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      Rationale. Though the short and long-term consequences of neurotrauma are only 

beginning to be appreciated, those with history of mild traumatic brain injury (TBI) show 

increased rates of psychiatric disorders, decreased quality of life, and cognitive deficits relative 

to those with no history of mTBI. Potentially important, though vastly understudied, is the role of 

the cerebrovascular system in cognitive outcomes after mild TBI. Primary injury to the 

cerebrovasculature (i.e., stretching and shearing of vessels) coupled with secondary 

pathophysiological processes (e.g., ischemia, neuroinflammation, vascular remodeling) may 

alter cerebral blood flow (CBF) post-injury. Such CBF changes may negatively affect the brain’s 

process of post-traumatic repair and contribute to poor long-term outcomes. However, the 

contribution of CBF to cognitive dysfunction post-injury remains incompletely characterized, and 

no known human studies have investigated how important genetic and environmental risk 

factors (i.e., cumulative number of sub-concussive blasts, history of multiple TBIs, time since 

injury, apolipoprotein E [APOE]-ε4 genotype) may moderate CBF and cognitive associations. 



 

 xix 
 

            Design. The current study utilized multi-phase pseudo-continuous arterial spin labeling 

neuroimaging methods to (1) evaluate whether resting CBF differences occur in those with 

history of TBI, (2) investigate the relationship between resting CBF and neuropsychological 

function, and (3) in exploratory analyses, examine possible moderators of resting CBF and 

cognition in those with history of mTBI. We recruited and enlisted 54 OEF/OIF/OND service 

members between the ages of 18 and 50 for this study. Study groups include those with history 

of mild or moderate TBI (n = 31) and military controls with no history of TBI (n = 23).  Analyses 

of covariance controlling for age and symptoms of posttraumatic stress and depression were 

used to explore group differences in resting CBF of the whole brain as well as bilateral frontal 

and temporal regions of interest. Multiple regression analyses were performed within the TBI 

group to assess whether resting CBF in bilateral frontal and temporal ROIs was predictive of 

performance on measures of executive functioning and memory; whether regional CBF 

measures were associated with genetic and environmental risk factors; and whether these risk 

factors moderated regional CBF and cognitive associations.  

            Results. ANCOVAs indicated that, independent of age and symptoms of posttraumatic 

stress and depression, TBI Veterans demonstrated significantly higher resting CBF in several 

frontal and temporal regions of interest. No significant group differences in whole brain resting 

CBF were observed. Multiple regression analyses revealed that, independent of age, higher 

resting CBF in frontal regions was significantly associated with better performance on measures 

of executive functions within the mTBI group. However, resting CBF in temporal regions was not 

significantly associated with performance on memory measures. Further analyses identified 

number of mTBIs as the only significant risk factor associated with resting CBF of frontal 

regions. However, several significant risk factor x resting CBF interactions on cognition were 

observed. Results revealed that resting CBF and cognitive associations were generally more 

pronounced in those with lower versus high risk factor burden such that higher resting CBF of 
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frontal and temporal regions was associated with better executive functioning and memory 

performance in those with fewer injuries as well as in those who were closer in time to their 

injury; and those who were APOE-ε4 non-carriers. 

            Conclusions. Findings suggest that, independent of age and psychiatric symptoms, 

history of TBI is associated with increased resting CBF. Importantly, increased resting CBF was 

associated with better cognitive performance in APOE-ε4 non-carriers as well as those who 

were closer in time to their TBI event(s). Results suggest that elevated resting CBF may 

represent a critical compensatory mechanism that allows for better cognitive performance in 

certain Veterans with TBI.  These findings align with the “compensation related utilization of 

neural circuit hypothesis of aging,” which suggests that increases in brain activation allow for 

task demands to be met, though the effectiveness of these increases appear to plateau within 

the context of greater injury. Information gleaned from these findings has the potential to 

improve diagnosis and possibly provide a useful biomarker of both impairment and recovery in a 

vulnerable population for which persistent behavioral dysfunction remains poorly understood.
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I. INTRODUCTION 

Mild traumatic brain injury (mTBI) is known as the “signature wound” of military service 

members involved in Operation Enduring Freedom, Operation Iraqi Freedom, and Operation 

New Dawn (OEF/OIF/OND; Fischer, 2010; Hoge et al., 2008; Terrio, Nelson, Betthauser, 

Harwood, & Brenner, 2011). Of the nearly three million military service members that have been 

deployed since the beginning of these conflicts, estimates suggest that approximately 18-25% 

of these individuals have sustained at least one mTBI during deployment (Fortier et al., 2014; 

Hoge et al., 2008; Terrio et al., 2011; Warden, 2006). The vast majority are closed-head injuries 

(i.e., no penetration of skull) that result from either blunt-force (i.e, direct blow to the head) 

and/or blast-related (i.e., exposure to highly pressurized blast waves from explosive munitions) 

trauma. These injuries occur in or out of combat theatre, and rates of incidence are relatively 

comparable across the various branches of the military (DVBIC, 2018). 

 Although immediate or emergency medical evacuation is not frequently required at the 

time of injury, the clinical sequelae that emerge post-injury are by no means minor. Indeed, 

troubling cognitive  (e.g., executive dysfunction, memory deficits; Combs et al., 2015), 

neurological (e.g., headaches, dizziness, fatigue; Lippa et al., 2015; Vanderploeg, Belanger, & 

Curtiss, 2009), and psychiatric symptoms (e.g., depression, posttraumatic stress disorder 

[PTSD]; Brenner, Vanderploeg, & Terrio, 2009) are commonly reported in Veterans who have 

sustained mild head trauma. Collectively, these negative neurobehavioral symptoms have been 

linked to increased rates of unemployment and disability (Lippa et al., 2015), decreased quality 

of life (Schiehser et al., 2015), and significant health care costs and utilization among Veterans 

with history of mTBI (Hoge et al., 2008; Taylor et al., 2012).  

Cognitive Outcomes in mTBI 

 Traditionally, mTBI has largely been considered a neurological condition in which 

recovery was inevitable—only a “miserable minority” were demonstrated to experience 
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persisting cognitive deficits (Ruff, Camenzuli, & Mueller, 1996). Importantly, this recovery 

trajectory is somewhat distinct from that of moderate or severe TBI, where enduring 

neuropsychological impairment is frequently observed (Hellawell, Taylor, & Pentland, 1999; 

Schretlen & Shapiro, 2003). Indeed, several meta-analyses (Binder, Rohling, & Larrabee, 1997; 

Frencham, Fox, & Maybery, 2005; Rohling et al., 2011) have demonstrated that while medium 

to large effect sizes of impairment in memory, attention, processing speed, and executive 

functions have been demonstrated in the acute phase of injury (i.e., within three months of 

injury), these impairments are negligible or non-existent in the post-acute phase (i.e., beyond 

three months since injury). Moreover, other studies show that cognitive dysfunction is better 

explain by psychiatric symptoms and ongoing litigation, as opposed to neurological factors 

following mTBI (Belanger, Curtiss, Demery, Lebowitz, Vanderploeg, 2005; Drag, Spencer, 

Walker, Pangilinan, & Bieliausakas, 2012). Nevertheless, certain inherent methodological 

limitations to meta-analyses (e.g., heterogeneous samples, publication bias) may obscure the 

detection of a “miserable minority” or any cognitive deficits that may exist on the individual level 

(Bigler et al., 2013; Cappa, Conger, & Conger, 2011; Pertab, James, & Bigler, 2009).  

 Pertab and colleagues (2009) reanalyzed two of the previously mentioned meta-analytic 

datasets in an effort to clarify the long-term outcomes of those with mTBI. Careful attention was 

paid to the inclusion/exclusion criteria of the studies, as their goal was to explore whether a lack 

of consideration of fundamental sample differences in mechanism of injury, diagnostic 

classification of injury severity, time since injury and subsequent cognitive assessment, and 

whether the inclusion of symptomatic or non-symptomatic patients may have obscured the 

detection of cognitive deficits in the post-acute phase of injury. In other words, they sought to 

reduce between-sample heterogeneity, which might have minimized the global detection of an 

effect across studies included in the meta-analyses. Interestingly, results revealed significant 

moderate effect sizes for impairments on measures of processing speed, working memory, and 

verbal memory in the post-acute phase of injury, though small or trivial effect sizes were noted 
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across the remaining cognitive tests. While controversial, these results suggest that there may 

in fact be a sizable subgroup of mTBI patients with persisting deficits that do not follow 

traditional, previously expected, recovery trajectories. These authors estimate the prevalence of 

this group may range from 11-24% in other study samples. Moreover, recent evidence suggests 

that as many as 50% of military service members remain symptomatic throughout the first year 

post-of injury (Schwab et al., 2017), and that these troublesome post-concussive symptoms 

(PCS) generally tend to worsen with time (MacDonald et al., 2011). 

Enhancing Our Understanding of mTBI with Advanced Neuroimaging Techniques 

Major efforts have been devoted to characterizing the pathophysiology, or resultant 

structural and functional brain changes, thought to underlie the negative health outcomes of 

those with history of mTBI (Bigler, 2013). Although conventional computed tomography (CT) 

and magnetic resonance imaging (MRI) scans largely yield normal results in the context of 

milder forms of head trauma (Lee et al., 2008; Yuh et al., 2013), more sophisticated and 

advanced neuroimaging techniques (i.e., diffusion tensor imaging [DTI], resting state functional 

MRI), have provided some insight into potential structural and functional brain changes of those 

with history of mTBI (Wilde et al., 2015). However, a reliable biomarker of mTBI has yet to be 

discovered. While some samples find robust structural and/or functional group differences 

between those with history of mTBI relative to those with without (Robinson et al., 2015; Trotter, 

Robinson, Milberg, McGlinchey, & Salat, 2015), others report no such differences (Jorge et al., 

2012; Levin et al., 2010), and the extent to which observed brain changes correlate with clinical 

outcome measures has been equally convoluted and difficult to ascertain (Brenner, 2011).  

While mixed results may be partially explained by sample characteristics, psychiatric status, and 

the heterogeneous nature of injury in mTBI (Bigler, 2013; Pertab et al., 2009; Wilde et al., 2015), 

there also exists the possibility that previously utilized neuroimaging techniques are in fact not 

sensitive to the full nature of mTBI-related brain changes.  
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Critically relevant in the exploration of biomarkers within the context of mTBI is the role 

of the cerebral blood flow (CBF).  The brain is reliant on steady CBF to carry out a host of 

functional processes and maintain neuronal integrity. Any alterations in CBF could affect critical 

processes that include the brain’s ability to maintain homeostasis, adequately respond to 

trauma, and may potentially contribute to the evolution, or maintenance of injury sequelae (i.e., 

cognitive deficits) in those with mTBI (Pollock et al., 2009).  Moreover, across a variety of 

clinical populations, the notion that CBF alterations precede and contribute to negative 

pathological processes is gaining increased traction (Bernbaum et al., 2015; Brickman et al., 

2009; Promjunyakul et al., 2016; ten Dam et al., 2007). Within the aging literature, longitudinal 

CBF reductions have been linked to increased amyloid deposition, suggesting that CBF is not 

merely a consequence, but rather a pathogenic factor in Alzheimer’s disease (Mattsson et al., 

2014; Sojkova et al., 2008). This concept was further highlighted by a recent mTBI study in 

which reduced CBF at the acute phase of injury significantly predicted negative structural 

alterations of cerebral gray and white matter in the chronic phase of injury (Metting, Spikman, 

Rodiger, & van der Naalt, 2014).  In other words, CBF may not only serve as a more sensitive 

biomarker of impairment in mTBI but may also be point of intervention. Direct maintenance of 

CBF may not only inhibit the progression of negative pathological cascades, but also play a 

significant role in reducing or minimizing the negative cognitive and behavioral outcomes 

observed in those with mTBI. 

Vascular Pathology as a Central Mechanism of Neurotrauma 

Compelling studies have recently emerged from the animal models literature suggesting 

a central role of vascular pathology in both the primary (that resulting directly from the traumatic 

event) and secondary (protracted pathophysiological processes) phase of injury (Kenney et al., 

2015). During TBI, acceleration/deceleration or linear/rotational forces may cause the brain to 

oscillate or glide within the cranial vault; these forces results in rapid deformation that may 

cause primary damage at locations where the brain makes impact with the skull (coup), or at 
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both the initial impact site and opposite end (i.e., coup/contercoup; Bayly, Clayton, & Genin, 

2012; Viano & Pellman, 2005). Additionally, rotational forces cause shear/strain injury which is 

associated with a network of torn or broken vasculature throughout the brain (Kenney et al., 

2015). In nearly all animal models of TBI (i.e., controlled cortical impact, fluid percussion injury, 

impact acceleration, blast-induced) microvascular injury is the predominant feature (Cherian, 

Goodman, & Robertson, 2011; Gao, Oda, Wei, & Povlishock, 2010; Park, Bell, Siddiq, & Baker, 

2009). For example, decreased microvascular density has been observed around impact sites 

following TBI, and it has been demonstrated to persist for many weeks following initial injury 

(Park et al., 2009). Damage to the vessels themselves in the form of thinning of the basal 

lamina, and focal swelling or constriction has also been noted on histopathological exams 

(Sangiorgi et al., 2013). Moreover, vascular remodeling has been observed for up to three 

months following initial injury in a rat model of mTBI (Gama Sosa et al., 2014). One negative 

byproduct of this torn vasculature is the accumulation of hemosiderin deposits, which were 

noted to gradually increase in the three months following injury in rats (Glushakova, Johnson, & 

Hayes, 2014). Although human cases of mTBI rarely come to autopsy, similar findings in the 

arterioles and capillaries of middle and deep cortical vascular zones have been shown in 

autopsy investigations of fatal moderate-to-severe TBI (Rodriguez-Baeza, Reina-de la Torre, 

Poca, Marti, & Garnacho, 2003). Moreover, in-vivo detection of petechial hemorrhages has also 

been commonly noted in human neuroimaging studies of mTBI (Benson et al., 2012; Tate et al., 

2017).  

In addition to primary injury to the vasculature, secondary pathophysiological cascades 

also cause critical damage following neurotrauma. From a neurometabolic perspective, external 

force or mechanical stress within the brain also leads to rapid depolarization of nerve cells (Giza 

& Hovda, 2014). This depolarization results in an outpouring and indiscriminate release of 

neurotransmitters, which causes an energy crisis that alters glucose metabolism and cerebral 

blood flow post-injury. Other secondary sequelae for cerebrovascular dysfunction following 
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neurotrauma include ischemia, cerebral edema, and intracranial hypertension (Giza & Hovda, 

2014). For example, decreased CBF post-injury may result in ischemia and cytotoxic edema, 

which negatively impacts cellular functioning and alters cellular metabolism (Donkin & Vink, 

2010). Moreover, damage to blood vessels (i.e., blood brain barrier [BBB] disruption) results in 

vasogenic edema, which causes tissue swelling and directly increases intracranial pressure. 

Breakdown of the BBB has been linked to an increased neuroinflammatory response, which 

interferes and prevents neuronal repair (Lozano et al., 2015).  While the temporal nature of the 

biochemical, metabolic, and cellular cascades resulting from TBI are not entirely understood, 

neuroinflammation has been detected up to 17 years post TBI and can persist well beyond the 

acute phase of injury (Giunta et al., 2012; Lozano et al., 2015).  

 Importantly, the combination of primary injury coupled with secondary pathological 

processes contributes to vascular perturbations that are thought to subsume deleterious 

alterations in cerebral blood flow (CBF) in the aftermath of head trauma. Indeed, recent animal 

studies using perfusion MRI techniques have shown sizable CBF reductions (i.e., 54-74% 

reductions) in TBI-injured rats relative to sham-controls (Hayward et al., 2011; Pasco et al., 

2007). These changes have been observed diffusely throughout the brain (and even distally 

from the site of injury), and they have also been linked to behavioral deficits on vestibulomotor 

and working memory tasks in brain-injured rats (Hayward et al., 2011; Wei, Hamm, Baranova, & 

Povlishock, 2009). 

Unfortunately, the translation of animal to human neuroimaging studies examining 

resting CBF alterations in mild neurotrauma has been both challenging and limited. First, the 

nature and regional specificity of resting CBF alterations post-injury remains poorly understood. 

For example, while some studies cite robust decreases in resting CBF (Bonne et al., 2003; Ge 

et al., 2009; Metting et al., 2014), others have reported increased resting CBF in those with 

history of mTBI relative to controls (Doshi, Ramakrishnan, & Gupta, 2015). Second, while global 

resting CBF alterations have been described in those with history of mTBI (Fridley, Robertson, 
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& Gopinath, 2015), others have noted that only regions vulnerable to impact with bony 

protuberances of the skull (i.e., frontal and temporal cortices) show resting CBF differences 

relative to controls (Metting et al., 2014; Wang et al., 2015). Moreover, the relationship between 

resting CBF and cognitive outcome is unclear. For example, some studies have failed to find 

resting CBF and cognitive associations (Meier et al., 2015), while others report robust 

relationships between low resting CBF and deficits on measures of memory, processing speed, 

and executive functions (Ge et al., 2009; Metting et al., 2014). The disparate nature of these 

findings may be partially explained by differing sample characteristics (e.g., inclusion of range of 

injury severity), use of blunt cognitive screening tools versus comprehensive neuropsychological 

batteries, and the heterogeneous nature of injury in mTBI. Additionally, within the context of mild 

neurotrauma most human neuroimaging studies have largely utilized, single photon emission 

computed tomography (SPECT), photon emission computed tomography (PET), and other 

invasive and indirect hemodynamic imaging techniques (i.e., xenon and perfusion CT) that use 

radioactive tracers. Other limitations to these techniques include poor prognostic utility and 

correlations with behavioral measures, and the inability to assess microvascular perfusion. 

Arterial Spin Labeling as a Promising Tool to Detect CBF Changes 

One sophisticated, advanced neuroimaging technique that may help to clarify the nature 

of CBF alterations in Veterans with mTBI is arterial spin labeling (ASL; Andre, 2015). ASL is a 

non-invasive and reliable MRI technique in which arterial water is magnetically labeled and used 

as an endogenous tracer to measure CBF (Detre, Leigh, Williams, & Koretsky, 1992; Shin, 

Ozyurt, & Liu, 2013; Williams, Detre, Leigh, & Koretsky, 1992). The magnetization of arterial 

blood water is altered in a region proximal to the image slice. This is followed by a delay to allow 

labeled blood to arrive at the capillary bed in the tissue of interest. The labeled blood diffuses 

into the tissue resulting in local alteration of longitudinal magnetization. Difference images are 

generated by subtracting images acquired with arterial spin labeling from control images that 

are acquired in the absence of labeling. ASL represents a powerful tool given that it provides a 
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quantitative measure of CBF in the capillary bed in physiological units (mL/100g of tissue per 

minute), without the use of an exogenous, or radioactive, contrast agent (Andre, 2015). 

Importantly, because ASL is not dependent on the use of an exogenous contrast agent, it does 

not require correction for possible leakage effects due to breakdown of the BBB and is therefore 

particularly useful in TBI. ASL studies examining a variety of clinical populations (e.g., stroke, 

Alzheimer’s disease, epilepsy) have demonstrated similar patterns of regional hypoperfusion as 

those revealed with PET and SPECT (Alsop, Detre, & Grossman, 2000; Andre, 2015; Detre et 

al., 1992), but ASL has advantages of being non-invasive, cost-effective, and easily repeatable. 

Although ASL represents a promising tool that likely captures even the subtlest alterations in 

resting CBF resulting from mTBI, few ASL studies in the context of head injury currently exist, 

and there are no known studies to our knowledge that have investigated the association 

between CBF alterations and clinical outcome in Veteran mTBI samples. Therefore, given that 

there is sufficient evidence from the animal literature to suggest that vascular pathology is a 

central mechanism in mTBI, the current project utilized ASL to examine whether mTBI leads to 

critical alterations in resting CBF that contributes to poor cognitive outcomes. 

Modeling Other Factors That May Influence CBF and Cognition 

There are a variety of largely unexplored genetic and environmental risk factors (i.e., 

cumulative blast exposure, history of multiple TBIs, time since injury, and genetic susceptibility 

[Apolipoprotein-ε4 positivity]) that may influence CBF and cognitive outcomes in mTBI. 

Unfortunately, even studies using the most sophisticated and sensitive techniques (i.e., ASL) 

tend to neglect the potential influence of these factors in their explorations. As such, a more 

comprehensive exploration of factors that likely contribute to the heterogeneity of mTBI 

outcomes is important for accurately characterizing the brain changes that occur post injury and 

identifying those at greatest risk for negative behavioral outcomes. Importantly, these risk 

factors have the potential to modify CBF and cognitive associations by (1) exacerbating or 

contributing to brain damage and (2) reducing cognitive reserve post-TBI. As detailed in the 
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model below, mTBI—via primary or secondary injury—may result in CBF changes.  These CBF 

alterations play a fundamental role in negatively influencing cognitive outcomes post-injury. 

However, the presence or dose of these various factors may strengthen the association  

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1. Theoretical Model of Resting CBF Alterations in Veterans with mTBI. Pathological 
brain changes sustained during or shortly after injury contributes to CBF alterations; CBF 
changes are related to poor cognitive outcomes and ultimately moderated by additional risk 
factors that increase vulnerability for brain damage and reduced cognitive reserve. 
 
between CBF and cognition via increasing the brain’s vulnerability to brain damage or limiting its 

ability to compensate for this damage. In other words, CBF related cognitive deficits should be 

more pronounced in the presence of certain risk factors. The potential role of these factors is 

detailed below. Evidence will focus on how these risk factors are fundamentally tied to brain 

changes (some of which may overlap with vascular pathology detailed above) or directly 

contribute to poor cognitive outcomes. 
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Number of TBIs. Multiple mTBIs or repeated head-injury has been linked to chronic 

traumatic encephalopathy and increased risk for dementia in late life (Baugh et al., 2012; 

McKee & Robinson, 2014). However, there is some evidence that relative to a single mTBI 

event, multiple mTBIs result in worse cognitive impairment, especially in the domain of 

executive functions even in midlife (Karr, Areshenkoff, Duggan, & Garcia-Barrera, 2014). As 

such, there is some evidence that sustaining mTBIs throughout one’s lifetime may result in a 

negative “dose effect” on cognition. Indeed, a recent study of Vietnam Veterans increased rates 

of cognitive impairment were observed in those with history of multiple mTBI relative to those 

who had sustained a single mTBI event (Kaup et al., 2017). Interestingly, this study also found 

that those with a history of multiple mTBIs displayed cognitive impairments that were similar in 

both pattern and severity to those who had sustained one moderate-to-severe TBI (Kaup et al., 

2017). Findings suggest that the negative effects of multiple mTBIs may result in residual 

cognitive deficits that mirror what might be expected in those with more severe injuries. 

 Multiple mTBIs has also been linked to negative brain changes in both animal and 

human studies (Lynch et al., 2016; (Johnson et al., 2012). In an animal model of repetitive head-

injury, brain changes appear to be primarily vascular in nature. For example, in a recent mouse 

model of repetitive TBI, decreased vessel density and global reductions in CBF were observed 

at both one and six months following injury, and were also closely linked to spatial memory 

deficits (Lynch et al., 2016). Currently, human studies that directly examine brain changes 

resulting from multiple TBIs to single TBI events are limited. One known study showed that 

those multiple mTBIs have more severe neurometabolic abnormalities compared to both 

controls and those with history of a single mTBI event (Johnson et al., 2012). Another study 

found that examined multiple MRI metrics found that relative to controls, those with multiple 

mTBIs display changes in CBF, increased prevalence of microhemmorhages, and altered brain 

connectivity (Slobounov et al., 2017). In summary, although a single mTBI may result in 
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negative cognitive or brain changes, there is some evidence that these may be even more 

pronounced in those with history of multiple mTBIs. 

Blast exposure. As noted by Fortier and colleagues (2014), blast-exposure varies 

considerably among OEF/OIF/OND service members, though 80% of this convenience sample 

reported experience at least one blast within 100 meters during deployment. Studies exploring 

cognitive outcomes have failed to find any categorical differences between those with single 

blast or blunt TBIs (Lange et al., 2012; Luethcke, Bryan, Morrow, & Isler, 2011). However, 

deficits in the cognitive domains of executive functioning, complex attention, and verbal learning 

and memory have been noted following blast TBI (Karr et al., 2014).  Although TBIs resulting 

from blast may be detrimental, recent animal studies have shown that cumulative exposure to 

blast-waves (even those that do not result in an mTBI) has been linked to worse cognitive 

outcomes (Ahlers et al., 2012). Thus, there is some preliminary evidence to suggest that 

repeated exposure to blasts, even in the absence of an mTBI or concussive injury, may 

contribute to poor behavioral outcomes. Indeed, findings from a recent human case study 

revealed that a Veteran with repeated blast-exposure who never meet diagnostic criteria for a 

blast-related TBI, was impaired on measures of processing speed, recognition memory, working 

memory, and executive function (Hayes, Morey, & Tupler, 2012). Similarly, human 

neuroimaging studies have confirmed the negative effects of cumulative blast-exposure. For 

example, greater age-related reductions in white matter microstructural integrity (Trotter et al., 

2015) and altered functional connectivity have been observed in those exposed to multiple 

blasts (Robinson et al., 2015). Moreover, recent work from our own lab has revealed anterior 

cortical thinning and executive dysfunction in blast-exposed Veterans with mTBI (Clark et al., 

2018). Blast-injury itself has also been linked to robust vascular damage in animal studies of TBI 

(Gama Sosa et al., 2014; Goldstein et al., 2012; Saljo, Mayorga, Bolouri, Svensson, & 

Hamberger, 2011). Indeed, one of the proposed mechanisms of blast-related injury (in addition 

to damage from acceleration/rotation forces) to the central nervous systems involves 
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transmission of kinetic energy from the blast wave to the brain via large blood vessels in the 

chest (Chen & Huang, 2011). As a result of the blast-wave, blood surges and dramatically 

increases cerebral perfusion, which may disrupt the BBB and result in microvascular damage. 

Moreover, secondary injury responses may further alter cerebral hemodynamics following blast 

exposure (Cernak & Noble-Haeusslein, 2010). As such, these negative pathological 

consequences might be more severe with increasing levels of blast-exposure.  

Time since injury. Currently, the temporal courses of the pathological processes that 

occur with neurotrauma are poorly understood. However, there is evidence that these 

secondary pathological processes may persist for minutes, days, to months following initial 

injury (Giza & Hovda, 2014; Loane & Faden, 2010).  Understanding the evolution of damage 

secondary to TBI is especially critical as various neuropathological processes may influence our 

interpretation and characterization of neuroimaging findings. For example, with respect to DTI, 

fractional anisotropy—a direct marker of white matter microstructural integrity—differs 

depending on time between injury and neuroimaging assessment. Indeed, marked increases in 

FA are frequently seen when patients within two weeks of injury are compared to controls 

(Mayer et al., 2010; Niogi & Mukherjee, 2010). Importantly, as detailed in a recent meta-

analysis, FA is significantly anti-correlated with neuropsychological measures in this sub-acute 

time frame (Eierud et al., 2014). Alternatively, patients who are greater than two weeks post-

injury (ranging from weeks, months, to years) most often show decreased FA, which is 

significantly positively correlated with neuropsychological test performance. Similarly, using a 

different structural MRI technique, independent of PTSD, amygdala dilation was found to occur 

with greater time since injury and was particularly pronounced in older Veterans who are further 

removed from their initial injury (Tate et al., 2016). In other words, there is evidence that mTBI 

related brain changes are dynamic in that may continue to persist or progress many years 

following initial injury and that this can be captured on various neuroimaging metrics. This 

concept was further exemplified by our recent work that showed that reduced CBF was 
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significantly associated with white matter microstructural alterations in a Veteran mTBI sample, 

but only in those who were further removed in time from their initial injury (Clark et al., 2017). 

Findings suggest that CBF reductions may represent a protracted pathological process, which 

could serve to exacerbate trauma-induced white matter injury. Oftentimes, in Veteran TBI 

samples, there is considerable inter-subject variability in the time since injury and neuroimaging 

assessment (Delano-Wood et al., 2015; Jorge et al., 2012; Mac Donald et al., 2011; Miller, 

Hayes, Lafleche, Salat, & Verfaellie, 2016). Modeling time since injury as factor in our 

explorations may assist in clarifying the nature and extent of mTBI related brain changes and 

resulting cognitive outcomes.  

Apolipoprotein-ε4 positivity (APOE-ε4). There is evidence to suggest that genetic 

susceptibility may play a role in poor long-term outcomes following TBI.  APOE is a protein that 

plays an important role in a number of biological processes that include synaptogenesis, 

neuroinflammation, and metabolism of amyloid-β (Dorey et al., 2017; Tai et al., 2015).  There 

are three distinct isoforms of APOE (i.e., APOE2, APOE3, and APOE4) and the efficacy of 

APOE’s functions largely differs across these isoforms. For example, while APOE3 promotes 

amyloid-β degradation and transport across the BBB, APOE4 facilitates amyloid-β accumulation 

and degradation of the BBB. In general, APOE4 has been linked to negative pro-inflammatory 

processes and increased vascular risk (Dorey et al., 2017; Gale et al., 2014). Within the context 

of TBI populations, some studies have found the possession of the APOE-ε4 genotype is 

associated with worse cognitive outcomes, while other have not (Merritt, Lapira, Clark, Sorg, 

Werhane, Jak, Schiehsher, & Delano-Wood, 2018;  Merritt, Clark, Sorg, Werhane, Jak, 

Schiehsher, & Delano-Wood, 2018; Merritt, Clark, Sorg, Evangelista, Werhane, Bondi, , 

Schiehser, & Delano-Wood, 2018;Zhou et al., 2008). These mixed findings may be a product of 

sample heterogeneity in both phase (acute vs. post-acute) and severity of injury. Human MRI 

studies examining the potential role of APOE-ε4 genotype on influencing CBF are extremely 

limited. Nevertheless, one investigation revealed APOE-ε4 allele carriers show increased CBF 
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in the acute phase of injury relative to non-carriers following severe TBI (Kerr, Kamboh, Kong, 

Alexander, & Yonas, 2006). Importantly, these findings align well with studies in demented and 

non-demented older adults that show increased CBF in AD-vulnerable regions in APOE-ε4 

allele carriers relative to non-carriers (Bangen et al., 2012; Wierenga et al., 2012). Possession 

of the APOE-ε4 genotype may be linked to an increased risk for CBF alterations or cognitive 

deficits relative to non-carriers following TBI. Clearly, additional research is needed to clarify the 

potential negative influence of APOE-ε4 genotype on both cognition and CBF following mild TBI. 

Psychiatric Comorbidities in Veterans 

It is important to acknowledge that recent estimates suggest that nearly 90% of Veterans 

with mTBI also endorse clinically significant PTSD and/or depression symptoms (Taylor et al., 

2012), and that psychiatric symptoms are commonly found to be more severe in those with 

history of mTBI relative to those with no history of neurotrauma (Schneiderman, Braver, & Kang, 

2008; Yurgil et al., 2014). Common psychiatric comorbidities (e.g., PTSD) may also explain or 

contribute to poor neuropsychological functioning in Veteran samples. For example, executive 

dysfunction, verbal memory impairments, impaired response inhibition, and deficits in sustained 

attention have been found in those with PTSD (DeGutis et al., 2015; Scott et al., 2015) and 

overlap, at least to some degree, with deficits found in mTBI (Bryant, 2011). Nevertheless, 

major efforts have been placed on (1) disentangling whether history of mTBI, or rather PTSD 

itself, explains any observed neurocognitive deficits beyond the post-acute phase of injury, and 

(2) determining the potential synergistic effects of co-morbid PTSD and mTBI on cognitive 

outcomes. In general, two approaches have been utilized in explorations of cognitive outcomes 

in OEF/OIF/OND Veterans. This has primarily been accomplished creating diagnostic groups 

and subsequently comparing cognitive test scores between controls and those with mTBI only, 

PTSD only, co-morbid PTSD/mTBI (Combs et al., 2015). Alternatively, another common 

approach is to control for PTSD symptoms when comparing neuropsychological test 

performance of those with and without history of head injury (Clark et al., 2016). Regardless of 
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the approach taken, findings have again, largely yielded mixed results; some studies 

demonstrate mTBI results in cognitive deficits independent of PTSD (Clark et al., 2016; Combs 

et al., 2015), others showing impairments are specific to PTSD (Neipert et al., 2014; Storzbach 

et al., 2015), and some suggest comorbid conditions results in worse neurocognitive functioning 

(Amick et al., 2013). Importantly, the central thesis of this proposal was to characterize 

neurotrauma-related vascular changes and the potential cognitive consequences. As such, we 

utilized PTSD as a covariate in an effort to determine the independent influence of mTBI on 

cognition.  

Purpose of the Current Study 

Considerable efforts have been placed upon examining the complex pathophysiology 

processes that may alter brain structure and function in the aftermath of mTBI (Bigler, 2013; 

McAllister, Sparling, Flashman, & Saykin, 2001). This has proven especially critical given the 

host of troubling neurocognitive impairments (e.g., executive dysfunction, memory deficits) that 

have been noted in both the acute and remote phases of injury in a sizable minority of patients 

with history of TBI (Bigler et al., 2013; Binder et al., 1997; Pertab et al., 2009; Rohling et al., 

2011). Recent findings from the animal literature suggest that primary injury to the 

cerebrovasculature such as stretching and shearing of vessels coupled with secondary 

pathophysiological processes (e.g., ischemia) may alter cerebral blood flow (CBF) post-injury 

(Kenney et al., 2015; Park et al., 2009; Pasco et al., 2007; Pop & Badaut, 2011; Sangiorgi et al., 

2013). However, the nature of CBF alterations in those with history of mTBI is unclear as there 

is a paucity of studies, and the few that exist have largely shown mixed results (Meier et al., 

2015; Wang et al., 2015). Moreover, CBF’s contribution to cognitive dysfunction post-injury 

remains incompletely characterized (Romero, Lobaugh, Black, Ehrlich, & Feinstein, 2015) and, 

to our knowledge, no known human studies have investigated how important risk factors (i.e., 

time since injury, blast exposure, apolipoprotein E (APOE)-ε4 positivity) may moderate CBF and 

cognitive associations.  
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The major goal of this study was to elucidate the long-term cognitive outcomes in 

Veterans with mTBI through (1) the exploration of a combination of advanced neuroimaging 

techniques and associations with behavioral data, and (2) precise statistical modeling of factors 

that may influence both brain and cognitive outcomes. Given the array of previously mentioned 

factors, reliable biomarkers that may assist in enhancing our ability to detect and understand the 

nature and extent to which mTBI is associated with long-term cognitive outcomes are very much 

needed. Therefore, the aims of this proposal were to (1) determine whether resting CBF 

changes occur within the context of mTBI; (2) explore whether resting CBF is associated with 

cognitive outcomes in mTBI; and (3) in exploratory analyses examine risk factor and CBF 

associations as well as the role of these risk factors in moderating resting CBF and cognition 

performance in those with history of mTBI. Strengths of the current translational, 

multidisciplinary proposal include the use of advanced, innovative ASL technology, 

comprehensive neuropsychological assessment, and a focus on a relatively homogeneous, 

well-characterized cohort of vulnerable Veterans with history of mild neurotrauma. Moreover, 

through examination of previously unconsidered factors (e.g., time since injury, APOE-e4 

genotype status, blast exposure), the current proposal sought to elucidate the underlying 

pathophysiology of and negative outcomes associated with history of mTBI. Findings of this 

proposal serve to inform the mechanistic underpinnings of poor outcome following mTBI while 

also informing targeted vascular-based prevention and intervention strategies that may reduce 

mTBI-related health consequences.  

Aim 1: To investigate whether participants with history of mTBI show reduced 

resting CBF relative to those without history of mTBI. 

Hypothesis 1a: Given that previous biomechanical and animal models suggest that 

vascular changes may be widespread and diffuse following mTBI, it was hypothesized that 

Veterans with history of mTBI will show global reductions in CBF when compared to Veterans 

with no history of mTBI. 
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 Hypothesis 1b: In Veterans with mTBI, resting CBF reductions was expected to be 

most prominent in known predilection sites (i.e., frontal and temporal cortices) given increased 

risks of contusion between the brain and bony protuberances of the cranial vault in these 

regions.  

Aim 2: To determine whether regional resting CBF predicts cognitive test 

performance in those with history of mTBI.  

Hypothesis 2a: We expected that reduced resting CBF in frontal and anterior cingulate 

cortices will be associated with poorer cognitive performance, particularly on tests of executive 

functioning.  

Hypothesis 2b: We hypothesized that reduced resting CBF in lateral and medial 

temporal lobe structures will be associated with poorer performance on memory measures.   

Exploratory Aim 3: To explore how important risk factors (a) influence resting CBF 

as well as (b) the association between resting CBF and cognitive outcomes in those with 

history of mTBI.  

Hypothesis 3a: We expected that greater blast-exposure, history of multiple TBIs, 

APOE-e4 positivity, and further time from injury will be associated with reduced resting CBF.    

Hypothesis 3b: We expected that reduced resting CBF and poorer cognitive 

performance will be more pronounced in those with greater blast-exposure, history of multiple 

TBIs, who are APOE-e4 positive, and further removed from their injury.   
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II. METHODS 

Participants  

We recruited 54 Operation Enduring Freedom, Operation Iraqi Freedom, and Operation 

New Dawn (OEF/OIF/OND) service members between the ages of 18 and 50 for the proposed 

study. Study groups include (1) those with history of mild or moderate TBI (mmTBI; n = 31) and 

(2) military controls (n = 21) with no history of TBI. Although we originally planned to enroll only 

individuals with mild TBI, seven individuals with moderate TBI were included due to sample size 

and power concerns after issues with scan acquisition and data collection resulted in some 

unusable data points.  All data for this project was gathered under Dr. Lisa Delano-Wood’s 

ongoing TBI studies. Subjects were recruited under from the VA San Diego Healthcare System 

(VASDHS) and University of California, San Diego (UCSD) via word-of-mouth, posted 

recruitment fliers, and referrals from the VASDHS TBI Clinic. All participants were carefully 

screened to determine study eligibility. Upon qualifying for enrollment, participants completed 

comprehensive cognitive testing, self-report symptom rating scales, are were interviewed for 

TBI and substance abuse history. Finally, after the collection of behavioral data all participants 

then completed MRI scanning. 

Inclusion criteria. The Department of Defense (DoD)/VA TBI Task Force criteria (2009) 

was used for diagnosis of mild or moderate TBI. The criteria for mild TBI include loss of 

consciousness (LOC) < 30 minutes, or alteration of consciousness (AOC) or post traumatic 

amnesia (PTA) < 24 hours, while the criteria for moderate TBI was LOC >30 minutes but < 24 

hours, or AOC > 24 hours or PTA >1 day but < 7 days. MCs were included in the study if they 

had no history of head injuries that occurred prior to, during, or immediately following discharge 

from the military.  

Exclusion criteria. Participants were excluded from the study sample if that met criteria 

for severe TBI as defined by 1) LOC ≥ 24 hours, AOC > 24 hours, or PTA ≥ 7 days). Additional 

exclusion criteria include the following which are also applied to the entire study sample: (1) 
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failure to complete or pass effort testing; (2) current or past history of a significant medical 

condition (e.g., seizures, multiple sclerosis); (3) hearing or vision impairment that interfere with 

testing;(4) current substance/alcohol abuse or dependence as indicated by diagnostic clinical 

interview; (5) current active suicidal and/or homicidal ideation, intent, or plan requiring crisis 

intervention; (6) any contraindications to magnetic resonance scanning (MRI) (e.g., shrapnel, 

ferromagnetic implants); (7) a positive toxicology screen as measured by the Rapid Response 

10-drug Test Panel; (8) endorsement of a high blood pressure or cholesterol, and/or any history 

of diabetes, coronary heart disease, stroke, arrhythmia on the background questionnaire; (9) a 

calculated BMI in the overweight or obese (i.e., >25) range; and (10) listing of any 

antihypertensive, statins, or insulin drugs on the medication history questionnaire. 

Measures 

TBI History Questionnaire. TBI relevant information was obtained via open-ended 

questionning and prompts via a lab-based questionnaire modeled on the VA’s semistructured 

clinical interview for TBI identification (Vanderploeg, Groer, & Belanger, 2012). This measure 

addressed several key aspects of traumatic events including the number of head injuries 

sustained, important diagnostic data for each (e.g., duration of LOC, AOC, and PTA), and the 

mode of injury (i.e., blast or blunt force).  All participants are assessed for non-military (prior to 

or after discharge from the military) and military-related head injuries. Military-related injuries 

were assessed separately for blast and blunt mechanisms of injury. With respect to blasts, 

participants were also asked to estimate total number of blast exposures, distance, and the 

direction from which the blast was initiated (See Clark et al. 2016 for more details). Time since 

injury was calculated by determining how many months had passed between the date of a 

participant's last reported injury and the first testing session of the study. 

Background Questionnaire. Employment, demographics, and health/medical history 

data was recorded for each subject. 
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Substance Interviews. Participants were administered the Mini International 

Neuropsychiatric Interview (MINI; van Vliet & de Beurs, 2007) which is consistent with the DSM-

IV (DSM-IV., 1993), for assessment of current and past history of alcohol and/or substance use.   

Self-Report Measures. Participants completed the PTSD Symptom Checklist-Military 

Version (PCL-M; Weathers, 1993), Beck-Depression Inventory-II (BDI-II; Beck, 1996), and 

Neurobehavioral Symptom Inventory (NSI; King et al., 2012). 

Neuropsychological Tests. Delis-Kaplan Executive Function System (D-KEFS) 

Fluency and Trail Making Test subtests (Delis, 2001); California Verbal Learning Test-2nd 

Edition (CVLT-II; Delis, Kaplan, & Ober, 2001); Reading subtest of the Wide Range 

Achievement Test- 4th edition (WRAT-4; Wilkinson & Robertson, 2006); Wisconsin Card Sorting 

Test (WCST; Heaton, Chelune, Talley, Kay, & Curtiss, 1981); Wechsler Memory Scale Fourth 

Edition (WMS-IV; Wechsler, 2009); and the Test of Memory Malingering (TOMM; Tombaugh, 

1996). First, all neuropsychological variables were converted from raw scores to standardized 

scores (e.g., scaled scores, T scores, z scores) using manual-specific normative data. Next, all 

standardized scores were converted to z-scores, with a mean of 0 and SD of 1, so that all 

measures were on the same metric. In an effort to reduce the number of comparisons, two 

theory-drive neurocognitive composites were created by averaging the z-scores across these 

variables. The EF composite consisted of DKEFS Letter Fluency, Verbal Fluency Switching, and 

Number-Letter Sequencing, as well as the WCST Total Errors and Perseverative Responses 

scores. The memory composite consisted on CVLT-II Total score, Short and Long Delay Free 

Recall scores, Logical Memory I and II total recall scores. 

Health variables and Genotyping. Height, weight, and blood pressure (seated and 

standing) were collected for every subject. Buccal swabs were collected for APOE genotyping 

procedures and APOE genotype was  determined using two single nucleotide polymorphism 

assays for the APOE coding regions (APOE112 and APOE158, rs429358 and APOE158, 
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respectively). DNA was extracted from buccal samples and quantified using  polymerase chain 

reaction amplification procedures described by Saunders and colleagues (1993). 

Procedures 

 Participants were scanned on a 3.0 Tesla General Electric Medical Systems EXCITE 

whole body imager with an 8-channel receive-only head coil at the UCSD Center for Functional 

Imaging on the UCSD La Jolla campus. 

Scanning Parameters. Participants were scanned on a 3.0 Tesla General Electric 

Medical Systems EXCITE whole body imager with an 8-channel receive-only head coil at the 

UCSD Center for Functional Imaging (CfMRI) on the UCSD La Jolla campus. Structural MRI: A 

high resolution T1-weighted Fast Spoiled Gradient Recall (3D FSPGR) scan was acquired to 

provide anatomic reference (172 1 mm contiguous sagittal slices, FOV = 25 cm, TR = 8 ms, TE 

= 3.1 ms, flip angle = 12, T1 = 600, 256 x 192 matrix, Bandwidth = 31.25 kHZ, frequency 

direction = S-I, NEX =1, scan time = 8 min 27 sec). Resting CBF. Whole-brain ASL data was 

acquired during a resting state using a multi-phase pseudo-continuous ASL (MPPCASL) 

sequence. Importantly, MPPCASL mitigates the adverse effects of off-resonance fields and 

gradient imperfections on the inversion efficiency in traditional PCASL techniques (Jung, Wong, 

& Liu, 2010). Blood magnetization is modulated with multiple RF phase offsets, and the resulting 

signal is then fit to a model function to generate a CBF estimate. Moreover, MPPCASL utilizes a 

new fitting procedure for flow velocity and CBF, thus provides more accurate CBF estimates.  

Parameters included 20 5 mm axial slices, FOV = 24, post-saturation and inversion times of TI1 

= 0 ms and TI2 = 3600 ms, TR= 4200 ms, TE = 3.3 ms, volumes = 64, scan time = 5 min 28 

sec. Additionally, a scan with the inversion pulses turned off was acquired to obtain an estimate 

of the magnetization of cerebrospinal fluid (CSF). A minimum contrast scan was also acquired 

to adjust for coil inhomogeneities during the CBF quantification step. A field map was acquired 

to correct for field inhomogeneities.  

 Image Processing.  MRI pre-processing and post- processing was completed using 
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Analysis of Functional NeuroImages (Cox, 1996), Freesurfer (Dale, Fischl, & Sereno, 1999), 

and in-house Matlab scripts. Structural MRI. Using AFNI software, a 3-dimensional brick will be 

created from the structural scan slices. Regions of interest (ROIs) were created using 

Freesurfer, a freely available cortical and subcortical segmentation and parcellation software. 

Resting CBF. Processing of the resting CBF (MPPCASL) data was completed through a 

processing pipeline available via the Cerebral Blood Flow Biomedical Informatics Research 

Network (Bangen et al., 2014; Shin et al., 2013). Field map correction and motion correction 

(using the middle volume as reference) were also completed. A mean ASL image was formed 

for each participant from the average difference of control and tag images using surround 

subtraction (e.g., the difference between each control image and the average of the two 

surrounding tag images and vice versa). The mean ASL image was then converted to absolute 

units of CBF (mL/(100g-min). Information from the high-resolution structural image and the FSL 

Automated Segmentation Tool (Smith et al., 2004) was used to determine the tissue content of 

each gray matter voxel. The CBF data was skull-stripped using an automated program, spatially 

smoothed using a 4.0 mm full-width, half-maximum Gaussian filter, and thresholded to only 

include voxels with at least 90% probability of containing gray matter. Following the CBFBIRN 

pipeline procedure, the CBF data for each participant was further thresholded by removing 

outlier voxels (voxels with CBF values < 10 or > 150). Mean CBF values was then be extracted 

from the whole brain and 13 frontal and 9 temporal FreeSurfer ROIs for each hemisphere. The 

weighted average of lateralized FreeSurfer ROIs was calculated to obtain a total CBF value for 

six ROIs from the Desikan (2006) atlas in the frontal and temporal lobes that are especially 

vulnerable to TBI: the (1) middle frontal gyrus (MFG),  (2) inferior frontal gyrus (IFG), (3) 

orbitofrontal cortex (OFC), (4) anterior cingulate (ACC), (5) medial temporal lobe (MTL), and (6) 

lateral temporal lobe (LTL).  
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Figure 2. Cortical Regions-of-Interest Utilized in the Proposed Study. On the left is the lateral 
view of the right cerebral hemisphere. The middle frontal gyrus (MFG) is depicted in yellow; 
inferior frontal gyrus (IFG) is depicted in dark blue; lateral temporal lobe (LTL) is in teal; On the 
right side of the figure is a medial view of right cerebral hemisphere. The anterior cingulate 
cortex (ACC) is depicted in orange, orbitofrontal cortex (OFC) is in red; and medial temporal 
lobe (MTL) is in green. 
 

Statistical Analyses 

Analyses were conducted using the Statistical Package for the Social Sciences (SPSS) 

version 24 (SPSS IBM, New York, NY). Prior to conducting statistical analyses, all data was 

examined for violations of normality, heteroskedasticity, and potential outliers. The Shapiro-Wilk 

test and measures of skewness and kurtosis (any values below 2) were utilized to determine 

whether the assumption of normality was met. The Levene test was utilized to determine 

whether there were homogenous variances between the groups. Violations were addressed by 

(1) transforming variables to improve normality prior to conducting analyses, and/or (2) running 

additional non-parametric statistics (i.e., Kruskal-Wallis tests). There were no discrepancies 

between parametric and non-parametric analysis techniques, thus only results associated with 

parametric statistics are reported in the results section below. Finally, data was explored for 
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outliers (values > 3 standard deviations from mean) and individuals with extreme values were 

removed from analyses. 

Participant Demographics. Differences between the mmTBI and MC groups on basic 

demographic characteristics, were explored using independent-samples t-tests (for continuous 

data).  For categorical data, chi-square analyses or Fischer’s exact test (when cell counts were 

less than 5) were employed.  

Hypothesis Testing.  First, two-way factorial analyses of covariance (ANCOVAs) were 

conducted to evaluate whether there were group differences on of (1) whole brain resting CBF 

and (2) resting CBF of bilateral frontal and temporal ROIs. Covariates included age, PCL-M and 

BDI-II total scores.  

Second, a series of multiple linear regression analyses were performed to explore 

resting CBF and cognitive associations the mmTBI group. Cognitive composites were entered 

as dependent variables for each model. Independent variables entered included the age, PCL-

M and BDI total scores (when relevant), and CBF of the relevant lateralized frontal ROI (i.e., 

right or left MFG, IFG, ACC, or OFC). Age was included as a covariate in all models, but PCL-M 

and BDI-II total scores were only included when Pearson’s correlations revealed statistically 

significant associations with the independent and/or dependent variable of interest. This was to 

ensure that any observed CBF and cognitive relationships were independent of other potential 

factors of influence while also making sure that the most parsimonious model was used in an 

effort to preserve power.  Trends were interpreted when partial correlations for the predictors of 

interest were considered to medium (r = 0.3) or large (r = 0.5) effect sizes based on Cohen 

(1992) guidelines.  

Third, the association between risk factors and resting CBF of frontal and temporal ROIs 

was explored using multiple regression models. The independent variable of interest in the 

models was the known risk factor. Age was included as a covariate in all models, but PCL-M 

and BDI-II total scores were only included when Pearson’s correlations revealed statistically 
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significant associations with both the risk factor and CBF of the dependent variable of interest. 

This was to ensure that demonstrated relationships were independent of other potential factors 

while also making sure that the most parsimonious model was used to test the hypothesized 

relationships.  

Finally, APOE-ε4 genotype, total number of blast-exposures and mmTBIs, and time 

since injury were entered into multiple regression to determine whether they were moderators of 

resting CBF and cognitive associations. Moderators were created by creating interaction terms 

with CBF ROIs and moderator variables of interest and this term was the independent model of 

interest in the regression. Other independent variables included CBF of relevant ROIs and the 

known risk factor. Age was also included as a covariate in all models, but PCL-M and BDI-II 

total scores were only included when Pearson’s correlations revealed statistically significant 

associations with both the risk factor and CBF of the dependent variable of interest.  
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III. RESULTS 

Sample Characteristics  

 Participant demographics are presented in Table 1. Independent sample t-tests were 

used to explore group differences on quantitative variables of interest. Results revealed no 

significant differences between the mmTBI and MC groups on age t(52) = .92, p = .35, 

education t(52) = -1.79 p = .08, WRAT-4 Reading performance t(59) = -1.17, p = .27), height 

t(51) =  -1.40, p = .17, weight t(51) = 0.89 , p = .37, systolic t(41) = .36, p = .72 or diastolic t(41) 

= .87, p = .39 blood pressure. However, relative the MC group, the mmTBI group endorsed 

more severe posttraumatic stress t(52) = 6.92, p< .001 and depressive t(52) = 5.35, p < .001 

symptoms, and also reported greater combat exposure t(51) = 3.44, p = .001. 

 Chi-squared or Likelihood ratio tests (when cell counts < 5) were used to explore group 

differences on categorical variables. Results revealed no significant differences between the 

groups on sex χ2(54) = .68, p = .41, branch of service χ2(54) = .71, p = .87, or e4 positivity   

χ2(51) = .00, p = 1.0.  However, the groups significantly differed with respect to ethnicity χ2(54) = 

17.56, p = .007, with the mmTBI group having fewer Caucasians and more Hispanics relative to 

the MCs. 

 

 

 

 

 

 

 

 



 

 27 
 

Table 1.  Sample Characteristics 
N=54 
Variable MCs (n = 23) mmTBI (n = 31) Sig. 
Age [M (SD)] 31.52 (6.07) 33.23 (7.09)  
Gender [% Male] 83 90  
Ethnicity [% Hispanic/Latino] 4 32 † 
Education [M (SD)] 14.96 (1.85) 14.00 (1.66)  
WRAT Reading Standard Score [M 
(SD)] 104.35 (9.14) 101.39 (9.78)  

Combat Exposure Scale Total Score 
[M (SD)] 6.00 (6.43) 15.1 (12.49) ◊ 

Branch of Service [% Air Force]  4 7  
Height in Inches [M (SD)] 69.70 (3.35) 68.35 (3.5)  
Weight in Pounds [M (SD)] 184.26 (30.92) 193.77 (42.80)  
Systolic Blood Pressure in mmHg [M 
(SD)] 122.63 (15.61) 121.14 (11.91)  

Diastolic Blood Pressure in mmHg [M 
(SD)] 77.22 (7.63)) 79.58 (9.51)  

PCL-M Total Score [M (SD)] 23.65 (7.69 50.35 (17.23) ◊ 
BDI-II Total Score [M (SD)] 6.87 (8.15) 22.94 (12.03) ◊ 
APOE-e4 positivity [% No] 67 67  
Note. MC= Military Controls comparison group; mmTBI = mild or moderate TBI comparison 
group; WRAT-4: Wechsler Test of Adult Reading—4th Edition; mmHg: millimeters of mercury; 
PCL-M: Posttraumatic Stress Disorder Checklist ; BDI-II: Beck Depression inventory—2nd 
Edition; APOE-e4 positivity: presence of at least one copy of the E4 allele; height and weight 
variables are missing 1 subject’s data; systolic and diastolic blood pressure estimates are 
missing 11 subject’s data; combat exposure scale is missing 1 subject’s data; ◊ = MCs differs 
from mmTBI at p<.001, † = MCs differs from mmTBI at p<.010. 
 
 
TBI Injury Characteristics 

Table 2 displays injury characteristics for the mmTBI group. On average, Veterans 

sustained multiple TBIs (M = 2.82), were many months removed from their most recent injury (M 

= 44.94) and reported being exposed to multiple blast detonations (M = 11.45) while on 

deployment. With respect to the mmTBI group’s most significant injury, these injuries were 

largely mild in severity (88%) and the majority of the subjects reported experiencing a LOC at 

the time of the incident (61%).  Duration of LOC, AOC, and PTA were not normally distributed 

and thus means, median, and ranges are reported in the table to ensure adequate injury 

characterization. 
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Table 2. TBI Injury Characteristics 
Variable mmTBI 
TBI Severity [% Mild] 87 

Month Since Most Recent TBI [M, Median (range)] 44.94, 41.00 (0.8 - 
78) 

Number of TBIs [M, Median (range)] 2, 3 (1-6) 
Blast Exposed [%Yes] 52 
Number of Blast Exposures [M (range)] 11.45, 2.5 (0-100) 
History of LOC with Most Significant TBI [% Yes]  61 
Longest duration of LOC in minutes for Most Significant TBI [M, 
Median (range)] 19, 3 (0.05-150.00) 

History of AOC with Most Significant TBI [% Yes] 39 

Longest duration of AOC in minutes [M, Median (range)] 98.55, 13.75 (0.21-
720) 

History of PTA [% Yes] 65 
Longest duration of PTA in minutes [M (range)] 864, 10 (0-10,008) 
Neurobehavioral Symptom Inventory Total Score [M (range)] 39.61 (2 – 72) 
Note. mmTBI = History of mild or moderate TBI group; TBI = traumatic brain injury; LOC = 
loss of consciousness; AOC = alteration of consciousness; PTA = post-traumatic amnesia. 
 
Aim 1: Group Differences in Resting CBF of Whole Brain and Frontal and Temporal 

Regions of Interest  

 A series of ANCOVAs were performed in order to determine whether there were group 

differences in resting CBF of whole brain (WB) and lateralized frontal and temporal ROIs. 

Covariates included age and PCL-M and BDI total scores. Age was included as a covariate 

given its robust association with CBF. PCL-M and BDI-II total scores were included given the 

groups differed on these variables. Results revealed that the groups did not significantly differ in 

WB CBF F(1,49) =2.01, p = 0.16, ηp
2 = .04).  With respect to frontal ROIs, the mmTBI group 

displayed significantly higher resting CBF in the left F(1,49) = 5.35, p = 0.03, ηp
2 = .10) and right 

F(1,48) = 5.92, p = 0.02, ηp
2 = .11) inferior frontal gyrus (IFG);  and left F(1,49) = 6.60, p = 0.01, 

ηp
2 = 0.12) and right F(1,49) = 5.12, p = 0.03, ηp

2 = 0.09) medial frontal gyrus (MFG). However, 

no significant group differences were observed for the left F(1,49) = 0.78, p = 0.38, ηp
2 = 0.02 

and right F(1,49) = 0.14, p = 0.70, ηp
2 = 0.003) anterior cingulate cortex (ACC), or left F(1,49) = 
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2.45, p = 0.13, ηp
2 = 0.05) and right F(1,49) = 0.43, p = 0.51, ηp

2 = 0.009) orbitofrontal cortex 

(OFC).  

 With respect to temporal ROIs, results revealed the mmTBI group had significantly 

higher resting CBF in the right lateral temporal lobe (LTL) F(1,49) = 4.10, p = .04, ηp
2 = .08). 

However, no significant group differences were observed in the left LTL F(1,49) = 2.45, p = 

0.12, ηp
2 = .05), or left F(1,49) = 1.50, p = 0.22, ηp

2 = 0.03) and right F(1,49) = 0.43, p = 0.51, ηp
2 

= .009) medial temporal lobe (MTL). 

Table 3. Estimated Marginal Means of Resting CBF Within Groups  
Variable MCs mmTBI 

Whole Brain [Mean (SE)] 59.24 (1.37) 62.09 
(1.29) 

Left Inferior Frontal Gyrus [Mean (SE)] 57.32 (1.36) 61.96 
(1.11)* 

Right Inferior Frontal Gyrus [Mean (SE)] 58.87 (1.56) 64.45 
(1.29)* 

Left Middle Frontal Gyrus [Mean (SE)] 57.55 (1.44) 63.05 
(1.05)* 

Right Middle Frontal Gyrus [Mean (SE)] 59.21 (1.59) 64.52 
(1.31)* 

Left Anterior Cingulate Cortex [Mean (SE)] 66.87 (2.47) 70.10 
(2.03) 

Right Anterior Cingulate Cortex [Mean (SE)] 56.07 (2.59) 57.55 
(2.13) 

Left Orbitofrontal Cortex [Mean (SE)] 51.21 (1.35) 54.30 
(1.11) 

Right Orbitofrontal Cortex [Mean (SE)] 53.59 (1.46) 55.09 
(1.20) 

Left Medial Temporal Lobe [Mean (SE)] 51.53 (1.76) 54.76 
(1.45) 

Right Medial Temporal Lobe [Mean (SE)] 53.47 (1.80) 55.28 
(1.50) 

Left Lateral Temporal Lobe [Mean (SE)] 55.07 (1.48) 58.50 
(1.22) 

Right Lateral Temporal Lobe [Mean (SE)] 54.98 (1.31) 58.89 
(1.07)* 

Note. Estimated marginal means were derived from ANCOVAs controlling for age, BDI-II and 
PCL-M total scores. *Denotes significant group differences at p<.05; SE = standard error; 
MCs = military controls comparison group; mmTBI = mild or moderate traumatic brain injury 
comparison group.  
 



 

 30 
 

Aim 2: Resting CBF Associations with Cognition within the mmTBI Group 

 A set of linear regressions were performed to determine whether resting CBF was 

associated with cognitive performance in Veterans with mmTBI. Frontal ROIs were used in 

analyses exploring performance on the EF composite, whereas temporal ROIs were used in 

analyses exploring performance on the memory composite. Two mmTBI subjects failed to pass 

effort testing (CVLT-2 Forced Choice <15 or TOMM Trial 2 <45) and thus were excluded from 

the subsequent analyses (n = 29 for mmTBI participants included in cognitive analyses).  

 For the first set of regressions, performance on the EF composite was entered as the 

dependent variable. Independent variables entered included the age, PCL-M and BDI total 

scores (when relevant), and resting CBF of the relevant lateralized frontal ROI (i.e., right or left 

MFG, IFG, ACC, or OFC). Age was included as a covariate in all models, but PCL-M and BDI-II 

total scores were only included when Pearson’s correlations revealed statistically significant 

associations with the independent and/or dependent variable of interest. This was to ensure that 

any observed resting CBF and cognitive relationships were independent of other potential 

factors of influence while also making sure that the most parsimonious model was used in an 

effort to preserve power.  Trends were interpreted when partial correlations for the predictors of 

interest were considered to medium (r = 0.3) or large (r = 0.5) effect sizes based on Cohen 

(1992) guidelines.  

 Results revealed that independent of age, there was a significant association between 

performance on the EF composite and resting CBF of the right IFG (b = 0.46, t = 2.28, p = 0.03, 

partial correlation = 0.41), right OFC (b = 0.51, t = 2.28, p = 0.009, partial correlation = 0.48), as 

well as a trend for right MFG (b = 0.30, t = 1.67, p = 0.10, partial correlation = 0.32). See Table 

4 and Figures 3 and 4. However, there were no significant associations (or medium to large 

effect size trends) between performance on the EF composite and left IFG (b = 0.3, t = 1.5, p = 

0.14), left MFG (b = 0.24, t = 0.99, p = 0.33), left (b = 0.24, t = 1.05, p = 0.31) and right (b = -
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0.12, t = -0.55, p = 0.59) ACC, and left OFC (b = 0.27, t = 1.34, p = 0.19). Although Pearson’s 

correlations revealed that there were no significant associations between PCL-M total score 

and/or performance on the EF composite, there was a trend with resting CBF of the right IFG (r 

= -.31, p = 0.10) and right OFC (r = -.34, p = 0.07). As such, another set of regressions were 

performed with PCL-M total score included as a covariate, and results are reported in the table 

below. Inclusion of the PCL-M total score attenuated the significance of the findings between 

performance on the EF composite and resting CBF of the right IFG and MFG, but resting CBF 

of the right OFC remained a significant predictor in the revised model.  

Table 4. Association Between Resting CBF and Performance on the Executive  
Functions Composite 
Performance on EF Composite  b t p-value 
Model 1 Right OFC    

Age 0.15 0.82 0.42 

CBF of R OFC 0.51 2.81 0.009* 

Model 2 Right OFC    
Age 0.16 0.88 0.39 

PCL-M Total Score -0.17 -0.94 0.36 
CBF of R OFC 0.46 2.38 0.03* 

Model 1 Right IFG    
Age 0.19 .97 0.34 

CBF of R IFG 0.46 2.28 0.03* 

Model 2 Right IFG    
Age 0.20 1.00 0.32 

PCL-M Total Score -0.21 -1.12 0.71 
CBF of R IFG 0.39 1.91 0.07 

    
Note. EF = executive functions composite; OFC refers to orbitofrontal cortex; IFG refers to 
inferior frontal gyrus; PCL-M refers to Posttraumatic Stress Disorder Checklist ; BDI-II refers to 
Beck Depression inventory—2nd Edition; TBI Injury Severity is coded as mild versus moderate; 
CBF = cerebral blood flow; R OFC = right orbitofrontal cortex;  b =  standardized coefficient; t = 
t-statistic. *p<.05 
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Figure 3. Relationships Between Performance on the Executive Functions Composite and 
Resting Cerebral Blood Flow of the Right Orbitofrontal Cortex. The Y axis represents the z-
scores of the executive functions composite with age regressed out. The X axis represents the 
z-scores of cerebral blood flow of the right orbitofrontal cortex with age regressed out.  
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Figure 4. Relationships Between Performance on the Executive Functions Composite and 
Resting Cerebral Blood Flow of the Right Inferior Frontal Gyrus. The Y axis represents the z-
scores of the executive functions composite with age regressed out. The X axis represents the 
z-scores of cerebral blood flow of the right inferior frontal gyrus with age regressed out. 
   
 Given the observed pattern of results, there was some concern that use of composite 

variables may have obscured the detection of any critical resting CBF and cognitive 

associations given averaging of multiple tests. Thus, a series of follow-up partial correlations 

controlling for age were conducted between each of the frontal ROIs and the 5 individual tests 

included in the EF composite. Significant partial correlations were observed between WCST 

Total Errors z-score and resting CBF of the right ACC (r = .42, p = .04); DKEFS Letter Fluency 

z-score and resting CBF of the right IFG (r = 0.52, p = 0.009), and left (r =0.48, p = 0.02) and 

right (r = 0.47, p = 0.02) OFC. Medium to large effect size trends (r’s >.3) were observed for 

DKEFS Letter Fluency z-score and resting CBF of the left IFG and (r = .36, p = .08) and left 

ACC (r = .31, p = .11; and WCST Perseverative Responses z-score and left MFG (r = .31, p = 

.14) and right ACC (r = .31, p = .14). Results revealed a general trend that greater resting CBF 

was associated with better cognitive performance. Effect sizes remained in the medium-to-large 
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range when both age and PCL-M total score were controlled for in the partial correlations, but 

significance values were somewhat attenuated. 

 For the second set of regressions, performance on the memory composite was entered 

as the dependent variable. Independent variables entered included age and resting CBF of the 

relevant lateralized temporal ROI (i.e., MTL or LTL). PCL-M and BDI-II total scores were only 

included when Pearson’s correlations revealed statistically significant associations with the 

independent and/or dependent variable of interest. Results revealed that there were no 

significant association between performance on the memory composite and resting CBF of the 

left (b = 0.05, t = 0.26, p = 0.80) or right (b = 0.07, t = 0.37, p = .72) MTL, or left (b = 0.10, t = 

0.48, p = 0.63) or right (b = 0.03, t = 0.13, p = 0.89) LTL. Follow-up partial correlations 

controlling for age were conducted between all temporal ROIs and the 5 individual tests 

included in the memory composite. Results revealed no significant partial correlations between 

resting CBF and performance on the individual tests included in the composite (p’s = 0.24 - 

0.86). Additionally, no notable medium to large effect size trends (r’s >.3) were observed for 

resting CBF of temporal ROIs and individual memory tests.  

Aim 3A: Resting CBF Associations with Genetic and Environmental Risk Factors   

A set of linear regressions were performed to determine whether various risk factors 

(i.e., total number of TBIs, time since injury, total number of blast-exposures, APOE-e4 

positivity) were associated with resting CBF in Veterans with mmTBI. Dependent variables were 

resting CBF of WB, frontal, and temporal ROIs. The independent variable of interest in the 

models was the known risk factor. Age was included as a covariate in all models, but PCL-M 

and BDI-II total scores were only included when Pearson’s correlations revealed statistically 

significant associations with both the risk factor and resting CBF of the dependent variable of 

interest. This was to ensure that demonstrated relationships were independent of other potential 
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factors while also making sure that the most parsimonious model was used to test the 

hypothesized relationships. 

Total Number of mmTBIs. Linear regression revealed that independent of age, total 

number of TBIs was significantly correlated with resting CBF of the left IFG (b = -0.38, t = -2.22, 

p = 0.03, partial correlation = -.34), such that a great number of TBIs was associated with 

reduced resting CBF. See Table 5 and Figure 5. No significant associations between total 

number of mmTBIs and resting CBF of the WB  (b = -0.15, t = -0.89, p = 0.37), right IFG (b = -

0.22, t = -1.29, p = 0.21), left (b = -0.14, t = -0.83, p = 0.41) and right (b = -0.33, t = -0.22, p = 

0.74) MFG, left  (b = -0.18, t = -1.12, p = 0.27) and right (b = -0.03, t = -0.71, p = 0.86) ACC, and 

left (b = -0.09, t = -0.45, p = 0.66) and right (b = -0.29, t = -1.47, p = 0.15) OFC were observed. 

With respect to temporal ROIs, no significant associations between total number of mmTBIs and 

resting CBF of the left (b = -0.05, t = -0.24, p = 0.81) and right (b = -0.05,  = -0.24, p = 0.81) 

MTL, or the left (b = -0.14, t = -0.78, p = 0.44) and right (b = -0.21, t = -1.20, p = 0.22) LTL were 

observed. Results revealed there were no medium-to-large effect sizes when the partial 

correlation of the predictor variable, total number of mmTBIs, was examined in each regression 

model. 

Table 5. Association Between Total Number of mmTBIs and Resting CBF  
CBF of the L IFG  b t p-value 
Model 1    

Age -0.31 -1.79 0.08 
Total Number of mmTBIs -0.38 -2.22 0.03* 

Note. CBF = cerebral blood flow; R OFC = right orbitofrontal cortex;  b =  standardized 
coefficient; t = t-statistic. *p<.05 
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Figure 5. Relationships Between Total Number of mmTBIs and Resting Cerebral Blood Flow of 
the Left Inferior Frontal Gyrus. The X axis represents the z-scores of the total number of 
mmTBIs with age regressed out. The Y axis represents the z-scores of cerebral blood flow of 
the left inferior frontal gyrus with age regressed out.  
 
 

Time Since Injury. Linear regression revealed that time since injury was not significantly 

correlated with resting CBF in the WB  (b = -0.06, t = -0.39, p = 0.69), or left (b = -0.15, t = -0.90, 

p = 0.37) and right (b = -0.05, t = -.31, p = 0.75) IFG, left (b = -0.14, t = -.97, p = 0.34) and right 

(b = -0.07, t = -0.47, p = 0.64) MFG, left  (b = -0.09, t = 0.59, p = 0.56) and right (b = -0.09, t = -

0.55, p = 0.58) ACC, and left (b = 0.03, t = 0.16, p = 0.88) and right (b = -0.08, t = -0.47, p = 

0.66) OFC. With respect to temporal ROIs, no significant associations between time since injury 

and resting CBF of the left (b = -0.14, t = -0.76, p = 0.45) and right (b = -0.21, t = -1.09, p = 0.28) 

MTL, or the left (b = 0.03, t = 0.17, p = 0.86) and right (b = -0.15, t = -0.91, p = 0.37) LTL were 

observed. Results revealed there were no medium-to-large effect sizes when the partial 

correlation of the predictor variable, time since injury, was examined in each regression model. 
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Exposure to blast detonations. Within the mmTBI group, 52% of the sample (n = 16) 

was exposed to blast detonations while on deployment. Preliminary analyses revealed that the 

total number of blast exposures was not normally distributed (Shapiro-Wilk= 0.43, p < .001) and 

included two outliers that were greater than 3 standard deviations from mean. Removing these 

outliers did not improve normality (Shapiro-Wilk = 0.86, p = .02), thus the variable underwent 

square root transformation to improve normality (Shapiro-Wilk= 0.91, p = .11). Results revealed 

no significant associations between total number of blast exposures and resting CBF of the WB 

(b = 0.21, t = 1.13, p = 0.27), or left (b = 0.19, t = 0.95, p = 0.35) and right (b = 0.11, t = .56, p = 

0.58) IFG, left (b = 0.08, t = 0.50, p = 0.22b = 0.19, t = 1.05, p = 0.31) and right (b = -0.06, t = 

0.31, p = 0.76) MFG, left  (b = -0.03, t = 00.19, p = 0.85) and right (b = 0.27, t = 1.35, p = 0.19) 

ACC, and left (b = 0.19, t = 0.95, p = .35) and right (b = 0.005, t = -.02, p = 0.98) OFC. With 

respect to temporal ROIs, no significant associations between total number of blast exposures 

and resting CBF of the left (b = 0.18, t = 0.77, p = 0.45) and right (b = 0.05, t = 0.22, p = 0.82) 

MTL, or the left (b = -0.007, t = 0.03, p = 0.97) and right (b = 0.24, t = 1.17, p = 0.26) LTL were 

observed. Results revealed there were no medium-to-large effect sizes when the partial 

correlation of the predictor variable, total number of blast exposures, was examined in each 

regression model. Finally, a set of exploratory ANCOVAs controlling for age were used to 

compare resting CBF of Veterans with mmTBI who were and were not blast exposed. Results 

revealed that there were no significant differences in resting CBF between those with mmTBI 

who were and were not blast exposed across any of the WB, frontal, or temporal ROIs (p’s= -

0.19- 0.95).  

APOE-e4 positivity. The last factor explored was possession of the APOE-e4 positivity. 

One subject’s sample had degraded, and DNA could not be extracted. Veterans with mmTBI 

were divided into two groups (e4-, n = 20, and e4+, n = 10). Linear regressions revealed that 

APOE-e4 positivity was not significantly associated with resting CBF of the WB (b = -0.02, t = -
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.12, p = 0.90), or left (b = -0.01, t = -0.05, p = 0.96) and right (b = -0.01, t = -0.05, p = 0.86) IFG, 

left (b = 0.07, t = 0.46, p = 0.65) and right (b = -0.08, t = -0.51, p = 0.62) MFG, left  (b = -0.02, t = 

-0.12, p = 0.89) and right (b = -0.09, t = -0.51, p = 0.62) ACC, and left (b = 0.15, t = 0.83, p = 

.41) and right (b = -0.17, t = -0.66, p = 0.51) OFC. With respect to temporal ROIs, linear 

regressions revealed APOE-e4 positivity was not significantly associated with resting CBF of the 

left (b = 0.12, t = 0.60, p = 0.55) and right (b = 0.20, t = 1.16, p = 0.29) MTL, or the left (b = 0.08, 

t = 0.48, p = 0.63) and right (b = 0.21, t = 1.23, p = 0.23) LTL. Results revealed there were no 

medium-to-large effect sizes when the partial correlation of the predictor variable, APOE-e4 

positivity, was examined in each regression model. Given violations in homogeneity of 

variances, findings were replicated using the non-parametric Kruskal-Wallis H test, and there 

was no rejection of the null hypothesis across any ROI (p’s =0.13-0.94). 

Aim 3B: Moderators of Resting CBF and Cognitive Associations in Veterans with mmTBI  

A set of linear regressions were performed to determine whether various risk factors 

(i.e., total number of TBIs, time since injury, total number of blast-exposures, APOE-e4 

positivity) interacted with resting CBF to predict cognitive performance within the mmTBI group. 

Dependent variables in the models were the EF and memory composite. The independent 

variable of interest in the models was interaction term between risk factor and resting CBF of 

relevant ROIs. Age was included as a covariate in all models, but PCL-M and BDI-II total scores 

were only included when Pearson’s correlations revealed statistically significant associations 

with both the risk factor and resting CBF of the dependent variable of interest. This was to 

ensure that demonstrated relationships were independent of other potential factors while also 

making sure that the most parsimonious model was used.    

Total number of mmTBIs x resting CBF on cognition. For the first set of regressions, 

we were interested in whether there was an interaction between total number of mmTBIs and 

resting CBF of frontal ROIs on performance of the EF composite. Results revealed there were 
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no significant interaction terms for total number of TBIs and resting CBF of the left (b = 0.07, t = 

0.03, p = 0.97) and right (b = 0.19, t = 0.08, p = 0.93) IFG, left (b = -0.48, t = -0.23, p = 0.82) and 

right (b = -1.19, t = -0.51, p = 0.62) MFG, left  (b = -0.68, t = -0.48, p = 0.63) and right (b = -0.31, 

t = -0.25, p = 0.80) ACC, and left (b = 1.49, t = 0.46, p = .64) and right (b = -1.12, t = -0.48, p = 

0.63) OFC. Results revealed there were no medium-to-large effect sizes when the partial 

correlation of the interaction term was examined in each regression model. 

 As above, a series of follow-up regressions were run where the five individual tests of 

the EF composite were entered in independent models as dependent variables of interests. 

Results revealed no significant interactions between total number of TBIs and resting CBF of 

any frontal ROI. However, medium to large effect size trends (r’s >.3) were observed for 

interactions between total number of mmTBIs x resting CBF of the left IFG on WCST 

Perseverative Responses z-score (b = -3.73, t = -1.62, p = 0.11, partial correlation = -0.31); and 

total number of mmTBIs x resting CBF of the right ACC on WCST Perseverative Responses z-

score (b = -1.85, t = -1.62, p = 0.12, partial correlation = -0.31) and WCST Total z-score (b = -

1.78, t = -1.55, p = 0.13, partial correlation = -0.30). Examination of simple main effects across 

revealed a general trend in that there was a strong association between higher resting CBF and 

better cognitive performance in the mmTBI group with fewer injuries relative to those who 

reported multiple injuries.  

 For the second set of regressions, we explored whether there was a significant 

interaction between total number of mmTBIs x CBF of resting temporal ROIs on performance of 

the memory composite. Results revealed there was significant interaction for total number of 

TBIs and resting CBF of left LTL (b = -4.64, t = -2.11, p = 0.04, partial correlation = -0.37) and a 

that there was a trend for the interaction between total numbers of mmTBI and resting CBF of 

the right LTL on performance of the memory composite (b =-5.12, t = -1.88, p = 0.07, partial 

correlation = -0.35). Examination of simple main effects revealed a general trend such that there 
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was a strong association between higher resting CBF and better cognitive performance in the 

mmTBI group with fewer injuries relative to those who reported multiple injuries. See Figure 6 

below.  No significant interactions between total number of mmTBIs and resting CBF of the left 

(b = -2.78, t = -1.13, p = 0.27) or right (b = -1.59, t = -0.62, p = 0.54) MTL on performance on the 

memory composite were observed. Moreover, results revealed there were no other medium-to-

large effect sizes when the partial correlation of the interaction term was examined in each 

regression model. 

 

 

Figure 6. Relationships Between Performance on the Memory Composite and Resting CBF of 
the Left Lateral Temporal Lobe. The X axis represents the z-scores of performance on the 
memory composite. The Y axis represents the cerebral blood flow of the left inferior frontal 
gyrus in mL/100g tissue/min. A median split of total number of mmTBIs was used to 
dichotomize the groups into those with fewer (n = 12,  labeled mmTBI above) versus more head 
injuries (n = 17, labeled repetitive mmTBI above). The blue line and dots represent those 
mmTBI group with fewer injuries. The orange line and dots represent the mmTBI group who 
reported multiple injuries. 
 
 A series of follow-up regressions were run with the five individual tests of the memory 

composite entered in independent models as dependent variables of interests. Results revealed 
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significant interactions between total number of TBIs x resting CBF of the left LTL on CVLT-II 

Short Delay Free Recall z-score (b = -4.87, t = -2.21, p = 0.03, partial correlation = -0.41). 

Moreover, medium to large effect size trends (r’s >.3) were observed for interactions between 

total number of TBIs x resting CBF of the left LTL on CVLT-II Long Delay Free Recall z-score (b 

= -4.06, t = -1.78, p = 0.08, partial correlation = -0.34) and Logical Memory Trial 1 z-score (b = -

3.95, t = -1.75, p = 0.09, partial correlation = -0.32); as well as total number of TBIs x resting 

CBF of the right LTL and on CVLT-II Short Delay Free Recall z-score (b = -5.26, t = -1.92, p = 

0.06, partial correlation = -0.35), Logical Memory I Total z-score (b = -4.98, t = -1.88, p = 0.07, 

partial correlation = -0.34), and Logical Memory II Total z-score (b = -4.43, t = -1.59, p = 0.13, 

partial correlation = -0.32). Similar to results reported above, examination of simple main effects 

revealed a general trend in that there was a strong association between higher resting CBF and 

better cognitive performance in the mmTBI group with fewer injuries relative to those who 

reported multiple injuries. Results revealed there were no other medium-to-large effect sizes 

when the partial correlation of the interaction term was examined in each regression model. 

Time since injury x resting CBF on cognition. For the first set of regression we were 

interested in whether time since injury moderated the relationship between resting CBF of 

frontal ROIs and performance on the EF composite. Results revealed that there were no 

significant interaction terms for time since injury x resting CBF of the left (b = -1.83, t = -0.60, p = 

0.55) and right (b = 0.63, t = 0.29, p = 0.77) IFG, left (b = -1.16, t = -0.44, p = 0.66) and right (b = 

-2.83, t = -1.07, p = 0.29) MFG, left (b = 1.21, t = 0.75, p = 0.46) and right (b = -1.25, t = -0.82, p 

= 0.42) ACC, and left (b = 1.28, t = 0.07, p = .95) and right (b = -1.36, t = -0.69, p = 0.49) OFC 

on EF performance. A series of follow-up regression analyses with the 5 individual tests 

included in the EF composite were conducted. Results revealed no significant interactions 

between total number of TBIs and resting CBF of any frontal ROI. However, medium to large 

effect size trends (r’s >.3) were observed for interactions between time since injury x resting 
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CBF of the right MFG on DKEFS Verbal Fluency Switching Total z-score (b = -5.10 t = -2.05, p 

= 0.05, partial correlation = -0.37). Examination of simple main effects revealed a general trend 

showing that higher resting CBF was related to better cognitive performance in those who were 

closer in time to their injury relative to those whose injuries were more remote. Results revealed 

there were no other medium-to-large effect sizes when the partial correlation of the interaction 

term was examined in each regression model. 

 For the second set of regressions, we explored whether time since injury moderated the 

relationship between resting CBF of temporal ROIs on performance of the memory composite. 

Results revealed there no significant interactions for time since injury x resting CBF of left (b = -

1.22, t = -0.57, p = 0.57) or right (b = -.42, t = -0.21, p = 0.84) MTL, and left (b = -3.43, t = -1.45, 

p = 0.16) or right (b = -1.30, t = -0.61, p = 0.55) LTL on the memory composite. A series of 

follow-up regressions were run where the five individual tests of the memory composite were 

entered in independent models as dependent variables of interests. Results revealed significant 

interactions between time since injury x resting CBF of the left LTL on CVLT-II Short Delay Free 

Recall z-score (b = -5.17, t = -2.29, p = 0.03, partial correlation = -0.42). Examination of simple 

main effects revealed a general trend showing a strong positive association between higher 

resting CBF and better cognitive performance in those were closer in time to their injury relative 

to those whose injuries were more remote. Results revealed there were no medium-to-large 

effect sizes when the partial correlation of the interaction term was examined in each regression 

model. 

Exposure to blast detonations x CBF on cognition. For the first set of regressions, 

we were interested in whether there was an interaction between total number of BEs and resting 

CBF of frontal ROIs on performance of the EF composite. Results revealed there were no 

significant interaction terms for total number of BEs and resting CBF of the left (b = -2.15, t = -

0.42, p = 0.68) and right (b = -1.79, t = -0.95, p = 0.36) IFG, left (b = 1.24, t = 0.37, p = 0.72) and 
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right (b = 0.06, t = 0.18, p = 0.99) MFG, left  (b = -0.08, t = -0.04, p = 0.97) and right (b = 1.99, t 

= 0.69, p = 0.50) ACC, and left (b = -0.57, t = .16, p = .88) and right (b = 1.26, t = 0.39, p = 0.69) 

OFC. A series of follow-up regressions were run where the five individual tests of the EF 

composite were entered in independent models as dependent variables of interests. Results 

revealed no significant interactions between total number of BEs and resting CBF of any frontal 

ROI for the individual subtests. Results revealed there were no medium-to-large effect sizes 

when the partial correlation of the interaction term was examined in each regression model. 

 For the second set of regressions, we explored whether total number of BEs moderated 

the relationship between resting CBF of temporal ROIs on performance of the memory 

composite. Results revealed there no significant interactions for time since injury x resting CBF 

of left (b = 1.17, t = 0.35, p = 0.73) or right (b = 2.54 t = 0.84, p = 0.42) MTL, and left (b = .24, t = 

0.08, p = 0.94) or right (b = 2.40, t = 0.59, p = 0.56) LTL on the memory composite. A series of 

follow-up regressions were run where the five individual tests of the memory composite were 

entered in independent models as dependent variables of interests. Results revealed significant 

interactions between total number of BEs x resting CBF of the left MTL on Logical Memory I 

Total z-score (b = 4.45, t = 1.49, p = 0.15, partial correlation = 0.34); resting CBF of the right 

MTL on Logical Memory I Total z-score (b = 5.21, t = 1.99, p = 0.07, partial correlation = 0.43) 

and Logical Memory II Total z-score (b = 3.82, t = 1.37, p = 0.19, partial correlation = 0.31); and 

resting CBF of the right LTL on Logical Memory I Total z-score (b = 6.71, t = 1.96, p = 0.07, 

partial correlation = 0.39) and Logical Memory II Total z-score (b = 6.08, t = 1.60, p = 0.13, 

partial correlation = 0.36). Examination of simple main effects revealed a general trend in that 

there was a strong negative association between higher resting CBF and poorer cognitive 

performance in those with fewer BEs relative to those with more BEs. Results revealed there 

were no other medium-to-large effect sizes when the partial correlation of the interaction term 

was examined in each regression model. 
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APOE-e4 positivity x CBF on cognition. For the first set of regressions, we were 

interested in whether APOE-e4 positivity moderated the association between resting CBF of 

frontal ROIs on performance on the EF composite. Results revealed there was a trend for the 

interaction between APOE-e4 positivity x resting CBF of the right MFG on (b = -3.79, t = -1.97, p 

= 0.06, partial correlation = -.35) on performance of the EF composite. Examination of simple 

main effects revealed that higher resting CBF was associated with better performance on the 

EF composite in those who were APOE-e4 non-carriers relative to APOE-e4 carriers. No other 

significant APOE-e4 positivity x resting CBF of left (b = -2.62, t = -0.97, p = 0.34) and right (b = -

1.83, t = -0.78, p = 0.44) IFG, left (b = -2.67, t = -1.22, p = 0.623) MFG,  left  (b = -1.92, t = -1.17, 

p = 0.25) and right (b = -1.34, t = -0.94, p = 0.36) ACC, and left (b = 0.55, t = 0.18, p = .86) and 

right (b = -0.90, t = -0.47, p = 0.65) OFC were observed. Follow-up regression analyses 

exploring the individual tests included within the EF composite revealed a significant APOE-e4 

positivity x resting CBF of the right MFG on the WCST Perseverative Responses z-score (b = -

3.19, t = -1.56, p = 0.13, partial correlation = -.30). Examination of simple main effects revealed 

that there was a strong positive ssociation between higher resting CBF and better cognitive 

performance in those who were APOE-e4 non-carriers relative to APOE-e4 carriers. Results 

revealed there were no other medium-to-large effect sizes when the partial correlation of the 

interaction term was examined in each regression model. 

 For the second set of regressions, we explored whether APOE-e4 positivity moderated 

the association between resting CBF of temporal ROIs and performance on the memory 

composite. Results revealed there no significant interaction between APOE-e4 positivity x 

resting CBF of left (b = 0.19, t = 0.90, p = 0.93) or right (b = -0.29, t = -0.15, p = 0.88) MTL, and 

left (b = -2.42, t = -0.87, p = 0.39) or right (b = -2.41, t = -0.81, p = 0.43) LTL on performance on 

the memory composite. Follow-up regression analyses exploring the individual memory tests 

also revealed no significant APOE-e4 positivity x resting CBF interactions on memory 
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performance. Moreover, examination of partial correlations of the interaction term revealed no 

medium to large effect size trends (r’s >.3).  

Additional Exploratory Analyses  

 Group cognitive comparisons. An ANCOVA was performed in order to determine 

whether there were group differences in performance on the EF and memory composites. 

Covariates included PCL-M and BDI total scores. Results revealed there were no significant 

differences in performance between the groups  on the EF (F (3, 52) = 0.57, p = 0.45, hp
2 = .01) 

and memory composite (F(3, 48) = 0.05, p = 0.82, hp
2 = .001) between the groups. However, 

when analyses were replicated without covariates using an ANOVA, results revealed the TBI 

group performed significantly worse than the MC group on the EF composite (F (1, 52) = 5.35, p 

= 0.03, hp
2 = .09).  No significant group differences were observed for the memory composite (F 

(1, 52) = 0.77, p = 0.38, hp
2 = .02).  See Figure 7 below for a graphical depiction of mean EF 

composite performance between the groups. 

 

Figure 7. Average Performance Between the mmTBI and MC groups on the EF Composite. X 
axis presents the performance on the EF Composite in z-scores. Y axis is the depiction of 
average group performance for the mmTBI and MCs group with error bars that represent the 
standard error of the mean. 
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 Group (mmTBI vs. MCs) x CBF on cognition explorations. A series of ANCOVAs 

were performed to determine whether history of mmTBI moderated associations between 

resting CBF and cognitive performance within our sample. Independent variables included 

Group (mmTBI vs. MCs), age, BDI-II and PCL-M total scores, and the Group x resting CBF 

interactions term for relevant frontal ROIS. Results revealed there were no significant interaction 

terms for time Group x resting CBF of the left (F (6, 52) = 1.70, p = 0.19, hp
2 = .04) and right (F 

(6, 52) = 0.001, p = 0.97, hp
2 <.001) IFG,  left (F (6, 52) = 1.17, p = 0.28, hp

2 = .03) and right (F 

(6, 52) = 0.03, p = 0.87, hp
2 = .001) MFG, left (F (6, 52) = 0.48, p = 0.49, hp

2 =.01) and right (F 

(6, 52) = 2.62, p = 0.11, hp
2 =.05) ACC, and left (F (6, 52) = 0.67, p = 0.42, hp

2 =.01) and right (F 

(6, 52) = 0.00, p = 0.98, hp
2 <.001) OFC on EF composite performance. Follow-up ANCOVAs 

exploring the resting Group x CBF on performance of the five individual EF tests were 

performed. Results revealed no significant interactions for cognitive performance on each EF 

test, but there were trends for Group x resting CBF of the left IFG on DKEFS Verbal Fluency 

Switching Total Responses z-score (F (6, 52) = 2.52, p = 0.11, hp
2 =.05); Group x resting CBF of 

the left MFG on the WCST Perseverate Errors z-score (F (6, 52) = 2.03, p = 0.16, hp
2 =.05); 

Group x resting CBF of right MFG on the WCST Perseverate Errors z-score (F (6, 52) = 2.15, p 

= 0.15, hp
2 =.05); Group x resting CBF of the left ACC on the DKEFS Verbal Fluency Switching 

Total Responses z-score (F (6, 52) = 4.08, p = 0.05, hp
2 =.08); Group x resting CBF of the right 

ACC on the WCST Total Errors z-score (F (6, 52) = 2.65 p = 0.11, hp
2 =.06); Group x resting 

CBF of the right ACC on DKEFS Verbal Fluency Switching Total Responses z-score (F (6, 52) = 

2.87, p = 0.09, hp
2 =.06).  For interactions with the WCST variables, results revealed that higher 

resting CBF was associated with better performance in the TBI group, whereas there were no 

significant associations between resting CBF and cognitive performance within the MC group. 

See Figure 8 below.  
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Figure 8. Depiction of Group (mmTBI vs. Military Controls) x Resting Cerebral Blood Flow of the 
Left Middle Frontal Gyrus for WCST Perseverative Responses Performance. Y axis represents 
WCST Perseverative Responses in z-scores. X axis represents cerebral blood flow of left 
middle frontal gyrus in mL/100g tissue/min  
 
 For interactions with the DKEFS Verbal Fluency Switching Total Responses variable, 

results revealed that higher resting CBF was associated with better performance in the MC 

group, whereas there were no significant associations between resting CBF and cognitive 

performance were observed within the TBI group. See Figure 9 below.  
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Figure 9. Depiction of Group (mmTBI vs. Military Controls) x Cerebral Blood Flow of the Left 
Inferior Frontal Gyrus on DKEFS Verbal Fluency Switching Total Responses Performance. Y 
axis represents DKEFS Verbal Fluency Total Responses in z-scores. X axis represents cerebral 
blood flow of left inferior frontal gyrus in mL/100g tissue/min  
 

 A second series of ANCOVAs were performed to determine whether history of mmTBI 

moderated associations between resting CBF and performance on the memory composite 

within our sample. Independent variables included group (mmTBI vs. MCs), BDI-II and PCL-M 

total scores, and the Group x resting CBF interactions term for relevant temporal ROIS. Results 

revealed there were no significant interaction terms for Group x resting CBF of the left (F (6, 52) 

= 0.002, p = 0.96, hp
2 < .001) and right (F (6, 52) = 0.05, p = 0.83, hp

2 <.001) MTL, and left F (6, 

52) = 0.01, p = 0.92, hp
2 < .001) and right (F (6, 52) = 0.21, p = 0.65, hp

2 = .005). Follow-up 

ANCOVAs exploring the Group x resting CBF on performance of the five individual tests 

included within the memory composite were performed. Results revealed no significant Group x 

resting CBF interactions of temporal ROIs interactions for each cognitive test.  
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IV. DISCUSSION 
 

We explored whether there were group differences in resting CBF between those with 

and without history of mmTBI; resting CBF associations with cognition and important genetic 

and environmental risk factors (i.e., total number of TBIs, time since injury, total number of blast-

exposures, APOE-e4 positivity) within the mmTBI group; and the extent to which risk factors 

moderate the association between resting CBF and cognition in those with mmTBI. Results 

showed that, relative to MCs with no history of head-trauma, mmTBI Veterans demonstrated 

significantly higher resting CBF in several frontal and temporal ROIs. Within the mmTBI group, 

higher resting CBF in frontal regions was associated with better performance on measures of 

executive functions, although no such associations between resting CBF and measures of 

memory were observed. Finally, several significant risk factor x resting CBF associations with 

cognition were demonstrated, such that higher resting CBF was associated with better memory 

and executive functions performance in those with lower risk.  These findings suggest that 

increased resting CBF may represent a critical compensatory mechanism that allows for better 

cognitive performance in Veterans with mmTBI. However, this compensatory mechanism seems 

to be reduced within the context of multiple mmTBIs, greater time since injury, and APOE-e4 

positivity. 

Group Resting CBF Differences 

 The current study is the first to our knowledge to use ASL MRI in order to quantify 

resting CBF within the context of a military mmTBI sample. While ASL has been widely utilized 

in civilian moderate to severe TBI samples, it has only recently been applied to sports 

concussion and civilian TBI samples of milder severity. As summarized by Stephens (2018) and 

colleagues, only 11 known mTBI studies using ASL have been published and results have 

largely been mixed. While some studies find that relative to controls, history of mTBI is 

associated with global and/or regionally specific increases in  CBF (Doshi et al., 2015; Mutch,  
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et al., 2016; Stephens, Liu, Lu, & Suskauer, 2018), others find robust decreases (Churchill, 

Hutchinson, Graham, & Schweizer, 2018; Peng et al., 2016; Wang et al. 2016). The current 

study found significantly increased resting CBF in several frontal and temporal ROIs, but no 

global resting CBF differences between Veterans with and without history of mmTBI. Despite 

inconsistences in directionality within the existing literature, our findings overlap with regions 

commonly implicated in other ASL studies of mTBI (Doshi et al., 2015; Wang et al., 2015). 

Notably, most of the existing ASL studies have leveraged samples that are largely in the acute 

or post-acute phase of injury. Thus, the current study provides some clarification into the nature 

of resting CBF within the chronic phase of injury. Moreover, these increases in resting CBF 

were determined to be independent of common psychiatric comorbidities that have frequently 

not been considered in existing studies.  

 Our findings of increased regional resting CBF in Veterans with mmTBI were in direct 

contrast to our original hypotheses, as we expected that damage to the cerebrovasculature 

coupled with neuroinflammatory cascades would result in chronically decreased resting CBF 

post-injury. The precise mechanisms underlying increased resting CBF remains unclear but 

could represent vascular dysfunction in the form of neurovascular uncoupling. The 

neurovascular unit (NVU) is comprised of blood vessels (e.g., arteries, capillaries), endothelial 

cells, abutting neurons, and support cells (e.g., astrocytes, microglia), and it is responsible for 

many important functions (i.e., establishing homeostasis, ensuring neuronal functioning, 

regulating inflammatory and reparative processes). During TBI, primary injury (i.e., twisting, 

shearing) disrupts the integrity of the NVU. This structural damage has negative functional 

consequences that may persist and worsen with time, as it alters the dynamic signaling 

cascades that occur between components of the NVU. As a result, there may be a mismatch 

between the NVU’s ability to modulate CBF in accordance with local metabolic demands of 

neuronal tissue. One well documented consequence of damage to the NVU is functional 

hyperemia—that is, the NVU commonly overshoots delivery of CBF with respect to relative 
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oxygen demands of the tissue to ensure the proper delivery of fuel as well as the removal of 

detrimental waste (Armstead, 2016; Ellis et al., 2016). Cerebrovascular reactivity (CVR) 

provides a measurement of this mismatched response and several recent studies have 

demonstrate altered and variable CVR responses in those with mTBI relative to controls (Amyot 

et al., 2018; Kenney, Haber, Amyot, Davis, Pronger, Moore & Diaz-Arrastia, 2016; Ellis et al., 

2016; Haber et al., 2018). However, less clear is what drives a hyperemic versus ischemic 

response within the context of mild neurotrauma.  While purely speculative, we suspect that 

hyperemia may occur within the context of less vascular pathology and that ischemia may be 

more likely to occur with profound damage to multiple elements of the NVU and may therefore 

explain why reduced CBF seems to be a more consistent finding in moderate to severe TBI 

samples.   

 It is important to acknowledge that variability in ASL sequences and precisely how 

resting CBF values are reported in the literature may also play a pivotal role in the discrepancies 

across studies. For example, both pulse and pseudo-continuous ASL sequenced have been 

used to characterize group differences between those with and without history of TBI. Arterial 

blood is magnetically labeled in a spatially selected manner with pulsed ASL sequences, 

whereas pseudo-continuous ASL sequences use a radiofrequency pulse train to continuously 

label blood feeding into arteries. Thus, distinct differences in signal intensity, image contrast, 

and reproducibility across these sequences warrant consideration when comparing across or 

within study samples (Nezamzedah, Matson, Younhg, Weiner, & Schuff, 2010; Stephens et al., 

2018). Moreover, it appears that both relative and absolute resting CBF values are reported in 

the existing literature. Relative resting CBF provides a metric of perfusion of an ROI relative to 

the rest of the brain, whereas absolute resting CBF quantifies regional CBF independent of 

other regions. The current study reported absolute resting CBF values, which has increased 

susceptibility to physiological factors (e.g., caffeine, breathing rate), transit time delay, and 

partial volume effects (Borogovac & Asllani, 2012; Stephens et al., 2018). However, this method 



 

 52 
 

has increased sensitivity to detect small effects, relative to resting rCBF, which is essential 

given the lower power in the current study. 

CBF and Cognitive Outcomes 

 We found that higher resting CBF of the right IFG and OFC was associated with better 

cognitive performance on the EF composite within the mmTBI group. Moreover, similar results 

were observed between resting CBF of other frontal ROIs and performance on the individual 

subtests of the larger EF composite. Results suggest that higher resting CBF may represent a 

compensatory mechanism within the context of mmTBI. On average, the mmTBI group 

performed largely within normative limits and follow-up exploratory analyses revealed the 

independent of psychiatric factors, there were no group differences in cognitive performance 

between the mmTBI and MCs group. The current findings align with existing fMRI blood 

oxygenation level-dependent (BOLD) studies showing increases in frontal activation during 

working memory tasks in those with mild TBI relative to controls, even in the in the absence of 

group differences in behavioral performance (McDonald, Saykin, & McAllister, 2014). Moreover, 

resting state fMRI (rs-fMRI) studies have also revealed that the default mode network (DN) is 

more active at rest in mTBI subjects relative to controls (Han et al., 2014; Sours, Zhuo, Roys, 

Shanmuganathan, & Gullapalli, 2015). Nevertheless, when ASL, BOLD, and rs-FMRI studies 

delineate mmTBI subjects into those who do and do not recover based on PCS reporting, 

patterns of increased activation, network activity, or CBF of frontal regions have been linked to 

poorer recovery, or increased PCS reporting (Barlow, Marcil, Dewey, Carlson, MacMaster, 

Brooks, & Lebel, 2017; Han et al., 2014; Lin, Tseng, Hsu, Chen, Chen, Yan, & Chiu, 2016; 

Wylie, Freeman, Thomas, Shpaner, O’Keefe, Watts, & Naylor, 2015). Ancillary analyses 

revealed that, independent of age and PCL-M total scores, higher CBF was associated with 

worse PCS symptom reporting. Results suggest that while higher CBF may be compensatory 

for neurocognitive performance, it may be detrimental for subjective experiences of PCS. Future 

work will explore discrepancies between resting CBF, subjective cognitive complaints, and 
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objective neuropsychological performance. Notably, there were no associations between resting 

CBF in temporal regions and performance on memory composite, individual memory tests, or 

PCS symptoms. Thus, there may be some regional specificity in that frontal regions may be 

more vulnerable to vascular injury and therefore more likely to demonstrate altered patterns of 

resting CBF.  

 We conducted a series of exploratory analyses to determine whether group (mmTBI 

versus MCs) moderated the association between resting CBF and cognitive performance. We 

expected that greater vascular pathology in the mTBI group would alter resting CBF and 

cognitive associations. Results revealed a trend toward differential associations with individual 

EF tests, but not the EF composite, across the two groups.  Higher resting CBF was associated 

with fewer errors on a measure of abstract problem solving in the mmTBI group, whereas there 

were no significant associations between resting CBF and cognitive performance on this 

measure within the MCs group. In contrast, higher resting CBF was associated with better 

performance on a measure of cognitive set-shifting in the MCs group, but there no such 

association between resting CBF and cognitive performance in the mmTBI group. Results 

suggest that increased resting CBF may allow for greater self-monitoring and/or compensation 

on untimed (WCST) versus timed tasks (DKEFS Verbal Fluency Switching) in the mmTBI group. 

The lack of an association between resting CBF and cognitive performance on the timed task 

may suggest that those with mmTBI may be overloaded by task demands and unable to 

compensate with increased resting CBF. Additional research with a larger sample size and 

greater variability on cognitive performance is needed to better tease apart any differential 

associations between resting CBF and cognitive performance between the groups.  

Resting CBF and Risk Factors  

 We also explored associations between risk factors (i.e., cumulative blast exposure, 

history of multiple TBIs, time since injury, and genetic susceptibility [APOE-ε4 positivity]) and 

resting CBF in those with mmTBI. Results revealed that a greater total number of TBIs was 
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significantly associated with reduced resting CBF of the left IFG. Human studies directly 

exploring repetitive TBI and CBF are relatively limited and while repetitive TBI may be common 

in military samples (Fortier et al., 2013), many published studies do not comprehensively 

characterize lifetime history of TBIs of their samples and it is difficult to tease apart to what 

extent repetitive TBI may be a relevant factor in observed brain findings within the literature. 

Nevertheless, research from sports concussion or athlete samples have provided some insight 

into the nature of brain changes within repetitive TBI samples. For example, Slobounov and 

colleagues (2017) recently showed pre- to post-season increases in both global and regional 

resting CBF in collegiate football players presumed to have repetitive subconcussive blows. In 

contrast, decreased resting CBF was observed in the inferior temporal lobe of active 

professional fighters with repeated head trauma (Mishra, Sreenivasan, Banks, Zhuang, Yang, 

Cordes, & Bernick, 2018). Although our mmTBI group showed higher regional CBF relative to 

MCs, there may be a point at which this compensatory response is altered in the presence of 

repetitive injuries. We failed to find any robust associations between resting CBF and other 

critical risk factors, though our resting CBF x risk factor on cognitive performance interactions 

provided insight into the nature of these null findings and will be discussed below.  

Resting CBF x Risk Factors on Cognitive Outcomes 

 Our final goal was to explore the extent to which risk factors may influence resting CBF 

and cognitive outcomes in mTBI. We hypothesized that resting CBF-related cognitive deficits 

would be more pronounced in mmTBI Veterans with greater blast-exposure, history of multiple 

TBIs, APOE-e4 positivity, and who are further removed from their injury.  We suspected that the 

presence of these risk factors would modify resting CBF and cognitive associations by either (1) 

exacerbating or contributing to vascular-related brain damage and/or (2) reducing cognitive 

reserve post-TBI. The current study found results that largely contradicted our original 

hypotheses, as resting CBF and cognitive associations were generally more pronounced in 

those with lower versus higher risk factor burden. For example, there was a strong association 
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between higher resting CBF and better cognitive performance in the mmTBI group with fewer 

injuries relative to those who reported multiple injuries; those who were closer in time to their 

injury relative to those whose injuries were more remote; and those who were APOE-e4 non-

carriers relative to APOE-e4 carriers. Results suggest that there may be a threshold in which 

increased resting CBF is no longer compensatory within the context of greater risk factor 

burden. That is, individuals with milder pathology and injury can maintain cognitive performance 

through increased resting CBF, though there is a point at which this compensatory mechanism 

is no longer effective. These findings align with the compensation related utilization of neural 

circuit hypothesis of aging in which increases in brain activation allow for task demands to be 

met, though the effectiveness of these increases plateau much earlier in older versus younger 

adults (Lustig & Sarter, 2015; Rueter-Lorenz & Lustig, 2005; Rueter-Lorenz & Cappell, 2008).  

 Unexpectedly, we found a strong negative association between higher resting CBF and 

poorer memory performance in those with fewer blast exposures. These findings are in direct 

contrast to the other CBF and risk factors associations observed and also contradict most of the 

existing literature demonstrating greater BE is associated with poorer brain and behavioral 

outcomes (Clark et al., 2018; Grande et al., 2018; Robinson et al., 2017). We suspect that these 

findings may be spurious and additional research with a larger sample size is needed. Notably, 

only 52% of the original mmTBI sample was blast exposed, which was futher delineated into 

those with low (n = 8) versus high (n = 8) levels of BE for interpretation. While our analyses 

revealed there was no association between BE and resting CBF within the sample, Pearson’s 

correlations revealed largely negative associations between BE and cognitive test performance 

within the sample. BE is generally quite difficult to characterize in human studies and we 

currently have no understanding what level of intensity illicits detrimental effects in the human 

brain. Moreover, many of the current BE studies fail to take into other known risk factors such as 

combat exposure or repetitive TBI in their analyses. Our work in exploring the potential 
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detrimental effects of BE is is in its infancy, but increased efforts should first be made towards 

characterizing BE in humans by focusing on quantifying distance or intensity as a marker of 

potential severity.  

Limitations  

It is important to note that the current study has several limitations that warrant 

discussion. The cross-sectional design of this study does not speak to any preexisting 

differences in CBF that may have existed between our groups and also does not allow us to 

make causal inferences about our imaging findings. Second, as is common in most military TBI 

studies, our diagnosis of TBI was based on retrospective self-report of injuries that occurred 

many years prior and is therefore subject to recall bias.  However, we worked to mitigate these 

effects by also conducting comprehensive chart reviews of injuries and administering a semi-

structured TBI clinical interview that reduces risk of leading questions and ensures more 

adequate characterization and confidence in diagnosis of these injuries. Third, our sample size 

was considerably smaller than our proposed recruitment target and we likely did not have the 

power to detect differences in some of our analyses. However, we examined and reported 

medium to large effect sizes which speaks to the nature of our findings within the context of a 

larger sample.  We did not correct for multiple comparisons, but examined a-priori ROIs 

commonly implicated in the TBI literature and created larger composite ROIs in an effort to 

reduce our comparisons. However, in doing so, we may have reduced our sensitivity and cannot 

speak to distinct differences in regional specificity of resting CBF changes. Finally, our sample 

consisted of mixed injury severity due to issues of power, but sensitivity analyses generally 

showed that our findings did not drastically differ due to the inclusion of those with moderate TBI 

in the sample. 

Conclusions, Strengths, and Future Directions 

In summary, to our knowledge, this is the first investigation to utilize ASL in order to 

explore CBF differences in a military sample of Veterans with and without mmTBI. Our results 
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provide preliminary evidence that increased resting CBF is observed within the context of 

mmTBI and likely represents a compensatory mechanism that allows for better cognitive 

performance following injury. However, interestingly, increased resting CBF as a compensatory 

mechanism for better cognitive performance appears to only be present in Veterans with lower 

risk factor burden. Strengths of this study include comprehensive characterization and statistical 

modeling of known risk factors that have largely not been considered in brain-behavior 

explorations within the existing TBI literature. This study also employed novel MRI technology 

and comprehensive behavioral and biomarker assessment in a way that directly translated 

critical developments shown in the animal literature to explorations in humans.  

Although the exact timeline of resting CBF alterations post-TBI is unclear, our study 

provides evidence that TBI causes persisting functional changes. Currently, there is an ever-

pressing need to consider precisely how resting CBF changes may differ with time and to what 

extent these resting CBF changes may represent endothelial dysfunction that worsens within 

the context of common age-related pathological processes (e.g., vascular risk, dementia). 

These findings enhance our understanding of the pathophysiological mechanisms underlying 

negative outcomes in Veterans with head trauma histories.  Future prospective studies are 

needed to identify (1) consistent and reliable biomarkers of PCS, cognitive dysfunction, and 

poor functional outcomes across different phases of mTBI; (2) individuals at greatest risk for 

poor outcomes; (3) the utility of novel MRI indices in monitoring outcomes; and (4) 

neurobiological targets for intervention that improve quality of life and lower health-related costs. 
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