44, 109, 110] in this 
instance, the contribution of sleep minutes to ECN con-
nectivity was not sufficient to establish a significant dif-
ference between the best and worst sleepers.

Greater sleep efficiency was associated with greater FC 
in both the SAL and MOT network, while longer amount 
of time awake was associated with weaker FC in the SAL 
and MOT networks. These findings agree with prior find-
ings in children [42] and adults [111] in which poor sleep 
both acutely and over extended periods of time contrib-
uted to emotional dysregulation, decreased coordination, 
and reduced connectivity in the SAL and MOT networks.

This combination in which sleep quality has a larger 
impact than sleep quantity in terms of mean difference 
and number of affected networks could be explained 
by the importance of different stages of sleep which 
cannot be measured through accelerometery alone. 
Indeed, it is well known that deep and REM sleep plays 
an important role in synaptic plasticity [112]. Further, 

it may be that continuous sleep is important for the 
clearing of metabolic waste. Indeed, clearance is medi-
ated by the glymphatic system [113] which appears to 
be more active during extended sleep periods [113, 
114]. Considered in aggregate, the available evidence 
indicates that good sleep is associated with strong FC 
across multiple regions although it is very possible that 
this association bi-directional in nature.

Strengths and Limitations
Strengths of this study center on our use of high-quality 
physiologic measurements in a large population of older 
adults. Indeed, maximal exercise tests to assess aerobic 
capacity, gold standard assessments of body composi-
tion, and objectively captured measures of physical 
activity and sleep are rarely found together in studies 
of this size. However, limitations also exist. Perhaps 
the most serious of these is the lack of harmonization 
of scanners across sites. Although we made efforts to 
reduce the impact of location by statistically controlling 
for location in both the physiological and connectivity 
variables, the observed site-based differences in resting 
state connectivity across all networks does potentially 
impact these results and could confound our findings. 
Additionally, the interconnected role of many of these 
lifestyle variables cannot be overstated. While statisti-
cally controlling to compare unstandardized residuals 
likely helped to establish the separate contribution of 
each variable for these analyses it is possible that the 
relationships are more complex than is “fixed” sim-
ply through statistical controls. Although not unique 
to this study, the cross-sectional nature of the study 
precludes drawing meaningful conclusions regarding 
the directionality of observed relations. Additionally, 
this exclusively older adult population had a relatively 
narrow range of physical activity levels (all were self-
reported sedentary in the past year) and was free from 
many of the diseases and conditions that may have sub-
stantial effect on brain health in the larger population. 
Thus, our findings may not be representative of other 
groups, particularly younger and/or more active indi-
viduals. Further, we used a population level estimation 
equation which may over- or under-estimate individual 
capacity at a given workload. Moreover, utilizing “voli-
tional” vs. “true” maximal capacity means that individ-
uals may have quit the GXT assessment prior to their 
actual maximal capacity due to excessive perceived 
exertion or localized muscle fatigue. Additionally, the 
fact that the population comprised exclusively seden-
tary individuals may have limited our ability to observe 
differences in functional connectivity associated with 
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greater daily activity, particularly higher intensity activ-
ity. The sleep-based data is further limited in that we 
only captured night-time sleep statistics and did not 
gather data on daytime napping. This may have contrib-
uted to an underestimation of total sleep time which 
could lead to mischaracterizing the relations between 
FC and sleep quantity and quality.

Conclusion
In this sample of community dwelling older adults, 
greater cardiovascular fitness, but not greater total daily 
physical activity, was associated with stronger func-
tional connectivity in brain regions believed to govern 
higher cognitive functions. Thus, the present findings 
reinforce the association between fitness and brain 
health. Also, as hypothesized, better sleep in terms of 
efficiency and number of wakeful periods per night was 
associated with stronger functional connectivity in key 
regions associated with brain health. Finally, total body 
fat percentage was surprisingly associated with higher 
connectivity in the DAN. These findings, in combina-
tion with similar findings reported by others, sug-
gest that interventions to preserve brain health with 
increasing age should be focused on maintaining cardi-
ovascular fitness and ensuring high quality sleep rather 
than simply increasing the total quantity of physical 
activity or controlling body composition. In particular, 
future research exploring longitudinal changes associ-
ated with interventions designed to improve fitness or 
sleep would be valuable to better understand causality 
of these associations. It would also be useful to evalu-
ate the degree to which short term changes in behavior 
induce changes in functional connectivity.
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